Chapter 1
Quasi-Metric Measure Spaces

We show the validity of a Riesz—Thorin type interpolation theorem for
linear operators acting from variable exponent Lebesgue spaces into variable
exponent Morrey space in the framework of quasi-metric measure spaces.

The classical Riesz—Thorin interpolation theorem is a well-known result in
harmonic analysis, where, loosely speaking, we obtain boundedness results of
certain type of operators using the information on the endpoints. The geometric
interpretation of this fact is that if the operator is of strong type (p,, go)and of
strong type (p;,q,), then it is of strong type (pg, q9) Where the reciprocal of
(pe, g9)belongsto the line joining the reciprocals of (py, q5) and (p4, q41), Viz.
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A generalization of this theorem when the target space is a Morrey—Campanato
spacewas given by S.Campanato and M.Murth. It should be noted that it is not
possible to prove Riesz—Thorin interpolation theorem when the domain space is
a Mor-rey type space; for example, constructed an example of a bounded linear
operator on H%*and L?but not on L7 > 2, and BMO. Where there were given
examples of operators bounded from LPi%i to L9i, which are not bounded in the
intermediate spaces. The Riesz—Thorin interpolation the-orem in the framework
of variable exponent Lebesgue spaces was first proved using the abstract complex
interpolation method of Calderon, and more recently. For interpolation results for
positive operators in variable exponent Lebesgue spaces.

Morrey spaces first appeared relation to some problems in partial differential
equations. During last decade, Morrey spaces were widely studied because of
their proposal application in various allied fields of science.

Function spaces with variable exponents are a very active area of research
nowadays and one of the reasons is a wide variety of applications of such spaces,
in the modeling of the electro-rheological fluids as well as thermo-rheological
fludis, in this study of image processing and in differential equations with non-
standard growth. Lebesgue spaces with variable exponent in framework of quasi-
measure space have also been studied by several atuthors.

We show a variant of Riesz-Thorin interpolation theorem when the domain
space is the variable exponent Lebesgue space LP)(X) and the target space is a

variable exponent Morrey space L1020 (Y) where X and Y are a quasi-metric
measure space (QMMS), wher we adopt techniques presented.



Constants (often different constants in the same series of in-equalities) will

mainly be denoted by c or C; by symbol p’(x) we denote the function p?gzl, 1<

p(x) < oo; then the relation a = b means that there are positive constants c; and
¢, suchthatc;a < b < c,a.

Let (X,d,u) be a QMMS with a complete measure u such that the space of
compactly supported continuous functions are dense in L; (X).A quasi-metric d
Isa function d: X X X — [0, o) which satisfies the following conditions:

(i) d(x,y) =0forall x € X.

(ii) d(x,y)>0forallx #y,x,y € X.

(iii) There is a constant a, > 0 such that d(r,y) = a,d(y,x) foral r,y € X.

(iv) There is a constant a; > 0 such that d(x,y) < a,(d(x,z) + d(z,y)) for
all x,y,z € X.

Let dy = diam (X) = sup{d(x,y):x,y € X}. Let B(x,r) ={y € X:d(r,y) <
r} be the ball with enter x and radius r > 0. We will assume that 0 <
u(B(x,7)) < oo forevery x € X and r > 0. It is obvious that the condition dy <
oo and the assumption that all the balls have finite measure imply u(X) < oo. For
that further literature on the subject of quassi-metric measure spaces.

Let E be a measurable set in (X, u) with positive measure. We denote
pT(E):=infp,  p*(E)=supp

For a measurable function p on E. suppose that 1 < p~(E) < p*(E) < . We
say that a measurable function £ on E belongs to LF©(E) (or to LPX) (E)) if

Spe.e(f) = j|f(x)|p(x)dﬂ(X) < 0.
E
It is a Banach space with respect to the norm

f
I llroey = {1 0:550 (5) <1}

For the following propositions.

Preposition (1.1)[1]: Let E be a measurable subset of X. suppose that 1 <
p~(E) < p*(E) < o. Then

(i)
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(if) Holder’s inequality
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holds, where f € LPO(E) and g € LP O (E).

Preposition (1.2)[1]: Let 1 <r(x) < p(x) and let E be a subset of X with
U(E) < oo. then the following inequality

11l < GCE) + DIfllpo g

| r@gGdue)
E

> “f”Lp(')(E)“g”LP’(')(E)

Holds.
The following lemma can.

Lemma (1.3)[1]: Let E be a measurable subset of X. suppose that 1 < p~(E) <
p*(E) < 0. Then

”f“Lp(')(E) < Sp(),E(f) +1
Holds.

Definition (1.4)[1]: We say that a u-measurable function p: X — [1, o) belongs
o the classes ?Jog (X) if the inequality

T CXIeT))

Holds for all x, y € X such that uB(x,d(x,y)) < 1/2.
For the next lemma.

Lemma (1.5)[1]: Let (X,d,u) be QMMS with finite measure, and let p €
?;Og(X). Then

1
X5l o0 < #(BGT))PE.

The Morrey spaces LPO4A0) () over an open set O ¢ R™ were introduced
by several authors more or less simultaneously. Let 1 < p(-) < p*(X) < o0 and
0 <A(.) <1 be u-measurable function. We say that a function f € LPO)(X)
belongs to f € LPOAO (X)) if

1
)20y (f) = sup Jlf(y)lp(y)dﬂ(y)<°°-
POIAC)
XEX,r>0 ‘u(B (x' r))A(X) B(x,r)
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The norm on variable exponent Morrey spaces can be introduced:

If1ly = inf{n > 0; L,y 1) (f /M) < 1},
and

—A(x)

Ifll, = sup (HB(X, T)) pC) fXB(x,r)

xeX,R>0

)

P (E)

and

~A(x)
Iflls = sup (uBG,T))P@ NIfll o6 (peery).
XEX,R>0

It can be verified that ||f]l; = |If]l,. further, p € IPJOg(X) then ||f]l, and

IIf1], are equivalent to the norm ||f||5. Therefore it is possible to introduce the
norm in several ways which are equivalent provided that the exponent satisfaction
some condition. We define the norm on variable exponent Morrey space as:

11l poa0gy = NIflls:

It is easy to see that if A = 0, then LPO0(X) = LPO)(X). When p(x) = const and
A(x) = const then LPOAO (X)) coincide with the classical Morrey space LP2(X).

The next lemma gives the embedding of variable Morrey spaces into
variable lebesgue space in case dy < co.Here we present the proof of this lemma
for the sake of completeness.

Lemma (1.6) [1]: Let (X,d,u) be a QMMS with u(X) < oo. Suppose that 1 <
p() <P*(X) <o and 0<A(:) <1. Then, LPOAO (X) - LPO(X) and
moreover for every f € LPOAO(X),x € X and r > 0 e have

Ax)
1Nl eo (paery) S (u(B(x, 7‘))’f’(")||f||Lp(~),A(~)(X)-

Further the following inequity
| F@90du0) < el Il (1)
X

holds
Proof: Suppose that f € LPOAO(X). Let x € X and r < 0, then



a1
”f”Lp(')(B(x,r)) = (H(B(X, r))p(x) (%) ”f”Lp(')(B(x,r))
u(B(x,r))Pe)

A(x)
< u(Be, )P f Il porae (X).

Since p bounded, hence taking supermom with respect to x € X and r < 0 we
have the following estimate

A
— X
Ifllpor ) < max{l,‘u(X)}<p>+( )

Consequently, via Holder’s inequality, for f € LP®) and g € LP'O there is a
positive constant ¢ such that

Ifllpoao ) < cpallfllpoaox

[ 1903410 < lfllpos00 191,570 @)
X

Holds.

Lemma (1.7)[1]: Let (Xy, dxuir) be QMMS for k = 1,2 and pu,(X,) < oo. Let
piand p, be bounded exponents and 0 < A(-) <1 and let T:LP:O(X,) —»
L2020 (x,) be linear and continuous. For k = 1,2, suppose that there are
positive real number Bj and M,, measurable sets A, with u,;(A4,) < oo and
measurable functions my, b: X;, = R such that —M,, < m(x;) < M, and 0 <
by (xy) < By, for almost every x;, € X;,for z € S, define

F(z):= j T a0, (O] () 20252020y, (), (),
X2

Where a, k = 1,2 are positive real numbers. Then F is continuous and bounded
onthestrip § = {z: 0 < Re(z) < 1} and analytic on int (S).

Proof: Let x,, € X and z € C. Denote
ay (xpe, 2) = @™ 3 ()
and

a, (xy,z) — alxg, w)
Qi (xp, z,W): = ok p— i — ay (2, z)my (x;) log ay.

Therefore, we may represent F as

F(2):= j Tl (- 2)] () etz (g 2) itz ().

X>



Notice that for almost every x;, € X, the following point-wise holds

lay (xx, 2)| = a;nk(xk) Re(Z)+bkCXk)a;(mk(Xk)Im(Z)XAk(xk)
R b
= akmk(xk) @ k(xk)XAk(xk) < Dy xa, (X)), (3)
Where D;: = max __ak. Further, by virtue of (3) we have the following
tE[Mk,Mk+Bk]

estimates,

m(xw-1) _
k

[Qr Gy, z, W) = |y (xy, 2)| — my(x,) log ay

elmi(xi)log aglw-2) _ 1
= o (xy, 2)| N — my(x;) log ay
o [y G log_ak(W - Z)]J] 1
= | (ue2)| | s
w—z

— My (xk) log ay

= | (x1,2)] E _=2[ k() log a]ﬁ] [(w—1)]
< Dixy, (xi) E ) (M |log akljj[(w 2V

- M Jlog ayllw — 1)
< DM Pllog a1z = wlx,, (o) Y 20 il
=0

= DM |log ay|?|z — wleMillos arlw=zly | (x,) (4)
for almost every x; € X,,. Now for sufficiently small |z — w]|, we have that
D,MZ|log a;|?|z — w|eMrlos axllw=zI js no greater than 1. Thus

Spr o (@ (o z,w)) = lek(xk:Z: w) [P d s ()
Xk

< DiMi|log ai|?|z — wleMllos allw=zly, (4,5 — 0, (5)
As w — z.Since (p;,)+< oo, it follows that
N [N CEAT) [T ©)

Similarly,



\}vl—rg ”Qk(';Z; W)”ka(‘)(Xk) = 0. (7)
Taking into account (6) and the following inequality
la,(,2) - “k(';W)”Lp;c(Xk)
<1z —wl (110 C, zw)ll

+llaeC, 2)mi () log agll g )

Lp;f(')(Xk)

We have
\}vl—rg ||ak(°:Z) - ak(': W)”LP;C(')(X/{) = 0. (8)

Analogously we have

‘LIB} ”ak(‘,Z) - ak('; W)”ka(')(Xk) = 0. (9)
Now we prove the analyticity of F:
F(z) — F(w)
Z— W
TG e (e 2)dus = [, Tlan (w) (k) (e, w)dia ()]
Z— W
B j Tlai (-, 2)](xz)az (x;,2) — Tlay (-, w)] (x5) @z (x4, 2) p
= Z —w Ha (x3)
n j Tlay (,w)](xz)az (xs, Z; : ;[Cﬁ('» w)](xz)ay (xz, w) d, (x,)
X2
- f T [al(.,zz : :;1(.’ W)] (x2)az(xz, z)dp; (x3)
X2
[ Tl 2D 2 e =14
Denote
= [ Tla o m)Ologar] (o) (e, 2)dns (x7)

X3

and

J = j T [ (- 2)] Gen) et Oy 25 ()l0g ity ().

X>



We showthat ! — I"and ] — J' asw — z.Firstly, we show I — I’; using linearity
of the operator T along with the Lemma (1.6) we obtain

|-

aq

[ |2 e 2t

- fT[“1(';Z)m1(')log a;] (x3) oz (%2, 2)dpy (x7)

X3

f T101C 2 )] (ea) @ (s 2) it (x2)

X2
< clIT[Q: (2 WO ooy llaz G Dy

< Tl o160,y 12020 (x ) 1Q1 G 2, Wl o1y ll @2 (5 2) ]

LP2(X,)
where c is the constant appearing in Lemma (1.6). the desired result follows from
Lemma (1.3), (3) and. To show J — J' again spilt ] — J' as two integrals:

ay(x2,2) — ay(xz,w)
Z —

J=J] = jT[a&(';W)](xz) ]dﬂz(xz)

X3

- jT1[051(';Z)](xz)az(xz;z)mz(xz)logaz du,(x3)

X>

= [ Tiar (. w)ee)

X5

ay(x2,2) — ay(x,,w)
ARV

— a(xz,z)m;(x;) log az] du,(x3)

+ jT[a1(°,W)
- )6(121 (-, 2)](xz)az (x2, z)my(x,) loga, duy(x;)

= fT[Ch(';W)] (x2) Q2 (x2,2z,w) duy(x;) + fT[%(-rW)

X3 X
—a, (5, 2)](xx)ay (xy, 2)my(x3) loga, duy(x;) =:8; + Ss.

By means of Lemma (1.6), the boundness of T and (3) we have the following
estimates,

1511 = ellTlas GO 02600y ITIQ2C 2 Wl oy,



< clITll a0k, ) 12020 (G Wl o100 () 1Q2 (- 2, W)||Lp;<4)(X2)

< DTl 1001122020600 12 Oll oo 1€ G 2y, (10D
Analogously,
1521 < clITll o100 (x,) o 1p202x,)
X lay (W) = @ G Dl ooy a2 G 2Ama () log. aall g, - (11)

Now, expression on the right-hand side in (10) tends 0 as w — z by virtue of
Lemma (1.3) and (6). Therefore, ] — J', as w — z. Hence, F is analytic on in
int(S); and F' = I' + J'. Now we show that F is continuous in the entire strip S.
In fact we use the same technique as above;

|F(z) — F(w)|

- j Tlay (2) — a; (w)] (@ )a (x5, 2)dp; (i)

X3

+ j Tlay (o w)]0e e (42 ,2) — & (tp ,w)ldptz (x)

X5

< CITlmi0p)opm0a0 0y 102(2) = @)l G DN g

+ ¢Dy ||T||Lpl(-)(Xl)%pz(-),u-)(xz)||XA1(')||Lp1(.)(X1) la, (-, 2)
- az(':W)”Lp'Z(.)(XZ)'
As w — z in §, both terms in the above sum tends to 0 by virtue of Lemma
(1.3), (8) and (9), proving the continuity of F in S. Finally, F is bounded in S.

Indeed, by the boundedness of T and invoking Lemma (1.6), Lemma (1.3) and
estimate (3) we have:

IF(2)| < clIT[a1C 2]l peorao i« la2 G, Z)lle'z(.)(Xz)
< cITl 10 x)srr2020x,y larC2) | pio llaz (2l

|2, O]

1720ty

Fol

<
1P20(xy)

< cD,D, ”T”LP1(-)(X1)_>LI>2(-).A(-)(Xz) LP10(x,) |
1

Which ends the proof.

Finally, we prove the Riesz—Thorin theorem in the setting of variable
Morrey spaces defined on quasi-metric measure spaces.



Theorem (1.8)[1]: Let (X, u) and (Y,v) be o-finite, complete QMMS. For k =
0,1, assume that 1 < pr (), qx (") < gqif (Y) <o and 0 < A, < 1. Suppose
that we have a linear operator T: LPxO)(X) —» LIOAO(Y) such that for all
IfIl € LPO(X)

ITFllaom0w, < Micllf g (12)
holds. For z € S :={z: 0 < Re(z) < 1}, define p,, q, and 1, by
1 1—2z A
= + ,
Pz(x)  po(®) p1(®)
1 1—2z A
= + )
q:()  qo(®) g1 ()

and

LG 2,00 A0
R O RN

Then, given any 8 € (0, 1), the inequality
”Tf”Lqe('Me(')(y) = CM(}_GO Mf ”f”Lng)(X)

holds for every f € LPeO)(X).

Proof: Since T is linear, we may assume that f =+ 0, otherwise the inequality
holds for f = 0. By the homogeneity of norm and the scaling argument we
may assume ||f||Lq9<.)(X) < 1 andshow that

ITfllap0200yy < Mg~ MY (13)

We will show (13) for simple functions in X and since simple function are
dense in LPO)(X) we will have the estimate for all f € LPeO)(X) .

Let us assume f, g are simple and complex valued function defined on
X and Y, respectively, by

m

)= ) gei® gy (),

j-1
n

90 = ) e, (),
k=1

Where the a;, by > 0 and a;, B € R, u(4;),u(Bx) < o, and the {4;} and
{B,} are, respectively, pairwise disjoint. Now define

10



T pe(®)
£ = ) P elaiy, (),
j—1

n  py(y)

g,(x) = z bP*) eibry, (y).

k=1
Finally, foreveryy € Y, r > 0and z € C, we put

Fom = [ TR,
B(y,r)

Firstly note that for every 8 € (0,1), pg(y) € [1,0). Further for almost every
Do (x)p1(x)

— +..+
x € X, po(x) = 00, 169 () = PoP1 <® and hence py(x) €
[1, pg pi]. Moreover,
1< ! 1< ! . <1 L <1,
123 () pox) T Po
for al €X. Let ® = ! D, (x) =
oz )amost every x et &;(x) := po(x )[p = po(x)] and ®,(x)
Po(x
. Hence, regardin

Po(x) g g

po (x)

=&, (x)z + Dy(x)

p,(x) °
as a linear polynomial in z and that &, maps X to the interval [—pg p{ , pd pi]
while the map ®, maps X to the interval [0,pgdp;]. Analogously for Z?—Ex’?,

we have similar estimates. Since we can write F as

qe(s)
($)b% ¥ (s)dv(s),

m

F(y,r,z) = zn:

j—l k=1p (yr)

XA()

hence for almost every y € Y, Lemma (1.7) ensures that F is analytic on
int(S) and continuous and bounded on S.

Since A; are pairwise disjoint and a; > 0, we have for z = it, with t € R

m  po(x) Po(x)

Spo)Byr)(fz) = J zafZ(x)e"“fo,-(x)
B(yr) |J=1

11



Po(x)

m 1 1 1. .pex)
po(x) - it+ .
_ f Zaj FORNGlare ety (2) duu(x)
By |J=1
o P (x)[ 2 - ]it*pe(x) o)
0 - . .
— f Z aj p1(x) po(x) Po(x)elanAj (x) d,u(x)
B(y,r) |J=1
m m Do (x)
= [ D@ = [ e | du
B(yr) J=1 B(y,r) |j=1

= Spern () =1

since ||f||Lpe(.)(X) < 1. Hence ||];||Lpo(.)(3(y'r)) < 1. A similar argument
shows that ”gZ”Lqé(B(y,r)) < 1 for z =it. Now by Holder’s inequality,
Lemma (1.6) and (12) we have

Fy,7,i6)] < f T(£,())g, ()dv(s)

B(y,r)
< cllTfelliaoo(zym) 1921l 000 5y ) = € NTFllLa00 (80y.9)
Ao (y)
< (B, 7)) |ITf,1l 000200 (V)

< cv(B(1,1))%0 Mollf;ll o0y < cv(B(y, 7)) My,
An analogous argument with Re(z) = 1 and with the exponents p, and g,
yields

M)
IF(y,r, 1+ it)| < cv(B(y, )10 M.

Finally, using Hadamard’s three lines lemma gives

Ae(y)
|F(y,7,0)| < cv(B(y,1))460) Mio M? .

Also,

sup
g <1IF(y,r,9)| =|ITf IILqO(_)Lqe(')(B(y,r))

, <
1L96B(y.r)

Hence for almost every y € Y and r > 0 we have

12



—Ao(¥)
V(B(y’ r)) qg(y) ”Tf”LQQ(')(B(y’T)) S CM&_Q MOH )

which implies that
1Tl 96008y = cM}=% mM§¢

This completes the proof.

13



Chapter 2

Sobolev Inequality on Non-Homogeneous Central Herz-Morrey-
Orlicz Spaces

As an application, we give Sobolev's inequality for Riesz potentials.

Section (2.1): Boundedness of the Maximal Operator

Let RN be the Euclidean space. Beurling introduced the space B? (RM) to
extend Wiener’s ideas which describes the behavior of functions at infinity.
Feichtinger gave an equivalent norm on BP (R"), which is a special case of norms
in Herz spaces K, (R") introduced by Herz. More precisely, B?(R") =

—N/p,0
KP

spaces BP*(RM) to study the relationship with A —central bounded mean
oscillation spaces, where BP»°(RY) = BP(RM).

(RM). Alvarez, Guzm“an-Partida and Lakey defined the central Morrey

Garcia-Cuerva studied the boundedness of the maximal operator on the
space BP(RM).Further, showed that the maximal operator is bounded on
homogeneous Herz spaces and non-homogeneous Herz spaces. We introduce
non-homogeneous central Herz—Morrey—Orlicz spaces H ®4®(RN) as an
extension of K,”"(R"), and study the boundedness of the Hardy-Littlewood
maximal operator.

In classical Lebesgue spaces, we know Sobolev’s inequality:

I af e guy= C L f e (RV)

For f € LP(RY),0 <a < Nand1 < p < N/a, where la is the Riesz kernel
oforderaeand 1/p* = 1/p — a/N. Fu, Lin and Lu showed Sobolev’s inequality

for BP*(R") for non-homogeneous Herz spaces, for non-homogeneous Herz—
Morrey spaces, for non-homogeneous central Morrey spaces. We give Sobolev’s
inequality for Riesz potentials of functions in non-homogeneous central Herz—
Morrey—-Orlicz spaces.

Suppose f € HP2@(RN), that is, it satisfies an L? integrability such as

® q dr
f {o@) I f IILp(A(O,r))} - < o0 when 0 < g < o
1

sup w(r) I f lp(ac0,ry) < @ when q =
r>1

14



Where w is a doubling weight, 1 < p < ooand A(0,r) = B(0,2r)\ B(0,r)
Is the annulus with B (x, r) denoting the open ball centered at x of radius r. Then
we want to find p; and a weight 7 such that I, f € #P+9T(R"). In the borderline
case ap = N, instead of Trudinger’s inequality, we show the weighted LP
integrability

|+ 1y ogCe + 1) liefOI) d
R
<c [ {aogte+ YD) IFO)I) dy
R
Since it may happen that I,|f| = oo for some f € H ®%®(RN), we modify the
Riesz kernel I, by
Io(x —y) when |y| < 1,

ko) =31, G-n— Y Z@u) ey whenly =1,

{w:lulsk-13 ©

for a nonnegative integer k; I, o is the usual Riesz kernel I, of order a. Then our
third task is to find k such that the generalized Riesz potential

lasf () = j Lk CoVfO) dy

RN

is well defined for almost every x € RY and belongs to a suitable non-
homogeneous central Herz—Morrey—Orliczspace.

Finally, following Gogatishvili-Mustafayev, we study the duality properties
between H *2¢(RN) and ﬁq)'q'w(RN ) (for the definition of H ®2¢(RN)and
7 RYY).
Let us consider a function

P(t) = tp(t) = [0,00) — [0,0)
With ¢ satisfying the following conditions:
(d,) ¢ is continuous in [0,00) and ¢(t) > 0fort > 0;

(d,) ¢ is almost increasing in [0, o0); namely, there exists a constant A; > 1
such that

¢(t) < A;¢p(s) whenever 0 < t < s;
(d3) ¢ is doubling; namely, there exists a constant A, = 1 such that
AF1p(t) < P(s) < A,¢(t) whenever0 < t/2 < s < 2t.

15



Example (2.1.1)[2]: Forp = 1and 6; € R (j = 1,2), one sees that
®(t) = tP(log(e + t))%:(log(e + 1/t))?

satisfies(®,), (P,) and (P3) when

(P))1 < p < oo;o0r

(P,)p = 1,6, = 0and 8, < 0.

From now on, we always assume that @& satisfies (®,), (®,) and (d3). Let

~

d(t) = supo<s<tP(s) and t
30 = [ $0) ar
0

fort > 0. Then @ is convex and

%Cb(t) < B(t) < A,0(0) &

forall t > 0. Moreover ¢p(t) = t~1®(t) is increasing in (0, o).

For an open set Qin R", the associated Musielak—Orlicz space

LP(Q) = {fE Lioc (V) jQCD(If(Y)I)dy < 00}

Is a Banach space with respect to the norm

I f @ = inffA>0; [ ®UfODI/Ddy < 1}
We further consider a function w : (0,0) — (0, ) such that

(w;) w is almost monotone in (0, «); that is, ® or w™?! is almost increasing in
(0, 00);
(w,) wis doubling.

We set A(0,r) = B(0,2r) \ B(0,r) with the open ball B(x,r) centered at x of
radius r. For0 < g < o we denote by H®9®(RN) the class of locally
integrable functions f on R" satisfying

00 qdr 1/q
I f yeoanmmy= I f llo@oay +{ | (@@ NS lepony) —) <o
1
When g < o, and

wp () I f lisgaory) <@

I F llrosooreny= Il £ Il o +<s
f H (R™) f L¥(B(0,2)) Ler<oo
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When g = oo. The space H ®2®(RN) is referred to as a non-homogeneous
central Herz—Morrey—Orlicz space. One sees the following: if 0 < g; < g, < oo,
then

:]-[‘13,6{1,(0(RN) C f]‘[q)'qz’w(RN) cC j_[cb,oo,(o(RN) (2)
When ®(t) = tP, we sometimes write HP2®(RN) for H ®9«(RV),

Moreover, let us consider the space H ®9« (RM)of all locally integrable functions
f on RY satisfying

o q dr 1/q
1f llycwaemm) =< ] (@) I f o gory) 7) < oo,
1

—d,q, : . L
and the space H ! w(RN) of all locally integrable functions f on RY satisfying

o dr 1/q
f 1l T gy = = f o502t (j (w(r) If "LQ’(RN/B(OT))) > <@

when g < oo;if g = oo, then we need necessary modifications.
Lemma (2.1.2)[2]: Let ®(t) = tP(log(e + t))’withp > 1andg > 0.

| B0 dy <15 Mooy
A(0,1)
(i) 10 f e a0ryy= 1forr > 0, then

O(fOID dy 211 f ITe
L(M fFDID dy 21 f e a0.):

With the aid of (2) and Lemma (2.1.2), we have the following result.

Corollary (2.1.3)[2]: Let ®(t) = tP(log(e + t))? with p > 1 and 6 >
0.Letw(r) =1".

(i) If (f (Y 1 f o gaco, T)))q dr) < 1, then there exists a constant C > 0

such that
1
0 ) a/p dr /q
f f oD dy) =] <¢
1 A(0,1) r

which implies

17



% am g, /a
j (r"pj O fD dy) — < C whenv > 0;
1 A(0,1) r

. /p dr 1/q
(ii) If v < 0and (f (7% [0y @UFGID dy)’ 7) < 1, then there

exists a constant C > 0 such that

oo , q dr 1/q
(T' ” f "Lq)(A(O,T))) T < C
1

Let C denote various positive constants independent of the variables in question.
The symbol g ~ hmeansthat C"*h < g < Ch for some constant C > 0.

For a measurable set E ¢ R", we denote by y the characteristic function
of E and by |E| the Lebesgue measure of E. Since @ is convex on [0, o) and
0 < d(t) <ooforallt € (0,),® has the inverse which is denoted by ®~1 as
usual. Let us begin with the following easy fact.

Lemma (2.1.4)[2]:
Il X80 lie@yy< |BO, D] {&~1 (")}~
forall» > 0.
For a real number g, set
Kg(x) = |x|B.
Corollary (2.1.5)[2]: For a real number 3, suppose
(@pB,) there exists a constant C > 0 such that

jrtﬁ{CD Lr=Ny31— dt <Crﬁ{CI> Yr=M} 1 forallr >0

Then there exists a constant C > 0 such that

I g o0y < CTPL®(r~")} !
forallr > 0.
Corollary (2.1.6)[2]: For a real number 3, suppose
(PB) there exists a constant C > 0 such that

< dt _
f tﬁ{cb‘l(r"v)}'lT < Crf{d~'(rM)}' forallr >0

18



Then there exists a constant C > 0 such that
Il g o gM\(0,yS CTP{P(r~ M)}
forallr > 0.

Example (2.1.7)[2]: Let ®(¢) be as in Example (2.1.1). If p > 1land 6; €
R(j = 1,2),then

d1(t) ~ tYP(log(e + t))7P/P(log(e + 1/t)) %2/P
For t > 0. Moreover
M) Ifg + N/p > 0,then (®p,) holds;
(i)ifg + N/p < 0, then ($S,,) holds.
Lemma (2.1.8)[2]: There is a constant C > 0 such that

< CT)_l -N
A, )y, FON @ = COTOTD NS o aony

for all » > 0 and measurable functions f.

Proof: Fix r > 0. Let f be a nonnegative measurable function on A(0,r)
satisfying Il f I 4¢0y)< 1.Then we have

If )| dy

|A(0; T) | A(0,7)

< FLrM) 4 o(f(»)

— d
@)
B(f)) {B(@ M)} dy

140,11 J, (O,r)lf W dy f»)

1)
|A(0, r) | A(0,1)

<O M)+ CcoI(rN) D(f(y) <CPr™)
A(0,r)

=®1r M) +

as required.

For a locally integrable function fon RY, the Hardy-Littlewood maximal
function M £ is defined by

Mf(x) = sup (f(») dy.

>0 |B(x) r)l B(x,r)
The mapping f +— M f is called the maximal operator.
To assure the boundedness of the maximal operator, we need the condition:
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(D,; &) t™%0¢(t)is almost increasing in (0, o) for some g, > 0;
more precisely, there exists a constant 4, ., = 1 such that
t7E p(t) < Are,s”50P(s) whenever 0 < t < s.

Thenwe find forA > 1

1
Ap(t) < ¢ ((AALSO)a t) whenevert > 0. (3)
We have the following result.

Lemma (2.1.9)[2]: Suppose(P,; &,) holds. Then the maximal operator M is
bounded from L* (RN) into itself, namely, there is a constant C > 0 such that

| Mf lo@m< C Il f logm,
forall f € L®(RM).

Let n: (0,00) — (0,00) satisfy (w,) and (w,). Then, for 0 < g < oo and
1/2 < a <1< b < 2 with 2a > b, there exists a constant C > 0 such
that

bt dr q
| @0 1 a0 = € (100 17 Misacony) ®
at
forallt > 0.
Let
1 0 when(0 < g < 1,
—Iz{(q—l)/q whenl < g < oo,
q when g = o
For a nonnegative function f € L} .(R") and a real number g, set
HEf@) =8 [ e o) dy
RN\B(0,27)

Lemma (2.1.10)[2]: for a real number S, suppose
(Pwy; Pt Pw(t)*d1(r~N)is almost decreasing in [1, o) for some &; > 0.

If 0 < & < g, then there exists a constant C > 0 such that

~ o d 1/q
HEF(r) < Cré(® 13716 ( [ (t-fwu)||f||L¢<A<o,t>))"{)
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When0 < g < o and
HEof(r) < Cw(t) 1o 1(rM) SUP(w(t)”f”Ld’(A(o,t)))

When g = oo, forall » > 1 and nonnegative functions f € Li,.(RM).

Proof . We treat only the case 1 < g < oo, since the remaining case is easily
treated. Let f € L1 .(R") be a nonnegative function on RN. Letr > 1and 0 <
€ < &. Then we have by Lemma (2.1.9), HOlder’s inequality,(®w,; £) and (4)

o _ B -N-8 d B j _ﬁ—l _ d
HEfO) =7 Z ) Y SOy < Cr ;(2 N GO ] P

< Crp Z(er)_ﬁ e ((Zfr)—N) ||f||Lq>(A(0,2—ir))
j=1

<crf (i ((Zfr)g_ﬂw(zfr)‘la‘l (@™ )q >

j=1

(_1((zjr) w(21r)|IfIIL¢(A(02,T))> )

— ® g dt
< Créw(r) 1o 1(T_N) (f (@ Il f "L‘D(A(o,t))) t>

Ms

Which provesthecase 1 < g < oo.
For a nonnegative function f € L},.(R") and a real number g, set
Hgre) =1* | Y™ F )y
B(0,7)\B(0,1)
Lemma (2.1.11)[2]: for a real number £, suppose

—1
(P wy; Bt~ Pw()d (¢t~) is almost increasing in [1, «) for some &, >
0.

If 0 < & < &,, then there exists a constant C > 0 such that

Hpf(r) < Cr~*w(t)” 1o (t My (f (tew(@®) Il f IIL¢(A(0t)))q dt)
When0 < g < ooand

Hﬁf(r) < Cw(t)” 1D (t Ny Sup ((U(t) Il f .2 caco, t)))

E<t<r

When g = oo, forall v > 1 and nonnegative functions f € L} . (RM).

Proof: We showonlythecase 1 < g < oo.Let f € L], (R") be a nonnegative
functionon RN . Letr > 1and 0 < € < &,. Let j, be the largest integer such that
270ty > 1.We have by Lemma (2.1.9), Holder’s inequality, (Pw,; £) and (4)
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Jo
HZf(r)=rF VB f(y)d
@) =1 ]Z f oy P FO

Jo
i NP 1
<crf Y @) e ) dy
j=1( ) 14(0,2777)| A(0,27Jr)\B(0,1)

Jo
<crf )" 7 (@) ™) Xm0l (40211

j=1

<crt (jz ((Z_jr)_s_ﬁ w(2ir) T ((z»)”))q,)

j=1

Jo !
X <Z <(2‘jr)£w(2_jr)||fXRN\B(o,1)||L¢(A(0,2jr))> )

1

q

Q|

j=1

~.
| =

0

9\ q
< Cr—sw(r)-161(r—N)<' <(2_jr)£w(2_jr)”fXRN\B(O'l)”L‘D(A(o,zfr))) )

J

Il
XA

qdt\Y?
t

—1
<Crétw(m)~ o (T_N)< , (tsa)(t) Il fXRrM\B(0,1) ”L“’(A(O,t)))
1/4

1
e =1, _ "ol qdt\d
<Cr o™ t® ) <.[1/2 (t w@® Il f IIL¢(A(0’t))) T) ,
Which gives the required result.
We present the boundedness of the maximal operator in £ ®9® (RM),

Theorem (2.1.12)[2]: In addition to (®,; &), assume (dw,; 0) and
(®w,; —N) hold. Then the maximal operator M is bounded from 7 ®%®(RN)
to itself, that is,

I Mf llgeoaogny< C Il f llypoangn
forall f € H®9®(RN),

Proof: we show only the case 1 < g < oo, because the remaining case is
easily treated. Let f be a nonnegative measurable function on R such that
I f ll3;@a.0gny < 1.First we show

@ g dr
(@) I Mf 1l 400,y)) —=<C
2
Forr > 2, set

f= fXB(o,r/z) + fXB(0,4r)\B(0,r/2) + f)(RN\B(o,4r) = fir T for + 3
We have by Lemma (2.1.9)
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I Mf2r "L“I’(A(Or))S C Mer ”Lq’(RN) Clf "L‘I’(B(o 4r)\B(0,r/2)"
so that

qdr
_[ (@) I Mfor o a0, r))) Z< Cf (“)(t) I f e (g, 4r))\B(0r/2))

<c [ @O 1 f lisgaory) ' 5 <
1
For f;,, we find forx € A(0,7)
Mfi,r(x) < Clx|™ f f) dy = Cen (x) f) dy.

B(0,r/2) B(0,r/2)
For fixed r > 2, note from Lemma (2.1.4) that
e —N "L‘I’(A(o,r))S CT Nt rM)3 T,

We have for 0 < ¢, < ¢,

I Mfrr o (aem< €M@ (")} o) )f ) dy
B(0,r/2

<c [{5-1(r-N)}-1 (r—N f O dy)

+r M@ )} f) dYI

B(0,1)
» . r y qdt 1/q
<Clreom (t20® I f 2 uoe) T
1/2
+r‘N{<T>‘1(r'N)}'1]

by Lemma (2.1.11). Since t22w(£){®~1(r~M)}1 is almost decreasing in [1, o)
by (dw,; —N), we have

[ rreo@ e
2

Hence we obtain
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fz i (0O 1M fir Ny (aors)) dr

Sc{fzwr%q {L (¢ 1 f aao) dt}

2

. m[r-Nw(t)@*(r-N)}-l]q?}

< C{f:z (tféa)(t) I f ||L<1>(A(O,t)))q (j:or‘szq g)% + 1}

© qdt
<C f (@@ I f 2 (ac0e))) —tliscC
1/2

For f5,, we find forx € A(0,7)

My () <C j FO)yI dy

RN\B(0,41)
and by Lemmas (2.1.4) and (2.1.10)

_ -1
1M o gaory= C @ @™) [ o ay
R

N\B(0,41)
w 1/q
r . o qdt
< Crétw(r) (E20@®) I f e o) T
1
For 0 < &; < &. Hence we have
j (@) I Mfsy loaqom)’ —
2
< Cf 51‘1 <f (tglw(t) I f ”Ld’(A(O t)))
t dr\ dt
< Cf (tglw(t) I f ||L¢(A(o,t))) Jr 1q? t
2

°° g dt
< c] (@) I f o ug0)) — =C
2

Finally we show

q dt) dr

I Mf ”L‘D(B(o 4))< C

Since
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2 dt 1/q
q
I Mf Nl po2)< ( f (@@ I Mf 1o ac0ry) 7) < C Il Mf N0 504
1
Set
f= fXB(0,8) + fXRN\B(o,s) = fut+fs.
The above arguments yield

I M fo e Boan<C Il f loposHys C

and

o ANA
q

as required.
In the same manner we can prove the following results.

Theorem (2.1.13)[2]: in addition to (®,; &;), assume that (dw,; 0) holds. Then
the maximal operator M is bounded from  ®9% (RN) to itself.

Theorem (2.1.14)[2]: In addition to (P,; &), assume that (Pw,; —N) holds.
_CDJ ) -
Then the maximal operator M is bounded from qW(R"’) to itself.

Here, noting that
[PeN@ )

by (®,; &), and hence we can prove the last theorem.

1% < Cr—N{q_)—l(r—N)}—l

Section (2.2): Sobolev Inequality and Generalized Potentials with
Associate Space

The Riesz potential is defined by
f@ = |

Iy(x — y)f(y) dy
RN
for a locally integrable function f on RY.

Lemma (2.2.1)[2]: Assume that (®w,; —a) holdsfore; > 0.Then,for0 < € <
&;, there exists a constant € > 0 such that, for all x € B(0, 2r) with » > 1 and
nonnegative functions f € L},.(RY),
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|Ia (f XrM\B(0,47) )(x)|

- 1/q
< Cr£+“w(r)_1CT>_1(T_N) (f t_sw(t)”f“L‘D(A(o,t)))
r

when 0 < g < o and
1ol amoan) ] = Crewm 8726 sup (0O liwiacon)
T

When g = oo.

Proof: We treat only the case 1 < q < oo, as before. Let f € L],.(RY) be a
nonnegative function on RVM. Let r = 1,x € B(0,2r) and 0 < & < & .First
note from Lemma (2.1.10) with § = —a that

e(f tmpaan) Ol <C [ BTGy

RMN\B(0,41)
1

— ” d ’
< Cre+aa)(r)_1cl>‘1(r‘N)<J (0@l ) t>q

t
as required.
Lemma (2.2.2)[2]: Assume (Pw,; —N) holds for e, > 0. Then, for0 < & <

&,, there exists a constant C > 0 such that for all x € RN \ B(0,r) withr > 1
and nonnegative functions f € Lj,.(R"),

|Ia (f XRN\B(O,r/Z)\B(O,l)) (x) |
1

_ ’ adt\a
< C(lx|/r)a—Nr—s+aw(r)—1q)—1(T—N) X <f (tga)(t)”f”ch(A(O,t))) )

/2 t
When 0 < g < o and

|Ia(f XRN\B(O,r/z)\B(o,l))(x)|
< C(lxl/,r.)a—N’r'a’a)(T')_lcT)—l(r—N) X 1sup (w(t)“f”L(D(A(O,t)))

E<t<7'

When g = oo.

Proof: We show only thecase 1 < g < . Let f € L},.(R")be a nonnegative
functionon RY. Letr > 1,x € RN\B(0,r) and 0 < ¢ < &,.First note that

|Ia(f XRN\B(O,r/z)\B(o,l))(x)| < C|x|a_Nf fO)dy

RN \B(O%)\B(O,l)

| x|

a-N
<C (—) reh f fndy
r B(0,r/2)\B(0,1)
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Hence Lemma (2.1.11) with § = —N gives the first case.

To obtain the Sobolev type inequality, we use a function
Y(t) = ty(t) : [0,00) = [0,00)

With y satisfying the following conditions:

(¥;) ¥ is continuous in [0, c0);

(¥,) Wis almost increasing in [0, o).

Setting Y(r) = supy<s<; Y(s) in the same manner as ¢, we define
T
Ty = | B d
0

and note that Y (r) = r~1¥ () is increasing in (0, o).
Moreover we need the following conditions:
(®,) r— reted~1(r~N)is almost decreasing in (0, ) for some ¢ > 0;
(P, )there exists a constant A; > 1 such that
P(td()"*N) < A;D(D)
Forallt > 0.

Lemma (2.2.3)[2]: Suppose (D,; &), (P,) and (PP,) hold. Then there exists
a constant C > 0 such that

”Iaf”L‘*”(RN) = C”f“LCD(RN)
Forall f € L*(RY).

Now we show the Sobolev type inequality for Riesz potentials of functions in
:]_[CD,q,(o(RN).

Theorem (2.2.4)[2]: Suppose(P,; &), (P,) and (Yd,) are fulfilled. Further,
assume that (® w,; —a) and (Pw,; —N) hold. Then there exists a constant C >
0 such that

”Iaf“g_[‘l’,q,m(RN) < C”f”g_[rb,q,m(RN)
Forall f € H 9 (RM),

Proof. We show only the case 1 < g < oo. Let f be a nonnegative measurable
function on R" such that ”f”}[d),q,u)(RN) < 1.Forr = 1landx € A(0,r), set

f=7xson+ fXRN\B(o,r/z)\B(o,1) + fXRN\B(oAr)\B(o,r/z) + XRrM\B(0,47)
= fo+ fir+ for +f5r
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First we treat f; ... Note from (¥ ®,) that
sup t* @MW} < C (5)

£>0
eS| weacomy
< Cree() e 1)

r 1/q
< (T Szw(r)||f||Lc1>(A(0 t))) ) 11|, wcacory

1/2

1/q
< Cr‘gzw(r)_1< (T 82w(r)||f||Lq>(A(0 t))) )
1/2

for some 0 < &, < &,, since Lemma (2.1.3) holds for ¥. Hence
qdr\dr
(t 820)(7')||f”L‘1>(A(0 t))) >_

f (0@ i lwnion ) < € j wr—85q<
1 "L ' r 1 r
dr\dr

[0 0) B , q [e 0]
<C (t sZ(U("")”f”LCD(A(O,t))) (j &2 _>T
2 t

1/ r
[0/0)

dr

q

< CJ (w(r)”f”LcD(A(O,t))) t
1/2

1/2

Similarly, for f; .

17ef |l wcacom
< Croattey(r) 1 1(rN)

0%} d 1/q
_e! q ar
X(] (t™20Mfllea00)) 7) 11][  wcacom
r

o dr\"
—¢! -1 —£] gl
< Cr w(r) (j (t 1a)(T')||f||Ld’(A(0,t))) 7)
r

for some 0 < g < &, so that

qdr

[ (oM
1

r

<c [ ( [ (=0t o)’ d’") x

0 , d d
— f (t- gl(l)(r)”f”Ld’(A(Ot))) (f read %)Tr
Cfl ((A)(T)llf”Ld)(A(O,t))) TS ¢
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For f, -, we have by Lemma (2.2.4)

”Iaf 2,r|| L¥(A() <Cllf ”Lq’(B(OAr)\B(O,r/Z)'
So that

* qdr © dr
J, (@ leforlwnen) =€ [ @O hoaaan)' T =6
1 1/2

Next we show that

” q dr
J (0Mlafoll waory) —=¢C
2

Since

lefo) = |

B(0,1)
< Cya-n(X)

when|x| > 2 and

| ke — N "LLP(RN\B(O,I.))S Cz(zf—lr)a—N {q_/—l ((Zf—lr)_N)}

X — Y|V F) dy < ClafeN j fO) dy
B(0,1)

-1

j=1
. N (- . —N\) 1 _
< CZ(ZJ‘lr) o (@) ™)) <ot
j=1
by Lemma (2.1.3), (5) and (®,; &), we have
o dr « _ dr
| @OMefillraen)' S < [ 0 om el <c
2 2
Finally, the above arguments and Lemma (2.2.3) yield
2 d 1/q
qg ar
||Iaf0||L‘P(B(0,2)) + <.[ (w(r)||1af0”1,4’(,4(o,r))) T) = C”IafO”L'P(B(oA))
1

2 q dr
S C ”IafO”LCD(B(O,S)) +.[ (w(r)lllafOHLcD(A(O,t))) T S C
1

Which proves the theorem.

Theorem (2.2.5)[2]: Suppose(d,; &), (P,) and (Pd,) are satisfied. Further,
assume that (®dw,; —a) holds. Then there exists a constant C > 0 such that

”Iaf”ﬂll—’,q,cD(RN) < C”f”ﬁq)’q’m(RN)
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—d,q,
forall f € I qw(RN).

Theorem (2.2.6)[2]: Suppose(d,; &), (P,) and (P d,) are satisfied. Further
assume that (®dw,; —N) holds. Then there exists a constant C > 0 such that

Maf o g < ClF Lm0 g,

_q>, ,
Forall f € H qQ)(RN).
In fact, set

f= fXB(O,l) + fXRN\B(o,r/z)\B(o,1) + XrN\B(0,r/2) = fo+ fir + for

For a locally integrable function f on RY. Then Lemma (2.2.2) yields

|Ia'f1,r(x)|

_ r q dr v
1/2

Since the Orlicz case is rather complicated as was seen by Corollary 2.3, we here
restrict ourselves to treat the Lebesgue’s LP case. Consider a measurable function
f on RY such that

| @+ phmiFopdy < o

namely, f € PP (RN). Then Theorem (2.2.5) gives

« . o pdr
0 (@ + D Maf Nl a0y} = < o0

If p < p; < p* then

@ dr
*_ p
[ 1@+ 0O fllps o) S <
0

which gives

*© dr
*_ p
f {(1 + T)U|A(0»7”)|1/p 1/p1||1af”Lp1(A(0,r))} 17 < co.
0

so that

(1 + |y|)(v+N/p*—N/p1)p1 |1, f (x)|Prdx < oo. (6)
RN

Whena — N/p = v, we modify condition (dw,; ) to obtain a weak version
of inequality (6), by adding logarithmic terms.
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Further, inequality (6) is shown to hold for a wider range of exponents when f is
radially symmetric. In fact, if f > 0 is radially symmetric and 0 < a < 1,
then, by polar coordinates, we have

le —y|* N f(lyDdy
R
- j X — y19N F(lyD)dy
B(0,2]|x|)

n f X — y19N F(lyD)dy
RN\B(0,2|x|)

2|x|

< f() j |x — ta|* N dS(o) |tV T
0 0B(0,1)

rc f 1= F(lyDdy
RN\B(0,2|x])

2lx] a—1
SCUO |1x| — ¢t f(t)dt+L

< Cj IIx] — t|* Fo)dt,
0

0

ge1 f(t)dt}

| x|

and apply the Sobolev inequality in the one dimensional case. In this case
Theorem (2.2.4) can be extended for a wider class of Orlicz functions.

Next we consider the case that ($,) does not hold.

Lemma (2.2.7)[2]: Suppose @ satisfies (P,; &y). Then there exists a constant
C > 0 such that

r_a”Iaf;””Lq’(B(O,r)) S C“f”Ld)(B(O;T))
forall f € Ly,.(R") andr > 0, where f, = fxp.-

Proof: Let f € L? .(R") be a nonnegative measurable function on RY. We have

Ifo() < j X — Yo () dy < CreMf(x)

B(x,21)

forx € B(0,r). Hence we find by above Lemma

r_alllafr”Ld’(B(o,r)) =< C“Mfr”Ld’(B(o,r)) < C”ﬁﬂ”LCD(RN) = C”f”LCD(B(o,r));
As required.

We obtain the following result.
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Theorem (2.2.8)[2]: Suppose & satisfies (P,; &y). Further, assume that
(Pw,; —a) and (Pw,; —N) hold. Set 7(r) = r~*w(r).Then there exists a
constant C > 0 such that

”Iaf”g.[d),q,‘r(RN) < C”f”}[d),q,m(RN)
forall f € H ®9@(RV).

Even if neither (®,) nor (dw,; —a) are not true, we still establish the following
result in the same manner.

Theorem (2.2.9)[2]: Suppose ®satisfies (P,; &,). Further, assume that
(Pw,; —N) holds and (Pwg,) (log(l + )=/ Vt%w(t) — 1071 (t7N) s
almost decreasing in [1, o) for some g3 > 0.

Set

(log(1 + ) Yr=2w(r) when0< q <1,

"= {(log(l + ) () whenl< q <,

Then there exists a constant C > 0 such that

“Ia'f”j-[‘b'q.‘f(RN) < C”f”j_[CD,q,m(RN)
forall f € H 9@ (RN).
For this purpose we prepare the next result instead of Lemma (2.2.1)

Lemma (2.2.10)[2]: Suppose(Pw,,) holds. If 0 < & < &3, then there exists a
constant C > 0 such that

|Ia (f XRN\B(0,4r))(x)|

< C(log(1 + etV ragy(r)~1d~1(r~N)
1

x ( f " ((og(t + ) “w®OIflouon))’ @f
1/2 (“en)) ¢

Wheng < o
and for all x € B(0,2r) with r > 1and nonnegative functions f € L} .(R")
When1/p* = 1/p —a/N = 0Oand p; = p, we can modify (6) by

(1 + |xD™ (log(2 + |x)C VPl f ()P dx < oo
RN

for all functions f satisfying
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fRNﬂOg(Z + XDPIfFOIP dx < oo

Withe > 1/p'.

This is the best possible in the following sense: if w is a nondecreasing positive
function on [0, o) and

J @t + )™ (og
+ DO ILFCOP dx | og(2 + DYPIFCIP dx (7)

Holds for all nonnegative measurable functions f on RY, then w is bounded. In
fact, forr > 1and e > 0, consider the function

£ = og [yD~O=# 1y~ * XM s (0.r)-
Then note that
j (log(2 + lyD)PIL P dy < C f (og lyD) =< ly|~* dy
RN RN\B(0,r)
< C(logr)~¢rti
When ¢ > 1/p. Further, for x € RV\B(0,7) we have
If(0) = f QD NI O] dy
RN\B(0,|x])

=C (log [yD~*=#|y|™ dy = C(log |x|) 70+
RN\B(0,|x])

Sincee > 1/p > —6 + 1,sothat

f w(lxD@ + |[xP7V (og(2 + [x)CPP|Lf(x)|P dx

RN\B(0,1)

> Cw(r) |x]"N (log |x|)™%? dx = Cw(r)(logr) P+l
RN\B(0,1)
Hence it follows from (7) that
w(r) < C,

which implies that w is bounded.

For an integer k > 0, let us remind that I, , f is the generalized potential of a
locally integrable function fon R", which is defined in the Introduction. For the
sake of convenience, set
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[ f @) = f L f ) dy

RN\B(0,1)
for a locally integrable function f on R". Note here that

[ @) = f L —0F ) dy

RN\B(0,1)
when k = 0.

The following estimates for I, are fundamental.
Lemma (2.2.11)[2]: Let k = 0 be an integer.
(i) If 2|x| < |y|, then

m

X
(=) = ) DM < Clalklyla .
{(wlplsk-1}

(ii) If |x]/2 < |y| < 2|x], then

x4
L =y) = ) TOM)| < Cle—ylen.
{wlplsk-13

(i) IfJy| < |x|/2anda — N — (k — 1) < 0, then

xM
G =) = ) (DM < ClafFty|e N6,

(wipl<k-1} ©

Lemma (2.2.12)[2]: Assume that (®w,; k — ) holds for ¢, > 0. Then, for
0 < € < g, there exists a constant C > 0 such that, for all x € B(0, 2r) with

r = 1 and nonnegative functions f € Lj,.(R"Y),

_ _ oo th 1/q

|1a,k(fXRN\B(o,4r))(x)| < Crtfom) ot (rY) <f (t () Il f "L‘P(A(o,t)) T)
When0 < g < o and

|ia,k(fXRN \B(O,4r))(x)| < Craw(r)_la)_l(r_lv) 5uPt>r(w(t) I f "L‘P(A(o,t))
When q = oo.

Lemma (2.2.13)[2]: Let k = 1 be an integer. Assume (Pw,; k — 1 — a)
holds for e, > 0. Then, for 0 < € < &,, there exists a constant C > 0 such that
forall x € B(0,2r) withr > 1 and nonnegative functions f € L},.(RV),
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|I~a,k (fXB(O,lxl/Z))(x)l
_ r “dr\

< Cr—£+aw(r)_1CI)_1(T_N)< (tgw(t) Il f "Ld’(A(O,t)) T)

1/2

When0 < g < woand

|ia,k (fXB(o,|x|/2))(x)|

T sup
< Crew(r) 1o 1(r M) 1/2<t< A@® 1 f e a0n))

whenq = oo.

Now, using Lemmas (2.2.11) — (2.2.14), we give the Sobolev type inequality for
generalized Riesz potentials of functions in H ®%®(RV),

Theorem (2.2.14)[2]: Suppose (D,; &), (Pa) and (P Pa) are fulfilled. Further,
for an integer k > 1, assume that (dw,; k — a) and (Pw,; kK — 1 — a)
hold. Then there exists a constant C > 0 such that

I Ia,kf ":}['P,Q@(RN)S Cll f ||H<I>,q,w(RN)
Forall f € H®99(RV),
In fact, set

f = fO +f1,r +f2,r +f3,r

Theorem (2.2.15)[2]: Suppose (®,; &), (P,) and (P d,,) are fulfilled. Further,
for an integer k > 1, assume that (Pw,; k — a) and (Pw,; k — 1 — a)
hold. Then there exists a constant C > 0 such that

| 1y wf ||£1P,q,w(RN)S CIlf ”£d>,q,co(RN)
Forall f € H P9 (RN).

Theorem (2.2.16)[2]: Suppose @ satisfies (®,; &,). Further, for an integer k >
1, assume that (P wy; k — a) and (P w,; k — 1 — a) hold. Set 7(r) =
r~*w(r). Then there exists a constant C > 0 such that

" Ia’kf ”g.[r,q,w(RN)S C " f II?‘[CD’q'w(RN)
Forall f € H P99 (RV).
Lemma (2.2.17)[2]: Suppose

(Pwaq)(log(1 + t))&+tV/4ta ke (t)~1d~1(t — N )is almost decreasing in
[1, ) for some g, > 0.

If 0 < € < &4, then there exists a constant C > 0 such that
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s (F X R \B(O,4r))(x)|
_ 0 T q\ "
< Cre+aa)(r)—1cb—1(r—N) <j (t—é‘a)(t) Il f ||L¢(A(0,t)) ?)
r

And
|I~a,k (fxgy \B(0,4r))(x)|

< C(log(1 + r)Nr¥w(@) @ 1(r M) sup (w(®) Il f

t>r

I (ao,r)) When q = oo

Forall x € B(0,2r) withr > 1 and nonnegative functions f € Lj,.(R").

Theorem (2.2.18)[2]: Suppose @ satisfies (d,; &,). Further, for an integer k >
1, assume that (Pw,; k — 1 — a)and (Pwgqk) hold. Set

(r) = {(108(1 + )M %w(r) when0 < q <1,
7= og + M) 0@ whenl< q < oo

Then there exists a constant C > 0 such that

I g i f Nseoarem< C Il f lzpoaogn,
forall f € H P9®(RM),
When1/p* = 1/p —a/N = 0and p; = p, we can modify (8) by
[+ 1N og@ + kMO Pl P dx < oo
RN
for all functions f satisfying
|+ 1™ Gog@@ + PP dx < oo
RN
Wwitho > 1/p".

—d,q,
Associate space of H w(RN ) and 3£ ®9 (RN)

We assume that @ satisfies (P,; &) for some & > 0. We consider a
complementary function @* of ®.For this purpose, set

d*(t) =f d~1(s)ds
And
¢ (t) =t P (t)
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Fort > 0.
Lemma (2.2.19)[2]: (i) ¢ ~1(¢) is doubling in (0, ©);
(if) P(p*(t)) ~ d*(t) Forallt = 0.

Proof: We first prove (i). Let A > 1. First note from (1), (3) and (&) that
AP(t) < AA1p(t) < P((AA1A1) Y501

And

G(t) = (242)71P(t) = P((24241,,) L)
Fort > 0. Hence we find

AP(t) < P(24241,6)" % ((A4141e,) " *00)
which implies

¢ 1(At) < (2A2A1,so)1/80((AA1A1,50)1/S°(13_1(0-
This yields (i).
Noting that ¢* ~ ¢, we obtain assertion (ii).
Lemma (2.2.20)[2]: There exists C > 1 such that

st < ®D(s) + CP*(¢)

Forall s,t = 0.

Proof: If t < ¢(s), then
st < sp(s) = D(s)

Ift > ¢(s), then above Lemma gives
st < ¢ ()t CD*(0b),
Which proves the lemma.

Lemma (2.2.21)[2]: readily yields the following result.
Lemma (2.2.22)[2]: For all locally integrable functions f and gon RY,

fRle(X)g(x)l dx < C”f”L‘b(RN)”glchb*(RN)-
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Let X be a family of measurable functions on R¥with a norm ||-]ly. Then the
associate space X'of Xis defined as the family of all measurable functions fon
R" such that

sup
1l = gexigx =1 JfOI@Idr<e

Further, we denote by X* the dual space of X.

The following is an easy consequence of above Lemma.

Lemma (2.2.23)[2]: Let Q be an open set in RY. Then there exists a constant
C > 0 such that

sup
Il = €7 [ 1P dx = Cllgl

For all measurable functions g on €, where the supremum is taken over all
measurable functions f on Q such that ||f||L¢(Q) < 1.

We discuss the associate space of non-homogeneous central Herz—Morrey—Orlicz
spaces. We recall that w satisfies (w,) and (w,).

Theorem (2.2.24)[2]: Let1 < q < oo. Assume:

(w,) there exists a constant a > 0 such that t ~%w ()1 is almost decreasing in
[1, 00);

(w,) there exists a constant b > 0 such that t 2w (t)~! is almost increasing in
[1, ).

Then
(o) =7
And

—d*,q/,1 !
(f]‘[ q /‘D(RN)) :j;[¢,q,w(RN)

Corollary (2.2.24)[2]: Let1 < q < oo. If (w_3) and (w,) hold, then
(:];[(D,q,(o (RN))* _ %Cb !
And

—®* qr,1 *
(j-[ q /w(RN)) =ﬂ¢'q"°(RN)
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Theorem (2.2.24) can be proved if one notes the following lemmas which can be
obtained.

Lemma (2.2.25)[2]: Let1 < q < oo.If (w3) holds, then there exists a
constant C > 0 such that

fR 1FEg@dx < Cllflagoaoen 9] oaaso g

for all measurable functions f and g on RV,
Lemma (2.2.26)[2]: Let 1 < q < oo.Set X = H P9@(RN). If (w4) holds, then
there exists a constant C > 0 such that

sup
g1l arso v = € 5 j |f(x)g(x)| dx = Cllgllx
) RN

(RN
for all measurable functions g on RN, where the supremum is taken over all
measurable functions f on RN such that ||f]lxy < 1.
—d*qr,1
. Sety =7 ¢

Lemma (2.2.27)[2]: Let 1 q <
> 0 such that

then there exists a constant

< (RM). If (w,) holds,
C

Iflgonaa < €7 [ 1FGIG@ dx = Clfly

for all measurable functions f on RM, where the supremum is taken over all
measurable functions g on RY such that ||g|ly < 1.
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Chapter 3

Continuity for Riesz Potentials of Functions in Musielak-Orlicz-
Morrey Spaces on Metric Measure Spaces

We concerned with Trudinger’s inequality and continuity for Riesz
potentials of functions in Musielak—Orlicz—Morrey spaces on metric measure
spaces.

Section (3.1): Musielak-Orliez-Morrey Spaces

A famous Trudinger inequality insists that Sobolev functions in W1V ()
satisfy finite exponential integrability, where G is an open bounded set in R™. For
0 < a < N, we define the Riesz potential of order a for a locally integrable
function f on R by

Unf () = j X = y1= N F ) dy.
RN

Great progress on Trudinger type inequalities has been made for Riesz potentials
of order «a in the limiting case ap = N. Trudinger type exponential integrability
was studied on Orlicz spaces, on generalized Morrey spaces LY and on Orlicz—
Morrey spaces.For Morrey spaces, which were introduced to estimate solutions
of partial differential equations.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to
discuss nonlinear partial differential equations with non-standard growth
condition. For a surve,. Trudinger type exponential integrability was investigated
on variable exponent Lebesgue spaces LPC) and on two variable exponent spaces
LPO(log L)40), For two variable exponent spaces LPC) (log L)70),

For x € RN and r > 0, we denote by B(x,r) the open ball centered at x with
radius r and d, = sup{d(x,y) : x,y € Q} for a set & c RN . For bounded
measurable  functions  v(:):R" - (0,N] and B():RY >R, let
LPOAa0OYOBC(G) be the set of all measurable functions f on G such that
If Il 0900080 @ <% where
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If 1l 0900080 ©)
= inf< 1

B(x)

rv® (log (e + 1))
R T CROT

o ™ (o4 L) 0y <1

We set f = 0 outside G. Mizuta, proved Trudinger type exponential integrability
for two variable exponent Morrey spaces LP(4OVO.BO(G) when p(-) and q()
are variable exponents satisfying the log-Holder and loglog-Hdolder conditions on
G, respectively. The result is animprovement,. In fact we proved the following:

Theorem (3.1.1)[3]: Suppose inf, pvv(x) >0 and inf gnv(a —v(x)/
p(x)) = 0 hold. Let € be a constant such that

o (vX)
inf | —=&—&,]>0and 0< ¢ < a.
x€RN \ p(x)

Then there exist constants C;, C, > 0 such that
(i) In case sup,cpyv (q(x) + B(X))/P(x) <1,

V(@)/p(2)-¢ j (|Uaf(x)|p<x)/(p<x)—q(x)—ﬁcx))
|B(z,7)| ., C,

(z,r
(i) In case inf, gy (q(x) + B(x))/p(x) <1,

rv(@)/p(2)—¢ U, f ()|
- - =~ 7 < .

1B(z,1)] f eXp(eXp( C, ))dx = G
B

(z7)

Forallz € G,0 < r < d; and f satisfying ||f||Lp(.),q(.),v(.),ﬁ(.)(G) <1.

We give a general version of Trudinger type exponential integrability for
Riesz potentials I, f of functions in Musielak—Orlicz—Morrey spaces L®*(X) on
metric measure spaces X as an extension of the above results (The definitions of
@ and « for the definition of I,f ). Since we discuss the Morrey version, our
strategy is to find an estimate of Riesz potentials by use of Riesz potentials of
order &, which plays a role of the maximal functions.
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Beginning with Sobolev embedding theorem, continuity properties of Riesz
potentials or Sobolev functions have been studied by many authors. Continuity
of Riesz potentials of functions in Orlicz spaces was studied. Then such
continuity was investigated on generalized Morrey spaces LY¥, on Orlicz—
Morrey spaces, on variable exponent Lebesgue spaces and on variable exponent
Morrey spaces, Mizuta, Nakai and the authors also proved continuity for Riesz

potentials of functions in two variable exponent Morrey spaces
LPOAOVOLO ().

These results have been extended to Musielak—Orlicz—Morrey spaces. We
give a general version of continuity for Riesz potentials I, f of functions in
Musielak—Orlicz-Morrey spaces L®*(X) on metric measure spaces as an
extension of the above results.

We established Trudinger type exponential integrability for Musielak—Orlicz
spaces in the Euclidean setting by use of the maximal functions, which are a
crucial tool as. We give a general version of Trudinger type exponential
integrability for Riesz potentials I, f of functions in Musielak—Orlicz spaces
L®(X) on metric measure spaces as an extension. To obtain our results, we need
the boundedness of the maximal operator on L? (X).

We show the continuity for Riesz potentials Iaf of functions in Musielak—Orlicz
spaces L? (X) on metric measure spaces.

Let C denote various constants independent of the variables in question.

We denote by (X, d, 1) a metric measure space, where X is a set, d is a metric
on X and p is a nonnegative complete Borel regular outer measure on X which is
finite in every bounded set. For simplicity, we often write X instead of (X, d, ).
Forx € Xandr > 0, we denote by B(x, r) the open ball centered at x with radius
rand dg = sup{d(x,y):x,y € Q}forasetQ c X.

We say that the measure p is a doubling measure if there exists a constant ¢, >
0 such that u(B(x, 2r)) < cou(B(x,7)) forevery x e Xand 0 <r < dX . We
say that X is a doubling space if p is a doubling measure.

We assume that X is a bounded set and a doubling space, that is dX < co. This
implies that p(X) < oo. We consider a function

®D(x,t) =tp(x,t): X X [0,00) = [0, 00)
Satisfying the following conditions (®;)- (®,):

(®1) d(-,t)ismeasurable on X foreach t > 0 and ¢ (x,") is continuous on[0, o)
for each x € X;

(®,) There exists a constant A; = 1 such that
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ATl < p(x,1) < A forallx € X;

(@3) ¢ (x,7) is uniformly almost increasing, namely there exists a constant A, >
1 such that

P(x,t) < A,p(x,s) forall x € X whenever 0 <t < s;
(®,) There exists a constant A; > 1 such that

¢(x,2t) <Az;p(x,t)forallx e Xandt > 0.
Note that (@,), (®3) and (®,) imply

0 < inf ¢(x,t) <supp(x,t) <oo
xeX x€eX

foreacht > 0.

If @(x, -)isconvex foreach x € X, then (&) holds with A, = 1; namely ¢(x,")
IS non-decreasing for each x € X.

Letd(x,t) = supges<r ¢ (x,5) and
B(x,t) = [, §(x,r)dr (1)
forx € Xand t > 0. Then ®(x,") is convex and
iqb(x, t) < ®(x,t) < 4, P(x,t) )
forallx e Xandt = 0.

We shall also consider the following condition:

(®s) for every yq,y, > 0, there exists a constant B, ,,, = 1 such that

¢(x’ t) S Byl,y2¢(y’ t)
whenever d(x,y) < y;t Y2 and t > 1.

Example (3.1.2)[3]: Let p(*) and q;(*),j = 1,..., k, be measurable functions on
X such that

(P)1 <p™ = infp(x) <supp(x) =:p" < oo
xeX XEX
And
(Q1) — 0 < gj = infq;(x) < supq;(x) =:qj < oo

Forallj = 1,...,k.
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Set L.(t) = log(c +t)forc > eandt > 0,L7 () = L.(t), LY () =
L.(LP (1)) and

k
@0 = v® | [aP@)u
j=1

Then, @ (x, t) satisfies (®,), (®,), (P3) and (D,).

Moreover, we see that &(x,t) satisfies (®s) if (P,) p(-) is log-Holder
continuous, namely

p
lp(x) — P < L.(1/d0(cy)

With a constant €, =0 and

(Q2) q;(*) is j + 1-log-Holder continuous, namely

| s Cqj
|q](x) q1(y)| = L(ej+1)(1/d(x’y))

with constants C,; = 0,j = 1,..., k.

Example (3.1.3)[3]: Let p(-) be a measurable function on X satisfying (P,) and
(P,). Let g, (*) be a measurable function on X satisfying (Q,) and (Q,) and let
q, (*) be a measurable function on X satisfying (Q,). Then

®d(x,t) = tP@(log(e + )11 @ (log(e + 1/t))72®
Satisfies (@,), (@,), (®3), (®,) and (D).

In view of (2), given @(x, t) as above, the associated Musielak—Orlicz space

L?(X) = {f € L%OC(X);LQD(% If M Ddu(y) < 00}

Is a Banach space with respect to the norm

1flloy = inf{/l > 0:f¢7(y, IfFWI/Ddu(y) < 1}

We also consider a function k(x,r):X % (0,dy] — (0,) satisfying the
following conditions:

(k1) k(x,) is measurable for each x € X;

(k3) k(x,”) is uniformly almost increasing on (0,dy], namely there exists a
constant Q; = 1 such that
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k(x,7) < Qik(x,s)
Forall x € X whenever0 <r <s <dy;
(x3) There are constants Q > 0 and Q, = 1 such that
Q;'min(1,7%) < k(x,7) < Q,
Forallx e Xand 0 <r <dy.

Example (3.1.4)[3]: For @ > 0, let v(-) and B;(),j = 1,...,k be measurable
functions on X such that inf,cx v(x) > 0,

supyex V(x) < Qand —c(Q —v(x)) < Bj(x) < cforallx e X,j = 1,...,kand
some constant ¢ > 0. Then

k
cr) =@ | [aPams
j=1

Satisfies (x,), (x,) and (x3).

For a locally integrable function f on X, define the L** norm
£ 1o

K(x,1) _
—infld >0 sup  —amT) j SO, 1f O/ duy) <1 L.
x€X,0 <7< dy "B Jxaper

For the definition of ®@. Let L®*(X) denote the set of all functions f such that
”f”Ld),;c(X) < oo , which we call a Musielak—Orlicz—Morrey space. Note that

LP*(X) = L?(X) if w(B(x,7)) ~ k(x,7) forall x € Xand 0 <r < dy . (Here
hy(x,8) ~ hy(x,s)means that C~1h,(x,s) < hy(x,s) < Chy(x,s)for a
constant C > 0.)

Set
@ 1(x,s) = sup{t > 0; ®(x,t) <s}
Forx e Xands > 0.
Lemma (3.1.5)[3]: @ 1(x,") is non-decreasing;

@7 1(x,1s) < A,AD71(x,s) (3)
Forallx € X,s >0andA1 > 1 and
s
min {1, } < @& 1(x,s) < max{1,4,4,s} (4)
A4,
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Forall x € X ands > 0, where A; and A, are the constants appearing in (®,)
and (@3).

Lemma (3.1.6)[3]: There exists a constant C > 0 such that
Crl<oYxk(x,r) )< Cr@ (5)
forallx € Xand0 < r < dy.
Proof: By (k3),
Q;! < k(x,7)7! < Qymax(1,779)
Forx € Xand 0 <r < dy . Hence, by (4), we obtain (5).
We can prove the following result.

Lemma (3.1.7)[3]: Assume that @(x,t) satisfies (&5). Then there exists a
constant C > 0 such that

f fO) du) < Cu(B(x, )P~ (x, K (x, 1))
XNB(x,r)

forallx € X,0< r < dyand f > 0 satisfying ||f||L®*(X) < 1.

For &« > 0, we define the Riesz potential of order « for a locally integrable
function f on X by

Ay )
faf (%) = Lu(B(x,dm ) O
Set
ax d
r(s) = j / P07 (e k() )L

for s> 2/dy and x € X. For 0 <s< 2/dy and x € X, we set I'(x,s) =
I'(x,2/dx)(dx/2)s. Then note that I"(x,-) is strictly increasing and continuous
for each x € X.

Lemma (3.1.8)[3]: There exists a positive constant C’ such that I'(x,2/dy) =
C'>0foralle X.

Lemma (3.1.9)[3]: Assume that @(x,t) satisfies (&s). Then there exists a
constant C > 0 such that

f d(x,y)*f(y)
X \B(x,8) W(B(x, d(x,¥)))

forallx € X,0 < & < dy/2 and nonnegative f € L®*(X) with Ifll oz < 1.

du(y) < CT (x, %)

46



Proof. Let j, be the smallest positive integer such that 270§ > d,. we have

j d(x,y)*f(y)
X \B(x,8) lL (B (xf d(x, }’)))

du(y)

Jo

:ZJ dC,y)*f(y) du(y)
S xn(s2o)a(x216)) u (B(x,d(x,7)))
Jo

o 1
32(215) NIRRT XnB(xmf@)du(y)

j=1
Jo

. a 1
< COZ(m) NCERI)] IRACLES

j=1
Jo—1

<C z (21'6)“<Z>‘1(x, k(x, 2j6)_1)

j=1

+dgPo ™ (x, k(x,dy) ™)

By (kx,) and (3), we have

2J8

_ dt |
2j6 t¥@(x, k(x, t)™1) -2 (27718)%d 1 (x, Q7 1k (x, 276) 1) log 2
2/-1§
(276)" log 2 -1
> -1 J
=" 34,0, & (x,k(x,Z 6) )
= C@8) @ (x,1(x,25) ")
And
dx dt  d%log?
t¥d~1(x, 1(x, 1)} — > — & (x, k(x,dy) L
R e e N CLICE O

= Cd$Pd71(x, k(x,dy)™ ).

Hence, we obtain
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f dxy)*f¥) ()

\B(x,8) H(B(x,d(x,¥)))

Jo—1 i
28 dt
t

<C 2f t¥@1(x, k(x,t)71)
= 2J-18

dx dt 1

+J t*@ 1, k(x, ) " H— | < Cr (x,—),
dy/2 t o
X

As required

Lemma (3.1.10)[3]: Assume that @ (x, t) satisfies (®<). Let € > 0 and define
1

Ae(z, 1) =
1+ [ o1z ) L
for z € X . Then there exists a constant C; . > 0 such that
Ae(z,7)
w(B(z, 1)) XNB(z,r)
forallz € X,0 < r < dyand f = 0 satisfying || [ exy) < 1.

Ief (O)du(x) =< Cpe

Proof: Let z € X. Write

d(x,y)*f(y)
I, = d
Fe) LnB(z,Zr) i (B (x, d(x, y))) )
d(x,y)¢f(y)

¥ L/B(Z,Zr) m (B (x, d(x, y))) W)

= L(x) + L(x)

For x € X. By Fubini’s theorem,

_ d(x, y)*
'[XﬂB(Z,T)I1 () i) = fXﬂB(z,Zr) —anB(z,T) 2 (B (x, d(x, 3’))) du(x) 1) du(y)
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d(x,y)*

-f;mB(z,Zr) -];mB(y,Br) K (B (x, d (X, }/)))

<

du(x) | f(y) du(y)

(27%2r)°
= | 2
XNB(z,2r) =0 XN(By,27I+2r)\B(y,27/*1r) U (B (x’ d(x, y))

) du(x) | f(y) du(y)

Since p is a doubling measure, we have

[ hwaw
XnB(z,r)

(2—j+2r)e
=¢ , d d
-[XnB(z 27) <z JX” B(y,Z_j"'ZT')\B(y,Z‘j"'lr)) l.l(B(X, 2_J+3T)) U(x)> f(y) Ll(y)

—i+2.\&
< c? (21 r)

) LﬂB(zm an (B(v2-r2r)\B(r2-s1r)) W(B (x, 277+21))

Jj=0

<ct (Z(Z *r) >f(y) du()
XNB(z,2r)

< (8¢ anm (ZJZ,]; >f(31) du(y)
=C fX N < j )f ) du()

C
= —Tgf f) du®y).
XNB(z,21)

&

du(x) |f()du(y)

Now (k,) and (3), we have

| perdy < CrnBe e K 2™
XNB(z,2r)

2r 9 . dp
< CH(B(Z, 27")) .[ pgcl) (Z, K(Z, p) )?
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If0 <r <dy/2and, by Lemma (3.1.6) and (5), we have
e poyay =re|  foray
XNB(z,2r) B(z,2r)

< Cdy"n(B(z,dx))? ' (z, k(z,dx)™) < Cu(B(z1))
ifdy/2 <r < dy.Therefore
Cu(B(z1))
L(x)dulx) £ ————
JXnB(z,Zr) 1( ) u( ) € /18(2,7’)
Forall0 <r <dy.

For I,, firstnote that I, (x) = 0ifx e Xandr = dy/2. Let0 <r < dy/2. Let
Jjo be the smallest positive integer such that 2/cr > dy . Since

d(z,y)ef (¥)

d(z,y)°f ()
Lx)<C
(%) L\B(z,zr) W (B (z.d(zy )))

du(y) forx € XN B(zr),

We have

Jo—1

d(z,y)¢
L(x)<C z J (2.7)
= Jpz 2\ 2in (B (z,d(zy))

Jo—1

)f )du(y)

<c )y @i FO)ANG)
= H(B(Z:ZM”)) XnB(z,2/%1r)

Jo—1
| 1
<C Y @y . FO)du(y)
= u(B(z, 271r)) Jxnp(z2+1r)
Jo—2
<cC z(2f+1r)8cp-l(x,;c(x,zfﬂr)-l)+d§cb-1(x,x(x,dx)-1)
j=1

As in the proof of Lemma (3.1.9), we obtain
Jo—2 2Jj+1,

L) =C z j PP~ (x, K (x, P)_l)%p +f

= 2r dx/2

dX d
pED (K (x, p)-l)?”

d__C
p - Ae(z7)

dx
<cC f pE0 (2, 1(2,p)Y)
Tr

50



Forall x € X n B(z,r). Hence
W(B(z,1))
J 20 = €S
Thus this lemma is proved.
Section (3.2): Trudinger Inequality for Musielak—Orlicz—-Morrey Spaces
We deal with the case I'(x, t) satisfies the uniform log-type condition:
(ILog) There exists a constant ¢ > 0 such that
I (x,t?) < ¢ T (x,t)
Forallx e Xandt > 1.

Example (3.2.1)[3]: Let @ and k be as in Examples (2.1) and (2.3) ,respectively.
Then

dx

I'(x,t) ~j1

k
pa=v()/p() H[L(ej)(1/p)]—(q,-(x)+Bj(X))/p(x)d?p(t > 2/dy),
t j=1

so that it satisfies (1j,g) if and only if
Upx) = v(x) forall x € X.

By (I1og), together with Lemma (3.1.8), we see that I'(x, t) satisfies the uniform
doubling condition in t:

Lemma (3.2.2)[3]: Suppose I'(x, t) satisfies (I},g). FOr every a > 1, there exists
b > 0 suchthat I'(x,at) < bl'(x,t) forallx € Xandt > 0.

Theorem (3.2.3)[3]: Assume that @ (x,t) satisfies (Ps), I' (x, t)satisfies (I1,q).
Foreach € X, lety(x) = supsso I'(x,s) suppose ¥ (x,t): X X [0,00) = [0, 0]
satisfies the following conditions:

(Y)W (,t) is measurable on X for each t € [0,); ¥ (x,7) is continuous
on[0, o) foreach x € X ;

(¥,) there is a constant A; = 1such that ¥ (x,t) < W (x,A}s) forall x € X
whenever 0 <t <s; (Y3) ¥ (x, I (x,t)/A}) <Ait forall xeX and t >0
with constants A5, A5 > 1 independent of x.

Then, for 0 < € < a, there exists a constant C* > 0 such that I,f(x)/C* <
y (x) fora.e. x € X and
Ae(2,7) ,1,,( Io f (%)
———————— x, ;
|J-(B (Z' T)) XNB(z,1) C

)du(x) <1
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Forallz € X,0 < r < dyand f = 0 satisfying ||f |l ex ) < 1.
Proof: Let f = 0 and||f | exy) < 1.Fixx € X.For0 < § <dy/2.

d(x,y)*f () 1
faf (%) = jan(x,S) m (B(x, d(x, )’))) WO+ Cr <x’ 6>

_ e AF ) 1
R lo(eate) O (x5)

1
< C{6a‘glsf(x) +F<x,§>}
With constants C > 0 independent of x.
If I.f(x) < 2/dy,thenwetake § = dy/2. Then, by Lemma (3.1.8)

Lf G < o (x—).
X
There exists C; > 0 independent of x such that
1\ 2
Iof (x) < GT <x E) if Ief(x) < " (6)

Next, suppose 2/dy <I.f(x) <o. Let m = supssz/q,xex '(x,5)/s. By
(log), m < 0. Define § by

PG /)“ i

————— T (0 Lf () U f ()7
Since I'(x, I, f (X)) (I.f (x))™* <m,0 < § < dy/2. Then by Lemma (3.1.8)
55 CT oL f(0) /@O (L f () e

< Cr(e2/d) V@I (1Lf ()Y < CULf ().

Hence, using (fj,¢) and Lemma (3.2.2), we obtain

F(x%) < I'(x, CUf ()Y@ D) < Cr(x, I.f (x)).

By Lemma (3.2.2) again, we see that there exists a constant C; > 0
independent of x such that

1
lof(x) = GoT (x;mlgf(@> if 2/dy <If(x) <o,
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where C; . is the constant given in Lemma (3.1.10).
Now, let C* = A} A, max(Cy, C;). Then, by (6) and (7),

laf ) 1 rx—).r L), 7
¢ = wa M\ ogar ) T\ ag ag )Ty @)
Whenever I, f(x) < oo. Since I.f(x) < oo for a.e. x € X by Lemma (3.1.10),
I,f(x)/C" <y (x)a.e.x € X,and by (¥,) and (¥5),

We have

w (x’ Ia]; Ex)) < max {‘P <x, r (x, 2%3) /A’2> W <x, r <x, ﬁ) Ief (x)/A’z>}

1 1
< _ 4
=5 + 2C[,El,gf(x)

For a.e. x € X. Thus, noting that A1.(z,r) < 1 and using Lemma (3.1.10), we
have

) Iof (x)
e XnB(z’r)‘P(x, L )du(x)
<l 4o 2 faf (X)du(x)
275 20, wB @) Jynsear
<l+1 =1
<5+

Forallze Xand 0 <r <dy.
Corollary (3.2.4)[3]: Let @ and k be as in Examples (3.1.1) and (3.1.3).
Assume that
a—v(x)/p(x) =0forall x € X.

(i) Suppose there exists an integer 1 < j, < k such that
inf(p(x) = q;,(x) — Bj,(x)) > 0
and
sup(p(x) — q;(x) — Bj(x)) >0

XEX

forall j < j,—1 in case j, = 2. Then for 0 < € < «a there exist constants
C* > 0and C* > 0 such that

Fv@/p(2)-¢ e <Iaf(x)>p(x)/p(x)—qjo(x)—ﬁjo(x)
B(Z, T') XNB(z,r) ¥ c
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k—jo
1_[ L(])

forall z € X,0< r < dy and f > 0 satisfying [[f]l,ex(X) < 1, where

af(x) QJ0+](x)+ﬁ]0+](x)/p(x) qjo(x) ﬁ]o(x) y
du(x) < C

ED@) = et —e, EUTV() = exp(E/()) — e and EQ ) =
max(E ) (t),0).
(ii) If

sup (p(x) — q;(x) = ;(x)) < 0

XEX

forallj =1,...,k,thenfor 0 < & < «a there exist constants C* > 0 and C** >

0 such that
T e (262 0005 €
1B(z,1)| Jxnpzm

forallz € X,0< r < dyand f = 0 satisfying || [ ex) < 1.

We discuss the continuity of Riesz potentials I,f of functions in Musielak—
Orlicz—Morrey spaces under the condition: there are constants & > 0 and C, >
0 such that

d(x,y)“ _ dzy"
u(B(x,d(x,Y))) u(B(z.d(z.y)))
dx, 2\’  d(x,y)*
<C
O(d(x,y)> p(B(x,d(x,y)))
Whenever d(x,z) < d(x,y)/2.

We consider the functions

(8)

r

d
0@ = j P07 (e, p) ) L

and

dX dp
we(x,7) = ref p“‘ecb‘l(x,ic(x,p)‘l)?

0
for@ > 0and 0 <r <dy.

Lemma (3.2.5)[3]: Let E c X . If w(x,r) = 0asr = 0+ uniformly in x € E,
then wg(x,7) = 0asr = 0 + uniformly inx € E.
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There exists a constant C > 0 such that
w(x,2r) < Cw(x,T1)
forallx € Xand 0 < r < dy/2.

Theorem (3.2.6)[3]: Assume that @(x,t) satisfies (). Then there exists a
constant C > 0 such that

laf (x) = Iof(2)] = Clo(x,d(x,2)) + w(z,d(x,2)) + wo(x,d(x,2))}

forall x,z € X with d(x,z) < dy/4 and nonnegative f € L®*(X) with
“f”Ld—",K(X) <1

Before giving a proof of Theorem (3.2.6), we prepare two more lemmas.

Proof: Let f be a nonnegative p-measurable function on X with || f]| jexxy <1
and x,z € X with d(x,z) < dx/4. Write

Iof (x) — Iof (2)

j d(x,y)*f(y)
XNB(x,2d(x,z)) | (B (X, d(x, y)))

~ j d(z,y)*f(y)

XNB(x,2d(x,2)) L (B (z,d(z, y)))

du(y)

du(y)

d(x, y)® d(z,y)*
4 — f)du(y)
L\B(x,zd(x,z))<|J.(B(X,d(x,_}7))) u(B(Z,d(Z»Y)))> y)auly

Using Lemmas (3.2.7) and (3.2.9), we have

j dx,y)f(y)
XNB(x,2d(x,z)) I (B (x, d(x, )7)))

And

du(y) < Cw(x,2d(x,2)) < Cw(x,d(x,2))

f d(z,y)*f(y) duy) < f d(z,y)*f(y)
XnB(x,2d(x,2)) 1 (B (z,d(z, y))) — JxnB(x3d(0) (B (z,d(z y)))

du(y)

< Cw(z,3d(x,z)) £ Cw(z d(x,2)).
On the other hand, by (8) and Lemma (3.2.4), we have
d(x,y)* d(z,y)*

k(B(xdx,»)) T (B(z d(z)) f»dum)

jX\B (x,2d(x,z))
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a—6
SCd(x,z)ej d(x,y)* " f(y) e

X\B(x,2d(x,2) |1 (B (x, d(x, y)))
< Cwg(x,2d(x,2z)) < Cwg(x,d(x,2)).

Then we have the conclusion.

In view of Lemma (3.2.6), we obtain the following corollary.

Lemma (3.2.7)[3]: Assume that @ (x, t) satisfies (@:). Let f be a nonnegative
function on X such that ||f||L¢,K(X) < 1. Then there exists a constant C > 0

such that

j dx,y)f(y)
XNB(x,8) |1 (B (x, d(x, y)))

Forallx € Xand0 < 6 < dy .

du(y) < Cw(x,6)

Proof. Let f be a nonnegative p-measurable function on X with ”f”LCD,K(X) <1.
As usual we start by decomposing B(x, §) dyadically:

d () f () N d (6, ) f ()
fan(x,(S) i (B (%, d(x, y))) W) = ; -j;mB(x,z—j+16)\B(x,2—j+15)) u (B(x, d(x, y)))

du(y)

oo . i 1
= 2-Jtl§ . .
<;( ) w(B(x,2718)) B(x’z_mg)f(Y) u)

< 2-Jj+15)% ' )
Co;( ) H(B(x;z_”lc?)) B(x'z_m&)f(J’) )

By Lemma (3.1.4), we have

j d(x,y)*f(y)
XNB(x,8) U (B (x, d(x, y)))

du(y) < cz(z-fﬂa)cp-l(x,x(x,2-f+15)-1)
j=1

o)
d
<cC f p%-l(x,rc(x,p)-l)?p
0

= Cw(x, ).
The following lemma can be proved in the same manner as Lemma (3.1.7).

Lemma (3.2.8)[3]: Assume that @ (x,t) satisfies (&5). Letd € R. Let f be a
nonnegative function on X such that || f|| Loy < 1. Thenthere exists a constant

C > 0 such that
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j d(x, ) 0 f () () < C5-0,
X

\B(x,8) L (B (x, d(x, y)))
forallx € Xand 0 < § < dy/2.
Corollary (3.2.9)[3]: Assume that @ (x, t)satisfies (®s).

(i) Let x, € X and suppose w(x,r) = 0 as r = 0+ uniformly in x € X N
B(x,,6) forsome § > 0. Then I, f is continuous at x, for every f € L?¥(X).

(if) Suppose w(x,r) = 0asr — 0+ uniformly in € X . Then I, f is uniformly
continuous on X for every f € L®*(X).

For a measurable function Q(-) satisfying
0 <Q = infQ(x) <supQ(x) =:Q* < oo, 9)
X

xXeX

we say that a measure  is lower Ahlfors Q(x)-regular if there exists a constant
c; > 0 such that

R(B(x,T)) = ;0

forallx € Xand 0 < r < dy . Recall that we say that the measure p is a doubling
measure if there exists a constant ¢, > 0 such that u(B(x, 2r)) < cou(B(x,1))
forevery x € X and 0 < r < dy . Here note that if u is a doubling measure and
dy < oo, then p is lower Ahlfors log, c,-regular since

H(B(X,T)) (T log; co
W(Bx, dy)) = 0 (E)

forallx e Xand 0 <r < dy.

For a locally integrable function f on X, the Hardy—L.ittlewood maximal function
Mf is defined by

Mf (x) = sup—2——"s7
r>0 H(B(X, T')) B(x,r)nX

We can show the following boundedness of the maximal operator on L? (X).

If ) duy).

Lemma (3.2.10)[3]: Suppose that @(x,t) satisfies (@5) and further assume
(@3 t = t™%0¢(x, t) is uniformly almost increasing on (0, co) for some

& > 0.

Then the maximal operator M is bounded from L? (X) into itself, namely, there is
a constant C > 0 such that

||Mf||L¢(x) = C“f”L‘P(x)
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Forall f € L®(X).
We consider the function

Yy (x,t) : X X (0,dy) — (0,00)
Satisfying the following conditions:

(v1) y(-t) is measurable on X foreach 0 <t < dy and y (x, ) is continuous
on (0,dy) for each x € X;

(v2) There exist constants y, > 0 and B, = 1 such that
Byl <y (x,t) < Byt Yo forallx € X whenever 0 < t < dy.
(v3) there exists a constant B; = 1 such that
Bily (x,s) <y (x,t) < Byy (x,s) forallx € Xand1 < t/s < 2.
Further we consider the function

[ (x,t):X x [0,00) > [0,)
Satisfying the following conditions (I73), (I3) and (I3):

(I) (-, t) is measurable on X for each t > 0 and " (x,") is continuous on [0, ©)
for each x € X;

() I'(x,”) is uniformly almost increasing, namely there exists a constant B, >
1 such that

[ (x,t) < B,I (x,5) forall x € X whenever 0 < t < s;

(I3) For a measurable function Q(+) satisfying (9), there exist constants «, >
0,B; = 1and B, = 1 such that

t* @ (x,y (x, 1)) < Bal'(x,1/t)

Forall x € X and @ = a, whenever 0 <t < dy and

dx dp _
| o wm L < Bare
t

Forallx € X,0 <t <dy/2and a = «a.
Example (3.2.13)[3]: Let ® be as in Example (3.1.1).

(i) Suppose there exists an integer 1 < j, < k such that
inf(p(x) —q;,(x)— 1) > 0

x€eX

And
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sup(p(x) —q;(x) — 1) < 0
XEX
Forallj < j,— 1lincasej, = 2. Set
y (x, 1)
Jo—1 -1 —q;, (X)+1/p(x) ﬁ —q;(x)/p(x)
= e (T Ta/o] ™ | [Paso] ™ [LPa/m] ™
1:1[ Jj=Jjo+1
And

K
[ ' - =qj(x)/p(x)
I'(x,t) = [L(e]")(t)](P(x)—qjo(X)—l)/p(x) 1_[ [L(e])(t)] J

Jj=jo+1

Then y (x,t) satisfies (y), (y,) and (y3) and [ (x,t) satisfies (I3), (I3) and
(r 3)foralla = Q*/p~. (2) Suppose that

sup(p(x) —q;(x)— )< 0

xeX

Forallj = 1,..., k. Set

k

y (o) = 0@ (TP asn] ™ |[1¢a/0)

j=1

-1/p(x)

And

F oot = 18P0 /t)]l_l/p(x) .

Then y (x,t) satisfies (v1), (v2) and (y3) and I (x, t) satisfies (I3), (I3) and (I3)
foralla = Q*/p~. In fact.

Lemma (3.2.12)[3]. Assume thatpis lower Ahlfors Q(x)-regular. Suppose that
@ (x, t) satisfies (P5). Let ¢ = a,. Then there exists aconstant C > 0 such that

f d(x,y)f(y)
X\B(x,8) U (B(X, d(x, 3’))

~ 1
)du(y) < cf (x5)
Forallx € X,0 < § < dy/2 and nonnegative f € L”(X) with [|f]l ey, < 1.

Proof: Let f be a nonnegative p-measurable function on X with ||f||L¢(X) < 1.
Let j, be the smallest integer j, such that
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2J0§ > dy . Since
Bi' <y (x,d(x,¥)) £ Byd(x,y)7Y

in view of (y,), we have

d(x,y) < B;"° (Boy (x,d(x, y))) ”

Hence, by (®3), (®,) and (&<), we obtain

¢,y (x,d(x, )Nt < B'o(x,y (x,d(x,y) ™
with some constant B’ > 0. By (y3), (@), (I3) and (I3), we have
j d(x,y)*f(y)
XVKLS)u(B(x,d(x,y)))
< J d(x, y)% (x,d(x,¥))
X\B(x,8) | (B (x, d(x, y)))
4, J d(x,y)*f () ¢, f(¥))
X\B(x,8) L (B(x, d(x, y))) o,y (x,d(x,y)))

Z ] d(x, y)*y(x,d(x,y)) du(y)
B(x,2/8)\B(x,2/-16) u(B(x,d(x,y)))

+cytAyB' J " 6)d(x,y)“‘Q(")¢(x,V (x, dCe,y))) 'y, f () duy)

du(y)

du(y)

du(y)

Jo
< 24B, Z(Zj‘16)“y (x,2/7168) du(y)
=1

B(x2i6)\B(x2i-18) H(B (%, 2/-16))

+cg'A,B,B3B'T'(x,1/8) Dy, f(¥))duy)
X\B(x,6)

Jo
< 2%c,B; Z(Zj"16)“y(x, 2/718) + ¢;*A,B,B;B'T' (x,1/6).
j=1

since

2/68

Jo—1
dp log2 . .
j py (%, p)—> Zf p%y (x,p)— = 2(21 16) y(x, 27716)
5 2j-18 p B, =

and
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dX d dX dp log2 . . _
[FrrenDa " sy agilem) e
6 p dx/2 p  2%B;

we have
Jo—1

Z (27718) y(x,2/716) < 1
j=1

X, p)—
oa2 ARAACTOR

Hence, we obtain

j d(x,y)*f (y)
X\B(x,5) L (B (x, d(x, Y)))

du(y)

dx
< (log2)~12%(2* + 1)czBlzf
5

< (log2)™12%(2% + 1)c,B?B,I(x,1/8) + c;A,B,B3B' T (x,1/8)
= ((log2)™12%(2* + 1)c,B?B, + c;1A,B,B3B)(x,1/6)

as required.

d -
ey (x,p) 7" + c3 A,B,B3B'T(x,1/8)

Lemma (3.2.13)[3]: Let a = a,. Then there exists a constant ¢’ > Osuch that
[(x,2/dy) = C'foralle X .

LLemma (3.2.14)[3]: Suppose I (x, t) satisfies the uniform log-type condition:
(Flog) there exists a constant ¢ > 0 such that

il (x,t) < F(x,t?) < ¢ (x,t)
forallx € Xandt > 0.

Then, for every a > 1, there exists b > 0 such that I*(x, at) < bl (x, t) for all
x € Xandt > 0.

Theorem (3.2.15)[3]. Suppose that u is lower Ahlfors Q (x)-regular. Assume that
d(x, t)satisfies (&s) and (&5). Further, assume

that I"(x, t) satisfies ([, ). For each € X, let 7(x) = supgso I (x, 5). Suppose
P(x,t): X X [0,00) = [0, o] satisfies the following conditions:

(P,)P (-, t) is measurable on X for each ¢ € [0, ) and ¥ (x,") is continuous on
[0, 0) foreach x € X ;

(¥,) there is a constant Bs > 1 such that ¥(x,t) < ¥(x,Bss) for all x € X
whenever 0 < t < s;
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(@) there are constants By, B, = 1 and t, > 0 such that ¥ (x, " (x,t)/Bg) <
B,tforallx €e Xand t > t,.

Then there exist constants c¢;, c, > 0 such that I,f(x)/c; <y (x) forp-a.e. x €

X and
J g (x, Iaf(x)) du(x) <c,

1

for all @ > a, and nonnegative functions f € L® (X) satisfying Ifll o < 1.

Proof: Let f be a nonnegative p-measurable function on X with ||f||L¢(X) <1.
Note from Lemma (3.2.10) that

j Mf(x) du(x) < puX) + 4,4, j ®(x, Mf(x))du(x) < Cy. (10)
X X

Fixx € X.For0 < 6§ <dy/2, Lemma (3.2.14)[3] implies

dC,y)*f(y) () + dC,y)*f(y)
X\B(x,8) )L (B (x, d(x, y)))

efe = |

du(y)
B(x,8) u(B(x, d(x, y))) M

~ 1
< C{(Y“Mf(x) +F(x,§)}
With a constant C > 0  independent of x.
If (x) < 2/dy , then we take § = dy /2. Then, by Lemma (3.2.10)

I,f(x) < Cf(x,dz—x)

By Lemma (3.2.16)[3] and (I" 2), there exists C; > 0 independent of x such that
I,f(x) < CiF(x,ty) ifMf(x) < 2/dy. (11)

Next, suppose 2/dy < Mf(x) < co.Letm = supgsz/q,xex | (x,5)/s. By
([og), m < co. Define & by

(dx/2)"
m

Since I(x, Mf(x))(Mf(x))_1 <m,0 <& < dy/2 Then by Lemma (3.2.13)
and (13)

5% =

'O, MfC)MfE)™

1/«

1 N -1/a 1/a
5= az] CoMFE) M ()Y

3
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1/«
dy /2
Hence, using (I3), (fi,g) and Lemma (3.2.14), we obtain

< ——=By/°F (x,2/dy) ™ VE(Mf () < C(Mf(x))®

r (x %) < Byl (x, C(Mf (x)V%) < CT(x, Mf (x)).

By Lemma (3.2.14) again, we see from (I3) that there exists a constant C; > 0
independent of x such that

lof () < G3T (%, 22 MF(x)) if 2/dy < Mf(x) < o0 (12)
Now, let c; = BB, max(Cy, C;). Then, by (11) and (12),
Iaf(x) 1 =~ ~ tOdX
e < B, maX{F(x, to), I’ (x, > Mf(x))}

Whenever (x) < oo . Since Mf(x) < oo for pg-a.e. x € X by
Lemma(3.2.10), I, f(x)/c; < 7 (x) p-a.e.x € X, and by (&,) and (¥5), we
have

7 <x Iaf(X)) < max {‘?’(x,f(x, to)/Bs), ¥ (x,f (x

C1

to

S Mf) /86|

B, tody

< Bytg +—,

Mf (x)
for p-a.e. x € X. Thus, we have by (10)

X

f v7<x, faf m) du(x) < Byton(X) +B7t2°d j MF (o) du(x)

1

B;tydxCy

2 @

We obtain the following corollary applying Theorem (3.2.15) to special @ given
in Example (3.1.1).

Corollary (3.2.16)[3]: Let @ be as in Example (3.1.1). Assume that p is lower
Ahlfors Q(x)-regular.(i) Suppose there exists an integer 1 < j, < k such that

< B,ton(X) +

inf(p(x) — qj,(x) —1) > 0 (13)
And
i‘;}?(p(") —q;x)—1) <0 (14)
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Forall j < j, — 1 incase j, = 2. Then there exist constants c;, c, > 0 such that

g 1) ko 0o+ 10/ (P ()= ()=1)
L £ GNP B, (0=1) O\ Yot jo
[ {0 T
X 1

C
1 j=1

Foralla > Q*/p~ and nonnegative functions f € L® (X) satisfying [|f]l o x, <
1.

(ii) If

sup(p(x) —qj(x) —1) <0

xX€EX

Forallj =1,...,k, then there exist constants c,, c, > 0 such that
I f(x)\P&/P)-1)
jE(k+1) <<ﬁ> )du(x) <c,
X €1
For all @ > Q% /p~and nonnegative functions f € L?(X) satisfying Ifll o x) <
1.

For a measurable function Q(+) satisfying (9), we consider the functions

T

d
@) = | peomi(xpe) L

0
And

dX dp
Wg(x,1) =r9j ,L)““gqlrl(x,p—Q(X))7
r

for >0and 0 <r <dy.

As in the proof of Theorem (3.2.9), we can obtain the continuity of Riesz
potentials I, f of functions in Musielak—Orlicz spaces under the condition (8).

Theorem (3.2.17)[3]: Assume that p is lower Ahlfors Q (x)-regular. Suppose that
@ (x, t) satisfies(®s). Suppose that (8) holds.Thenthere exists a constant C > 0
such that

laf () = Iof (2)] = C{@(x,d(x,2)) + @(z,d(x,2)) + @e(x,d(x,2))}

for all x,z € X with 0< d(x,z) < dy/2 whenever f €L®(X) is a
nonnegative function on X satisfying ||f||L<p(X) <1.

Corollary (3.2.18)[3]. Assume that p is lower Ahlfors Q(x)-regular. Suppose
that @ (x, t) satisfies (@5). Suppose that (8) holds.
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(i) Letxy€ X and suppose @(x,v)—0 as r — 0+ uniformly in x €
B(x,6) N X for some § > 0. Then I, f is continuous at x, for every f €
L?(X).

(if) Suppose @w(x,r) - 0asr — 0+ uniformlyin € X . Then I, f is uniformly
continuous on X for every f € L?(X).
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Chapter 4

Riesz Potentials of Functions in Generalized Grand Morrey
Spaces

We result will imply the boundedness of the Riesz potential operator from a
grand Morrey space to a Morrey space.

Section (4.1): Grand Morrey Spaces

Let R™ denote the n-dimensional Euclidean space. We denote by B(x, 1)
the open ball centered at x of radius r and denote by |E| the Lebesgue measure
of a measurable set |E| c R™. Let G be a bounded open set in R™. We denote
by d; the diameter of G.

Morrey considered the integral growth condition on derivatives over balls, in
order to study the existence and regularity for partial differential equations. A
family of functions with the integral growth condition is then called a Morrey
space after his name. A systematical study for Morrey spaces was done, where
the Morrey space LPV(G) is a family of f € Lj,.(G) satisfying the Morrey
condition.

v

j FO)IPdy < o

GNB(x,r)

sup
x€G,0<r<dG |B(x1)]

Forp > 1andv > 0. Grand Lebesgue spaces were introduced for the sake of
study of the integrability of the Jacobian.

For 0 < a < nand a locally integrable function f on G, we define the Riesz
potential U, f of order a by

Uaf @) = [ I = y1°7 £
G
For fundamental properties of Riesz potentials.
Meskhi investigated the boundedness for several integral operators,

including the Riesz potential operator, in the grand Morrey spaces LP>V9(G)

which consists of all functions ||f || € L],.(G) satisfying the grand Morrey
condition
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TU
sup 0 f If()IP~edy < o

&
XEG,0<r<dG,0<e<p—1 |B(x,1)|
GNB(x,r)

For p > 1,v>0 and @ > 0; in what follows, let f =0 outside G. We
establish Trudinger’s exponential integrability for Riesz potentials of functions
in generalized grand Morrey spaces which will be mentioned below.

In view of Fusco, Lions and Sbordone, we see that if f is a measurable function
on G satisfying the grand Lebesgue condition

lim £° flf(y)ln‘s dy =0
£—-0+
G
Then

[ exp (W@ e=+0)ax < oo
G

We also obtain Trudinger’s exponential integrability for Riesz potentials
of functions in grand Lebesgue spaces.

Let C denote various constants independent of the variables in question,
and C(a,b,...) aconstant that depends on a,b,... The symbol g ~ h means
that C"1h < g < Ch for some constant C > 0.

Let ¢ be a positive nondecreasing function on (0, o) satisfying the following
conditions:

(¢,) there exists a constant A; > 1 suchthat
AT < @(r) < A for0 <r<1;
(¢,) @ is doubling on (0, ), namely there exists a constant A, > 1suchthat
@(2t) < A,p(t) fort > 0.
For g > 0, set

2dg

Py (r) = f t# (67 (log(2dg/0))

1/r

8/p ﬂ
t

Whenr > 1/d;; and set
1/’/3(7") = dclpﬁ(l/dc)r
When 0 <r < 1/d;.
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Let us begin with the following result, which is easily proved by (¢,).
Lemma (4.1.1)[4]: For B > 0, is increasing and doubling on [0, o).

Now, for p > 1and 6 > 0, we introduce the generalized grand Morrey space
LP»?9(G) which consists of all measurable functions £ on G such that

v

r
”f”Lp),(p,Q(G) = inf{A > 0: sup g? J lf (WP~ ¢dy

X€G,0<r<dG,0<e<p—1 |IB(x,1)|
GNB(x,r)

<
recall here that f = 0 outside G.

In case @(r) = r,LP¥9(G) is denoted by LP»9(G) for simplicity; in
particular, LP>™9(G) is usually written as LP>% (G).

We establish the following exponential integrability for Riesz potentials
of functions in LP>%9 (().
Theorem (4.1.2)[4]: For 0 < 8 < a there exist constants c;, c, > 0 such that

1
B(z,1)|

j Wt (Uef (D} B dx < caiig(1/r)

B(z,r)

forallz € G,0 <r <dgand f = Owith |Ifll,mes) <1

Proof: let f be a nonnegative measurable function on G satisfying ||f [, ».ee <
1. Then,

1 - 0/p
B j f)dy < Co(r) P (log(2dg /7))
B(x,r)

Forallxe Gand 0 <r < d;.
Forx e Gand 0 < § < d, write

Unf (x) = j I = y1E T F(y)dy + f X = Y17 F () dy
B(x,r) G./B(1,6)

= Ul(T') + Uz(r).
For0 < B8 < a, we have

0, <8P [ v =P F )y < 6 PUf ()
B(x,6)
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And

2dg 2de 0
U2(x) < CJ ta_N< j f(y)dy>% < Cf t* @ (t) p<1og( dG)>p%

8 B(x,t) 8
< CPe (671)

2dg 2dg 9
[ e N( | f(y)dy>@< cscf o p(log( dG))@

8 B(x,t) 8

Since

Hence it follows that
Uef (x) < C{8* P Upf () + b (671)}.

I Uﬁf(x)_“%ﬁ < dG , then we take § = Uﬁf(x)_a%ﬁ to obtain
Upf(x) < ({C Yo Upf (x)}“TB>;

if {Ugf(x)} P >d; ,then we take § = d to obtain
Uagf(x) = C

Hence

Uaf @) < Gt ({14 Upf@} ™) ;

Which together with Lemma (4.1.7) gives

j (U3 U f(0)/C)e P dx < j {1+ Ugf(0)}dx

IB(z )I |B( )|

< C{1+ B yp(1/m)}
< CB)Yp(/r)
Forz € Gand 0 <r < dg;. The proof is now completed.

Example (4.1.3)[4]: Let (r) = r*(log(co + 1)) {log(log(c, +
r~1))}*2, where 7,,7, are constants and c, > 1 is chosen so that ¢ is
decreasing on (0, o).

(i) If 7; <p+ 6, then
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e (1) ~ (log(co + )P0/ P{log (log(cy + 1))} ™2/P
And
W) () ~ exp(rP/ 0 (log(cy + 1))/ @),
(i)ifty =p+ 6 and 7, < p, then
e (r)~{log(log(co + 1))} ~72/P
And
($e) ™ (r) ~exp(exp(rP/P=12)));
(i) ifr; =p + 0 and t, = p, then
Ya(r) ~ log(log(log(cy + 1))
And
Yq(r)~exp(exp(exp(r));
(iv)ift; =p+ 6 andt, > p, then Y, (c0) < oo, so that
wa(r)"’l
For large r > 0.

Corollary (4.1.4)[4]: Let () = r*?(log(cy + r~1))™ {log(log(cy + v~ 1))} 2 as
a bove. If 0 < n < a, then there exit constants c;,c, > 0 (depending on 7n) such
that

(i) Incasety >p+0,
1

1B(z,1)|
B(

| exvlesvaremer @ aoge
zZ,T)

+ Uaf ()P0 ]dx < cr 7 ;
(i) Incaset; =p+6andt, <p,

1
B j explexp(cyUq f ()Y A7%2/P)] dx < c,r™"
’ B(z,r)

forallz e G,0 <r <dgand f = 0with [|Ifll »es,y < 1.

In fact, to prove (i), letting 0 < @ — B < 1 < a, we see from Theorem (4.1.2)
and example (4.1.3) that
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1
B(z,1)| f exp| ¢ (@ = B)Uaf ()10 HEO71/P) (log(cq
B(z,r)

+ Ugf (0))/H07)] dx
< c,r @ P log(cy + r)0~™/P {log(log(cy + 1))}~ 2/P

Forallz € G,0 <r <dg; and f = 0 with ||f||Lp),<p.e(G) < 1. Hence it suffices to
note that

cr @) (log(co + 1)) @~™/P {log(log(co + 1))} ™2/P < C()r ™"
When 0 < r < d. Assertion (ii) can be proved similarly.
For a proof of Theorem (4.1.2), we prepare some lemmas.
Lemma (4.1.5)[4]: There exists a constant C > 1 such that

1 1 2dp 8
Baay | fO)dy < o) P Qog(SE)r M

B(x,r)

Forallx € G,0 <r <dg;and f = 0 with ||f||Lp),(p.e(G) <1.

Proof. Let f be a nonegative measurable function on G such that || f|| LP#0 Gy S
1.Then note that

g P e
© |B(x,r)|B(Jr)f(y)p dy =1

Forallx € G,0 <r <d;and 0 < € < p — 1. By Jensen’s inequality, we have
1/(p-¢)

o o jf(y)dy_ P jf(y)p “ dy

< g—e/(p—@(p(r)—l/(p—e)
Here, taking € = min{(p —1)/2,(log(2d;/7))~1}, we find by (¢,)

m f f)dy < Co(r) p(log(ZdG/r))G/p

Since r~1/(08(2de/) js hounded above when 0 < r < d,;. This proves the
lemma.

Lemma (4.1.6)[4]: let 0 < B < a. Then there exist a constant C > 0 such that
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B(z,r)
Forall z € G,0 < d; and f > 0 satisfying (1).
Proof: Letz € G,0 <r <d;and 0 < B < «a, for f = 0 satisfying (1), write

|B(z,7)|

Ugf(r) = j I — Y18 F(y)dy + f X — yIB"F (y)dy
|B(z,21)| G\B(z,2r)
= U1(x) + Uz(x)-

By Fubini’s theorem, (1) and (¢,), we have

1 1
— y|B—n
e | U0h gy | | ] et |
B(z,r) B(z,2r) \B(z,r)
-1..8
< Cpirh e ”'BZL F)dy
< CBrfo2r)” 1/p(10g(2da/r))9/p < CBMg(1/7)
Since

3r/2
0

_1 odt 1 9
wp(1/1)2 [ () Pog2da/O) = rPe(r) P (log2ds/r)P.

T

For U,, note that

U, () < C j 12— A" F(3)dy

G/B(z2r)

For x € B(z,r). Hence we have only to consider the case 0 < 1 < d/2 since
U,(r) = 0 forr < dg;/2. Hence we obtain

2dg 2dg
d _1 d
nmysc [ o [ oy |Fsc [ oo Paogade/0 S
2T B(z,t) 2r
< Cyp(1/7)

by lemma (4.1.1), which proves the present lemma.

Section (4.2): Grand Lebesgue Spaces
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In view of Fusco, Lions and Sbordone, we see that if

lim &° f O =dy =0,
e-0+
G
Then
] exp (1Uy f ()Y @=1+6 ) dx = oo
G

In connection with their result, we can prove the following result.

Theorem (4.2.1)[4]: Let ap = n. Then for 0 < n < «a there exist constants
c1,C, > 0 such that

1

_ - U 1/A+©O-1/0))dx < .77
IB(z,r)IB(j xp (e1Uaf (9} Jdx < cor

Z,T)
forallze G,0 <r <d; and f = 0 satisfying [|fll,me) < 1.

Proposition (4.2.2)[4]: Letap = n. Thenfor 0 < 8 < a there exist constants
c1,C, > 0 such that

1

B@DI (j exp (e1{Uaf QO MO dx < cipp(1/1)

Z,Y)
forallze G, 0 <r <dg and f = 0 satisfying ||f|l »eeg) < 1.

To prove Proposition (4.2.2), we prepare the next lemma.

Proof: Let f be a nonnegative measurable function on G satisfying
”f”LP).qo.G(G) <1

Then for 0 < B < a, we have by above Lemma

Unf () = f % - y1% F(y)dy + f X — Y £(3) dy
B(x,8) G\B(x,r)

< §%BUf(x) + C (log(2d /) 7P

Here, as in the proof of Theorem (4.1.2), we have the inequality
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Uaf(x) < (G (log (e + Uﬁf(x)))l_(l_e)/p

Hence we find

1
1B(z,1)|

j exp ((Uaf ()] €} A~C-00/P)) gy

B(z,8)

IB(Z )| J{1+Uﬁf(x)}dx

< Cl/)ﬁ(l/?‘)

Forall ze G and 0 <r <dg, in view of Lemma (4.1.7). Now we obtain the
present result.

Lemma (4.2.3)[4]: Let ap = n. Then there exists a constant C > 0 such that

x = y|* " f(») dy < C(log(2dg/r))'~1="/P
G\B(zr)

forallx € G, 0 <r < d; and f = 0 satisfying [|fll p.ee <1.

Proof: Let p = n/a and f be a nonnegative measurable function on G
satisfying || f|| ey < 1. Then note that

fOyPedy <e™?
G\B(x,r)

Forall0 <e<p—1.Forx € G,0 <r< dgand0 <e<p— 1,we have
by Holder’s inequality

Ix — y[* " f(y) dy

G\B(x,r)
1/(p-e 1/(p-2)
< x — y|@ @2 gy f (y)P~*dy
G\B(x,r) G\B(x,r)
dg 1/(p-2)’
<c J pla-m)(p-e)'+n-1 g4 £—0/(p—2)

T
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dg 1/(p-g)’
<C f p-oe/(p-e-1)-1 g £—8/(p-9)
r

IA

r—(xs/(p—s—l) 1/(p-e)’
G 8—9/(p—£)
ag/(p—e—1)
< Cr—o&/(p—8) c—1/(p—&)'-6/(p-¢)
< Cr—oe/(p—8)g-1/p' -8/p
Now, taking ¢ = min{(p — 1)/2, (log(2d;/r))~*}, we find

_ 1/p’ +6/
x — y|“ ™ f(y) dy < C(log(2dg/m))"" TP
G\B(x,r)

which gives the result.
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List of symbols

Symbols Page
L1 Duel Lebesgue Space 1
L? Hilbert Space 1

BOM Bounded meem Oscillation 1
Lpidi Lebesgue Space 1
QMMS | Quasi-Metric Measure Space 1
L, Lebesgue space on the Line 2
diam Diameter 2
sup Supremum 2
inf Infimum 2
Re Real 5
max Maximum 6
loc Local 16
min Minimum 45
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