الآية (و قل ربى زدنى علما)

الاية: (114) سورة طه

Dedication

To:

Soul of My parents...

My husband...

My sisters and Brothers...

Acknowledgment

First of all, I thank Allah the Almighty for helping me complete this project. I thank Prof. Al Safi Ahmed Ball my supervisor, for his help and guidance.

I would like to express my gratitude to Prof: Mohmmed Al Fadil and Dr. Abdoelrahman Hassan Ali and the whole staff of the Saad specialist Hospital for their great help and support.

I am greatly indebted to my husband Dr. Asim Al Tegani and my niece WaelAbdo, Amira Al Hamadabi and Abdulhaim Al Hamadabi for bearing with me during the past several months.

Finally I would like to thank everybody who helped me prepare and finish this study.

Tables of Contents

Topic	Page number	
Dedication	I	
Acknowledgement	II	
Table of contents	III	
English Abstract	V	
Arabic Abstract	VI	
List of abbreviation	VII	
List of figures	VIII	
List of tables	X	
Chapter One		
Introduction		
1-1 Introduction	1	
1-2 Problem of study	5	
1-3 The study objective	5	
1-4 Significant of study	5	
1-5 Overview of study	6	
Chapter Two		
Literature Review		
Theoretical study		
2-1 Theoretical background	7	
2-1-1 Epidemiology and pathology of DVT		
2-1-2 Signs, symptoms and treatment of DVT		
2-1-3. Investigations for Diagnosing DVT		
2.1.4. Practical considerations for duplex assessment of DVT		
2.1.5. Deep vein examination for acute DVT		

2-2 Scan appearances for the assessment of acute DVT	8
2-2-1 B-mode images	
2-2-2 Color flow images	
2-2-3 Spectral Doppler	
2-3.Diagnostic problems	8
2-3-1. Accuracy of duplex scanning for the detection of DVT	
2-4 Natural history of DVT	11
2-5. Recurrent thrombosis	11
2-6. Other pathologic conditions that can mimic DVT	16
2.6.1. Thrombophlebitis	
2.6.2. Lymphedema	
2.6.3. Hematoma	
2.6.4. Cellulitis	
2.6.5. Edema	
2.6.6. Baker's cysts	
2.6.7. Enlarged lymph nodes	
2.6.8. Other pathologic lesions	
2-7ChronicLowerLimbVenousinsufficiency(CVI)	
2-8 Peripheral arterial disease	
2.9. Doppler Effect Applied to Vascular Ultrasound	17
2.9.1. Analysis of the Doppler signal	20
2.9.2. Blood Flow and its Appearance on color Flow Imaging	
2.9.3. Structure of vessel walls	
2.9.4. Why does blood flow?	
2.10. Previous study	

Chapter Three				
Material & Meth	Material & Methodology			
3-1 Material		24		
3-2 Methodology		25		
Chapter Fo	Chapter Four			
Results				
Results and Analysis	28			
Chapter Fi	ve			
Discussion, Conclusions and Recommendations				
5-1 Discussion	39			
5-2 Conclusion	42			
5-3 Recommendations	42			
References	43			
Appendices	45			

List of abbreviations

DVT Deep vein thrombosis

PE Pulmonary embolism

D Diastole

DM Diabetes Mellitus

FVW Flow Velocity Waveform

PSV Peak systolic velocity

PSVR Peak systolic velocity ratio

CVI Chronic venous insufficiency

PT/INR Prothrombin time/international normalize ratio

CFV Common femoral vein

CFA Common femoral artery

SFV Superficial femral vein

SFA Superficial femoral artery

PTV Posterior tibular vein

PTA Posterior tibular artery

ATV Anterior tibular vein

ATA Anterior tibular vein

GSV Great Saphenous vein

SSV Short saphenous vein

PER V Peroneal vein

PER A Peroneal artery

SM Soleus muscle

GM Gastrocnemius muscle

MF Muscular fascia

SV Soleal vein

GV Gastrocnemius vein

List of figures

Figure	Title	Page
Figure 1-1	Ultrasound Doppler bilateral lower extremity 66 years old with	5
	pain Type2 diabetes.	
Figure 1-2	An angiogram demonstrating a significant stenosis in the right	6
	common iliac artery (arrow).	
Figure2-1	Signs symptoms and treatment of DVT	11
Figure 2-2	A transverse image of the right common femoral vein (CFV) and	11
	femoral artery (CFA).	
Figure 2-3	Transverse image of the calf demonstrating the posterior tibial	12
	(PT) veins (V) and arteries (A) and peroneal (PER) veins (V) and	
	arteries (A). B	
Figure 2-4	Color flow imaging from the medial calf demonstrates patency of	12
	the posterior tibial veins (PTV), which are seen lying on either side	
	of the posterior tibial artery (PTA).	
Figure 2-5	transverse B-mode image of the posterior aspect of the mid upper	13
	calf to demonstrate the position of the soleus muscle (SM) and a	
	soleal vein (SV).	
Figure 2-6	transverse image of the common femoral vein (V) and common	13
	femoral artery (A).	
Figure 2-7	transverse B-mode image of a peroneal vein thrombosis (arrow).	14
	The image is taken from the posterolateral aspect of the calf.	
Figure 2-8	The proximal end of a free-floating thrombus (arrow) is seen in the	14
	superficial femoral vein.	
Figure 2-9	color flow image of Figure 13.9. Flow is seen between the	17

	thrombus and vein wall (arrows). The superficial femoral artery	
	(A) is lying superficial to the vein.	
Figure 2-10	The Doppler waveform in the femoral vein distal to an iliac vein	18
	occlusion often demonstrates continuous low-velocity flow with a	
	loss of phasicity.	
Figure 2-11	Two longitudinal B-mode images of the superficial femoral vein	19
	showing different stages of organization.	
Figure 2-12	transverse image of the long saphenous vein demonstrates	20
	evidence of thrombophlebitis. The vein is distended and contains	
	thrombus (arrow).	
Figure 2-13	An area of hematoma (H) is seen in the calf muscle following	24
	injury. Hematomas can be mistaken for DVT.	
Figure 2-14	Lymphedema produces a grainy appearance in the subcutaneous	28
	tissues, as demonstrated on this transverse B-mode image.	
Figure 2-15	Fluid edema is demonstrated in the subcutaneous tissues as	29
	numerous anechoic channels (arrows) splaying the tissue.	
Figure 2-16	The venous flow signals recorded from the common femoral vein	30
	of a patient with congestive cardiac failure demonstrate a pulsatile	
	flow pattern.	
Figure 2-17	An enlarged lymph node (arrow) is demonstrated in this transverse	32
	image at the top of the groin. Flow is demonstrated in the lymph	
	node.	
Figure 2-18	A Baker's cyst (BC) is demonstrated in this transverse image of	33
	the popliteal fossa. The popliteal artery (A) and vein (V) are also	
	seen in the image.	
Figure 3-1	Femoral vein and popliteal fossa examination, leg bent at the knee	34

	and rotated outward (Ma Of, Mateer. JR, Blaivas. M emergency	
	US, 2 nd edition.)	
Figure 3-2	showed the compression test at the level of the adductor canal,	35
	where it is inadequate at level of adductor canal rather, and	
	additional presses on the vein against transducer from below with	
	flat hand.	
Figure 4-1	showed the frequency distribution of ultrasound finding	36
Figure 4-2	Showed the cross-tabulation of ultrasound finding and age groups	37
Figure4-3	par graph showed the cross-tabulation of age groups and patient	
	affected site	
Figure4-4	par graph showed the cross-tabulation of age groups and lap result	
Figure4-5	demonstrate the cross-tabulation between US finding and the lap	
	result	

LIST OF TABLES

Table	Title	Page
Table 4-1	Showed Frequency Distribution of ultrasound finding in patient with LL swelling and pain.	29
T 11 4 2	5 1	20
Table 4-2	Showed the cross-tabulation of ultrasound finding and age groups	30
	and age groups	
Table 4-3	showed the cross-tabulation of indication and age	31
	groups	
Table 4-4	showed the cross-tabulation of age groups and	32
	patient affected site	
Table 4-5	showed the frequency distribution of age group	32
Table 4-6	showed the frequency distribution of affected site	33
Table 4-7	showed the frequency distribution of patient	34
	symptoms	

Abstract

This is an analytical prospective study used to characterize the lower limb vascular abnormality and other related abnormality in Doppler ultrasound in patient with lower limb pain or swelling or those are highly suggestive for this type of disease in period from January 2013 to September 2016. hundred and ten patient; Firstly patient with differential diagnosis of these selected lower limb disease were underwent successful laboratory and imaging investigation particularly for those suffering from Lower Limbpain and associated symptoms, then the lower limbswere examined with real-time sonography, using mobile GE LOGIQ 5 ultrasound machine, ideally after 6-hoursof fasting. Both supine and right anterior oblique views were obtained. Sagittal, transverse, coronal, and subcostal oblique views are suggested using both standard abdominal transducer and a higher frequency transducer. The result showed that the most affected age group by Deep Venous Thrombosis (DVT) was 40-50 years followed by (30-40 years) and the varicose vein affect the population in age group of (30-40 years) which is the active age. Lab examination prothrombin time (PT)international normalized ratio (INR) "PT/INR" and D-dimer very important for correlation with ultrasound sometimes it gives abnormal result this due to liver diseases. DVT was noted in 14.8% from total population, 20.5% having varicose vein, where most people with lower limbs pain and swelling showed normal result in 34.3%. Where the most affected limb more the 50% at both site and 29% for the left one, where the majority of the patient suffering from lower limbs pain in 45% has strong indicator for lower limbs Doppler scan. The most important outcome from the pain and swelling resultedin deep veins thrombus which is most important ultrasound clinical finding.

المستخلص

هذة در اسة ميدانية تحليلية تستخدم لو صف اأطر اف الأو عية الدموية الغير طبيعية و غير ها ذات الصلة بالموجات فوق الصوتية والدوبلر في المريضيذويالألم في الأطراف أو تورم أو تلك الموحية لهذا النوع من المرض في الفترة من يناير 2013 إلى سبتمبر 2016. مائتين و عشرة مريض، أولا المريضيذوي التشخيص المتباين التفريقي المختارة لامراض الالطراف السفلي التي خضعت بنجاح للفحوصات المخبرية والتصوير و التحقيق بشكل خاص و لأولئك الذين يعانون من الالم الاطراف السفلي وما يرتبط بها من أعراض، ثم تم فحص الأطراف السفلية ديناميكيا بالموجات فوق الصوتية، وذلك باستخدام جهاز الموجات فوق الصوتية المحمول جنرال الكترك لوجيك 5، بعد 6 ساعات من الصيام كاجراء مثالي. سواء تم الحصول على وجهات التصوير الأمامية المائلة باليمين، عرضية، وتحت الضلوع والجهات المائلة باستخدام مسبار البطن القياسي وأعلى مسبارتردد. وأظهرت النتيجة أن الفئة العمرية الأكثر تضررا من وريدي عميق التخثر كانت 40-50 سنة تليها (30-40 سنة) والدوالي الوريدييؤثر على السكان في الفئة العمرية من (30-40 عاما) وهو عمر نشط. فحص المختبر البروثرومبين المؤقت النسبة تطبيعة الدولية ود-ديمر مهم جدا للعلاقة مع الموجات فوق الصوتية لانه في بعض الأحيان يعطى نتيجة غير طبيعية وذلك بسبب أمراض الكبد. ولوحظ وجودجلطة وريدية عميقة في 14.8٪ من مجموع السكان، 20.5٪ منهم دوالي الوريد، أظهر تالدراسة أن أغلب الناس يعانون من آلام في الأطراف السفلية وتورم نتيجة طبيعية في 34.3٪ من الحالات. حيث الطرف الأكثر تضررا أكثر من 50٪ في كلا الجانبين و 29٪ لليسار، حيث الغالبية العظمي من المريضي يعانون من آلام فيالأطرافه السفلية في 45٪ ولديها مؤشر قوى بمسح دوبلر. أهم نتائج ألام و التورم أسفرت عنتخثرة في الأوردة العميقة التي هي أهم النتائج الموجات فوق الصوتية السريرية.