Chapter 2

Hankel Operators and Extension Trace Formulae

One of the fundamental spectral characteristics, consideredin the perturbation theory
of unitary and self-adjoint operators ,is the so-called spectral shift function of Krein.
We improve the results and obtain sharp conditions under which the Koplienko—Neidhardt
trace formulae hold.

Section (2.1): Perturbation Theory of Unitary and Self-Adjoint Operators

A function is associated to a pair of self-adjoint (unitary) operators and one has

trace((4) — 9(8)) = | §D@'War 1)

If the spectrum of the operators A and B is discrete in some interval, then the
increment of the function ¢ on it coincides with the difference of the number of
eigepvalues of the operators A and B. The function ¢ is related by simple and natural
formulas with the fundamental objects of the spectral theory: the perturbation
determinants, the scattering suboperators, and for the Schrodinger operator” also with
the limit phase and the amplitude of the corresponding eigenfunctions [45].

However, for the applicability of the formula (1) one has to observe  certain
conditions. The following two questions raised by Krein [45]are fundamental here: i)
for which functions ¢ is it true that A — B € &. implies ¢(4) — ¢(B) € 6,? (A4, B are
self-adjoint (unitary) operators, while &, is the class of nuclear operators); ii) is
formula (1), true for the functions ¢, satisfying the previous property?

We introduce a new technique in the considered sphere of questions. The
fundamental circumstance consists in the reduction of the mentioned problems to the
investigation of the metric properties of Hankel operators, but also the use of tensor
products turns out to be of no small importance. The fundamental consequence of this,
approach is the determination of new sufficient (¢ € B ,, the Besov class) and
necessary (¢ € Bi,, ¢ € L) conditions for the validity of the formula (1) for all nuclear
perturbations and also for the differentiability of the mapping A = @(4). The
comparison of the two last conditions shows that the "tolerance" between them is very
small and, apparently, it cannot be expressed in terms of the local (or integral)
smoothness of the function ¢. In addition, we give criteria for the continuity of double
operator integrals .

Every real Borel function f on the R axis generates a mapping A — f(A4) of the set of
self-adjoint operators into itself. We investigate the smoothness properties of this
mapping. This problem and related ones have been investigated by [45-48].

It is easy to show that if the mapping A —» f(A) is differentiable, then. f € C'(R),
Also. if (4) — ¢(B) € &, for any bounded self-adjoint operators A, B such that A —
B € &4, then f|I € L*(I) for each bounded interval I. However, it has turned out that
the converse statements do not hold [49-51]. Moreover [9], there exist a function f from
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C*(R) and self- adjoint operators 4,, B, with spectra in[45], such that ||4,, — B, |l = O,
but ||f(4,) — fF(B)Il. (lIl4,, — B,l])~! - o. The problem of the characterization of the
functions f for which the mapping A — f(4) is differentiable has been posed also by
Widom [52].
The considered questions are closely related with the problem of the description of
the functions f for which
f(s)-f@®)

(s,t) > f(s,t)K(s,t), f(st) p—

is the kernel of a nuclear operator in L?(I) for any finite interval I and for any function K
on I x I which is the kernel of a nuclear operator in L>(I). In this case we say that f €
R. This question is discussed also in Widom's problem [52].

We obtain a new sufficient condition under which f has the above described property.
This condition is given in terms of the Besov class BY,; and it is suitable . At the same
time it is proved that it is not necessary. We also give new necessary conditions,
showing that the condition f € C' is not sufficient. From here there follow the
mentioned results of Yu. B. Farforovskaya for the uniform and the nuclear norms and
one shows that such counterexamples can be constructed for any function f which
does not satisfy the obtained necessary conditions. For technical reasons it is
convenient to consider unitary rather than self-adjoint operators and to deal with
functions on the unit circumference T.

We obtain sufficient and necessary conditions on a function f for which f € R .In
particular, we show that the sufficient condition of Birman and Solomyak [47] for the
boundedness of double operator integralsisin fact also necessary .See [53].

The machinery of double operator integrals, i.e., integrals of the form

oT = fA fM<p(s,t)dF(s)dE(t),

will play a fundamental role. Here F and E are spectral Borel measures on separable
metric spaces A and M, while T is a bounded operator in a Hilbert space H.

If ¢ € L*(Ax M), then the transform & continuous on the Hilbert-Schmidt class
S, and its norm is equal to||¢|| ~. If it is continuous also in &, then one can define by
duality the operator ®T each bounded operator T. If the transform & bounded in the
symmetric normed ideal S, then we say that ¢ is a Schur multiplier of the space S. The
set of all Schur multipliers of the space &, (or of the space B(#') of bounded operators in
H) will be denoted by the symbol R(A x M). The basic information regarding double
operator integrals can be found in [47, 54, 55]. The class R(A x M) admits the following
description.

THEOREM(2.1.1)[44]. Let @ € L*(AxM),and let A,u be scalar positive measures
on A, M, mutually absolutely continuous with F,E. The following statements are
equivalent:

i) @ € R(A*xM).

ii) For each function K on A x M, which is the kernel of a nuclear operator from
L*(A, 2) into L*(M, ), the function

(s,t) = (s, t)K(s,t)
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is the kernel of a nuclear operator from L?(A, 1) into L?(M, u).

iii) There exist a measure space (X, o) and measurable functions @ on A <X X', f on M x
X such that

(s, t) = fx a(s,x) p(t,x)do(x) ,(s,t) € AxM 2
JllaC ) ay NIBC ) oy do(x) < co. 3)

iv)There exist a measure space (x ,0) and a measurable functions e on A x X, f on M x
X such that conditions holds (2) and

f la ()| do(x)
X

fw(-,x)ma(x) <w. (@)
L®(A) X L®(M)

The implications iv)=i)&ii) have been obtained in [47]. In the case of discrete
measure spaces, a statement similar to ii) =iii) has been obtained by Bennett [56]. The
proof of the most nontrivial implication ii)=iii) has been obtained with the
collaboration of C. V. Kislyakov and makes use of an idea of E. D. Gluskin, with the aid of
which he has obtained a new proof of G. Bennett's theorem [56]. We note that iii) is
equivalent to the fact that ¢ admits the representation (2), for which one has the
condition (stronger than (3))

f ||a(-,x)||ioo(A)da(x) f ||ﬁ(',x)||iw(M)d0(x) < oo, (5)
X X

Condition (5) is essentially stronger than (4); nevertheless, Theorem (2.1.1) states that
3) ©4). More exactly, there exist representations (2), satisfying (4) but not (5).
Nevertheless, in this case there exists another representation for which (3) holds (and
even (5)).

Proof. 3) =4). Let ¢ be a positive function on X such that for @(:,x) = e(x)a(:
%), BC,x) = e 1 (x)B (-, x) we have N@C,x) e ay = ||/§(-,x)||L°°(M) ,x € X.Then

p(s,t) = f a(s,x)B(t,x) do(x), s,;t € AxM;
x

1/2 _ ) 1/2
(fxlld(-,x)llfeo(A)da(x)> ' (fxllﬁ(',x)lle(M)da(x)>

= f la Gl - 1BC e doc) < oo.
X

Obviously, @and Ssatisfy inequality (4).
Definition(2.1.2)[44]. Let B,,B, be Banach spaces. We say that the operator T:B; - B,
belongs to the ideal 1(B4,B;) , if there exist a compact Q, a finite Borel measure aon Q,
bounded operators T;: B, - C(Q),T,: L'(¢) — B;* such that the diagram
. .
B, - B, > By
T, 1 TT,
Id
c@Q) ——L'(o)

34



is commutative (Id is the identity imbedding and j is the natural  imbedding of the
space B,in its second conjugate space).
LEMMA(2.1.3)[44]. LetT:L'(1) - L®(u) be an integral operator with kernel K,

THE) = f K(s, )£ (s)dA(s),
A

and assume that K satisfies the conditions of Theorem (2.1.1). Then € I(L*(1), L*(w)) .

Proof. From Theorems 10.3.6 and 19.2.13 of [57] there follows that

I(LY (1), L=(u)) is the conjugate space to the space of compact operators from L% (u)

into L*(1). More exactly, the inclusionT € I(L*(1), L*(u)) follows from the inequality
[trace TU| < const ||U||

for each operator U:L”(u) - L'(1) of finite rank.

Let f = Y .(f,g:)h; ,where g; € (L”(w)*, h; € L*(1). By virtue of the principle of
local reflexivity (see LemmakE.3.1 from [57]) one can assume that g; € L*(u). Further,
one can assume that g;, h; are finite linear combinations of characteristic functions.

Consequently, there exist finite-dimensional  subspaces A®, A* of the spaces
L*®(u), L*(1), consisting of step functions isometric to the finite-dimensional spaces
L®and L'such that the diagram

L (1) ——L'(2)
Pl T1d
A” A
is commutative (P is the natural projection (averaging) from L*(u) onto A®).
One can identify A®with L(7), A'with L*(1), where @, 1, are measures with a
finite number of atoms.
By Grothendieck's theorem [58], U admits the factorization

U ~
L™ (@) L*(%)
M L@y
where M, is the operator of multiplication by function from L?(fi), V is abounded
operator with [|@|l 2 IVIl < K llUIl. where K; is the Grothendieck constant. We

apply now Orot.hendiec'ks theorem [58] to the operator V* and we obtain that V
admits the factorization

12(f) ———— 12(A)

M
L*()

where W is a bounded operatory € L?(1), such thatllill 2y - IWI < Ke VI
From here it follows that U admits the factorization
L (u) —— L'(2)
M, ¥ - ™m,
L*(u) —— L*(2)
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where M, My, are the operators of multiplication by the step functions ¢, 1, AT
the operator induced by the operator W and |lgll2¢, - Wl - [Pz < KZ|UIl.
We have
trace TU = trace TM,,WM,, = trace M,TM,W.
It is easy to see that

(M, TMf)() = f K(s, D@(OP(s)f (s)dA(s).
A

Since (s,t) = @(t)yY(s) isthe kernel of a nuclear operator from L?(1) into L?(u) with
norm llpllizgy - 1llizqy, we have M,TMy, € Siand||[MuTMy | < cllollzgy - 1llzg) -

Consequently,
|traceM, TM,W | < cllgll 2 - 11l 2| W]| < cKZNUII
Now we prove that 2)=3). Since the space L™ is complemented in (L*)**, by virtue

of Lemmal the operator T with the kernel K admits the factorization

L*(2) —— ()

T4 T,

L”(X,0) —4 }(X,0)
where T; and T,are bounded operators, while gis a finite measure on X.
Itis well known (see [16, Chap. XI, Sec. 2]) that every bounded operator from L! into

L* is an integral operator with a bounded kernel. Consequently, there exist a €
L®(AxX), Be€L®(MxX) suchthat

(T, f)(x) = f a(s, ) f(s)dA(s), f € L1(AA),
A

(T9) (x) = f B(t1)g(x)da(s), g € 11X, ).
X

Consequently, K admits representation (2), satisfying inequality (3).
The function K satisfies trivially the condition of statement 3) of Theoreml ifK €
L ()®L” (1) ie.K(5,t) = Enzo an(s)Bn(t) where TpsollanlliomyllBallioqy < oo . This
means that an integral operator with kernel K is a nuclear operator from L'(1)
into L®(u).

Let A and B be self-adjoint operators in H, let E and F be their spectral
measures, and let ¢ € C*(R).
We assume that B — A is a bounded operator. Then, as shown in [47], we have

o®) -9 = [ | pG0ar0® - A)aEE), ©)
R R

if pisa Schur multiplier of the space B(#). Also, itisproved in [47]thatif B —
A € G, for some separable (or conjugate to a separable) symmetric normed ideal
S.and ¢ is Schur multiplier of the space S, then one has (6) and ¢(B) —¢(4) € G,
and, in particular, (B) — p(4) €S, ifA—B €&, and ¢’ € L*, Thus, there arises
the question, whenisthe function gon I <[ or onT xT (I isa finite interval in the
case of bounded self-adjoint operators and an infinite interval in the case of
unbounded operators) a Schur multiplier of the space B(H). We denote by the
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symbol R;(R;) the set of Schur multipliers of the space B(H) relative to any
spectral Borel measures on I (onT).

Let A and T be self-adjoint operators, letT € B(H), and let ¢ be a Schur multiplier of
the space B(H). Then, inview of (6), we have

(ota+rn)=p@)r= [ [ 36.0d8,1dEW, @

where E and E, are the spectral measures of the operators A and A + rT.

It is established in [47] that if ¢ admits the representation (2), in which «a €
C(R,L*(X,0)) (the set of such function will be denoted by the symbol A(R)), then in
this case inthe right-hand side in (7) one can take the limit with respect to
the norm and one has the equality

dgo(z:TT) . = fR fR(f)(s, t)dE(s)TdE(t). @)

Moreover, the function A — ¢@(A4), defined on the class of bounded self-adjoint
operators, is Fréchet differentiable. Formula (9) for bounded A and for ¢ € C?(R) has
been obtained earlier in [2].

In a similar manner one considers the problem of the differentiability = of the
functionr —» @(eTU), where U is a unitary operator while T is a bounded self-
adjoint operator, and one has similar results for functions ¢ from A(T) (i.e, such
@ forwhich @ admits the representation (2), in which a € C(T,L*(X,0)),B €
L*(T, L*(X, 0)).

Krein [45]has associated to each pair of unitary operators U,V, for which V —
U e S; a function &fromL(T) (the spectral shift function corresponding to the
perturbation U — V) such that

trace(p(U) — p(V)) = fT £’ (g ©)

for each function ¢ whose derivative has an absolutely convergent Fourier series.
In a similar manner, the concept of the spectral shift function is introduced also for
nuclear perturbations of self-adjoint operators and one has a formula, similar to (9),
for functions ¢ whose derivative is the Fourier transform of a finite measure [1].

It is proved in [48] that formula (9) holds for ¢ € A(T)(¢ € A(R)) in the case of
self- adjoint operators).

In [56] one has obtained sufficient conditions on ¢, for which ¢ € A(T). In
particular, let @) = ¢ — X7,-_, $(m)z™. In this case, if

Z”(p(n)”Lw < ®, (10)
n=1

then ¢ € A(T). Also there one finds sufficient conditions for functions on R.
We show that @ € R, (and ¢ € A(T)), if ¢ € B, (see the definition below, of the
Besov classes). This condition is weaker than (10) and it is easier to handle.

For ¢ € L*(T), the Hankel operator H,:H* —» H2 ¥ 1> © H? is defined by the
equality H,f = P_¢f (P_ and P,are orthoprojections onto H? and H?).
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As we have already seen, the discussed problems lead to the investigation of the
kernels ¢. Assume now that T is an integral operator in L*(T) with kernel% P (21, 23).
It is well known (and easy to verify in a straight forward manner) that Tf = P_¢f, —
P of_ wheref, = P.f, f = P_f . ThenP_¢f, = H,f,, while the operator f_ -
P,of from H?into HZ?is analogousto the Hankel operator (these operators will be
also called Hankel operators). Consequently, T can be represented in the form of an
orthogonal sum of two Hankel operators and, in particular, T € G, ifand only if H, € &,
and Hjz € S;. In a similar manner, an operator in L*(R) with kernel ¢/2mi is the
orthogonal sum of two Hankel operators on the Hardy classes H?, H? in the upper and
the lower half planes.

We need the following criterion, obtained in [59], for the nuclearity of Hankel
operators:

H, € &, ifand only if P_¢ € B; (see the definition below).
let l<p<o, 1<g<o, s>0. The Besov class B}, of functions on T is
defined by the equality

S 1 dt
Bpq = {f1W IAEfllrery € LP <[_n’ "]’H»’

where (A f)(e™®) = f(e/**D) — f(e™¥), AP= A,A?"* , while n is the least integer
greater thans, We alsoset By = B;,.

These classes admit several other descriptions [61-63]. We need the following one.
Let W,,n > 0, be functions on T, whose Fourier coefficients W, (k) satisfy the
conditions W,(2") = 1,W,, = 0, outside (2"~1,2"), and W, is a linear function on
[2771,2"]and [2™,2""']. Forn<OwesetW, = W_,, , Wy(z) £ 1+ z+ 2. Then

f € Byq & (2N « Wil ), € £9(2).
In a similar manner one defines the (homogeneous) Besov classes By, (R) of functions
ONnR.

we need a statement whose proof is similar to the proof of Lemma2.1, Chap. IV of
[64]. Let F be a continuous function on R with a compact support. We consider the

polynomials
k
A=Y e, noo
n
keZ

LEMMA(2.1.4)[44]. If the Fourier transform, FF of the function F is in L', then
| Exll 2y < const, and for each positive number swe have

-6 1/2
lim (f |Fn(ezmt)|dt + f |Fn(ezmt)|dt> =0.
n 1 )

/2
Proof. We set y(x) = F(x/n)e?™*t . Now we make use of the Poisson summation
formula for i [21, Chap. VII, No.2] and we obtain

>F (g) emixt = % - (FF)(nlk — ).

keZ keZ
From here

38



1/2

1/2
| lmemlac< Y0 [ 1ER 0k - )l dt = 1FF Il

-1/2 ez -1/2

(f__;* fj) [Fu(e™)] dt < ( f: f :) |FF)(©)ldt — 0.

We show that ¢ € Ry if € BL,, . However, the converse statement is not true. In Theorem
(2.1.7) we construct a class of functions not contained in BY,; but all of its elements ¢
satisfy the condition ¢ € Ry . This class, as well as the class B, is contained in A(T).
We have mentioned the sufficient condition (10), obtained in [47]. We note that (10)
implies that ¢ € BL,;. This follows from the known characterization of the class B, ;:
@ € BL, © .. dist;~(p,p,) < o where p, is the set of polynomials of degree n. The
converse statement does not hold.
THEOREM (2.1.5)[44]. I1f ¢ € BL,, then ¢ € L°®L® and ¢ € Ry.
Proof. We show that ¢ € L”®L*. It is easy to see that the arguments given below also
show that ¢ € R;. We have
)= ) @G+ k+ Dzl + ) GG+ ko+ Dk
J,k=20 J.k<0

We show, for the sake of definiteness, that the first function in the right-hand side is in
L*®L* . We represent it in the form of a sum of two functions

D apdl ke + Dzlzl+ > B+ ke Dzl

Jj,k=0 Jj, k=0
where oo =1/2, aj = 2}1—‘: for j+k>0 k/2<j<2k a;=0 for j<k/2k >
0, ajy =1forj = 2k,j>0; B =1— aj
Obviously, 8;x = a;and, consequently, it is sufficient to consider the function

Z ajp @ + k)Z{Zf

J k=0
We define the functions q,r on R by the equalities
0, x <1/2,
q(x) = {(Zx —1)/(x+1),1/2<x <2,
1, x = 2,
0, x < 3/2,
r(x) = {(Zx —3)/x, 3/2<x <3,
1, x = 3.
Now we set
Qn(z)22q<i>zj, Rn(z)=Zr<i>zj, n > 0;
20 n 20 n
1 .
0u(2) = Ri@ =5+ ) 7).

j=1
It is easy to see that
> @+ k+Dzlzk = (5 0)(2). 26
j.k=0 k=0
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wherey & Pz, whileS*y & %@ Consequently,

D @G+ ke Dz < YUY Qullie < D I Rell
jk>0 Lo k20 k=0

We show the following statement.
LEMMA(2.1.6)[44]. Let ¥ be a function from B}, analytic in D. Then Yol * Qll i <
(00]

Proof: We define the function u on R by the equality u(x) = 1 — r(|x|),x € R.
Since the function u is continuous and piecewise-smooth, we have Fu € L'((R). We set

Ue(z) = z u <i> 7.
_ k
JEZ
By virtue of Lemma (2.1.4), we have ||Uyll,1(ry < const. Letk > 2"*2 Then

Rk*¢=Rk*(z¢*Wm>,

mza2n

(the kernels W},,). Consequently,

IRy * Yl = Rk*(zlp*Wm) < le*Wm @+ Ul )
mz=2n L°° mn Loo
< const Z 1y * W, || oo
m2n
From here
2n+3_1 2n+3_1
D MRcx llm = > > IR pllm < const Y 272 D" i x Wiyl
k=0 n=1 k=2nt2 n=1 k=2mt2

<D 2 Wyl < 0

nz1
We have proved that ¢ € C(T)®C(T).
COROLLARY(2.1.7)[44]. Let ¢ € BL,,. Then the Hankel operator P_H,P, is a nuclear
operator from L' into C(T).
Now we show that the condition ¢ € B, is not necessary in order that ¢ € Ry.
THEOREM(2.1.8)[44]. There exists a function ¢ on T, not belonging to the space
B} ,and suchthat @ € Ry and ¢ € A(T).
Proof. Let ¢ =z¢y and ¢ =),.,¢¥, where , is a polynomial, whose Fourier
coefficients are concentrated in [2V», 2VNn+1] where {N,} is an increasing sequence of
positive numbers. We select a sequence of "almost disjoint" polynomials {y,,} , such
thaty ¢ BL,, but ¢ € R;. We have
Yz = ) Y (@b + k) + Bl + )21z

n21 j k=0
(here one makes use of the notations introduced in the course of the proofs of
Theorem(2.15) and Lemma (2.1.6). Clearly, the functions ¥,,51 X xs0 @i Pn( + k)zljzé‘
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and Y1 X k0 BixPn U + k)z{z} belong simultaneously to the class Ry. Therefore, we
shall consider only the first  function.
As we have proved in Theorem2, we have

2Nn+2/3
D bz = Y Y () P+ Q) ()7
j k=0 n>0 k=0

(if k> 2"n*2/3,then (S*)“4h, * @ = O, since P, < [2Vn, 2Vn*1]),
Assume now that {§,,} is a sequence of positive numbers such that Y,., 2V6,, < co. We
have

ZNn+2/3
e j -1/ . /
D bRzl =D Y 6 e+ 0)(@) - 6,7
Jj,k=0 n=1 k=0
Clearly,
2Nn+2/3
2
sup Z |6%/%7|" < const Z ALY
Irl=1 nz1 k=0 n1
Consequently, in view of Theorem 1, ¢ is in Ry as soon as one has the inequality
2Nn+2/3
sup Z S S P * QI(@)I? =sup ) 67 < oo, (11)
I¢1=1 nzl k=0 I¢1=1 n=1
Obviously,
[ * Rl = [l ke < 2V2/3 (12)

Assume now that {I},},,; is a sequence of disjoint arcs in T, A, §,, are  arcs with the
same centers, |T3,| = 2|A,,| = 4]5,| . We consider a continuous function w,, on T such
that0 < w, < 1,supp w, € 4, wy|6, =1. Let {A,},-1 be a sequence of complex
numbers, |A,| < 1, and let {e,},>1 be a sequence of positive numbers such that
Y1 2Nne, < oo .

Let h,, be a polynomial such that ||A,,w,, — h,|| < €,. Then there exists a sequence of
integers {m,},»1 such that the Fourier coefficients of the  polynomial z™h, are
concentrated in [2V», 2¥»*1] for some sequence {N,},; such thatN,, , — N, = 2. We
sety,, = z™nh,,. The polynomials v, are "almost disjoint” on T. From the definition of
the class BL, in terms of convolutions with W,,, it is easy to see that under the
condition N, ,; — N,, = 2 we have

Y EBLy & ) 2Vlpylle < oo (13)

nz1
We show that one can select {A,.},,51 , {8, }r>150 that the inequality (11) holds and the
series in the right-hand side of (13) diverges.
In view of (12), for k < 2¥»/3 we have
| * R =2 A — &, (€S,

|G * R < &q, (€ T/A, (14)
From Lemma(2.1.4) it follows that if the sequence {N,, },.-1 is sufficiently sparse, then for
k < 2N»/3 we have

41



f Ux(O)] dm(Q) < &,
{¢:[¢I>ITy 174}

Consequently, for k < 2¥n/3 we have

I(lpn * Rk)(()l = I(lpn - l/)n * Uk)(()l < const €n a( € T/Fn (15)
Clearly, for all k we have

Wb * Rillo < const (IA,] + &,). (16)
Consequently, the series in (13) converges if and only if },,,5; 2V2[1,,| < oo, while, in view
of (14), (15), (16), condition (10) is equivalent to the fact that
sup 6,1 2Vn|1,]? < o.
n

We set now 6, = |1,,|? - 2V» then },,5, 2V 6,, < oo if and only if },..,(2V]|2,])? < o . It
remains to choose the sequence {1,},,> so that {2V2,} € 12/1*.

The given arguments allow us to conclude that the constructed function belongs to
A(T).

Making use of the nuclearity criterion for Hankel operators, we find necessary
conditions on ¢ in order that ¢ € R;. They show that the condition ¢ € B is not
sufficient.

THEOREM(2.1.9)[44]. Let ¢ be a function on T such that ¢ € Ry. Then ¢ € Bj.

Proof. Letg,, g, € L>. Then the function g;(z;) % g,(2,)P(z;,2,) is the kernel of a
nuclear operator in L. We setg, =1,9, =z The operator T with the kernel
1/2mi(p(z,) — ¢(2,))/(1 — z,Z,) acts in L? according to the formulaTf = P_¢f, —
P,pf_. Consequently,

H, € &, ,Hj € &, , from where we obtain ¢ € Bj .

We note that condition ¢ € C* does not imply ¢ € Bi. Indeed, the definition of the class
Biin terms W,implies that forg € B}, we have Y, .o|¥(2")| <, wherey = ¢'.
However, for any sequence {1,},., € [ there exists a function y € C(T) such that
P(2™) = A, ,n = 0 (see [66]).

Now we obtain a stronger necessary condition.

Definition(2.1.10)[44]. We say that the function ¢ on T belongs to the class L if the
Hankel operators H,,, H; map H' into Bj.

THEOREM(2.1.11)[44]. Let ¢ be afunctionon T such that ¢ € Ry . Then g € L.

Proof. We show that Hy is a bounded operator from H' into By. The assertion for H,, is
proved in the same way.

We shall consider nuclear operators of a special type with kernel K(z,,z,) and we
shall estimate the nuclear norms of the operators with kernel z,$(z,,z;) % K(z4,23).
We note that
¢(z1) — 9(z;) _

1-27 B

Zz‘lv’(ZLZz) =

> oG+l Y GG+ ek
k=1,j20 k=0,j<-1
Let T be a nuclear operator in L? such that TL?> c zH? and T|H2 = 0. Then the kernel K
of the operator T has the form

— -r,,—S
K(ZlazZ) - Z trsZ1 23"
7,520
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We consider the operator P, T®P_, where T? is the operator with kernel z,¢(z4,2,) %
K(z4,2,). Then P, T?P_ € S;.

Now we show that P,T¢P_ is a Hankel operator. Clearly, if K(z,,z,) = z;"z;° then
the operator P, T?P_ has the kernel

Yiz1j20P(+k+1+ s)z{z§ , Consequently, in the general case the operator
P_T®P_has the kernel

> (Z GG+ k + m)) 27k,
k=1,j=0 \m=0
where g = X 50 2™, While ¢, = Y7oty
Thus, P, T?P_ isanuclear Hankel operator, whence

> o+ m) gom)z" € B} @)

n>0m=0

It is well known (see. for example. [59]) that when T runs through all the nuclear
operators of the indicated form, then g runs through all the functions from H*. Thus,
(17) means that Hz:H' — Bj.

We consider the space J of functions h analytic in D and such that

. Nh(rz) |l |R(O)
lim———— =0, hl|l;, & sup ———.
r-1 1-r ” “] |(|<p11 - I(I

Itis well known [61,63] that J* = P, B] relative to the duality

(h.g) =tim [ hGDgCDamE) (18)
T

We consider the space N of functions f analytic in D admitting the representation

f= Z Inhy, (19)
N=0
> lgnlls iyl < oo (20)
N=0

The norm of the function f is defined as the infimum in (20) over all  {gn}ns0, {Rhn}ns0
satisfying condition (19).

Since J* = P,B7 , itis easy to show that Hz, maps H' into B} if and only if P,¢ €
N~*(relative to the duality (18),ie,N* = L.

Setting in (19) go = 1,gy = hy =0 for N > 1, we can see that ] ¢ N and, therefore
L c Bi ;thus, Theorem(2.1.11) refines Theorem(2.1.9).

Clearly, each function f from N satisfies the condition

1
imi— | 1FeOlm@ =0 21)

Let D be a space of functions satisfying condition (21). It is well known that D* = P, BL ;
[61,63]. If each function from D would admit a representation (19) (20), we would
have L = B,,. Unfortunately, this is not so since this would contradict Theorem 3.
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Moreover, the condition ¢ € L is not sufficient in order that ¢ € Ry, since L &
{p:@' € L”} . Indeed, if L c {@: ¢’ € L}, then the system of functions {P,K,,}m>1
(K,is the Fejér kernel) would have bounded norms in N. Now, if g € H?, then the
maximal function gy,

gu(Q) € suplg(@d)|, (€T,

r<i

is in LY(T) and ||gyll;» < const ||gll4: (see [67, Chap. VIII]). Consequently, if f € N,
then the maximal function f,
If( OI

M) & su =, C€T
r<1 -

is in LY(T) and ||f™||,» < const ||f||y. Thus, we Would have ||(P,K,,)™||,x < const, from
where ||(Cxs02z8)M||;2 < o0; however, it is easy to see directly that this is not so.
THEOREM(2.1.12)[44]. Let ¢ € BL,,. The following statements hold:
(i) If U,V are unitary operators, then
lp(V) — o)l < const llgllge - IV = Ul
(ii) If U is a unitary operator, then the function A — ¢ (e‘4U) on the class of bounded
self-adjoint operators is Fréchet differentiable and
lim @(e™U) — o(U) _ ff<p(zl) o(z,)
t-0 t —Zyz4
where E is the spectral measure of the operator U.
(i) If U,V are unitary operators, V —U € &,, then (V) —¢(U) € ; and formula
(9)holds.
(iv) If S is a symmetric normed ideal, interpolational between &, and &, (and, in
particular, if the ideal S is separable or conjugate to a separable ideal), U,V are unitary
operators, V — U € &, then (V) — ¢(U) € G.
As already mentioned, the assertions of Theorem 6 hold for ¢ € A(T)
[47,4]. Now the result follows from Theorem (2.1.5).
From Theorem (2.1.7) there follows that the condition ¢ € B, isnot necessary for
the validity of the statements (i).
We show that the condition ¢ € C* is not sufficient  in order that the statements (i)
should hold.
THEOREM(2.1.13)[44]. Let € C*(T)/L . The following statements hold:
(i) There exist unitary operators U, {V,, },=1 such that
limilv, — Ul =0,  limlle@) — @) (I, = VD™ = oo.

(ii) There exist unitary operators W,V such that W — V € &;, but (W) — (V) ¢ ;.
We note that ¢ satisfies the conditions of the theoremif ¢ € C*(T)/Bj].

Proof. Let U be the operator of multiplication by z in L?, V = e'®4 where , A€ &,, A =
A*, t € R. We assume now that ||@(V) — @(U)|| < const ||V — U|| Then

(o)~ o)) = f f 3 2)dBy(2) =L dEy (), (22)

dE(z1)AdE(z,),

44



where Ey, Eyare the spectral measures of the operators U,V and the operators in (22)
have bounded normes. It is easy to show that the operators in the right-hand side of the
equality (22) converge weakly for t - 0 to

. ¢(z1) — o(z1)
- fT fT T dEy(z)AdE, (2,),

ZyZq

Consequently, the transformation

ff o(z;) — (p(Zl)dEU(Zl)AdEv(Zz), A€EG,,

— 222,
is bounded in the operator norm and, therefore, in view of Theorem (2.1.1), the
function ¢(z,,2,)K(z4,z,) is the kernel of a nuclear operator if K has this  property.
At the proof of Theorem (2.1.11) we have established that this impliesp € L,
Contradiction.
(ii) in the same way as for the proof of statement (i)), we can find a sequence {V} },;»; of
unitary operators such that ||V;, — U||g,, while Ii7£n||<p(Vn) — oD,/ IV, — Ullg, = .

Now it is sufficient to consider the appropriate direct sums W =3_,@®U and V =
S, @V, such that £V, — Ulls, < o, but 2, llp(V,) — ¢(U)lls, = . Then it is
clearthat W —V € &; while (W) — (V) ¢ S;.

We investigate the properties of the smoothness of functions of self-adjoint operators
in the case of bounded operators. At the conclusion, we shall dwell briefly on
unbounded operators.

As mentioned, the considered problems are closely related with the question of the
characterization of functions ¢ on R for which ¢ € R, roll for each finite interval 1.

By the symbol B3, we denote the class of functions f on R such that for each
finite interval I the function f|I can be extended to a function of the class B;,(R).
THEOREM (2.1.14)[44]. (i) If ¢ € B, then ¢ € R, for each finite interval I.

(i) If ¢ € R, for each finite interval I, then ¢ € Bi.

Proof. LetI be afinite interval and let J;,J, be intervals with the same center, I &
J1 & J, Multiplying the function ¢ by a smooth function with support in J; identically
equal to unity on I, we can assume that assume @ cJ; . Let 6 =|/,]. We set
P(e?™¥/8) = p(x),x € ,.Clearly,yp € BL, and, by Theorem (2.1.5), Y € R;.

Let K be the kernel of a nuclear operator from L?(I,p,) into L?(I, u;). In this case, if
K (e?mix1/8 o2mix2/8) = K(x,,x,), x;,X, € ], then K is the kernel of a nuclear operator
from L*(T,fi;) into L*(T,ji;), where fi; the image of the measure yu;under the
mapping x — e?™X/8 j =12 Since Y € Ry , the function P(zy,2,) K(z;,2,) is the
kernel of a nuclear operator from L?(T, fi,) into L?(T, fi,). From here there follows that
the function

p(x1) — p(x3) K
e2mix /8 _ p2mix,/8 (1’ 2)

is the kernel of a nuclear operator from L?(I,u,) into L2(I,u,), and, since ¢ c J; it
follows that the kernel ¢(x;,x,) K(x;, x,) has the same property.
(ii) First we note that if, ¢,3) € R, then (¢@) € R,. Indeed, this follows from the

equality(ey) (xy, x2) = ()P (xy, x,) + P (x,)P(x1,x,) . Now we can multiply our
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function by a smooth function with a compact support, identically equal to unity on I.
Afterwards, we can repeat the, scheme of the proof of statement (i).
We mention that one can also formulate an analog of Theorem (2.1.11).

One can formulate and prove analogs of Theorems(2.12) and (2.1.13) for the case of
bounded self-adjoint operators.

In the case of unbounded operators there arises the question of the characterization of
those functions ¢ for which ¢ € Rg. class L. For these classes one has the analogs of
Theorems (2.112), (2.113) in the case of unbounded self-adjoint operators.

Section (2. 2): Koplienko - Neidhardt Trace Formulae

The spectral shift function for a trace class perturbation of a self-adjoint (unitary)
operator plays a very important role in perturbation theory. It was introduced in a
special case by Lifshitz [69]and in the general case by Krein [70]. He showed that for a
pair of self-adjoint (not necessarily bounded) operators A and B satisfying B—A € S,
there exists a unique function ¢ € L'(R) such that

trace (¢(B) — ¢(4)) = fR¢’(x)€(x)dx (23)

whenever c is a function on R with Fourier transform of ¢’in L'(R). The function ¢ is
called the spectral shift function corresponding to the pair (4, B ). We use the notation
S, for the class of nuclear operators (trace class) on Hilbert space.

A similar result was obtained in [71] for pairs of unitary operators (U,V) withV —U €
S, . For each such pair there exists a function ¢ on the unit circle Tof class L!(T) such
that

trace (o (V) — o(U)) = fT ' (O)(E)(E)dm(E) (24)

whenever ¢'has absolutely convergent Fourier series. Such a function ¢ is unique
modulo a constant and it is called a spectral shift function corresponding to the
pair (U,V). We refer to Krein [72], in which the above results were discussed in detail
(see [73]).

Spectral shift function plays an important role in perturbation theory. We mention
here [74], in which the following important formula was found:

detS(x) = e2mid(x),

where S is the scattering matrix corresponding to the pair (4, B). | would also like to
mention the monograph [75] and more recent papers on the Lifshitz-Krein spectral
function: [76,77,78,79,80,81].

It was shown later in [82] that formulae (23) and (24) hold under less restrictive
assumptions on ¢.

Note that the right-hand sides of (23) and (24) make sense for an arbitrary Lipschitz
function ¢. However, it turns out that the condition ¢ € Lip (i.e, ¢ is a Lipschitz
function) does not imply that ¢ (B) — ¢(4) (or ¢ (V) — @(U) ) belong to S, . This is not
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even true for bounded A and B and continuously differentiable ¢. The first such examples
were given in [83].

In [84,85] with the help of the nuclearity criterion for Hankel operators (see recent

monograph [86]) necessary conditions (in terms of Besov classes and Carleson
measures) were found on ¢ for the operator ¢ (B) — ¢(A) (or ¢ (V) — ¢(U)) to belong to
S,. Those necessary conditions also imply that the condition ¢ € C?* is not sufficient for
those operators to be in §; (even for bounded A4 and B).
It is shown in [84] that if is a function on Tof Besov class B, then trace formula (24)
holds. Similarly, it was shown in [85] that if ¢ is a function on R of Besov class BL; (R),
then trace formula (23) holds. The definition of the above Besov classes will be given.
Note that though these sufficient conditions are not necessary, the gap between the
necessary conditions and the sufficient conditions obtained in [84,85] is rather narrow.
Note also that in [87] a better sufficient condition was found; however, it seems to me
that the condition ¢ € B (R) is easier to work with.

In Koplienko's paper [88] the author considered the case of perturbations of Hilbert-
Schmidt class S, . Let A and B be self-adjoint operators such that K & B =—-A4A € S, . In
this case the operator ¢(B) — @(A) does not have to be in §;even for very nice
functions ¢. The idea of Koplienko was to consider the operator

d
¢(B) — ¢(A) — = (9 (A + sK))|s=o

and find a trace formula under certain assumptions on ¢. It was shown in [88] that there
exists a unique function n € L*(R) such that

trace (p(8) — p(4) = 5= (p(A + sKDloco) = [ @"CIMCIax  (29)
R

for rational functions ¢with poles off R. The function is called the generalized spectral
shift function corresponding to the pair (4, B).

A similar problem for unitary operators was considered by Neidhardt [N]. Let U and V
be unitary operators such thatV — U € §, . Then V = exp(i4A)U , where A is a self-adjoint
operator in S, . Put Us = e®4U , s € R. It was shown in [N] that there exists a function
n € L}(R) such that

d
trace (¢(V) ~ ) - - @WDlo) = [ 9'ndm  @8)

whenever ¢''has absolutely convergent Fourier series. Such a function n is unique
modulo a constant and it is called a generalized spectral shift function corresponding to
the pair (U, V).

In [89,90] for applications of Koplienko's trace formula [88]. We obtain better sufficient
conditions on functions ¢, under which trace formulae (25) and (26) hold. We consider
the case of unitary operators and the case of self-adjoint operators . We show that
formula (25) holds under the assumption that ¢ belongs to the Besov class B, (R) while
trace formula (26) holds whenever ¢ € BZ,(R). Note however, that the case of self-
adjoint operators is considerably more complicated. First of all, unlike in the case of
functions on Tthe set of rational functions with poles off Ris not dense in BZ,(R).
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Second, functions in ¢ € B2, (R) do not have to be Lipschitz and it is not clear how to
interpret each of the operators

d
»(B) — ¢(A) and E(q)(x‘l + sK))ls=o.

However, it is still possible to define their difference and show that the difference
belongsto §;.

We outline the theory of double operator integrals developed by Birman and Solomyak
in [91,92,93], and we define Besov classes and discuss their properties.

We collect necessary information on double operator integrals and Besov classes.

The technique of double operator integrals developed by Birman and Solomyak
[91,92,93] plays an important role in perturbation theory.

Let (X, E) and (Y, F) be spaces with spectral measures E and F on a Hilbert space H.
Double operator integrals are objects of the form

[ [ v napcorare) @7)
xJy

where T is an operator on #. Certainly, one has to specify how to understand the
expression in (27). Let us first define double operator integrals for bounded functions
and operators T of Hilbert Schmidt class S, . Consider the spectral measure £ whose
values are orthogonal projections on the Hilbert space §,, which is defined by

E(Ax AT = E(A)TF(A), TES,,
for Aand A being measurable subsets of X and Y . Then £ extends to a spectral measure
onX x Y andif ¢ isabounded measurable function on X’ x Y , by definition

[ [venascoraroy=(] wae)r
x Jy

xxY
Clearly,

[ [weeyaserare)
xJy

< Wl IT s,
S>

[ [v@nascoraro)es,
XY
forevery T € §,, we say that is a Schur multiplier of S . In this case by duality the map
r- [ [ wepaEcrae)
xJy

extends to a bounded transformer on the space of bounded linear operators on .
Suppose now that A is a self-adjoint operator on a Hilbert space Hand B = A + K , where
K is a self-adjoint operator of class S, , and let ¢ be a Lipschitz function on R, then
o(B) —p(A) €S, and

o®) o = [| E2=ED ar ka0, (28)

RxR X~
where E and Ep are spectral measure of A and B and
p(x) — o(y)
lp(B) — p(A)lls, < sup =y | |

X£y
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Here we can define the function (¢(x) — ¢(y))(x — y)~! on the diagonal
{(x,y):x € R} in an arbitrary way.
A similar formula holds for unitary operators U and V with —U € S, :
() — ¢(7)

o -9 = || TR dm, @ - Uik (30)

where ¢ is a Lipschitz function on T. Again, the right-hand side of this formula does
not depend on the values of the function (¢({)—@@))((—17)"t on the
diagonal {(¢,v): ¢ € T }. We refer the reader to [91,92,93] for more detailed information
on double operator integrals. We also mention recent survey article [94].

It follows from the results of [83, 84 , 85] mentioned in the introduction, that the
conditions ¢ € C'and ¢’ € L do not imply that the above double operator integrals
determine bounded linear operatorson §;. On the other hand, it follows from the
results of [84, 85], that for functions ¢in the Besov class BL,; on the circle and for
functions ¢ in the Besov class BL; (R) on R the following estimates hold:

I @dEV(()(V — U)dEy(r)
TXT
< const “(P”Bgm(ng) ”K”51

| .

In their papers [91,92,93] Birman and Solomyak studied the problem of the
differentiability of the map t - ¢ (4 + sK) in the operator norm and obtained sufficient
conditions (a similar problems was also studied there in the case of functions of unitary
operators). Later their results were improved in [84,85].

We need only differentiability results in the norm of S, . Let ¢ be a function in C*(R)
such that ¢’ € L*. Suppose that A is a self-adjoint operator (not necessarily bounded)
and K is a self-adjoint operator of class S, . Then

@A+ Km0 = [l T2 dE, ()AL () (32)

(the derivative exists in the S, norm). This follows from formula (28) and Proposition
3.2 0f [95].

A similar result holds for functions of unitary operators. Let ¢ € C*(T). Suppose that U

is a unitary operator, A is a self-adjoint operator of class S,. Then

%w(eimuﬂs=O =i f fT XTTWdEU(()AdEU(T) (33)
The proof of this formula is much simpler than in the case of possibly unbounded self-
adjoint operators.
Let0 <p,q < wands € R. The Besov class B;, of functions (or distributions) on T can

be defined in the following way. Let w be a C* function on R such that

< const [lgllgy IV = Ulls, (31)
$1

and

p(x) — o(y)
ffoRT dEp($)(x)dE4(y)

1 [00]
w=0 ,suppwcC [5,2] , and z w(2"x) =1 for x> 0. (34)

Consider the trigonometric polynomials W, , and W,# defined by
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k
Wn(z)=ZW<2—n>zk, n>1, Wy(z)=z+1+2 and
k€EZ
W#(z) =w,(z), n=0.
Then for each distribution ¢ on T

¢=Z¢*M+Z<p*%#-

n=0 n=0

The Besov class B3, consists of functions (in the case s > 0) or distributions ¢ on T such
that
{127 * Whllptnzo € €9 and {l12¢ * Wi [l p}ney € £
Besov classes admit many other descriptions, in particular, for s > 0 the space B;, and
be described in terms of moduli of continuity (or moduli of smoothness).
To define (homogeneous) Besov classes Bj,(R) on the real line, we consider the same
function w as in (34) and define the functions W, and W, on R by

FW,(x) = w (zn) FWH(x) = FW,(~x), nez

where Fis the Fourier transform. The Besov class Bj,,(R)consists of distributions ¢ on R
such that

{127 *« Wyl ptnez € £9(Z)  and {l12"¢ » Wl p}nez € €4(Z)
According to this definition, the space Bj,(R) contains all polynomials. However, it is
not necessary to include all polynomials.
We need only Besov spaces Bl and BZ, . In the case of functions on the real line it is
convenient to restrict the degree of polynomials in BL, (R) by 1 and in BZ,(R) by 2. Itis
also convenient to consider the following seminorms onB%; (R) and in B%, (R):

ol = suple’ Gl + )" 2 lp » Wollus + D 2" llg = Wil

nez nez
and

9l sy = SUple” Ol + ) 22" llg = Wallum + ) 277l = Wil

nez nez
The classes BL,(R) and B%,(R) can be described as classes of function on R in the

following way:

, ¢ @l
¢ € BLy(R) & suple'(0)| + | ———d
teR |¢l
and
Al
¢ € BL1(R) < suple”(x)| + %dt < o,
teR R Itl

where A; is the difference operator defined by (A;¢)(x) = @(x + t) — @ (x).
The Besov class B2, (R) also appears in a natural way in perturbation theory in [96],
where the following problem is studied: in which case
@(Tf) = Tpor € $1?
(T, is a Toeplitz operator with symbol g.)
We refer to [97] for more detailed information on Besov classes.
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Let U and V be unitary operators such that V — U € S, . Denote by E;, and E, the
spectral measures of U and V. Let A be a self-adjoint operator such that ¢(4) c [-n,n]
andV = exp(iA)U . ItiseasytoseethatA € S, .

Put

Us = e4U. (35)
Consider the class Lip®L® that consists of functions u on T x Tthat admit a
representation

TELEDWAGINO AT (36)

n=0

where f, € Lip,g, € L and

D Whalliip - gl < 0. 37

n=0

By definition, [|ully;pg.~ is the infimum of the left-hand side of (37) over all functions

fn and g, satisfying (36). We consider here the following seminorm on the space Lip of
Lipschitz functions:

1l = sup SO =@
e
For a differentiable function ¢on T we define the functiong T x T by
() —o(3)
o ————— ,( #T,
(P((a T) = ( -7 ( '
@' (0), (=
Theorem (2.2.1)[68]. If ¢ € BL ;, then
d
(V) —o(U) - s (@Us))|s=0 € 1 (38)
and

< const [lollpz  w)llV — Ulls,.
$1

o) o) ~ - (w2

To prove Theorem (2.2.1)., we need the following fact.
Theorem (2.2.2)[68]. If ¢ € B, ,then ¢ € Lip®L*® and
@llLipgr < constllllpz
Proof. We have
PG =) GG+ DI+ D G+ ke DI (39)
j.k=0 j.k<0
where {¢(j)};ez is the sequence of Fourier coefficients of ¢.

Let us show that the first term on the right-hand side of (39) belongs to Lip&®L*.
A similar result for the second term in (39) can be proved in the same way. We use the
construction given in the proof of Theorem 2 of Section 3 of [84]. We have

Z oG +k + 1)tk
j k=0
= Z ap P+ k+ 1)tk + Z Bikp( + k + 1) ¥, (40)
j.k=0 Jj k=20

51



Where

(1 .
-, :k:,
2 J 0
g =12k k_
| T+k ]+k>0,§S]S2k, and Bjr =1— aj
kO, j=2k

Let us prove that the function

@D = ) Bud(+ e+ DIk
J k=0
on the right-hand side of (40) belongs to Lip®L®.
We define the functions q and r on R by

0, x < i 0, x < %
q(x) =<zt 1 <x<2, and Q(X) = 2x—3, 3 <x<3, (40)
x+1 2 x+1 2
1, x =2 1, x = 3.
Put
0,(2) =Zq<—>zf, R, (2) =Zr<i>zf forn>0
jz0 j=0
and

1 ,
= = — ]
Q@) = Rol2) = +;z .
It is easy to see that
D BrdG+k+ DIT= D (S eI®).  (@D)
jk=0 n=0
wherey =P, Zp and S*y = %(O) .We have

Zuznnupu(s*)nlp # Qulleo < Consthll(S*)”lp ¥ Oullo, = Consthlllp Rl

n=0 n=0 n=0

Let us show that for ¢ € BZ ,,

D nll s Rl < o0

n=0

Consider the function ® on R defined by r®(x) = 1 — r(|x]), x € R. Put

R,E(Z)ZZrb<£> J n >0,

J=4
then ||R3||,» <const (see [84, Proof of Lemma 3]). Suppose that n > 2™ . Then

Ryxp=Ryx ) W,

k=m
R, (Z Y * Wk)

k=m

Hence,

1Ry * il < < @+ IR ) [ « Wl

oo k=m

It follows that
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2m+1_1

D nllp«Rallo = > > nllp s Ryl < const D 22™ ) [ Wil

nx2 m=21 n=2M m=1 nz2

< Constz 22m |3 W ||, < oo,

n=2
since ¢ € BL,.
Let us now show that the function
@)= ) apdli+k+1eTH
J k=0
belongs to the space Lip @ L*.
It follows from (41) that

D+ ke DI =D () * @) T
J.k=0 n=0
It suffices to show that

DS = Qully < oo

n=0

By the Bernstein inequality, we have

DY+ Qulluip = ) IS * 0l < - Y (S * W) @),

n=0 n=0 n=0 k=0

<D D 2 W W) * Qulleo < D 25 p W = Ryl

n=0 k=0 n=0 k=0

< D @R D 2l Wil < comst ) 22{lp + Wl

0<n<2k+2/3 n=0 n=0

< const|[¥ll gz,
since, clearly, ¥ * W, R, = 0 ifn > 2¥*2/2,
Proof of Theorem (2.2.1)[68]. Without loss of generality we may assume that
@(0) = (1) = 0.Since ¢ € C(T), we have by (33),

d
SOUD0 =1 ]| 3C DB
On the other hand, by (30),
o) =) = || 36.DaEQ - U)dE @)

TxT

=~ || ¢ 0aE@0 -vuyaE, @
TXT

- _ f f 3¢, DA, Q) (I — e)dEy (r)
TxT
Thus
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d
o) = (W) = — (W) _,

=~ || 96 0dEQ0 - ear,@ ~i || w06 DdE @)adE,@
TXT

T=T

=~ || 96 0BG - e*)aB, @
TxT
+ f f (0 AE, () — e)dEy (1)
TxT

+ f f 130 D dE () (e — [ — iA)dEy (7).
Itis easy to see thaj'ixejl;“ — 1 —iA € S,,andso by (31),
|| o0an,@xet - 1 - inds,@ e s,
and o

< constllllpy ||(e™ —1— iA)”s1
S

|| zo0am,@)" -1 - e,
TxT

Clearly, ||<p||,_:,g01 < const||<p||Bg°1.
On the other hand, let{f,.},.=0 and {g,}n=0 be sequences of functions such that

P =) f@Dga@,  GreT

n=0

and (37) holds. We have
|| 2#G0d5@0 - eam,@ - | 206 DdE,@)0 - e)aEy o)
TxT

T=T

= [[ > h@rgn @B ek, @)
TT n=0

- ff Z f()Tgn (DAEL (U — e)dEy (7)
T=T nz0

= an(V)([ - eiA)gn U - an(U)(I - eiA)gn w)u

n=0 n=0

= () = fuUDU = g, W)U.

n=0

Thus
[ 206 DB - "B, @ - || 236 DaEQ - By (2)
T TT s
< D NEW) = W, ¢ = el lga )l
< const]|(1 = e[| > fullip gall.s < const]|(7 = e ]| llgllpy,

nz0
This completes the proof.
Let now n be a generalized spectral shift function for the pair (V, U).
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Theorem (2.2.3)[68]. Let U and V be unitary operators such that V — U € §, and let U
be defined by (43). Then for any ¢ € BZ |,

d
trac (p0) o) - W[ )= [omam @)

Proof. The fact that the operator in (38) belongs to S, is an immediate consequence of
Theorem (2.2.1).
It is easy to see from the definition of the space B2, given that the trigonometric
polynomials are dense in B2 ;. Let ¢,, be trigonometric polynomials such that
lim llp — @yl = 0.
Since BZ,is continuously imbedded in the space C? of functions with two continuous
derivatives, it follows that ¢, — ¢ in C2. Since n € L', it follows that

lim f(p,’{r) dm =f(p”r) dm.
n=oJr T
On the other hand, it follows from Theorems (2.2.1)and (2.2.2)that
d d
||<(Pn(V) - (pn(U) -5 ((Pn(Un)) > - <(Pn(V) - (pn(U) - _((Pn(Un)) > -0
ds $=0 ds s=0/llg,

as n - oo. The result follows now from the fact that trace formula (42) is valid for all
trigonometric polynomials ¢ (see [98]).

We extend Koplienko's trace formula for self-adjoint operators to a considerably
bigger class of functions.

Let A be a self-adjoint operator (not necessarily bounded) on Hilbert space and
let K be a self-adjoint operator of class §, . Put B=A+ K . As we have already
mentioned in the introduction, Koplienko introduced in [88] the generalized
spectral shift function n € L' that corresponds to the pair (4, B) and showed that for
rational functions ¢with poles off the real line the following trace formula holds.

trace <(p(B) —@(4) — %((p(An)) > = f(p”(x)r)(x)dx, (43)
s=0 R

where A, = A + sK.

We are going to extend this formula to the Besov class BZ;(R). Note however, that the
situation with self-adjoint operators is subtler than with unitary operators. First of all,
the rational functions are not dense in B2, (R) and this makes it more difficult to extend
formula (43) from rational functions to BZ,(R) . Secondly, functions in BZ,(R) do not
have to belong to the space Lip of Lipschitz functions on R, which we equip with the
seminorm:

_ A& =fml
”f“Lip - St‘:p Ix _ yl '
x#y
Thus for ¢ € B2, (R), none of the operators

d
»(B) —¢(4) and EGP(AS))IFO

has to be in S, . In fact, it is not clear how one can interpret each of those operators.
However, it turns out that their difference still makes sense for functions ¢ € B2 ,(R)
and formula (43) holds for such functions ¢.
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To do it, we first prove formula (43) in the case ¢ € B%,(R) N Lip and estimate the S,
norm of the left-hand side of (43) in terms of ||‘P||B§°1- Then we define the operator on the
left-hand side of (43) for functions f € B%,(R) and prove formula (43) for such
functions.

For a differentiable function ¢on R we define the function ¢ on R x R by

@(x) — p(y) Xty
¢(x,y) = -t ' ’
@' (x), X =y.
We consider the space Lip ®i L of functions uon R x R that admit a representation
u(,) = [ £o(0900)du(w), (44)
Q

where (€, 1) is a measure space and the functions (w, x) - f,,(x) and (w,y) - g, (y) are
measurable functions on Q x R such that f,, € Lip, g, € L* for almost all w € Q, and

f 1o luipll gl dp(e) < oo (45)
Q

By definition, the norm of w in Lip ®i L* is the infimum of the left-hand side of (45) over
all representations of form (44).

Theorem (2.2.4)[68]. Let M > 0. Suppose that ¢ is a bounded function on R such that
supp Fe c [M/2,2M]. Then

o(B) — o)~ (o)) €5, (46)

s=0

and

o — o) = (p@o)| || = const-weiE Iole.  45)

To prove Theorem (2.2.4), we need the following fact.
Lemma(2.2.5)[68]. Let ¢ be a function on R such that supp Fe c [M/2,2M]. Then ¢ €
Lip ®i L* and

s=0 S1

@l Lip @iz < const- M?||gll oo
Proof. Let g and r be the functions on R defined by (40). Consider the distributions Q,
and R, ,t > 0,on R such that
(FQ)(x) = q(x/t) and (FR)(x) = r(x/t).
It was shown in [85] (formula (6)) that

@(x,y) =f ((Sé‘fp)*Qt)(x)e“def ((Si@) = Q) ()e'™dt,  (48)
0 0
where S{ @ is the function such that

(F(S; ) (x) = {e‘“"(ﬂp)(x), x>t

0, x <t
Clearly,
19 lipaise < [ 165:0) = Qllupde + | 11520 * Qullmtdt
0 0
By the Bernstein inequality,

165:0) * Qellip = [| (i) * )| ., < 2MII(St ) * Qelli»
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and so

f 1(5:0) * Q;lluipdt < 2M f 1(5: ) * Qcll wodt = 2M f g * Rell=dt
0 0 0

4M/3
= oM f g * Rll odt.
0

since, obviously, (S;¢) * R, = 0 fort > 4M/3.

On the other hand,
4M/3

f 1(5:0) * Q,llotdt = f g * Rl sotdt = f g * Rl otdt.
0 0 0

It remains to observe that if RY is the function on R such that
(FRE)(x) = 1 = (FR)(IxD),
then R € L', ||R¢]| , does not depend on ¢t and

lg * Rell= < (1 + |RE]l,. ) llgoll oo
Proof of Theorem (2.2.4). By (28) and (32), we have

0B ~ o) 1 (o) = [[ o y)aEsCKdE)
$=0 RxR

=— || otk
RxR
By Lemma (2.2.5), ¢ admits a representation

Fxy) = fﬂfw(x)gw(y)d#(w)

such that
f 1foolluipll goll o di(@) < const - M2l g,
Q
We have
|| #tyas,eora,o) = f( fw(x)gw(y)dEB(x)KdEA(y))du(w)
RxR Q RxR
= [ fu®K g @)au(w).
Q
Similarly,
|| #tyas ke = | f@kg@auw)
RxR Q
Thus

d
9(B) = ¢(4) — —(9(4 + sK))
Using (29), we obtain

o — o)~ = (oa)

= [ (18 £ () K9 (A)au(e).
Q

5s=0

< f 1o (B) — £o W, IK s, g (A) ldpa(w)
s, ‘o

s=0

< ||K||52f|Ifw|ILip”B—A”szllgw”Lwd#(w) = IIKllézfIlwaILipIIgwlledu(w)
Q Q
< const - M?||K||3, [l .
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Theorem (2.2.6)[68]. Suppose that ¢ € B4, (R) n Lip. Then (46) and (43) hold, and
d
o) - o - == ()

We need the following lemma.
Lemma (2.2.7)[68]. Let{f,.}=o and f be functions in Lip(R) such that

Iim f(x) =f(x),  x€R, and suplifyllLip < .

< const - M2[IK I3, ll¢llz, .

s=0g,

Then

lim (£(B) — £(4)) = £(B) — f(A)
ins,
Let us first prove Theorem (2.2.6).

Proof of Theorem (2.2.6) Since ¢ € BZ,(R), ¢ is continuously differentiable, and so both
operators

¢(B) —p(4) and % ((p(A + sK))

s=0

belongto S,.

Clearly, if gis a linear function, then the operator in (46) is zero. Suppose first that Fo"' €
L' . Then

¢ = Z((pn +¢3),

Nnez
where
On =@ *F Txpnney  and @y = @ * F~ly_pne1 oy,
Clearly,

22| @nll < const||Fe;ll,x  and 22|l < constlFeill,:  (50)
By Theorem (2.2.4),

d
D ||0a®) = 0u@) = 5 (@n(a))] _ || = const Y 227 g, e

nez nez
and the same estimate also holds for the functions ¢in place of ¢,,. It follows now from

(50) that
d

| on(B) — @, (4) — E(%(As)) < constz 22" (llppll o + @il ) < constl|F " || 2
nez

Since the rational functions are dense in the space {¢: F¢" € L'} and trace formula (43)
holds for rational functions with poles outside R (Koplienko's theorem [88]), it is easy to
see that it also holds for arbitrary functions ¢ with F¢'" € L.

Suppose now that ¢ € BZ, (R). Since

D22 (lg < Whlly + llg + Wif =) < oo

nez
and inequality (47) holds, it suffices to show that formula (43) holds for the functions

@ * W, and @ * W7
The following argument is similar to the argument given in the proof of Theorem 4 of
[85] to establish the Lifshitz-Krein trace formula for functions in BL; (R). Puty = ¢ * V.

5=0
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Then supp ¥ c [2™"~1,2™*1] . Consider a smooth nonnegative function h on R such that
supp h c [-1,1] and f_ll h(x)dx = 1.For £ > 0 put h.(x) = ! h(x/¢).
Let i, be the function defined by Fy, = Fy * h,. Clearly
Fipe € L, Nim [lphell = = llpll == and lim ipe(x) = 9(x) for x € R
Then formula (43) holds for .. Clearly,
im [ w2 ComCadx = [ 9 nEax
R R

Thus to prove that (43) holds for , it suffices to show that

. d d

lim (e(B) = e(4) = (We(4n))| ) = trace (w(B) - () - — ((4,))
By (49), we have

l/)s(B) - lps(A) - % (lpe(As))

)

s=0

s=0

= || deteydEsKaE) - || deley)iBaOKaE ).

RxR RxR
By (48), thisis equal to

.f .f ((5;1/’5) * Qt)(x)e“ydEB(x)KdEA(y)dt
o J/RxR
o J/RxR
B .f .f ((5;1/)5) * Qt)(x)eitydEA(x)KdEA(y)dt
o J/RxR

- f f ((S:e) * Q1) (¥)e ™ dE, ()KdE, (y)d.
0 RxR

It is easy to see that

[ ][ (siw0)eeasyrag,oyae = | ((siwe) = @)K expiearat
0 RxR 0
and similar equalities hold for the other three integrals. Thus

l/)s(B) - lps(A) - %(lpe(As))

s=0

= f (((Stwe) * @ )(B) = ((Stwe) * Q) (A)) K exp(itA)dt

+ f (exp(itB) — exp(itA) K (((Sie) * Q)()) d.
We have O
im((Se) * Q) (4) = ((Sie) * Q) (4)
in the strong operator topology (see [84, Proof of Theorem 4]). By Lemma (2.2.7),
lim (((Siwe) * Q) (B) — ((Sie) * 0)(A) ) = ((Siwe) * Q) (4) — ((Siwpe) * Q) (B)

ins,.
It follows that
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lim trace ((((S:12) * Q1) (B) = ((S:1.) * Q) (4)) K exp(itA))
= trace ((((Sz‘wg) «Q:)(B) — ((Siwe) * 0 )(A)) Kexp(itA))

and

Ligg trace(exp(itB) — exp(itAd)) K (((St*l/)g) * Qt)(A))
= trace(exp(itB) — exp(itA)) K (((Sg‘lpg) * Qt)(A)).

s=0>
[ee]

= f trace ((((St*wg) «Q:)(B) — ((Sive) * 0.)(4)) Kexp(itA)) dt

0

Thus
d
lim trace (1/)5(3) —1:(A4) — P (¥:(4s))

+ footrace ((exp(itB) —exp(itd)) K (((St*lpg) * Qt)(A))) dt = trace <1/)(B)

)
s=0

d
—(4) - - (¥(4y))

which proves (2.2.6).
Proof of Lemma (2.2.7). We have
@ - L@ = || B @Kdae) = || fiyderey)
RxR\A RxR\A
where € is the spectral measure on the space S, defined by &(6x0o)T =
E;(8)TE,(0),6,0 c R,T € S, and Ac R x R is the diagonal: A = {(x, x): x € R}. Then

168 = fu(a)) - (FB) - NIz, = | e = Fae ek, 0wy » 0
RxR\A

asn —» o

Now we are going to extend formula (43) to the whole class B2 ;(R) . Consider first the
case when ¢is a polynomial of degree at most 2. Clearly, for linear functions ¢the
operator on the left-hand side of (43) is the zero operator and the right-hand side of (43)
is equal to 0. Suppose now thato(t) = t2 . If we perform formal manipulations, we obtain

(4+ KA+ K) — £ = (A + sK)A + 51O

d
= KA+ AK + K? — E(AZ + sKA + sAK + s2K?)|;-o = K2
We can put now by definition
d
(A+K)? = A2 ——(A+ 5K)?|s=p = K*.
S

The following result establishes formula (43) for the function ¢(t) = t2.
Theorem (2.2.8)[68].

trace K2 = an(x)dx. (51)
R

Proof. To establish (51), we first assume that A is a bounded operator. Consider a
sequence {g,}n>1 such that
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gn(x) =x% forx € [-n,n], Fg, € L', and sup||Fg; ;2 < oo.

nz1
s=0>

= fg,’{(x)r)(x)dx - 2fr;(x)dx , asn— oo,
R R

If A is an unbounded operator, consider the bounded self-adjoint operator 4,, defined by
Ap = AEy ([-n,n]).

Let n,,be the generalized spectral shift function that correspond to the pair (4,,, 4,, + K).

Then

Then for n > ||A||l + ||K|| we have

trace K? = trace <gn(B) —gn,(4) — %(gn(As))

trace K2 = 2fr]n(x)dx
R
and (51) follows form the fact that
lim fr]n(x)dx = fr](x)dx,
n=eJr R

which can be found in [88].
Finally, we obtain the following result.
Theorem(2.2.9)[68]. The map

d
® = o(B) — p(4) - E(‘P(As)) .

extends from B2 (R) N Lip to a bounded linear operator from B (R) to §; and trace
formula (4.1) holds for functions ¢in BZ; (R).

Proof. Since the linear combinations of quadratic polynomials and functions whose
Fourier transforms have compact support in R{0} are dense in B, (R), the result follows
immediately from Theorems (2.2.6) and (2.2.8).
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