Chapter 1
Function Model and Estimates in Operator Classes

We obtain new formulas for the dilation and its eigenfunctions , generalizing B. S. Pavlov's
formulas for the Schrodinger operator on the semiaxis with a real potential and complex
boundary condition. Examples are considered. The use of estimates in operator classes for a
difference of functions (e.qg., fraction-al powers) of two operators in a Hilbert space is
typical for various problems in operator theory and mathematical physics.

Section (1.1): Dissipative Operators

We introduce the concept of boundary spaces and we compute the characteristic function,
"attached" to these spaces. This approach, suggested by A. V. Shtraus' investigations, is
suitable for the analysis of operators with finite defect indices. We construct self adjoint
dilation as the Cayley transform of the standard unitary dilation of a contraction. We derive
various forms of dilations (B. S. Pavlov [2, 3], S. N. Naboko [4], A. V. Kuzhel’, Yu. L.
Kudryashov [5-7]). In the mentioned investigations the dilations have been somehow
"guessed.” Apparently, the form of the dilation, generalizing B. S. Pavlov's [2] dilation of the
Schrodinger operator on the semi axis with a. real-valued potential and dissipative
boundary condition, is new. We construct a coordinate-free model for dissipative operators
on the basis of the constructed dilations. We derive formulas for the eigen functions of the
continuous spectrum, generalizing the case of the above-mentioned Schrodinger operator.
On the example of this operator it is shown how to construct the dilation and how to
compute the characteristic function and the eigen functions of the dilation.

For R, ={x e R:ixx >0}, C, ={3z € C:z€ R,} D is the unit circle. We shall consider
linear operators in a separable Hilbert space H, not necessarily bounded and not
necessarily densely defined. If L is such an operator, then D(L) is its domain of definition,
Ran L = LD (L) is the range of the operator, o(L) is the spectrum, i.e., the complement of
the set of those Asuch that (L — AI)~! can be continued to a continuous operator in H.
We say that the operator L, is an extension of L; written L; c L,, ifD(L;) € D(L,),
L,|D(L,) =L,;. By H*(D,¢), H*(C.,<) we shall denote the vector Hardy spaces (with
values in the Hilbert space €) in the circle and the half-plane, respectively. We shall use the
(Hilbert) Sobolev spaces W, (a, b), Wi (a,b). The symbol clos denotes closure, while Span
denotes the closed linear span.
Definition(1.1.1)[1]. An operator L, in a Hilbert space H with a dense domain of definition
D(L,) is said to be dissipative if

Im (Lox,x) =0, x € D(Ly) . (1)
the complication consists in the fact that operator L, may be unbounded. We would like to
introduce symbol 3 into the inner product and write 3L, > 0. But operator 3L, = (L, —
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Ly)/2i need not exist since, in general, D(L,) # D(Ly).
Example(1.1.2) [1]. Let H = L?(0,1),

Ly =—y",D(L) ={y € W(0,1):y'(0) = hoy(0),y'(1) = hyy(2) .
We have

1
Im(Ly,y) = _'m] y"' @)y () dt = —Imy'”Y|g = —Im hy - |[y()|* + Im hy - [y(0)]%.
0

If 3hy = 0, 3h; = 0 then the operator L is dissipative. Computing the adjoint operator (see,
for example, [8]), we find
L'y =-y",
D(L) = {y € W£(0.1):y'(0) = ~o(0),y'(1) = Ry (1)}

If hy, h; € R, then the operator L is selfadjoint. If at least one of the numbers hy, h; is not
real, Sh, = 0, 3h; > 0then Lis a closed dissipative operator. The spaces D(L) and D(L*)
are distinct. Moreover, in (L) n D(L*) we have, obviously, L = L*, so that to talk about the
imaginary part of the operator is difficult.

We usually, at the analysis of differential operators, first one defines the operator L, on
smooth functions, while L is defined as its closure. The exact determination of the domain
of definition D(L) is not always simple.

Special Case.(1.1.3). LetL = A+iB, D(A) c D(B),A=A4*,(Bx,x)=>0,x € D(A); D() =
D(A). Then the operator L is dissipative.
Definition(1.1.4). [1]. A dissipative operator is said to be maximal dissipative if it does not
have proper dissipative extensions.
LEMMA (1.1.5) [1]. (properties of dissipative operators)
(i) Assume that the operator L, is dissipative. Then the operator X (L,) & (L, — il)(Lo +
iL)~1 is acontraction from(L, + iL ) D(Ly) onto (L, — iL) D(Ly)and L, = X ~1(T,) =
i(I +To)(I — Ty)~". For each contraction T, such that 1 & p,,(T;)a,(-) is the point spectrum
of the operator), operator L, = X~ 1(T,) , D(L,) = (I — Ty)D(T,) ,is dissipative.
(i) Each dissipative operator L, has a maximal dissipative extension L. A maximal
dissipative operator is closed.
(ii1) A maximal dissipative operator is maximal dissipative if and only if T = X (L) is a
contraction such that ©(T) = H and 1 & p,(T).
(iv) IfLis a maximal dissipative operator,L = X1 (T) , then— L*is also maximal
dissipative, L* = =X "1 (T*).
(v) If Lis a maximal dissipative operator, thena(L) c closC,,||(L — A7 < |32 2 €
C_
The transformation X is called the Cayley transform.
Example (1.1.6) [1]. Let H = L*(0, a),

Ly =iy', D) ={y € W;(0,a):y(0) = 0}.
We have



a

(Ly,y) = ] iy +ily@12 = O, Ly) + ily (@) @)

0
Thus, the operator L is dissipative. It is easy to verify that the Cayley transform of the
operator L is a truncated shift operator My = PyS|Ky, 0 = exp(a(z +1)/(z - 1)) .
Here K, = H? © OH? , Pyis a projection onto Ky, Sf = zf. More exactly, if F is the Fourier
transform in L2(R), P, is the projection from L?(R) onto L?(0, a), while W is a unitary
operator, mapping

L*(T) into L?(R), (Wf)(x) = ﬂ_%(x + )7 ((x — i)/ (x + i)), then
Mg = W rFR;(L — i)(L + i) *P,F W

The analogous operator inL?(0, ) has a Cayley transform that is unitarily equivalent to
the shift operator S.
Semi group of Contractions. We set W(1) =i(1+A)(A—-A)"1, w: D->C,. LetLbe a
maximal dissipative operator and let T be its Cayley transform. If the operator (g o w)(T)
is defined in the Sz.-Nagy-Foia calculus, then one can set g(L) = (g o w)(T). Since 1 ¢
a,(T), we can apply to the operator T any function ¢ € H* such that ¢ is continuous in
clos D\{1} ([9, Section 11.6], according to which 1 € 0,,(T) = 1 & 0,,(U), where U is the
minimal unitary dilation). Thus, to a maximal dissipative operator one can apply any
function that is bounded and analytic in C, and continuous in clos C,. In particular, we
can take g(z) = e'?. Asa result we obtain the semigroup of contractions

{e}s0 ={Qe(M}0, Qe =exp (tz i- i)

It is easy to verify that this semi group is strongly continuous.
LEMMA (1.1.7) [1] . Let {T(t)};so be a strongly continuous group of contractions, T(0) = 1.
Then T(t) = e for some maximal dissipative operator L.

The operator L is called the generator, while T = X'(L) is the cogenerator of the
semigroup {T(t)}.
We give elementary formulas that connect a dissipative operator L and its Cayley
transform T.
Weset{ = (1 —i)(A+ 1)1 Then

.. ¢-1 _
(L —AI) 1:T(I—T)(51—T) 1

§-1
(L =A™ == (=T = 4T 7 3)
There exist several different ways to define the characteristic function (c.f.). All of
them are more or less equivalent, but the specific character of the initial operator may
bring a definite advantage in the form in which the cf. is written. Usually, the c.f. is an
analytic operator-valued function, acting from one "defect space"” into the other, while
these latter measure the deviation of the operator from a unitary or from a self adjoint one.
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If L is a maximal dissipative operator, then for the defect subspaces one can take D, =
clos(l — T*T)%H , D+ =clos(I — TT*)§H, ,where T = X (L) . These spaces can be given
also a more explicit description in terms of the operator L. An operator A with domain of
definition ®(A) € H (not necessarily dense) is said to be Hermitian, if
(Ax,x) € R, x € D(4).

If clos®(A) =H then a Hermitian operator is said to be symmetric. The defect
subspaces of a Hermitian operator are defined by the formulas

N:(A) = H © Ran (4 =il).
We mention that the range Ran(A % il) is closed if the operator A is closed since for a
Hermitian operator we have [|(4 — ADx]|| = |SA|. [|x]| .
Definition(1.1.8) [1] . Let L be a maximal dissipative operator. By Hermitian domain of L
we mean subspace G, ={x € D(L) n D(L*):Lx = L*x}. By the Hermitian part of the
operator L we mean the restriction Ly = L|G;.

Clearly, the operator Ly is closed since its graph is the intersection of the graphs of the
operators Land L.

Let T be a contraction. We recall that the operators D = (I — T*T)Y?, D = (I —
T*T)Y2 are called the defect operators of the contraction T, while the subspaces D, =
clos DH , D4+ = clos D,+H are the defect subspaces.

LEMMA(1.1.9) [1] .
Let L be a maximal dissipative operator, T = X (L) = (L —il)(L +il)™. Then N_(Ly) =
Dr ,N,(Ly) = D;~. We have the equalities

%DT =i(L+i) =il —iD =20 — i)"Y L +iD7?,

%D%* =i(L+i) = i(L = i)™t = 2(L + iDL — i), (4)
Proof. Formulas (4) are easily verified in a straightforward manner. We prove that D, =
N_(Ly); the second equality is obtained with the aid of the substitution L - —L*. We have
Dy = H © ker D . We show that (L + il)G, = Ker Dy = Ker D,z . From (4) there follows
that

1/2 Dz =i[l — (L* —iL) Y(L — iD)](L + il)~ 1.

Consequently, if x = (L +il)y, y € G, then DZx = 2i[I — (L* — il)"*(L — i)]y = 2i[y —
(L* —il)~"(L* — il)y] = 0.
Conversely, if x € Ker DZandy = (L +il)"'x, theny = (L* —il) (L — il)y. Buttheny €
D(L) n D(L*), L*y = Ly. The lemma is proved.
Definition(1.1.10) [1] . Let L be a maximal dissipative  operator and let G, be its
Hermitian part. We consider the quotient space D(L)/G, and the natural projection
p:D(L) = D(L)/G, .On the quotient space we define the inner product

1
(px,py) = 5((x,Ly) — (Lx,y)), x,y € D(L).
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The correctness of the definition and the nondegeneracy of the form follows from the
definition of the subspace G;, while its positivity from the dissipativity of the
operator L. By F(L) we denote the completion of the quotient space D(L)/G, with
respect to the corresponding norm. In a similar manner we define the space F,(L) &
F(—L"). By p, we denote the projection from D(L*) onto D(L*)/G, .We have

llpxlz = Im(Lx, x), [lp* x|z, = —Im(L*x, x).
The Hilbert spaces F (L), F.(L) will be called the boundary spaces of the operator L.

Such spaces and closely related objects (spaces of boundary values) have been
repeatedly considered in the literature [11-14]. As a rule, in these investigations one has
taken an abstract axiomatic definition of the spaces of boundary values. In [14] it is
mentioned that the "canonical” selection of these spaces, given above, is not always
convenient. Nevertheless, we restrict ourselves to these.

The above defined spaces F(L),F.(L) are especially convenient if the operator L has
finite defects; in this case the completion is redundant. The term "boundary spaces" is
connected with the fact that for differential operators they can be realized as the
actual spaces of boundary values. Thisis illustrated by the following example.
Example(1.1.11). We consider the operator L from Example(1 .1.6):

Ly = iy',D(L) = {y € W;(0,a): y(0) = 0}
From (2) there follows that
L'y = iy',D(L") ={y € W;(0,a): y(a) = 0}
G, ={y € W;(0,a):y(0) = y(a) = 0}
Clearly, F(L) = C,E (L) = C .From (2) we have

1 2
llpyllz = Ely(a)l :

Identifying F (L) with C, we obtain that the projection pcorresponds (to within a constant)
to the calculation of the value at the point a. Similarly, p, corresponds to the calculation
of the value at zero (to within a constant).
LEMMA(1.1.12) [1] . Let L be a maximal dissipative operator and let T = X'(L) Then there
exist isometric isomorphisms p: F(L) — Dy, p.: E,(L) = D¢+, defined by the equalities
pp(I—=T) =Dy , p.p.(I =T") = Dy ()
Proof. Taking into accountthat L = i(I + T)(I — T)~!, we have
lp( — T)x||Z = Im(LU = T)x, (I — T)x) = Im i(( + T)x, (I — T)x)

= Re((l +T)x, (I — T)x) =([U-T)U+T)+U+T)U—-T)]x,x)/2

= (I = T*T)x,x) = ||Dyx||*.
Consequently, equality (5) defines an isometry p. Since p(I — T)H = pD(L) = D(L)/G,, is
dense in F(L), while DrH isdense in D; ,we obtain what we intended to prove. Passing to
the operator T*, we obtain the assertion regarding p*.



COROLLARY(1.1.13) [1].

dimD; = dim[(L — L*)(D(L) n D(L*))] + dim(D(L)/D(L) n D(L")),

dim Dy =dim[(L — L*)(D(L) n D(L*))] + dim(D(L*)/D(L) n D(L")).
Proof. We verify the first equality. We have

dimD; = dim F(L) = dim(D(L)/D(L) n D(L*)) +dim(D(L) n D(L*)/G,)

It remains to make use of the fact that dim Ran (L — L*) = dim(D(L — L*)/Ker (L — L*)).
Discussion(1.1.14). The corollary shows intuitively the two-fold reason for the appearance
of defects at dissipative operators. It is natural to consider the "extreme" cases, i.e., the
operators for which one of the terms vanishes. The first class of operators consists of those
for which D(L) = D(L*) ; for them the defect indices are necessarily equal. The "defect" is
defined by the imaginary part. A model example is the Schrodinger operator with a
complex-valued potential and real boundary condition. The second class consists of those
operators for which G, = D(L) n D(L*) . For them the "defect" is defined by the difference
of the domains of definition of the operator and of the conjugate. A model example is the
Schrodinger operator with a real-valued potential and complex boundary condition. We
also note that in this class one has all the dissipative extensions of the symmetric
operators. Indeed, for them G, is dense in H. If y € D(L) n D(L*), then (Ly,x) = (y,L*x) =
(y,Lx) = (L*y, x) for x from the dense set G, . Thus,
Ly =Ly, ie, D) nD(L*) = G,
A powerful device in the investigation of a dissipative operator is the characteristic
function (c.f.). In a coordinate-free approach to a model, the c.f. is defined starting from
functional imbeddings [15, 16J. This will be done , while here we wish only to derive some
formulas for the c.f.

A completely non unitary contraction T is defined to within a unitary equivalence of the
cf. 6 € H*(D.E - E,) [16], where E,E, are auxiliary Hilbert spaces, isomorphic
to D, D+ respectively. In turn, neither the c.f. 8, is defined uniquely, but to within a
multiplication on the right and on the left by an isometry from E onto E' and from E. onto
E!, respectively. We fix arbitrary isometric isomorphismsQ:E —» D, , Q. E, - Dp+. Then
[9]

07(0) = (=T + {Dp-(I = {T")D7)R, (6)

0r(Q Dy = LDy (I — (TG = T). (7)
The characteristic function of a dissipative operator is the conformal transplant from the
circle into the half-plane of the c.f. of its Cayley transform. It turns out that the various
forms of the c.f., are obtained from the "abstract" c.f. if one selects E,E, in a special
manner. Butfirst it is necessary to isolate the selfadjoint part of a dissipative operator.
Definition(1.1.15) [1]. Let L be a maximal dissipative operator in H and let H, € H be a
closed subspace. It is said to be reducing if Py L c LPy, . The operator L is said to be

completely nonselfadjoint if there is no nontrivial reducing subspace H,such that the
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restriction L|H, is a selfadjoint operator in H,:

From the decomposition of a contraction into the unitary and the completely
nonunitary parts, we obtain at once the following statement.
LEMMA (1.1.16) [1]. Let L be a maximal dissipative operator in H. Then there exists a
unique decomposition H = Hy,@H, of the space H into reducing subspaces such that L, =
L|H, is selfadjoint and L, = L|H;is a completely nonselfadjoint maximal dissipative
operator.
Definition(1.1.17) [1]. Let L be a completely non selfadjoint, maximal dissipative operator
and let T = X'(L). By the characteristic function of the operator L we mean the operator-
valued function

l
S,(1) = 6, (ﬁ) S, € H*(C,.E — E.).

In view of Lemma (1.1.12) we canset Q = p ,Q, = p, ,E = F(L),E, = F.(L).
LEMMA(1.1.18) [1] . Let L be a completely nonselfadjoint, maximal dissipative operator.
Then the characteristic functionS, € H*(C,,F(L) - E.(L)) on the sense set D(L)/G, is
defined by the equality

S.) = p(L" = AT (L —A)p™! €))
Proof. First we note that the operator p,(L* — AI)"Y(L — Al)p~! is well defined on
D(L)/G, .Indeed, if px =0, then x € G;,Lx = L*x,
=20 -Dx=L-AD"Y L - ADx=x, px=0.
Further, making use of (2.3') and setting { = (A —i)(A + i)t on D(L)/G, we have
SL(Mp = 01y pp = Oryaro, I —=T) 1 = 5D (I =T) QI =TYU = T)™*
=2p. (I =TI =TI -T)I —-T)™*
From here, taking into account (3), we obtain equality (8).
Special Case(1.1.19): D(L) = D(L*) . In this case one can consider the operator Q(L —
L*)/2i. It is expressed in terms of the Cayley transform, T = X'(L) in the following
manner [9, Section IX.4]:
Q=0-T)"*"U-TT)U-T"),
Q=U-T)Y'I-T'TYU-T)". 9
Since (Qx,x) =0, x € D(Q),Q admits a positive extension (for example, the Friedrichs
extension). We fix such an extension and we denote it also by Q. Then the operator Q/?

is defined. We set B, = clos Q§D(L) :
LEMMA(1.1.20) [1]. LetD(L) = D(L*) . Then there exist isometric isomorphisms
w. By = D, u.. B,y — Dy defined by the equalities

HQYA(I =T) =D , 1.QV?U = T*) = Dy, (10)
Proof From (9) we obtain that (I — T*)Q(I — T) = Dyz, from where |[|Q/2(1 - T)x||2 =
|IDyx||? . This means that equality (10) defines an isometry u. In a similar manner we
proceed with p,



The following obvious statement establishes the connection between, 8, and the boundary
spaces.
LEMMA(1.1.21) [1]. Let D(L) = D(L*). Then F(L) = F(L"), p = p., QY3|D(L) = p*p = puip..
Lemma (1.1.20) shows that for the characteristic function one can setE = E, = B, Q0 =
B = W
LEMMA(1.1.22) [1]. Let L be a completely nonselfadjoint, maximal dissipative operator
such that (L) = D(L") . Thenthecf. S, = H*(C,:B, — By) is defined on the dense set
Q2®(L) by the equality

S, =1+2iQY?(L* — A)~1QV2 (11)
Proof. We set {(1 —i)(A + i)~ 1. From (10), (2.3"), (3) we have

S.(0Q2(1 = T) = S, Dy = 0:(0)Q"Dy = 0:D-(I = {T7) N = T)
= WDy (I = {T*) NI = T) = Q2(1 — T*)(I = {T*) (I = T)
= QZ(L" — AI)"M(L — AD)(I — T) = Q2(L" — AI)"Y(L* — Al + 2iQ)(I — T)

= [+ 2i02(L* — A1)-1]02(I — T).

From here we obtain (11).

The characteristic function in the form (11) has appeared for the first time in a paper by
M. S. Lipschitz [18]; see also [9, Sec IX.4].
LEMMA(1.1.23) [1]. Let L be a maximal dissipative operator in H, and let Z bea
selfadjoint operator inaHilbert space X © H . The following statements are
equivalent:
@L-ADT=P,(Z-A)"YH, AEC_;
() (L +i)™=Py(Z +i)™H, n=>0;
(©)ett = Pyet“t|H, t > 0;
(d) the operator U = X (Z) isaunitary dilation of the contraction T = X'(L).
Proof. Since a(L) c clos C_the conditions (a), (b), (d) are, obviously, equivalent. Condition
(c) follows from (d) sincee't = 8,(T), et = 6,(U). The implication (c)=(a) follows from
the known formula

i(L— /11)-1] e~ theltldt 1eC
0

A selfadjoint operator Z, satisfying the conditions of the lemma, is called a selfadjoint
dilation of the operator L. The dilation is minimal if Span((Z —AI)™'H,A € C_) =H.
Clearly, also the minimality can be formulated by using, instead of the resolvent (Z — AI)™1,
the operator from the statements (b)-(d) of Lemma (1.1.21).

Discussion(1.1.24). From the existence of a unitary dilation of a contraction and from
condition (d) of Lemma (1.1.21) there follows that a selfadjoint dilation exists. However,
one would want to have an expression for the dilation in terms of a dissipative operator,
The complication (in comparison with the unitary dilation) consists in the fact that, in

general, the restriction L|H is not equal to the operator L. Frequently it occurs even that
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D(Z) n H = {0}. Nevertheless, there exist sufficiently simple and nice formulas for

selfadjoint dilation, especially in particular cases. They can be found in the investigations of

B. S. Pavlov [2, 3]; see also [4]. The general case has been considered by A. V. Kuzhel' and

Yu. L. Kudryashov [5-7]. In all the mentioned investigations one presents at once a certain

operator and then one verifies that it is selfadjoint dilation. We obtain these formulas, as

well as some of their generalizations, in a natural manner, namely, by the Cayley

transformation of a unitary dilation.

Let L be a maximal dissipative operator, let T = X (L) be its Cayley transform. Then the

minimal unitary dilation U of the contraction T acts in the space H,; = G, & H®G ,where G

and G, are U_ and UZinvariant, respectively [16]. One can select the following realization:
H; =H*(D,E,))®H®H*(D,E); UlG=1Z,  U*|G, =1,

where E, E, are isomorphic to D, D;-, respectively. We wish to obtain a selfadjoint

dilation Z, inthe space

H, = L>(R_,E,) ® H® L*(R,,E), e"*?|L? - is a shift by t.

For this it is necessary to perform

1) passage from the circle to the half-plane by a linear fractional transformation;

i) the Fourier transform, i.e., passage to the translation representation of the semigroup;

iii) the Cayley transform.

This can be performed in a different order.

The starting point is the following formula for the minimal unitary dilation in #H; [15, 16]:

Pz 0 O
U=|A T O], (12)
c B z

HereV:H — G,V,. H — G, are partial isometries with initial spaces D, D+ and final spaces
G ©OUG,G, ©UG,, respectively.
We select as the free parameters of the dilation the isometries
QVE->D: , Q. E, > D
Then V = P;Q* , V, = P*,Q: where Py,:H?*(D,s) > ¢, P_;:H?(D,¢) - ¢ are the Fourier
series of the zeroth and (—1)the coefficients, respectively. We set
1 1 x—i

(Wf)_ﬁ_x+i_f<x+i>' (13)
The operator W is an isometric isomorphism of H%(D, ) onto H(R, ¢) for any space e.
Moreover, WH?(D, ) = H3(C,,&), WH?(D,s) = H*(C_,¢). We denote by F the Fourier
transform

(Fh) = (21) "2 ] Y hoezdx, (14)

The operator F acts unitarily in all of L(R, €) and maps L?>(R.., €) into H2(C., ). Our aim is
the computation of the operator Z:



wW-lF 0 0
Z=i(Il+7t7U)(I -7t"Ur),t=| 0 I 0 (15)
0 0 wW-iF
LEMMA (1.1.25) [1]. (on the unitary dilation in the half-plane). The operator
w 0 O wl 0o O
U1‘1=“OIO-U-OIO]
O 0w 0O 0 w!
is the space H2(C_,E,)®H®H?*(C,, E) has the form
[-2il; 0 0
U, = —2i\mD02,h_; T 0 . (16)

2i(z +iD7'*T*0,h_; ﬂ_%(z +i)'0*D;y (z+i)(z+i)t
Here h_; denotes the evaluation functional at the point (—i).
Proof. By U, (k,?) we shall denote the corresponding matrix element. From (12) and from
the last formulas we have
wp_zw1 0 0
U, = Dp0,P_ W1 T 0o |
—-WP;Q*T*Q,P_ W1 WP;Q*Dy WzW™1
It is easy to see that WzW ! = (z — il)(z + il)~! (the multiplication operator). We have

W1f)(z) = f(i 1 - Z) - i‘il P1g =29l g €H(D,E).

Thus, P_yW~' = —2+/mih_; . Further, itis clear that WP: e » m~2(z + 1)~te. Finally,
WP_zW=t=WzW1—WPP. W= (z—il)(z+ i)' + WP;2\mi h_,,
WP\ i h_if = 2i(z + i)~ f(=i).

Introducing all these formulas, we obtain (16) .
LEMMA(1.1.26) [1]. (on unitary dilation in a translation representation on a line). Operator

F1 0 O F O O
U, €| 0 I O |U;10 I O
0O o0 F1 0O 0 F
in the space L*(R_,E,)®H®L*(R, ,E) has the form
I —2iK_ 0 0
U, = | —2iVmD-0.(. ef.) T 0o | (17)

2ex°'T*0,(ef.) —2iNmiex "Dy 1 —2iK,
where

(k_g)(x) = j g_(©et=*dt, g €I2(R_E),

(k\g.)C0) = ] g.(Oetdt . g, € I2(R, .E).

The operators K. are operations of convolution on R with the function ez = e™|R, By (:
, f) we denote the inner product in the corresponding L? space.

10



Proof i) From (14) we find that h_,F|L*(R_,E,) = (2n)‘%(-, ek ) . This computes, starting
from (16), the matrix element U, (2, 1).
i) We have
) 1
T_l(Z + i) — (27T)_1/2 ]+ (Z + i)_le_ideZ — { —(Zﬂ)iie‘x, x>0
_ 0, x <0.
From here we find U,(3,2). and also U, (3, 1):
F12i(z + i) X T*Q.h_F = 2eg QT 02, (", ef_).

iii) We have F71(g,9,) = (271)_%7-"‘1(g1) * F~1(g,) from where
F2i(z + i) F = 2k, (kg)(x) = ] g(0)et*dt.

If g = g, € L>(R,, E), then from here we obtain at once a formula for the matrix element
U,(3,3). It remains to evaluate U,(1,1) =1—-2(k—iF (z+i)"*h_;,F). Let g_€
L*(R_,E,). We have

X
] g_(t)et™*dt, x <O,

e *(g_(t),et ), x>0

Taking into account that iF~1(z+ i) 1h_;F = eg, (",eg_) ,we obtain the required formula.

It remains to perform the Cayley transform and one obtains the formula for the
selfadjoint dilation. We note that this cannot be written in the form of a matrix since the
decomposition into a direct sum need not be consistent with the domain of definition.
THEOREM(1.1.27) [1]. Let L be a maximal dissipative operator in the space H,T = X (L) .
Then its minimal selfadjoint dilation Z, in the space X, = L*(R_,E,)®H®L*(R,,E,) hasthe
form

(kg-)(x) =

iv!
V- i

zlr = i{Z(I — Tyt [f - —DT*Q*‘V_(O)] - f} (18)

v, V2

V!

and the domain of definition D(Z) is given by the conditions:

V_ € W)(R_,E,) , V., € W)(R,,E.); (19)
f— \/LEDT*Q*‘V_(O) e (I —T)H = D(L); (20)
V2iDp(l - T)! (f _ %DT*Q*V_(O)> = 7°QV_(0) + QV,(0).  (21)

The "free parameters” of the dilation are the isometries Q:E - D4, Q,:E, = Dy

Proof. We have Z =i(I+U,)(I —U,) '=i[2(I —U,) "t —1I], where the operator U,is
given by formula (17). Let (A — U,)[g9-.9.9+1" =[v_ f,v,]". We obtain the following
system of equations:

11



]x g_(t)et™*dt = v_(x)
4 (I-T)g+iV2Dr-0.(g9-.ef )= f

X
\2]0 gs(t)et~*dt + i\/EeEfQ*DTg — ZeEf.Q*T*.Q*(g_, el ) =v,(x)

From the first equation it follows that v/ (x) = 2g (x) —v_(x),v_.W;C(R_ E.). In addition,
v_(0) =2(g_ex ). From the second equation we find that® £ f —271/2iD-0,v, €
D(L),g=(U—-T) '®. From the third equation we obtain that v} (x) = 2g,(x) — v, (x),
from where v, € W}(R,,E) and

v,(0) =V2iQ*D;(I = T) ‘¢ — 2*T*2,v_(0).
SinceQQ” = Py, T"Dr+ € D7, We have verified that D(Z) satisfies conditions (19)-(21).
It is also obvious that if forv,, v_, f the conditions (19)-(21) are satisfied, then
[v_, f,v,]" € (I — U,)H, it and the operator Zis given by the equality (18) .
In the case of finite defects dim D; < oo, dim D;- < it is convenient to have the dilation”
attached" , not to the spaces ©;, D;+, but to the boundary spaces F(L), F",(L) (see
Definition 2.4).
THEOREM(1.1.28) [1]. LetL be a maximal dissipative operator in the space H with finite
defects. Assume that there are given isometric isomorphisms y:E — F(L) , .. E, = F.(L).
Then the minimal selfadjoint dilation Z in the space X; = L?(R_,E.)®H®L*(R,,E) has the
form

iv!

[ ] | .o O)]) + =L Tp.o- (o>1} (22)

v
where [-] denotes some representatlve of the quotient class mod G,. Moreover, the domain
of definition D(g) of the dilation is defined by the condition (19) and also by the following
two conditions:

f - =P (0] € D), (23)
f = 5w O+ f + Yo, (O] € G, (24)

Condition (23) can be replaced by the condition (3.129)
f+=% [¢v+(0)] € D(LY), (25)

since it is easy to see that the pairs of condltlons (23), (24) and (25), (24) are equivalent.
Proof In the case of finite defects we have F(L) = D(L)/G, , F.(L) = D(L*)/G,. In Theorem
(1.1.27)we set Q = py , Q, = p, Y, . From (5) we have

D QV_(0) = D7-(I = T*)'p;'v-(0) = DF-(I = T*) ., v_(0)],
and the last expression does not depend on the representative[y,, v_(0)] € D(L*) . We set
Q¥ f— %DT*Q*V_(O) . We obtain that
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L -1
Q=f= U =TT =T) . v-(0)]

i l 1
=f- E[lp*,v_(o)] — E(1 =TI —T) Y., v-(0)],

from where it follows that condition (20) is equivalent to (23). Then

(=170 = =1 (£ = 51 v-O1) = T =T [p..v-©))

1 , i 1
= —(L+i (f -5l v_(O)]) + 5+ i) [ v O]

Introducing this expression into (18), we obtain (22). It remains to rewrite condition (21):
V2iD,(I —T)2Q = T*Dp-(I = T*) [, v_(0)] + D;(I — T) [y, v, (0)]
is equivalent, taking into account the relation T*D,- = D;T*, to the equality

VEiDp(I - T)"'f — é [..v-©)] + =10, (] =0

The last equality is equivalent to the condition (2.13) since ker D,;(I — T) ! = kerp = G,.
G, isdense in H, then, we have G, = D(L) + D(L*) . In this case the formulas (22)-

(24) can be simplified somewhat. Namely, we consider the operator L, defined on D(L) +

DY)

L on D(L)

L on D(L")

Clearly,L (f — \/iz[lp*v_(o)]) +\/i§L*[1p*v_(O)] = Lf and the pair of conditions (23), (24) is

equivalent to the conditions (23), (3.12"). As a result we obtain the following
COROLLARY(1.1.29) [1]. LetL be a maximal dissipative operator with finite defects such
that G, is dense in H. Then its selfadjoint dilation has the form

v’

Lf

v_
° 1]+
Uy v

D(p) ={[v_,f, v ]":v_ e W,(R_,E,), v, € W,(R,,E),
f- fz[tp*v_(o)] € D(L), f + fz [yv.(0)] € D(L)}
In the corollary we can reject the condition of the finiteness of the defects if we consider
that formula (26) defines the dilation only on the essential selfadjointness set. The obtained
dilation is already a direct generalization of B. S. Pavlov's formulas [2]. We mention that if L
is a differential operator, then L is given by the same differential expression as L.
In the model case of the Schrodinger operator with a bounded potential g(x), g3 =
0, the dilation has been constructed by B. S. Pavlov [3]. In [4], S. N. Naboko generalizes this
construction to the case when L = A + iQ and the operator Q is strongly subordinate to A.
We mention, however, that the formula for the dilation in [4] can be understood only as the
definition of the operator on the essential selfadjointness set. We obtain this formula in the
assumption that Q is bounded.

I e (LID(L) N D)) = {

], L= (L/G)". (26)

(27)
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LEMMA(1.1.30) [1]. Under the assumptions of Theorem (1.1.31) we have

() Dr+|Dp = (I - T)QZ#*vDT*DT* < D(L);

(i) ut = (QDp = w'T") 1Dy

Proof (i) We verify the equality; from it the required inclusion follows. The equality can be

verified on a dense set since Q% is bounded. Let x = D4+y . Then, by formulas (9), (10) we
have

(1 - T)Qzutx = (I = TYQU — T*)y = (I = TT*)y = Do,
(i1) Again we verify the equality on a dense set for x = D;+y . We have
Wix = Q%(I —TYy = Q%((I —TT)y—(U-T)T"y) = Q%Dr*x —wDT"y
= (020 —w'T")x
THEOREM(1.1.31) [1]. LetL = A+iQ,where A= A", Q = 0,and Q is bounded. Let B, =
closQ'/2H. Let E, E, be isomorphic to the space B, and assume that the isometric

isomorphisms k: E - B,k . E, > B, have been fixed. Then the selfadjoint dilation . in
the space L*(R_, E)®H®L?*(R,,E) has the form

Lv_
[ ] = |Lf +\/—sz v_(0)| (28)
Vst v
D) = {[v_. f.v.]" v € W(R_,E.), v, € W} (R, E), f € D(L),V2iQzf = xv,(0) —
x.v_(0)}, (29)

Proof. We apply Theorem (1.1.27), setting 2 = ux, 0, = u,x,
From Lemma (1.1.30) (i) there follows at once that condition (20) turns into the
condition f € D(L), while the expression in the second row of formula (18) goes into Lf +

V2QY2x,v_(0) . We apply u* to the equality (21). We obtain

V2iQY2f + Q2D y-x,v_(0) = p T p,x.v_(0) + xv, (0).
Taking into account Lemma (1.1.30) (i), this is equivalent to the condition
V2iQ2f = xv, (0) — x,v_(0),
which is what we intended to prove. -
Definition(1.1.32) [1]. LetL be a maximal dissipative operator in H, let Z be its minimal
selfadjoint dilation in the space X = G.@H®G , where G, is the "incoming", while G is the
"outgoing” subspace, i.e., e?t fort >0, e*tG,fort <0. By analogy with the case of a
contraction [1], [IS], by functional imbeddings we mean isometries such that
Z+iDnR=nRGE+in?, Z+iD nR =Rz +iD™?,
nR®H?(C,,E) =G ,nRH*(C_,E,) =
Under these conditions, 7, #® are uniquely determined to Within multiplications by
unitary constants in E| E,. Clearly, if T = X'(L) is the Cayley transform, then
14



nR=mgoW™, aR=mg w1, (30)
where =, , are functional models of the contraction T.

The operator S = (7®)*n®, acts from L?(R,E) into L?(R,E,), maps H?(C,,E) into
H?(C,,E,), and commutes with the multiplication by (z +i)~. Consequently, S is
multiplication by a function S, (1) € H*(C,,E - E,). Itis called the characteristic function
of the operator L. Besides, from (30) we find at once that

A—i
5: ) = 07 (35=)
where 6 is the characteristic function of the Cayley transform of the operator L, which
conforms to Definition (1.1.15).
In its coordinate-free variant does not carry, basically, any new information: each simple
maximal dissipative operator is unitarily equivalent to the model one and this latter is the
Cayley transform of the model contraction.

However, of interest is the determination of formulas for the functional imbeddings ¥,
R, In particular cases, operators that are conjugate to n®, R | have arisen basically in
several investigations (see, for example, [4]).

First one has to find the expressions for =, m,, responding to the unitary dilation (12)
in the space Xy = H2(D,E)®H?*®(D,E) ,where T = X (L) . The following statement has
been kindly communicated to me by V. 1. Vasyunin.

LEMMA (1.1.33) [1]. We have the equalities:

P6 P
= |Pyz(I — 2T")"'D,;Q| |, 7, = [Pyz(I — 2T) ' D;-Q.|; (31)
' lh_ h h,JT = 0"h_ + 20*Dy(I — 2T)"‘h + h,, (32)

milh_,h h )T =h_+ 2:Dp(I —zT*) th + 6h,.
Proof: We derive formulas (32); obviously, the equalities (31) follow from them. By the
definition of &, T, we have

wh, =[0,0,h,]" h, € H*(D,E), m.h_ =[h_,0,0]",h_ € H3(D,E.,).
It is known that 8 = w;m, therefore,
w:[0,0,h.]f =6h,, n*[h_,00]" =6*h_.
It remains to find 1*[0,h,0]",h € H. Lete € E , e, € E,. We have nz"e = Une, m,z"e, =
U™tlr, (ze,) . From formula (12) it is easy to derive (see also (IS]) that
nz% = [+, T*®VD.Qe, 0]", m.z"%, =[0,T"DQ.e,*] .

Let {¢;} be an orthonormal basis in E. Then

m*[0,h,0]T = Z (h, T*""DD.0e,)z"e; = Z (Z Z" 0*D;T" h, el-) e;

in=1 i n=1

= 0*Dy Z Z'T" 1 h = z20*Dy(I — zT) h.

n=1
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In a similar manner we obtain that 7:[0, h,0]" = Q:D;-(I — zT*) " 1h.

COROLLARY (1.1.34) [1]. h - zDy(I — zT) his a contraction operator from H into
H?(D7),h » Dp«(I — zT*) *his a contraction operator from H into H(Dy+).

LEMMA (1.1.35) [1]. Let L be a maximal dissipative operator in the space H; let F(L), E,(L)
be its boundary spaces, let Y: E - F(L), ¥,. E, - F.(L) be some isometries. Let n®, 7R be
the functional imbeddings, corresponding to the selfadjoint dilation in the space H; =
L*(R_,E,)®H®L*(R,, E) with the parameters v, 1y, . We have the following equalities (in
them Fis the Fourier transform, S is the operator of multiplication by the characteristic
function):

(TRY[h_ b b, = S*Fh_ — 2 p(L — A1)~ Fh,, (33)
(R Th_.h b, 1T = Fh_ — w2 p.(L" — A)~th + SFh, (34)
F1SFIR_
Rf — L e £ an=1(1 _ . -1
T f_|2\/5 » [(L* =AD" (L —AI) —1I]p lpf(ﬂ)d)l (35)
| F-1f|R, |
F1f|R_
R — _L e _17\—1 * 7 _ -1
R f —| ) =D (L= a1) =11 p: tp*f(ﬂ)d)l‘ (36)
F-1S*f|R, |

Proof We verify formulas (33), (35); the other two are obtained in a similar manner. Thus

Flw 0 0
= 0 I 0 |nW~twhere W:L?(D,¢) is isometric isomorphism (12), while r
0 0 Fw

is given by formula (31). Clearly, F-*WP, = W~1f = F~ 1P f = (F1f)|R, (here by P, we
denote both projections L*(T, &) » H*(T,¢),L*(R, &) » H?(C,,&) . From (31) we find that
FIWPOW ' =F P Wow ™ =F~1p.Ss = (F'S)|R_.
Thus we have verified the first and the third rows of formula (35) and, at the same time,
also the first and third terms of (33). Taking into account (32), we have
N,(h) & (z®)*[0,h,0]" = Wr*[0,h,0]" = WQ*zD;(I — zT) 'h.
Just as in Theorem (1.1.28), we setQ = py,Q, =p,, . LetA=i(1+2z)(1— z) !, then
z=@A—-)@A+i)"t . From (12), (5) we find
! -/T_H.Q*D (I—'T‘lh—; *o(I =TYI — zT) 'h

Making use of (3), we obtain that N,(h) = —m 21" p(L — A1)~ *h.

It remains to compute the second row of formula (35). This can be done by making use of
equality (31), but we find it from the definition of the conjugate operator. We have

N,(h) =
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(Rf, h) = (f, @®)*[0,h,0]7) = —T[_%] (F),Y*p(L — A1) *h)dA.

The subsequent computations make sense for (1) € C_ and f from a dense set of functions
with values in ¥*(D(L)/G,) ; see the remark to thislemma (if the defects are finite, then
the second stipulation is not required). Denoting by [yf]the representative of the
quotient class mod G,, with the aid of Definition (1.1.10) we have

2 _ 2 _
- (FQ),¢*p(L — AI)h) = ~(Wf . p(L = A )

= (Wf1L(L = AD7"h) — (LIYSf] (L — AT)~"h)

= ([Wf1Lh) + A(Wf1 L — a)7'h) — (LLpf], (L — A)~*h)

= —(((L* =A™ (L — A1) — DIP£] ).
Clearly, the last expression does not depend on the representative [y f] and we obtain the
equality (35) .

We assume that the imaginary partQ = (L — L*)/2i = 0 makes sense. Then from

Lemma (1.1.21) we obtain
ﬂ_%lp*p(L — ANt = T[_%Z*Q%(L — AN

where z: E — f, is some isometry. Then

(@®)*[h_,h, h )" = S*Fh_ — n_%Z*Q%(L —AD"*h + Fh,
Similarly,

(@R [h_,h,h,]" = Fh_ — n‘%z:Q%(L* — AD)7*h+SFh,
These operators (with k = k, = id) and their intertwining properties have been applied by
S. N. Naboko in [4]. The fact that the second terms are contracting functions forms the
content of Theorem 1 of [4].

Since dilation has an absolutely continuous spectrum [9], one can talk only about
generalized eigenfunctions (in the riggings). Formulas (35), (36) give the possibility to
interpret the collections

S(We #d,  E€eR_
iV2[(L" =AY (L —MU) —I]p~'yd|, dEEAER,
e Md,  §€R,
as "incoming" eigenfunctions, while the collections
e Md,  f€eR_
—iV2[(L = AD7Y( = AI) - Np;y.d.|, d.€E,AER,
S*(M)e~Hd,,  E€R,
as "incoming" eigenfunctions. For differential operators, this statement can be given a
precise meaning.

Let o be minimal selfadjoint dilation in the space H = G.®@H®G let ok nRbe its

corresponding functional imbeddings. Then #, = RannR = Span (e®!G,t € R), H_ =
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Ran R = Span(e'G,,t € R), are subspaces reducing . By the residual part of the dilation
we mean operator g|H @H_ It and by the x-residual part we mean the operator o|H SH,

Making use of the results of [1] for contractions and passing from the circle to the half-

plane, we obtain the following formulas:
R — RS = tRAR, nR — gRS* = tRAR, (37)
where
AR= (1 -S*$)Y2,  AR=(1-SS")"?,
while
R ARIZ(RE) > H , tR:ARI2(RE)) > H
are isometries such that
Rz+iDT=(+iD R | R+t = (z+i) 1k,
@R + R =1 | nR@R)* +RER)* =1

Thus, the operators (R)*, (®)* realize the spectral representation of the residual and the *-
residual parts of a dilation.

Now we write down the formulas connected with a concrete form of the dilation (22).
However, to express & 7R explicitly is difficult
LEMMA(1.1.36): [1].

0
TRARf = |i(2”);]+m[(ll — ANV =AD" = AD7Y(L — AI) = I]p~ "y f(A)dA 1
B FHAR)fIR, |
@82 = —y'p[(L - A1) (W = A — AL = A1)~ 1] p~ s
FHADfIR- }

400
TRARf = |—i(2n)‘§ ] [(L* = AD)~Y(L — A (L = AT) = I]p- 1. f(A)dA
| - 0 |
(AR)? = —yip, [(L = AL — AL = A1) (& = A1) = 1| p ..

The proof follows at once from the formulas (35), (4.5"), (8), (2.4"). The second rows of the
formulas have to be understood again as the boundary values of functions in the upper half-
plane.

Here we apply the results of the Schrodinger operator on the semi axis

ty = —y" +q(x)y; y'(0) =hy(0),Imh >0, (38)

with a real-valued potential in the Weyl limit point case at infinity. All the results have
been obtained by B. S. Pavlov [2] by the method of generalized eigen functions. In
subsequent investigations of various authors [10, 19], the characteristic function of this
operator has been computed also by other methods, including methods closely related to
the one presented below.

We consider the operator L,y = ¢y in [2(R,) with domain of definition D(; ) =

18



{y e c2(R,):y(0) = y'(0) =0} . It is assumed that the (real) potential is continuous on
[0, 00). It is easy to verify the following properties.
LEMMA (1.12.37): [1].
() L, is symmetric;
(DD(1:) = {y € ¢1(r,): y'is absolutely continuous, —y + qy € L2(R,)} Ly = £y ;
(iii) The defect indices n,(L,) = dimker(L: F il) are equal among them and are equal
either to unity or to two.

1fn,(L,) = 1, then we say that the Weyl limit point case takes place (we shall write
then g e (¢.p.); otherwise, we have the limit circle case (see [20]). In the sequel we shall
assume that g € (£.p.). A simple sufficient condition (see [20)) consists in the fact that
for some differentiable function M(x), such that M(x) > 0, M’(x) < const M(x)3/2, we
should have

q(X) = —M(X),]m(M(X))—UZ dX = oo,

LEMMA (1.1.38): [1]. Let g € (£.p.). We consider the operator
Lpc Ly, D(L,) ={y e D(£:):y'(0) = hy(0)}.
Then
WLy, y) — (&, L,y) = 2i Im hly(0)|? , L; = Lj
(i) ifH e R, theny, = L. If 3h > 0, then [, is a maximal dissipative operator.
Letq € (£.p.). We denote by W(x 1), ¢(x,A) the solutions of the equation —y" + qy =
Ay, 2 ¢ R,such that
YO, =-1 021 =0,
¥'O,10=0  ¢'0N=1
Since dim Ker(Ly — Al) =n_(L,), there is defined a unique function y(x, 1) € L?(R)such
that y(0,1) = —1and — y"" + gy = Ay.We can write
x(x, 1) =¥(x, 1) + m,(Do(x, ).
The function m_ (1) is called the Weil function. It is known [21] that i (1) is analytic in
C\R and 3 m_(1)/31 < 0.
We proceed to the analysis of the dissipative operator [,
Since [ = L, is a dissipative extension of a symmetric operator, we have G, =D(L)n
D(L*) We have F(L) = D(L)/G,, F.(L) = D(L*)/G, - By Lemma (1.1.38) (i) we have
lpylle =1mhly @)% lp,y. NIz =1mhly 0)I*
We set E = E, = ¢! and we define the isometric isomorphisms ¥ wp :
W:E - F(L), Y@ =py:yeD(,)y0) =aVImh.

Y E, - FE(L),¥,@)=pYy:y, €D(;),y(0) =a/NImh. (39)
We show that we have the formula [2]
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moo()l) +h

SLh()l) - mm(/l) N f_l

(40)

Proof. From (8), setting L =, we have
S =5, =wp (L — AL - A)yp~1¥,
where p: D(L) - F(L), p,: D(L*) - F.(L) are natural projections. From (39) we obtain
that p-1%a 5 y € D(L,)y(0) = a/VIm h. We have
(L -y =-y" +qy =2y, (L* — Ay =y,
where —y" +qy, —ly, = —y" +qy — Ay ,y; € D(Lz) - Finallyw:p y, =Vimh y,(0).i e,
S(Ma = y,(0)/y(0)a. We note that u = y, — y is a solution of the homogeneous equation
u"” + qu = Au from2(R,). Consequently, y, —y = B(2) x(x, y), from where
(v, —y)'(0) = —m, (D) (y, — y)(0)
But since y'(0) = hy(0) . y;(0) = hy,(0), we obtain that
moo()l) +h

y:1(0) = my(O),

and the assertion is proved.

We make use of Corollary (1.1.34)We interpret conditions f —%[WV )] € DLy f +
2 ¥ =

\/L;[‘P"IA(O)] eED(LY) - Let y e D(L,) y(0) =V,(0)/VIimh, v, €D(L:) » 7.(0) =

V_(0)/VIm h . We have

i i i
- — D — f'(0) = — —
f 75 [wv_(0)] € (1) = f'(0) 7 5

o £(0) — hf (0) = é (i — K)y.(0) = V2Imh V.(0).

y!(0) = hf(0) — —hy,(0)

Similarly,

f+ é[wm(o)] e D(L) = £/(0) + éy’(O) — hf(0) + éﬁy(o)

— i ,_
& £'(0) — hf(0) = 5 (h = h)y(©) =V2Imh V,(0).
As a result we obtain the following form of dilation g of operator [ in space H =
D_GL*(R)®D, D, = L*(R,) [2]:

v iy’
gO: f = _f+qf )
V+ l'V+
) ={lv Fv.I":v,e®) F©-hf(0) =v2Imh V_(0),f(0) — hf(0)
=2Im h V,(0)}. (41)

"Incoming” and "Outgoing" Eigen functions of Dilation Calculations (with the same
notations) yield

20



[(L* = AD"Y(L - ) = I]p~ ¥, = BA)x(x, ),

h—nh v2Im h
B(2) = y(0) — y:(0) = my(o) - ;(A—m‘l

We obtain the "outgoing" eigen functions [2]:

S(We X e R
Yy = [V2Im h(me, (1) + h) 1x(x, 1), x € R, |
e" X &eR,

In a similar manner one finds the "incoming" eigenfunctions:
[ e" M &eR_

Vi = [V2Im h(me, (1) + h) " 2x(x, 1), x € R, |.
S*Ve X &e€R,
The dilation g is a differential operator and v;" are "actual" smooth functions, although not
from L2. Lemma (1.1.35) shows that the integral operators with the kernels vf and factor
(2m)~Y? are n®, 7R ie, isometries from L?(R) into %, . In terms of functional
imbeddings, the fact that v;-are eigenfunctions means the commutativity of (o — AI)~*
with the multiplication by (z —1)"!, the normalization and the inversion formula [2]

reduce to isometricity. The terms "outgoing"” and "incoming" eigenfunctions mean that
Ran J® = Span (e*®®D,,t € R),Ran JR = Span (e"*#D_,t € R)
From (6) we have
(@4R)? = (A%)? = 1 - [S()|2 = 2iIm hA(me, (2) — me (D)) |mee(2) + A
The spectrum of the residual and *-residual parts is set{1 € R:m. (1) ¢ R} . We apply
Lemma (1.1.36). Let y € D(L,,),y. € D(Ly) .The equalities
(L* = AD™Y(L — Ay =y — y(0) - 2ilm h(ms (1) + h) " x(x, 1)
(L —ADY(L = )y, =y, +¥.(0) - 2ilm h(Me, (1) + h) 1 x(x, 1)
from where
[(L—ADY (L =AW = AD) X (L -2 -1y =
¥(0) - 201m h|me, (1) + h| (G, D me(2) + h) = x (e, A)(me, (@) + 1) ).

We havey(x, 1) = ¢(x, ))m, (1) + ¥(x, 1), and, moreover, from the definition it is clear that
'0(2) = o(x, 1), ¥(x, 1) = ¥(x, 1) . From here it follows that

dim (3G Do) + B) = x(x D)W@) + 1)) = (¥ = hp) (s (1) = mesD).

Thus, we obtain an expression for t&:
0
1 T he(x,A) —¥(x, 1)
TRARf = f
\V2mi J_o v2imh
| F1L - s )R,
In a similar manner one derives the formula
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[ FHA—=IsMDIP)f(DIR-

RAR *°ho(x,1) —¥(x, 1) B gl

St lv—f oD
0

If we consider the operators tRAR tRAR as integral operators with respect to the
measure (1 — |s(1)|?)d4, then we obtain the eigenfunctions of the continuous spectrum,
found by B. S. Pavlov [2]. For the residual part we have

0 —@n +qpp — A9y =0
V7 = en(D)], (on —hop)lo =0
e iA¢ (¢, — hop)lo =V2Imh
and for the *-residual part
T —@R +qor — Ay =0
V7=, (¢r — hor)lo =0
0 (¢f — hor)lo =V2Imh.

Section (1.2): Difference of Functions, From the Pick Class ,of Accretive Operators

The estimates (in the operator norm) was obtained in [23] by Matsaev and Palant; namely,
the inequality
IT* — (TH|| € 2v %*sintta/ma(l — ) |IT-T'||¥0< a < 1, (42)
was proved for two bounded dissipative (ImT,T' > 0) operatorsT and T’ in a Hilbert
space H .

On the other hand, for the case of self adjoint positive operatorsAandB (D(4) =

D(B), (A — B) isbounded) in [24] by Birman and Solomyak the estimate

1A% = B*|l, < 1A = BD*lls, 0<a <1, (43)
was obtained, where o is an arbitrary symmetrically-normed (s.n.) ideal [3] possessing the
domination property. Furthermore, in [24] estimates in the quasi-normed classes of power
decrease of the s-numbers were obtained. The results of have been extended by [26] to the
case of two maximal dissipative (accretive) operators. Recall that a densely defined operator
L in H is called maximal accretive (m.a.0.) [27] if Re(Lh,h) = 0,vh € D(L) and the left half-
plane A < 0 consists entirely of regular points of the operator L. Since an arbitrary maximal
dissipative operator [27] is distinguished from a maximal accretive operator only by the
multiplier (i), analogous results will be valid for a pair of maximal dissipative operators as
well. The choice of the accretive case is motivated only by some notational convenience.

In various problems of perturbation theory a demand arises for obtaining analogous
estimates for a wider class of functions (¢ (T) — ¢(T')) of operators. However, the extension
of the results of [23,24,26]to a case of more general functions has necessitated the
application of a technique different from that in [24,26]. Which has an auxiliary character, a
class of admissible functions of m.a.o. is introduced, which essentially coincides with the
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well-known Pick class [28] (so-called operator-monotone functions), and a transformation of
functions ¢ — ¢ is considered. elementary estimates for the s-numbers of functions of m.a.o.
and for a difference of such functions in the operator norm are obtained. Inequalities in s.n.
ideals which extend (43) to the case of m.a.0. and the functions of class G are proved , and
their right-hand members contain the -norm of ¢(|T — T'|). The results for quasi-normed
classes are briefly . The selected ones are problems, important for applications, on the
boundary behavior of the nuclear-valued operator R-functions [29,30], and also the relation
of the topics of the theory of Volterra operators [31] is illustrated.

There also should be pointed out [32, 33], where estimates [24] are obtained for a
difference of functions of self-adjoint operators, and [34].

We define class as the set of functions ¢ (1), analytic in C\R_ and admitting there the
representation

0]

1 1
(F5-7) @@, 2¢ (w0l (44)

where dv is some complex Borel measure satisfying at 0 and oo the conditions

jlldv(t)l <o ]”Idv(t)l

t t?

p(d) = ]

0

< oo. (45)

We recall that the Nevanlinna-Pick class consists of the functions analytic in €, and having
there a nonnegative imaginary part. By the Riesz-Herglotz theorem [35], they admit the
integral representation

f(/l)=a+ﬂ/1—]R[tiA+t2il]dv(t),

Where = a, and f = 0,=dv(t) = 0 is a Borel measure on R such that f0°° dv(t)/(t? +1) <
. The Pick class [28] satisfies an additional condition: the support of the measure dv(t) is
concentrated on the positive semi-axis. As is well known [28], P(0, =) is exactly the same as
the class of functions for which the implication0 < A < B = f(4) < f(B),A, B € B(H), holds
on the set of positive operators (operator-monotone functions). Since in this case f is analytic
in C\R_ and monotonically increasing on the positive semi-axis, the additional condition of

the finiteness of the quantity f(+0) is equivalent to the condition f0°° t?;(j)l) < ooon the
measure dv, which coincides with (45). Setting § =0 and a = f0°° t?;(j)l) , we obtain

representation (44). Thus, class G coincides, to within a linear addend (for which a separate
estimation is more convenient), with the class of functions from P (0, oo)satisfying the
additional condition f(+0) = 0. And we drop the requirement of the positiveness of the
measure dv, which is not essential anyway.

A function ¢(T) , where T is a m.a.o., can be defined on ©(T) with the aid of formula (44):

o(T)h & ] (T 0 = - YR dv(o), h € DY, (46)
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where the integral obviously converges in the norm of the space H due the estimate
(T + )7 < 1/t t > 0. For our goals it suffices to define ¢(T) on D(T) by (46), as in the
sequel estimations will be carried out for the s-numbers of the difference (¢(T) — ¢(T")) of
the functions of twom.a.o. Clearly, the information about ¢(T) only on the dense set D(T) =
D(T") suffices for this. To compare this definition with other ways to define functions of
m.a.o. [36] and selfadjoint operators, we present without proof some simple assertions.
Proposition (1.2.1)[22]. Lete G , Iallj_prkp(ﬂ)l oy 0, |§1l|J—ee|(p(A)|/R 2 0.Then:

i) if Tis a bounded accretive operator such that0 & o(T), the function ¢(T) defined
above coincides with the function of T defined with the aid of the Riesz integral of the
resolvent [37] along the contour surrounding the spectrum o(T) ;

i) if T isam.a.o., the equality

o(T) = Pyo(—iL)lnn)
holds, where L is a selfadjoint dilation of the operator (iT) and Py is the orthoprojector onto
H in the Hilbert space H < H in which the operator £ is defined [5J; furthermore
e(TY(T + i)™ = Pyp(—iL)(—iL+t) ']y, Ret>0;
) ifT =T* = 0,¢p(T) coincides with the restriction to D(T) of the function ¢ (T) defined by
the spectral theorem for selfadjoint operators.

Class G can easily be extended to a class G* of analytic functions which might have,
besides R_ , other singularities, lying in a compact portion of {1 € C:Re 1 < 0}. In this case
formula (44) should be modified: it must include, besides the integral along R, in the
neighborhoods of 0, and(+x), also an integral along a suitable circumference{t €
C:|lt—e—R|=R},e>0,R >0, of some finite measure on that circumference. Such a
formula arises in a natural way in the construction of functions with the aid of the Riesz
integral of a relolvent. In the process, the new addend results from traversing the suitable
circumference enclosing the singularities of ¢ in the left half-plane. Note that in the sequel
this new addend is taken into account by means of rough estimates and introduced without
any particular difficulties.

In conclusion, consider the transformation of functions from class G
@ €G- dv(t) > P € Lo(Ry: (x +1)71),
which will be used in the sequel and which carries ¢ € G into the nonnegative function on
R, computed by the formula

¢(c) &2 <] +c/2 >
(ocr2) L [c/2,0) L

The case of an absolutely continuous measure dv(t) = ¥ (t) the transformation ) - @,
where 1 is the jump of the function ¢ (—1)/2m over the slit R, is equivalent to the
transformation of the modulus of continuity of the function under the Hilbert transformation
[38]. This transformation easily generalizes to the case of ¢ € G . It can easily be verified
that ¢ is a nonnegative (¢ (+0) = 0), nondecreasing convex function on R, and a majorant
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fore:|p(c)| < ¢(c), ¢ = 0.Furthermore @(x +y) < ¢(x) + @(y); p(ac) < ap(c), a = 1.
A direct computation shows that for ¢(1) = 2*(In (=1/1))B 0 < a <18 € R(¢p € G*) the
asymptotic ¢(c)~21"% x (sinwa/ma(l — a)) - c*(In1/c)?, ¢ - 0 holds. An immediate
generalization of estimate (42) is the following assertion:

THEOREM (1.2.2)[22]. Let T and T’ be m.a.0., ©(t) = D(T'),(T —T') € B(H), ¢ € G. Then

D lo(T) — (M)l < ¢UIT = T'I1), (48)
i) forT € o,, we have ¢(T) € o, , and for the s-numbers the estimate
54n—1(<P(T)) = Z(IV’(Sn(T)), n=12..

holds.
Proof. is carried out in analogy to (42), where the case ¢(1) = 19,0 < a < 1 was considered.
We have (6> 0)lp(T) — (T < || [0 [T + )7 = (T + ) 1dv(®) | + || f15.00y (T +
£)~"1(T — T')(T" +t)‘1dv(t)|| < Jios 2t Hdv (@] + [; 2 dv(@IIT = T'Il , where the
Hilbert idently and the estimate of the solvent of the a.o. ||(T + t)71|| < 1/t,t > 0, have been
used. Minimizing with respect to the parameter &, we arrive at the value § = ||T —T'||/2,
whence it follows that

lo(T) — p(THII < ¢(26) = g(IT —T'I)).

To obtain the estimates for the s-numbers, denote by T;, an operator such thatT,, <n,
Sn+1(T) = IT — T, |I(see [25]),n =1,2,.... From inequality (48) and the elementary fact
that rank ¢(T) < rank T, the implicationT € o,, = ¢(T) € 0, €asily follows. Further, like in
[23]. FromT =Re T +ilm T, we have K,,,_; & [(Re T),, +i(ImT),,_,], the corresponding
approximation of T with the preservation of accretivity:(Re T),, = 0. It follows that

54n—1(<P(T)) < [|o(T) = @(Kun-DIl < PIT — Kpp1ll < <IV’(54n—1(Re T) + s,,(Im T))

< ¢(2sn(1)),
where the well-known estimates for the s-numbers of the sum of operators [25] have been
used.

A theorem is proved (by a method different from that considered in [24, 26]) which
extends estimates (42). (43) to the case of m.a.o0. and the functions of class G . Note that it is
not hard to extend its scope to class G'.

THEOREM(1.2.3)[22]. Let T,T' be m.a.o, D(T) =D(T"),V(T'—T) € B(H) and o be a
symmetrically-normed ideal with domination property. Then the inequality

lo(T) — o (THl, < 8llgUVDII, (49)
holds for @(|V]) € o, ¢(|V])being a function (see [28], [25]) of the positive operator|V| =
VY2, 0 €G.
Proof. Estimate (49) has been proved above in the uniform norm. Consider now the case ¢ =
o, Letat firstV >0,V = %, V;, Vi & s;(V)(, 0@y, (91, 9;) = 8y, the spectral resolution of
the operatorV € o, . Then
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lo(T) — o (T)ls, =

2.

whereT; ¥ T+, Vi, i =1.2,..,isam.ao. due to the conditionV > 0[37]. Letd; =0, =
12,.., be a sequel. it will be specified below. From the Hilbert identity and the
estimate||(T; + t) || < 1/t t > 0, we have

lo(T) — o (T)l,,

sZ(j V1l ¢2lav @)l + | ||(Tl-+t)-1+(Ti+vi+t)-1||61|dv<t)|>
[6;,00) (0,6:)

i

<> < ][ QI +2

i

j [(T+ )™ = (T" + t)]dv(t)
R

g1

j [(T, + )" = (T, + V, + )" 1d v(0)
R

g1

t‘lldv(t)l>,

(0,67)
where the inequality rank ((T; +t)™* + (T; + V; + t)"1) < 1,t > 0, has also been used. To
minimize the right-hand side of the above double inequality, we choose the sequence §; to
be §; & s;(V)/2 . Hence

lo(™) = @(lls, < Y § (5:)) = 1AV DIl

In the case of an operator V € o, of general form make use of the decomposition of its real
part [24] into the nonnegative (Re V), and negative (Re VV)_ components:V = (ReV), —
(ReV)_+ilmV . Asbefore, we obtain

lo(T) — o (T,
< lo(T +ilmV) = @(Mls, + llo(T +ilmV + (ReV),) — o(T +ilmV)||,,
+ |lo(T +ilmV + (ReV),) — o(T + V),
< Z (#(s.m VD) + 3(su(Re V).)) + 3 (su((Re V).)))

l
= lgm W5, + lIg(Re V)ll,,.
Here the facts have been used that (T + ilm V), (T + ilm V + (Re V), )are m.a.o. and that the
proof of the foregoing estimate (for the case V > 0 ) carries over verbatim to the case
ReV =0. Since sy,,_1(ReV) <s,(V),syp_1(IMmV) <s5,(V) n=12,..[25], it follows from
the monotonicity of ¢ and the Fan-Tsoi lemma [25] that whence

Z«ﬁ(sk(Re ) SZZé(sk(V)), Zrﬁ(sk(lm ) szZé(sk(v)),

ksn k=n k=n k=n

hence

lo(T) — o (T)ls, < 4GV DI, (50)
Turning to the general case of a s.n. ideal o, we shall follow the idea of Calderon's proof of
Mityagin's interpolation theorem [39, 31] (see also [18]). By Horn's lemma [25].
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LY 5o +V) = o())
k<n

< Z{sk((p(T) — (T +ilmV)) + s, (@(T + ilmV + (Re V),) — (T + ilm V))
k=sn

+ 5 (@(T +ilmV + (Re V),) — (T +V))}
< Z{[sk(q)(T +ilmV) — (T + (IMV),))) + s (@(T + (ilm V),,)) — o(T))]

ksn

+ [si(@(T +ilmV + (ReV),) — (T +ilmV + ((Re V),),)

+ 5., (@(T + ilm V, + ((Re V),),,) — (T +ilmV))]

+[si(@(T+imV + (ReV),) — (T +V + ((ReV)_)y))

+51.(@(T +V + ((Re V) )n) — (T + V))]},
where all the ¢’s are functions of m.a.o. and (U),,,U = U*, denotes the part of the spectral
resolution of a selfadjoint operator U corresponding to the first n eigenvalue in the order of
decreasing modulus, taking multiplicity into account. Estimating some of the s-numbers in
this sum roughly by means of the operator norm and others with the use of (48), (50), we
obtain

L <nllo(T +ilmV) — (T +i(ImV))Il
+ Z (s (M V),)) + nllo(T +ilmV + (Re V),) — o(T +ilmV + ((Re V),),)|
k

+ Z ¢ (s (((ReV))n)) + nllp(T +ilmV + (Re V),) — (T +V + ((Re V) ),
k

+ Z 7 (s(Re V))))

<n

F(spp1(IM V) + (541 ((Re V) ) + (sns1((ReV)L))

£ B(seImV) + Fls(Re V).)) + Flse((Re V) )

k=1

Hence, from the monotonicity of ¢ and from the Fan-Tsoi lemma [25] it follows that
L<2 Z{é(sk(ilm V) + @(si((ReV),)) + @(si((Re V) )} < 2% (2 +2) Z @ (s (V).
k=1 k=1

Since the ideal o assumed to possess the domination property, we obtain (49). In the
casesReV =0,V > 0,V < 0 the constant 8 in the estimate can obviously be reduced to 2.

COROLLARY(1.2.4) [22]. Forp(1) = 21%,0 < a <1 = ¢@(c) = ¢*21"% x sinma/na(1l — a);
therefore from (49) we have
. / 1—q Sinma o
lo(T) = o(T)ll; < 217 222 | (AT" = T, (51)
where the constant on the right-hand side does not exceed 8w and does not increase without
bound as a = 0, which is somewhat better than in the analogous estimate in [26].
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The mapping @(|V]) - @(T + V) — @(T) is not linear, yet the method employed above is
in fact a "nonlinear" interpolation of estimates in g; and B(H) and follows the interpolatory
proof of B. S. Mityagin's theorem.

We consider below analogues of estimates in quasi-normed classes, including in classes of
power decrease of -numbers of operators, which extend the well-known estimates in [24] for
power functions of nonnegative operators to the case of accretive operators and the
functions of class G. The proof of the theorem, which we omit, can be carried out with the use
of the selfadjointness technique from [24] and Sz.-Nagy's theorem on the possession of
selfadjoint dilation by an arbitrary maximal dissipative (accretive) operator.

1/
We introduce the notations:T € g; pgn(T) & Yoy siP (T)i15.,(T) & (%%(T)) On the

functiong (see [25]) we impose this additional restriction in terms of its representing
measure :

N ldv(?)] L
Z( | Gren ) <APFCR,  (62)
where ¢, & 3V"2 p > 0and A(B),0 < B < 1, is some constant.

The following estimate is a generalization of the corresponding inequality for power
functions of positive operators [24].
THEOREM(1.25)[22]. LetT,T'be mao.,(T)=D(T)V=T'-T € g, a function ¢ € G,
inequality (52)hold, and0 < 8 < 1.Then

1 (@(T) — @(T")) < C(B, AB)) P (15(V)) (53)
where C(,B, A(,B)) is some constant depending only on g and A(B) .

Note that for f = 1 estimate (53) holds also with the constant 8, which easily follows from
Theorem (1.2.3) (now without additional restrictions) and the convexity of ¢.

COROLLARY (1.2.6) [22]. Let condition (52) on a function @ € G be met, and letT ,T' be
m.a.0.,.V =T' — T € o, . Then the implication
sy (V) <c/nYy >0 n=12,..= s,(0(T) — o(T")) < c(B)@(c/n?) (54)

holds for an arbitrary § < 1,8 < 1/y where the constant c¢(5) depends only on C(8,A(B))
and S. The case y < 1 easily follows from Theorem (1.2.3) for power functions.

In the case (1) = 1%(0 < a < 1) condition (52) is met, whence the validity of the
implication (see [26])

Im 5, (V) - n" = w, <00,y >0 = Ims, (T")* = T*)n < wc(a,y)

follows. Note that estimate (53) begins to "worsen" only as ¢ (1) “approaches"” the linear
function 4 in logarithmic scale. Finally, let us observe that the estimates in quasi-normed
classes of type (54) (and even simpler estimates of "weak type") can be used for obtaining
inequalities (49) in symmetrically-normed ideals, i.e., in classeso,,p = 1 (and also in the
case0 < p < 1), with the use of "interpolatory" technique.
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Applications (1.2.7).

(i) As an application, let us first indicate the relation of estimates (51) foroc = 0, 1 <p <
, to V. T. Matsaev's inequalities for the o,,-norms of the real and imaginary parts of a Volterra
operator. The simple proofs of those Inequalities are well known [31], so this relation has an

illustrative character. The discussion below reproduces almost verbatim P. Stein's proof of the
boundedness of a Hilbert transform in class L, (see also [31] about the application of another

proof of the boundedness of a Hilbert transform). Consider this particular case: T is an
accretive Volterra operator (ReT = 0)ImT €a, 1<p<2.ThenT? =T xT® Vs also a
Volterra operator by the theorem on the mapping of spectra [37]. Using L. A. Sakhnovich's
theorem (the case of p = 2) and estimates (51), it is easy to show that in this case T¢ € g,
(estimates (51) and the membership ImT € o, imply Im (T??) € g,) . By Lidskii's
theorem,tr T? = 0 (below, this fact will play the same role as Cauchy's integral theorem does
in the proof the boundedness of a Hilbert transform). Further, as in P. Stein's proof [41],
|cos(pm/2)| - |[Im Tllpp < |tr (ImT)?| = |tr (TP — (GIM T)P))| < IT? = @M T)?||,,
< TP~ = @AM TYP)l,, + II(T — ilm T)(EIm T)P =g,
< (IRe Tll,, + M Tl ) % Cp — 1) < [I(Re T)? 5, + IRe T,
xI(Im TP~ g,
= (IRe Tll,, + MM Tll,, ) % C(p — 1) x IRe TIL ™ + [[Re T, I TIIE ™,
Where g = p/(p — 1) and C(«) is the constant from the right-hand side of inequality (51)
Applying Young's inequality, we easily obtain ||Im Tllc,p < G,|IRe TII%. The dual equality
IRe Tllg, < GpllIM T4,
is obtained in the analogous way.
(i) The estimate for the functions of Pick class can also be used for analyzing the boundary
behavior of operator-valued functions (o.f.) T (1) analytic in C, and having a non- negative
imaginary part: ImT(A) = 0,T(A) € o;,ImA>0. It has been proved in [7] that such

functions have almost everywhere on the real axis nontangential boundary valuest in the
norm of g, for anyp > 1. However, it can be shown that in the nuclear norm boundary values

mayor may not exist a.e. It is not hard to verify [29] that this problem reduces to the
investigation of functions of the "special” form

TQ) = V1/2(A _ }\)—1]/1/2’14 =A"V=0,VeEo;,ImA>0 (55)

which arise in a natural way in problems of perturbation theory for a pair{4,A + V}.
Clearly, the investigation of the boundary behavior of such o.f. has important applications in
perturbation theory. Let N;(T)(A > 0,€ 0,) be the count of the s-numbers of an operator
T exceeding or equal toA,A> 0. The behavior of the boundary values of T(k) =s —
limT(z),asz = k nontangentially, k € R ,Im z > 0, is described by the following theorem:
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Theorem (1.2.8) [22]. Let T (k) have the form (55) with V € g, . Then for the boundary values
of T (k) on the real axis the estimate
sup | AN (T (k))dk < ¢olIV ]|, . (56)
A>0 JR
holds, where c, is an absolute constant.
Proof. of the theorem is the extension to the case of operators of one of the proofs [43] of
Kolmogorov's theorem on the "weak type* of Hilbert transform inL,(R) . At that, the only
nontrivial fact related to operators (besides, of course, the spectral theorem for self- adjoint
operators) which we will use is the estimate of a difference of functions, of the Pick class, of
accretive operators in the norm of g; (Theorem (1.2.3)).

Since for s > 0 we have Re (~isT(1)) = 0,Im2A > 0, by-isT(2) taking as the argument
for the function ¢ (1) = In(1 + 1) of the Pick class (whose representative measure [24] dv =
0,0<t<1, anddv=-dt,t>1) we obtain the analytic o.f. In(I—isT(})) in the
region ImA > 0. Since T'(A) has nontangential boundary values T (k) almost everywhere on
R in the norm of o, (and even g, Vp > 1[29]), the function Re In(l —isT (1)), nonnegative
and harmonic in €, has nontangential boundary values ReIn(l —isT(k)),k € Rae. onRin
the nuclear norm. Note that for the functionin(l —isT (1)) itself this assertion, generally
speaking. is not valid. Considering the scalar nonnegative harmonic functionReIn(l —
iIST (1)), itis easy to show, as in [43], that (A = x + iy)

. 1 y®
O<tryReln(l—=isT(})) = ;]R(x—k)z gy

Passing to the limitas y — +o0 and computing Ii+m In(l —isT(A)) = sV, we obtain
y—) [ee)

~tr ReIn(1 — isT (k))dk.

]tr Re In(1 —isT(k))dk < mstrV.
R

Hence and from (50) we have
] [Re In(1 = isT(0)||, dk < mstr v + ] In(1 — isT(k)) — In(l — isRe T(kY))| dk
R L R o1

<mstrV + 2] [@(simT ()| dk < mstrv +2s ] Im T (k) l5, dk
R L R

=nstrV +2s2rtrV) =nss x trV.

Here the estimate ¢(c) <c has been wused and the computation of the
integraltr fR Im T (k)dk = 2m tr V, has been carried out, which can easily be done, e.g., with

the aid of the spectral theorem (see [7]). Computing the trace of the normal operator, we
have

]de Z In (s . sn(Re T(k))) < 5mstrV,

hence, after setting s = e/41,1 > 0, we obtain
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] dk Ny (Re T(k)) < Semtr /A, 1> 0.
R

Since

2ntrV:]
R

with the use of the inequality N,;(T; + T,) < N;(T;) + N;(T,) [31], we easily obtain the
required estimate

tr im T(k)dk = ]ANA (ImT(k))dk, 21>0,
R

]dk N, (T(k)) < r[10e + 2]tr V.
R

Proceeding from estimate (54), one can obtain various information about the boundary
limits of an 0.f. (see [29]). Let us present without proof just one consequence [29].
THEOREM(1.2.9) [22]. Let an operator-function T (1) have the form (55). If V € g, X 0, i€,
is the product of a nuclear operator and an operator from the Matsaev class o, , then the o.f.
T (1) has nontangential boundary values on R in the nuclear norm. On the other hand, for
any symmetrically-normed ideal o # o, there exists o.f. T (1) of the form (55) withV € g; %
o, (i.e, V is the product of an operator from class o, and an operator from the s.n. ideal o)
whose boundary values do not belong to class o; almost everywhere on R.
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