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 Chapter 1 
Function Model and Estimates in Operator  Classes 

 
We obtain new formulas for the dilation and its eigenfunctions , generalizing B. S. Pavlov's 
formulas for the Schrodinger operator on the semiaxis with a real potential and complex 
boundary condition. Examples are considered. The use of estimates in operator classes for a 
difference of functions (e.g., fraction-al powers) of two operators in a Hilbert space is 
typical for various problems in operator theory and mathematical physics.  
Section (1.1): Dissipative Operators 

We  introduce the concept of boundary spaces and we compute the characteristic function, 
"attached" to these spaces. This approach, suggested by A. V. Shtraus' investigations, is 
suitable for the analysis of operators with finite defect indices. We construct self adjoint 
dilation as the Cayley transform of the standard unitary dilation of a contraction. We derive 
various forms of dilations (B. S. Pavlov [2, 3], S. N. Naboko [4], A. V. Kuzhel’, Yu. L. 
Kudryashov [5-7]). In the mentioned investigations the dilations have been somehow 
"guessed." Apparently, the form of the dilation, generalizing B. S. Pavlov's [2] dilation of the 
Schrodinger operator on the semi axis with a. real-valued potential and dissipative 
boundary condition, is new.  We construct a coordinate-free model for dissipative operators 
on the basis of the constructed dilations. We derive formulas for the eigen functions of the 
continuous spectrum, generalizing the case of the above-mentioned Schrödinger operator. 
On the example of this operator it is shown how to construct the dilation and how to 
compute the characteristic function and the eigen functions of the dilation. 

For  ܴ± = ݔ} ∈ ܴ: ݔ± > ±ܥ ,{0 = {ℑݖ ∈ :ܥ ݖ ∈  is the unit circle. We shall consider ܦ  {±ܴ
linear operators in a separable Hilbert space ܪ , not necessarily bounded and not 
necessarily densely defined. If ܮ is such an operator, then  ु(ܮ)  is its domain of definition, 
Ran ܮ =  is the spectrum, i.e., the complement of (ܮ)ߪ ,is the range of the operator  (ܮ ) ुܮ
the set of those ߣsuch that (ܮ −  .ܪ ଵ  can be continued to a continuous operator inି(ܫߣ  
We say that the operator ܮଶ   is an extension of ܮଵ  written ܮଵ ⊂ (ଵܮ)ु ଶ, ifܮ ⊂  ,(ଶܮ)ु
(ଵܮ)ु|ଶܮ = .ଵܮ  By ܪଶ(ܦ, ,(ߝ ,±ܥ)ଶܪ   we shall denote the vector Hardy spaces (with (ߝ
values in the Hilbert space ߝ) in the circle and the half-plane, respectively. We shall use the 
(Hilbert) Sobolev spaces ଶܹ

ଵ(ܽ, ܾ), ଶܹ
ଶ(ܽ, ܾ). The symbol clos denotes closure, while Span 

denotes the closed linear span. 
Definition(1.1.1)[1]. An operator ܮ଴ in a Hilbert space ܪ with a dense domain of definition 
 is said to be dissipative if  (଴ܮ)ु

Im (ܮ଴ݔ, (ݔ ≥ 0, ݔ ∈  (1)                                                             . (଴ܮ)ु
the complication consists in the fact that operator ܮ଴ may be unbounded. We would like to 
introduce symbol ℑ into the inner product and write ℑܮ଴ ≥ 0. But operator ℑܮ଴ = ଴ܮ) −
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଴ܮ
∗ )/2݅ need not exist since, in general, ु(ܮ଴) ≠ ଴ܮ)ु

∗ ). 
Example( 1 . 1 . 2 )  [1] . Let ࡴ = ,૛(૙ࡸ ૚), 

ݕܮ = ,′′ݕ− (ܮ)ु = ݕ } ∈  ଶܹ
ଶ(0,1): ᇱ(0)ݕ = ℎ଴(0)ݕ, ᇱ(1)ݕ = ℎଵ(1)ݕ  . 

We have 

Im(ݕܮ, (ݕ = −Im න (ݐ)തݕ(ݐ)ᇱᇱݕ
ଵ

଴
ݐ݀ = −Im ݕᇱ௬ത|଴

ଵ = −Im ℎଵ ∙ ଶ|(1)ݕ| + Im ℎ଴ ∙  .ଶ|(0)ݕ|

If ℑh଴ ≥ 0, ℑhଵ ≥ 0 then the operator L is dissipative. Computing the adjoint operator (see, 
for example, [8]), we find 

ݕ∗ܮ =  ,ᇱᇱݕ−
(∗ܮ)ु = ൛ݕ ∈ ଶܹ

ଶ(0,1): ᇱ(0)ݕ = ℎത଴(0), ᇱ(1)ݕ = ℎതଵ(1)ൟ. 
If ℎ଴, ℎଵ ∈ ܴ,  then the operator ܮ is selfadjoint. If at least one of the numbers ℎ଴, ℎଵ is not 
real, ℑh଴ ≥ 0, ℑhଵ ≥ 0 then L is a closed dissipative operator. The spaces  ु(L) and  ु(L∗) 
are distinct. Moreover, in ु(ܮ) ∩ ܮ ,we have, obviously  (∗ܮ)ु =  so that to talk about the  ,∗ܮ
imaginary part of the operator is difficult. 
    We usually, at the analysis of differential operators, first one defines the operator ܮ଴ on 
smooth functions, while ܮ is defined as its closure. The exact determination of the domain 
of definition  ु(L)  is not always simple. 
Special Case.(1.1.3). Letܮ = ܣ + (A)ु  ,ܤ݅ ⊂ ु(B) , ܣ = , ∗ܣ ,ݔܤ) (ݔ ≥ ݔ , 0 ∈ ु(A); ु(L) =
ु(A). Then the operator ܮ is dissipative. 
Definition(1.1.4). [1].  A dissipative operator is said to be maximal dissipative if it does not 
have proper dissipative extensions. 
 LEMMA (1.1.5) [1]. (properties of dissipative operators)  
(i) Assume that the operator ܮ଴ is dissipative. Then the operator  ࣲ(ܮ଴) ≝ ଴ܮ) − ଴ܮ)(ܫ݅ +
଴ܮ)ଵ  is a contraction fromି(ܮ݅ + ଴ܮ) onto (L଴)ु ( ܮ݅ − ଴ܮ and(L଴)ु (ܮ݅ = ࣲିଵ( ଴ܶ) =
ܫ)݅ + ଴ܶ)(ܫ − ଴ܶ)ିଵ. For each contraction ଴ܶ such that 1 ∉ )௣ߩ ଴ܶ)ߪ௣(∙)  is the point spectrum 
of the operator), operator ܮ଴ = ࣲିଵ( ଴ܶ) , ु(ܮ଴) = ܫ) − ଴ܶ)ु( ଴ܶ) , is dissipative. 
(ii) Each dissipative operator ܮ଴  has a maximal dissipative extension ܮ. A maximal 
dissipative operator is closed.  
(iii) A maximal dissipative operator is maximal dissipative if and only if  ܶ =  is a (ܮ ) ࣲ 
contraction such that ु(ܶ) = and 1    ܪ ∉  .(ܶ)௣ߩ
(iv) If ܮ is a maximal dissipative operator, ܮ =  ࣲିଵ (ܶ)  , then − ܮ∗ is also maximal 
dissipative, ܮ∗  = −ࣲିଵ (ܶ∗) . 
(v) If ܮ is a maximal dissipative operator, then (ܮ)ߪ ⊂ clos ܥା, ܮ)‖ − ‖ଵି(ܫߣ ≤ |ℑߣ|ିଵ, ߣ ∈
 .ିܥ
The transformation  ࣲ is called the Cayley transform. 
Example (1.1.6)  [1]. Let ܪ = ,ଶ(0ܮ ܽ), 

ݕܮ = ᇱ,    ु(L)ݕ݅  = ݕ} ∈ ଶܹ
ଵ(0, ܽ): (0)ݕ = 0}. 

We have 
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,ݕܮ) (ݕ = න ′തݕݕ݅
௔

଴
+ ଶ|(ܽ)ݕ|݅ = ,ݕ) (ݕܮ +  ଶ.                         (2)|(ܽ)ݕ|݅

Thus, the operator L is dissipative. It is easy to verify that the Cayley transform of the 
operator ܮ  is a truncated shift operator ఏܯ  = ఏܲܵ|ܭఏ, ߠ = exp(ܽ(ݖ + ݖ)/(1 − 1)) . 
Here ܭఏ = ଶܪ ⊖ ,ఏܭ ଶ , ఏܲis a projection ontoܪߠ ݂ܵ =  More exactly, if ℱ is the Fourier .݂ݖ
transform in ܮଶ(ࡾ), ௔ܲ  is the projection from ܮଶ(ࡾ) onto ܮଶ(0, ܽ), while W is a unitary 
operator, mapping 

(ݔ)(݂ܹ) ,(ࡾ)ଶܮ into (ࢀ)ଶܮ = భିߨ
మ(ݔ + ݅)ିଵ݂((ݔ − ݔ)/(݅ + ݅)),  then 

ఏܯ = ܹିଵℱ ௔ܲ
ܮ)∗ − ܮ)(ܫ݅ + ଵି(ܫ݅

௔ܲℱିଵܹ 
    The analogous operator inܮଶ(0, ∞)  has a Cayley transform that is unitarily equivalent to 
the shift operator ܵ. 
Semi group of Contractions. We set ܹ(ߣ) = ݅(1 + 1)(ߣ − ,ଵି(ߣ ܦ  :߱ →  be a ܮ ା.  Letܥ
maximal dissipative operator and let ܶ be its Cayley transform. If the operator (݃ ∘ ߱)(ܶ) 
is defined in the Sz.-Nagy-Foia calculus, then one can set ݃(ܮ) ≜ (݃ ∘ ߱)(ܶ) . Since 1 ∉
߮ ௣(ܶ), we can apply to the operator ܶ any functionߪ ∈  ஶ such that ߮ is continuous inܪ
clos {1}\ܦ ([9, Section II.6], according to which 1 ∉ (ܶ)௣ߪ ⟹ 1 ∉  ௣(ܷ), where ܷ is theߪ
minimal unitary dilation). Thus, to a maximal dissipative operator one can apply any 
function that is bounded and analytic in ܥା  and continuous in clos ܥା.  In particular, we 
can take ݃(ݖ) = ݁௜௧௭.  As a result we obtain the semigroup of contractions 

{݁௜௧௅}௧ஹ଴ = {ܳ௧(ܶ)}௧ஹ଴ ,     ܳ௧ = exp ൬ݐ
ݖ + 1
ݖ − 1

൰. 

It is easy to verify that this semi group is strongly continuous. 
LEMMA (1.1.7) [1] . Let  {ܶ(ݐ)}௧ஹ଴ be a strongly continuous group of contractions, ܶ(0) = 1. 
Then ܶ(ݐ) = ݁௜௧௅  for some maximal dissipative operator ܮ. 
     The operator L is called the generator, while ܶ =  is the cogenerator of the    (ܮ)ࣲ
semigroup {ܶ(ݐ)}. 
We give elementary formulas that connect a dissipative operator ܮ and its Cayley 
transform ܶ. 
 We set ߞ = ߣ) − ߣ)(݅ + 1)ିଵ.   Then 

ܮ) − ଵି(ܫߣ =
ߦ − 1

2݅
ܫ) − ܫߞ)(ܶ − ܶ)ିଵ, 

∗ܮ) − ଵି(ܫߣ =
ߦ − 1

2݅
ܫ) − ܫ)(∗ܶ −  ଵ,                    (3)ି(∗ܶߞ

          There exist several different ways to define the characteristic function (c.f.).  All of 
them are more or less equivalent, but the specific character of the initial operator may 
bring a definite advantage in the form in which the c.f. is written. Usually, the c.f. is an 
analytic operator-valued function, acting from one "defect space" into the other, while 
these latter measure the deviation of the operator from a unitary or from a self adjoint one. 
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If ܮ is a maximal dissipative operator, then for the defect subspaces one can take ु் =

clos(ܫ − ܶ∗ܶ)
భ
మܪ , ु்∗ = clos(ܫ − ܶܶ∗)

భ
మܪ ,   , where  ܶ =  These spaces can be given .   (ܮ)ࣲ

also a more explicit description in terms of the operator ܮ. An operator A with domain of 
definition ु(ܣ) ⊂  is said to be Hermitian, if (not necessarily dense)  ܪ

,ݔܣ) (ݔ ∈ ℝ, ݔ ∈  .(ܣ)ु
If   clos ु(ܣ) =  then a Hermitian operator is said to be symmetric. The defect   ܪ
subspaces of a Hermitian operator are defined by the formulas 

(ܣ)∓ܰ = ⊖ ܪ Ran (ܣ ±  .(ܫ݅
We mention that the range  Ran(ܣ ±  is closed since for a ܣ   is closed if the operator (ܫ݅
Hermitian   operator   we have   ‖(ܣ − ‖ݔ(ܫߣ ≥ |ℑߣ|.  . ‖ݔ‖
Definition(1.1.8) [1] . Let ܮ be a maximal dissipative operator.  By Hermitian domain of ܮ 
we mean subspace  ܩ௅ = ݔ} ∈ (ܮ)ु ∩ :(∗ܮ)ु ݔܮ =  By the Hermitian part of the .{ݔ∗ܮ
operator  ܮ we mean the restriction ܮு =  .௅ܩ|ܮ
   Clearly,   the operator ܮு is closed since its graph is the intersection   of the graphs of the 
operators   Land   ܮ∗. 
    Let ܶ be a contraction. We recall that the operators ்ܦ = ܫ) − ܶ∗ܶ)ଵ/ଶ ∗்ܦ , = ܫ) −
ܶ∗ܶ)ଵ/ଶ are called the defect operators of the contraction ܶ, while the subspaces ु் =
clos ܪ்ܦ , ु்∗ = clos ܪ∗்ܦ are the defect subspaces. 
LEMMA(1.1.9) [1] . 
Let ܮ be a maximal dissipative operator, ܶ = (ܮ)ࣲ = ܮ) − ܮ)(ܫ݅ + (ுܮ)ܰି  ଵ . Thenି(ܫ݅ =
்ܦ  , ାܰ(ܮு) = ∗்ܦ . We have the equalities 
     ଵ

ଶ
்ܦ

ଶ = ܮ)݅ + ଵି(ܫ݅ − ∗ܮ)݅ − ଵି(ܫ݅ − ∗ܮ)2 − ܮ)ଵି(ܫ݅ +  ,ଵି(ܫ݅
ଵ
ଶ

∗்ܦ
ଶ = ܮ)݅ + ଵି(ܫ݅ − ∗ܮ)݅ − ଵି(ܫ݅ − ܮ)2 + ∗ܮ)ଵି(ܫ݅ −  ଵ,                        (4)ି(ܫ݅

Proof. Formulas   (4) are easily verified in a straightforward   manner.   We prove that ்ܦ =
ܮ the second equality is obtained with the aid of the substitution ;(ுܮ)ܰି →   We have .∗ܮ−

்ܦ = ܪ ⊝ ker ்ܦ  . We show that (ܮ + ௅ܩ(ܫ݅ = Ker ்ܦ =  Ker ்ܦమ  . From (4) there follows 
that 

்ܦ 1/2
ଶ = ܫ]݅ − ∗ܮ) − ܮ)ଵି(ܮ݅ − ܮ)[(ܫ݅ +  .ଵି(ܫ݅

Consequently, if ݔ = ܮ) + ݕ  ,ݕ(ܫ݅ ∈ ்ܦ  ௅, thenܩ
ଶݔ = ܫ]2݅ − ∗ܮ) − ܮ)ଵି(ܫ݅ − ݕ[(ܫ݅ = ݕ]2݅ −

∗ܮ) − ∗ܮ)ଵି(ܮ݅ − [ݕ(ܫ݅ = 0. 
Conversely, if ݔ ∈ Ker ்ܦ

ଶ and ݕ = ܮ) + ݕ then   ,ݔଵି(ܫ݅ = ∗ܮ) − ܮ)ଵି(ܫ݅ − ݕ But then  .ݕ(ܫ݅ ∈
(ܮ)ܦ ∩ ݕ∗ܮ ,(∗ܮ)ܦ =   .The lemma is proved .ݕܮ
Definition(1.1.10) [1] .  Let  ܮ be a maximal dissipative   operator and let ܩ௅ be its 
Hermitian part.  We consider the quotient space   ܩ/(ܮ)ܦ௅   and the natural projection 
:ߩ (ܮ)ܦ →  ௅  . On the quotient space we define the inner productܩ/(ܮ)ܦ

,ݔߩ〉 〈ݕߩ =
1
2

൫(ݔ, (ݕܮ − ,ݔܮ) ,ݔ   ,൯(ݕ ݕ ∈  .(ܮ)ܦ
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The  correctness   of the definition   and  the nondegeneracy   of the form  follows  from  the 
definition   of the subspace  ܩ௅, while  its positivity   from  the dissipativity   of  the  
operator   ܮ. By (ܮ)ܨ  we denote the completion of the quotient space  ܩ/(ܮ)ܦ௅ with 
respect to the corresponding   norm.  In a similar manner we define the space (ܮ)∗ܨ ≝
 ௅  . We haveܩ/(∗ܮ)ܦ   onto   (∗ܮ)ܦ   we denote the projection from  ∗ߩ  By .(∗ܮ−)ܨ

ி‖ݔߩ‖
ଶ = Im(ݔܮ, ,(ݔ ∗ி‖ݔ∗ߩ‖

ଶ = −Im(ݔ∗ܮ,  .(ݔ
The Hilbert spaces (ܮ)ܨ,  .ܮ will be called the boundary spaces of the operator (ܮ)∗ܨ
    Such spaces and closely related objects (spaces of boundary values) have been 
repeatedly considered in the literature [11-14]. As a rule, in these investigations one has 
taken an abstract axiomatic definition of the spaces of boundary values. In [14] it is 
mentioned   that the "canonical" selection of these spaces, given above, is not always 
convenient. Nevertheless, we restrict ourselves   to these. 
    The  above  defined  spaces  (ܮ)ܨ ,   has ܮ  are  especially convenient if the operator  (ܮ)∗ܨ
finite defects;  in this  case  the completion is redundant. The  term "boundary   spaces" is 
connected with the  fact  that  for differential  operators   they  can  be realized  as the  
actual  spaces  of boundary   values. This is illustrated   by the following example. 
Example(1.1.11). We consider the operator ܮ from Example(1 .l.6): 

ݕܮ = ,ᇱݕ݅ (ܮ)ܦ = ݕ} ∈ ଶܹ
ଵ(0, ܽ): (0)ݕ = 0} 

From (2) there follows that 
ݕ∗ܮ = ,ᇱݕ݅ (∗ܮ)ܦ = ݕ} ∈ ଶܹ

ଵ(0, ܽ): (ܽ)ݕ = 0} 
௅ܩ = ݕ} ∈ ଶܹ

ଵ(0, ܽ): (0)ݕ = (ܽ)ݕ = 0} 
Clearly,  (ܮ)ܨ ≅ ℂ, (ܮ)∗ܨ ≅ ℂ   . From (2) we have 

ி‖ݕߩ‖
ଶ =

1
2

 .ଶ|(ܽ)ݕ|

Identifying (ܮ)ܨ with ࡯, we obtain that the projection ߩcorresponds (to within a constant) 
to the calculation of the value at the point ܽ. Similarly, ߩ∗    corresponds to the calculation 
of the value at zero (to within a constant). 
LEMMA(1.1.12) [1] . Let ܮ be a maximal dissipative operator and let ܶ =  Then there    (ܮ)ࣲ
exist isometric isomorphisms ߩ: (ܮ)ܨ → ்ܦ :∗ߩ , (ܮ)∗ܨ →  defined by the equalities ,∗்ܦ

ܫ)ߩߩ − ܶ) = ,   ்ܦ ܫ)∗ߩ∗ߩ − ܶ∗) =  (5)                           ∗்ܦ
Proof.  Taking into account that ܮ = ܫ)݅ + ܫ)(ܶ − ܶ)ିଵ, we have 

ܫ)ߩ‖ − ி‖ݔ(ܶ
ଶ = Im( ܫ)ܮ − ,ݔ(ܶ ܫ) − (ݔ(ܶ = Im ݅൫(ܫ + ,ݔ(ܶ ܫ) − ൯ݔ(ܶ
= Re൫(ܫ + ,ݔ(ܶ ܫ) − ൯ݔ(ܶ = ܫ)]) − ܫ)∗(ܶ + ܶ) + ܫ) + ܫ)∗(ܶ − ,ݔ[(ܶ 2/(ݔ
= ܫ)) − ,ݔ(ܶ∗ܶ (ݔ =  .ଶ‖ݔ்ܦ‖

Consequently, equality (5) defines an isometry ߩ.  Since ܫ)ߩ − ܪ(ܶ = (ܮ)ܦߩ = ௅ܩ/(ܮ)ܦ   is 
dense in (ܮ)ܨ, while DrH is dense in  ்ܦ    ,we  obtain what we intended to prove. Passing to 
the operator ܶ∗, we obtain the assertion regarding ߩ∗. 
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COROLLARY(1.1.13) [1] . 
dim ்ܦ = dim[(ܮ − (ܮ)ܦ)(∗ܮ ∩ [((∗ܮ)ܦ + dim((ܮ)ܦ/(ܮ)ܦ ∩  ,((∗ܮ)ܦ

dim ∗்ܦ = dim[(ܮ − (ܮ)ܦ)(∗ܮ ∩ [((∗ܮ)ܦ + dim((ܮ)ܦ/(∗ܮ)ܦ ∩  .((∗ܮ)ܦ
Proof .  We verify the first equality. We have 

dim்ܦ = dim (ܮ)ܨ = dim ((ܮ)ܦ/(ܮ)ܦ ∩ ((∗ܮ)ܦ + dim ((ܮ)ܦ ∩  (௅ܩ/(∗ܮ)ܦ
It remains to make use of the fact that dim ܮ) ܴ݊ܽ − (∗ܮ = dim(ܮ)ܦ − ܮ) ݎ݁ܭ/(∗ܮ −  .((∗ܮ
Discussion(1.1.14). The corollary shows intuitively the two-fold reason for the appearance 
of defects at dissipative operators. It is natural to consider the "extreme" cases, i.e., the 
operators for which one of the terms vanishes. The first class of operators consists of those 
for which ु(ܮ) =  for them the defect indices are necessarily equal. The "defect" is ; (∗ܮ)ु
defined by the imaginary part. A model example is the Schrodinger operator with a 
complex-valued potential and real boundary condition. The second class consists of those 
operators for which ܩ௅ = (ܮ)ु  ∩  For them the "defect" is defined by the difference .  (∗ܮ)ु
of the domains of definition of the operator and of the conjugate. A model example is the 
Schrodinger operator with a real-valued potential and complex boundary condition. We 
also note that in this class one has all the dissipative extensions of the symmetric 
operators. Indeed, for them ܩ௅is dense in ܪ. If ݕ ∈ (ܮ)ु ∩ ,ݕܮ) then , (∗ܮ)ु (ݔ = ,ݕ) (ݔ∗ܮ =
,ݕ) (ݔܮ = ,ݕ∗ܮ)   ,௅. Thusܩ from the dense set ݔ for (ݔ
ݕܮ = (ܮ)ु  ,.i.e ,ݕ∗ܮ ∩ (∗ܮ)ु = ௅ܩ . 
A powerful device in the investigation of a dissipative operator is the characteristic 
function (c.f.).  In a coordinate-free approach to a model, the c.f. is defined starting from 
functional imbeddings [15, 16J. This will be done , while here we wish only to derive some 
formulas for the c.f. 
    A completely non unitary contraction ܶ is defined to within a unitary equivalence of the 
c.f.  ்ߠ ∈ :ࡰ)ஶܪ ܧ → (∗ܧ  [16], where ܧ, ∗ܧ  are auxiliary Hilbert spaces, isomorphic 
to ु் , ु்∗ respectively.  In turn, neither the c.f. ்ߠ  is defined uniquely, but to within a 
multiplication on the right and on the left by an isometry from ܧ onto ܧ′ and from ܧ∗ onto 
∗ܧ

ᇱ, respectively. We fix arbitrary isometric isomorphismsΩ: ܧ → ु் , Ω∗: ∗ܧ → ु்∗ . Then 
[9] 

(ߞ)்ߠ = ∗ߗ
∗(−ܶ + ܫ)∗்ुߞ −  (6)                                ,ߗ(்ु(∗ܶߞ

்ु∗Ω(ߞ)்ߠ = Ω∗
ܫ)∗்ु∗ − ܫߞ)ଵି(∗ܶߞ − ܶ).                             (7) 

The characteristic function of a dissipative operator is the conformal transplant from the 
circle into the half-plane of the c.f. of its Cayley transform. It turns out that the various 
forms of the c.f., are obtained from the "abstract" c.f. if one selects ܧ,  in a special ∗ܧ
manner. But first it is necessary to isolate the selfadjoint part of a dissipative operator. 
Definition(1.1.15) [1].  Let ܮ be a maximal dissipative operator in ܪ and let ܪ଴ ⊂  be a ܪ
closed subspace. It is said to be reducing if ுܲబܮ ⊂ ܮ ுܲబ. The operator ܮ is said to be 
completely nonselfadjoint if there is no nontrivial reducing subspace ܪ଴such that the 
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restriction ܪ|ܮ଴ is a selfadjoint operator in ܪ଴· 
    From the decomposition of a contraction into the unitary and the completely 
nonunitary parts, we obtain at once the following statement. 
LEMMA (1.1.16) [1].   Let  ܮ  be a maximal dissipative operator in ܪ.  Then there exists a 
unique decomposition ܪ = ଴ܮ into reducing subspaces such that ܪ ଵ of the spaceܪ⨁଴ܪ =
଴ܪ|ܮ  is selfadjoint and ܮଵ = ଵܪ|ܮ is a completely nonselfadjoint maximal dissipative 
operator. 
Definition(1.1.17) [1].  Let ܮ be a completely non selfadjoint, maximal dissipative operator 
and let ܶ = -we mean the operator ܮ By the characteristic function of the operator .(ܮ)ࣲ
valued function 

ܵ௅(ߣ) = ்ߠ ൬
ߣ − ݅
ߣ + ݅

൰ ,       ܵ௅ ∈ ,ஶ(ℂାܪ ܧ →  .(∗ܧ

    In view of Lemma (1.1.12) we can set Ω = , ߩ Ω∗ = , ∗ߩ ܧ = ,(ܮ)ܨ ∗ܧ =  .(ܮ)∗ܨ
LEMMA(1.1.18) [1] .  Let ܮ be a completely nonselfadjoint, maximal dissipative operator. 
Then the characteristic functionܵ௅ ∈ ,ஶ(ℂାܪ (ܮ)ܨ → ௅ܩ/(ܮ)ु on the sense set ((ܮ)∗ܨ  is 
defined by the equality 

ܵ௅(ߣ) = ∗ܮ)∗ߩ − ܮ)ଵି(ܫߣ −  ଵ                                        (8)ିߩ(ܫߣ
Proof.  First we note that the operator ܮ)∗ߩ∗ − ܮ)ଵି(ܫߣ −  ଵ  is well defined onିߩ(ܫߣ
. ௅ܩ/(ܮ)ु Indeed, if ݔߩ = 0, then ݔ ∈ ௅ܩ ݔܮ, =  ,ݔ∗ܮ

∗ܮ) − ܮ)ଵି(ܫߣ − ݔ(ܫߣ = ܮ) − ∗ܮ)ଵି(ܫߣ − ݔ(ܫߣ = ݔ∗ߩ     ,ݔ = 0. 
Further, making use of (2.3') and setting  ߞ = ߣ) − ߣ)(݅ + ݅)ିଵ on ु(ܮ)/ܩ௅  we have 

࣭௅(ߣ)ߩ = ߩఆ∗ఘ(఍)்ߠ = ܫ)ఆ∗ु೅(఍)்ߠ − ܶ)ିଵ = ∗ߗ
ܫ)∗்ु∗ − ܫߞ)ଵି(∗ܶߞ − ܫ)(ܶ − ܶ)ିଵ

= ∗ߗ
ܫ)∗ߩ∗ − ܫ)(∗ܶ − ܫߞ)ଵି(∗ܶߞ − ܫ)(ܶ − ܶ)ିଵ 

From here, taking into account (3),   we obtain equality (8).   
Special Case(1.1.19):  ु(ܮ) = ܮ)ܳ   In this case one can consider the operator . (∗ܮ)ु −
ܶ ,It is expressed   in terms of the Cayley transform  .2݅/(∗ܮ =    in the following (ܮ)ࣲ
manner [9, Section IX.4]: 

ܳ = ܫ) − ܶ)ିଵ(ܫ − ܫ)(∗ܶܶ − ܶ∗)ିଵ, 
ܳ = ܫ) − ܶ∗)ିଵ(ܫ − ܫ)(ܶ∗ܶ − ܶ)ିଵ .                              (9) 

Since (ܳݔ, (ݔ ≥ ݔ  ,0 ∈ ु(ܳ), ܳ  admits  a positive  extension  (for example,  the Friedrichs   
extension).   We fix such an extension and we denote it also by ܳ.  Then the operator   ܳଵ/ଶ 

is defined.   We set  ीொ = clos ܳ
భ
మु(ܮ)  .  

LEMMA(1.1.20) [1].  Let ु(ܮ) =     Then there exist isometric isomorphisms . (∗ܮ)ु
:ߤ ीொ → ु்  , :∗ߤ ीொ → ु்∗  defined by the equalities 

ܫ)ଵ/ଶܳߤ − ܶ) = ु் , ܫ)ଵ/ଶܳ∗ߤ − ܶ∗) = ु்∗  ,                              (10) 
Proof From (9) we obtain that (ܫ − ܫ)ܳ(∗ܶ − ܶ) = మ்ܦ , from where  ฮܳଵ/ଶ(ܫ − ฮଶݔ(ܶ =
 In a similar manner we  .ߤ ଶ . This means that equality (10) defines an isometry‖ݔ்ܦ‖
proceed   with ߤ∗ 
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The following obvious statement establishes the connection between, ीொ  and the boundary   
spaces. 
LEMMA(1.1.21) [1]. Let ु(ܮ) = (ܮ)ܨ Then .(∗ܮ)ु = ߩ  , (∗ܮ)ܨ = (ܮ)ु|ଵ/ଶܳ ,∗ߩ = ߩ∗ߤ = ∗ߤ

 .∗ߩ∗
Lemma (1.1.20) shows that for the characteristic function one can set ܧ = ∗ܧ = ीொ Ω =
,ߤ Ω∗ = μ∗ . 
LEMMA(1.1.22) [1].  Let ܮ be a completely nonselfadjoint, maximal dissipative   operator 
such that ु(ܮ) = Then the c.f.  ܵ௅ . (∗ܮ)ु = :ஶ(ℂାܪ ीொ → ीொ) is defined on the dense set 
ܳଵ/ଶु(ܮ)  by the equality 

࣭௅(ߣ) = ܫ + 2݅ܳଵ/ଶ(ܮ∗ −  ଵܳଵ/ଶ.                                   (11)ି(ܫߣ
Proof. We set  ߣ)ߞ − ߣ)(݅ + ݅)ିଵ. From (10),  (2.3'),  (3) we have 

࣭௅(ߣ)ܳ
ଵ
ଶ(ܫ − ܶ) = ࣭௅(ߣ)்ܦ∗ߤ = Ω∗D୘(ߞ)்ߠ = ∗ߗ

ܫ)∗்ु∗ − ܫߞ)ଵି(∗ܶߞ − ܶ)

= ∗ߤ
ܫ)∗்ु∗ − ܫߞ)ଵି(∗ܶߞ − ܶ) = ܳ

ଵ
ଶ(ܫ − ܫ)(∗ܶ − ܫߞ)ଵି(∗ܶߞ − ܶ)

= ܳ
ଵ
ଶ(ܮ∗ − ܮ)ଵି(ܫߣ − ܫ)(ܫߣ − ܶ) = ܳ

ଵ
ଶ(ܮ∗ − ∗ܮ)ଵି(ܫߣ − ܫߣ + ܫ)(2݅ܳ − ܶ)

= ܫ] + 2݅ܳ
ଵ
ଶ(ܮ∗ − ܳ[ଵି(ܫߣ

ଵ
ଶ(ܫ − ܶ). 

From here we obtain (11).   
    The characteristic function in the form (11) has appeared for the first time in a paper by 
M.  S. Lipschitz [18]; see also [9,  Sec IX.4]. 
LEMMA(1.1.23) [1]. Let  ܮ be a maximal dissipative   operator   in ܪ,  and  let  ࣴ   be a 
selfadjoint   operator   in a Hilbert  space ࣲ ⊃  The following   statements   are . ܪ
equivalent: 
(a) (ܮ − ଵି(ܫߣ = ுܲ(ࣴ − ߣ , ܪ|ଵି(ܫߣ ∈ ℂି ; 
(b) (ܮ + ௡ି(ܫ݅ = ுܲ(ࣴ + ,ܪ|௡ି(ܫ݅ ݊ ≥ 0; 
(c)݁௜௅௧ = ுܲ݁௜ℒ௧|ܪ, ݐ > 0; 
(d) the operator  ܷ =  ࣲ (ࣴ)  is a unitary dilation of the contraction ܶ =   .(ܮ)ࣲ
Proof. Since (ܮ)ߪ ⊂  ℂିthe conditions (a), (b), (d) are, obviously, equivalent. Condition ݏ݋݈ܿ
(c) follows from (d) since݁௜௅௧ = ,(ܶ)௧ߠ ݁௜ࣴ௧ =  ௧(ܷ). The implication (c)⇒(a) follows fromߠ
the known formula 

ܮ)݅ − ଵି(ܫߣ න ݁ି௜௧ఒ݁௜௧௅݀ߣ                , ݐ ∈ ℂି.
ஶ

଴
 

A selfadjoint operator ࣴ, satisfying the conditions of the lemma, is called a selfadjoint 
dilation of the operator ܮ. The dilation is minimal if  Span((ࣴ − ,ܪଵି(ܫߣ ߣ ∈ ℂି) = ℋ. 
Clearly, also the minimality can be formulated by using, instead of the resolvent (ࣴ −  ,ଵି(ܫߣ
the operator from the statements (b)-(d)   of Lemma (1.1.21). 
Discussion(1.1.24). From the existence of a unitary dilation of a contraction and from 
condition (d) of Lemma (1.1.21) there follows that a selfadjoint dilation exists.  However,  
one would want to have an expression for the dilation in terms of a dissipative operator,  
The complication (in comparison with the unitary dilation) consists in the fact that,  in 
general,  the restriction ℒ|ܪ is not equal to the operator ܮ. Frequently it occurs even that 
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ु(ࣴ) ∩ ܪ = {0}. Nevertheless, there exist sufficiently simple and nice formulas for 
selfadjoint dilation, especially in particular cases.  They can be found in the investigations of 
B.  S. Pavlov [2, 3]; see also [4]. The general case has been considered by A.  V. Kuzhel' and 
Yu. L. Kudryashov [5-7]. In all the mentioned investigations one presents at once a certain 
operator and then one verifies that it is selfadjoint dilation. We obtain these formulas, as 
well as some of their generalizations, in a natural manner, namely, by the Cayley 
transformation of a unitary dilation. 
 Let ܮ be a maximal dissipative operator, let  ܶ =  be its Cayley transform. Then the     (ܮ)ࣲ
minimal unitary dilation ܷ of the contraction ܶ acts in the space ℋ் = ∗ܩ ⊕  ܩ where, ܩ⨁ܪ
and ܩ∗ are ܷି and ܷି

∗ invariant, respectively [16]. One can select the following realization: 
ℋ் = ିܪ

ଶ(॰, (∗ܧ ⊕ ܪ ⊕ ,ଶ(॰ܪ ;(ܧ ܩ|ܷ     = ℤ, ∗ܩ|∗ܷ = ℤഥ, 
where ܧ, ,்ु  are isomorphic to ∗ܧ ु்∗  ,  respectively. We wish to obtain a selfadjoint 
dilation ࣴ,    in the space 
 ℋ௅ = ,ଶ(ℝିܮ (∗ܧ ⊕ ܪ ⊕ ,ଶ(ℝାܮ  .ݐ ଶ - is a shift byܮ|௜௧ࣴ݁ ,(ܧ
For this it is necessary to perform 
i) passage from the circle to the half-plane by a linear fractional transformation; 
ii) the Fourier transform, i.e.,  passage to the translation representation of the semigroup; 
iii) the Cayley transform. 
This can be performed in a different order. 
The starting point is the following formula for the minimal unitary dilation in  ℋ்   [15, 16]: 

ܷ = ൥
ܲି ݖ 0 0
ܣ ܶ 0
ܿ ܤ ݖ

൩,                                                          (12) 

Here ܸ: ܪ → ,ܩ ∗ܸ: ܪ → ,்ु are partial isometries with initial spaces ∗ܩ ु்∗  and final spaces 
ܩ ⊝ ,ܩܷ ∗ܩ ⊝  .respectively ,∗ܩ∗ܷ
We select as the free parameters of the dilation the isometries 

Ω: ܧ → ु்      ,   Ω∗: ∗ܧ → ु்∗ 
Then ܸ = ଴ܲ

∗Ω∗  ,  ∗ܸ = ܲି ଵ
∗ Ω∗

∗  ,where  ଴ܲ: ܪଶ(ࡰ, (ߝ → ߝ , ܲି ଵ: ିܪ
ଶ(ࡰ, (ߝ → ߝ  are the Fourier 

series of the zeroth and (−1)the coefficients, respectively. We set 

(ܹ݂) =
1

ߨ√
=

1
ݔ + ݅

= ݂ ൬
ݔ − ݅
ݔ + ݅

൰ .                                 (13) 

The operator   ܹ is an isometric isomorphism   of ܪଶ(ࡰ, ,ࡾ)ଶܪ onto (ߝ  .for any space e (ߝ
Moreover, ܹܪଶ(ࡰ, (ߝ = ,ା࡯)ଶܪ ିܪܹ ,(ߝ

ଶ(ࡰ, (ߝ = ,ି࡯)ଶܪ  We denote by  ℱ the Fourier .(ߝ
transform 

(ℱℎ) = ଵି(ߨ2)
ଶ න ℎ(ݔ)݁௜௫௭݀ݔ

ାஶ

ିஶ
.                                 (14) 

The operator  ℱ acts unitarily in all of ܮଶ(ࡾ, ,±ࡾ)ଶܮ and maps  (ߝ ,±࡯)ଶܪ into (ߝ  Our aim is .(ߝ
the computation of the operator  ࣴ: 



10 
 

o                                              :r

ࣴ = ܫ)݅ + ߬ିଵܷ߬)(ܫ − ߬ିଵܷ߬), ߬ ≝ ൥
ܹିଵℱ 0 0

0 ܫ 0
0 0 ܹିଵℱ

൩               (15) 

LEMMA (1.1.25) [1].  (on the unitary dilation in the half-plane). The operator  

ଵܷ ≝ ൥
ܹ 0 0
0 ܫ 0
0 0 ܹ

൩ ∙ ܷ ∙ ൥
ܹିଵ 0 0

0 ܫ 0
0 0 ܹିଵ

൩ 

 is the space ܪଶ(ି࡯, ,ା࡯)ଶܪ⨁ܪ⨁(∗ܧ   has the form (ܧ

ଵܷ = ቎
ܫ − ߁2݅ି ௜ 0 0

ℎି௜∗ߗ∗்ܦߨ√2݅− ܶ 0

ݖ)2݅ + ℎି௜∗ߗ∗ܶ∗ߗଵି(ܫ݅ భିߨ
మ(ݖ + ்ܦ∗ߗଵି(ܫ݅ ݖ) + ݖ)(ܫ݅ + ଵି(ܫ݅

቏.  (16) 

Here ℎି௜ denotes the evaluation functional at the point (−݅). 
Proof.  By ଵܷ(݇, ℓ) we shall denote the corresponding matrix element. From (12) and from 
the last formulas we have 

ଵܷ = ቎
ܹܲି ଵିܹݖ 0 0

ିܲ∗ߗ∗்ܦ ଵܹିଵ ܶ 0
−ܹ ଴ܲ

ିܲ∗ߗ∗ܶ∗ߗ∗ ଵܹିଵ ܹ ଴ܲ
்ܦ∗ߗ∗ ଵିܹݖܹ

቏. 

It is easy to see that ܹିܹݖଵ = ݖ) − ݖ)(ܫ݅  +  ଵ (the multiplication operator). We haveି(ܫ݅

(ܹିଵ݂)(ݖ) = ݂ ൬݅
1 + ݖ
1 − ݖ

൰ ∙
݅ߨ√2
1 − ݖ

;        ܲି ଵ݃ = ,௭ୀஶ|(ݖ)݃ݖ ݃ ∈ ିܪ
ଶ(॰,  .(∗ܧ

Thus,  ܲି ଵܹିଵ = ܹ ℎି௜ . Further, it is clear that݅ߨ√2− ଴ܲ
∗: ݁ → ݖ)ଵ/ଶିߨ + 1)ିଵ݁ .   Finally, 

ܹܲି ଵିܹݖଵ = ଵିܹݖܹ − ܹ ଴ܲ
∗ܲି ଵܹିଵ = ݖ) − ݖ)(ܫ݅ + ଵି(ܫ݅ + ܹ ଴ܲ

 ,ℎି௜ ݅ ߨ√2∗
ܹ ଴ܲ

ℎି௜݂ ݅ ߨ√2∗ = ݖ)2݅ + ݅)ିଵ݂(−݅). 
Introducing all these formulas, we obtain (16) . 
LEMMA(1.1.26) [1].  (on unitary dilation in a translation representation on a line). Operator  

ܷଶ ≝ ൥
ℱିଵ 0 0

0 ܫ 0
0 0 ℱିଵ

൩ ଵܷ ൥
ℱ 0 0
0 ܫ 0
0 0 ℱ

൩ 

in the space ܮଶ(ିࡾ, ,ାࡾ)ଶܮ⨁ܪ⨁(∗ܧ   has the form (ܧ

ܷଶ = ቎
ܫ − ିܭ2݅ 0 0

,∙)∗ߗ∗்ܦߨ√2݅− ݁ோష
௫ ) ܶ 0

2݁ோశ
ି௫ߗ∗ܶ∗ߗ∗(∙, ݁ோష

௫ ) ோశ݁݅ߨ√2݅−
ି௫்ܦ∗ߗ ܫ − ାܭ2݅

቏ ,             (17) 

where 

(ݔ)(ି݃ି݇) = න ି݃     , ݐ௧ି௫݀݁(ݐ)ି݃ ∈ ,ିࡾ)ଶܮ ,(∗ܧ
௫

ିஶ
 

(݇ା݃ା)(ݔ) = න ݃ା(ݐ)݁௧ି௫݀ݐ ,     ݃ା ∈ ,ାࡾ)ଶܮ .(ܧ
௫

଴
 

The operators ܭ± are operations of convolution on ࡾ with the function ݁ோశ
ି௫ ≝ ݁ି௫|ࡾା  By (∙

, ݂) we denote the inner product in the corresponding ܮଶ space. 
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Proof i) From (14) we find that    ℎି௜ℱ|ܮଶ(ିࡾ, (∗ܧ = భି(ߨ2)
మ(∙, ݁ோష

௫ ) . This computes, starting 
from (16), the matrix element ܷଶ(2, 1). 
ii) We have 

ℱିଵ(ݖ + ݅) = ଵ/ଶି(ߨ2) න ݖ) + ݅)ିଵ݁ି௜௫௭݀ݖ = ቊ (ߨ2)−
ଵ
ଶ݅݁ି௫,    ݔ ≥ 0

ݔ                          ,0 < 0.

ାஶ

ି
 

From here we find ܷଶ(3,2). and also ܷଶ(3, 1): 
ℱିଵ2݅(ݖ + ℎି௜ℱ∗ߗ∗ܶ∗ߗଵି(ܫ݅ = 2݁ோశ

ି௫ߗ∗ܶ∗ߗ∗൫∙, ݁ோష
௫ ൯. 

iii) We have ℱିଵ(݃ଵ݃ଶ) = భି(ߨ2)
మℱିଵ(݃ଵ) ∗ ℱିଵ(݃ଶ)  from where 

ℱିଵ2݅(ݖ + ଵℱି(ܫ݅ = (ݔ)(݃݇)       ,2݇ = න ݐ௧ି௫݀݁(ݐ)݃
ିஶ

. 

If ݃ = ݃ା ∈ ,ାࡾ)ଶܮ  then from here we obtain at once a formula for the matrix element ,(ܧ
ܷଶ(3,3).  It remains to evaluate ܷଶ(1,1) = ܫ − 2(݇ − ݅ℱିଵ(ݖ + ݅)ିଵℎି௜, ℱ) . Let  ݃ି ∈
,ିࡾ)ଶܮ   We have .(∗ܧ

(ݔ)(ି݃݇) = ቐ
න ݔ    ,ݐ௧ି௫݀݁(ݐ)ି݃ < 0

௫

ିஶ
,

݁ି௫൫݃ି(ݐ), ݁ோష
௧ ൯,      ݔ > 0.

 

Taking into account that  ݅ℱିଵ(ݖ + ݅)ିଵℎି௜ℱ = ݁ோశ
ି௫(∙, ݁ோష

௫ )   ,we  obtain the required formula.   
    It remains to perform the Cayley transform and one obtains the formula for the 
selfadjoint dilation. We note that this cannot be written in the form of a matrix since the 
decomposition into a direct sum need not be consistent with the domain of definition. 
THEOREM(1.1.27) [1].   Let ܮ be a maximal dissipative operator in the space ܪ, ܶ =  .  (ܮ)ࣲ
Then its minimal selfadjoint dilation ࣴ, in the space ௅ࣲ = ,ିࡾ)ଶܮ ,ାࡾ)ଶܮ⨁ܪ⨁(∗ܧ  has the  (∗ܧ
form 

ࣴ ൥
ࣰି
݂
ାࣰ

൩ =

⎣
⎢
⎢
⎡

ࣰ݅ିᇱ

݅ ൜2(ܫ − ܶ)ିଵ ൤݂ −
݅

√2
ु்∗Ω∗ࣰି (0)൨ − ݂ൠ

݅ ାࣰ
ᇱ ⎦

⎥
⎥
⎤
                   (18) 

and the domain of definition ु(ࣴ) is given by the conditions: 
ࣰି ∈ ଶܹ

ᇱ(ିࡾ, ାࣰ  ,  (∗ܧ ∈ ଶܹ
ᇱ(ࡾା,  (19)                                    ;(∗ܧ

݂ − ௜
√ଶ

ु்∗Ω∗ࣰି (0) ∈ ܫ) − ܪ(ܶ =  (20)                                    ;(ܮ)ु

ܫ)்ु 2݅√ − ܶ)ିଵ ൬݂ − ௜
√ଶ

ु்∗Ω∗ࣰି (0)൰ = ܶ∗Ω∗ࣰି (0) + Ω ାࣰ(0).         (21) 

The "free parameters” of the dilation are the isometries Ω: E → ु்  , Ω∗: E∗ → ु்∗ . 
Proof. We have  ࣴ = ܫ)݅ + ܷଶ)(ܫ − ܷଶ)ିଵ = ܫ)2]݅ − ܷଶ)ିଵ −  where the operator ܷଶis ,[ܫ
given by formula (17). Let (1 −  ܷଶ)[݃ି, ݃, ݃ା]் = ,_ݒ] ݂,  ା]். We obtain the followingݒ
system of equations: 
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⎩
⎪
⎨

⎪
⎧ න ݐ௧ି௫݀݁(ݐ)ି݃ = (ݔ)ିݒ

௫

ିஶ

ܫ) − ܶ)݃ + ,൫݃ି∗ߗ∗்ܦ2√݅ ݁ோష
௫ ൯ = ݂

2 න ݃ା(ݐ)݁௧ି௫݀ݐ + ݅√2݁ோశ
ି௫்݃ܦ∗ߗ − 2݁ோశ

ି௫ߗ∗ܶ∗ߗ∗൫݃ି, ݁ோష
௫ ൯ = (ݔ)ାݒ

௫

଴

 

From the first equation it follows that ିݒ
ᇱ (ݔ) = (ݔ)_2݃  − ,(ݔ)_ݒ _ݒ ଶܹ

ଵܥ(ܴ_,  ,In addition .(∗ܧ
(0)ିݒ = 2(݃_, ݁ோష

௫ ).  From the second equation we find that ߔ ≜ ݂ − 2ିଵ/2݅ݒ∗ߗ∗்ܦ଴ ∈
,(ܮ)ु ݃ = ܫ) − ܶ)ିଵߔ .  From the third equation we obtain that ݒା

ᇱ (ݔ) =  2݃ା(ݔ) −   ,(ݔ)ାݒ
from where ݒା ∈ ଶܹ

ଵ(ܴା,  and (ܧ
ା(0)ݒ = ܫ)்ܦ∗ߗ2݅√ − ܶ)ିଵ߶ −  .(0)ିݒ∗ߗ∗ܶ∗ߗ

SinceΩΩ∗ = Pु ೅ , T∗ु்∗ ⊂ ु் , we have verified that ु(ࣴ)  satisfies conditions (19)-(21).    
It is also obvious that if for ݒା, ,ିݒ ݂ the conditions (19)-(21)   are satisfied, then 
,ିݒ] ݂, ்[ାݒ ∈ ܫ) − ܷଶ)ℋ௅ it,. and the operator  ࣴis given by the equality (18) . 
In the case of finite defects dim ु் < ∞, dim ु்∗ < ∞ it is convenient to have the dilation" 
attached" , not to the spaces ु் , ु்∗ ,  but to the boundary spaces F(L), F",(L) (see 
Definition 2.4). 
THEOREM(1.1.28) [1].  Let ܮ be a maximal dissipative operator in the space ܪ with finite 
defects. Assume that there are given isometric isomorphisms ߰: ܧ → :∗߰ , (ܮ)ܨ ∗ܧ →  .(ܮ)∗ܨ
Then the minimal selfadjoint dilation ࣴ in the space  ௅ࣲ = ,ିܴ)ଶܮ ,ଶ(ܴାܮ⨁ܪ⨁(∗ܧ  has the  (ܧ
form 

℘  ൥
ିݒ
݂

ାݒ

൩ =

⎣
⎢
⎢
⎡

ିݒ݅
ᇱ

ܮ ൬݂ −
݅

√2
൰[(0)ିݒ∗߰] +

݅
√2

[(0)ିݒ∗߰]∗ܮ

ାݒ݅
ᇱ ⎦

⎥
⎥
⎤
,                      (22) 

where [∙] denotes some representative of the quotient class mod ܩ௅. Moreover, the domain 
of definition  ु(℘)   of the dilation is defined by the condition (19) and also by the following 
two conditions: 

݂ − ௜
√ଶ

[(0)ିݒ∗߰] ∈  (23)                                             ,(ܮ)ु

݂ − ௜
√ଶ

[(0)ିݒ∗߰] + ݂ + ௜
√ଶ

[ା(0)ݒ߰] ∈ ௅ܩ .                             (24) 

Condition (23) can be replaced by the condition (3.12') 
݂ + ௜

√ଶ
[ା(0)ݒ߰] ∈  (25)                                          ,(∗ܮ)ु

since it is easy to see that the pairs of conditions (23), (24) and (25),  (24) are equivalent. 
Proof In the case of finite defects we have (ܮ)ܨ = (ܮ)∗ܨ , ௅ܩ/(ܮ)ु =  ௅. In Theoremܩ/(∗ܮ)ु
(1.1.27) we set Ω = , ߰ߩ Ω∗ =  From (5) we have . ∗߰∗ߩ

ु்∗Ω∗vି(0) = ु்∗
ଶ ܫ) − ܶ∗)ିଵߩ∗

ିଵ(0)ିݒ = ु்∗
ଶ ܫ) − ܶ∗)ିଵ[߰∗,  ,[(0)ିݒ

and the last expression does not depend on the representative[߰∗, [(0)ିݒ ∈   We set . (∗ܮ)ु
ܳ ≝ ݂ − ௜

√ଶ
ु்∗Ω∗vି(0)   .  We obtain that 
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ܳ = ݂ −
݅

√2
ܫ) − ܫ)(∗ܶܶ − ܶ∗)ିଵ[߰∗, [(0)ିݒ

= ݂ −
݅

√2
[߰∗, [(0)ିݒ −

݅
√2

ܫ) − ܫ)∗ܶ(ܶ − ܶ∗)ିଵ[߰∗,  ,[(0)ିݒ

from where it follows that condition (20) is equivalent to (23). Then 

ܫ) − ܶ)ିଵܳ = ܫ) − ܶ)ିଵ ൬݂ −
݅

√2
[߰∗, ൰[(0)ିݒ −

݅
√2

ܫ)∗ܶ − ܶ∗)ିଵ[߰∗, [(0)ିݒ

=
1
2݅

ܮ) + (ܫ݅ ൬݂ −
݅

√2
[߰∗, ൰[(0)ିݒ +

1
2݅

∗ܮ) + ଵି(ܫ݅ ݅
√2

[߰∗,  .[(0)ିݒ

Introducing this expression into (18), we obtain (22). It remains to rewrite condition (21): 
ܫ)2݅ु்√ − ܶ)ିଵܳ = ܫ)∗்ु∗ܶ − ܶ∗)ିଵ[߰∗, [(0)ିݒ + ܫ)்ु − ܶ)ିଵ[߰,  [ା(0)ݒ

is equivalent, taking into account the relation ܶ∗்ܦ∗ =  to the equality ,∗்ܶܦ

ܫ)2݅ु்√ − ܶ)ିଵ݂ −
݅

√2
[߰∗, [(0)ିݒ +

݅
√2

[߰, [ା(0)ݒ = 0. 

The last equality is equivalent to the condition (2.13) since  ker ܫ)்ु − ܶ)ିଵ = ker ߩ =  .௅ܩ
௅ܩ  then , we have ,ܪ ௅ is dense inܩ              = (ܮ)ु + -In this case the formulas (22)  .  (∗ܮ)ु
(24)   can be simplified somewhat. Namely, we consider the operator ܮ෨ , defined on ु(ܮ) +
  (∗ܮ)ु

෨ܮ ≝ (ܮ)ु|ܮ) ∩ ∗((∗ܮ)ु = ൜(ܮ)ु    ݊݋         ܮ 
 (∗ܮ)ु   ݊݋         ∗ܮ

Clearly,ܮ ቀ݂ − ௜
√ଶ

ቁ[(0)ିݒ∗߰] + ௜
√ଶ

[(0)ିݒ∗߰]∗ܮ =  ෨݂ and the pair of conditions (23), (24) isܮ

equivalent to the conditions (23), (3.12').  As a result we obtain the following 
COROLLARY(1.1.29) [1].   Let ܮ be a maximal dissipative operator with finite defects such 
that ܩ௅ is dense in ܪ. Then its selfadjoint dilation has the form 

℘  ൥
ିݒ
݂

ାݒ

൩ = ቎
ିݒ݅

ᇱ

෨݂ܮ
ାݒ݅

ᇱ
቏ , ෨ܮ =  (26)                                                           .∗(௅ܩ/ܮ)

ु(℘) = ,ିݒ]} ݂, :்[ାݒ ିݒ ∈ ଶܹ
ᇱ(ܴି, ,(∗ܧ ାݒ ∈ ଶܹ

ᇱ(ܴା, ,(ܧ
݂ − ௜

√ଶ
[(0)ିݒ∗߰] ∈ ,(ܮ)ु ݂ + ௜

√ଶ
[ା(0)ݒ߰] ∈ {(∗ܮ)ु .           (27) 

In the corollary we can reject the condition of the finiteness of the defects if we consider 
that formula (26) defines the dilation only on the essential selfadjointness set. The obtained 
dilation is already a direct generalization of B. S. Pavlov's formulas [2]. We mention that if ܮ 
is a differential operator, then ܮ෨  is given by the same differential expression as ܮ. 
               In the model case of the Schrodinger operator with a bounded potential (ݔ)ݍ, ℑݍ ≥
0, the dilation has been constructed by B. S. Pavlov [3]. In [4], S. N. Naboko generalizes this 
construction to the case when ܮ = ܣ + ݅ܳ and the operator ܳ is strongly subordinate to A. 
We mention, however, that the formula for the dilation in [4] can be understood only as the 
definition of the operator on the essential selfadjointness set. We obtain this formula in the 
assumption that ܳ is bounded. 
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LEMMA(1.1.30) [1].   Under the assumptions of Theorem (1.1.31) we have 

(i) ु்∗|ु்∗ = ܫ) − ܶ)ܳ
భ
మߤ∗

∗, ु்∗ु்∗ ⊂  ;(ܮ)ु

(ii) ߤ∗
∗ = ቀܳ

భ
మु்∗ − ቁ∗ܶ∗ߤ |ु்∗. 

Proof  (i) We verify the equality; from it the required inclusion follows. The equality can be 

verified on a dense set since ܳ
భ
మ   is bounded. Let  ݔ =  Then, by formulas (9), (10) we  . ݕ∗்ु

have 

ܫ) − ܶ)ܳ
ଵ
ଶߤ∗

ݔ∗ = ܫ) − ܫ)ܳ(ܶ − ݕ(∗ܶ = ܫ) − ݕ(∗ܶܶ =  .ݔ∗்ु
(ii) Again we verify the equality on a dense set for ݔ =  We have  .  ݕ∗்ु

∗ߤ
ݔ∗ = ܳ

ଵ
ଶ(ܫ − ݕ(∗ܶ = ܳ

ଵ
ଶ൫(ܫ − ݕ(∗ܶܶ − ܫ) − ൯ݕ∗ܶ(ܶ = ܳ

ଵ
ଶु்∗ݔ − ݕ∗்ܶु∗ߤ

= ൬ܳ
ଵ
ଶु்∗ − ൰∗ܶ∗ߤ  .ݔ

THEOREM(1.1.31) [1].  Let ܮ = ܣ + ݅ܳ, where ܣ = ,∗ܣ ܳ ≥ 0, and ܳ is bounded. Let ℬொ =
closQଵ/ଶH . Let ܧ,  be isomorphic to the space  ℬொ  and assume that the isometric ∗ܧ
isomorphisms ߢ: ܧ →  ℬொ , ߢ ∗: ∗ܧ →  ℬொ  have been fixed. Then the selfadjoint dilation ℘.  in 
the space ܮଶ(ܴି, ,ଶ(ܴାܮ⨁ܪ⨁(∗ܧ  has the form (ܧ

℘  ൥
ିݒ
݂

ାݒ

൩ = ቎
ିݒ݅

ᇱ

݂ܮ + √2ܳ
భ
మ(0)ିݒ∗ݔ

ାݒ݅
ᇱ

቏      ,                                                             (28) 

ु(℘) = ቄ[ିݒ, ݂, :்[ାݒ ିݒ ∈ ଶܹ
ᇱ(ܴି, ,(∗ܧ ାݒ ∈ ଶܹ

ᇱ(ܴା, ,(ܧ ݂ ∈ ,(ܮ)ु √2݅ܳ
భ
మ݂ = ା(0)ݒݔ −

 ቅ.                                           (29)(0)ିݒ∗ݔ

Proof. We apply Theorem (1.1.27), setting ߗ = ,ߢߤ ∗ߗ =    .∗ߢ∗ߤ
From Lemma (1.1.30) (i) there follows at once that condition (20) turns into the 
condition ݂ ∈ ݂ܮ  while the expression in the second row of formula (18) goes into , (ܮ)ु +
√2ܳଵ/ଶ(0)ିݒ∗ݔ . We apply ߤ∗ to the equality (21). We obtain 

√2݅ܳଵ/ଶ݂ + ܳ
ଵ
ଶु்∗(0)ିݒ∗ݔ∗ߤ = (0)ିݒ∗ݔ∗ߤ∗ܶ∗ߤ +  .ା(0)ݒݔ

Taking into account Lemma  (1.1.30) (ii), this is equivalent to the condition 
√2݅ܳଵ/ଶ݂ = ା(0)ݒݔ −  ,(0)ିݒ∗ݔ

which is what we intended to prove.  - 
Definition(1.1.32) [1].  Let ܮ be a maximal dissipative operator in ܪ, let ࣴ be its minimal 
selfadjoint dilation in the space ࣲ =  is the ܩ is the "incoming", while ∗ܩ where ,  ܩ⨁ܪ⨁∗ܩ
"outgoing" subspace, i.e., ݁௜ࣴ௧  for ݐ > 0,  ݁௜ࣴ௧ܩ∗ for ݐ < 0.  By analogy with the case of a 
contraction [1], [IS], by functional imbeddings we mean isometries such that 

(ࣴ + ℝߨଵି(ܫ݅ = ݖ)ℝߨ + ,  ଵି(ܫ݅ (ࣴ + ∗ߨଵି(ܫ݅
ℝ = ∗ߨ

ℝ(ݖ +  ,ଵି(ܫ݅
,ଶ(ℂାܪℝߨ (ܧ = ,   ܩ ∗ߨ

ℝܪଶ(ℂି, (∗ܧ =  .∗ܩ
Under these conditions, ߨℝ, ߨ∗

ℝ are uniquely determined to within multiplications by 
unitary constants in ܧ ,ܧ∗. Clearly, if  ܶ =  is the Cayley transform, then (ܮ)ࣲ
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ℝߨ = ߨ ∘ ܹିଵ ,     ߨ∗
ℝ = ∗ߨ ∘ ܹିଵ,                                       (30) 

where  ߨ ,ߨ∗ are  functional   models  of the  contraction  ܶ. 
             The operator ܵ = ∗ߨ)

ℝ)∗ߨℝ, acts from  ܮଶ(ࡾ, ,ࡾ)ଶܮ into (ܧ ,ାܥ)ଶܪ maps ,(∗ܧ  into (ܧ
,ାܥ)ଶܪ ݖ) ା),  and  commutes  with  the multiplication byܧ + ݅)ିଵ. Consequently, ܵ is 
multiplication by a function ܵ௅(ߣ) ∈ ,ାܥ)ஶܪ ܧ →  It is called the characteristic function  .(∗ܧ
of the operator ܮ.  Besides, from (30) we find at once that 

ܵ௅(ߣ) = ்ߠ ൬
ߣ − ݅
λ + i

൰, 

where  ்ߠ  is the characteristic function of the Cayley transform of the operator  ܮ,  which 
conforms to Definition   (1.1.15). 
In its coordinate-free    variant   does not carry, basically, any new information: each simple 
maximal dissipative   operator is unitarily equivalent to the model one and this latter is the 
Cayley transform   of the model contraction. 
    However, of interest is the determination of formulas for the functional imbeddings ߨℝ, 
∗ߨ

ℝ.  In particular cases, operators that are conjugate to ߨℝ, ߨ∗
ℝ , have arisen basically   in 

several investigations (see, for example,  [4]). 
    First one has to find the expressions   for  ߨ,    responding   to the unitary  dilation  (12) ,∗ߨ
in  the  space ்ࣲ = ିܪ

ଶ(ܦ, ,ܦ)⨁ଶܪ⨁(∗ܧ ܶ where , (ܧ =  The following   statement   has . (ܮ)ࣲ
been kindly communicated   to me by V.  1. Vasyunin. 
LEMMA  (1.1.33) [1]. We have the equalities: 

ߨ = ቎
ܲି ߠ

଴ܲܫ)ݖ − Ω்ܦଵି(∗ܶݖ
ାܲ

቏  , ∗ߨ = ቎
ܲି

଴ܲܫ)ݖ − ܶ̅ݖ )ିଵ்ܦ∗Ω∗

ାܲߠ∗
቏ ;                       (31) 

,ℎି]∗ߨ ℎ, ℎା]் = ℎି∗ߠ + ܫ)்ܦ∗ߗ̅ݖ − ܶ̅ݖ )ିଵℎ + ℎା,                               (32) 
∗ߨ

∗[ℎି, ℎ, ℎା]் = ℎି + ∗ߗ
ܫ)∗்ܦ∗ − ଵℎି(∗ܶݖ +  .ℎାߠ

Proof: We derive formulas (32); obviously, the equalities (31) follow from them.  By the 
definition of ߨ,  we have ∗ߨ

ℎାߨ = [0,0, ℎା]், ℎା ∈ ,ܦ)ଶܪ ℎି∗ߨ         ,(ܧ = [ℎି, 0,0]், ℎି ∈ ିܪ
ଶ(ܦ,   .(∗ܧ

It is known that ߠ = ∗ߨ
 ,therefore ,ߨ∗

∗ߨ
∗[0,0, ℎା]் = ,ℎି]∗ߨ     , ℎାߠ 0,0]் =  . ℎି∗ߠ

It remains to find 10]∗ߨ, ℎ, 0]், ℎ ∈ ݁ Let .ܪ ∈ ∗݁ , ܧ ∈ ௡݁̅ݖߨ We have .∗ܧ = ܷ∗௡݁ߨ, ∗௡݁ݖ∗ߨ =
ܷ௡ାଵ(∗݁̅ݖ)∗ߨ . From formula (12) it is easy to derive (see also (IS]) that 

௡݁̅ݖߨ = [∗, ܶ∗(௡ିଵ)்ܦΩ݁, ∗௡݁̅ݖ∗ߨ       ,்[0 = [0, ܶ௡்ܦ∗Ω∗݁∗,∗]் .     
Let {݁௜} be an orthonormal basis in ܧ. Then 

,0]∗ߨ ℎ, 0]் = ෍ (ℎ, ܶ∗(௡ିଵ)݁ߗ்ܦ௜)̅ݖ௡݁௜

ஶ

௜;௡ୀଵ

= ෍ ൭෍ ௡̅ݖ
ஶ

௡ୀଵ

,௡ିଵℎ்ܶܦ∗ߗ ݁௜൱
௜

݁௜

= ்ܦ∗ߗ ෍ ௡̅ݖ
ஶ

௡ୀଵ

ܶ௡ିଵℎ = ܫ)்ܦ∗ߗ̅ݖ −  .ଵℎି(ܶ̅ݖ
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In a similar manner we obtain that ߨ∗
∗[0, ℎ, 0]் = ∗ߗ

ܫ)∗்ܦ∗ −  .ଵℎି(∗ܶݖ
COROLLARY (1.1.34) [1].    ℎ → ܫ)்ܦ̅ݖ −  into ܪ ଵℎ is a contraction operator fromି(ܶ̅ݖ
ିܪ

ଶ(ु்), ℎ → ܫ)∗்ܦ −  .(∗்ु)ଶܪ into ܪ ଵℎ is a contraction operator fromି(∗ܶݖ
 LEMMA (1.1.35) [1].   Let ܮ be a maximal dissipative operator in the space ܪ; let (ܮ)∗ܨ ,(ܮ)ܨ 
be its boundary spaces, let ߰: ܧ → ,(ܮ)ܨ ߰∗: ∗ܧ → ,ோߨ be  some  isometries.  Let  (ܮ)∗ܨ ∗ߨ

ோ be 
the functional imbeddings, corresponding to the selfadjoint dilation in the space ℋ௅ =
,ିܴ)ଶܮ ,ଶ(ܴାܮ⨁ܪ⨁(∗ܧ ,߰ with the parameters (ܧ ߰∗ . We have the following equalities (in 
them ℱis the Fourier transform, ܵ is the operator of multiplication by the characteristic 
function): 

,ℎି]∗(ோߨ ) ℎ, ℎା]் = ܵ∗ℱℎି − భିߨ
మ߰∗ܮ)ߩ −  ଵℱℎା,                      (33)ି(ܫ̅ߣ

∗ߨ )
ோ)∗[ℎି, ℎ, ℎା]் = ℱℎି − ଵିߨ

ଶ߰∗
∗ܮ)∗ߩ∗ − ଵℎି(ܫߣ + ܵℱℎା                   (34) 

ோ݂ߨ  =

⎣
⎢
⎢
⎢
⎡ ℱିଵ݂ܵ|ܴି

݅
ߨ√2

න ∗ܮ)] − ܮ)ଵି(ܫߣ − (ܫߣ − [ܫ
ାஶ

ିஶ
ߣ݀(ߣ)ଵ݂߰ିߩ

ℱିଵ݂|ܴା ⎦
⎥
⎥
⎥
⎤
,                (35) 

∗ߨ
ோ݂ =

⎣
⎢
⎢
⎢
⎡ ℱିଵ݂|ܴି

−
݅

ߨ√2
න ܮ)] − ∗ܮଵ൫ି(ܫ̅ߣ − ൯ܫ̅ߣ − [ܫ

ାஶ

ିஶ
∗ߩ

ିଵ߰∗݂(ߣ)݀ߣ

ℱିଵܵ∗݂|ܴା ⎦
⎥
⎥
⎥
⎤
                (36) 

 
Proof   We verify formulas (33), (35); the other two are obtained in a similar manner. Thus 

ோߨ  = ൥
ℱିଵܹ 0 0

0 ܫ 0
0 0 ℱିଵܹ

൩ ିܹߨଵ where ܹ: ,ܦ)ଶܮ  ߨ is isometric isomorphism (12), while (ߝ

is given by formula (31). Clearly, ℱିଵܹ ାܲ = ܹିଵ݂ = ℱିଵ
ା݂ܲ = (ℱିଵ݂)|ܴା (here by ାܲ we 

denote both projections  ܮଶ(ܶ, (ߝ → ,ܶ)ଶܪ ,(ߝ ,ܴ)ଶܮ (ߝ → ,ାܥ)ଶܪ  From (31) we find that  .  (ߝ
ℱିଵܹܲି ଵିܹߠ = ℱିଵܲି ଵିܹߠܹ = ℱିଵܲି ܵ = (ℱିଵܵ)|ܴି. 

Thus we have verified the first and the third rows of formula (35) and, at the same time, 
also the first and third terms of (33). Taking into account (32), we have 

ଶܰ(ℎ) ≝ ,0]∗(ோߨ) ℎ, 0]் = ,0]∗ߨܹ ℎ, 0]் = ܹΩ∗ܫ)்ܦ̅ݖ − ܶ̅ݖ )ିଵℎ. 
Just as in Theorem  (1.1.28), we set Ω = ,߰ߩ Ω∗ = ߣ Let .  ∗߰∗ߩ = ݅(1 + 1)(ݖ −  ଵ;  thenି(ݖ 
ݖ = ߣ) − ߣ)(݅ + ݅)ିଵ        . From (12), (5) we find 

ଶܰ(ℎ) =
1

̅ߣ)ߨ√ + ݅)
∙

̅ߣ + ݅
̅ߣ − ݅

ܫ)்ܦ∗ߗ − ଵℎି(ܶ̅ݖ =
1

̅ߣ൫ߨ√ + ݅൯
ܫ)ߩ∗߰ − ܫ)(ܶ −  ଵℎି(ܶ̅ݖ

Making use of (3), we obtain that ଶܰ(ℎ) = భିߨ−
మ߰∗ܮ)ߩ −  .ଵℎି(ܫ̅ߣ

    It remains to compute the second row of formula (35). This can be done by making use of 
equality (31), but we find it from the definition of the conjugate operator. We have 
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,ோ݂ߨ) ℎ) = (݂, ,0]∗(ோߨ) ℎ, 0]்) = ଵିߨ−
ଶ න ,(ߣ)݂) ܮ൫ߩ∗߰ − ߣଵℎ൯݀ି(ܫ̅ߣ

ାஶ

ିஶ
. 

The subsequent computations make sense for (ߣ) ∈  and f from a dense set of functions ିܥ
with values in ߰∗(ܩ/(ܮ)ܦ௅)  ; see the remark  to  this lemma  (if the defects  are  finite,  then 
the  second stipulation is  not  required).  Denoting by  [݂߰] the representative of the 
quotient class mod ܩ௅, with the aid of Definition (1.1.10) we have 

2
݅

൫݂(ߣ), ܮ൫ߩ∗߰ − ൯ℎ൯ܫ̅ߣ =
2
݅

〈݂߰, ܮ)ߩ − ଵℎ〉ிି(ܫ̅ߣ

= ([݂߰], ܮ൫ܮ − ଵℎ൯ି(ܫ̅ߣ − ,[݂߰]ܮ) ൫ܮ − ଵℎ൯ି(ܫ̅ߣ
= ([݂߰], ℎ) + ,[݂߰]൫ߣ ܮ) − ଵℎ൯ି(ܫ̅ߣ − ,[݂߰]ܮ) ൫ܮ − ଵℎ൯ି(ܫ̅ߣ
= ∗ܮ)))− − ܮ)ଵି(ܫߣ − (ܫߣ − ,[݂߰](ܫ ℎ). 

Clearly, the last expression does not depend on the representative [݂߰] and we obtain the 
equality (35) . 
         We assume that the imaginary part ܳ = ܮ) − 2݅/(∗ܮ ≥ 0 makes sense. Then from 
Lemma (1.1.21) we obtain 

ଵିߨ
ଶ߰∗ܮ)ߩ − ଵି(ܫߣ = ଵିߨ

ଶݖ∗ܳ
ଵ
ଶ(ܮ −  ,ଵି(ܫߣ

where  ݖ: ܧ →  ொ is some isometry. Thenߚ

,ℎି]∗(ோߨ) ℎ, ℎା]் = ܵ∗ℱℎି − ଵିߨ
ଶݖ∗ܳ

ଵ
ଶ(ܮ − ଵℎି(ܫߣ + ℱℎା 

Similarly, 

∗ߨ)
ோ)∗[ℎି, ℎ, ℎା]் = ℱℎି − ଵିߨ

ଶݖ∗
∗ܳ

ଵ
ଶ(ܮ∗ − ଵℎି(ܫߣ + ܵℱℎା 

These operators (with ߢ = ∗ߢ = id) and their intertwining properties have been applied by 
S. N. Naboko in [4]. The fact that the second terms are contracting functions forms the 
content of Theorem 1 of [4]. 
         Since dilation has an absolutely continuous spectrum [9], one can talk only about 
generalized eigenfunctions (in the riggings). Formulas (35), (36) give the possibility to 
interpret the collections 

൦
,௜ఒక݀ି݁(ߣ)ܵ ߦ ∈ ܴି

∗ܮ)2ൣ√݅ − ܮଵ൫ି(ܫߣ − ഥܫߣ ൯ − ଵ߰݀ିߩ൧ܫ
݁ିଵఒక݀, ߦ ∈ ܴା

൪ ,       ݀ ∈ ,ܧ ߣ ∈ ܴ, 

as  "incoming"   eigenfunctions, while the collections 

቎
݁ିଵఒక݀∗, ߦ ∈ ܴି

ܮ)]2√݅− − ∗ܮ)ଵି(ܫߣ − (ܫߣ − ∗ߩ[ܫ
ିଵ߰∗݀∗

,∗௜ఒక݀ି݁(ߣ)∗ܵ ߦ ∈ ܴା

቏ ,       ݀∗ ∈ ,∗ܧ ߣ ∈ ܴ, 

as "incoming" eigenfunctions. For differential operators, this statement can  be given a 
precise  meaning. 
        Let ℘ be minimal selfadjoint dilation in the space ℋ = ,ோߨ let  ܩ⨁ܪ⨁∗ܩ ∗ߨ

ோbe its 
corresponding functional imbeddings. Then ℋା = Ran ߨோ = Span   (݁௜℘௧ܩ, ݐ ∈ ܴ), ℋି =
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Ran ߨ∗
ோ = Span(݁௜℘௧ܩ∗, ݐ ∈ ܴ), are subspaces reducing ℘. By the residual part of the dilation 

we mean operator  ℘|ℋ⨁ℋି It and by the ∗-residual part we mean the operator ℘|ℋ⨁ℋା 
. 
    Making use of the results of [1] for contractions and passing from the circle to the half-
plane, we obtain the following formulas: 

ோߨ − ∗ߨ
ோܵ = ߬ோ∆ோ, ∗ߨ

ோ  − ∗ோܵߨ = ߬∗
ோ∆∗

ோ,                                (37) 
where 

∆ோ= ܫ) − ܵ∗ܵ)ଵ/ଶ,           ∆∗
ோ= ܫ) − ܵܵ∗)ଵ/ଶ, 

while 
߬ோ: ∆ோܮଶ(ܴ, (ܧ → ℋ  ,        ߬∗

ோ: ∆∗
ோܮଶ(ܴ, (∗ܧ → ℋ 

are isometries such that 
߬ோ(ݖ + ଵି(ܫ݅ = ݖ) + ∗߬    ,   ଵ߬ோି(ܫ݅

ோ(ݖ + ଵି(ܫ݅ = ݖ) + ∗ଵ߬ି(ܫ݅
ோ, 

∗(ோߨ)ோߨ + ߬∗
ோ(߬∗

ோ)∗ = ∗ߨ      ,      ܫ
ோ(ߨ∗

ோ)∗ + ߬ோ(߬ோ)∗ =  .ܫ
Thus, the operators (߬ࡾ)∗, (߬∗

-* realize the spectral representation of the residual and the ∗(ࡾ
residual parts of a dilation. 
    Now we write down the formulas connected with a concrete form of the dilation (22). 
However, to express  ߬ࡾ, ߬∗

 explicitly is difficult  ,ࡾ
LEMMA(1.1.36): [1]. 

ோ݂∆ࡾ߬ =

⎣
⎢
⎢
⎡

0

(ߨ2)݅
ଵ
ଶ න ܮ)] − ∗ܮ)ଵି(ܫߣ − ∗ܮ)(ܫߣ − ܮ)ଵି(ܫߣ − (ܫߣ − ߣ݀(ߣ)ଵ݂߰ିߩ[ܫ

ାஶ

ିஶ
 

ℱିଵ(∆ோ)ଶ݂|ܴା ⎦
⎥
⎥
⎤
, 

(∆ோ)ଶ = ߩ∗߰− ቂ൫ܮ − ∗ܮ)൯ିଵܫ̅ߣ − ∗ܮ)(ܫ̅ߣ − ܮ)ଵି(ܫߣ − (ܫߣ − ቃܫ  ;ଵ߰ିߩ

߬∗
ோ∆∗

ோ݂ =

⎣
⎢
⎢
⎡
−

ℱିଵ(∆∗
ோ)ଶ݂|ܴି

ଵି(ߨ2)݅
ଶ න ∗ܮ)ൣ − ܮ)ଵି(ܫߣ − ∗ܮ൫(ܫ̅ߣ − ൯ܫ̅ߣ − ∗ߩ൧ܫ

ିଵ߰∗݂(ߣ)݀ߣ
ାஶ

ିஶ
 

0 ⎦
⎥
⎥
⎤
 

(∆∗
ோ)ଶ = −߰∗

∗ߩ∗ ቂ(ܮ∗ − ܮ)ଵି(ܫߣ − ܮ൫(ܫߣ − ∗ܮ)൯ିଵܫ̅ߣ − (ܫ̅ߣ − ቃܫ ∗ߩ
ିଵ߰∗. 

The proof follows at once from the formulas (35), (4.5'), (8), (2.4').  The second rows of the 
formulas have to be understood again as the boundary values of functions in the upper half-
plane. 
         Here we apply the results of the Schrodinger operator on the semi axis 

ℓݕ = ᇱᇱݕ− + ;ݕ(ݔ)ݍ ᇱ(0)ݕ    = ℎ(0)ݕ, Im ℎ > 0,                         (38) 
with a real-valued potential in the Weyl limit point case at infinity. All the results have 
been obtained by B. S. Pavlov [2] by the method   of generalized eigen functions. In 
subsequent investigations of various   authors [10, 19], the characteristic function of this 
operator has been computed also by other methods, including methods closely related to 
the one presented below.  
        We consider the operator ݕ଴ܮ  = ℓݕ in ܮଶ(ℝା) with domain of definition ु(ܮ଴) =
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ݕ} ∈ ଴ܥ
ஶ(ℝା

): (0)ݕ = ᇱ(0)ݕ = 0} . It is assumed that the (real) potential is continuous on 
[0, ∞). It is easy to verify the following properties. 
LEMMA (1.1.37):  [1].  
(i) ܮ଴  is symmetric; 
(ii)ु(ܮ଴

∗ ) = ݕ} ∈ ଵ(ℝାܥ
): ,ᇱis absolutely continuousݕ ݕ− + ݕݍ ∈ ଴ܮ ,{ଶ(ℝା)ܮ

∗ = ℓݕ ; 
(iii) The defect indices ݊±(ܮ଴) ≜ dim ker(ܮ଴

∗ ∓  are equal among them and are equal (ܫ݅
either to unity or to two. 
       If ݊±(ܮ଴) = 1, then we say that the Weyl limit  point case takes place (we shall write 
then ݍ ∈ (ℓ. .݌ ); otherwise, we have the limit circle case (see [20]). In the sequel we shall 
assume that ݍ ∈ (ℓ. .݌ ). A simple sufficient condition (see [20)) consists in the fact that 
for some differentiable function (ݔ)ܯ,  such that (ݔ)ܯ > 0, (ݔ)ᇱܯ ≤ const (ݔ)ܯଷ/ଶ,  we 
should have 

(ܺ)ݍ ≥ ,(ܺ)ܯ− න ଵ/ଶି((ܺ)ܯ)
ஶ

଴
݀ܺ = ∞. 

LEMMA (1.1.38):  [1]. Let ݍ ∈ (ℓ. .݌ ). We consider the operator 
௛ܮ ⊂ ଴ܮ

∗ , (௛ܮ)ु = ݕ} ∈ ଴ܮ)ु
∗ ): ᇱ(0)ݕ = ℎ(0)ݕ}. 

Then 
,ݕ௛ܮ)(݅)        (ݕ − ,ݕ) (ݕ௛ܮ = , ଶ|(0)ݕ|ℎ ݉ܫ 2݅ ௛ഥܮ = ௛ܮ

∗ , 
(ii)  if ܪ ∈ ℝ , thenܮ௛ = ௛ܮ

∗ . If ॅℎ > 0, then ܮ௛ is a maximal dissipative operator. 
        Let ݍ ∈ (ℓ. .݌ ). We denote by Ψ(ݔ, ,(ߣ ,ݔ)߮ – the solutions of the equation (ߣ ᇱᇱݕ + ݕݍ =
, ݕߣ ߣ ∉ ℝ , such that 

Ψ(0, (ߣ = −1, ߮(0, (ߣ = 0 , 
Ψ′(0, (ߣ = 0, ߮′(0, (ߣ = 1. 

Since  dim Ker(ܮ଴
∗ − (ܫߣ = ,ݔ)߯ there is defined a unique function ,(଴ܮ)±݊ ∋  (ߣ  ଶ(ℝ)suchܮ

that ߯(0, (ߣ = −1 and – ߯ᇱᇱ + ߯ݍ =  We can write.߯ߣ
,ݔ)߯ (ߣ = Ψ(ݔ, (ߣ + ݉ஶ(ߣ)߮(ݔ,  .(ߣ

The function ݉ஶ(ߣ) is called the Weil function. It is known [21] that ݉ஶ(ߣ) is analytic in 
ߣॅ/(ߣ)ℝ and ॅ ݉ஶ\ܥ < 0. 
We proceed to the analysis of the dissipative operator ܮ௡ 
      Since ܮ = ௅ܩ ௡ is a dissipative extension of a symmetric operator, we haveܮ = (ܮ)ु ∩
(ܮ)ܨ   We have. (∗ܮ)ु = (ܮ)∗ܨ ,௅ܩ/(ܮ)ु =  ௅ . By Lemma (1.1.38)  (i) we haveܩ/(∗ܮ)ु

ி‖ݕߩ‖
ଶ = Im ℎ|(0)ݕ|ଶ, ∗ி‖∗ݕ∗ߩ‖

ଶ = Im ℎ|(0)∗ݕ|ଶ. 
We set ܧ = ∗ܧ = ,ଵ and we define the isometric isomorphisms Ψܥ Ψ∗: 
                 Ψ: ܧ → ,(ܮ)ܨ Ψ(a) = yߩ ∶ y ∈ ,(௛ܮ)ु (0)ݕ = ܽ/√Im ℎ. 
                Ψ∗: ∗ܧ → ,(ܮ)∗ܨ Ψ∗(a) = y∗ߩ ∶ y∗ ∈ ௛ഥܮ)ु

), (0)∗ݕ = ܽ/√Im ℎ.           (39) 
       We show that we have the formula [2] 
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ܵ௅೓
(ߣ) =

݉ஶ(ߣ) + ℎ
݉ஶ(ߣ) + ℎത

                                              (40) 

Proof. From (8), setting ܮ =  ௛  we haveܮ
(ߣ)ܵ = ܵ௅(ߣ) = ∗ߖ

∗ܮ)∗ߩ∗ − ܮ)ଵି(ܫߣ −  ,ߖଵିߩݕ(ܫߣ
where ߩ: (ܮ)ु → :∗ߩ ,(ܮ)ܨ (∗ܮ)ु →  are natural projections. From (39) we obtain (ܮ)∗ܨ
that ିߩଵܽߖ ∋ ݕ ∈ (0)ݕ,(௛ܮ)ु = ܽ/√Im ℎ. We have 

ܮ) − ݕ(ܫߣ = ᇱᇱݕ− + ݕݍ − , ݕߣ ∗ܮ) − ݕ(ܫߣ =  ,ଵݕ
where  −ݕᇱᇱ + ଵݕݍ − ଵݕߣ = ᇱᇱݕ− + ݕݍ − ଵݕ , ݕߣ ∈ ∗ߖ,Finally . (௛ഥܮ)ु

ଵݕ∗ߩ∗ = √Im ℎ  ݕଵ(0),i.e., 
ܽ(ߣ)ܵ = ݑ We note that .ܽ(0)ݕ/ଵ(0)ݕ = ଵݕ −  is a solution of the homogeneous equation ݕ
′′ݑ + ݑݍ = ଵݕ ,ଶ(ℝା). Consequentlyܮfrom  ݑߣ − ݕ = ,ݔ)߯(ߣ)ܤ  from where ,(ݕ

ଵݕ) − ᇱ(0)(ݕ = −݉ஶ(ߣ)(ݕଵ −  (0)(ݕ
But since  ݕᇱ(0) = ℎݕ , (0)ݕଵ

ᇱ(0) = ℎതݕଵ(0),   we obtain that 

ଵ(0)ݕ =
݉ஶ(ߣ) + ℎ
݉ஶ(ߣ) + ℎത

 ,(0)ݕ

and the assertion is proved.   
We make use of Corollary (1.1.34)We interpret conditions ݂ − ௜

√ଶ
[Ψ∗ࣰି (0)] ∈ ݂ ,(ܮ)ु +

௜
√ଶ

[Ψ ାࣰ(0)] ∈ (∗ܮ)ु . Let ݕ ∈ (௛ܮ)ु (0)ݕ    = ାࣰ(0)/√Im ℎ , ∗ݕ    ∈ (௛ഥܮ)ु (0)∗ݕ , =

ࣰି (0)/√Im ℎ . We have 

݂ −
݅

√2
[Ψ∗ࣰି (0)] ∈ (௛ܮ)ु ⟹ ݂ ᇱ(0) −

݅
√2

∗ݕ
ᇱ(0) = ℎ݂(0) −

݅
√2

ℎ(0)∗ݕ 

⇔ ݂ ᇱ(0) − ℎ݂(0) =
݅

√2
൫ℎത − ℎ൯(0)∗ݕ = √2Im ℎ  ࣰି (0). 

Similarly, 

݂ +
݅

√2
[Ψ ାࣰ(0)] ∈ ௛ഥܮ)ु

) ⟹ ݂ ᇱ(0) +
݅

√2
ᇱ(0)ݕ = ℎത݂(0) +

݅
√2

ℎത(0)ݕ 

⇔ ݂ ᇱ(0) − ℎത݂(0) =
݅

√2
൫ℎത − ℎ൯(0)ݕ = √2Im ℎ  ାࣰ(0). 

As a result we obtain the following form of dilation ℘ of operator ܮ௡ in space ℋ =
±ु ,ାु⨁(ାࡾ)ଶܮ⨁ିु =  :[2]  (±ࡾ)ଶܮ
 

℘ = ൥
ࣰି
݂
ାࣰ

൩ = ൥
ࣰ݅ିᇱ

−݂ + ݂ݍ
݅ ାࣰ

൩, 

ु(℘) = ൛[ࣰି , ݂, ାࣰ
]்: ±ࣰ ∈ ±ࡾ)

), ݂ ᇱ(0) − ℎ݂(0)        = √2Im ℎ  ࣰି (0), ݂ ᇱ(0) − ℎത݂(0)

= √2Im ℎ  ାࣰ(0)ൟ.                                                                      (41) 

"Incoming" and "Outgoing" Eigen functions of Dilation Calculations (with the same 
notations) yield 
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[൫ܮ∗ − ܮଵ൫ି(ܫ̅ߣ − ൯̅ߣ − ௔ߖଵିߩ൧ܫ = ,ݔ)߯(ߣ)ܤ  ,(ߣ

(ߣ)ܤ = (0)ݕ − ଵݕ
ᇱ(0) =

ℎത − ℎ
݉ஶ(ߣ) + ℎത

(0)ݕ =
݅√2Im ℎܽ

݉ஶ(ߣ) + ℎത
. 

We obtain the "outgoing" eigen functions [2]: 

ఒࣰ
ି = ቎

௜ఒకି݁(ߣ)ܵ , ߦ ∈ ିࡾ

√2Im ℎ(݉ஶ(ߣ) + ℎത)ିଵ߯(ݔ, ,(ߣ ݔ ∈ ାࡾ

݁ି௜ఒక , ߦ ∈ ାࡾ

቏. 

In a similar manner one finds the "incoming" eigenfunctions: 

ఒࣰ
ା = ቎

݁ି௜ఒక , ߦ ∈ ିࡾ

√2Im ℎ(݉ஶ(ߣ)തതതതതതതതത + ℎത)ିଵ߯(ݔ, ,തതതതതതതതത(ߣ ݔ ∈ ାࡾ

௜ఒకି݁(ߣ)∗ܵ , ߦ ∈ ାࡾ

቏. 

The dilation ℘ is a differential operator and ݒఒ
± are "actual" smooth functions, although not 

from ܮଶ. Lemma (1.1.35) shows that the integral operators with the kernels ݒఒ
± and factor 

ଵ/ଶି(ߨ2)  are ࡾߨ ∗ߨ ,
ࡾ , i.e.,  isometries from ܮଶ(ࡾ)  into ℋ௅  . In terms of functional 

imbeddings, the fact that ݒఒ
±are eigenfunctions means the commutativity of (℘ −  ଵି(ܫߣ

with the multiplication by (ݖ −  ଵ ,  the normalization and the inversion formula [2]ି(ߣ
reduce to isometricity. The terms "outgoing" and "incoming" eigenfunctions mean that 

Ran ࣤࡾ = Span (݁௜௧℘ुା, ݐ ∈ ܴ), Ran ࣤ∗
ோ = Span (݁௜௧℘ुି, ݐ ∈ ܴ) 

From (6) we have 
(Δࡾ)ଶ = (Δ∗

ଶ(ࡾ = 1 − ଶ|(ߣ)ܵ| = 2݅Im ℎ(݉ஶ(ߣ) − ݉ஶ(ߣ)തതതതതതതതത)ห݉ஶ(ߣ) + ℎതหିଶ 
The spectrum of the residual and *-residual parts is set {ߣ ∈ :ࡾ ݉ஶ(ߣ) ∉  We apply .  {ࡾ
Lemma (1.1.36). Let  ݕ ∈ ,(௛ܮ)ु ∗ݕ ∈  The equalities.  (௛ഥܮ)ु

∗ܮ) − ܮ)ଵି(ܫߣ − ݕ(ܫߣ = ݕ − (0)ݕ ∙ 2݅Im ℎ(݉ஶ(ߣ) + ℎത)ିଵ߯(ݔ,  (ߣ
ܮ) − ∗ܮଵ൫ି(ܫ̅ߣ − ∗ݕ൯ܫ̅ߣ = ∗ݕ + (0)∗ݕ ∙ 2݅Im ℎ( ഥ݉ஶ(ߣ) + ℎത)ିଵ߯(ݔ,  തതതതതതതതത(ߣ

from where 
ܮ)]           − ∗ܮଵ൫ି(ܫ̅ߣ − ∗ܮ)൯ܫ̅ߣ − ܮ)ଵି(ܫߣ − (ܫߣ − ݕ[ܫ = 

(0)ݕ ∙ 2݅Im ℎห݉ஶ(ߣ) + ℎതหିଶ ቀ߯(ݔ, (ߣ)തതതതതതതതത(݉ஶ(ߣ + ℎ) − ,ݔ)߯ തതതതതതതതത(ߣ)൫݉ஶ(ߣ + ℎ൯ቁ.  

We have߯(ݔ, (ߣ = ,ݔ)߮ (ߣ)ஶ݉(ߣ + Ψ(ݔ,  and, moreover, from the definition it is clear that , (ߣ
'߮൫̅ߣ൯ = ,ݔ)߮ ,തതതതതതതതത(ߣ Ψ൫ݔ, ൯̅ߣ = Ψ(ݔ,  തതതതതതതതത . From here it follows that(ߣ

lim
୍୫ ఒ→଴

ቀ߯(ݔ, (ߣ)തതതതതതതതത(݉ஶ(ߣ + ℎ) − ,ݔ)߯ തതതതതതതതത(ߣ)൫݉ஶ(ߣ + ℎ൯ቁ = (Ψ − ℎ߮)൫݉ஶ(ߣ) − ݉ஶ(ߣ)തതതതതതതതത൯. 

Thus, we obtain an expression for ߬ࡾ: 

݂ࡾΔࡾ߬ =

⎣
⎢
⎢
⎡

0
1

݅ߨ2√
න

ℎ߮(ݔ, (ߣ − ,ݔ)ߖ (ߣ

√2Im ℎ
(1 − ߣ݀(ଶ|(ߣ)ݏ|

ାஶ

ିஶ
ℱିଵ(1 − ାࡾ|(ߣ)݂(ଶ|(ߣ)ݏ| ⎦

⎥
⎥
⎤
. 

In a similar manner one derives the formula 
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τ∗
∗Δࡾ

݂ࡾ =

⎣
⎢
⎢
⎡ ℱିଵ(1 − ିࡾ|(ߣ)݂(ଶ|(ߣ)ݏ|

1
݅ߨ2√

න
ℎത߮(ݔ, (ߣ − ,ݔ)ߖ (ߣ

√2Im ℎ
(1 − ߣ݀(ଶ|(ߣ)ݏ|

ାஶ

ିஶ
0 ⎦

⎥
⎥
⎤
. 

If we consider the operators   ߬ࡾΔࡾ, τ∗
∗Δࡾ

 as integral operators with respect to the ࡾ
measure (1 −  ,then we obtain the eigenfunctions of the continuous spectrum ,ߣ݀(ଶ|(ߣ)ݏ|
found by B. S.  Pavlov [2].  For the residual part we have 

ఒࣰ
வ = ൥

0
߮௛(ߣ)
݁ି௜ఒక

൩ , ቐ
−߮௛

ᇱᇱ + ௛߮ݍ − ௛߮ߣ = 0
(߮௛

ᇱ − ℎ߮௛)|଴ = 0
൫߮௛

ᇱ − ℎത߮௛൯|଴ = √2Im ℎ
 

and for  the  *-residuaI  part 

ఒࣰ
ழ = ൥

݁ି௜ఒక

߮௛ഥ(ߣ)
0

൩ , ൞
−߮௛ഥ

ᇱᇱ + ௛ഥ߮ݍ − ௛߮ߣ = 0
൫߮௛ഥ

ᇱ − ℎത߮௛ഥ൯|଴ = 0
൫߮௛ഥ

ᇱ − ℎത߮௛ഥ൯|଴ = √2Im ℎ .
 

 
Section (1.2): Difference of Functions, From the Pick Class ,of Accretive Operators 
 
  The estimates (in the operator norm) was obtained in [23] by Matsaev and Palant; namely, 
the inequality 

 ‖ܶఈ − (ܶ′)‖ ≤ 2ଵିఈ sin 1)ߙߨ/ߙߨ − (ߙ ‖ܶ − ܶ′‖ఈ, 0 < ߙ < 1,                (42) 
was proved for two bounded dissipative (Im ܶ, ܶ′ ≥ 0) operators ܶ and ܶ′ in a Hilbert 
space ܪ . 
    On the other hand, for the case of self adjoint positive operators ܣ and (ܣ)ु)  ܤ =
,(ܤ)ु ܣ) −  is bounded) in [24] by Birman and Solomyak the estimate  (ܤ

ఈܣ‖ − ఈ‖ఙܤ ≤ ܣ|)‖ − ఈ‖ఙ,   0(|ܤ < ߙ ≤ 1,                                (43) 
was obtained, where ߪ is an arbitrary symmetrically-normed  (s.n.) ideal [3J possessing the 
domination property. Furthermore, in [24] estimates in the quasi-normed classes of power 
decrease of the ݏ-numbers were obtained. The results of have been extended by [26] to the 
case of two maximal dissipative (accretive) operators. Recall that a densely defined operator 
,ℎܮ)is called maximal accretive (m.a.o.) [27] if  Re ܪ in ܮ ℎ) ≥ 0, ∀ℎ ∈ -and the left half (ܮ)ु
plane ߣ < 0  consists entirely of regular points of the operator ܮ. Since an arbitrary maximal 
dissipative operator [27] is distinguished from a maximal accretive operator only by the 
multiplier (i), analogous results will be valid for a pair of maximal dissipative operators as 
well. The choice of the accretive case is motivated only by some notational convenience.  
    In various problems of perturbation theory a demand arises for obtaining analogous 
estimates for a wider class of functions (߮(ܶ) − ߮(ܶ′)) of operators. However, the extension 
of the results of [23,24,26]to a case of more general functions has necessitated the 
application of a technique different from that in [24,26]. Which has an auxiliary character, a 
class of admissible functions of m.a.o. is introduced, which essentially coincides with the 
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well-known Pick class [28] (so-called operator-monotone functions), and a transformation of 
functions ߮ → ߮ු is considered.  elementary estimates for the ݏ-numbers of functions of m.a.o. 
and for a difference of such functions in the operator norm are obtained. Inequalities in s.n. 
ideals which extend (43) to the case of m.a.o. and the functions of class ܩ are proved , and 
their right-hand members contain the ߪ-norm of ߮ු(|ܶ − ܶ′|). The results for quasi-normed 
classes are briefly . The selected ones are problems, important for applications, on the 
boundary behavior of the nuclear-valued operator ࡾ-functions  [29,30] , and also the relation 
of the topics of the theory of Volterra operators [31] is illustrated. 

    There also should be pointed out [32, 33], where estimates [24] are obtained for a 
difference of functions of self-adjoint operators, and [34]. 
      We define class as the set of functions ߮(ߣ), analytic in ିࡾ\࡯ and admitting there the 
representation 

(ߣ)߮  = න ൬
1

ݐ + ߣ
−

1
ݐ

൰
ஶ

଴
,(ݐ)ݒ݀ ߣ ∉ (−∞, 0],                       (44) 

where ݀ݒ is some complex Borel measure satisfying at 0 and ∞ the conditions 

න
|(ݐ)ݒ݀|

ݐ

ଵ

଴
< ∞,       න

|(ݐ)ݒ݀|
ଶݐ

ஶ

ଵ
< ∞.                          (45) 

We recall that the Nevanlinna-Pick class consists of the functions analytic in ࡯ା and having 
there a nonnegative imaginary part. By the Riesz-Herglotz theorem [35], they admit the 
integral representation 

(ߣ)݂ = ߙ + ߣߚ − න ൤
1

ݐ + ߣ
+

1
ଶݐ + 1

൨
ࡾ

 ,(ݐ)ݒ݀

Where = ߚ ത , andߙ ≥ (ݐ)ݒ݀=,0 ≥ 0 is a Borel measure on ࡾ such that ∫ ଶݐ)/(ݐ)ݒ݀ + 1)ஶ
଴ < ∞ 

. The Pick class [28] satisfies an additional condition: the support of the measure ݀(ݐ)ݒ is 
concentrated on the positive semi-axis. As is well known [28], ܲ(0, ∞)   is exactly the same as 
the class of functions for which the implication0 ≤ ܣ ≤ ܤ ⟹ (ܣ)݂ ≤ ,(ܤ)݂ ,ܣ ܤ ∈  holds ,(ܪ)ܤ
on the set of positive operators (operator-monotone functions). Since in this case ݂ is analytic 
in ିࡾ\࡯ and monotonically increasing on the positive semi-axis, the additional condition of 
the finiteness of the quantity ݂(+0) is equivalent to the condition ∫ ௗ௩(௧)

௧(௧మାଵ)
ஶ

଴ < ∞ on the 

measure ݒ݀  , which coincides with (45). Setting ߚ = 0  and ߙ  = ∫ ௗ௩(௧)
௧(௧మାଵ)

ஶ
଴  , we obtain 

representation (44). Thus, class ܩ coincides, to within a linear addend (for which a separate 
estimation is more convenient), with the class of functions from ܲ(0, ∞)satisfying the 
additional condition ݂(+0) = 0. And we drop the requirement of the positiveness of the 
measure ݀ݒ, which is not essential anyway. 
    A function ߮(ܶ) , where ܶ is a m.a.o., can be defined on ु(ܶ) with the aid of formula (44): 

߮(ܶ)ℎ ≝ න ((ܶ + ଵି(ݐ − ܫ ∙ ,(ݐ)ݒ݀ ଵ)ℎିݐ ℎ ∈ ु(ܶ)
ஶ

଴
,                (46) 
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where the integral obviously converges in the norm of the space ܪ due the estimate 
‖(ܶ + ‖ଵି(ݐ ≤ ݐ, ݐ/1 > 0. For our goals it suffices to define ߮(ܶ) on ु(ܶ) by (46), as in the 
sequel estimations will be carried out for the ݏ-numbers of the difference ൫߮(ܶ) − ߮(ܶ′)൯ of 
the functions of twom.a.o. Clearly, the information about ߮(ܶ) only on the dense set ु(ܶ) =
ु(ܶ′) suffices for this. To compare this definition with other ways to define functions of 
m.a.o. [36] and selfadjoint operators, we present without proof some simple assertions. 
Proposition (1.2.1)[22]. Let ∈ sup , ܩ

|ఒ|ୀ௥
|(ߣ)߮|

௥→଴
ሱ⎯ሮ 0, sup

|ఒ|ୀோ
ܴ/|(ߣ)߮|

ோ→ஶ
ሱ⎯ሮ 0.Then: 

    i)   if  ܶ is a bounded accretive operator such that 0 ∉  the function ߮(ܶ) defined ,(ܶ)ߪ
above coincides with the function of ܶ defined with the aid of the Riesz integral of the 
resolvent [37]  along the contour surrounding the spectrum ߪ(ܶ) ; 
    ii) if ܶ is a m.a.o., the equality 

߮(ܶ) = ுܲ߮(−݅ℒ)|ु(்) 
holds, where ℒ is a selfadjoint dilation of the operator (݅ܶ) and ுܲ is the orthoprojector onto 
in the Hilbert space ℋ  ܪ ⊂  in which the operator ℒ  is defined [5J; furthermore ܪ

߮(ܶ)(ܶ + ݅)ିଵ = ுܲ߮(−݅ℒ)(−݅ℒ + ݐ ଵ|ு,      Reି(ݐ > 0; 
iii) if ܶ = ܶ∗ ≥ 0,߮(ܶ) coincides with the restriction to ु(ܶ) of the function ߮(ܶ)  defined by 
the spectral theorem for selfadjoint operators. 
        Class ܩ can easily be extended to a class ܩଵ of analytic functions which might have, 
besides ିࡾ  , other singularities, lying in a compact portion of {ߣ ∈ :࡯ Re ߣ < 0}. In this case 
formula (44) should be modified:  it must include, besides the integral along ࡾାin the 
neighborhoods of 0, and(+∞) ,   also an integral along a suitable circumference{ݐ ∈
:࡯ ݐ| − ߝ − ܴ| = ߝ , {ܴ > 0, ܴ > 0, of some finite measure on that circumference.  Such a 
formula arises in a natural way in the construction of functions with the aid of the Riesz 
integral of a relolvent.  In the process, the new addend results from traversing the suitable 
circumference enclosing the singularities of ߮ in the left half-plane.  Note that in the sequel 
this new addend is taken into account by means of rough estimates and introduced without 
any particular difficulties. 

    In conclusion, consider the transformation of functions from class ܩ  
߮ ∈ ܩ → (ݐ)ݒ݀ → ߮ු ∈ :ାࡾ)ஶܮ ݔ) + 1)ିଵ), 

which will be used in the sequel and which carries ߮ ∈  into the nonnegative function on ܩ
 ା, computed by the formulaࡾ

߮ු(ܿ) ≝ 2 ቆන
|(ݐ)ݒ݀|

(଴,௖/ଶ)ݐ
+ ܿ/2 න

|(ݐ)ݒ݀|
ଶݐ

[௖/ଶ,ஶ)
ቇ , ܿ > 0.                      (47) 

    The case of an absolutely continuous measure ݀(ݐ)ݒ ≡ ߰ the transformation (ݐ)߰ → ߮ු, 
where ߰ is the jump of the function ߮(−ߣ)/ߨ2 over the slit ࡾା, is equivalent to the 
transformation of the modulus of continuity of the function under the Hilbert transformation 
[38]. This transformation easily generalizes to the case of ߮ ∈  ଵ . It can easily be verifiedܩ
that ߮ු is a nonnegative (߮ු(+0) = 0), nondecreasing convex function on ࡾାand a majorant 



25 
 

for߮: |߮(ܿ)| ≤ ߮ු(ܿ),   ܿ ≥ 0.Furthermore ߮ු(ݔ + (ݕ ≤ (ݔ)ු߮ + (ܿߙ)ු߮ ;(ݕ)ු߮ ≤ ߙ   ,(ܿ)ු߮ߙ ≥ 1.  
A direct computation shows that for  ߮(ߣ) = 0, ߚ((ߣ/1−) ln)ఈߣ < ߙ < ߚ,1 ∈ ܴ(߮ ∈  ଵ) theܩ
asymptotic ߮ු(ܿ)~2ଵିఈ × (sin 1)ߙߨ/ߙߨ − ((ߙ ∙ ܿఈ(ln 1/ܿ)ఉ, ܿ → 0 holds.  An immediate 
generalization of estimate (42) is the following assertion: 
THEOREM (1.2.2)[22]. Let ܶ and ܶ′ be m.a.o., ु(ݐ) = ु(ܶᇱ), (ܶ − ܶᇱ) ∈ ,(ܪ)ܤ ߮ ∈  Then  .ܩ

i) ‖߮(ܶ) − ߮(ܶ′)‖ ≤ ߮ු(‖ܶ − ܶ′‖),                                                                               (48) 
ii) for ܶ ∈ (ܶ)߮ ஶ  we haveߪ ∈   numbers the estimate-ݏ ஶ ,  and for theߪ

ସ௡ିଵ൫߮(ܶ)൯ݏ ≤ 2߮ු൫ݏ௡(ܶ)൯,   ݊ = 1,2, … 
holds. 
Proof. is carried out in analogy to (42), where the case ߮(ߣ) = ఈߣ , 0 < ߙ < 1 was considered. 
We have ߜ) > 0)‖߮(ܶ) − ߮(ܶᇱ)‖ ≤ ቛ∫ [(ܶ + ଵି(ݐ − (ܶᇱ + (଴,ఋ)(ݐ)ݒ݀[ଵି(ݐ ቛ + ቛ∫ (ܶ +[ఋ,ஶ)

ܶ)ଵି(ݐ − ܶ′)(ܶᇱ + ቛ(ݐ)ݒଵ݀ି(ݐ ≤ ∫ (଴,ఋ)|(ݐ)ݒ݀|ଵିݐ2 + ∫ ଶିݐ
[ఋ,ஶ) ܶ‖|(ݐ)ݒ݀| − ܶ′‖  , where the 

Hilbert idently and the estimate of the solvent of the a.o. ‖(ܶ + ‖ଵି(ݐ ≤ ݐ,ݐ/1 > 0, have been 
used.  Minimizing with respect to the parameter ߜ, we arrive at the value ߜ = ‖ܶ − ܶ′‖/2 , 
whence it follows that 

‖߮(ܶ) − ߮(ܶ′)‖ ≤ (ߜ2)ු߮ = ߮ු(‖ܶ − ܶ′‖). 
    To obtain the estimates for the s-numbers, denote by ௡ܶ an operator such that ௡ܶ ≤ ݊ , 
(ܶ)௡ାଵݏ = ‖ܶ − ௡ܶ‖(see [25]), ݊ = 1,2, … . From inequality (48) and the elementary fact 
that rank ߮(ܶ) ≤ rank ܶ, the implication ܶ ∈ ஶߪ ⟹ ߮(ܶ) ∈  ஶ easily follows. Further, like inߪ
[23]. From ܶ ≡ Re ܶ + ݅Im ܶ, we have ܭସ௡ିଵ ≝ [(Re ܶ)ଶ௡ + ݅(Im ܶ)ଶ௡ିଵ] , the corresponding 
approximation of ܶ with the preservation of accretivity:(Re ܶ)ଶ௡ ≥ 0 .  It follows that 

ସ௡ିଵ൫߮(ܶ)൯ݏ ≤ ‖߮(ܶ) − ‖(ସ௡ିଵܭ)߮ ≤ ߮ු‖ܶ − ‖ସ௡ିଵܭ ≤ ߮ු൫ݏସ௡ିଵ(Re ܶ) + ଶ௡(Im ܶ)൯ݏ
≤ ߮ු൫2ݏ௡(ܶ)൯, 

where the well-known  estimates  for the ݏ-numbers of the sum of operators  [25] have been 
used. 
         A theorem is proved (by a method different from that considered in [24, 26]) which 
extends estimates (42). (43) to the case of m.a.o. and the functions of class ܩ . Note that it is 
not hard to extend its scope to class ܩ′. 
THEOREM(1.2.3)[22].   Let ܶ , ܶ′  be m.a.o, ु(ܶ) = ु(ܶ′) , ܸ(ܶ′ − ܶ) ∈ (ܪ)ܤ  and ߪ  be a 
symmetrically-normed ideal with domination property.  Then the inequality 

                                        ‖߮(ܶ) − ߮(ܶ′)‖ఙ ≤ 8‖߮ු(|ܸ|)‖ఙ                                        (49)                                                                 
holds for ߮ු(|ܸ|) ∈ |ܸ|being a function (see [28], [25]) of the positive operator(|ܸ|)ු߮ , ߪ =
(ܸ∗ܸ)ଵ/ଶ, ߮ ∈  . ܩ
Proof. Estimate (49) has been proved above in the uniform norm. Consider now the case ߪ =
ܸ ଵ. Let at firstߪ ≥ 0, ܸ ≡ ∑ ௜ܸ௜ , ௜ܸ ≝ ,∙)(ܸ)௜ݏ ߮௜)߮௜ , ൫߮௜, ߮௝൯ =  ௜௝,  the spectral resolution ofߜ
the operatorܸ ∈  ஶ . Thenߪ
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‖߮(ܶ) − ߮(ܶ′)‖ఙభ = ብන [(ܶ + ଵି(ݐ − (ܶᇱ + (ݐ)ݒ݀[(ݐ
ࡾ

ብ
ఙభ

≤ ෍ ብන[( ௜ܶ + ଵି(ݐ − ( ௜ܶ + ௜ܸ + ݀[ଵି(ݐ
ࡾ

ብ(ݐ)ݒ
ఙభ௜

, 

where ௜ܶ ≝ ܶ + ∑ ௞ܸ௞ழ௜ , ݅ = 1,2, … , is a m.a.o. due to the condition ܸ ≥ 0 [37].   Let ߜ௜ ≥ 0,݅ =
1,2, … , be a sequel. it will be specified below. From the Hilbert identity and the 
estimate‖( ௜ܶ + ‖ଵି(ݐ ≤ ݐ, ݐ/1 > 0, we have 
‖߮(ܶ) − ߮(ܶ′)‖ఙభ

≤ ෍ ቆන ‖ܸ‖ఙభ
[ఋ೔ ,ஶ)

|(ݐ)ݒ݀|ଶିݐ + න ‖( ௜ܶ + ଵି(ݐ + ( ௜ܶ + ௜ܸ + ଵ‖ఙభି(ݐ
(଴,ఋ೔)

ቇ|(ݐ)ݒ݀|
௜

≤ ෍ ቆන ଶିݐ

[ఋ೔ ,ஶ)
(ܸ)௜ݏ|(ݐ)ݒ݀| + 2 න |(ݐ)ݒ݀|ଵିݐ

(଴,ఋ೔)
ቇ

௜

, 

where the inequality rank (( ௜ܶ + ଵି(ݐ + ( ௜ܶ + ௜ܸ + (ଵି(ݐ ≤ 1, ݐ > 0, has also been used. To 
minimize the right-hand side of the above double inequality, we choose the sequence ߜ௜  to 
be ߜ௜ ≝   ௜(ܸ)/2 . Henceݏ

‖߮(ܶ) − ߮(ܶ′)‖ఙభ ≤ ෍ ߮ු
௜

൫ݏ௜(ܸ)൯ ≡ ‖߮ු(|ܸ|)‖ఙభ . 

    In the case of an operator ܸ ∈  ஶ of general form make use of the decomposition of its realߪ
part [24] into the nonnegative (Re ܸ)ା and negative (Re ܸ)ି components: ܸ ≡ (Re ܸ)ା −
(Re ܸ)ି + ݅Im ܸ .  As before, we obtain 

‖߮(ܶ) − ߮(ܶ′)‖ఙభ

≤ ‖߮(ܶ + ݅Im ܸ) − ߮(ܶ)‖ఙభ + ‖߮(ܶ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ݅Im ܸ)‖ఙభ

+ ‖߮(ܶ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ܸ)‖ఙభ

≤ ෍ ቀ߮ු൫ݏ௡(Im ܸ)൯ + ߮ු൫ݏ௡((Re ܸ)ା)൯ + ߮ු൫ݏ௡((Re ܸ)ି)൯ቁ
௜

= ‖߮ු(Im ܸ)‖ఙభ + ‖߮ු(Re ܸ)‖ఙభ . 

  Here the facts have been used that (ܶ + ݅Im ܸ), (ܶ + ݅Im ܸ + (Re ܸ)ା)are m.a.o. and that the 
proof of the foregoing estimate (for the case ܸ ≥ 0 ) carries over verbatim to the case 
 Re ܸ = 0 . Since ݏଶ௡ିଵ(Re ܸ) ≤ ଶ௡ିଵ(Im ܸ)ݏ , (ܸ)௡ݏ ≤ ݊,  (ܸ)௡ݏ = 1,2, … [25], it follows from 
the monotonicity of ߮ු and the Fan-Tsoi lemma [25] that whence 

෍ ߮ු൫ݏ௞(Re ܸ)൯ 
௞ஸ௡

≤ 2 ෍ ߮ු൫ݏ௞(ܸ)൯ 
௞ஸ௡

,   ෍ ߮ු൫ݏ௞(Im ܸ)൯ 
௞ஸ௡

≤ 2 ෍ ߮ු൫ݏ௞(ܸ)൯ 
௞ஸ௡

, 

hence 
       ‖߮(ܶ) − ߮(ܶ′)‖ఙభ ≤ 4‖߮ු(|ܸ|)‖ఙభ .                              (50) 

    Turning to the general case of a s.n. ideal ߪ, we shall follow the idea of Calderon's proof of 
Mityagin's interpolation theorem [39, 31] (see also [18]). By Horn's lemma [25]. 
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ܮ ≝ ෍ ܶ)߮)௞ݏ + ܸ) − ߮(ܶ))
௞ஸ௡

≤ ෍{ݏ௞(߮(ܶ) − ߮(ܶ + ݅Im ܸ)) + ܶ)߮)௞ݏ + ݅Imܸ + (Re ܸ)ା) − ߮(ܶ + ݅Im ܸ))
௞ஸ௡

+ ܶ)߮)௞ݏ + ݅Imܸ + (Re ܸ)ା) − ߮(ܶ + ܸ))}

≤ ෍൛ൣݏ௞൫߮(ܶ + ݅Im ܸ) − ߮(ܶ + (Im ܸ)௡)൯ + ܶ)௞൫߮ݏ + (݅Im ܸ)௡) − ߮(ܶ)൯൧
௞ஸ௡

+ ܶ)௞൫߮ݏൣ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ݅Im ܸ + ((Re ܸ)ା)௡)൯
+ ܶ)߮)௞ݏ + ݅Im ାܸ + ((Re ܸ)ା)௡) − ߮(ܶ + ݅Im ܸ))൧
+ ௞(߮൫ܶݏൣ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ܸ + ((Re ܸ)ି)௡)൯
+ ܶ)߮)௞ݏ + ܸ + ((Re ܸ)ା)௡) − ߮(ܶ + ܸ))൧ൟ , 

where all the ߮’s are functions of m.a.o. and (ܷ)௡ , ܷ = ܷ∗ , denotes the part of the spectral 
resolution of a selfadjoint operator ܷ corresponding to the first  ݊ eigenvalue in the order of 
decreasing modulus, taking multiplicity into account. Estimating some of the ݏ-numbers in 
this sum roughly by means of the operator norm and others with the use of (48), (50), we 
obtain  

ܮ ≤ ݊‖߮(ܶ + ݅Im ܸ) − ߮(ܶ + ݅(Im ܸ)௡)‖

+ ෍ ߮ු൫ݏ௞((Im ܸ)௡)൯ + ݊‖߮(ܶ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ݅Im ܸ + ((Re ܸ)ା)௡)‖
௞

+ ෍ ߮ු
௞

൫ݏ௞(((Re ܸ)ି)௡)൯ + ݊‖߮(ܶ + ݅Im ܸ + (Re ܸ)ା) − ߮(ܶ + ܸ + ((Re ܸ)ି)௡)‖ 

+ ෍ ߮ු
௞

((௞((Re ܸ)ି)௡ݏ)

≤ ݊ ൥߮ු(ݏ௡ାଵ(Im ܸ)) + ߮ු൫ݏ௡ାଵ((Re ܸ)ା)൯ + ߮ු൫ݏ௡ାଵ((Re ܸ)ି)൯

+ ෍ ߮ු൫ݏ௞(Im ܸ) + (௞((Re ܸ)ା)ݏ)ු߮ + ൯(௞((Re ܸ)ି)ݏ)ු߮
௡

௞ୀଵ

൩ 

Hence, from the monotonicity of ߮ු and from the Fan-Tsoi lemma [25] it follows that 

ܮ ≤ 2 ෍൛߮ු൫ݏ௞(݅Im ܸ)൯ + (௞((Re ܸ)ା)ݏ)ු߮ + ൟ(௞((Re ܸ)ି)ݏ)ු߮
௡

௞ୀଵ

≤ 2 × (2 + 2) ෍ ߮ු
௡

௞ୀଵ

 .((ܸ)௞ݏ)

      Since the ideal ߪ assumed to possess the domination property, we obtain (49). In the 
cases Re ܸ = 0, ܸ ≥ 0 , ܸ ≤ 0 the constant 8 in the estimate can obviously be reduced to 2. 
COROLLARY(1.2.4) [22]. For ߮(ߣ) = ,ఈߣ 0 < ߙ < 1 ⟹ ߮ු(ܿ) = ܿఈ2ଵିఈ × sin 1)ߙߨ/ߙߨ −   ;(ߙ
therefore from (49) we have 

‖߮(ܶ) − ߮(ܶ′)‖ఙ ≤ 2ଵିఈ ୱ୧୬ గఈ
గఈ(ଵିఈ)

‖(|ܶᇱ − ܶ|)ఈ‖ఙ                                        (51) 

where the constant on the right-hand side does not exceed 8ߨ and does not increase without 
bound as ܽ → 0 , which is somewhat better than in the analogous estimate in [26]. 
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        The mapping ߮ු(|ܸ|) → ߮(ܶ + ܸ) − ߮(ܶ) is not linear, yet the method employed above is 
in fact a "nonlinear" interpolation of estimates in ߪଵ and (ܪ)ܤ and follows the interpolatory 
proof of B. S. Mityagin's theorem. 
      We consider below analogues of estimates in quasi-normed classes, including in classes of 
power decrease of -numbers of operators, which extend the well-known estimates in [24] for 
power functions of nonnegative operators to the case of accretive operators and the 
functions of class ܩ. The proof of the theorem, which we omit, can be carried out with the use 
of the selfadjointness technique from [24] and Sz.-Nagy's theorem on the possession of 
selfadjoint dilation by an arbitrary maximal dissipative (accretive) operator. 

We introduce the notations: ܶ ∈ (ܶ)ఉ,௡ߩ ;ஶߪ ≝ ∑ ௞ݏ
ఉ௡

௞ୀଵ (ܶ)ఉ,௡ݎ;(ܶ) ≝ ቀ
ఘഁ,೙(்)

௡
ቁ

ଵ/ఉ
 On the 

function߮ (see [25]) we impose this additional restriction in terms of its representing 
measure : 

෍ ቆℎ න
|(ݐ)ݒ݀|

ݐ) + ܿ௡ℎ)ଶ
[௛,ஶ)

ቇ
ஶ

௡ୀଵ

ఉ

≤  ఉ(2ℎ),                 (52)ු߮(ߚ)ܣ

where ܿ௡ ≝ 3√௡/ଶ , ℎ > 0 and (ߚ)ܣ, 0 < ߚ < 1, is some constant. 
    The following estimate is a generalization of the corresponding inequality for power 
functions of positive operators [24]. 
THEOREM(1.2.5)[22].   Let ܶ , ܶ′ be m.a.o., (ܶ) = ु(ܶ′) ,ܸ ≡ ܶᇱ − ܶ ∈ ߮ ஶ a functionߪ ∈  ,ܩ
inequality (52)hold, and0 < ߚ < 1 . Then 

(ܶ)߮)ఉ,௡ݎ − ߮(ܶ′)) ≤ ,ߚ൫ܥ  (53)                                        ((ܸ)ఉ,௡ݎ)൯߮ු(ߚ)ܣ

where  ܥ൫ߚ,  . (ߚ)ܣ and ߚ  ൯ is some constant depending only on(ߚ)ܣ
    Note that for ߚ = 1 estimate (53) holds also with the constant 8, which easily follows from 
Theorem (1.2.3) (now without additional restrictions) and the convexity of ߮ු. 
COROLLARY  (1.2.6) [22].  Let condition (52) on a function ߮ ∈ , ܶ be met, and let  ܩ ܶ′ be 
m.a.o., ܸ ≡ ܶᇱ − ܶ ∈  ஶ . Then the implicationߪ

(ܸ)௡ݏ ≤ ܿ/݊ఊ,ߛ > 0, ݊ = 1,2, … ⟹ (ܶ)߮)௡ݏ − ߮(ܶ′)) ≤  (54)  (ఊ݊/ܿ)ු߮(ߚ)ܿ
holds for an arbitrary ߚ < 1 , ߚ < ,ߚ൫ܥ depends only on (ߚ)ܿ where the constant ߛ/1  ൯(ߚ)ܣ
and ߚ. The case ߛ < 1 easily follows from Theorem (1.2.3) for power functions. 
    In the case ߮(ߣ) = ఈ(0ߣ < ߙ < 1) condition (52) is met, whence the validity of the 
implication (see [26]) 

lımതതതത
௡→ஶ

(ܸ)௡ݏ ∙ ݊ఊ = ߱ା < ∞, ߛ  > 0 ⟹ lımതതതത
௡→ஶ

௡((ܶᇱ)ఈݏ − ܶఈ)݊ఈఊ ≤ ߱ା
ఈܿ(ߙ,  (ߛ

follows. Note that estimate (53) begins to "worsen" only as ߮(ߣ) “approaches" the linear 
function ߣ in logarithmic scale. Finally, let us observe that the estimates in quasi-normed 
classes of type (54)  (and even simpler estimates of "weak type") can be used for obtaining 
inequalities (49) in symmetrically-normed ideals, i.e., in classesߪ௣, ݌ ≥ 1  (and also in the 
case0 < ݌ < 1 ), with the use of "interpolatory" technique. 
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Applications (1.2.7). 
    (i) As an application, let us first indicate the relation of estimates (51) for ߪ = ௣,1ߪ < ݌ < ∞ 
, to V. T. Matsaev's inequalities for the ߪ௣-norms of the real and imaginary parts of a Volterra 
operator. The simple proofs of those Inequalities are well known [31], so this relation has an 
illustrative character. The discussion below reproduces almost verbatim P. Stein's proof of the 
boundedness of a Hilbert transform in class ܮ௣ (see also [31] about the application of another 
proof of the boundedness of a Hilbert transform). Consider this particular case: ܶ is an 
accretive Volterra operator (Re ܶ ≥ 0),Im ܶ ∈ ௣ ,1ߪ < ݌ < 2 . Then ܶ௣ ≡ ܶ × ܶ(௣ିଵ) is also a 
Volterra operator by the theorem on the mapping of spectra [37]. Using L. A. Sakhnovich's 
theorem (the case of ݌ = 2) and estimates (51), it is easy to show that in this case ܶௗ ∈   ଵߪ
(estimates (51) and the membership Im ܶ ∈ ௣ߪ  imply  Im (ܶ௣/ଶ) ∈ (௣ߪ  . By Lidskii's 
theorem,tr ܶ௣ = 0  (below, this fact will play the same role as Cauchy's integral theorem does 
in the proof the boundedness of a Hilbert transform). Further, as in P. Stein's proof [41], 

|cos(2/ߨ݌)| ∙ ‖Im ܶ‖ఙ೛
௣ ≤ |tr (݅Im ܶ)௣| = หtr ൫ܶ௣ − ((݅Im ܶ)௣)൯ห ≤ ‖ܶ௣ − (݅Im ܶ)௣‖ఙభ

≤ ‖ܶ(ܶ௣ିଵ − (݅Im ܶ)௣ି)‖ఙభ + ‖(ܶ − ݅Im ܶ)(݅Im ܶ)௣ିଵ‖ఙభ

≤ ቀ‖Re ܶ‖ఙ೛ + ‖Im ܶ‖ఙ೛ቁ × ݌)ܥ − 1) × ‖(Re ܶ)௣ିଵ‖ఙ೛ + ‖Re ܶ‖ఙ೛

× ‖(|Im ܶ|)௣ିଵ‖ఙ೛

= ቀ‖Re ܶ‖ఙ೛ + ‖Im ܶ‖ఙ೛ቁ × ݌)ܥ − 1) × ‖Re ܶ‖ఙ೛
(௣ିଵ) + ‖Re ܶ‖ఙ೛

‖Im ܶ‖ఙ೛
(௣ିଵ), 

Where ݍ = ݌)/݌ − 1) and (ߙ)ܥ is the constant from the right-hand side of inequality (51) 
Applying Young's inequality, we easily obtain ‖Im ܶ‖ఙ೛ ≤  ௣‖Re ܶ‖ఙ೛.  The dual equalityܥ

‖Re ܶ‖ఙ೛ ≤ ሚ௣‖Im ܶ‖ఙ೛ܥ  
is obtained in the analogous way. 

    (ii) The estimate for the functions of Pick class can also be used for analyzing the boundary 
behavior of operator-valued functions (o.f.) ܶ(ߣ) analytic in ࡯ା and having a non­ negative 
imaginary part: Im ܶ(λ) ≥ 0, ܶ(λ) ∈ σଵ, Im λ > 0.  It has been proved in [7J that such 
functions have almost everywhere on the real axis nontangential boundary valuest in the 
norm of ߪ௣ for any݌ > 1. However, it can be shown that in the nuclear norm boundary values 
mayor may not exist a.e. It is not hard to verify [29]   that this problem reduces to the 
investigation of functions of the "special" form   

ܶ(λ) = ܸଵ/ଶ(ܣ − λ)ିଵܸଵ/ଶ, ܣ = ܸ ,∗ܣ ≥ 0 , ܸ ∈ ଵ, Im λߪ > 0              (55) 

 which arise in a natural way in problems of perturbation theory for a pair{ܣ, ܣ + ܸ} . 
Clearly, the investigation of the boundary behavior of such o.f. has important applications in 
perturbation theory. Let ஛ܰ(ܶ)(λ > 0, ∈  ஶ)     be the count of the s-numbers of an operatorߪ
ܶ exceeding or equal to λ, λ > 0 . The behavior of the boundary values of ܶ(݇) = ݏ −
lim ܶ ݖas,(ݖ) → ݇  nontangentially, ݇ ∈ ݖ Im, ࡾ > 0 , is described by the following theorem: 
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Theorem (1.2.8) [22]. Let ܶ(݇) have the form (55) with ܸ ∈  ଵ . Then for the boundary valuesߪ
of  ܶ(݇) on the real axis the estimate 

sup
஛வ଴

න λ ஛ܰ(ܶ(݇))݀݇ ≤ ܿ଴‖ܸ‖ఙభ
ࡾ

.                                        (56) 

holds, where ܿ଴  is an absolute constant. 
Proof. of the theorem is the extension to the case of operators of one of the proofs [43] of 
Kolmogorov's theorem on the "weak type“   of Hilbert transform inܮଵ(ࡾ) . At that, the only 
nontrivial fact related to operators (besides, of course, the spectral theorem for self­ adjoint 
operators) which we will use is the estimate of a difference of functions, of the Pick class, of 
accretive operators in the norm of ߪଵ (Theorem (1.2.3)). 
    Since for ݏ > 0 we have Re ൫– isܶ(λ)൯ ≥ 0 ,Im λ > 0 , by – isܶ(λ) taking  as the argument 
for the function ߮(λ) = ln(1 + λ) of the Pick class (whose representative measure [24] ݀ݒ =
0  , 0 < ݐ ≤ 1 , and ݀ݒ = , ݐ݀− ݐ > 1 ) we obtain the analytic o.f. ln(I − isܶ(λ))  in the 
region Im λ > 0 . Since ܶ(λ) has nontangential boundary values ܶ(݇) almost everywhere on 
݌∀ ௣ߪ ଶ (and evenߪ in the norm of ࡾ > 1 [29]), the function Re ln(I − isܶ(λ)), nonnegative 
and harmonic in ࡯ା has nontangential boundary values Re ln(I − isܶ(݇)),݇ ∈  in ࡾ a.e. on ࡾ
the nuclear norm. Note that for the functionln(I − isܶ(λ))  itself this assertion, generally 
speaking. is not valid. Considering the scalar nonnegative harmonic function Re ln(I −
isܶ(λ)), it is easy to show, as in [43], that (λ ≡ ݔ +  (ݕ݅

0 ≤ tr ݕ Re ln(I − isܶ(λ)) ≥
1
ߨ

න
ଶݕ

ݔ) − ݇)ଶ + ଶݕ
ࡾ

tr Re ln൫I − isܶ(݇)൯݀݇. 

Passing to the limit as ݕ → +∞  and computing   lim
௬→ାஶ

ln(I − isܶ(λ)) =  we obtain ,ܸݏ

න tr Re ln൫I − isܶ(݇)൯݀݇ ≤ .ܸ tr ݏߨ
ࡾ

 

Hence and from (50) we have 

න ฮRe ln൫I − isܶ(݇)൯ฮ
஢భ

݀݇ ≤ ܸ tr ݏߨ +
ࡾ

න ฮln൫I − isܶ(݇)൯ − ln(I − is(Re ܶ(݇)))ฮ
஢భ

݀݇
ࡾ

≤ ܸ tr ݏߨ + 2 න ฮφ෕൫ݏImܶ(݇)൯ฮ
஢భ

݀݇
ࡾ

≤ ܸ tr ݏߨ + ݏ2 න‖Im ܶ(݇)‖஢భ
ࡾ

݀݇

≡ ܸ tr ݏߨ + (ܸ tr ߨ2)ݏ2 = 5ݏߨ × tr ܸ. 
Here the estimate ߮ු(ܿ) ≤ ܿ  has been used and the computati.on of the 
integraltr ∫ Im ܶ(݇)݀݇ = ࡾܸ tr ߨ2 , has been carried out, which can easily be done, e.g., with 
the aid of the spectral theorem (see [7J). Computing the trace of the normal operator, we 
have 

න ݀݇ ෍ ln ቀݏ ∙ ௡൫Re ܶ(݇)൯ቁݏ ≤ ܸ trݏߨ5
௡ࡾ

, 

hence, after setting ݏ = ߣ , ߣ/݁ > 0 , we obtain 
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න ݀݇ ఒܰ
ࡾ

൫Re ܶ(݇)൯ ≤ ߣ   ,ߣ/ܸ tr ߨ5݁ > 0. 

Since 

ܸ tr ߨ2 = න tr Im ܶ(݇)݀݇ ≥ න ߣ ఒܰ
ࡾ

൫Im ܶ(݇)൯݀݇,
ࡾ

ߣ     > 0, 

with the use of the inequality ଶܰఒ( ଵܶ + ଶܶ) ≤ ఒܰ( ଵܶ) + ఒܰ( ଶܶ)  [31], we easily obtain the 
required estimate 

න ݀݇ ఒܰ
ࡾ

൫ܶ(݇)൯ ≤ 10݁]ߨ + 2]tr ܸ. 

      Proceeding from estimate (54), one can obtain various information about the boundary 
limits of an o.f.  (see [29]). Let us present without proof just one consequence [29]. 
THEOREM(1.2.9) [22]. Let an operator-function ܶ(ߣ) have the form (55). If  ܸ ∈ ଵߪ ×  ,.ఠ, i.eߪ
is the product of a nuclear operator and an operator from the Matsaev class ߪఠ , then the o.f. 
 in the nuclear norm. On the other hand, for ࡾ has nontangential boundary values on (ߣ)ܶ
any symmetrically-normed ideal ߪ ≠ ܸ of the form (55) with (ߣ)ܶ .ଵ there exists o.fߪ ∈ ଵߪ ×
 (ߪ ఠ and an operator from the s.n. idealߪ i.e., ܸ is the product of an operator from class) ఠߪ
whose boundary values do not belong to class ߪଵ almost everywhere on ࡾ. 
 


