Chapter 3
Differential Properties of Subalgebras and Fully Operators

It is shown that (D;)-subalgebras are closed under C*- calculus. If § is a closed derivation of A,
the algebras D (6”) are (D,)-subalgebras of A. In the case when § is a generator of a one-
parameter semi group of automorphisms of A, it is proved that, in fact, D(6)are (D;)-
subalgebras. We also characterize those Banach *-algebras which are isomorphic to (D;)-
subalgebras of C*-algebras.lIt is proved that the following classes of functions from
A(ID)coincide: the class of the sequences of operator Lipschitz functions on the unit circle T; the
class of the sequences of operator Lipschitz functions on ID; and the class of the sequences of
operator Lipschitz functions on all contraction operators. A similar result is obtained for the class
of the sequences of operator C,-Lipschitz functions from A(ID).

Section (3.1): Some Dense Subalgebras of C*-Algebras

It is well-known that C*-algebras are noncommutative analogies of the algebras of
continuous functions. We studies some classes of dense C*-subalgebras of C*-algebras
whose properties are "close" to the properties of the algebras of differentiable functions.

In [100] is investigated dense locally normal Q*-subalgebras B of C*-algebras A. These
subalgebras retain many properties of the enveloping C*-algebras: Sp,(x) = Spp(X),
x € B, every finite-dimensional semisimple representation of B is automatically
continuous and extends to A and, for every injective *-homomorphism ¢ of B into a
Banach *-algebra, ||x|| = ||¢(x)]||, x € B. All closed (in the topology of A) two-sided
ideals of B are obtained by the mapping I - I n B of the set of all closed two-sided
ideals I in A, this mapping is one-to-one and it maps the set of all maximal ideals in A
onto the set of all maximal ideals in B. From Longo's result [101] it also follows that
everywhere defined derivations from B into A are automatically bounded.

Let B be a dense *-subalgebra of a C*-algebra (4, ||,) and a Banach *-algebra with
respect toanorm || ||. We describe in terms of the norm || || different classes of locally
normal Q*-subalgebras of A. If, for example, || || is such that B is closed under C*-
functional calculus of selfadjoint elements, then B is a locally normal Q*-subalgebra
of A. Thusif §isaclosed *-derivation of 4, if x = x*D(6P) and a function f(t) has p +
1 continuous derivatives, it follows from the result of Bratteli, Elliott and Jorgensen [102]
that f(x) € D(67), so that D(6P) isa locally normal Q*-subalgebra of A.

Blackadar and Cuntz [103] started the study of smooth *-subalgebras of C*-algebras.
The basic concept in their approach is the one of differential seminorms which generalizes
the seminorms  associated with the powers of derivations. They showed that any
subalgebra which is complete with respect to a differential seminorm of total order k is
closed under c**1-functional calculus.
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We consider (D,)-subalgebras B of Banach algebras (4, ]| [lp): dense subalgebras of A
for which there exist norms {|| ||;}}_, and positive constants {D;}}_, such that (B, |I,) is
Banach algebra and

llxeyll; = Di(llxlellylli=s + llxlli=1llyll), x,y €B and 1 =i = p.

The differential subalgebras of order p studied by Blackadar and Cuntz are (D,)-
subalgebras and, for p = 1, these classes coincide. But for p = 2, the growth of || ||,on
products and exponentials in (D,)-subalgebras, which determines the properties of the
subalgebra, is much faster than in the differential subalgebras. Because of this, even
forp =2, it is not clear whether (D,)-subalgebras are closed under C*-functional
calculus.

In Theorem (3.1.6) we show that if A contains an identity 1, then 1 € B and B is a Q-
subalgebra of 4, i.e,, Spg(X) = Sp,s(x), for all x € B. For the case when A is a C*-algebra,
x=x"€B and f(t) is a function on Sp,(x), Theorem (3.1.19) gives some sufficient
conditions for f(x) to belong to B. Although this condition is much stronger than the
condition of Bratteli, Elliott and Jorgensen [102] for the algebras D(§”) and than the
condition of Blackadar and Cuntz [103] for differential algebras, nevertheless, as a
corollary of this result, we obtain that (D,)-subalgebras of C*-algebras are locally normal
Q*-subalgebras (similarly, the Fourier-Wiener algebra is a locally normal Q*-subalgebra,
butitis not closed under Q*-functional calculus).

Blackadar and Cuntz [103] studied a special class of flat differential seminorms. They
showed that a differential seminorm T = {| |l-}f=00n B is flat if and only if there exist a
seminormed algebra D and a derivation § of D such that B € D(6P) and that [x]|; =

|6°Go)|| /it , x € B and 0 = i = p. We show that if § is a generator of a one-parameter
, 14
semigroup of automorphism of 4, then the flat differential seminorm T = {||5‘(x)||0/i!}
i=0

of order p > 1 on D(6P) is equivalent to the differential seminorm T' = {|| o I ||p} of
order 1, where [|x]|,, = Zf=0||5"(x)||0/i!. Thus, in this case, the algebras D(8?) are, in fact,
(D,)-subalgebras of A.

(D,)-Subalgebras of C*-algebras constitute probably the most interesting subclass of
subalgebras of C*-algebras. Characterizes those Banach *-algebras which are isomorphic
to (D,)-subalgebras of C*-algebras.

Let
~ _ (kY _ (kKYj (k=) if j =k,
a(k’])_(j>_{o >k
By induction one can prove the following formula:
m m
1)=2.(7)= (1) =
Z( =Y ()=("]) ism )
] J = J J
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Set

swn=3.()
Making use of (1), we obtain that =
m p~1 p—1 m
ysen=23(1)=3 ()
:]:(?:f):i<m71>:5(m+1,p+1)_1l 2

Lemma (3.1.1)[99]. Let B be an algebra and let {ﬁ o, be a set of non-negative functions
on B such that for alli =0,...,p, fl(x"+m)fl(x")fl(xm), x€B and m,n>0. If there
exist positive numbers {Cl-}f’=0 such that

fi(x?) =Cifioi()filx), xeB and i=1,..,p,
then, for all k,

fl-(xzk) < £, (x)? 50D H[ﬁ—1(x)]a(k’j) (C;_j)ated+D),
j=0

in particular, fl(xzk) < CFIf (1P 1 ().
Proof. We have that

A(x*) = Cufica (7 )f(x7) =
< Clfioa ()i (327 o e OO D). 3)
Since fo(x™) = f,(x)™, we obtain that fl(xzk) = C{‘[fo(x)]zk‘lfl(x) and the lemma holds
for i = 1. Suppose that the lemma holds fori = n.Leti =n+ 1. By (3),

fn+1( ) = Ck+1(x)fn+1(x)1_[fn(x2m

= 111€+1fn+1(x) 1_[ fo(x)zm_s(m’n) H[fn—j(X)]a(m’j) (Cn_j)a(m’j+1),
m=0 j=0

By (2) Y 1@m —-S(mn)=2F—-1-Sk,n+1)+1=2%-5k,n+1). By
(D) k1 a(m,j) = a(k, k,j + 1). therefore

_ i
f"“( ) = Ck+1fn+1(x)f0(X)2 S(kn+1) | | fa ](x)a(k,]+1) CanHZ)
k_
= folxy* ~Sem | [ Fray G2 20T
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Corollary (3.1.2)[99]. Let2™ =n <2™*1 andset K(x) = max {C:fi(x),1}. Then for m >
Sisp

2p,

S(m,p) <mP~ and f,(x) £ K (x)2XM™OPf (x)] 40,
where S(m,p) =d(n) =S(m+1,p+1).

Proof. By Lemma (3.1.1), fp(xzi) < K()Pi[f, (x)]2 ~5EP), where

p—1
[ [ . [ .
b, = Z <(1> +(l.+ 1)) = 28(i,p) — 1+ (p) < 25(i,p +1).
j=0
Set fo(x%) = 1. Letn = Y™, a;2¢, where a; are either 1 or 0 and a,,, = 1. Then

fp(xn) < pr (xal-zi) < 1_[K(x)aibi[fo(x)]ai(zi_S(i’p)) < K(x)b[fo(x)]n—d(n)’

Where b =Y",a;b; and d(n) = Y™,a;S(i,p). Since a,, = 1, we obtain from (2) that b =
2S(m+ 1, p+2)and S(m,p) =d(n) =S(m+ 1,p+1).

m
Form > 2p, we have that s(m,p) <p (p _ 1) < mP~1 Sincel = K(x), then K(x)? =

K(X)Z(m+1)p+1
Definition (3.1.3)[99]. Let {|| ||;}}., be algebraic seminorms on an algebra B, i.e.,||xy|l; <
Myl -

(i) We say that B has property (D,) with respect to {| ||l-}’lf’=0 if there exist

numbers {D;}’_,, D; 2 0, such that forall x € B,
lxyll; = DiCllxllllylli-a + lxlli-allvll) . 1=is=p.

(i) Let|| [lo and || ||, be normson B and let A be the completion of B with respect to || [|,.
If B is Banach algebra with respect to || || ,,, then we say that B is a (D,)-subalgebra of A. If,
in addition, B is a *-algebra and [[x*||; = ||x||;; 0 =i = p then we say that B is a (D})-
subalgebra of the Banach *-algebra A.

Since |[x™*™|| = [|x™]||||x™]| for any seminorm || || Lemma (3.1.1) and Corollary (3.1.2)
hold if B has property (D) with C; = 2D;.

Lemma(3.1.4)[99]. Let B be a *-algebra and let |[x*||; = ||x||;, 0 =i = p. Then property

(D) is equivalent to the following property (D;): there exist numbers {D{}"_,, D} =0,

such that for all x € B,

lx*x|l; = Dillx|lillxlli-1 » 1Sisp

Proof. Letx = a +ib € B. Then ||all; = [|(x + x")/2||; = lIx]l; and [[b]| = [|(x —x")/2i|l; =
|lx||;. Property (D) clearly implies property (D}). Let B have property (D). Fix i and set
=11l =1Illi—; and D = D}. We have that

x?2=a*+i(ab+ba)—b*=0—-i)a?- QA +i)b?+i(a+b)? x*x=a?+i(ab— ba)+
bZ
Then
lab — ball = |lx*x —a® — b*|| = D(|Ix|l|x| + llalllal + [IbII[b]) = 3D||x|l|x].
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Fort >0,
I2t(ab + ba)|l = lI(a + tb)? — (a — th)?|l = |I(a + tb)?|lll(a — tb)?||
= D(lla + tbll|a + tb| + |la — tbl||a — tb])
= 2D(llalllal + tlalllbll + llall|b] + t2]Ib]l|b]).
Therefore
llab + ball = D(|all|b] + [alllBll + tlIbl|[b| + llall|al/t)
Using the inequality 2(Ax)Y? < A + u, we obtain that
min(t|b|l|b| + |lalllal/t) = 2(|[bll|blllallla)*’* = llall|b] + |all|b]l.
Therefore ||ab + bal|| = 2D(||al||b] + |al||b]|]), so that|lab + bal| = 4D||x]|||x]. Hence we
obtain that ||ab|| = ||(ab + ba) + (ab — ba)||/2 = 3.5D||x|||x]. Since||x|| = ||all + ||b]|
and |x| = |a| + [b],
llabll = 3.5D(||all + [IBID(|a| + |b]).
Letnow x = a, +ia, and v = b, + ib,. For every j and k,
llabie|| = 35D(||lay|| + bell) (|aj] + 1be]) = 35Dl + Iy x| + [y,
Then

2
eyl £ > llagbell < 14D A1l + Iyl + IyD).
jk=1
Sett =|x|, s=|yl,u=x/tand v=1y/s. Then|u|=1,|v|] =1 and
llxyll = tslluv|| = 28tsD(lull + [[v]l) = 28D (lx(lly| + [x[ll¥I])-
Thus B has property (D).

Recall that a normed algebra B with identity is a Q-algebra if the group of all invertible
elements in B is open in B. If, in addition, B is a *-normed algebra, then B is a Q*-algebra.
Let Spg (x) be the spectrum and r5(x) be the spectral radius of x in B.

Lemma(3.1.5)[99]. ([8,11]). The following conditions are equivalent:
(1) BisaQ-algebra;
(i) r5(x) = ||x|| forall x € B;
(iii) Sp,(x) = Spg(x) for all x € B, where A is the completion of B.

Bratteli and Robinson [104] (cf. [105]) proved that if § is a closed *-derivation of a C*-
algebra with an identity 1, then 1 belongs automatically to the domain D(§) of §. In [100]
this result was extended to the case when § is a densely defined closed derivation of a
Banach algebra A. The following theorem shows that (D,)-subalgebras of Banach algebras
are Q-algebras and that 1 automatically belongs to them.

Theorem (3.1.6)[99]. Let B be a (D,)-subalgebra of A and let A contain an identity 1. Then
1 € B and B is a Q-algebra with respect to || ||,.
Proof. Lety be anelementin B such that |[|[1 — y||, = € < 1.Set

n

an=1-(-yr=-) () (-»ies

i=1
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Then a1 —a, =@ —-y)"y. Let K=K{1-y)= 1max{2Dl-, l11—yvyll;,1}  From
Sisp

Corollary(3.1.2) we obtain that
”an+1 - an”p = ”(1 - y)n”p”y”p = KZ(m+1)p+1€n_5(m+1’p+1)“y”p

< Kz(m+1)7’+1gn—(m+1)7’ ”y”p’

where m = Ig,n = m + 1. The series Y2, K2(92n+ 17" gn=(g:n+1) converges. Therefore its
partial sums S;, converge.
Forany g > 0,

n+q-1

lansa = anll, = ) llaws = gl S Ml (Snegos = Snos):
j=n

Since B is a Banach algebra with respect to|| ||,,, the sequence {a, } converges to an element
x in B. Hence {a, y} converges to xy in B.
On the other hand,
ay =y =L =-"y =y — (ans1 — an).
Since ||ay4+1 — ayll, = O, {a,y} converges to y with respect to|| [, . Thus xy =1y.
Since ||1 — y|lo < 1,y isinvertible in A. Therefore x =1 € B.
Since (B, || Il,,) is a Banach algebra, it follows from Corollary (3.1.2) that

1 / H n —
o) = lim (Ilx2,)"™ S Jim K (o) oo,

where K(x) = max {2D;, ||x||;, 1} and where (pT 1) Sdn)=(m+1)P—-1 and m =
Sisp

lg,n < m+ 1. Hence r5(x) = ||x||, and, by Lemma (3.1.5), B is a Q-algebra with respect to
Il lo.
Example (3.1.7)[99]. Let (A,||-|) be Banach algebra. A two-sided ideal I of A is
symmetrically normable (see [106]) if I is a Banach algebra with respect to a norm | |[..
and

lxyzls = lxlllylslizll, for y €1 and x,z € A.

The symmetric Segal algebras of locally compact groups G are symmetrically normable
ideals of L1(G) [107]. Shatten classes of operators give another example of symmetrically
normable ideals [108J.

If [ is a dense symmetrically normable ideal in 4, then it is a (D,)-subalgebra of A with
respectto || || and | |s. By Theorem (3.1.6), A does not have an identity. The algebras A and
I can be canonically embedded in larger Banach algebras A = A+ C1 and [ = I + C1 with
the norms
le1 + x| = [¢] + |lx]l and [lL1 +yll; = e + |yls, tECx €Ay €]

respectively. The algebra [ is a (D,)-Subagebra of A.

Example (3.1.8)[99]. Let &, ..., 6, be closed derivations of a Banach algebra (4, || [[)some
of them may be the same). For every subset S = {k4,..., k,} of{p,... 1}, ky > k,.. >k, ,
set
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Ss(x) = 5k1(... (5km(x)) ) and &z(x) = x
where @ is the empty set. Let D(6,) be the domain of §; and let D(Js ....8;) NgD(Js)
where S ranges over all subsets of {p,...,1}.
For x € D(85....67), set]|lx|lo =|lx]| and, forl1 =i =p, set

Il = ) 185Col

where S ranges over all subsets of {i,...,1}. For example,

llx|ly = [lx]l + [I6; ()| and |[x|[; = [lx]| + 16; )| + [182 ) + [182(8, eI
For every subset S of {p,...,1}, the derivation property implies the identity s(xy) =
Y0 60 (x)8s\o () , where Q ranges over all subsets of S. Therefore

eyl £ ) 18660
S Q

where S ranges over all subsets of {i,...,1} and Q ranges over all subsets of S. From
this we can deduce that
ey ll; = lIxllallyll; and [lxyll; = llxllillylli-o + lxlli-2 Iyl
Therefore D(6,...8;) has property (D,) with respect to the norms {|| I}, The
closedness of all the derivations 4, .... 5, implies that D(6, ....8;) is Banach algebra with
respectto || ||,. If D(5, ....8;) isdense in A, then itis a (D,)-subalgebra of A.
Example (3.1.9)[99]. . Let (4, ]| || ) be a Banach algebra, let F be a linear closed mapping
from a dense subalgebra D(F) of A into anormed space (H, || ||5) and let there exist
D = 0 suchthat
IF(ab)lly = DUIF(@)IxlIbll + llallllF (D)), a b € D(F).
For example, H is Banach A-bimodule and F is a closed derivation from A into H. Set
llall, = |la]l and ||all; = ||a]| + [|F(a)llz. Then D(F) is a (D,)-subalgebra of A with
respect to the norms || || and || ||;.
Example (3.1.10)[99].. Let (A,||) and (%B,||;) be Banach algebras and let B be a (D,)-
subalgebra of A with respect to || and | |; By C(A) and C(8B) we denote the Banach
algebras of all converging sequences a = {a,}, a, € A, and b ={b,}, b, € B with the
norms ||lall, = supla,| and ||b|l; = sup|b,|, respectively. Then C(B) is a (D,)-
subalgebra of C(A). Let H = L;(B) be the linear manifold in C(B) which consists of all
b = {b,;} such that

bl = ) Ibls < oo
n=1

Then L, (B) is a Banach C(B)-bimodule. Let

F(b) ={by,b; — by, by — by_y, -+ }
be a mapping from C(B) into L,;(B). Then L;(B) € D(F) and D(F) contains every
constant sequence b = {b,;} € B, b,, = b,,,, for all n and m. Hence D(F) is dense in C(B),
so that F is a closed derivation from C(B) into L;(3B). Thus D(F) is a (D,)-subalgebra of
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C (B) with respect to the norms ||b||;. and ||b||, = ||b||; + [|F(b)||4. It is easy to check that
D(F) isalsodensein C(A), sothatD(F)isa (D2)-subalgebraof C(A).

We consider a special subclass of (D,)-subalgebras of Banach algebras-differential
subalgebras studied by Blackadar and Cuntz [103]. A set of seminorms T = {|:|;}\_, =
0 (not necessarily algebraic on an algebra B is called a differential seminorm of order p if

l
byl £ ) Ky lel ey xyeB and 0Sisp,
j=0
where K; ,,, are nonnegative constants and K, , = 1. Differential seminorms T = {|.|i}ll?=0 =
0and T’ = {|:|{}%, = 0 are equivalent if the seminorms ¥*_ | |; and Y7 |'|; are equivalent
on B. Every differential seminorm T is equivalent to a differential seminorm T’ =
{I-l:}2 = Osuch xyl; = Xj_olxl; Iyli-;.
ForO=i=p,setR; = jrmgi(l(j,n).
Lemma (3.1.11)[99]. |Ix|l; = R; XL _olx|,, 0 =i = p are algebraic seminorms on B and
B has property (D) with respect to {IIIl.}}-,and with constants D; = R;/R;_;.
Proof. We have

i i m
eyl = R ) eyl SR " Ky ¢l lyhn
m=0

m=0 j=0
i m
< RE D) Ielylyhny < Ixlldiyle (4)
m=0 j=0
so that || ||; are algebraic seminorms on B. From (4) it follows that
i m i i—1 i—1 i
laeylle = RE " Txelylylney SRE (D 1ty | Dy |+ D 1ty ) D s
m=0 j=0 j=0 j=0 j=0 j=0
= Dy (lxllillyllizy + lxlliz 1yl
Definition(3.1.12)[99]. Let T = {||;}}_, be a differential seminorm on B, let | |, = || ||, and
Il ll,be norms on B and let (B, || ||,) be Banach algebra. By A we denote the completion
of B with respect to || ||,.Then (B, T) is called a differential subalgebra of A of order p. If,
in addition, B isa *-algebraand|x*|; =|x|;,0=i=p then (B,T) isadifferential *-
subalgebra of the Banach *-algebra A.

Lemma (3.1.1) establishes the growth of ”xzk” , @S k — oo, in the case when B has
p

property (D,). Lemma (3.1.13) below is similar to Lemma (3.1.1) and estimates the

growth of ”xzk” , ask — o, when B has a differential seminorm T = {|-|;}}_, (cf. [103]).
14

Set C; = K;p + Ko; and N; = max C;, C;, -+ C; i =1,..,p, where maximum is taken over
all the sets of integers (j;, ..., j,) such that j;+...+j, = i. Changing slightly, if necessary,
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the constants C;, we can assume that C; # N;N;_; for 1 <i and1=;<i Let N=
max_ N; be the total order of T (cf. [103]).

1Sj=i

Lemma(3.1.13)[99]. Let x € B and |x|, = 1. Then there are constants K;(x),i = 1,...,p,
continuous with respectto || ||,, such that, for all k,

|x2k|i = K;(x)N} ana ”xzk“ = K(x)N*, where K(x) = R, ¥]_, K;(x).

Proof. Let{ui}r=o =0, a, {b; } t.and {c;}%, be positive numberssuchthat a #b 1=
i =p, and

m
k-1
Uy é aAuy_q + Z Cibi .

i=1

Letd = max (a b)and A =uy+ X", c;/|b; —al. Then

m
u S akug + Z ci(bY — a¥)/(b; — @) < Ad¥, (5)

i=1

SetL;_;=Kj;_; +Kl-_jj.Then forl=i=p,

[i/2]
k k-1 k-1 k-1 k-1 k-1
2|<Z]l]2 Ao x*? 21112 AL

l—] i—j
, < ok-1| _ ok-1 < i
For i = Cilx = N;|x By (5), [x?"| = K,(x)NF. where K;(x) =
1 1

lx], is contlnuous with respect to || |[, Assume that the lemma holds for i =m — 1.
Since N;N; = Ny, ;,fori =

[i/2]
k k—1 k—1 k—1
|x2 | = Cm|x2 Z jm— ] x2 | |x? .
m j m-j
[i72]
k-1 k-1
= Cue®| Z e K G (N Ny )

since Ny, = max(Cp, NN, ), it follows from (5) that |x2k| = K,,(x)NEK, where K,,(x)
] m

Is continuous with respect to || ||,,-

We also have that
1%

14
k k
||| =R, D || =Ry ) KGONE <RGN
P i=1 i=1

Let a graded algebra B = B, +--+B, be the direct sum of subspaces B;, let
B;B; < B;, j(we assume that B, = {0} if p <n) and let P;, be the projections onto B; Then
B, is a subalgebra of B and all B, are By-bimodules. Suppose that every B;, has a space
seminorm s;(x) and that there are constants K; ; such that K, , = 1, and
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Si+j(xy) é Ki,jSi(x)Sj(Y) , X E Bi and y € B]
For x € B, set s;(x) = 5;(P;(x)),0 = i < p.Then S; are seminormson B, x = ' P;(x) and

si(xy) = s;(Pi(xy)) = s; Z P(x)P_;(y) | = Z si(B()P_;(y))

Z j,i— ]S] P(X) Sl ]( i— ](y) Z ji— ]S(X)Sl ](y)

Therefore S = {Sl-}’lf’=0 is a differential seminorm on B, If aII s; are norms on B;, then, by
(4), Bisagraded normed algebra with respect to the norm ||x||, = R, > 0 Si(x).

As an example, we can consider a nest algebra® = AlgN ={V € B(H): VL, < L},
where N is a nest of subspaces {Lk}§:;, {0y=Lyc L, c...c L,,; = H,of a Hilbert space
H. Let Q, be the projectionson L, and letR, =Q, —Qx—1, k=1,...,p+1 Fori=
0,...,p,set

B, ={V €®B:VR, = Ry_1Ry,forallk =1,...,p + 1}
and s;(V) = ||[V||,V € B;, where || || the usual norm of the operator V on H. Let P;, be the
projections onto B;. Then B =B,+--+B, is a graded algebra and S = {S; Yoo
where s;(x) = s;(P;(V)), is a differential seminorm on Alg N of order p.

A differential seminorm T = {| |i}f=0 on an algebra B is called flat ([1, Def. 4.3]) if
there is a homomorphism @ from B into a graded algebra B with a differential
seminorm S = {S;}/_, such that |x|; = S;(2(x)).

Let, in particular, all B; = B,, 1 =i = p, and § be a derivation of B,. Set ¢;(x) = §*(x)/i!
x € D(6P). Since, for every i,

o) = 8 Conit =) (1) S SIOM = Y 9o ).
j=0 j=0

the mapping ¢(x) = (x,<p1(x), ,(pp(x)) is a homomorphism from D(67) into B. Let| |,

be an algebraic seminorm on By. Set |x|; = |p;(x)|, for x € D(6?). Then T ={||;}}_, isa
flat differential seminorm on D(6P). If (B,, | |,) is Banach algebra, ¢ is a closed derivation
and D(6P) isdense in By, then D(6P) is a differential subalgebra of B,of order p.
Blackadar and Cuntz ([1,Th. 4.4]) proved that T = {|.|i}ll?=0 is flat if and only if there exist
a seminormed algebra D and a derivation § of D such that B <€ D(6?) and |x]|; =
||5i(x)||D/i! and 0 = i = p. We shall now show that, under some conditions on §, T is
equivalent to the differential seminorm T’ = {|-|o, |I|lo} of order 1 where |[x||,, = fzolxll-
Let F = UL [a;, b;],n < oo, be the union of disjoint segments and C(F) be the C*-
algebra of all continuous functions on F with the norm ||f|| = sujelf(t)l. Let § = d/dt. For
te

any p, D(67) = D, (F) is a dense *-subalgebra of C(F) which consists of all functions f(t)
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such that f®)(¢t) € C(F). Set Ifl, = If¥II/k! Then T ={|}r_, is a differential
seminormon C(F) of order p.For0 = m = p,

1fllm = ) P4k

are norms on D, (¥) and D,(F) is aBanach *-algebra with respect to || [,

Theorem (3.1.14)[99]. T’ ={l'lo.Il'llo} is a differential seminorm of order 1 on D, (¥)

equivalent to T, i.e., there exists D;(p) > 0O such that

Ifgll, = D@ pllyllo + Iflollglly).  f.g € Dy(F).

and (D, (F),T) is adifferential *-subalgebra of C(F) of order 1.

Proof. First assume that F = [a,b] and seth = b — a. In [113] it is proved that, for all k

and m,k = m,

|f P = e, m)IF IO M, (F)F™,
where C(k,m) = 4e?*(m/k)* and M, (f) = max{l|f[lm!'A~™ | f™|}. Let G(hm)=
(mDmax {1, m!h~™}. Then
M (f) = G, m)(IF ™ I/mY) = G(h,m) I f 11
Thus ||f®|| £ R(k, m, R)|IF 11T /™| £||™ where R(k,m, ) = C(k,m)G (h, m)¥/™. Hence
I ®@lg™= | = RGk,m, BYR(m = k.m0, B G l) O™ (UL f 1| g 1™
Using the inequality a*f1™* = ax + (1 — x),a,f 2 0,0 = x = 1, we obtain that
£ @l = L, m WA Ngllm(m = K)m + 1 f Il glll/m),

= L(k,m, )AUIF g + Nf N, (6)
where L(k,m,h,) = R(k m,h)R(m — k,m, h) Therefore

Ifgll, = le(fg)mlllm'<z [ ) Ir©lllg- ”II]
b

1 m
= m:@ﬁ[z; L(l m, )| f llmllgll + IIfIIIIgIIm)]
Since [|f llm = [Ifll, form = p,
I£gll, = DG, W(UIf I llgll + £ lligll,), (")

1 my ., .

where D(p, h) = fn:OE [22":0 ( ; ) L(@i,m, h)].

Assume now that F = Ul [a; b;],n < oo, andleth; = b; —a;. For f € D,(F) andl =i =
n, set

tefa;,b;]

p
i 1 L
A0 = sup IF@ andIfIET =y )
k=0

Then
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n
. 1 .
Ilo= max (IFISY)  and max (IFIEY) S F1l, = ) = 7115

Set D;(p) = X1 D1(p, h;). Then by (7), for f, g € D,(F),

Ifgll, = D IFIE < @) (UIf gl + If ol

We shall now extend the result of Theorem (3.1.14) to generators § of strongly
continuous one-parameter semigroups of bounded automorphism «; of Banach algebras A.
There exists a dense subalgebra D(6) in A such that §(x) = Itirrg(al-(x) —x)/t, x € D(6),

is a closed derivation on A. For every p,
D(6?)={x e D(5):6*(x) eD(8),1=k=p-1}
is a subalgebra of A. It is Banach algebra with respect to the norm [|x||, = P _oll&* ) 7K!
and T = {| [}, Ixl; = ||[§D(x)]|/i! is a flat differential seminorm on D(8P). Since D(6?) is
dense in A, itis a differential subalgebra of A of order p.
Theorem(3.1.15)[99]. There exists a constant D;(p) > 0 such that
lxyllp, = Da@)(lx i lIy Il + Iy ll,), x,y € D(8P),
sothatT' = {|| I, Il ||p} is a differential seminorm of order 1 on D(67) equivalent to T.Thus
D(6P) is adifferential subalgebra of A of order 1.
Proof. We have (see [108, v. 1]) that, for t = 0, a;(x) € D(5) and da;(x)/dt = §(a;(x)) =
a;(6(x)) ,x € D(68) Therefore if x € D(6P), then
a;(x) € D(6%) and de; (8% 1(x))/dt = §(a; (6% 1(x))) = a;(6%(x)).
Hence 6% (a;(x)) = a;(6%(x)).
Let f be a bounded functional on A such that ||f|| = 1. For x € A, the function F(x,t) =
f(a;(x)) is continuous with respect tot. If x € D(67), then F(x,t) has p continuous
derivatives with respect to t and

FO(x,6) = £ (87 (2:(0))) = f (:(6%(x))) = F(67(x), 1),
Let C(F) be the C*-algebra of all continuous functions on F =[0,1]. If x € D(67),
F(x,t)D,(F). By Lemma VIIL.1.3 [108, v. I], there is C < oo such that sup ||la;|| =C.

0=t=1
Therefore
IFIl = 0Slﬂl@llf(ocl-(X))I SUIO lla; I = [l Osup1||a il = Cllx]|.
=t= st
and, for k = p,

0= o |7 (o)) = |

o (a,(8%))| = clis Gl
Then

71, Z||F<k>||/k' < Z CI*(OI/k! < Clixll,
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Let now f and g be bounded functionals on A such that ||f|| = [Igll = 1, let x, yD(57)
and let F(x,t) = f(a;(x)) and G(y,t) = g(a;(y)). By (6), for every k = m, there exists a
constant L(k, m, 1) such that

|F®|||¢™ = Lk, m, DIF |l IGI + IFING ).
Therefore

sup | (e(6* ()| sup |g (:(6™70))| = CLlkm, DCUcllllyll+ 1l )

0=t=1

Sett = 0.Then |f(6%(x))||g(6™* ()| = cLk, m, 1) (lIx|lmllyll + lIxllll¥ll,).  Since this
inequality holds for all f,g € A*, such that ||f]| = |lgll = 1,

8% CINIS™ Il = CLk, m, L) lx|nlly ]l + Nyl
From this it follows that

eyl = Z||5m(xy)||/m'<z [ ) lls“Gllle™ k(y)n]

< Z %LZ CL(k,m, D(lxllmllyll + ||x||||y||m)].

Since [|x]l = llxllp, form = p, [[xyll, = D1(P)(I|xll Iyl + llxlliyll,) , where

D.(p) = C Z Z CL(k,m, 1),

Let (4, ] |l,) be aC*-algebraand let x = x* € A. We call {a,b},a = b, endpointsin Sp(x) if
a,b € Sp(x) and thereis ¢ > 0 such that

(a—¢ga)nSplx) =(b,b+¢e)nSplx) # 0.
If pap(t) is a continuous function such thatp,,(t) =1,t € [a,b], and p,,(t) =0, t &
(a — & b+ ¢), then p, , (x) € Aisaprojection and ||pa,b(x||0 =1.
Corollary (3.1.16)[99]. Let § be a closed *-derivation of a commutative C*-algebra (4, || ||,)
and let D(6%) be a differential subalgebra of order 1 with respect to the norms
lIxlloand llxllz = llxllo + 16C)lo + 1162(x)llo/2. Lety =y* € D(§?) and let there be
endpoints {a;, b;}2, in Sp(y) such that b; — a; —» 0, as i - o. Then ||Pai,bi(}’)5()’)||0 - 0.
In particular, §(y) # 1.
Proof. Let g;(t) be functions which have two continuous derivatives and such that
gl(t) =t— a;, t e [ai,bi], and gl(t) = O, if t is outside (ai — gilbi + Ei). Then gl(y) €
D(6%) and [lg;(¥)llo = a; — b;. Since g;(t) = pq,»,(t) and since A is commutative,

§(9:) = 9iEW) = Pa,p, (M) and g, (¥) € D(5).

For any projection p in D(8), &6(p) =6(?) =2ps(p), so that ps(p) = 2ps(p).
Therefore §(p) = 0. Hence & (Pai,bi(Y)) =0and

5%(9:3)) = 8 (Payo ) = Pag, )82,

Thus
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lg: N> = g: o + 18(g: GNlo + 1162(g: ) o/2
= (a; — b)) + 1I8Olo + 1182 1lo/2.

Set hi(y) = (g:(»)* Then llh;(W)llo = lg:WIIF = (a; — by)?,

I8ROl = 1129:(¥)5(g: ONlo = 2(a; — b IIE) Il

and
182 i) lo = 2[|9:()8%(9: () + [5(91'()’))]2”0
= 2||gi0)Payp, (NS> + [Payo, ST
Since D(6%) is a differential subalgebra of A  of order 1, there is D >0 such
that [1(g:(»))?Il2 = 2DIlgi(MI211g: ()l - Therefore
19:0)Pay 0, (> ) + [0y, NSO,
< 2D[(a; — by) + 18 lo + 182G)lo/21(b; — a;) > O.

asi — oo. Hence ||Pai,bi(y)5(y)||0 - 0.
If we put n =c0 and 1rgnii<noo(hl-) =0 in Theorem (3.1.10), we obtain an example which

shows that T’ = {|| ol ||p} is not necessarily a differential seminorm on D(6,).

Example(3.1.17) [99].. Let
“1712 3
h= (U 77 )U{O}'

let A=C(F,) and let § = (d/dt). The functiony = y(t) = t,t € F, belongs to D(5?%)
and 5(y) = 1. The points a; = (2/2%) and b; = (3/2") are endpoints of y and b; — a; = 0
asi — oo, By Corollary (3.1.16), T' = {|| llo. Il I} is not a differential seminorm on D(52).
Powers [109] (cf. [105] and [110]) proved that if §is a closed *-derivation of a

C*-algebra A, if x =x* € D(6) and a function f(t) has two continuous derivatives on
Spa(x), then f(x) € D(§). Bratteli, Elliott and Jorgensen [102] generalized this result
and showed that f(x) € D(6P) if f(t) has p+1 continuous derivatives and x = x* €
D(6P). Lackadar and Cuntz [103] extended this result to differential subalgebras of C*-
algebras. (D7)-subalgebras are differential subalgebras of orderl, so that Blackadar's and
Cuntz's result holds for them. (D,)-subalgebras, p =2, however, are not, generally
speaking, differential subalgebras. Considers some sufficient conditions for f(x) to belong
toB ifx*=x € Band B is a (Dy)-subalgebra of A. This will allows us to show that (D5,)-
subalgebras of C*-algebras are locally normal.

Lemma(3.1.18)[99]. If B is a (D7)-subalgebra of a unital C*-algebra A, then ||1]|; =1 and
D,>1/2

Proof. By Theorem (3.1.6), 1 € B. Therefore ||1]|; = [|112]l; = ||1]l,]|1]l,, SO that 1/2 = D, .
Let D, = 1/2.By Lemma (3.1.1), for x* = x € B and for all k,

lexp(ix)ll; = || exp(ix/24))* || = (2D1)*llexp(ix/24) 13 lexp(ix/ 29y
= llexp(ix/2%) I, = exp(llxll:/2¥) - 1,

as k — oo, since |lexp(ix/2%)||, = 1. Therefore
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1Lll: = llexp(ix) exp(—ix) |y = llexp(ix)|l1llexp(—ix)ll; < 1,
so that ||1]|; = 1 and ||lexp(ix)||; = 1. Since (B, || ||,) is a Banach *-algebra, it follows from
Theorem 38.14 [111] that B isa C*-algebra. Since Bisdensein A, B = A. Thus D, > 1/2.
Theorem (3.1.19)[99]. Let B be a dense --subalgebra of a *-algebra (4, || ||,) with
identity, let x = x* € B and let [a, b] contain Sp,(x). Let f(t) be a continuous function on
(—o0, 0) such that f(t) = 0 outside [a, b] and let £(s) be its Fourier transform.

(i) Let B be a (D3)-subalgebra of A and M= max {2D4, exp(llx|I)}. If
Sjsp

fjooo|25|(192|25|)p_1lg2M/(p‘1)!|f(s)| ds < oo, for p 2 2, or fjom|25|1+lg2(D1)|f(s)| ds < oo, for
p = 1,then f(x) € B.

(ii) Let B be a(D7)-subalgebra of A. If f(t) has q =2+ 1g,(D,) continuous
derivatives, then f(x) € B.

(i) (cf [103]). Let B be a differential subalgebra of A with respect to a
differential seminorm T = {| |;}\_,, where | [, = || ||, and let N be the total order of T
(see Lemma (3.1.13)). If [° [25["92M|f(s)|ds <o or if f(t) has q =1+ lg,(N)
continuous derivatives on [a, b], then f(x) € B.

Proof. By Theorem (3.1.6), 1 € B, so that exp(isx) € B for real s. Let k be the integer
such that 271 < |s| = 2%, so that k — 1 < lg,|s| = k. Set y = isx/2%. Then |lexp()llo =
1 and

llexp)1l; = llexp(isx/2)1l; < exp(ls|llx|l;/2) < M.
forl =j = p. Foreveryz € B, ||z%||; = 2D;||z||;||z?]|;—, Making use of Lemma (3.1.1)and
replacing there C; by 2D;, we obtain

lexp(isx)ll, = llexp(y)ll, = ||<exp<y>>2"||

a(k,j+1)

< llexp)lly " Hllexp(y)n“"”” (2D,-))

p—

k
]_[nexp(y)n“"‘p’ (20, )" = m ®
]:

where a(k, j) = (f) and b = ¥"-a (k,j) + a(k, j + 1)]. For 2p <k,
b=1+2(p—-VDalk,p—1)+alk,p) =1+ 2(p—1)kP Y/ (p —1)! + kP/p!
=1+ kP/(p —1)!
Sincel = M,
||exp(isx)||p < M1+k7’/(p—1)! < M1+(lg2|s|+1)7’/(p—1)! — M|25|¢(5), (9)
where ¥(s) = (1g,|2s])?"1lg,M/(p — 1)!.

The rest of the proof of (i) follows the proof of Proposition 3.3.6 [112] with insignificant
changes. Since f is continuous on (—o, ©) and vanishes at infinity and since lg,M = 0,
I 125]¥@)|f (s)|ds < oo implies [~ |f(s)|ds < oo. Since f is continuous and
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f(t) = 1/(2m)"? ]mexp(its)f(s)ds

— 00

is continuous and since f = f almost everywhere, f = f. Therefore
F(x() = 1/(2n)3 ] " exp(ix()s)f(s)ds, for A € Sp,(x).

It follows from (9) that -

]m llexp(isx)ll, |[f(s)|ds < ]mM|25|¢(5)|f(s)|ds < .

Therefore ffooo exp(ixs)f(s)ds isabsolutely convergentin || Il,. Hence

y = 1/(2n)z ] " exp(ixs)f(s)ds € B and y(2) = F(x(D)),

for A € Sp,(x). Thusy = f(x) € B.
For p = 1, it follows from (8) that
llexp(isx) Iy = llexp()[11(2D1)* = M(2D,)'92151 = M| 25| +192(P2),
Repeating the above argument, we obtain that f(x) € B if [_|s|"92®D|f(s)|ds < oo,
Part (i) is proved.
Part (ii) follows from (i) and from the proof of Theorem 3.3.7 [112].
It follows from Lemma (3.1.9) that

llexp(isx)Il, = ||(exp(isx))2k||p < K(exp(itx))N*

where t = s/2%, sothat 1/2 = [t] £ 1. Since K(exp(itx)) is continuous with respect

to || [[,,, there exists M (x) = 1,22E51K(eXp(itx)) < 0. Hence

llexp(isx)l, = M(x)N92CIsD = p(x)|25|'92)
and this case is similar to the case of (D7)-subalgebra of A where 1+1g,(D;) Is
substituted by lg,(N).

Recall that a family F of functions on a topological space X is said to be normal (see, for
example, [106, §15]) if for any disjoint closed subsets S and T in X, there exists a function
f € F such that
f(x)=00onT and f(x)=1onsS.

Definition (3.1.20)[99]. Let B be a dense subalgebra of Banach algebra A with an identity
landlet1 € B.

(1) Let A be commutative. The algebra B is said to be normal if the algebra of functions
{x(s): x € B} on the space of all maximal ideals of A is normal.

(2) Let A and B be *-algebras. Then B is said to be locally normal if for every
selfadjoint x e B, there is a commutative Banach *-subalgebra A(x) in A such that 1 and x
belong to A(x) and such that B(x) = B n A(x) is adense normal subalgebra of A(x).
Theorem (3.1.21)[99]. Let (4, [[;) be a C*-algebra with identity and let B be a (D3)-
subalgebra of A. Then
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(i) Bisalocally normal Q*-subalgebra of A4;

(i1) everywhere defined derivations from B into A are bounded;

(i) the mapping I = I N B is a one-to-one mapping of the set of all closed two-sided
ideals in A onto the set of all closed (in the topology of A) two-sided ideals in Band of the
set of all maximal ideals of A onto the set of all maximal ideals of B.

Proof. By Theorem (3.1.6), 1 € B. It was shown in (9) that, for x = x* € B, |lexp(isx)|, =

M|2s|¥®), where y(s) = (Ig,|2s])P~lg,M/(p — 1)! and M = max,<;<,{2D;, exp(llx|l;)}.
Therefore

« ] ds
] Inflexp(isx) |, T+o2 < o

It follows from the Shilov's condition of regularity ([11, 815, 6]) that B is locally normal.

Part (ii) follows from (i) and from [101] and part (iii) follows from (i) and from [100].
(D7)-Subalgebras of C*-algebras constitute the simplest and the most interesting

subclass of C*-algebras. We showed that even some differential subalgebras of order p = 2

are, in fact, (Dj)-subalgebras. We characterize those Banach *-algebras which are

isomorphic to (D7)-subalgebras of C*-algebras.

Definition(3.1.22)[99]. Let (B, || ||) be a *-Banach algebra and rz be the spectral radius

on B. We say that B has property (D*,r) if there exists D = 0 such that

llxyll < D(llxllrg () + llyllrg(x)), for x =x* € B and y = y* € B.

Example (3.1.23)[99]. Let B be a C*-algebra with anorm || ||.

(1) Let

p={p=(5 V)ixyes), b =(1 ) and b=l + Iyl

Then B is a Banach *-algebra and the radical

R®)={(J ¥):ves}

We have that Spg(x) = Spg(b), so that rg(x) = r5(b). If b =b*, then x =x*, so that
rg(b) = |x|. If b; = b, € B ,and b; = b, € B, then
1B b |l = |y 26| + |21y, + y1x2] = 121 |75(B2) + |y2l7r5(by) + |1l (by)
= ||byllrg(by) + b |lre(by).
Hence B has property (D*, 7).
(2) Let 6 be aclosed *-derivation of B. Then D(§) isa (D7)-subalgebraof B with respect
to the norms |x| and ||x|| = |x| + |§(x)|.Therefore
layll = llxlllyl + IxllIyll,  x,y € B,
and, by Theorem (3.1.6), D(6) is a Q-subalgebra of B. Hence, by Lemma (3.1.5), for x =
x* € D(5),r5(x) = rg(x) = |x|. so that
lxyll = llxllrs(y) + llyllrg(x), x=x"€Bandy=y" €B.

Therefore B has property (D*,r).

Let B be a Banach *-algebra and let P(B) be the set of all positive functional on B. Then
(see [106, 818, 111])
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I(B) ={x € B:(x*x) =0forall f € P(B)}
is a closed symmetric two-sided ideal of B and the radical R(B)I < I(B). A Banach *-
algebrais called reduced if I(B) = {0}.
Theorem(3.1.24)[99]. Let (B,|| ||) a Banach *-algebra  with identity. The following
conditions are equivalent:
(1) B is areduced algebra with property (D7,r);
(i) B isa (D7)-subalgebra of a C*-algebra;
(iii) B is a reduced algebra and there exists D > 0 such that ||x*x]|| = 2D||x||r5(x*x)?,
Proof. (ii)=> (i). Let (4,|||l;) be a C*-algebra with identity, let B be a dense
*-subalgebra of A and let there exist D, >0 such that |lxy|l =< D,(llx|lllyllo +
lxllollx]l) . x, v € B. If r, is the spectral radius on A4, then, for selfadjoint x, ||x||, = 4(x),
so that
lxyll < Dy (llxllra(y) + IIyllra(x)) for x =x* € Bandy = y* € B.
By Theorem (3.1.6), B is a Q*-subalgebra of A. Therefore it follows from Lemma
(3.1.5)that r4(x) = rz(x)and we obtain that
lxyll < Dy (llxllrs () + Iyl (x)) for x =x" € Bandy = y* € B.
Thus B has property (D*, ).
Since A isreduced, B is also reduced, so that B is a reduced algebra with property (D*, 1)
(i) = (iii). Since B isa (D7)-subalgebra of 4,

llx*x|l = Dy (llx”[llxllo + lIx*llolIx[1) = 2Dy [lx [l llxlo-
Since A is a C*-algebra, ||x||2 = ||x*x|l, = r4(x*x). Since B is a Q*-subalgebra of 4, it
follows from Lemma (3.1.5) that rz(x*x) = ry(x*x). Hence ||x*x|| £ 2D, ||x||rg(x*x)*/2.
Since A is reduced, B is also reduced.
(1) = (ii). Let B be a reduced algebra with property (D*,r). Then
llxllo = < sup f(x*x)1’2>,x € B,
fE€P(B)

isanormon B such that the completion A of B with respect to || ||, is the enveloping C*-
algebra (see [106, 818, 102]).

Let x = x* € B and let M be a maximal commutative *-subalgebra of B which contains x.
Then Spg(z) = Spy(2) forall z € M. If z = z* belongs to the radical of M, r5(z) = ry(2) =
0and ||z2|| = 2D,||z|lrz(z) = 0. Hence z2 = 0 and z € I(B). Since, by assumption, I(B) =
{0}, M is semisimple.

Let T be the space of all maximal ideals of the algebra M and let C(T) be the C*-algebra
of all continuous functions on T with the norm |f| = sup.er|f (), f € C(T). Then M is a
dense *-subalgebra of C(T) and
rg(z) = ry(2) = sup;erlz(t)| = |z|, forall z € M.

Therefore,forz=z* e Mandu =u* € M,
lizull = 2D(llzllrp () + llullrs(2)) = 2D(l|z||[u] + |z]||ull)
and, by Theorem (3.1.21), M is a locally normal Q*-subalgebra of C(T).
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In Theorem 8 [100] it was proved that if F is a dense locally normal Q*-subalgebra of a
C*-algebra Fand mis an injective *-homomorphism of F into a C*-algebra A, then
lm()l4 = llyll4 for all y € F. Hence, since M is injectively imbedded in A, we obtain
that ||z||, = |z]. For all z € M. Therefore r5z(x) = |x| = ||x|l,. From this it follows that
forx =x*€B andy=y" €B,
lIxyll = D(llxllrs () + yllra(x)) = DIxIyllo + llxllollyII). (10)

Now letz = x +iy € B.Then x = (z+z")/2and x = (z — z*)/2i are selfadjoint, ||x]|; =

llzIl; and [lyll; = llzIl; j = 0,1. Hence, by (10),

z*zll = llx? +y2 + iGy — y)ll = 22|+ Iy 2?1l + llyll + Nyl
= 2D|Ix|llxlo + 2Dy lHIyllo + 2D (lxlIyllo + llxllollyll) = 8Dl|z]ll|z]lo.

It follows from Lemma (3.1.4) that B has property (D).
(i)=(ii). Let, as above, A be the enveloping C*-algebra of B, let x = x* € Band M be a
maximal commutative *-subalgebra of B which contains x. Then, as in (i) = (ii), we obtain
that M is semisimple and that r3(z) = r(z) = |z| for all z € M. Therefore

llz*z|l = 2D||zlr5(z"2)"/* = 2D||z|l|z*2z|""* = 2D||z|||z|.
From Lemma (3.1.4) it follows that M is a (D7)-subalgebra of C(T). Hence, by Theorem
(3.1.21), M is a locally normal Q*-subalgebra of C(T). Then, as in (i) = (ii), ||zll, = |z].

for z € M. Therefore r5(x) = |x| = ||x||o. Therefore, for every y € B,
1/2

ly*yll = 2D|lylirs(v*y) 2 = 2D|lylllly*yll,”~ = 2Dy lllIyllo.
It follows from Lemma (3.1.4) that B is a (D7)-subalgebra of A.

Recall that a Banach *-algebra B is called symmetric if 1 + x*x is invertible for all x € B.
For a symmetric algebra B,R(B) = I(B) (see [11, 8§23, 3]). The following lemma shows
that the condition R(B) = I(B) is sufficient for algebra with property (D*,r) to be
symmetric.

Lemma(3.1.25)[99]. Let B be a Banach *-algebra with identity and let B have
property (D*,r).

(i) For every z € R(B), z? = 0 and the semisimple Banach *-algebra B/R(B) also has
property(D*,r).

(i) If R(B) = I(B), then the algebra B is symmetric.

Proof. Ifz=2z*€ R(B), then||z?|| = 2D||z||rz3(z) = 0,sothatz? = 0. If
z=x+iu€R(B)y=y*€RB) andu=u*€R(B),theny?=u?=0and z?=y?+
iyu +uy) —u? =i[(y +u)? —y*—u?1 =0

Let x — % be the canonical mapping of B onto the quotient Banach *-algebra B =
B/R(B). If z € R(B), then 1 + z is invertible. If x € B is invertible, then x +z = x(1 +
x~1z) is also invertible. Therefore Spg(x) = Spz(x + z) and rz(x) = rz(x + z). From this
it follows that
Spe(x) = Spp(x) and rz(x) = rp(%). (11)

Hence, for selfadjoint x and y,
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Yl = i S = i
£yl = inf llxy +z|l = inf lIGc+2)(@+2)ll = _inf li(x+2)(y + 2]

=p__inf(llx+zlrs(y +2) + lly +zllr G + 2))

VAN o
<D (rsG),_int llv+zll+r5() _inf Iy +2Il).

=z*€R(B)
For all selfadjointuand z, x +z = [(x + z + iu) + (x + z — iu)]/2, so that
lx + z|l = (llx + z + ]l + ||x + z — iw|])/2 = ||x + z + iu]l.
Therefore inf ||lx+z|| = inf ||x+ z|| = ||X||. Hence
z=z*€R(B) Z€R(B)

1291 < D(IRll7s®) + I9ll(2)), %' =%€B and 9* =9 € B,
and B has property (D*,7).Part (i) is proved.
If I(B) = R(B), the algebra B isreduced and has property(D*,7). Let A be the
enveloping C*-algebra of B. By (i) and by Theorem (3.1.24), B is a (D})-subalgebra of A.
It then follows from Theorem (3.1.6) that B is a Q*-subalgebra of A. From this and from
(11) we obtain that
Sps(1 +x*x) = Sps( 1+ 2°%) = Spu( 1T+ 2°%) forallx € B.

ax N

Since 1 + £*% is invertible in 4, 1 + x*x is invertible in B. Thus B is a symmetric algebra.

Section (3.2): Operator Lipschitz Functions

Let D be the closed unit disk. The disc algebra A(ID) consists of all continuous complex-

valued functions on D holomorphic in its interior D° . It is a closed subalgebra of the C*-

algebra of all continuous complex-valued functions on D with norm ||g|| = suplg(z)|. The
zeD

algebra A(ID) can be naturally identified with the algebra A(T) of all continuous functions on

the unit circle T with vanishing negative Fourier coefficients and norm ||f|| = sup|f(z)|. So
z€eT

we will not distinguish between these two algebras and often identify f € A(T) with its
holomorphic extension f to .

Denote by B(H) the algebra of all bounded operators on a Hilbert space . An operator T €
B(H) is a contraction if ||T|| < 1. Von Neumann's inequality states that |[p(T)|| < ||p]|, for all
polynomials p and contractions T . Since the subalgebra of all polynomials is dense in A(DD),
the operator g(T) can be correctly defined for each g € A(ID) and contraction T , and
lg (M)l < llgll. (12)

Hence, considering each f € A(T) as a function from A(ID), we can define the operator f(T).

A continuous function f on acompact @ € C is called an operator Lipschitz function on « if
If(T) = fFI < CIT =Sl (13)
for all normal operators T,S with spectra in a. Thus f € A(T) is an operator Lipschitz
function on T if (13) holds for all unitary operators T,S . Considering f € A(T) as a function
from A(ID), we say that it is operator Lipschitzian on D, if (13) holds for all normal
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contractions T, S . Furthermore, we say that it is a fully operator Lipschitz function on D if
(13) holds for all contractions T, S .

The problem whether all these three classes of operator Lipschitz functions in A(T)
coincide was posed in [9]. We give the positive solution of this problem:
Theorem(3.2.1)[114]. Let f € A(T). Then the following conditions are equivalent:

(i) f is an operator Lipschitz function on T;
(i) f is an operator Lipschitz function on D;
(i1) f is afully operator Lipschitz function on D.

It is clear that each fully operator Lipschitz function on D is an operator Lipschitz function
on D, and that each operator Lipschitz function on D is an operator Lipschitz function on T.
So we only have to prove implication (i) =(iii).

We prove Theorem (3.2.1). Making use of the interpolation theory, we obtain an analogue
of (13) for Schatten ideals C, of compact operators with norms ||-[|,, 1 < p < oo :if f € A(T)
is an operator Lipschitz function on T with constant D, then
If(T) = F(Sl, < DIT -S|l forallcontractionT,SwithT —S € C,. (14)

It would be natural to prove (14) for all f € A(T) that are C,-Lipschitz functions on T. The
classes of C,-Lipschitz functions are wider than the class of operator Lipschitz functions; in
fact no examples of continuously differentiable functions are known which do not belong to
them. However, we were only able do this for p = 2, using Ando’'s theorem on common
unitary dilations of two commuting contractions. Since C,-Lipschitz functions are just the
usual Lipschitz functions, the result can be written in a quite general form: if f € A(T) isa
Lipschitz function on T with constant D then If |[f(T) — f(S)Il, < D||IT — S||, for all
contractions T, S with T — S € C, . For all p, a weaker inequality is obtained: if f € A(T) is a
C,-Lipschitz function on T with constant D, then, for all contractions T, S with T — S € C,/, ,

IF(T) = F(S)l, < D2YP(L + 2V2)||T — S||22.
The proof is based on the study of Lipschitz properties of the multivalued map that takes
each contraction to the set of all its power unitary dilations.

Denote by Con(H) the set of all contractions on a Hilbert space H . Recall that a unitary
operator U on a Hilbert space $ o H is called a (power) unitary dilation of T € Con(H) if
T"=PU|y, foralln €N, (15)
where P is the projection on H in $. If U is a unitary dilation of T, it follows from (12) and
(15) that
f(T) = Pp(U)|y foreach f e A(T). (16)

It follows from (12) that, for each T € Con(H), the homomorphism f — f(T) from A(T)
into B(H) is norm-continuous. Furthermore, for any f € A(T), the map T — f(T) is norm-
continuous and continuous in the strong operator topology on Con(H).

A measure space (X, u) is called standard if there is a topology on X (called admissible)
with respect to which u is a o-finite Radon measure, that is, for each measurable set A of
finite measure and each € > 0, there is a compact subset F of A such that u(A\F) <e. A
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standard space (X,u) is separable if there is an admissible topology in which X has a
countable base.

Let (T,u) and (S,v) be separable standard measure spaces. Denote the Hilbert spaces
L*(T,u) and L2(S,v) by H; and H, , respectively. Every function g(t,s) € L(T x 8 ,u x v)

defines an operator M, on the space C,(H,,H,) of Hilbert-Schmidt operators from H,

into H,; it can be considered as an analogue of the Hadamard multiplication operator in a
space of matrices. Namely, if K is a Hilbert-Schmidt operator with integral kernel x(t,s) €
L2(T xS, uxv),

then M, (K) is the operator with integral kernel g(t, s)x(t, s).

The operator M,is linear and bounded on C,(H;, Hy). If it is also bounded with respect to
the usual operator norm:
|M, ()| < ClIKIl  forall K € C,(H,, Hy), (17)
and some C > 0, then g is called a Schur multiplier on (7 < § , u x v).

Peller [116] characterized Schur multipliers by several equivalent properties, one of which
can be formulated as follows: g is a Schur multiplier if and only if there are a separable
Hilbert space H and weakly measurable H-valued functions ¥ on 7 and y on § such that
g(t,s) = (x(t),y(s)) ae. onx§, and (18)

@) < Y2, ||19(s)|| < CY? ae.onTand S (19)
for some € > 0. Choosing an orthonormal basis {€,},cy in H and setting u,, (t) = (X(t), e,),
u, (s) = (€,,y(s)) , we present g in the form

0]

g(t,s) = Z u,(t)v,(s) ae onT x$§ (20)

n=1

with
Z|un(t)|2 <C aeon?, and Z|vn(t)|2 <C aeons (21)
n n

This implies that there are measurable subsets 7; and S, of 7 and § with u(7\7) =
v(8§\S,) = 0 such that the sum in (20) is defined as a bounded function on 7, x §, and (21)
holds for all t € 7, and s € §, . One says in this case that the sum is a bounded function
marginally almost everywhere (a.e.). This terminology originated in [117], where a subset
M c T x§ was called marginally null if M c (Ax8)uU (T xB), where AcT and Bc §
have zero measures. Two subsets of 77 < § are marginally equal if their symmetric difference
is marginally null. Two functions are said to be equal marginally a.e. if the set of points,
where the equality fails, is marginally null.

AsetEInT x§ is called w-open, if there is a countable family of measurable rectangles
A, % B, such that U(4,, x B,) and E are marginally equal. A complex-valued function ¢ on
T x § (it can be defined marginally a.e.) is w-continuous [118] if, for each open subset ¢ c C,
the full preimage ¢~ (G) is w-open.
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Lemma(3.2.2)[114]. If a Schur multiplier g is w-continuous then the equality (20) holds
marginally almost everywhere.

Proof. Note that if an w-continuous function h on 7 < § equals zero ae., then it is zero
marginally a.e. Indeed, the set F = {(t, s): h(t,s) # 0} = U;ey A" 1(U;), where C\{0} = U;en U;
and all U; are open. Each h~1(U;) marginally equals to a union of measurable rectangles 4,,
B, and has zero measure, as F has zero measure. Thus all (4,,) = v(B,) =0 . Therefore
h~1(U;) is marginally null, so F is marginally null.

Hence it follows that, if two w-continuous functions coincide a.e., they coincide marginally
a.e., as the difference of w-continuous functions is w-continuous by [118, Corollary 3.2]. Thus
we only need to show that the sum in (20) is an w-continuous function.

Since u, , v, are measurable, the functions @, (t,s) = u,(t), 7, = (t,s) = v,(s) are w-
continuous on T x § . Hence, by [118, Corollary 3.2], all gy(t,s) = XN_, u,,(t)v,(s) are w-
continuous. As  Uy(t) = (Cr_yilun(O)IDY?  and  Vy(s) = (Crysalvn(s)I?)V?  are
measurable, the functions Uy (t)Vy(s) are w-continuou on 7, x S, . Since

[00] [00]

D un®@() = g€ = | D un(va(s)

n=1 n=N+1
on Ty x §, , it follows from Lemma (3.2.8) [118] that Y, u, (t)v,, (s) is w-continuous on Ty %

Sy and, hence,onT x § .

Suppose now that T and S are separable metrizable compacts and u, v are regular Borel
measures withs upp(u) = 7 ,supp(v) = § . Our aim is to prove that if a Schur multiplier g is
continuous then the vector functions X(t) and y(s) in (18) can be chosen with some
additional properties. For continuous functions, the condition that g is a Schur multiplier
does not depend on the choice of u, v (see [119, 120]), but we will not need this fact, as the
measures will be fixed.

For a subset W of a Hilbert space H , by cls(W) we denote its closed linear span. We will
say that W generates H if csi(W) = H .

Theorem (3.2.3)[114]. Suppose that a continuous function g on 77 x§ is a Schur
multiplier. Then the vector functions x(t), y(s) and the space H can be chosen in such a way
that

(i) each of the sets {x(¢t): t € T}and {y(s):s € §} generates H;

(ii) x(t) and y(s) are weakly continuous;

(i) equality (18) and inequality (19) hold for all (t,s) € T x S.

Proof. As 7',§ have countable bases, T x § has a countable base. Hence each open subset of
T x § is a countable union of open rectangles, so all continuous functions on 77 < § are w-
continuous. By Lemma (3.2.2), one can assume that (20) holds marginally a.e. So there are
E, € T,F, €8 such that u(T\E;) = v(§\F;) =0 and (18) holds for all (t,s) = E; < F; .
Taking (19) into account and removing, if necessary, from E;and F;some subsets of null
measure, we obtain that there are E € T, F € § with u(T\E) = v(S\F) = 0 such that (18)
and (19) hold forall (t,s) = E < F .

< Uy(@®)Vy(s) -0, asN - o
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Let P, be the projection on H; = cls{(t):t € E}. Then g(t,s) = (¥(¢), P,y(s)) for (¢,s) =
E x F .Let now P, be the projection on H, = cls{P,y(s):s € F}. Then H, < H, and g(t,s) =
(P, 2(t), Py (s)). Note thatcls({P,X(t):t € E}) = P,(cls({*(¢):t € E})) = P,H, = H,
Replacing H by H, and x(t), y(s) by P,x(t), P,y(s), we obtain the proof of (i).

Let F be the set of all € € H for which the function e(s) = (&, y(s)) is uniformly continuous
on.Lete, €e Fandé, = e¢.As (19) holds forall € F,

|(8.5(s) = (D) < (& = 8, 5(s) = 5(s)| + (80, 5() = 3(sN)]
< 2||é = &,1IDY? + | (&, 5(s) — ¥(s)|
Hence € € F , so F is a closed linear subspace of. Moreover, F contains all X¥(t), t € E. Indeed,
the function ¢(s) = (¥(t),y(s)) on F coincides with the function s — g(t,s) which is
continuous and, therefore, uniformly continuous on §. Thus ¢(s) is uniformly continuous
onF.By(i),F=H.

Let us redefing, if necessary, y(s) on S\F to obtain a weakly continuous H-valued function
onS . Assupp(v) =S , Closure(F) =S . Leté € H . As the function e(s) = (& y(s)) is
uniformly continuous on , it extends to Sby continuity; the result will be also denoted by
e(s). As (& 5(s))| < lélllly(s)Il < DY2||é||, for s € F , we have, by continuity, that | |e(s)| <
DYZ||é||foralls € S .

Clearly, for each s € F , the map € — e(s) is linear on H . Hence, by continuity, it is also
linear, for each s € § , so the map é — e(s) is a bounded linear functional on H . Hence, for
each s € S/F , one can find ¥, € H such that e(s) = (&, %) for alle € H . Then ||#%]| < DY2.
Set y(s) = ¥. . As e(s) = (é,7(s)) is continuous on § for eache € H , y(s) is weakly
continuous on S and ||y(s)|| < DY? foralls €S.

In the same way we can redefine X(t) on 7\E to obtain a weakly continuous function on T
with||X(¢)|| < DY2 | for allte T . The redefined function (%(¢),y(s)) is separately
continuous on 7 x § on by both arguments and coincides with g(t,s) onE < F . As g(t,s) is
continuous, equality (18) holds for all (t,s) € T x § . We have proved (ii) and (iii).

Let us reformulate the result of Theorem (3.2.3) in a "scalar" form.

Corollary(3.2.4)[114].If g is a continuous Schur multiplier on 77 x § then there are continuous
functions u,(t),v,(s) such that the equality (20) holds for all (t,s) €T xS and the
inequalities (21) hold for each t € T and each s € §, respectively.

Now we will prove that the functionsu, , v, inherit some other properties of the
function g.

Corollary(3.2.5)[114]. Let £ and M be, respectively, closed subspaces in the spaces C(7)
and C(8) of all continuous functions. If, for each s € § , the function t — g(t, s) belongs to £,
then all functions u,, belong to £. Similarly, if all functions s — g(t,s), € T , belong to M,
then all v,, belong to M.

Proof. Let X(t) and y(s) be as in Theorem (3.2.3). Denote by F the set of all ¢ € H for which
the function t — (%(t), &) belongs to £. Since Lis a closed subspace of C(7) and||%(t)|| < €2
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,for allt e 7, F is a closed subspace of H . It contains all y(s),s € S , as(X(t),y(s)) =
g(t,s) € L.Since these vectors generate H,F = H . Thus e, € F and this means that u,, € L.
The second statement has a similar proof.

We prove here Theorem (3.2.1). Let f € A(T) be continuously differentiable on T.
Consider f as a function on Dand define the function f on D x D by

f(Z,W):M forz;tw,
Z—Ww
f(z,2) = 47 (2) for z € D°,
dz
f(t,t) = %ﬁt) fort € T. (22)

We will omit the proof of the following lemma.

Lemma (3.2.6)[114]. Let f € A(T)be a continuously differentiable function on T. Then f' €
A(T) and the function £ is analytic on D° x D°and continuous on D x D. For all z;,w; € D ,
the functions z = f(z,w;) and w — f(z;,w) belong to A(D).

Let f € A(T) be an operator Lipschitz function on T with constant D. Suppose that f is
continuously differentiable. Then (see, for example, [121]) f(t,s) is a Schur multiplier on
(T x T, u x u) with constant D, where u is the Lebesgue measure on T. By Lemma (3.2.6),
for t;,s, € T, the functions s - f(t;,s) and t - f(t,s;) belong to A(T). Since A(T) is a
closed subspace of the space C(T)of all continuous functions on T, Corollaries (3.2.4)and
(3.2.5)imply that there are u,, v, € A(T) such that, forall t,s € T,

F£:5) =) un®va(s) with Y Jun@)F <D, ) [on(s)P <D (23)
n=1 n n

Consider u,, v, aselementsof A(D) and, for each n € N, set oy (z, w) = ¥N_, u, (2)v,(w) for
all z,w € D. For all z;,w; € D, the functions z - gy (z,w;) and w = ay(z;,w) belong to A(D).
If g € A(D) then (see [122, Chapter III, (1.7)]),for0 < r <1,

. 1 (%" o 1—1r?

Ty — P —0 l =

g(re'™) 27110 (r,t )g(e®)do where P(r,1) R Tyve——

Lemma (3.2.7)[114]. oy uniformly converge to fon each compact subset of D° x D° ,
Proof. By the maximum modulus principle and by (23), for all (z,w) € D x D,

(24)

N

, < max t, Smax(max t,s )=meu t)v, (s

loy (z, w)| na lon (t, w)| nax\ma lon (t, )] t,ng NOINQ)!
n=1

1/2 1/2

SrquTX(Zlun(t)F) rpea%rx(an(s)P) <D.

Let z, = re’™ , w; = pe'® . The functions z — oy (z,w;), w = oy (z,,w) belong to A(D), so by
(24),
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1 (2m .
oy(z,wy) = El P(r,t — 8)oy(e®, w,)d6
0

1 2T 2T . .
=— P(r,t—86) <] P(p,a — @)oy (e‘e,e“b)d@> de.
4r= J, 0

By Lemma (3.2.6), the functions z — f(z,w;)and w — f(z;,w)belong to A(D). Hence, as
above

2T

f(zl,wl):m : P(r,t—9) <]0 7TP(/o,a:—(D)f(eia,ei‘a)d®>d@.

(1+7)(1+p) 1+R\?2
Let max(r,p) <R <1 .Then |P(r,t — 0)P(p,a — 0)| < I—r)(1=p) < (1_R) . Hence

R 1 (1+R\? (2 2@ o
|f(Z1yW1) - UN(Z11W1)| = m<m> ]0 ]0 |f(el9'el®) - UN(ele'el®)| d@do.
Since fis continuous on T x T, sup|f(e®,e®)| < M for some M . As sup|ay(e®,e®)| <D

and ay(e® e®) - f(e® e?®) for allg,6, it follows from the Dominated Convergence
theorem that

2T 2T
] ] |f (e, e) — oy (e, e®)| dBdo - 0, asN — oo
o Yo

Therefore ayuniformly converge to fin Dy x D where Dyis the closed disk of radius R.

Let {u,},{v,} be functions in A(T) satisfying (23). For N € N and contractions T, S, define
the bounded operators I, (T, S) on B(H) by the formula: I,(T,S)X = ¥N_, u,,(T) Xv,, (S).
Lemma(3.2.8)[114].  |[Iy(T,S)|lpwy < D.

Proof. Set @y (t) = XN_, u,,(t)u, (t). Let U be a unitary dilation of T and P be the projection
on H such that T = PU|, (see (1.4)). Since 0 < @, < D1, the positive operators @, (U) =
>N u, (U)u, (U)* satisfy the inequality 0 < @y < D1.By (1.5), u,(T) = Pu, (V)| .

Hence

Ou(1) = ) un(un(1)’ = ) Py (V) P = P (Z unw)unw)*) P<DP,

n=1 n=1 n=1

so IXN_, u,, (T)u, (T)*|| < D. We obtain similarly that||XN_, v, (S)*v,,(S)|| < D

by setting ¥y (s) = X0 -1 v,.(5) v, (5).
Consider the Hilbertspace # = H @... H @.... For X € B(H), the operators

w((MX = uy(MX 0 -
Ay = ( 0 0 0 ) and
vl(S)* cee vN(S)* O cee
BN - O cee O O cee
on H are bounded, as
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N N
lAII? = 14wl = [ (XX un(TY'|| = sup (05
— X€EH ||x||= 1
N N
SIXI? sup > flun(TY'xI1? = IXIP Zun(T)unm* < DIIXIP
xEH,||x||=1n=1 —
and [|BylI* = IByBy Il = 1Zn=1 v (S) va(S)I| < D. Hence
N
INT.$XI = || wnMX0a(S)|| = 1By < I4xllIByll < DIXI
n=1

which completes the proof.

For A € B(H), denote by L, and R, the operators of the left and right multiplication by A on
B(H); they clearly commute. It is well known that ||L,|| = |[R4]| = ||A]l. So if A is a strict
contraction (this means that ||A|| < 1) then one may apply functions in A(D) to Lyand R,. It
is evident that p(L,)X = p(A)X and p(R,)X = p(A)X, for each polynomial p. Approximating
uniformly f € A(D) by polynomials, we have f(L,)X = f(A)X and f(R,)X = f(A)X, for
each strict contraction A, so
f(La) = Leay and  f(R4) = Ry (25)

Let f € A(T) be a continuously differentiable, operator Lipschitz function on T and let T, S
be strict contractions. Consider f as an element of A(ID). The function f(z) — f(w) is analytic
on D° x D° and, by Lemma (3.2.6), the function f(z,w) is analytic on D° x D° . Therefore
(see [123,8116] and [124, 111.11.8, Theorem 8]) they can be applied to any two elements of a
commutative Banach unital algebra whose spectra are contained in D°and, hence, to the
commuting strict contractions Ly and Ry on the Banach space B(H). Thus f(Ly, Ls) and
f(Ly) — f(Rs) are bounded operators on B(H). By (22),f(z) — f(w) = f(z,w)(z — w).
Hence, by (25),

Leery — Resy = f(Ly) — f(R) = f(Lr Rs)(Lr — Ry). (26)

Now we can prove the result and finish the proof of Theorem(3.2.1).

Theorem (3.2.9)[114]. If f € A(T) is an operator Lipschitz function on T then there is D >
0 such that

IF(T)X — Xf(S)|| < D||ITX — XS|| forall contractionT,Sand X € B(H). (27)

Proof. (i) First assume that f has continuous derivative on T and that T,S are strict
contractions. It follows from (26) that, for all X € B(H),

f(DX = Xf(S) = (f(Ly) = f(R)X = f(Ly, Rs)(TX — X5).

By Lemma (3.2.7), the analytic functions oy (z, w) on D° x D° uniformly converge to f(z, w)
on D, x D, where D, is the closed disk of radius » = max(||T||, ||S|]) < 1. It follows from
continuity of the Holomorphic Functional Calculus (see [123, §13]) that £ (L, Rs) is the norm
limit of the operators oy (Ly,Rg) = YN_. u, (L7)v,,(Rs). It follows from (25) that oy (L7, Rs) =
I(T,S). Hence, by Lemma (3.2.8), llay (L, Rl gy < D. Therefore ||f(Lr, Rs)|| ... <D and

B(H) =
(27) holds.
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Let now T, S be arbitrary contractions. Applying (27) to,rS ,for0 < r < 1, we get
IfT)X — Xf(rS)|| < D||rTX —rXS|| < D||TX — XS]|.
Hence
IF )X = XFSHI < IFGTIX = XFES)I + (T = FETHXN + 1XFS) = FESHII
< DIITX = XS|| + [If(T) = FEDINXI + IXNFS) = f(rS)HI.

Letting r — 1 and using the norm-continuity of the map T — f(T), we obtain that (27) holds
for all contractions. Thus we proved the theorem for continuously differentiable functions.

(i1) Let now f be any operator Lipschitz function on T from A(T). Let ¢ be a non-negative
infinitely differentiable function on T with fT<p(t)dt = 1. The convolution

RO =0+ 1O = | o()f (es™as
is also infinitely differentiable and belongs to A('Jqlz), since the negative Fourier coefficients
h(n) = %]jrh(eie) e~ 940 = if (n) ]jre‘i("‘l)‘l’ p(e®)dp =0 forn <0,
as f(n) = 0. Moreover, it is operator Lipschitzian on T with the same constant. Indeed,
hW) = hO) = [ 9@ (FWs™ = F¥s)ds

for unitary operators U,V . Since f is an operator Lipschitz function on T and [s| = 1, we
have from (13) that

1) = kO < [ 9OIFWs™ = s lds < | 9PN = Viids = DU~ V1|
T T
Since h is infinitely differentiable, (27) holds foritand all T,S € Con(H) and X € B(H). Thus
[0 (rsx - xp(s57))as
T

Set F(s) = f(Ts )X — Xf(Ss1).Fort,s €T,

IF() = F)I < If (Te~D)X = XF(Ts™HINXI + X FStDX = XfF(Ss™DII.
Since the map T — f(T) is norm-continuous, ||F(t) — F(s)|| = 0, as s - t . Take a sequence
{¢,,} of functions as above with the support of ¢,, contained inT,, = {t € T: |t — 1| < %}. Then

IR(U)X — Xh(V)I| =

< D|ITX — XS||. (28)

< sup||F(t) = F(s)Il - O,

seT,

‘m) _ ] on(s)F(s)ds
T

f o (s)(F(1) — F(s))ds
T
and

—+

IFX = XFO)I = IFQI < ||F @) - ] o (s)F (s)ds ] o (s)F (s)ds
T T

By (28) || [, @n(s)F(s)ds|| < D||ITX — XS||. Letting n — co, we conclude that (27) holds.

Proof of Theorem (3.2.1). To complete the proof we only need to prove implication (i) = (iii).
This is done by substituting 1 for X in (27).
Denote by C, .1 < p < o, the Schatten ideals of compact operators on H with norm [|-]|,,

and by C,, the ideal C(H) of all compact operators on H . Recall (see [125]) that
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IAXBI|, < [IAlllIXIl,|IBll forallA,B € B(H) and X € C, (29)

If A,, tend to A in the strong operator topology in (H): A4, (S—Otz A ,then [125, Theorem 111.6.3]
|A,X — AX]|, - 0 forall X € C,. (30)
If H is finite-dimensional, then all C, coincide with B(H) but the norms are different.

It is well known that B(H) is isomorphic to the dual space of the ideal C; of all nuclear
operators on H and that C,is isomorphic to the dual space of C, . Both dualities are given by
the bilinear form (A, B) = tr(AB).For T € B(H), set
L% =1Lrlc,, RF=Rrl,, forl<p<oo
For A € B(H) and € C; ,(L;(A),B) = tr(TAB) = tr(ABT) = (A, R1(B)). Using this, we obtain
the following identities for the conjugate operators:

(L) =Ry,  (Ry) =Ly, (Lp)*=Rr and (Rp)'=Lr  (31)

We obtain the Lipschitz type inequalities for C,-norms for the action of operator Lipschitz
functions from A(T) on Con(H).

Proposition(3.2.10)[114]. Letf € A(T)and 1 < p < oo. Let there exists D > 0 such that

If (D)X = XF(S)ll, < DITX — XS], (32)

for all finite rank contractions T, S and all finite rank operators X. Then (32) holds for any
pair of contractions T,Sand all X € C,, ,and

IF(T) = FS)Il, < DIT =Sl if T—S€C, (33)
Proof. Let X be a finite rank operator and S,T € Con(H) . Choose finite rank contractions
(sot) (sot)

Sp, T, such thatS; —S* T, —T . By (30), |I(T—T,)X|l, -0 and||X(S—S)Il, =
I(Sy, — S*)X*||, — 0. Furthermore f(T,) (S—Otzf(T)whence, by (30), |(f (T) — f(T,)XIl, = O.

The function f(t) = f(t) belongs to A(T) and (see [122, Section 111.2]) f(S*) = f(S)* .

Hence f(S.)" — £(S)" = F(S3) - F(S) 20, so that [IX(F(S,) — FS)Ip = IF(S)" —
£(S)X"ll, > 0.
Using these norm limits and taking the limit in the inequality ||(f(T,,)X — Xf(S))Il, <
D||IT,X — XS,|l,,, we obtain (33) for all T,S € Con(H) and all finite rank operators X. For
arbitrary X € C, , choose finite rank operators X,, such that [|X — X[, » 0. Now (33) can be
proved by taking the limit in the inequality |[(f(T)X, — X,f(S)Il, < D|ITX,, — X,,S|l, and
using (12) and (29).

Let nowT — S € C, . Let B, be an increasing sequence of finite-dimensional projections

t
such B, (S—OZ 1..Replacein (32) T,S by B,T,SP, and X by P,. This gives
”f(PnT)Pn - Pnf(SPn)”p < D”PnTPn - PnSPn”p = D”Pn(T - S)Pn”p
< D|T -S|, (34)
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(sot) (sot) (sot) (sot)
We have that B,T— T and SB, — S . Hence f(B,T) — f(T) and f(SB,) — f(S) . By

22), If (B.,DIl < lIfl. Therefore the finite rank operators f(P,T)B, — B,f(SB,) (S—Otzf(T) —
f(§). Taking (34) into account, we obtain from [125, Theorem 111.5.1] that f(T) — f(S) € C,
and [If(T) = fF(DIl, < DIT = Sll,.
Theorem (3.2.11)[114]. Let f € A(T) be an operator Lipschitz function on T with constant
D. Then, for all contractions,S ,andall 1 < p < oo,
If(T)X —XfS)Il, < DIITX — XS, for X € C,, (35)
Wf () —fHIl, <DIT=SIl, if T-SeCq, (36)
Proof. First assume that o(T) N o(S) = 0. By Rosenblum's theorem (see [126]) the operator
A= Lr — Rg on B(H) is invertible and we may consider the operator F = (L¢(ry — Rf(s))A‘1 :
It follows from (27) that ||F|| < D. The operator A*= A|.« is also invertible, so F pre
serves C* . Set F® = F|.~ . Then ||[F®|| < D, so |[[(F®)*|| < D, where (F®)* is the conjugate
operator on C;. As A~! commutes with L¢cry — Resy » we see from (31) that F* =
(A®) N (LFr) — Rf(sy) and. Hence ((A*) D))" = ((A*)") ™' = (LY — R)™1. Hence

(F=) = () Ly — RRs) = Uhiry — REs))((A%)) ™ == (Li(ry — Ris))(Lh — R

= Flc,.

since max(||F|l,||Flc,||) < D, it follows from the interpolation theory (see, for example [125],

[2, Theorem B]) that F preserves C, and ”Flcp ” <D.
ForX € C, ,setY = (Ly — Rg)X. ThenY € C,, and we obtain (35) for this case
IF X = XF Ny = [|(Lrery = Reesy)XI|,) = IFIlp < DIVl = D||ITX — XS||,,
(37)
Let dim(H) < o and T,S € Con(H). Choose contractions S, such that o(T) na(S,) =0
and ||S — S,|| = 0. Hence ||f(S,) — f(S)]| = 0. We have from (29) and (37) that
IF (DX = XFNp < NIFMX = XfFSIIp + IXF(Sn) — FDIp

< DIIf (D)X = XfF (Sl + 11X, £(SR) = FII

< DIITX = XSull, + X, 11 £ (Sn) — FII.
By (29), ITX — XS,ll, < ITX — XS|,, + IX]l,IIS — Sy ||. Taking the limit, we obtain that (35)
holds for all T,S € Con(H) if dim(H) < oo. Thus it holds for arbitrary H if T, S are finite rank
contractions. Applying Proposition (3.2.10), we conclude the proof.

The result obtained in Theorem (3.2.11) is not the optimal one. It would be desirable to
show that (35) and (36) hold if f € A(T) is a C,-Lipschitz function on T (see (46)). Then we

would have proved an analogue of Theorem (3.2.1) for C,-Lipschitz functionon T.

Let H be a separable Hilbert space. Consider it as a subspace of a separable Hilbert space
H'such that the complement of H in His infinite-dimensional. A natural approach to the
studied problems would be a construction of unitary dilations U,V on Hfor any two
contractions T, S on H in such a way that
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U-VEec, and |[U-VI,<CIT-Sl, ifT-Sec,, (38)
where the constant ¢ > 0 does not depend on the contractions. However, we will show that
such construction is in no means possible. Consider the multivalued map Dil that takes each
contraction T € Con(H) into the set Dil(T) of all its power unitary dilations U on H: P, U"|4
for all n. We will establish that it is not Lipschitzian. On the other hand, we will estimate the
continuity moduli wof Dil and use it to obtain Lipschitz type inequalities in C,
norms.
Denote C, = B(H).Forp,q [1,0]U band t > 0, set
8,(Ty, T) = inf{||U; — Us|l,: U; € Dil(T})}, for Ty, T, € Con(H)with U; — U, € C,
and
wpq(t) = sup{6,(Ty, T,): T; € Con(H), Ty — T, € C, and ||ITy — T, |l, = t}.

Proposition(3.2.12)[114]. Forall p,q [1,0] U b and each t € (0,1),
wpq(t) = V2t .
Proof. It suffices to show that, f or eacht € (0,1), there are contractions T,S such that
IT — S|l =t and that [|IT — S||,, < V2t , for all their unitary dilations , V.

Let e € H and Q be the projection on Ce. SetT = Q and S = (1 —t)Q. Clearly, ||IT — S|| =t¢.
As T — S isrank one operator, ||T — S|[, = ||T — S|/ forall g .

Let P be the projection on H inH. ThenPU|y =T ,PV|g =S, so that (Uee) =
1,(Ve,e) =1 — t.Hence, Ue = e. Then ||[U — V|| = V2t, as

|lU—=V]|? = ||Ue —Vel||? = (Ue,Ue) + (Ve,Ve) — (Ue,Ve) — (Ve,Ue) = 2t

IfU—V € C,then ||[U—V], = ||IU-V]||.Hence ||U - V||, > V2t.
It follows from Proposition (3.2.12) that (38) does not hold. To estimate the continuity
moduli w, , of Dil, we will consider the "canonical” unitary dilation of T € Con(H) (see [122,
Chapter 1,85]). Set

(0.0]
Dr=@A-TT)Y?2,Dp = (L —-TTHY? and ¥ = @ H, withallH, = H
—Q0

Let P be the projectionon $ = H, @ H, and Ul be the operator on #such that

Ul =PUIP and Uy = (DTT BZ)
Let V be the unitary shift operator on H such that (Vx),, = x,,+, for each x = (x,,) € H. Then
the operator UT = V(14 — P + Ul') is the unitary dilation of.

If S is another contraction on H thenUT — US =V(Ul - U), so ||UT - US| =

IQUE = UHI and | UT = US|, = QU5 = UL, if UF — U§ € Cy. As
D 0 0 —T*+S*
T _qS|. = (~T
Uols = Usls (O DT*_DS*>+(T—S 0 )'

we have

| UT — US|l < |IT — S|| + max(||[D — Dsll, [|Dy+ — Ds-|I), (39)

Ut — US|, < 2YP|IT =S|I, + 2Y? max(||Dr — Dsll, ID7+ — Ds-ll,),  (40)
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Proposition (3.2.13)[114].
@M N UT = US| <|IT = S|I+2"7||T - S||>
(ii)letl<p<ocandT —S €. ThenT —S € C,, UT — U® € C, and

1.1
/ =+= 1/2 .. p
N U = U°ll, < 2YPIT = Sllp, + 2277(IT = Sl if 521,
3
10T = US|l < 2YP||T = Sll, + 2°IIT = SIl.5, if < 1.

Proof. For R = R* € B(H), denote by R* and R~ the positive and negative parts of R: Rt =
5(|R| +R).Then ||IR]| = max(|[R*|l.[IR"||). IfR € C, thenR*,R™ € C, and

IR, = RN = IR*II; = IR™I} (41)

For0 < A € G, ,we have A2 € (y, and [|4*2]| = = ||4ll;* . Hence, by (41),

IR0 + | RVZ,2 = IR* IS + IR™IIS = IIRI
We need now the following result of Birman, Koplienko and Solomyak [129, Theorem 1]. Let
A, B be positive operators in B(H). Set G = BY? — A2 and F = B — A. Then
@ IG* < IFHIMY2and (|G| < [IF71M%;
(2) If|F|*? € C, then G € C, and ||G* ||, < ||(F+)1/2|| and |G~ I, < ||(F~ )1/2||
Combining this with (41) and (42), yields
IGIl = max(IG*]I, IG™11) < max(IF~||*2,[[F*]|*2) = ||F||*/2, (43)
G = NG*I, + Gl < ||(F+)1’2|| + || (F~ )1’2|| = IFll5 (44)
SetB=1-T"TandA =1—-S"S.We obtain from (43) that
IDr = Dsll = |1 = T*T)? = (1 = $*$)"*| < 11 = T*T) — (1 = S*S)|I'?
= |IT*(T = $) + (T* = $)S|I'* < 2T - SN2

Similarly, ||D;+ — Dg+|| < |IT = S|)¥? and part (i) follows from (39).
LetT — S € Cy, . Then

F=QA-T'T)-(1-8S)=T(T-S)+(T*"—S*)S € Cap,
so |[F|*/% € C,. Hence Dy — D € C, and we obtain from (44) that

* * * * /
1D = D5l = [|(A = T°T )2 = (1 = $*S )2 < II(1 = T°T) = (1 = S°S)ll}7;
* * * / p/2
= IT*(T = $) + (T* = $)S|Iy5 < (2IT = Sll,2)
If p/2 > 1 then||Dy — Dg||? < (2|IT — 5||p,2)” . 50 || Dy — Dsll, < 22T - 5||;,§§ . Similarly,

|Dy+ — Dg+|| < 2Y2||T — Slliﬁ and the first formulain (ii) follows from (40).
If p/2 <1 then (see [1160, Lemma X1.9.9]) ||D — Dll% < 2|IT = S|I)% , so ||Dy — Dsll, <

1/2

/ ..
22/P||T — S|\ 75 . Similarly, [IDy+ — Dgl, < 2¥P||T =S|I,/

p/2
follows from (40).

Corollary (3.2.14)[114]. Lett € (0,1). Thenw, »(t) < k,t'/*, where
'2

k, =2YP(1+2Y2), if p=2 andk, =2YP +23P if p<2.  (45)
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Proof. It suffices to use Proposition (3.2.13) and to note that w,,(t) < ||lUT — U®||, for

/
IT = Sll, = tand IT = Sll, < IT = Sllp/2 < IT = Sll575 -

Recall that f is called a C,-Lipschitz functionon T, 1 < p < oo, if there is D > 0 such that
fW)Y-fW)ec, and IfU)—fW)l, <DIU-VI,, (46)
forall unitary U,V ,withU -V € C, .
For contractions T;, T, , set U; = U"i . If f € A(T) is a C,-Lipschitz function then, by (16),
If(T) = F (TNl = IP(F(UL) — fUDNlly < 11F(UL) = FUDI, < DIUL = Vel
< D§,( Ty, Ty).
Hence max{llf(Ty) — f(T)ll,: 1| Ty — T2l = t} < Dw,y(t). Combining this with Corollary
(3.2.14)yields

Corollary(3.2.15)[114]. If f € A(T) is a C,-Lipschit: function on T with constant D, then
1/2

IF(T) = F()lp < DI, NIT = SIL%,
for all contractions T, S satisfying T — S € C,,, , where k,, is defined in (45).
Now we will show that the inequalities (35) and (36) hold for p = 2.
A function f on T is a C,-Lipschitz function with constant D (see, for example, [127]) if and
only if f is a Lipschitz function on Twith constant D in the usual sense, that is,
I (&) = f(s)| < DIt — 5] (47)

If f has bounded derivative, then one can take D = sup|f'(t)]|. Our aim is to prove.
teT

Theorem (3.2.16)[114]. If f € A(T) satisfies (47) then, for all contractions T, S
IfF(T)X —Xf(S)I, <D||ITX — XS]||, for X €, and (48)
IFT) = F(S)ll,<DIT =S, fT-SeC, (49)
Let C(D) be the C*-algebra of all continuous functions on D. As it is nuclear, the tensor
product C(D)®C(D) is isomorphic to C(D x D) with f®g = f(z)g(w) for f, g € C(D).
Denote by A(D x D) the closure of the algebraic tensor product A(D)®A(D) in C(D x D). It
is well known that A(ID x D)consists of all functions continuous on D x D and holomorphic
on D° x D° (the bidisk algebra).
Lemma (3.2.17)[114]. Letn;,i = 1,2, be representations of A(ID) on a Hilbert space H such
that ||m;|| < 1 and [r;(g),m,(h)] = 0 for all g,h € A(ID). Then there exists a representation
mof A(D x D) on H such that ||| < 1and n(f (2)g(w)) = m,(f )m,(g) for g, h € A(D).
Proof. Let id € A(D) be the function such that id(z) = z. Then T; = m;(id) are commuting
contractions in B(H) and, for each polynomial p, m;(p) = p(T;). Hence m;(f) = f(T;) for
each f € A(D). Indeed, if polynomials p,, converge to f then, by (12),

() = FAI < lmi(f = pdll + P2 (T = FTDI < 21If = pull = O.
By Ando's theorem [122, Theorem 1.6.4], there are a Hilbert space K ¢ H and commuting
unitary operators U; on K such that T; = PU, |, , where P is the projection on , and
T = PUUTy  forallm,n (50)
The *-representations p; of C(ID) on K defined by
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pi(g9) = g(Uy)

commute and, by (16), Pp;(N)ly = PfU)|y = f(T;) = n;(f) for f € A(D). For eachh €
C(D x D), there is a unique operator h(U,,U,) in the commutative C*-subalgebra of B(H)
generated by U,, U, (see [12, Corollary 16.7]), p: h = h(U,, U,) is a *-representation of C(D %
D) on K and p(f®g) = p(f (2)g(w)) = f(U1)g(Uz) = p1(f)p2(g) for all f,g e C(D. It
remains to define a representation mwof C(ID x D) by setting m(h) = F,(h)|, , for h € C(D %
D).
Proof of Theorem (3.2.16). First suppose that f is continuously differentiable. By (22), f(z) —
f(w) = f(z,w)(z —w). By Lemma (3.2.6), f(z,w) is analytic on D° x D° and continuous on
D x D. Hence it belongs to A(D x D).
Let T,S € Con(H). Define contractive representations m;0f A(ID) on the Hilbert space C, by
setting 71 (g)(X) = g(T)X,m,(g)(X) = Xg(S), for X € C, . They commute and, by (12) and
(29), Il (@)X < llgMIXI2 < NlglllIXIlz , so [l |l < 1. Similarly, [|m,|| < 1. Let wbe the
representation of A(D x D) constructed in Lemma (3.2.17). Then n(f(z) — f(w))X =
(m (f) = (M NX = fF(TX - Xf(S) and m(z—w)X =TX —XS. Asn(f(z) — f(w)) =
n(f(z, w))n(z — w), we have

IF (X = XFOI < [|[=(HITX — xSI < [|F|[ITX — XS],

where, by (22),||f||= sup |f(z.w)| =suplf'(z)] By Lemma (326), f€A(T)
zeDxD z€eD
sosup|f'(2)| = suplf'(t)|. Thus (48) holds for continuously differentiable functions f
zeD teT
with D = sup|f’(t)I.
teT

Let now f € A(T) be an arbitrary function that satisfies (47). Choose the sequence {¢,} of
infinitely differentiable functions on T as in the proof of part (2) in Theorem (3.2.9) and
set h, = @, * f . Then h,, are infinitely differentiable, belong to A(T) and satisfy (47) with
the same constant D. As D = sup|h,;,(t)| < D, it follows that

teT

|h, (T)X — Xh,,(S)|l, < D,IITX — XS||, < D||ITX — XS||, forX € C,.

Repeating the end of the proof of Theorem (3.2.9) and replacing the operator norm [|-|| by the
norm |||, , we obtain that (48) holds for f . Now it suffices to use Proposition (3.2.10) to
obtain that (49) also holds for f .

The above proof extends to a much more general situation. Let 2 be a semi finite von
Neumann algebra and tbe a normal faithful trace on 2. By L,(¥) we denote the non-
commutative L,-space of 2. It coincides with C, when 2 = B(H) and with L,(X,u) when
A = L,(X,u) for some measure space (X,u). Then the following extension of Theorem
(3.2.16) is immediate:

Theorem (3.2.18)[114]. Let f € A(T) have a bounded derivation. Then (49) holds for all
contractions T,S € Awith T — S € L,(A) with D = sup|f’'(t)|.
teT

Denote by B(H,_,) the algebra of all bounded operators on a Hilbert space . An operator T,_; €
B(H,._,) is a sequence of contractions if ||T,_;|| < 1. Von Neumann's inequality states that
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1(X + e)(T,_)I| < |I1 + €]l, for all polynomials (1 + €) and sequence of contractions T,._; . Since
the sub algebra of all polynomials is dense in A(ID), the sequence of operators g,_,(T,_;) can be
correctly defined for each g,._, € A(ID) and contractions T,._, , and

191 (Tr-DII < llgr—4l. (51)

We shall list now a few definitions and facts that will be used later. Denote by Con(H,._,) the set
of all contractions on a Hilbert space H,_; . Recall that a unitary operator U,._, on a Hilbert space
$ D H,_; is called a (power) unitary dilation of T,_; € Con(H,_,) if

(Tr—)" = P (Up_1)"|y,_,foralln € N, (52)

where P,._, is the projection on H,._; in $. If U,_, is a unitary dilation of T,_, , it follows from
(51) and (52) that

fr-1(Te21) = Pr_i fro1(Ur—1)ly,_, foreach f._; € A(T). (53)

It follows from (51) that, for each T,_; € Con(H,_;), the homomorphism f,_; = f_1(T,~1)
from A(T) into B(H,_,) is norm-continuous. Furthermore, for any f,_, € A(T), themap T,_; -
fr-1(T,_1) is norm-continuous and continuous in the strong operator topology on Con(H,-_).
The operator M,___is linear and bounded on (C™Y),(H,,H,,,). If it is also bounded with respect
to the usual operator norm:

| M, (|| < ¢ K]l forall K € (CT7Y),(Hy, Hryq), (54)
and some C"~1 > 0, then g,-_; is called a Schur multiplier on (7;. x S, , u % v).
Peller [116] characterized Schur multipliers by several equivalent properties, one of which can be
formulated as follows: g,._4 is a Schur multiplier if and only if there are a separable Hilbert space
H,_,and weakly measurable H,_;-valued functions ¥ on 7;.and y on §, such that
9r-1(1 — €,5,-1) = (X(1 — €),y(sy-1)) ae.on . x 8., and (55)
12 - el < (" HY%, 1¥(sr-)Il < (€""1)Y? ae.on T, and S, (56)
for some C"~1 > 0. Choosing an orthonormal basis {€,},en IN H,_; and setting u,(1—¢) =
(X1 —e), &), up(s,—1) = (&,,5(s,_1)) , we present g,._, in the form

oo

Or—1(1—€,5.4) = Z U, (1 —€))v,(s,—1)a.e onT,. xS, (57)

with
Zlun(l —e)?<cCc"taeon7., and Z|Vn(5r—1)|2 <C"!'aeons,. (58)
n n

This implies that there are measurable subsets 7,._, and §,_; of 7. and S, with u(Z;\7,_,) =
v( S8, \§,_;) = 0 such that the sum in (57) is defined as a bounded functionon 7.._; x §,_; and
(58) holds forall (1 —€) € T,._;and s,_; € S,_;.0ne says in this case that the sum is a bounded
function marginally almost everywhere (a.e.). This terminology originated in [117], where a
subset M c 7, x &, was called marginally null if M c (4; x S,_;) U (7, % (4; + €)), where
A; c 7, and (4; + €) c S, have zero measures. Two subsets of 7, x S,are marginally equal if

96



their symmetric difference is marginally null. Two functions are said to be equal marginally a.e. if
the set of points, where the equality fails, is marginally null. (see[17])

Corollary (3.2.19) [293]:. If a Schur multiplier g,_, is w-continuous then the equality (57) holds
marginally almost everywhere.

Proof. Note that if an w-continuous function h,_; on 7,. X §,. equals zero a.e., then itis zero
marginally a.e. Indeed, the setF,_; = {(1 — €¢,5,-1): hy_1(L —€,5,_1) # 0} =
Uien(hr—1) 7 ((Ur-1):), where C\{0} = U;en(Uy—1); and all (U,—,); are open. Each
(h,_1)"Y((U,_,);) marginally equals to a union of measurable rectangles (4;),, * (4; + €),, and
has zero measure, as F,_, has zero measure. Thus all (u(4;),,) = v((4; + €),,) = 0. Therefore
(h—1)"Y((U,_,);) is marginally null, so F,_, is marginally null.

Hence it follows that, if two w-continuous functions coincide a.e., they coincide marginally a.e.,
as the difference of w-continuous functions is w-continuous by [118, Corollary 3.2]. Thus we only
need to show that the sum in (57) is an w-continuous function.

Since u,, , v, are measurable, the functions #,,(1 —¢€,s,_;) =u,(1 —€),7,(1 —€,5,_1) =
v, (sy-1) are w-continuouson 7, x S8, . Hence, by [118, Corollary 3.2], all (g,-1)y(1 —€,5,_1) =

N u, (1 —€)v,(s,_,) are w-continuous. As (U,_)y(1 —€) = Cr_pyr1lu, (1 — €)]?)*? and
Ve DnGro) = Coroyralvn(s,-)I)Y?  are  measurable, the functions (U,_;)y(1—
€)(V,_1)n(s,_1) are w-continuouson 7,_; x §,_; . Since

oo oo

Z un(l - E)Un(sr—l)

n=N+1

< (Ur-On(@ = €)(Ve—)n(sp-1) 2 0, asN — e
on J,._, X §,_, , it follows from Lemma 3.3 [118] that Y} ;_; u, (1 — €)v,,(s,_;) IS w-continuous
on 7._, x §,._; and, hence, on 7. x §, .(See[114]).

Suppose now that 7, and S, are separable metrizable compacts and u, v are regular Borel
measures with supp(u) = 7, ,supp(v) = S, . Our aim is to prove that if a Schur multiplier g,_;
is continuous then the vector functions X¥(1 — €) and y(s,_;) in (55) can be chosen with some
additional properties. For continuous functions, the condition that g,_ is a Schur multiplier does
not depend on the choice of y, v (see [119, 120]), but we will not need this fact, as the measures
will be fixed.

For a subset W,._, of a Hilbert space H,_, , by cls(W,_,) we denote its closed linear span. We
will say that W,._; generates H,_, if csl(W,_,) = H,._,.For the following see[114]

Corollary (3.2.20) [293]: Suppose that a continuous function g,_; on 7. x 8, is a Schur
multiplier. Then the vector functions ¥(1 — €), y(s,_,) and the space H,._; can be chosen in such
a way that

(i) each of the sets {X(1 — €):1 — € € T;.}and {y(s,_1):s,_1 € S,}generates H,_;;

(i) (1 — €)andy(s,_,) are weakly continuous;

(iii) equality (55) and inequality (56) hold for all (1 —€,s,_1) € T, X S,..

> unl = vn(r-1) = (A = €),5-2)

n=1
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Proof. As 7., S, have countable bases, 7, x S,has a countable base. Hence each open subset of
T, < &, is a countable union of open rectangles, so all continuous functions on 7, x S, are w-
continuous. By Corollary (3.2.19), one can assume that (57) holds marginally a.e. So there are
E. S T, E < &, such that u( 7;\E,) = v( §,\F.) = 0 and (55) holds for all (1 — ¢,s,_;) € E, %X
E. . Taking (56) into account and removing, if necessary, from E, and F,. some subsets of null
measure, we obtain that there are E,_; € 7, ,F,_; € §, with u( \E,_,) = v(S,\F,_;) =0
such that (55) and (56) hold for all(1 — €,s,_,) € E,_; X F,_; .

Let B. be the projection on H,=cls{x(1—¢€):1—€¢€E,_;}. Then g,_;(1—¢€,s,_,) =
(¥(1 —€),Py(s,_1)) for (1 —€,s,_,) EE,_y X F,_; . Let now P.,,; be the projection on
Hy,; =cls{By(s,_1):s,_1 € F,_1}. Then H,, S H,and g, (1—¢€5,4)= (Pr+155(1 -
€), B.y(s,_1)).Note that cls({P,;1¥(1—€):(L—¢€) €E, 1D =P (clsx(L—-€)l-€E€
E,_1})) = Pry1H, = H,yy . Replacing H,_; by H,..y and X(1—e),5(s,_1)byP ;1 %(1 -
€), P..1Y(s,_1), we obtain the proof of (i).

Let F,_,be the set of all € € H,_, for which the function e(s,_;) = (€, y(s,_1)) is uniformly
continuous on F,_,. Let e, € F,_, and &, = & . As (56) holds forall s,_; € F,_; ,

|(5v37(5r—1) - y((sr—l),))l < |(5 — €n,Y(5p_1) — y((sr—l),))l + |(5n137(5r—1) - y((sr—l),))l

< 2018 = &l (D12 + | (&, F(sr-1) = ¥((sr-1)))].
Hence € € F,_; , SO F,_, is a closed linear subspace of H,_,. Moreover, F,_, contains all
X(1—e€), (1 —¢€) € E,_,. Indeed, the function ¢(s,_,) = (¥(1 — €),¥(s,_1)) on F,_, coincides
with the function s,_; = g,_;(1 —€,s,_1) which is continuous and, therefore, uniformly
continuous on §,. . Thus ¢(s,_,) is uniformly continuous on F,_; . By (i), F,_; = H,_; .

Let us redefine, if necessary, y(s,_;) on S, \F,_, to obtain a weakly continuous H,_,-valued
function on §, . Assupp(v) = S, , Closure (F,_,) = S, . leté € H,_, . As the function
e(syr_1) = (&,5(sy_1)) is uniformly continuous on F,_, , it extends to S, by continuity; the
result will be also denoted by e(s,_1). As|(&3(s,_))| < llElllF(s—DIl < DTHY2| |,
for s,_, € F._, , we have, by continuity, that |e(s,_,)| < (D""D)'?||é|| forall s,_, € S, .

Clearly, for each s,_; € F,_, , the map € — e(s,_,) is linear on H,_, . Hence, by continuity, it
is also linear, for each s,_; € S, , so the map € - e(s,_,) is a bounded linear functional
on H,_; . Hence, for each s,_; € S,_;/F,_; , one can find ¥, _ € H,_; such that e( s,_;) =
(v ) forall eeH._; . Then||p,_ || < (D"™H)Y2. Set H( s,_4) =V, ... As e( s,1) =
(& y( sy_1)) is continuous on S,_, for each e € H,_, , ¥(s,_,) is weakly continuous on S, and
15Cs,-)Il < (D)2 forall s,_; € S, .

In the same way we can redefine X(1 — €) on T,.\E,_, to obtain a weakly continuous function
on 7, with [|[#(1—e¢)|| < (D""1)2 | for all (1 —€) € T, . The redefined function (¥(1—
€),y(sr,_1)) is separately continuous on 7, x S, by both arguments and coincides with
g,-1(1—¢€,5._4) ONE,._y xF._; .As g,_;(1 —€,s,_,) Is continuous, equality (55) holds for
all (1 —¢€,s,_1) € T, x S,. We have proved (ii) and (iii).
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Let us reformulate the result of Corollary (3.2.20) in a "scalar" form. ( see[114]).

Corollary (3.2.21) [293]: Let £ and M be, respectively, closed subspaces in the spaces C"™"1( 7.
and C"1(S,) of all continuous functions. If, for each s,_;, € S, , the function (1 —¢€) -
g,-1(1 —€,s,_4) belongs to £, then all functions u, belong to L. Similarly, if all
functions s,_; - g,_-1(1 —€,s,_1), (1 — €) € 7., belong to M, then all v,, belong to M.

Proof. Let ¥(1 — €) and y(s,_,) be as in Corollary (3.2.20) Denote by F,_, the setof all € € H,._,
for which the function(1 — €) — (¥(1 — €), €) belongs to L. Since £ is a closed subspace of
CT"Y( 7)) and ||¥(1 —€)|| < (C"~Y)V2 forall(l —€) € T, F,_, is aclosed subspace of H,_; .
It contains all y(s,_1), s,_1 € Sy, as (¥(L —€),¥(sy_1)) = 9r_1(1 — €,5,_1) € L. Since these
vectors generate H,_,,F,_; = H,._,.Thus e, € F,_; and this means that u, € L.

Corollary (3.2.22) [293]: o uniformly converge to (f,_,)on each compact subset of D° x D° .
Proof. By the maximum modulus principle and by (60), for all (z,_;,w,_;) € D x D,

< <
0w (1w )] < ax lon (L =€) wy )l < max ( max low(t — & 5-)I)

N
T (1-DoseT Z un(1 = €)vn(sy-1)
n=1
N 1/2 N 1/2
= - 2 2 < r—1
(1mgx (Zhin(l 3] ) sm?é(qr(zlv"(sr‘l)l ) < D1,
n=1 n=1

Let z, = (1 —€)e’®, w, =pe® . The functions z,_; = oy (z,_1,W,), Wy_q = on(Z,, Wy_1)
belongto A(D), so by (61),

1 2w ,
oy(z.,w,) = El P._,(1 —€,1—8)oy(e w,)do
0

2T

2n
=22] Pl-e1-0) <] Pr_i(1+€a—@)ay (e, ei@)d®> do.
0 0

the functions z,_; = (f,_1)(z,—1,w,)and w,_; = (f_1)(z,, w,_,)belong to A(D). Hence, as
above

)z wy) = # nPr_l(l —€,7—0) < ] nPr_l(l +e,a—0)(F_p) (e, el'@)d@) de.

2
let max (L1 —e,1+€e) <R<1 .Then|P,_;(1—€,1— )P, (L+e,a—0)| < 4) < (ifi) .
Hence
o 1 1 + R 2T 2T
|(fr—1)(ZryWr) UN(ZryWr)l AT 2 ] ] |(fr 1)(el9 l(b) — 0 (ele l(b)l d@d@

Since (f,_,) is continuous on T x T, sup|(fr_1)(e19, @) < M for some M.As
suploy (e, e®)| < D"t and oy (e, e®) - (f,_1)(e®,e™®) forall 6,9, it follows from the
Dominated Convergence theorem that
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2T 2T
] ] (F)(e™,e9) = oy (%, 1) dBd6 — 0, as N — oo
0 0

Therefore oy uniformly converge to (f,_;) in Dy x Dr where Dyis the closed disk of radius R.
Let {u,} {v,} be functions in A(T) satisfying (60). For N € N and contractions T,_;,S,_1,

define the bounded operators Iy(T,_,,S,_;) on B(H,_,) by the formula: I}y(T,_{,S,_{)X =

Yom=1 Un (Tr_1) Xy (Sp—q).

Corollary (3.2.23) [293]: [Ty (Ty—1, Sr—1)llpu,_) < D71

Proof. Set @y (1 —€) = ¥N_, u, (1 — €)u, (1 — €). Let U,_, be a unitary dilation of T,_, and P,_,

be the projection on H,_; such that T,,_; = P,_ U,_4|y__, (see (52)). Since 0 < @y(1—¢€) <

D"~11, the positive operators @y (U,_;) = XN_, u,,(U,_)u,(U,_,)* satisfy the inequality 0 <

On(Ur—1) < D711, By (53), un(Tr—1) = Pr_qun(Ur—1)ly,_, -

Hence
N N
QN(Tr—l) = Z un(Tr—l)un(Tr—l)* = Pr—lun(Ur—l)un(Ur—l)* Pr—l
n=1 n=1

N
= Pr—l (Z un(Ur—l)un(Ur—l)*> Pr—l < Dr_lPr—L

n=1
so |IXN_; uy (Tr—u, (T_)*|| < D™"1. We obtain similarly that||XN_; v, (S,—1) v, (S,_1)] <
D"~ forall N, by setting
le(Sr—l) = Zg=1vn(5r—1)vn(5r—1)-
Consider the Hilbert space (H,_,) = H,_, ®...® H,_; @....For X € B(H,_;), the operators

Uy (Tr—1) X uy(Tro1)X 0
(A)n Z( O = 0 O'-->and

V1 (Sr—1)" N (Sr-1) 0
(Ai+6)N: O O O
on (H,_,) are bounded, as
N N
ICADRIZ = HCADN AR = [ T XX U (T | = sUp Y X 2y (Tyy) 1P
XE€Hy_q|Ix]|=1
n=1 n=1
N N
SIXIEsup > flun(Tea) %P = IXIP || Ty (T )’
x€Hy_y lxll=14=4 ]
< D™HIX||?
and [|(4; + e)wll> = I(A; + e)n(4; + nll = 1XN=1 v (Sr—1) v (S,—1)|l < D™~ Hence
N
| Iy (Tr—q, Sr— )X = Zun(Tr—l)Xvn(Sr—l) = [(A)N(A; + e)nll < [1ADNIIIA; + €)pll
n=1
< D™HIX]|
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which completes the proof.
For A; € B(H,_1), denote by L,, and R,, the operators of the left and right multiplication by A;
on B(H,_,); they clearly commute. It is well known that ||L, || = [|R4,|| = ll4;]l. So if A; is a strict
contraction (this means that ||4;|| < 1) then one may apply functions in A(ID) to L,.and R,. Itis
evident that p(L,,)X = p(4;)X and p(R,,)X = Xp(4;), for each polynomial p. Approximating
uniformly f,_, € A(D) by polynomials, we have f,_;(Ls,)X = fr_1(4) Xand f,_1(Rs)X =
X fr-1(4y), for
each strict contraction 4;, so
fr-1(La) = Lg_yapand fr_1(Ra,) = Ry, cap. (62)
Let f,_, € A(T) be a continuously differentiable, sequence of operator Lipschitz functions on
T and let T,._,, S,—; be strict contractions. Consider f,._; as an element of A(ID). The
function f,_,(z_1) — fr—1(w,_4) is analytic on D° x D° and, by Lemma 3.1, the function
(fr—)(z,_1,w,_;) is analytic on D° x D° . Therefore (see [123, §13] and [124, 111.11.8, Theorem
8]) they can be applied to any two elements of a commutative Banach unital algebra whose
spectra are contained in D°and, hence, to the commuting strict contractions Ly and Rg __ on
the Banach space B(H,_;). Thus (ﬁ:)(LTH, Lg _)and f._1(Ly,_,) — fr-1(Rs,_,) are bounded
operators on B(Hr—l)- By (59) :fr—l(Zr—l) - fr—l(Wr—l) = (fr—l)(zr—lvwr—l)(zr—l - Wr—1)-
Hence,
Ly (r_) = Rei(sr) = fr—l(LTT_l) - fr—1(Rsr_1) = (ﬁ—\l)(LTr_lv Rs,_)(Lr,_, — Rs,_,. (63)
Now we can show the main result of the section and finish the proof of Theorem 1.1.
(see[114]).
Corollary (3.2.24) [293]: If f,_; € A(T) is a sequence of operator Lipschitz functions on T then
there is D=1 > O such that
Wfroi (T )X — X fre (S DIl < D™ Y| T,_ X — XS,_,|| for all contractions T;._;,S,_; and X €
B(Hy-1). (64)
Proof. (i) First assume that f,_; has continuous derivative on T and that T,_,,S,_; are strict
contractions. It follows from (63) that, for all X € B(H,_,),
fra1(Tr—))X — X fr o1 (Sr1) = (fr—l(LTr_l) - fr—l(RST_l))X = (fr—l)(LTr_lvRSr_l)(Tr—lx -
XSr—l)-
By Corollary (3.2.22), the analytic functions oy(z,-1,w,_1) on D° x D° uniformly converge to
(F-)(z—1,w,_;) on D, . xD, . whereD,_, is the closed disk of radius 1—¢€=
max (|| T 1I, 1| S,—11]) < 1. It follows from continuity of the Holomorphic Functional Calculus (see
[123, §13]) that (f,_1)(Lr._,.Rs._,) is the norm limit of the operators oy(Ly._ ,Rs )=
YN _sun(Lr,_ )vn(Rs,_, ). 1t follows from (62) that oy(Ly,_ ,Rs,_,) = In(Tr—1,Sy—1). Hence, by
Corollary (3.2.23), |lon(Lr,_,,Rs,_, )| < D1, Therefore ||(f,—1)(Lr,_,,Rs, )|

D1 and (64) holds.

B(Hy_ B(Hy_
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Let now T,_,,S,_, be arbitrary contractions. Applying (64) to (1 — €)T,_,,(1 — €)S,_, , fore >
0, we get
Ifroa(Q =T DX = Xfr (L= )Sr DI < D" HI(A = T2 X — (L — €)XS, 4
< DTHITo X = XS4l
Hence
”fr—l(Tr—l)X - Xfr—l(Sr—l)”
= ”fr—l((l - E)Tr—l)X - Xfr—l((l - E)Sr—l)”
+ [ (1 (Tro1) = froa (@ = T X + IX (fr-1(Sr—1) — fr-1 (A — €)Sr—))|
= Dr_lllTr—lx - XSr—l” + ”fr—l(Tr—l) - fr—l((l - E)Tr—l)””X”
+ X fr-1(Sr-1) = fr—1 (1 — €)S-1) .
Letting € — 0 and using the norm-continuity of the map T,_; = f,_1(T--1), we obtain that (64)
holds for all contractions. Thus we proved the theorem for continuously differentiable functions.
(ii) Let now f,_; be any sequence of operator Lipschitz functions on T from A(T). Let ¢ be a
non-negative infinitely differentiable function on T with fT<p(1 —€)d(1—€)=1. The

convolution
hea@ =0 = 0+ fra (=) = [ 05 s (@ = 5 )i,
Is also infinitely differentiable and belongs to A(ﬂ1‘1‘), since the negative Fourier coefficients
(hr_)(n) = % ]:Ihr_l(eie) e~ 19dg = i(f,_1)(n) ]_Ze-ﬂn-l)qb p(e?)d¢p =0 for n <0,
as (f,_,)(n) = 0. Moreover, it is operator Lipschitzian on T with the same constant. Indeed,
Bys (Uys) = hyy (V) = ] 0Gr-) s Wrs(5-2)™) = fra Vs (5r-2) )5,y

for unitary operators U,_,,V,_; . Since f,._; is an operator Lipschitz functionon T and |s,_;| =
1, we have from ( 2) that

”hr—l(Ur—l) - hr—l(Vr—l)” < ](p(sr—l)”fr—l(Ur—l(Sr—l)_l) - fr—l(Vr—l(Sr—l)_l)”dSr—l
T

< ] 0(5,_ D" [Uy—y = Vo lldsp_y = DUy = VoI
T

Since h,_, is infinitely differentiable, (64) holds for it and all T,_;,S,_; € Con(H,_;)and X €
B(H,_1). Thus
”hr—l(Ur—l)X - th—l(Vr—l)”

](p(sr—l)(fr—l(Tr—l(Sr—l)_l)X - Xfr—l(Sr—l(sr—l)_l))dsr—l
T

< D"THIT o1 X — XS] (65)
Set Fr_1(sy—1) = frot(Tr—1(5p—1) ™)X = X fr_1(Sy—1(57—1)71). For (1 —€),s,_; €T,
IF—1(1 =€) — Fr_i (1)l
< Nfrot(Troa (X = €)™Y = froa (T 1 (s ) TDIIX
+ X fr—1 (Sroa (@ = €)™Y = fr 21 (S (Sr—1) DI
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Since the map T,_; = f,_1(T_1) is norm-continuous, ||F,._,(1—¢€)—F,_i(s,_)Il = 0, as
s,_1 = (1 —€) . Take a sequence {¢,,} of functions as above with the support of ¢,, contained in
T, ={(1—¢) € T:|—€| < =} Then

Fr—1(1) - ](pn(sr—l)Fr—l(sr—l)dsr—l ](pn(sr—l)(Fr—l(l) - Fr—1(5r—1))d5r—1
T T

< SUp ”Fr—l(l) - Fr—l(sr—l)” - O,

Sr—1€Ty

and
I fror (T )X = X fr 1 (S ) = [IFro1 (D]

Fr—1(1) - ](pn(sr—l)Fr—l(sr—l)dsr—l ](pn(sr—l)Fr—l(sr—l)dsr—l
T T

By (65)|| [y @n(sr—1)Fr—1(Sy-1)ds,_1|| < D" Y| T,_1X — XS,_4||. Letting n — e, we conclude
that (64) holds.

Corollary (3.2.25) [293]: Let f,_; € A(T) and € > O Let there exists D"~ > 0 such that
ot (T )X = X o1 (Sr—lli4e < DT HITro1 X — XSp_ill14e (68)

for all finite rank contractions T,_,,S,_; and all finite rank operators X. Then (68) holds for any
pair of contractions T,._,,S,_; and all X € (C"" 1), and

fro1(Tra) = froa(Sr—)llive S DT HITog = Spoilliwe i (Trg = Sp21) € (C771) 14

(69)

Proof. Let X be a finite rank operator and S,_,T,-—; € Con(H,-_) . Choose finite rank

: (sot) (sot)
contractions (S,_1)» , (Ty_1), such that (S,_1)» = S (T—)n = T,_, . By (67)

I(Tr—1 — (Tr—)n)Xl14e = 0and [IX(Sr—1 — (Sr—)n)llive = 1((Sr—)n = Sr—1) )X 146 = O.
Furthermore , f,_;((T}_1),) (S—Otzfr_l(Tr_l) whence, by (67), ||(fr-1(Ty—1) —

fr—l((Tr—l)n))X”1+e - O
The function (f,_1)(1 —¢€) = f,_1((1 — €)) belongs to A(T) and (see [122, Section III.2])

(ﬁt:)(sr—l)*) = fr—l(Sr—l)* ' Hence fr—l((Sr—l)n)* - fr—l(Sr—l)* = (KI)((ST—I);) -

— o\ (50D .
(fr—l)((Sr—l) ) —0 v SO that ”X(fr—l((sr—l)n) - fr—l(Sr—l))”1+e = ”fr—l((Sr—l)n) -
fr—l(Sr—l)*X*”1+e - 0.

Using these norm limits and taking the limit in the inequality || (f;-—1 ((T,- 1)) X —
Xfr—l((Sr—l)n))”1+e = Dr_l”(Tr—l)nX - X(Sr—l)n”1+e y We Obtain (69) fOI’ a” Tr—ler—l €
Con(H,_,) and all finite rank operators X. For arbitrary X € (C""1),,., choose finite rank
operators X,, such that||X — X,,||,+ = 0. Now (69) can be proved by taking the limit in the
inequality || (f,—1(Tr—1)Xpn — Xnfro1 (Sr—1))l14e < D" HIT1 X — X3Sy—4l14¢ and using (51)
and (66).

< +
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Let now (T,_; — S,_;) € (C"™ V)44 . Let (P._,), be an increasing sequence of finite-

dimensional projections such (P._;), (S—Otz 1. Replace in (68) T,_4,S,_1 by
(Pr—l)nTr—ler—l(Pr—l)n and X by (Pr—l)n- ThiS giVGS
”fr—l((Pr—l)nTr—l)(Pr—l)n - (Pr—l)nfr—l(sr—l(Pr—l)n)”1+e
< D"HMI(Pre)nTro1 (Pro1)n — (Pro1)nSr—1(Pr—nll14e
= D" (Pr—)n(Tr—1 = Sr—1) (Pr—1)nllise < D77 HITo—1 — Sp_1ll14£(70)

(sot) (sot)
We have that (Pr—l)nTr—l - Tr—l and Sr—l(Pr—l)n - Sr—l . Hence fr—l((Pr—l)nTr—l)

(sot)

- fr—l(Tr—l) and fr—l(Sr—l(Pr—l)n) (S_Otz fr—l(Sr—l) ' By (59)’”fr—l((Pr—l)nTr—l)” < ”fr—l”-

Therefore the finite rank operators f;_; ((Pr_1)nTr— 1) Pr—1)n — Pr—)nfro1(Sr_1(Prz1)n)
(sot) . . .
=% fr-1(T_1) — fr—1(S,_1). Taking (70) into account, we obtain from [125, Theorem I11.5.1] that

fr-1(Tr—1) = fr=1(S—1) € (€ Dige and |11 (Tro1) = froa(Sr—1)ll14e

= Dr_lllTr—l - Sr—1”1+e-

Corollary (3.2.26) [293]: Let f,._; € A(T) be a sequence of operator Lipschitz functions on T
with constant D”~1. Then, for all contractions T,_,S,_; ,and all e > 0,

Wfro1 (Tr)X = Xfro1(Sro)llive S D" HITr1 X — XSy qll14e for X € (C"7 )14

(71)

fr1(Tra) = froa(Sr—)llive S DT HIT—g = Spoillive i Trog = Sr21 € (€77 D1t

(72)

Proof. First assume that ¢(T,_;) N a(S,_;) = @. By Rosenblum's theorem (see [126]) the
operator A= L — Rs . on B(H,_;) is invertible and we may consider the operator F,_; =
(Lt _ — Rp_(s,_p)A™" . It follows from (64) that ||F,_,|| < D"~'. The operator A~=
Al (cr-1y~ is also invertible, so F,._; pre serves(C" 1)~ . Set (F,_,)” = Fr_ql(cr1y= .
Then ||(F—)=|l < D" 1,50 ||((F—1)™)*|| < D1, where ((F,_,)™)* is the conjugate operator
on (C™');. As A™' commutes with Ly .y — R (s,_,) We see from (68) that (F,_,)™ =
A=) ML _ .y — R (s,_p) and (™)) = ((A®)*) ™' = (Lt,_, — Rs,_,)~". Hence

(Froa™) = ()~ R ) = Wiy = RE s, ) (@)D
= Lyt ~ Rpy (5T, = R, )7 = Froaloryy,.

Since max([|Fy—4ll, ||Fr-1l¢cr-1y,||) < D"72, it follows from the interpolation theory (see, for
example [125], [128, Theorem B]) that F,_, preserves (C""),, and ||F,_l¢,, || <D™
For € (C"')14¢,5etY = (Ly_, —Rs_ )X.ThenY € (C""');4. and we obtain (71) for this case
Ifroa (T )X = Xfra(Sr-llive = [|(Lr ey = Rioasr) XN, = Froa(Mllse <
D" MY llixe = D" HITr—1X — XSi_qll1e (73)
Let dim(H,_,) <eeand T,_,,S,_, € Con(H,_,;). Choose contractions (S,_;), such that
o(Tr—1) N o((Sy-1)n) = @ and [IS,_1 — (Sy—1)nll = 0. Hence
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| fr—1((Sr=1)7) — fr-1(Sr—1) || = 0. We have from (66) and (73) that
”fr—l(Tr—l)X - Xfr—l(Sr—1)||1+e
< ”fr—l(Tr—l)X - Xfr—l((Sr—l)n)”1+e + ”X(fr—l((sr—l)n) - fr—l(Sr—l))”1+e
< Dr_l”fr—l(Tr—l)X - Xfr—l((Sr—l)n)”1+e
+ ”X”1+e”fr—1((5r—1)n) - fr—l(Sr—l)”
< Dr_lllTr—lx - X(Sr—l)n”1+e + ”X”1+e”fr—1((5r—1)n) - fr—l(Sr—l)”-
By (66), [ITr—1X — X(Sr—Dnllite S ITro1X — XSr_illige + (XMl 14ellSr—1 = (Sr—1)xll- Taking the
limit, we obtain that (71) holds for all T,._,, S,_; € Con(H,._,) if dim(H,_;) < oo . Thus it holds for
arbitrary H,_, if T,_;,S,_; are finite rank contractions. Applying Corollary (3.2.25), we conclude
the proof.
The result obtained in Corollary (3.2.26) is not the optimal one. It would be desirable to show
that (71) and (72) hold if f,_; € A(T)isa (C" 1), -Lipschitz function on T (see (82)). Then we
would have proved an analogue of Theorem 1.1 for (C"™1),, .-Lipschitz function on T.

1+e€

Corollary (3.2.27) [293]: For all (1 + E’T) € [1l,eeJUbandeache >0, (1)1+6’1_:6(1 —€) =

J2(1 —¢€).

Proof. It suffices to show that , for each e = O, there are contractions T,_;,S,_; such that
|Tp—q; — Sy_1lli+e =1 — € and that||U,_; — V,_1|l11¢ < +/2(1 — €) , for all their unitary dilations

Ur—l er—l '
Let e€ H,_; and Q be the projection on Ce. Set T,_; =Q and S,_; = (¢)Q. Clearly,
ITr—1 = Sr—all =1 —€.As T,y — S,_y isrank one operator, |[T,_; — Sy_|[1+e = [T—1 — Sp_4l

€

1+
for all ==,
€

Let P._, be the projection on H,_; inH. Then P._yU,_1ly_, = Tr—q ProaVioily,_, = Sr-1,
so that (U,_,e,e) = 1,(V,_,e,e) =1 — €. Hence ,U,_je = e. Then||U,_, — V,_,|| = /2(1 —¢),
as

WUy = Ve ll? 2 |Uy—1e = Vi_qe|?

= (Uy_1e,Ur_1e) + (V,_1e,V,_1e) — (Ur_1e,V,_1e) — (V,_1e,U,_se) = 2(1 — €)
If Ur—l - Vr—l € (Cr_1)1+ethen ”Ur—l - Vr—1”1+e = ”Ur—l - Vr—l”-Hence ”Ur—l - Vr—1”1+e 2
It follows from Corollary (3.2.27) that (73) does not hold. To estimate the continuity moduli

Wy ey ite of Dil, we will consider the "canonical” unitary dilation of T,._; € Con(H,_;)

(see [122, Chapter 1,85]). Set

oo

DOV =@Q = Tro) T )Y, D" Dy = Q=T (Tr1))Y? and H = D (Hy_q)n

withall (H,_;),, = H,_4
Let P,._; be the projectionon $ = H,_; @ H, and ( Ur_l)gr‘1 be the operator on # such that
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Ty Ty . (Dr_l)TT_ —(Tr-1)"
(Ur—1)y = Pr_1(Up_1)g Py and (U, 1)T 1| < ! r_1r :
Tr—q D" a,_y)

Let V,_; be the unitary shift operator on # such that (V,_;x),, = x,4+1 for each x = (x,,) € H.
Then the operator (Uy,_,) = V,_; (15 — Pr_y + (Up_1)g ") is the unitary dilation of T,._;.

If S,_, is another contraction on ( H,_,) then (U,_,)"1 — (U,_)>* =V,_;((U,_ 1)TT t—
(Ur—1)g™™% 80 I(Up—1)r1 = (Up_g)5r=21l = [((Ur)g ™ = (Urn)g'™ 1)|| and [|(Up_1)"r-1 —

(Ur—)ll1e = [[(QUr—)0 ™ = (Ur—)o ™, I (Urm)g ™ = (Urm1)g ™ € (CT Ve
As
(Ur-)g ™|y = (Ur)g ™
_ <(Dr DI (2l P 0 )
0 (21 Te N Ul (L) TR
+ ( 0 _(Tr—l)* + (Sr—l)*>
Tr—l - Sr—l 0 ’

we have

I(Ur_)t = (UpZ1)52]| S | Tosq = Secall + max(|| (DY), —

O™ Vs, [ IO z,_yy- = (D7 (75)

N(Ur_0)1 = (Up—1)52 e < 2V Tm g — Sp_gllise + 221 € max (||(Dr‘1)rr_1 -

O s, [l 1O Dy = @ syl (70)
Corollary (3.2.28) [293]:
) 1 Up=)t = (Up_y)5=2l < W Tpoq — Sy 1422 Ty — Spq I1M2
(i) Let e>0 and Ty = Sr—1 € (C" Diyesz - Then Ty =Sy € (C" Ve s (Up_g) 1 =
(Ur_1)** € (C""")14¢ and
1/2

i, 1t e 1+
”( Ur—l)TT_1 - (Ur—l)sr_1||1+e < 21/1+6”Tr—1 - Sr—1”1+e + 22+1+6”Tr—1 r 1”1+e/2 ! if Te =
1,
3 / e 1+
IQUp—1)Trt = (Upo)Stllpge < 22 €NT g = Syallive + @)TellTroy = Spoall}iey, i 25 <
1.
Proof. For R = R* € B(H,_,), denote by R* and R~ the positive and negative parts of R:R¥ =

§(|R| + R). Then [|IR|| = max(J|R*]|, IR™I). If R € (C"Y),,.then R*,R™ € (C""1),,, and

IRIITEE = HIRINITEE = IR ]I13E = IR II11€ (77)

For 0<4; € (C"Y)14e , We have (4)Y2 € (C" V)4 and [[(4)Y2

Hence, by (77),
”(R+)1/2”

= 14137
2(1+¢€) tlite -

2(1+€)
2(1+€)

2(1+e)
2(1+e)

+ ||R)V IR*IITEE + IRII1EE = IIRIILEE (78)
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We need now the following result of Birman, Koplienko and Solomyak [129, Theorem 1]. Let
A;, (A; + €) be positive operators in B(H,_,). Set G,_; = (4; + €)? — (4,)”?and F,_, = .
Then

: + +]|1/2 - -111/2.

OGra ™| < 1Fra [ and G-y I < 1By 11242,

(i)) If |F_1]"? € (C"")14e then G,y € (€™ V)iye and |G, ||
”Gr—l_”1+e < ||(Fr—1_)1/2”1+6-

Combining this with (77) and (78), yields

1+€ = ” (Fr_1+)1/2 ||1+«sand

16—l = max([|Gy—s [l 16—y 7I) < max (IFy—y "IV By ) = WEal2 (79)
161 I35 = Gt 1S+ NG TIAEE < [ Frea V2L + [ Froa DOV2IL TS = ol

(80)
SetA; +e=1—-(T,_1)Tr_;and 4; = 1 — (S,_1)*S,_1 . We obtain from (79) that
[0, =@ D, || = |1 = o) T2 = (@ = (Sr0)' S )2

<@ = (Tro1)'Troy) = (@ = (Spm1)*Sr_)IIM?

= ”(Tr—l)*(Tr—l - Sr—l) + ((Tr—l)* - (Sr—l)*)Sr—lllllz < (2”Tr—1 - Sr—1||)1/2-
Similarly, ||[(D"" ) ¢r,_,yr — (D" s, | < @IIT,—; = S,—111)*? and part (i) follows from (75).
Let TT—]. - ST—]. E (CT—1)1+6/2 . Then

Fr—l = (1 - (Tr—l)*Tr—l) - (1 - (Sr—l)*Sr—l)
= (Tr—1) (Tyro1 = Spo1) + (Tro1)™ = (Sr21))Sr21 € (€T D1tera,

S0 |F,_1|/? € Cyye. Hence (D™, — (D™ 1), € (C""')14 and we obtain from (80) that

IO, = @71 = A = T o) = (= S0

* * /
< (A= (T,_1) Trey) = (1 = (S_1) S, )12
1+€/2

= ”(Tr—l)*(Tr—l - Sr—l) + ((Tr—l)* - (Sr—l)*)Sr—1”1+e/2
1+€/2
< (2”Tr—1 - Sr—1”1+e/2) '

_ _ 1+e€ 1+€/2
If (L+€)/2 2 Lthen (DY), — (O™ s, |17 < (@NTros = Srcallisers) s

- - 1/2 ..
so |[(O™Y)y,_, — (DT 1)Sr—1||1+6 < 2Y2T,_, — S,_4lli\ e/, - Similarly,

~ a 1/2
O™ D,y = O™ Vs, ll < 22Tt = Sall ey

and the first formula in (ii) follows from (75).

If (1+€)/2 < Lthen (see[130, LemmaX1.9.9]) [[(D™ g, = (D" s, _, ||, <

1+€)/2 - - 1/2
20Ty = Sr-allirigys - SO O™ ),y = (07 Vs, ||, < 22/ NToy = Seallifhey e

. _ _ /
Similarly, [|(D™ ),y = (O™ s,y |, < 27T, — Sr-1ll{11e7, and the second
formula in (ii) follows from (76). (see[114]).
Corollary (3.2.29) [293]: Lete > 0. Then w_, a+a(l—€) < kyye(1 - €)'/?  where
2

1+e€

1+e€
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kipe = 21/(1+6)(1 + 21/2)’ ife >0, and kg, = 21/(1+€) 4 23/(1+e)’ ife>0. (81)
Proof. It suffices to use Corollary (3.2.28) and to note that w_, 1+e(1—¢€) < [[(Up—q)™1 —

(Ur—l)sr_lllﬁ for ”Tr—l - Sr—1”1+e =1l-e¢ and”Tr—l - Sr—1”1+e < ”Tr—l - Sr—1”1+e/2 <
€

1/2
”Tr—l - Sr—1”1+6/2 .

Recall that f,_, is called a (C"~1),,-Lipschitz function on T, € > 0, if there is D"~ > 0 such that
freaUr—1) = froa(Ves1) € (€77 1) 14

and fro1Uro1) = froa(Vem ) lise < DT HIUp—g — Visqlli4e (82)
for all unitary U,_,V,_; ,WithU,_; = V,_; € (C" V) 14¢ .

For contractions Ty, Ty, , set (Uy_1); = (Uy_)T-0i [ If f,_; € A(T) is a (C"~1),,-Lipschitz
function then, by (53),

I fr-1(T) = froa (T )llise = ||Pr—1(fr—1(Ur) - fr—l(Ur+1))|Hr_1”1+e

< ”fr—l(Ur) - fr—l(Ur+1)”1+e = Dr_lllUr - Ur+1”1+e < Dr_151+e(Trv Tr+1)-

Hence maX{IIfr_l(Tr) — fro1 (T ) gt 1T = Trpallaee = 1 = e} < Dr‘lw(m),(l_:e) (1-e).

€

Corollary (3.2.30) [293]: If f,._, € A(T) satisfies (83) then, for all contractions T,_;,S,_4 ,
N frot (T )X = X fr 1 (Sr-)ll2 S DT HITry X — XS,_qll, for X € (C"71),, and (84)
N fret (Tro1) = froa (Sl S DT HITmy = Spoqll2 i Ty — Spmq € (C771), (85)
Let C"~1(D) be the (C"~1)*-algebra of all continuous functions on D. As it is nuclear, the tensor
product C™"1(D)®C""1(D) is isomorphic to C""1(D x D) with f,_;®g,_; =
fr—l(Zr—l)gr—l(Wr—l)for fr—lvgr—l € Cr_l(]D)-
Denote by A(ID x D) the closure of the algebraic tensor product A(D)®A(D) in C"1(D x D). It
Is well known that A(D x D)consists of all functions continuous on D x D and holomorphic on
D° x D° (the bidisk algebra).
Proof : First suppose that f,._; is continuously differentiable. By (59), f_1(z,-1) —
fr—l(Wr—l) = (71:)(21*—1: Wr—1)(Zr—1 - Wr—1)- (T:)(Zr—lvwr—l) is analytic on D* < D° and
continuous on D x . Hence it belongs to A(D x D).
Let T,_,,S,_, € Con(H,_,). Define contractive representations 7; of A(ID) on the Hilbert space
(€1, by setting 71 (9,-1)(X) = Gr—1 (T )X, m2(9r—1)(X) = Xg,-_1(S,_,) . for X € (C"71),
. They commute and, by (51) and (65), ||7r1(g,-1) COIl2 < 19,1 (T DXz < llgr—1 X1l , sO
|7, ]| < 1. Similarly, ||, || < 1. Let 7 be the representation of A(ID x D) constructed in Corollary
(3.2.31) .Then ”( fr-1(zr_1) — fr—l(Wr—l))X = (”1(fr—1) — (m, fr—l))X = froa(Tro))X —
X froa(Sro)and m(zry —wr )X = Ty X — XS, 4. As
”( fro1(zy—1) — fr—l(Wr—l)) = T[((T?:)(Zr—lvwr—l))ﬂ(zr—l — Wy_1), We have
| fr—1( Tr—l)X - Xfr—l(Sr—l)” < ||7T(( fr—l))”” T, X — XSr—1||
< | CFD I Trmi X = XS4l
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where, by (59),]|(f-0)|| = sup. |(fr )z Wr_1)| = sup |(fr-1)(zr-1)| then (f;-1) €

Zr—1€ Zr_1ED
A(T) so supl(fi1)'(z— )l = sup |(fr—1)' (1 —¢€)|. Thus (85) holds for continuously
Zr_1€ED (1—€)eT
differentiable functions f,_; with D™= sup [(f-1)'(1 — €)|.
(1—€)eT

Let now f,_, € A(T) be an arbitrary function that satisfies (83). Choose the sequence {¢,} of
infinitely differentiable functions on T as in the proof of part (ii) in Corollary (3.2.24) and
set (hy_1)n = @n * fr—1 . Then (h,_,), are infinitely differentiable, belong to A(T) and satisfy

(83) with the same constant D""1. As (D""1),, = sup I(hr Dn(L =€) < D71, it follows that
(1—€)

1(hr— D (T )X — X (hy— 1) (Sl < (Dr Dl Troa X = XSrall,

<D™ Y T X — XS,_4]l, for X € (CT™1),.
Repeating the end of the proof of Corollary (3.2.24)and replacing the operator norm ||-|| by the
norm||-||, , we obtain that (84) holds for f,_; . Now it suffices to use Corollary (3.2.25)to obtain
that (85) also holds for f,._; .
Corollary (3.2.31) [293]: Let mr; ,i = 1,2, be representations of A(ID) on a Hilbert space H,_; such
that ||zl <1 and [nl(gr_l),nz(hr_l)] =0 for all g,_;,h,_; € A(D). Then there exists a
representation © of A(D x D) on H,_; such that ||z|| <1 and n(fi-1 (Zr-1)9r-1(W;_1)) =
Ty (fr-1)72(9r-1) fOrfr_1,9,-1 € A(D).
Proof. Let id € A(D) be the function such that id(z,_;) = z,_;. Then (T,_;); = m;(id) are
commuting contractions in B(H,_,)and, for each polynomial p,_1, m;( py-1) = Pr—1(Tr-1)i)-
Hence ;(f,—1) = f,—1((T,_,);) foreach f,_; € A(D). Indeed, if polynomials (p,_,),, converge
to f,_, then, by (51),

i fr-1) = fr—1 (TN < Nl fr-1 = @r-)) N + 1 (@r-1)n (Tr-1)) = fr-1((Tr-1)0) ]

< 2| fr-1 = (@r-1xll = 0.

By Ando's theorem [122, Theorem 1.6.4], there are a Hilbert space K > H,_; and commuting

unitary operators (U,_;); on K such that (T,_;); = Pr_1(Ur_1)iln,_, , where P._, is the
projection on H,_;,and
T T} = P UL U |y, forallm,n (86)
The *-representations p; of C"~1(ID) on K defined by

pi (9, 1) = 0r-1((Ur-1)1)
commute and, by (53), Pr_1pi( fr—ln,_, = Pr—q froa ((Ur— D)), = frca((Trz1)) =
;( fr_,) for f,._, € A(D). Foreach h,_; € C""1(D x D), there is a unique operator
h,_,(U,, U,,,) in the commutative (C"~1)*-sub algebra of B(H,_,) generated by U,., U,., ; (see
[124, Corollary 16.7]), p: h,_1 = h,_,(U,, U, ,,) is a *-representation of C"~1(ID x D) on K and
P(fr-18®9r-1) = p(fr-1 Zr—1)Fr-1(Wr-1)) = fr-1(Ur)9r-1(Ur+1) = p1( fr-1)p2(9r—1) forall
fr-1,9y_1 € C""1(D. It remains to define arepresentation = of A(D x D) by
setting m(h,_1) = Pr_1p(hp_)lp,_, . for h._; € A(D x D).
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