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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 
 

Shell structures are three dimensional bodies with one dimension much 

smaller than the other two dimensions. The shell structure is typically 

found in nature as well as in classical architecture. The efficiency of shell 

structures is based on its curvature (single or double), which allows a 

multiplicity of alternative stress paths and gives the optimum form for 

transmission of many different load types. Various different types of 

steel/concrete shell structures have been used. Singly curved shells, for 

example, can be found in oil storage tanks, the central part of some 

pressure vessels, in storage structures such as silos, in industrial chimneys 

and in tall structures like lighting columns. The single curvature allows 

very simple construction process and is very efficient in resisting certain 

types of loads. In some cases, it is better to take advantage of double 

curvature. Double curved shells are used to build spherical gas reservoirs, 

concrete roofs, vehicles, water towers and hanging roofs. Based on 

thickness/span ratio shells can be classified as thin, moderately thick and 

thick. 

Composite laminates are formed by stacking layers of different composite 

materials and/or fiber orientation. Composite laminates have their planar 

dimensions of one or two orders of magnitude larger than their thickness. 

Often laminates are used in applications that require axial and bending 

strengths. Therefore, composite laminates are treated as plate or shell 

elements. Practical examples of composite shells are: laminated buried 

pipes carrying gas or oil, concrete roofs and stiffened plates and shells. 



2 
 

Laminated shell structures are finding increasing interest in engineering 

applications. Consequently, efficient and robust computational tools are 

required for the analysis of such structural models. Direct analytical 

method of analysis of laminated shell structures is very tedious and 

sometimes impossible. Therefore the finite element method becomes a 

logical alternative. As a matter of fact, large amount of laminate finite 

elements have been developed and incorporated in most commercial 

codes for structural analysis such as SAP or STAAD.  

In this research a robust stabilized finite element formulation for the 

analysis of laminated shell structures under large rotations and large 

displacements conditions is developed. The geometric nonlinear 

formulation is based on total Lagrangian approach and using both 

Green’s strains and geometric strains. A comparison is made between 

results obtained by Green’s strain formulation and geometric strain 

formulation. The elements are continuum degenerated-based shell 

elements and utilize the standard isoparametric formulations. Three 

purely displacement based elements have been developed having four, 

eight and nine nodes, respectively. Each element possesses five degrees 

of freedom per node, three displacements and two rotations. 

Since elements used are displacement-based finite elements, problems of 

shear locking must be solved. This is done by using Mixed Interpolation 

Tensorial Components (MITC) techniques proposed by Bathe (1996) [6]. 

The significance of this research is emphasized by the importance of 

studying linear and nonlinear behavior of laminated shells subject to large 

rotations and large displacements with possibility of local buckling 

because such structures nowadays are widely constructed in Sudan in 

form of hall roofs, concrete roofs, pipe lines (gas and oil) and large water 

tanks. 

The limitation of the formulation will be investigated thoroughly by 

performing parametric studies.   
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1.2   Objectives 
The objectives of this research are: 

1- To develop displacement finite elements suitable for the analysis of 

laminated shell structures. 

2- To develop a robust geometrically nonlinear stabilized finite 

element formulation for modeling laminated shell structures under 

large rotations and large displacements. 

3- To develop and implement a computer program based on the 

formulation in (2). 

4- To test the program by analyzing a number of laminated shell 

structures and comparing results obtained with published results. 

5- To compare results (stresses, strains and displacements) obtained 

when using Green’s strains formulation with those obtained by 

using Geometric (engineering) strains formulation. 

 

1.3 Methodology 
The methodology of the present research is composed of four steps as 

follows: 

Step 1: developing a geometric nonlinear finite element formulation for 

analysis of laminated shell structures and investigating the defects of the 

formulation e.g. locking.  

Step 2: some techniques are proposed to overcome shortcomings     

associated with the development of the above mentioned formulations.  

Step 3: developing FORTRAN computer program based on the 

formulation developed.    
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Step 4: implementing the program by analyzing some laminated shell 

structures and verifying the results obtained by comparison with known 

solutions.     

 

 

1.4  Research Outlines 

This research consists of seven chapters, the content of which can be 

summarized as follows: 

Chapter One covers general introduction. 

Chapter Two introduces literature review of laminated shell and their 

analysis using finite element.    

Chapter Three presents a linear formulation for analysis of laminated 

shell structures. 

Chapter Four presents nonlinear analysis of laminated shells. 

Chapter Five describes the computer program developed.  

Chapter Six contains application to numerical examples results 

discussion.  

Chapter Seven presents the conclusions and recommendations drawn 

from this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Composites Materials 
A Composite material in engineering is any material that has been 

physically assembled to form one single bulk without physical blending 

to form a homogeneous material. The resulting material would still has 

components identifiable as the constituent of the different materials. One 

of the advantages of composite materials is that two or more materials 

could be combined to take advantage of the good characteristics of each 

material.  

Usually, composite materials  consist of two separate components, 

namely the matrix and the filler. The matrix is the component that holds 

the filler together to form the bulk of the material. It usually consists of 

various epoxy type polymers but other materials may also be used. Metal 

matrix composite and thermoplastic matrix composite are some of the 

possibilities. The filler is the material that has been impregnated in the 

matrix to lend its advantage (usually strength) to the composite. The 

fillers can be any kind of material such as carbon fiber, glass bead, or 

ceramic. 

Composite materials can be classified into four types according to the 

filler type as follows:  
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1. Particulate composite material  

2. Short or long  fiber composite material 

3. Laminate composite material 

4. Combination composite material 

A Particulate composite material  consist of the composite material in 

which the filler materials are roughly round. An example of this type of 

composite material would be the unreinforced concrete where the cement 

is the matrix and the sand serves as the filler. Lead particles in copper 

matrix are another example where both the matrix and the filler are 

metals.  

Short fiber composites are composites in which the filler material has a 

length to diameter ratio less than one. Long fiber composites are 

generally taken to have a length to diameter ratio greater than 100.  Fiber 

glass filler for boat panel is an example of short fiber composite. Carbon 

fiber is one of the filler material used in the long fiber type composites. 

Laminate is the type of composite that uses the filler material in the form 

of sheet instead of round particles or fibers. Formica countertop is a good 

example of this type of composite. The matrix material is usually 

phenolic type thermoset polymer. The filler could be any material from 

craft paper (Formica) to canvas (canvas phenolic) to glass (glass filled 

phenol). 

Since the composites are non-homogeneous, the resulting properties will 

be the combination of the properties of the constituent materials. The 

different type of loading may call on different component of the 

composite to take the load. This implies that the material properties of 

composite materials may be different in tension and in compression as 

well as in bending. 

In this research the focus will not be on one of the above mentioned four 

types only but on a hybrid class, namely laminated fiber-reinforced 
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composite materials as they are the basic building element of shell 

structures. These materials are hybrids between type 3 and type 4 since 

they consist of fibrous composite materials (type 3) but involve 

lamination techniques (type 4) in their structural composition. Typically, 

such materials consist of stacks of bonded-together layers made from 

fiber-reinforced material. The layers will often be oriented in different 

directions to provide specific and directed strengths and stiffnesses of the 

laminate. Thus, the strength and stiffnesses of the laminated fiber-

reinforced composite material can be tailored to the specific design re-

quirements of the structural element being built.  

Composite materials have many mechanical behavioral characteristics 

which are different from those of more conventional engineering 

materials such as metals. More precisely, composite materials are often 

both inhomogeneous and non-isotropic (orthotropic or, more generally, 

anisotropic).  

Definitions:  

An inhomogeneous body has no uniform material properties over the 

body, i.e., the properties depend on position in the body. An orthotropic 

body has material properties that are different in three mutually perpen-

dicular directions at a point in the body and, further, has three mutually 

perpendicular planes of material property symmetry. Thus, the properties 

depend on orientation at a point in the body.  

An anisotropic body has material properties that are different in all 

directions at any point in the body. No planes of material property 

symmetry exist. Again, the properties depend on orientation at a point in 

the body.  

These properties of composite materials significantly alter their response 

to loading compared to isotropic materials. Because of the inherent 

heterogeneous nature of composite materials, they can be studied from a 

micromechanical or a macromechanical point of view. When a 
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macromechanical point of view is taken, the material is presumed 

homogeneous and the effects of the constituent materials are detected 

only as averaged apparent macroscopic properties of the composite 

material. This approach is generally accepted when modeling gross 

response of composite structures.  

2.2 The Composite Lamina  
The basic building block of a laminated fiber-reinforced composite 

material is the composite lamina. A lamina is a flat or sometimes curved, 

as in a shell arrangement, of unidirectional or woven fibers in a 

supporting matrix, see Figure (2.1). 

The following demands must be made on fibers used in reinforced 

composite materials:  

1. high tensile strength  

2. high modulus of elasticity  

3. lower ultimate elongation than the matrix  

4.  good adhesion to the matrix  

5. good resistance to the matrix and its additives                          

The influence of the matrix on the composite is as follows:  

1. bind the reinforcement and distributes the load, protect the fibers  

chemical damage , 

2. dominant factor in determining transverse shear and through–

thickness properties,  

3. dominant factor in determining impact resistance and fracture 

toughness, 

4. dominant factor in determining long time (creep) response.   

The purpose of this section is to provide a basic understanding of the 

macro-mechanical behavior of a lamina when averaged apparent 

mechanical properties are considered.  
2.3 Constitutive Relation of Lamina 
The materials are assumed to behave linearly elastic, i.e. the generalized 
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Hooke’s law is used for relating stresses to strains. A material coordinate 

system 1 − 2 and a Cartesian coordinate system x − y are introduced for 

the unidirectional reinforced lamina, see Figure (2.1).  
 
 
 
 

 

 

 

 

 

 

 

 

Figure (2.1) Positive notation of Principal Material Axes 1-2 from 

Cartesian coordinate x-y axes (Fibers are represented by dashed lines)                                

The general anisotropic constitutive relation is given by Hooke’s law as: 
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i.e., twenty one independent material constants are used to describe the 

material. 

For the composite lamina illustrated in Figure (2.1), there are two 

orthogonal planes of material property symmetry and the material is 

termed orthotropic. The stress-strain relations in coordinates aligned with 

principal material directions are given as:  

2 

Y 
1 

X 

θ 
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If a plane stress assumption is used for the orthotropic composite lamina, 

the stress-strain relations will be given as: 
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Where: 

)1(/ 21121111  EQ  

   )1(/ 21122222  EQ                      (2.4) 

   )1(/ 2112221211   EQ  = )1(/ 21121121  E  

   1266 GQ   

 

The number of independent material constants is now reduced to four.  

To express the stress-strain relations for the lamina of arbitrary 

orientation as illustrated in Figure (2.1),and recalling the transformation 

equations, the stresses in a x − y coordinate system are expressed in terms 

of stresses in a 1 − 2 coordinate system as follows:  
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where; 

T is transformation matrix given by: 
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Θ  is the orientation angle of lamina direction
 

In the transformation of strains it is, of course, important to realize that 

the above stress transformation is only valid for a second order tensor, 

i.e., engineering strain vectors cannot be used directly, it will be 

transformed to tensor strains. However, introducing the Reuter matrix:  
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the transformation of strains can be written in compact form using both 

tensor and engineering notation for the strain tensor: 
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Or  
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Using the above transformations, the stress-strain relations for arbitrary 

lamina orientation can be written as:  
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 where 

                                          11  RTRQTQ                                                    (2.11) 

A specially orthotropic composite lamina is one for which the principal 

material axes are aligned with the structural axes. For example:  
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Finally, a generally orthotropic composite lamina is an orthotropic lamina 

in which the principal material axes are not aligned with the structural 

axes. Thus the Q matrix is uniquely defined by four material properties 

even though the matrix is apparently that of an anisotropic material. That 

is:                         
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These stress-strain relations for a composite lamina of arbitrary 

orientation are best illustrated by figures, and as examples the 

components of the matrix Q for a graphite epoxy are as shown in Figure 

(2.2) and Figure (2.3).  

From Figure (2.2) and Figure (2.3) it can be clearly seen that directional 

dependencies of stiffness (and strength) are vital properties when 

designing with composite materials.  
 
 



13 
 

 

                     Lamina Orientation (deg.) 

                      Graphite/Epoxy (3M SP-288/T300) 

      Figure (2.2) Results for Graphite Epoxy for Q11,Q22 and Q12 
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  Lamina Orientation (deg) 

        Graphite/Epoxy (3M SP-288/T300) 

Figure (2.3) Results for Graphite Epoxy for Q11,Q22 and Q12 

2.4 Laminate Theory 

A laminate is a series of laminae bonded together to act as an integral 

structural element. Thus, a laminate is not a material but instead a 

structural element with essential features of both material properties and 

geometry. The stiffnesses and strengths of such a composite material 

structural configuration are obtained from the properties of the constituent 

laminae, and the macromechanical behaviour of a laminate is the main 

topic of this section. The lamination theory described can be considered 

as a single layer “rule of mixtures” representation of the interaction 

between the multiple laminae in a plate or shell.  
 

 

                                             Figure (2.4) Lamina and Laminate 

As illustrated in Fig. (2.4) the individual laminae may have arbitrary 

orientations, and the major purpose of lamination is to tailor the 

directional dependence of stiffness and strength of a composite material 

to match the loading environment of the structural element. The layers of 

the laminate are usually bonded together by the same matrix material that 
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is used in the individual laminae, i.e., in the following it is assumed that 

each layer is a fiber-reinforced composite lamina.  
 
 
2.4.1 Classical Laminated Plate Theory  
Classical laminated plate theory (CLPT) is often also called Classical 

Lamination Theory  and can be regarded as a process of finding effective 

and reasonably accurate simplifying assumptions that reduces the three-

dimensional elasticity problem to a solvable two-dimensional problem. 

See Figure (2.5) and Figure (2.6)  
 

 

 

 

                  Figure (2.5) Geometry of deformation in the x-z plane  

 

The assumptions of classical laminated plate theory are based on the 

Kirchhoff-Love hypothesis for plates and shells:  

1. The plate is thin. The thickness (h) of the plate is small compared 

to the other physical dimensions. 

2. The displacements ),(&),,(),,,( yxwzyxvzyxu  are small compared to 

the plate thickness. 

3. The in–plane strains xyyx  &,   are small compared to unity 
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4. The transverse normal strain z  is negligible. 

5. The transverse shear stresses yzxz  &  are negligible. 

 

              Figure (2.6) Symmetric angle-ply laminate geometry and stresses   

The displacement field in case of linear elasticity is given as:  

                                     

                                          
x
wzuu



                                

                                         
y
wzvv



                                                                   (2.14)                 

                                  ww                                    

where: 

  wvu &, : are displacements of point (x, y & z) 

   wvu &, : are middle-surface displacements 

  z : distance normal to neutral surface  

  
y
w

x
w





 &  : are normal to middle-surface rotation (slopes) 

Performing force moment resultant, the constitutive relation of laminated 
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plate can derived as: 
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The stress evaluation in each layer k is given as: 
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K is measured from the top of the plate as shown in Figure (2.7) 

 

                   Figure (2.7) Geometry of an N-layered laminate 

The advantages and disadvantages of the classical laminated theory may 

be summarized as follows:  
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• Advantages  

1. Simple extension of isotropic plate theory.  

2. Computer codes designed for isotropic plates can be easily 

modified to do composite analysis.  

3. Gives excellent results for many problems. Particularly true if 

the results involve average structural properties. 

• Disadvantages: 

1. Transverse shear stresses are assumed to be zero, i.e. cannot 

predict delamination (separation).  

2. Stress equilibrium is not satisfied across ply interfaces, which is 

an unrealistic result.  

2.4.2 First order Shear Deformation Theory 
The first order shear deformation theory (FSDT) is based on Reissner-

Mindlin plate theory. The basic assumptions made are the same as those 

of classical laminated plate theory but here normal to the middle surface 

before deformation is no longer remain normal after deformation. 

Performing force and moment resultant formulation, constitutive equation 

is obtained as: 
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Where:   
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Solving above equation, the stress in each layer can be computed. 

2.4.3Third order Shear Deformation Theory 

The classical laminated plate theory and the first  order shear deformation 

theory are the simplest equivalent single layer theories, describing 

adequately the kinematic behavior of most laminates. The higher order 

shear deformation theories avoid the use of shear correction factors. 

Various theories were proposed in the literature. The displacement field 

will be of the form 

                        *3 zzuu                                                       (2.20) 

Here, *  represents the higher order rotations. 

An improved higher order shear deformation theory equivalent to single 

layer theory which better accounts for transverse effects is that has been 

proposed by Reddy [4] for laminated shells, but it increases 

computational cost dramatically at a little gain in model accuracy. To 

significantly improve results compared to those obtained with ESL – 

method, it is necessary to turn to layerwise theories. 

2.4.4 Layerwise Theories 
Layerwise theories can be divided into two categories , namely full 

layerwise and partial layerwise theories. The difference lies in the 

displacement expansions. The partial layerwise theories assume that 

normal transverse strain is zero where as full layerwise theories use a full 

expansion for all three displacements. Layerwise theories are as ESL-

methods often formulated in force moment resultants.  

The layerwise theory developed by Reddy [11] allows for a better 

deformation analysis in the laminate. In this theory the displacement field 

for each layer (n) is a function of the displacements of other layers 

adjacent, as 
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The theory is implemented using degenerated shell element. 

2.5 Finite Element Method 

The solution of the governing equations of laminated composite plates 

and shells can be solved by analytical methods. However, exact analytical 

or variation solutions to this problem cannot be developed when complex 

geometries, arbitrary boundary conditions, or nonlinearities are involved. 

Therefore, approximate methods of analysis become relevant when there 

is a need for solving such problems. 

The finite element method is a powerful numerical technique for the 

solution of differential and integral equations that rise in various fields of 

engineering and applied science. The basic idea of the finite element 

method is to view a given domain as an assembled set of simple 

geometries, called finite elements, for which it is possible to generate 

element properties (stiffness matrix and nodal load vectors) using any 

energy or variation method. The major steps of the finite element method 

include: the discretization of the domain into a set of finite elements 

(mesh); computation of element stiffness matrix and nodal load vectors 

using energy method; assembly of elements to obtain a global system of 

algebraic equations; imposition of boundary conditions; solutions of 

equations and calculation of element stresses. 

 

2.6 Finite Elements for Analysis of Laminated Shell 

Structures:  
Here some laminated shell finite elements formulations developed in 

literature are described in brief: 
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1. J. Stegmann et al [23], developed a degenerated nonlinear 

stabilized formulation, it gives satisfactory results but the 

computation is very expensive due to the through thickness 

integration scheme adopted.  
2. Prema Kumar [21], in his PhD thesis proposed an efficient 

integration scheme by assuming a variation of Jacobian matrix 

through thickness but his formulation is unstable because   no 

account for shear locking is made. 
3. Klinkel et al. [40] formulate a solid element with MITC and 

Enhanced Assumed Strain (EAS) stabilization for non-linear 

analysis of ESL composite laminates. 
4. Masud and Panahandeh [41] proposed an element similar to the 

above element in [3] for linear analysis of composite laminates 

but utilized reduced and selective integration. 
5. Brank and Carrera [1] suggested a layerwise degenerated 

element with Assumed Natural Strain (ANS) stabilization for 

linear analysis. 
6. Alfano et al.) [30] Formulated a MITC element with out-of-

plane stress capabilities for linear analysis of ESL plates. 
7. H. Nguyen [14] developed a new simple accurate four node 

quadrilateral element for linear static and dynamic analysis of 

thin to moderately thick laminated anisotropic plate/shell 

structures within the first-order shear deformation theory. 
8. M.L. Liu  [27 ] developed a geometrically nonlinear analysis of 

layerwise anisotropic shell structures by hybrid strain based 

lower order elements. The shell element employed has three 

nodes located at mid-surface of the shell and eighteen degrees-

of-freedom. The nodal degrees-of-freedom at each node are 

three translational and three rotational degrees-of-freedom 
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9. N. Al-Ghamdy [29 ] developed a geometrically nonlinear finite 

element formulation of a four node isoparametric laminated 

shell element based on a cube displacement field over the shell 

thickness . 
10. P. Mohan [31] combined plane bending element with 

memberane element to analyze laminated plate and shell 

structures. The utilized element possesses six degrees of 

freedom. 

11. H. S. Kim [6] formulated an efficient layerwise shear 

deformation theory for improving the accuracy of stress and 

strain prediction in the analysis of laminated shells. 
12. B. Wang  [39] developed flat triangular shell elements for 

geometrically nonlinear static and dynamic analysis of large 

scale laminated composite plate and shell structures. Each  

element, based on the first – order shear deformation theory, has 

three nodes and each node has six degrees of freedom. The 

updated Lagrangian formulation and modified incremental 

Hellinger-Reissner variational principle were adopted.    
Other contributions have proposed elements with similar characteristics, 

some of which are listed in Reddy [11]. Creating a complete overview of 

advance element formulations for laminated structures is difficult since 

new elements arrive continuously. The general trend tends towards 

stabilized elements and still more towards layerwise theories or at least 

some form of assumed transverse displacement field. 
2.7 Locking Problems 

When displacement based elements are formulated the decisive and 

crucial choice is the choice of interpolation functions (as described 

earlier). If the interpolation chosen cannot model the behavior of the real 

structure sufficiently accurate, the response of the model may not only be 

inaccurate but incorrect. Locking occurs when the finite element model 
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becomes overly stiff in comparison with the real structure. Locking may 

occur in various loading situations and several locking problems may 

arise simultaneously or single phenomenon may appear isolated. This 

renders the identification of locking very difficult for an engineer 

reviewing the results of a finite element analysis. Therefore, the need 

arises for stable, locking free elements.  

The problems and solutions of locking are treated in general terms by 

Bathe [1]. In the following a brief introduction will be given to three 

locking phenomena and possible solution strategies will be presented.  

2.7.1 Membrane Locking  
Membrane locking is only a problem in curved beam and shell elements, 

If considering a shell, the membrane stiffness is very large compared to 

the bending stiffness and the shell may therefore bend without stretching. 

This is called inextensional bending and membrane locking is caused by 

the elements inability to represent this type of bending. This means that 

when the element is loaded in pure bending parasitic membrane stresses 

may be introduced whereby the element exerts overly stiff behavior. 

Since membrane locking only occurs in curved elements (such as 6,-8-or 

9-node elements) it is not necessary to address the problem when 

formulating 3-and 4-node elements since these elements are plane. To 

make curved elements reliable it is therefore necessary to consider 

membrane locking when formulating such elements.  

The solution to membrane locking is to modify the interpolation of the in-

plane stresses. These modifications can be made in various ways such as 

the Enhanced Assumed Strain-method (EAS) or by (MITC) [6].  
 
2.7.2 Shear Locking  
Shear locking is a problem for many types of elements. Shear locking is a 

result of parasitic transverse shear stresses introduced when the element is 

loaded in bending. In a state of pure bending, resulting from application 

of a constant moment, M, the shear force is the derivative of the moment, 
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i.e. V= ∂M/∂xi. Hence, for constant moment the shear force is zero. Using 

a Timoshenko beam analogy (which is reasonable since the Mindlin 

assumptions for shells constitute the same restrictions as made by 

Timoshenko for beams) the shear stress is given from the shear formula, 

stated here as σ13 = Vγ, where γ is a geometric quantity. Consequently, 

the shearing stresses must be zero since the shear force is zero for 

constant bending moment. Shear locking occurs when the element is 

unable to calculate zero transverse shearing stresses in pure bending. It 

may also arise when applying a linearly varying moment to an element if 

the element in this case is unable to determine constant transverse 

shearing stresses. The former is a problem in first-order elements and the 

latter in second-order elements; this is explained in the following section.  

For the linear elements shear locking arises since the elements are 

incapable of representing the deformation caused by pure bending. This is 

shown in Figure (2.8) where an edge view of a deformed linear element is 

shown in Figure( 2.8a) and a correct deformed geometry is shown in 

Figure (2.8b) 

 

 

 

 

 

                 Figure (2.8a)                                          Figure (2.8b) 

Figure (2.8) Edge view of (a) deformed linear element, (b) correct 

deformed geometry in pure bending 

 

If quadratic elements are considered instead, because of the mid-side 

node, properly represent the deformation caused by pure bending. In the 

quadratic elements the parasitic transverse shear stress instead arises 

M M M M 
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when the elements are loaded under linearly varying bending. Since shear 

locking is a problem in many elements a lot of different methods have 

been developed to eliminate it. For all the improvement methods shear 

locking is avoided by modifying the determination of the transverse shear 

stresses. This means that the last two rows in the strain-displacement 

matrix, B, are modified.  
 

2.7.3 Volumetric and Thickness Locking 

Volumetric locking is different from other locking problems in that 

volumetric locking is caused by a material parameter namely the Poisson 

ratio, ν, volumetric locking appears for isotropic materials when the 

material becomes incompressible or nearly incompressible, i.e. meaning ν 

tends to 0.5. This may be realized from Hooke’s generalized law 

rewritten from Equation (2.1) for isotropic materials:  

                              ijkkijij  2                                             (2.22) 

Where; λ and η are Lame’s constants given as 

                  
)21)(1( 





E                            

)1(2 





E            (2.23) 

 

 Considering, λ, it is seen that when ν tends to 0.5 then λ tends to infinity . 

This means that some of the terms in the constitutive matrix tend towards 

infinity and in turn, terms in the stiffness matrix tend towards infinity.  

 

 Considering the modified constitutive matrix in Eqn.(2.6) it can be seen 

that none of the terms reaches infinity when ν →0.5. The reason is that 

the modified constitutive matrix has been derived for reduced state of 
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stress for which the term (1 −2ν) vanishes.  

For orthotropic materials it may be seen from Eqn. (2.6) that terms in the 

constitutive matrix may reach infinite if ν →1. If considering a single 

layer (stacks of layers may have entirely different material properties 

when viewed as a whole) it seems reasonable to conclude that for 

common engineering materials and the case of linearly elastic materials 

this will never be the case. For this reason volumetric locking does not 

represent a problem in the formulated elements and hence, this locking 

phenomenon is not treated any further.  

Besides the three locking phenomena explained in the preceding sections 

two different thickness locking phenomena exist, namely thickness 

locking and curvature thickness locking. Both of these locking effects are 

caused by a parasitic transverse normal stress and therefore only appear 

when thickness changes are taken into account in the shell formulation. 

This means that for the five parameter formulation (the Mindlin 

assumption) used in the implemented shell elements these two types of 

locking will not come into effect. Consequently, no strives towards 

eliminating such locking problems are taken in the formulation of the 

shell elements.  

2.8 Geometrically Nonlinear Formulation 
  All geometrically nonlinear formulations stated earlier are based on 

Green strains, since, most of the material constants and constitutive 

relations are based on Engineering stress, geometric strains, which are 

work-conjugate will be suitable to use, specially for large rotation 

problem Mohamed A. E [19], Adam F. M. [18] used Green strain 

formulations in the analysis of beams, shells and plane stress/strain 

structures respectively. 

Most recent researches use Green’s strain in  formulating  problems, in 

this research Geometric strain will be used beside  Green’s strain , and in 
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further studies other strain measure will be used e.g. Logarithmic strain 

2.10 Conclusion 

In view of the above mentioned theories and formulations, it 

was observed that most of them are adopting Green’s strains. In 

this study an eight node degenerated shell finite element is formulated 

adopting total Lagrangian formulation and using both Green strains and 

geometric strains. The element formulated is implemented to analyze 

laminated shell structures using full numerical integration through 

thickness. The nonlinear equations are solved using Newton – Raphson 

method.    
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CHAPTER THREE 
 

LINEAR FINITE ELEMENT ANALYSIS OF 
LAMINATEDE SHELLS 

  
 

3.1    Introduction   
 

Generally shell structures could be considered as those structures having 

small thickness compared with their other dimensions. Shells may be flat 

such as plates or curved like cylindrical shells and domes. They can be 

made from concrete, steel or any other material. The advantage of shell is 

that it can cover a large area with long spans such as large halls or stadia 

.Shell structures get their strength by their shape not by the high strength 

of their constructing materials. 

Curved shell structures such as domes are considered as economic 

structures because they are capable in translating applied loads into 

membrane thrusts and shears acting in a plane tangential to the surface at 

any point. By this means bending and twisting moments and shears 

transverse to the surface are reduced or eliminated. 
 

3.2    Finite Element Method 
 

Finite Element Method of analysis (FEM) is a computer–based numerical 

technique for calculating the strength and behavior of engineering 

structures.  The finite element method has been widely used in many 

branches of science and engineering. The most common applications are 

found in solid  mechanics. It has the advantage of solving problems with 

different materials and boundaries, with the advantage of computer 

programming and modeling, problems may be static or dynamic.  The 
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most widely used finite element formulation in solid mechanics is the 

displacement approach. The displacement field within the element is 

defined in terms of assumed functions (interpolation functions) and 

unknown parameters at the nodes which are either displacements or 

displacement related quantities such as slopes and curvatures. 

 

In finite element method, a structure is broken down into small simple 

blocks or elements. The behavior of an individual element can be 

described with a relatively simple set of equations. Just as the set of 

elements would be joined together to build the whole structure, the 

equations describing the behaviors of the individual elements are joined 

into an extremely large set of equations that describe the behavior of the 

whole structure. The computer can solve this large set of   simultaneous  

equations. From the solution, the computer extracts the behavior of the 

individual elements. From this, it can get the stress and deflection of all 

parts of the structure. 

 The steps of a displacement-based finite element analysis [8] can be 

summarized as follows: 

1. Discretization (or representation) of the given domain into a 

collection of preselected finite elements.  

2.  Selection of nodal displacement parameters and element 

interpolation function. 

3. Evaluation of individual element properties. 

4. Assembly of system overall stiffness matrix. 

5. Imposition of boundary condition. 

6. Formation of global right hand side (r. h. s) force vector. 

7. Solution of system matrix equations for nodal displacements. 

8.   Additional calculation for stresses and other parameters. 

 

3.3   Historical Background   
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The finite element concept was introduced in the classical paper  

presented by Turner, Cough, Martin and Top in 1956. After this paper 

and other researches an explosive development of finite element method 

started. It appears that Clough was the first to use the terminology finite 

element in 1960. Due to rapid development in computer technology large 

number of  

package programs have been developed for finite element analysis e.g.  

Structural Analysis Program (SAP2000). 
 

The method began as numerical techniques for analyzing solid mechanics 

continuum and then extended to solve heat   conduction, fluid flow and 

magnetic field problems in both states, static and dynamic. 

 

3.4   Types of Analyses of Structures  
 
 

Types of analyses of structures can be classified into four categories: 

1- Small deflection and elastic material properties (linear analysis). 

2- Small deflection and plastic material properties (material non-

linearity). 

3- Large deflection (deformation) and elastic material properties 

(geometric non-linearity). 

4- Simultaneous large deflection and plastic material properties 

(combination of material and geometric non-linearity). 

Material nonlinearity means that stress strain relationship is non- linear. 

Geometric nonlinearity (large deflection), means that the shape of the 

structure has changed enough that the relationship between applied load 

and deflection is no longer a simple straight line relationship.  The 

material properties can still be elastic. 

In addition to analyzing structures for their stress and deflection, other 

typical analyses are an evaluation of the natural frequency of vibration, 

and calculation of buckling loads.  Steady state, transient, and random 

vibration behavior can also be analyzed. 
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For this research we shall study the case of geometric non-linearity.   

Loads may be due to self weight, normal pressure, concentrated loads, 

surface pressure or initial stress or strain. 

 

 

 

 3.5 Degeneration Method 

The degeneration method is a very "inexpensive" way of formulating 

shell finite elements and has been the leading method ever since it was 

introduced in 1970 by Ahmad et al. (1970) [38]. Basically, the method 

starts from a standard 3D continuum solid element (hence continuum 

based shell elements) and, by enforcing various constraints on the 

element behavior, arrives at a 2D shell element. The procedure of the 

method is to eliminate nodes in the 3D continuum element by enforcing 

different constraints on the behavior of the element. An 8-node 

degenerated element can for example be constructed from a solid 20 node 

brick. Assumptions introduced in the formulation are: 

1- Lines normal to the mid-surface before deformation remain 

normal after deformation 

2- Transverse normal stress is zero 

 

  

 
               
 
 
 
 
 
 
 
                     
                                  Figure (3.1)   Eight node curved element         
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3.5.1    Geometry of the Element  
 

Figure (3.1) shows an eight node Serenpdity element. Adopting 

isoparametric concept, the shape functions defining the geometry and 

variation of displacement are given by:  

For nodes 1, 3,5and7 
)1()1()1(25.0  iiiiiN                                                 (3.1) a 

                      
For nodes 2, 6 

)1()1(5.0 2
iiN                                                                        (3.1) b     

 
For nodes 4, 8 

)1()1(5.0 2
iiN                                                                         (3.1) c 

 

 
where:  

 and,  : are natural coordinates 

iii and  , :   are the values of natural coordinates at node  i  . 

iN :    shape function at node  i  . 

Assuming the lines joining the top and bottom nodes to be straight, the 

shape of the element is defined by eight nodal values as: 
 
 

                                        





















































i3
i

i

i

i

i8

1i
i v

2
t

z
y
x

N
z
y
x

                        (3.2) a   

 where, 
           zandyx , :      are global axes 
           iii zandyx , :    are the global coordinates of node  i   
           it  :                is the shell thickness at node i 
          iN  :                shape function at node  i  . 
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           i3v :                  is a unit vector in the direction normal to the mid-                        
surface plane as shown in Figure (3.2) and defined by: 
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The subscripts top and bottom refer to top and bottom coordinates. 
 
 
 

 
 
                                 Figure (3.2) Node director 
 
3.5.2   Displacement Field  
 

 
 

 

 

According to the assumption that strains in the direction normal to the 

mid-surface will be assumed to be negligible, the displacement through 

the element will be taken to be uniquely defined by the three Cartesian 

components of mid-surface node displacement and two rotations of the 

nodal vector V3i   about orthogonal directions that are given by vectors V2i 

and V1i of unit magnitude, with corresponding (scalar) rotations α and β. 

Thus the displacement at any point within the element can be written as: 
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where 

     u , v    and   w  are global displacements at any point within element 

iu  , iv   and  iw  are nodal displacements of node i  . 

     iV3    is the vector in the direction that is normal to mid-surface, and is 

given by Equation (3.3). 

  iV1    is perpendicular to plane defined by iV3  and the x-axis, and is thus 

given by the cross-product: 
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This process fails if iV3  corresponds in direction with the x-axis. In this case 

the local directions are obtained using the y-axis. 

iV2  is normal to the iV1 and iV3 , then 
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By dividing vectors iV1 , iV2 and iV3  by their lengths, the unit vectors iv1 , iv2 and iv3

can be obtained respectively. 

3.5.3    Strain - displacement Relations  
 
 

The strain-displacement relations for linear analysis are given by the 

following equation: 
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Where 
 B :    is the matrix relating strain with nodal displacements a :    are the 
nodal displacements 
 
 

3.5.4     Constitutive Relations  
  
 

The stress- strain relations for three dimensional analyses is written as 
follows: 
 
                                                       C                                   (3.6) 
 

 
 
          Where:        
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         C Elasticity matrix 
 
For isotropic material   C  is given in a matrix form as: 
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 where  
E              Young’s modulus 
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                 Poisson’s ratio  
k                                     Shear correction factor, equal to 5/6 for rectangular sections 
 
3.5.5     Stiffness Matrix   

 

The element stiffness matrix is evaluated as follows 
 

 
                                dvBCBK T



                                               (3.8) 

 
        where: 
 

     K     = element stiffness matrix  

     B     = matrix relating strains to displacements 

     C      = modulus of elasticity  

The integration over the volume is carried out numerically considering 

eight Gauss points. 

3.5.6      Transformation Matrix  
 

Since the expressions for stresses are obtained in the global directions, the 

axes zyx ,,   system must be rotated to a set ''' ,, zyx   as shown in Figure 

(2.2). This set of mutually perpendicular axes at the point being 

considered is determined from the local axes ξ , ζ  and η (natural 

coordinate) as follows  
'x  is identical  ξ  

          'z  is perpendicular to  ζ  and  η  

          'y  is perpendicular to 'x and 'z  

Let rv  and  sv  be unit vector along r and s directions respectively, and are 

defined as follows  
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                 Fig. 3.3 Transformation from global to local axis 
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Element of vectors in Equation (3.9) are found in Jacobian matrix. 

By reducing these to unit magnitudes, we define  sr vv ,  . 

Let  321 &, vvv   be unit vectors along ''' &, zyx  respectively, and from 

definition of  ''' ,, zyx system , we have  
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Then and from (3.9) 
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By reducing vectors 321 &, VVV to unit vectors, we construct a 

matrix of unit vectors 321 &, vvv  in the local direction, therefore   

 
                             321 ,,][ vvvT   

Where 

T   is the transformation matrix 

In order to find the displacement derivatives w.r.t the global Cartesian 

co-ordinates, and making use of the relation between the global 

displacements wvu &,  to the curvilinear co-ordinates, the derivatives 

are given by a matrix relation  
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  Where   
J : is Jacobean matrix defined by: 
 
  

 
 
 
                                             (3.13) 
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The global derivatives of displacements  wvu &,  are now 

transformed to the local derivatives of the local orthogonal 

displacements by the standard operation  
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3.5.7   Element Load Vector  
 
The following load types are considered  

     1. Gravity load. 

     2. Uniform surface load.  

     3. Uniform normal surface pressure 

 

 
 3.5.7.1 Gravity load    
  The load vector due to body force at node (i) is given by:  
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det                          (3.15)                                       

 
Where: 

  X : is the vector of body force components per unit volume. Let   be 

the weight density of the material.  The nodal load vector at any node i  is 

given by                 
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and  
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  h is the thickness of the shell at point considered 
 J  jacobian matrix function of ( ξ , ζ  and η) 
  Jdet :      is determinant of Jacobean matrix 

iv11 , iv12 and iv13 : are components of unit vectors iv1  
iv21 , iv22 and iv23 : are components of unit vectors iv2  

Hence: 
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3.5.7.2    Uniform Surface Load  
 

Following the same process, the element surface force due to uniform 

surface load is given by: 
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where ; 
 

P  =    uniform surface load  
a  =    surface Jacobean  

 
sr xVVa   

 
at top ζ =1 and at bottom ζ  = -1 
 

3.5.7.3   Pressure Normal to Surface  
 

 Similarly the nodal force due to normal surface pressure is given by: 
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P = normal surface load. 
at top ζ =1 and at bottom ζ = -1 

 
2x2 Gauss points are used for numerical integration. 

 
3.6   Modeling of Laminated Shells 
Modeling of laminated shells can be achieved by changing the numerical 

integration through thickness and constitutive equation. In this section the 

modification will be described. 

3.6.1 Numerical Integration 

The numerical integration is performed using the Gauss quadrature both 

in-plane and out-of -plane.The Gauss quadrature method approximates an 

integral as a summation over the evaluation points as follows: 
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),,(),,(                 (3.21) 

The evaluation points, ξ , η and ζ are located symmetrically around the 

midpoint of the integration interval, and symmetrically paired evaluation 

points have the same weight factor, It has been shown by Gauss that the 

location of the evaluation points is determined as roots in the Legendre 

polynomial, Bathe (1996) [6]. Furthermore the expression in (3.21) is 

obtained by successive use of a one dimensional quadrature in each of the 

directions ξ , η and ζ. Tabulations of Gauss-point locations and Gauss 

weight factors can be found in Bathe (1996) [6]. When Gauss quadrature 

is used in two or three dimensions it is most common to use the same 

order of integration in all directions, but different orders may be used in 
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different directions.  

3.6.2 Numerical Thickness Integration of Laminates 

For plane elements the through-the-thickness integration is normally 

performed explicitly by multiplying by the thickness of the element 

which is valid since both the strain-displacement matrix, B, and the 

jacobian  matrix, J, are independent of the thickness coordinate, t. Conse-

quently, they integrate as constants with regard to the thickness, i.e. 

  BhdhB where h is the shell thickness. In the present element 

formulation, the through-the-thickness integration cannot be performed 

explicitly since both the strain-displacement matrix and the Jacobian 

matrix are dependent on the thickness coordinate as shown in Equation 

(3.5) and Equation (3.13). Therefore integration in the thickness direction 

is performed numerically using the Gauss quadrature method in Equation 

(3.21). For laminated elements the thickness integration cannot be 

performed through the application of Equation (3.21) alone as explained 

in the following.  

For laminated elements, where the material has orthotropic properties, 

different couplings such as extension-bending, extension-shear, shear-

bending are introduced when the structure is not loaded in the principal 

material directions as discussed in Chapter 2. The behavior resulting from 

these coupling effects depends on the stacking sequence of the layers, the 

fiber orientation in the layers and the loading conditions. If the integration 

in the transverse direction is performed as one integration as for isotropic 
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shells the coupling effects will not be correctly included in the governing 

equations. Thus, the response of the model would not correlate with the 

response of the real structure.  

The new integration scheme is set up as a piecewise through-the-

thickness numerical integration, which seems natural when considering a 

laminated element as shown Figure (3.3). 

 
 

 

 

The constitutive matrix [C] will in general be different for each layer and 

in effect vary as a function of the thickness in global terms as explained 

in Section 3.7.  

This property constitutes the fundamental problem of finding the 

constitutive matrix for an entire laminate. In classical laminate theory this 

problem is solved by using resultant formulation and dividing [C] into 

several matrices (the A-B-D approach described in Chapter 2). In the 

present study the integration of the laminated element is instead 

performed as a full three dimensional integration in each layer, meaning 

integration is performed over ξ, η and ζ for all layers. Consequently, the 

individual layers are treated as "sub-elements" of the laminated element 

and thus, the stiffness of the entire element is determined as the sum of 

the layer stiffness contributions. By performing the integration of each 

layer separately in this manner the integration limits for the thickness 
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integration will be dependent on the set-up of the laminate (number of 

layers and layer thicknesses). Hence, to use the Gauss quadrature 

coefficients the integration limits have to be changed since integration 

must be carried out over the interval [−1; 1] when using Gauss 

quadrature. This is solved by transforming the transverse coordinate t into 

tl so that tl in the l’th layer varies from −1 to 1. This approach is shown in 

Figure( 3.4).  

 

 

                                (a)                                            (b) 

Fig 3.4 Schematic representation of the integration scheme for laminated 

elements where (a) shows the entire element and (b) the l’th sub-layer 

where the transformed coordinate tl runs from −1 to 1.  

The transformation of the natural coordinate, t, to a layer coordinate, tl, is 

performed through the transformation 

                                         )1(2(11
1

ll

l

i
i thh

h
t  



)                        (3.22) 

 where hl is the thickness of the l’th layer and the sum of the first term of 

the parenthesis constitutes the total thickness of the "preceding sub-

elements". Inserting the modified coordinate in the Gauss integration 

represents integration by substitution and consequently, the derivative of 

the coordinate transformation in Equation (3.22) must be found and 

multiplied by the integrand. The derivative of Equation (3.22) is found as:  
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h
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h
h
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The Gauss quadrature for laminated elements is thus stated as: 
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where tk is found from Equation (3.22). It can be clearly seen that the 

piecewise through-the-thickness integration of laminated elements makes 

them computationally expensive and hence, a lot of research has been 

made on how to increase the effectiveness of the integration. In Kumar 

and Palaninathan  [21] different improved integration schemes for the 

piecewise through-the-thickness integration is discussed but none of these 

improved schemes have been implemented for the laminated shell 

elements presented here.  

In principle the element formulation is completely described from the 

preceding sections. However, the resulting element (a so-called purely 

displacement-based element) will suffer heavily from locking, which is 

described and addressed in the following.  

3.6.3 Constitutive Relation  

Stresses are related to strains and hence displacements through a 

constitutive relation which for linear material behavior is Hooke’s general 

law. In index notation this constitutive relation may be expressed 

generally by noting from the outer product rule that two second-order 

tensors can be related through a fourth-order tensor as: 

                                                      klijklij c                                       (3.25) 

where the elastic coefficient tensor (or constitutive matrix in algebraic 

notation), ijklc ,is to be determined. If the material considered is 

heterogenous the elastic coefficient tensor, ijklc , is dependent on the 

position and the elements of the tensor will be functions of the 

coordinates, ix . However, since homogeneity is assumed for all materials 
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under investigation, ijklc , is independent of the position and the elements 

of the tensor are scalars. Consequently, since a fourth order tensor 

consists of 3
4 

=81 components, 81 equations in 81 unknowns must 

generally be solved to determine the relation in (3.26). However, applying 

various symmetry considerations, Timoshenko and Goodier [13] the 

relation in (3.26) can be reduced to an equation of 21 unknowns. 
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            (3.26) 

 

This is the most general form of the so-called constitutive matrix, [C]. By 

assuming isotropic or orthotropic material behavior the number of 

constants in (3.26) can be further reduced.  

In degenerated elements the constitutive relation is used not only to 

describe the material behavior but also for enforcing the Mindlin shell 

assumption of negligible transverse effects. As explained briefly earlier 

one of the Mindlin assumptions states that the mid-plane normal is in-

extensible, i.e. there is no transverse normal strain, i.e. 033  , 

furthermore; it was assumed that the transverse normal stress is zero since 

the shell is thin to moderately thick. However, using the "full" 

constitutive relations would lead to transverse normal stresses due to 
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Poisson effects. This problem can be circumvented by forcing 033  in 

the constitutive relation is demonstrated in the following:  

First, an expression for the transverse normal stress is obtained, 03  , by 

writing out the product of the strain vector and the third row of the 

constitutive matrix in Equation (3.26) as: 

063653531434333232313   ccccccc                           (3.27) 

From Equation (3.27) the transverse normal strain can be isolated, 

yielding an expression for 3 : 

                                               
33

3
3 c

c ii 
                                            (3.28) 

where i=1,2,3,4,5,6. Inserting Equation (3.28) in the constitutive relation 

Equation (3.27) results in the following expression for the coefficients in 

modified constitutive matrix, [C]: 

                                           
33
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c
cc

cc ji
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m
ij                                            (3.29) 

 Where i=1,2,3,4,5,6 and  j=1,2,4,5,6. Using Equation (3.29) on the 

orthotropic constitutive matrix Equation (3.26) yields the following 

matrix: 
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where the coefficients ijc are given as: 
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   1244 Gc              2355 Gc                             1366 Gc   

Similar derivations can be made for the isotropic constitutive relation 

whereby the coefficients in the matrix in Equation (3.30) are given as:  

         22211 1 v
Ecc


                212 1 v
vEc


              
)1(244 v

Ec


               (3.32) 

The coefficients in Equation (3.31) and Equation (3.32) are those used 

when formulating the constitutive relations for the shell elements since 

they contain the Mindlin assumption.  

A further use of the constitutive relations is to correct the transverse shear 

stresses. If the transverse shear stresses are computed using three 

dimensional theory of elasticity, it can be shown that they will vary 

quadratic ally through the thickness. In order to obtain the same strain 

energy for the three dimensional solution and the shell element solution, 

the transverse shear stresses are corrected with the so-called shear 

correction factor, k, which is done by multiplying C55 and C66 with k.  

The shear correction factor is not constant but dependent on geometry, 

the loading situation, the material properties and the boundary conditions 

as stated by Ochoa and Reddy (1992) [ 1]. In the isotropic case the factor 

does not change significantly and it is therefore common practice to use 

the factor obtained for a rectangular plate as done by. Zienkiewicz and 

Taylor  [ 15 ], namely k=0.8. In the case of laminated structures the factor 

changes considerably when one or more of the aforementioned conditions 

are altered and consequently, it is necessary to recalculate the factor 

repeatedly. Several methods have been proposed for determining the 

correct factor. None of these methods have been implemented in the 

element formulation and the discussion will therefore not be extended 

further. Instead of calculating a shear correction factor for each laminated 
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structure considered, it is chosen to use k=0.8 for ordinary laminates and 

k=1.0 for sandwich shells.  

The constitutive relation has now been fully developed but in order to use 

the matrix for determining k it must be transformed to the global 

coordinate system.  

For orthotropic materials the constitutive matrix [C] in Equation (3.30) 

is dependent on orientation and by definition expressed in the principal 

material directions. Consequently, the transformation to the global 

coordinate system must be made from the principal material directions 

and not the lamina coordinate system. However, since both the 

transformation matrix T and the in-plane rotation of the material 

coordinate system are already defined it is convenient to use these 

transformations. To do so the transformation is carried out in one step 

presented blow: 
                                                    
                           ][][][][ TCTC Tmod                                (3.33) 

                      where   ][T is the transformation matrix  given by 

                               
































abab
ba

baabab

ab
ba

00
0000

00022
000100
0000
0000

][

22

22

22

22

T               (3.34) a 

And 

a and b are  direction cosine given by 

                             )cos(a              )sin(b                              (3.34) b 

This elaborates the statement made previously that almost all laminates 

will exhibit anisotropic behavior when loaded.  

Using the constitutive matrix and the strain-displacement matrix 
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developed earlier we may assemble the element stiffness matrix by 

employing the expression [K] = ∫ [B]
T 

[C] [B] dv. For the sake of brevity 

the complete stiffness matrix is not stated. In order to assemble the 

stiffness matrix, which is an integral expression numerical integration 

must perform.  

3.6.4 Mixed Interpolation of Tensorial Components – MITC  
The MITC method is based on a change of strain component 

interpolations instead of a revised integration scheme as for selective 

(shear and bending terms integrated differently) integration. 

Consequently, the MITC approach uses full integration for all strain 

components but a new set of interpolation expressions. The MITC 

method was originally proposed for bilinear elements with a new 

transverse shear interpolation (the MITC4 element formulated by 

Dvorkin and  Bathe  [28] for eliminating shear locking), but has later 

been extended to higher order elements by Bucalem and Bathe [24]. This 

has lead to the MITC n-family of elements including triangular and 

quadrilateral elements with n number of nodes as suggested by  Bucalem 

and Bathe [24], in which new interpolations are used for all strain 

components in order to simultaneously circumvent the problems of shear 

and membrane locking.  

In general the "new" assumed strains (AS) will be expressed from the 

"old" or "directly interpolated" (DI) strains through a new set of 

interpolation functions as:  

                                 ),,(),( ~~ tsrsrN pp

p

ik

DI
ij

ij
k

AS
ij 



                                         (3.35) 

 
 

where Nk
ij 

are the new interpolation functions in r and s corresponding to 

the ij’th strain and the k’ th tying point. Note that the directly interpolated 
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strains in (3.35) constitute those calculated from a standard finite element 

formulation as the derivatives of the displacements. The new 

interpolations must naturally fulfill the relation:  

                                       klll
ij
k

iij
k srNN  ),(                                                    (3.36) 

 
so that the k’th interpolation function assumes the value 1 in the k’th 

tying point and the value 0 in all other tying points. The new 

interpolations will generally be of the same order as the standard 

isoparametric interpolation functions used in the element, i.e. in the case 

of the bilinear element we use linear interpolations for the assumed 

strains.  

The expression in (3.35) is the key assumption of the MITC method. The 

crucial point for the success of the method is the choice of tying points, 

(rp,sp,t), from which the strains are interpolated. The tying points are 

chosen in the reference plane and the t-coordinate thus remains 

independent. It follows from (3.35) that the assumed strains and the 

directly interpolated strains are equal at the tying points. The location of 

the tying points in the natural coordinate system is given by Bathe  and 

Dvorkin and Bathe [28] for most types of  MITC elements. The 

rustication of the tying point coordinates is not given as a continuum 

mechanical explanation but is based on a numerical verification and the 

same approach will be taken here. In the following the derivation of the 

MITC interpolation expressions will be limited to the 4-node bilinear 

element; for this case the tying point are given by Bathe  as in Figure( 
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3.5)  

 

 The tying points, A and C, in Figure 3.5 are used for the interpolation of 

ε˜13 and the points, B and D, are used for ε˜23 and hence, the number of 

tying points, p, "per strain" is 2. The superscript assumed strain "AS" will 

be omitted in the following and it will be understood that the transverse 

shear strains are the new, interpolated strains.  

To derive the interpolation expressions for the MITC4 element (3.35) is 

rewritten for a 4-node element by defining a new set of interpolation 

functions. Using the relation (3.36) a new set of linear interpolation 

functions for the four tying points are written tentatively as:  

)1(
2
113 sN A                    )1(

2
113 sNC                                                              (3.37) a 

)1(
2
123 rNB                    )1(

2
123 rND                                                             (3.37) b 

 
Using the interpolations of (3.35) in the general MITC expression (3.36) 

yields the new assumed strains:  

                                   CA ss ~
13

~
13

~
13 )1(

2
1)1(

2
1                                         (3.38) a 

                                   BD rr ~
23

~
23

~
23 )1(

2
1)1(

2
1                                          (3.38) b 

 
This corresponds to a linear interpolation between the directly 

interpolated strains at points A−C and D−B, respectively. The directly 
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interpolated transverse strains are thus replaced by two assumed strains 

expressed in natural coordinates. To form the strain-displacement matrix 

these local strains must be transformed to global coordinates as described 

in Heinbockel . This is done using the standard tensor transformation:  

                                           ))((~
j

l
i

k
klij egeg                                                     (3.39) 

where ei are the global base vectors. For the special case of plate, most of 

the terms in Equation (3.39) vanish but for the general case all nine 

components contribute to the global strain. The new strain-displacement 

matrix which incorporates the MITC method can be derived in a straight-

forward. 
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CHAPTER FOUR 

Geometrically Non-linear Finite Element Analysis 

4.1 Introduction    

In linear analysis it has been assumed that the geometry of the structure 

remains basically unchanged during the loading process, but the situation 

is different for nonlinear problems and large deformation may occur and 

as a consequence load–deformation curve is nonlinear. Therefore if 

accurate determination of displacements is needed, geometric non-linear 

analysis has to be performed. An important point must be mentioned that 

while linear problems have a unique solution non-linear problems may 

have more than one solution. 

The earliest non-linear finite element analysis can be considered as an 

extension of linear one . 

Two different approaches are adopted in incremental non-linear finite 

element analysis. The first approach is called updated Lagrangian 

approach in which all static and kinematic variables are referred to an 

updated configuration in each load increment. The second approach is 
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called total Lagrangian approach in which all static and kinematic 

variables are referred to the initial configuration.  

Both Green’s strains and geometric strains  are used with 2nd Piola-

Kirhhchoff stresses and engineering stresses respectively. 

 

4.2 The Basic Problem 

The general equilibrium equation for non-linear analysis can be written as   

              0)(Pd)(
T

 


fafσBa                                             (4.1)     

                  where; 

                      = residual force 

                      f = external force vector 

                      a = nodal displacements 

                     P  = internal forces 

B  is defined from the strain definition as 

            Bδε  a                                                                              (4.2) 

and can be  written as: 

             B = )(aBB LO                                                                       (4.3) 

             And the strain 

       Lo                                                                                           (4.4) 

The stress strain relation remain as in linear analysis [2], thus 

          C                                                                                           (4.5) 

4.3      Solution Process     

where the elastic coefficient tensor (or constitutive matrix in algebraic 
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notation), ijklc ,is to be determined. If the material considered is 

heterogenous the elastic coefficient tensor, ijklc , is dependent on the 

position and the elements of the tensor will be functions of the 

coordinates, ix . However, since homogeneity is assumed for all materials 

under investigation, ijklc , is independent of the position and the elements 

of the tensor are scalars. Consequently, since a fourth order tensor 

consists of 3
4 

=81 components, 81 equations in 81 unknowns must 

generally be solved to determine the relation in (3.26). However, applying 

various symmetry considerations Timoshenko and Goodier (1970) [  ] the 

relation in (3.26) can be reduced to an equation in 21 unknowns. 

                                 aKσBσB  


T

TT
dd                          (4.6) 

and using  Equations (4.2) and (4.4) we have 

                                    Bεσ CC   a  

and if Equation(4.3 ) is valid  

                                    B = LB  

Therefore   

                                 aKB 


  dT
L                        (4.7) 

where 

                                  LO

T
dC KKBBK   



                                     (4.8)     



57 
 

  in which OK  represents the usual ,small displacements stiffness matrix, 

i.e. 

                  


dC O
T
OO BBK                                                               (4.9) a 

The matrix  LK  is due to the large displacement and is given by 

                         


dCCC O
T
LL

T
LL

T
OL )( BBBBBBK                   (4.9) b 

 

LK :  is variously known as the initial displacement matrix or large 

displacement matrix. 

The first term of Equation (4.6) can generally be written as 

 

                                   aKB  


 dT
L                                    (4.10) 

where  K  is asymmetric matrix dependent on the stress level. This 

matrix is known as the initial stress matrix or geometric matrix. Thus: 

                         aKaKKK   TLO )(                           (4.11) 

with TK  being the total, tangential stiffness matrix. 

The steps followed in solution process are summarized as follows:  

1-The elastic linear solution is obtained as first approximation oa . 

2- The initial residual  o  is found using Equation (4.1) with an 

appropriate definition of  B and stresses as given by Equation(4.4). 

3- Matrix  O
TK  is established. 

4- Correction is computed as 
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                            OO
T

o  1)(  Ka                                             (4.12) 

and steps 2,3 & 4 are repeated until  i  becomes sufficiently small. 

4.4   The Stress-strain Relations   

The stress- strain relation is the same as that for linear analysis unless 

material non-linearity is considered 

                                           εCσ   

where  εC,σ and :  are as defined previously. 

4.5   Strain – displacement Relations  

For three dimensions non-linear Green's strain-displacement relations are 

written as: 
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with other components obtained by suitable permutation as: 

4.6 Derivation of LB  matrix 

The general strain vector in three dimensions can be defined in terms of the 

infinitesimal and large displacement components 

  Lεoεε                                                     (4.14) 
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The non-linear term of Equation (4.10) can be conveniently rewritten as: 
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in which 
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and θ can be determined in terms of the shape functions iN  and nodal 

parameters  a   as : 

                                      θ Ga                                                       (4.18) 

                  or 

                                 Lε = aAG  

                  and 

                                        LB = AG                                                   (4.19) 

          where 
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Thus G   is matrix defined purely in terms of the coordinates. 

4.7   Derivation of Tangent Stiffness Matrix TK         

Noting that 

                           LO BBB   

We can form matrix K  such that 

       


BDBKKK
T

L0                                               (4.21) 
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To complete the total tangential stiffness matrix it is necessary only to 

determine the initial stress matrix K . Again, by Equation (4.17) we have 

 

 


 dd TTT
L AGσBaK                                             (4.22) 

Once again we can verify that we can write 
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in which  3I   is  3x3 identity matrix. 

Substituting Equation (4.20) into Equation  (4.19) yields 

 

                 


 dT MGGK                                                               (4.24) 

in which  M  is 9x9 matrix of the six 2nd Pilo – Kirchoff stress 

components arranged as in Equation (4.19). 

Finally, 

               KKKK  LOT                                                           (4.25) 

4.8 Geometrically Non-linear Formulation of Shell Element 

A total Lagrangian formulation based on Greens strains with 2nd Piola 

Kirchoff stresses and geometric strains with engineering stresses is 

presented in this section. 

4.8.1 Stresses and strains: 
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For shell elements the stresses and strains are defined in a local 

coordinate system, say x,y,z. At any point axis z is normal to the surface 

ζ=constant, with the two other orthogonal axes x and y tangential to it. 

The Greens strains components and geometric strains components are 

given as follows: 

for Green strains: 
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for geometric strains: 
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Considering the material to be linear elastic, the stresses corresponding to 

these strains are defined by: 

for engineering stresses 
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 for 2nd Piola stresses 
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where  C is the elasticity matrix. 

4.8.2 Strain – Displacement Relationship 

a) Green's strains 

 Green's strains (including nonlinear terms) are given as: 
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Whereu , v  and w are the three components of the vector of displacements 

in the local co-ordinate system. 

Equation (4.28) can be written in another form as follows: 
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                    Or  

                           Lεεε     

                     where 

                           aB ε  

                          A
2
1

Lε                                                              (4.29) b 

 

 ε    are the strains for infinitesimal displacements 

 L   are the strains due to large displacements 

 B  is a matrix containing shape functions derivatives 

 a  is the vector of nodal displacements 

Let:  
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  and 
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where  

 G   is a  matrix containing shape function derivatives. 
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                                   AAA 
2
1εL 2

1                         (4.32)a 

                                       



66 
 

                             aBaGA  LLε   

Where,  

                      GAB L                                                                   (4.32)b 

Also, 

                       aaB   ε  

Then, 

                    LBBB                                                               (4.32)c 

 

 

 

b) Geometric strains 

According to the previous definition of the geometric strains 
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By taking the variation of Equation (4.30 ) we have: 
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                                                                                                        (4.34)a                                                                                                               

  Or  

    δε, H                          (4.31b) 

 

Subistitute equation (4.29b) into equation (4.31a)  

                                 aBBH  *,                                         (4.34)b 

     BHB *       

  and      

      LBBB    

4.8.3 Tangent Stiffness Matrix due to Geometric Strains 

The tangent stiffness matrix  TK  is obtained by differentiating the 

residual force vector    with respect to the displacement vector a . 

Where   is given by: 

                                     fdvB
v

T
   *                                            (4.35) 
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By differentiating equation with respect to  a  ,  TK  is obtained as: 

 

       
        
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Using eq.(4.33)  and eq.(4.34)  gives: 
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(4.35) a 

where 

          dvBHCHBK 
v

TT
                                                           (4.35) b 

                          dvBHCHBBHCHBBHCHBK )( L
TT

L
TT

L
v

L
TT

L     

                                                                                                      (4.35) c 

From Equation (4.31a) and Equation  (4.31b) 

                           





























*

*

*

*

*

*

yz

xz

xy

y

x

TH







                                                    (4.36) 

Using Equation (4.34) , Equation (4.36) and Equation (4.35)  we can 

write: 

 
             



v

*T

v

T
T

KdvGPGdvH
a

B                                               (4.37) 

where: 



69 
 

 K  is the initial stress stiffness matrix 

 *P  is the  matrix of  initial stress given by: 
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                                                             (4.38) 

3I  is 3x3 identity matrix 

By differentiating Equation (    ) and using Equation (   ) and Equation (   

) the matrix  T
*K  is given as: 

   
           *KdvBPBdv
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                                               (4.39) 

where: 

 
*K  is the additional geometric stiffness matrix 

 P  is the additional matrix of initial stress and is given in terms of the 

initial stresses  and strains by: 
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                                                                                                        (4.40a) 

      where 

         )21( xxe    

         and  

    )21( yye                                                                                   (4.40b) 
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So tangent stiffness matrix due to geometric strains is given by: 

                  
*KKKKK LT                                                       (4.41) 

 

4.8.4 Tangent Stiffness Matrix due to Green's Strains  

The tangent matrix due to Green strains is obtained as follows: 

                                  fdB   v
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T                                                (4.42) 
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In which 
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Using eq.(4.43a) and eq.(4.43b)  
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Once again we can write: 
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Substituting eq. into eq. yields: 
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      dvGMGK
T

v
                                                                          (4.44d) 

By substituting Equation (4.44a) and Equation (4.44d) into Equation 

(4.42)   the tangent stiffness matrix due to Greens strains is defined by: 

       KKKK LT                                                                           (4.45) 

The following chapter presents description of the computer program to be 

implemented for analyzing laminated shell structures.  

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

Description of the Computer Program 

5.1     General: 

A computer program named NFEAP (Nonlinear Finite Element Analysis 

Program) written in standard FORARAN 77 is described in this section. 

The program can be used to analyze structures: 

1. Single layer and multilayer  

2. Isotropic and orthotropic 
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3. Linear and nonlinear 

4. Based on Green’s strains or Geometric strains 

Total Lagrangian Formulation is adopted. 

 Mesh generation scheme is developed in the program for cylindrical 

shell, spherical shell and flat plate. Other structures can be analyzed by 

inserting appropriate mesh generation in the program. 

Eight points integration scheme is used also other integration scheme can 

easily be used by modifying the program. 

The programs developed have the facility to use different material types. 

The sign conventions adopted are as follows: 

1- Anti-clockwise moments are positive. 

2- Loads are considered positive when acting in the positive direction 

of the global axes. 

3- Displacements are considered positive when nodes move towards 

positive direction of the global axes. 

The main program flow chart and subroutines are shown in Figure (5.1). 

Appendix I shows the main program code 

Appendix II shows one sample of input file 

Appendix III shows a portion of output data 

Brief descriptions will be presented for the main program and each 

subroutine.  

 

5.2 The Main Program 

The main program, which controls the various tasks of the program, calls 

a number of subroutines and its organizational structure is indicated in 

flow chart presented in Fig. 5.1. 
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CALL LOD 

CALL INPUT 

IINCS=1 

CALL INTIAL 

START 
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CALL INCLOD 

IITER=1 

CALL GREDUC 

CALL BKSBSTN 

CALL REFORC 

CALL CONVERGE 

CALL ASSEMBLE 

2 

3 

1 

3 

STOP 

IITER=IITER+1 If Solution 
Converge 

CALL RESULT 

1 

IF IITER=NITER 

CALL STRESS 

2 

NO 

YES 

NO 

YES 
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Figure (5.1)    Main Program Flow Chart 

 

5.3 Subroutine INPUT 

The subroutine INPUT reads the necessary data that defines the structure 

geometry, properties of the elements, boundary conditions and elemental 

and nodal load. It also generates the element nodal connections and 

generates the co-ordinates of points.The subroutine INPUT reads data 

from the file called “INDAT”. The reading is free format and separated 

by commas (,). The user is free to adopt any consistent system of units. 

The details of writing the data in file “INDAT” are as follows: 

5.3.1   Control and geometric data is presented as described in Table 5.1 

                  Table 5.1           CONTROL & GEOMETRIC DATA 

Variable Description 

NBOUN Number of boundary conditions 

NELAC Number of elements along curve 

NELAH Number of elements along straight line 

NINCS Number  of load increments 

ROUT Outer radius 

IINCS=IINCS+1 

END 

Any More 
Increment 
Load 

NO 

YES 
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RIN Inner radius 

THICK Thickness of element 

NMATS Number of material types 

NNODE Number of nodes per element [16] 

NDOFN Number of degrees of freedom per node [3] 

NPROP Number of properties [5] 

HLENG Length of straight line 

ALPHA1 
Left angle in degrees calculated from horizontal to 
the beginning of curve 

ALPHA1 Right angle in degrees calculated from horizontal 
to the end of the 

NGAUS Number of Gauss points 

NDIME Number of dimensions 

 

 

5.3.2 Material property data is prepared as described in Table 5.2 

Table 5.2    MATERIAL PROPERTIES DATA 

Variable Description 

JMATS Property set number (1,…,number of material types) 

PROPS(JMATS,1) E , Young’s modulus 

PROPS(JMATS,2)  , Poison’s ratio 

PROPS(JMATS,3)   , Density of the element material 

PROPS(JMATS,4) W , Uniform vertical load per unit area 

PROPS(JMATS,5) Pn , Uniform surface pressure per unit area 
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5.3.3 Co-ordinates data is prepared as described in Table 5.3 

Table 5.3 CO-ORDINATES DATA 

Only the co-ordinates of point (1) must be input 

Variable Description 

COORD(1,1) x-co-ordinate of point (1) 

COORD(1,2) y-co-ordinate of point (1) 

COORD(1,3) z-co-ordinate of point (1) 

 

 

 

 

5.3.4 Boundary restrained data is prepared as described in Table 5.4 

            Table 5.4 BOUNDARY CONDITIONS DATA 

For each point which has at least one degree of freedom with a specified 

displacement, a boundary condition must be input . The convention used 

for boundary restraints is  : 

ICODE,VALUE  =   0,0     no restraints 

( 1, value if restrained (value =0) or displacement specified     (value = 

value of displacement). 

Variable Description 
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NODFX Point number 

ICODE(1),VALUE(1) For displacement at x-direction(u) 

ICODE(2),VALUE(2) For displacement at y-direction(v) 

ICODE(3),VALUE(3) For displacement at z-direction(z) 

 

5.3.5 Element properties data is prepared as described in Table 5.5 

Table 5.5    ELEMENT PROPERT IES DATA 

The element data contains the element number and material set number 

Variable Description 

JELEMENT Element number 

MATNO(JELEM) Material type number 

 

 

5.3. 6 Point load is input as described in Table 5.6 

Table 5.6     POINT LOAD DATA 

For each point that has non-zero point load, a load record must be input 

Variable Description 

IPOIN Point number 

PLOAD(IPOIN,1) Force in x-direction 

PLOAD(IPOIN,2) Force in y-direction 

PLOAD(IPOIN,3) Force in z-direction 
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5.4 Subroutine INITIAL 

This subroutine sets initial values for loads and displacements. 

5.5 Subroutine LOD: 

This subroutine calculates the equivalent joint load due to self-weight, 

vertical load and surface load. The summation of these loads with the 

addition of point loads are calculated and stored in RLOAD (ISVAB), 

(ISVAB=1,…, total number of structure variables ). 

5.6 Subroutine INCLOD 

This subroutine reads the factors of load increments, maximum number 

of iteration and tolerance. 

The number of increments and the load factor values are free for the 

user’s choice but the summation of factors must be equal to 1. 

The prescribed values must be multiplied by the factor at each load 

increment so as to be compatible with load value. 

5.7 Subroutine   ASSEMBLE 

The subroutine LSTIFF calculates the element stiffness matrix and stores 

it in ESTIF Figure (5.2). The subroutine ASSEMBLE calls this 

subroutine and sets the overall stiffness matrix in a column vector 

ASTIFF (MSTIF), (MSTIF=1,…, maximum value depends on the band 

width ). 

5.8 Subroutine GREDUC and BKSBSTN   
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According to the Gauss elimination the subroutine GREDUC reduces the 

equations and the solution is completed by the subroutine BKSBSTN. 

The result of this solution is the displacements given by the vector 

TDISP (ISVAB). In addition reaction forces are also obtained. 

5.9   Subroutine REFORC 

This subroutine calculates the internal force given by the expression  




 dvTB     for each element and stores it in ELOAD (IELEM, IEVAB), 

(IELEM=1… Number of element variables). 

5.10 Subroutine CONVERGES: 

This subroutine checks the convergence of the solution by checking the 

ratio of residual force to the external force, this ratio must be less than the 

tolerance. The tolerance takes a value between (0.1 - 1%). 

5.11 Subroutine RESULTS & STRES 

The subroutine RESULT prints out the displacements in (outdat2) file 

and subroutine STRES compute and print stresses. 

5.12 Subroutine DMATX: 

This subroutine calculates the constitutive equation elements. In case of 

orthotropic material we need to a transformation from material 

coordinates system to problem coordinate system. 
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The next chapter presents results of numerical examples that have been 

solved using this program together with comparison with known results. 

 

Figure (5.2) Schematic representation of the determination of the stiffness 

matrix 

 

 

 
 

CHAPTER SIX 
 

APPLICATION TO NUMERICAL EXAMPLES AND 
DISCUSSION OF RESULTS 

 
The  numerical examples discussed in this study comprise seven different 

shell structures namely: simply supported rectangular plate,orthotropic 

square plate,simply supported square plate under sinusoidal load, barrel 

vault, pinched cylinder, laminated cylindrical shell and doubly curved 

Evaluation of shape 
function and the 
derivatives 

Fiber coordinate 
System is set up 

Evaluation of 
element thickness 

Determination of the  
Jacobian matrix 

Correction of t if 
laminated elements 

Determination and 
transformation of C 

Lamina coordinate 
system set up 

Evaluation of K 
K=K+Kl 

Determination  
Gauss points 

GPn>nGPts Layer>nlayer 

Calculation of B 

yes 

No 

No 
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shell. For each example the basic structural data is displayed with 

sketches. Analysis results are compared with published results is given in 

tabulated and graphical form. 

 

6.1 Application to Numerical Examples 

6.1.1 Convergence of displacement for simply supported plate: 

The simply supported square plate shown in Figure (6.2) is loaded 

transversely with uniform pressure. Problem data is a=b=400 cm, 

E=2x103 KN/cm, thickness=12 cm, q=5.88KN/m2. 

A quarter of the plate is modeled with 1, 4, 8 and 16 eight node 

degenerated elements and vertical displacement of the plate is computed 

to assess the convergence of the finite element model by increasing the no 

of elements. Rapid convergence was observed as shown in Figure (6.1). 

 

 
Figure (6.1) Convergence of Vertical Displacement 
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6.1.2  Orthotropic square plate under uniform load: 
 

Here we consider a simply supported, orthotropic, square plate under 

uniform transverse load qo is shown in Figure (6.2). The geometry and 

material parameters used here are 

 a=b=12 in., h=0.138 in., E1=3x106 psi, E2=1.28x106   psi 

G12=G13=G23=0.37x106     psi, v12=0.25 

A quarter of the plate with simply supported boundary conditions and 

symmetry is modeled with 4x4 eight node elements.  The present results 

shown in Figure (6.3) are in good agreement with experimental results of 

Zaghloul and Kennedy [26 ]. 

Table (6.1) presents numerical results obtained by using Green’s and 

Geometric strain. The two results are approximately the same. 

Tables (6.2) &  (6.3) present a comparison of moments (Mx) at the centre 

of the plate and twisting moments (Mxy) at the corner of the plate. No 

significant difference is found between the two formulations.  

Figure (6.4) shows a plot for the data presented in Table (6.2). It is 

observed that the difference percent in stresses is greater than that of 

displacements. The reason is that displacements are directly computed at 

Gauss points of integration and interpolated or extrapolated to the 

boundary nodes of the elements, but stresses are derived from 

displacements. 
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Figure (6.2)   Simply square plate under uniform load   

 

 
             Figure (6.3) Transverse displacement vs. pressure load 
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                    Table (6.1)   Comparison of displacements 
 

Inc. 

No. 

Pressure (psi) Green disp. (in.) Geom. Disp. (in.) Difference (%) 

1 0.2 0.04301 0.04301 
0 

2 0.4 0.08034 0.08060 .3 

3 0.6 0.11230 0.11318 .8 

4 0.8 0.14003 0.14175 
1.2 

5 1.0 0.16458 0.16717 1.6 

6 1.2 0.18671 0.19007 1.8 

7 1.4 0.20688 0.21094 
2.0 

8 1.6 0.22549 0.23016 
2.1 

9 1.8 0.24282 0.24800 2.1 

10 2.0 0.25902 0.26467 
2.2 

 

Table (6.2) Comparison of moments (103 × Mx) at the centre of the plate 

 

Incr. 

No. 

Pressure(psi)  Green 

moments 

    lb-in/in 

Geom. 

Moments 

lb- in/in 

Difference 

percent (%) 

1 0.1 .218 .218 0.0 

2 0.2 .401 .399 0.5 

3 0.3 .551 .545 1.1 

4 0.4 .676 .665 1.6 

5 0.5 .782 .765 2.2 

6 0.6 .874 .852 2.5 

7 0.7 .954 .928 2.7 

8 0.8 1.025 .995 2.9 

9 0.9 1.088 1.055 3.0 
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10 1.0 1.145 1.110 3.1 

 

Table (6.3) Comparison of moments (103 × MXY) at the centre of the plate 

Incr. 

No. 

Pressure(psi)  Green 

moments 

    lb-in/in 

Geom. 

Moments 

lb- in/in 

Difference 

percent (%) 

1 0.1 .058 .058 0.0 

2 0.2 .112 .112 0.0 

3 0.3 .163 .163 0.0 

4 0.4 .211 .210 0.5 

5 0.5 .258 .256 0.8 

6 0.6 .302 .300 0.7 

7 0.7 .346 .343 0.9 

8 0.8 .388 .385 0.8 

9 0.9 .430 .426 9.3 

10 1.0 .470 .466 0.9 
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Figure (6.4) Load vs. Moments at the centre of the plate 

 

6.1.3 Simply supported square laminated plate under sinusoidal load: 

The simply supported square plate shown in Figure (6.2) is subjected to 

sinusoidal load. The lamination scheme is 0/90/90/0 degrees. 

Table (6.2) contains the nondimensionalized deflections and stresses for 

different side –to-thickness ratios. (E1=25E 2 ,v12=0.25 , G12=G13=0.5E2, 

G23=0.2E2 , K=5/6) 

The following nondimensionalizations are used to present results in 

graphical and tabular form 
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     Table (6.4) Deflections and Stresses vs. side-to –thickness ratio 

 

                    a/h       Load         ݓഥ × 10ଶ           ߪത௫௫                     ߪത௬௬                     ߪത௫௫௬   

 

Ref. [8]         100      SSL          0.4337          .0.5382                 0.2704                0.0213 

Present                                      0.4338           0.5520                 0.2775                0.0219     

 

 Figure (6.5) shows a plotting for the deflections against modular ratios. It 

observed that the proposed mathematical model correlate very well with 

the analytical solution. In this model (y) represent the deflection and (x) 

represent modular ratio.  

  
Figure (6.5) Modular ratios vs. central deflections 
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Figure (6.6) Vertical deflections vs. side-to-thickness ratio 

 
6.1.4  Barrel vault: 
 

This is a well known benchmark problem known as Scordelies-Lo roof. A 

solution to this problem was first discussed by Cantin and Clough [34] 

(who used ν=0.3). The problem consists of a cylinder roof with rigid 

supports at edges x = ± a/2 while edges at y = ± b/2 are free. The shell is 

assumed to deform under its own weight (i.e.,  q acts vertically down, not 

perpendicular to the surface of the shell). The geometric and material data 

of the problem is (see Figure 6.7): 

α= 40˚ (0.698 radians), R=300 in., a=600 in., h=3 in., E=3x106 psi. ν=0.0, 

q=0.625psi. The boundary conditions on the computational domain are  

At x=0:  v=β=0,   At x=a/2: u=w=α=0, At y=0: u= β=0, At y=b/2: Free. 

A mesh of 4x4 eight node elements is used in a quadrant of the shell. The 

problem is linearly analyzed. The vertical displacement at the middle of 

the free edge is computed. Figure (6.8) and (6.9) shows the variation of 

the vertical deflections at the middle of the free edge and horizontal 
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displacement at rigid support respectively, while Figure (6.10) shows the 

convergence of the vertical displacement.  

The results obtained are in close agreement with those reported by Simo, 

Fox and Rifai [37]. 

           

 
            Figure (6.7) cylindrical shell roof under its own weight 
 
The barrel vault problem is also analyzed when the shell is laminated of a 

composite material. The data of the problem is α=40   R=300 in., a=600 

in. and  

E1=25E2,   E2=1, G12=G13=0.5E2,   G23=0.2E2, ν12=0.25, 

A quadrant of the panel is modeled with 4x4 eight node mesh. The 

following dimensionless quantities are presented in Table (6. 1). 
            

                                     4

3
1

B qR
hEw10w   

Table (6.3) contains the nondimensionalized deflection for two-layer  and 

ten –layer antisymmetric cross-ply (0/90/0/90/……)laminated shells for 

different radius- to- thickness ratio, s=R/h. 

Results obtained are in good agreement with those obtained by J. N. 

Reddy [ 6 ].  
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   Figure( 6.8) Vertical deflection at centre of  free edge 
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                                          Figure (6.9) Horizontal displacement  
 
 

 
                            Figure ( 6.10) Convergence of vertical deflection 
                  (exact solution reported by Simo.Fox and Rifai [ 34 ] as w=-3.6288 in. ) 
 
Table (6.5) Maximum transverse deflections of cross-ply laminated cylin  

derical shell roof under its own weight 
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6.1.5  Pinched cylinder: 
 

This is another well-known benchmark problem. The circular cylinder 

with rigid end diaphram is subjected to a point load at the centre on 

opposite sides of the cylinder , as shown in Figure (6.11). The geometric 

and material data of the problem is  

α=π/2 rad.  R=300 in.   a=600 in.     h=3 in.   E=3×106 psi  ν=0.3 

The boundary conditions used are: 

At x=0:  u=β=0 , at x=a/2: v=α=w=0, at y=0,b/2 : v=α=0 

One octant of the cylinder was modelled with 8×8 eight node and linearly 

analysed using NFEAP and the vertical displacement computed is 

1.7191×10-5 in. The displacements are presented in Table(6.6). The 

analytical solution of Flugge [17] is -1.8248×x10-5 in, Cho and Roh [36] 

reported the value of -1.8541×10-5 in. It is clear that solution can be 

improved by increasing number of elements in the mesh considered.  

 
Table (6.6) Displacements at point (A) of the laminated pinched circular 
cylinder problem. 
   

 
   Layers          S=R/h                Ref. [17]               Present        Diff.(%) 
                   
       2                 100                    1.2450              1.2893          3.4% 

 
       2                  50                      2.3756             2.0713          14% 

 
       2                 20                     6.0742               4.4759           26% 
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Figure (6.11) Pinched cylindrical shell 
 
 
 
6- Laminated cylindrical shell: 
 

This example involves the laminated cylindrical shell shown in Figure 

(6.12). The geometry appears in various articles but the current example 

was adapted from To and Liu [27] who developed an enhanced full layer 

wise 3-node triangular element for geometrically non-linear analysis. 

The cylindrical shell is hinged at straight sides and free at the two curved 

ends. The entire geometry is modeled with side length L=508 mm, radius 

of curvature R=2540 mm and angle 2θ=0.2 radians. The lay-up is an 

antisymmetric +45/-45 (measured from the global x-axis) laminate of 

equal thickness layers and a total thickness of h=12.4 mm. The material 

properties are stated in the material coordinate system (1-axis aligned 

with the global x-axis) as E1=3.2993×106 MPa, E2=E3=1.0998×106  MPa, 

G12=G13=4.4128×105 MPa, and ν=0.25. One quadrant of the panel is 

modeled with 4x4 eight node elements and nonlinearly analyzed using 

NFEAP. The results from the current element formulation are presented 



95 
 

in Figure (6.13) and compared to the results obtained with a 8x8 mesh of 

triangular elements by To and Liu [27]. Good correlation between data 

obtained was observed. Table (6.7) shows the vertical displacements of 

the apex of the cylindrical panel. The two formulations yield 

approximately the same results.  

Table (6.8) compares the moments (Mx) at the centre of the shell while 

Table (6.8) compares the resultant forces (Nx) at the centre of the 

supported side of the shell. The results obtained using the two 

formulations are approximately the same. 

 

 
                                
                            Figure (6.12) Cylindrical laminated shells 
 
 
                Table (6.7) Vertical displacement (mm)  vs. load  (kN) 
 

load 
factor Ref.[27 ] Green strains 

Geometric 
strains 

0 0 0 0 

0.2 1 0.9725 0.9723 

0.4 2 2.0614 2.0604 

0.6 3.5 3.3156 3.3134 

h=12.4 mm  
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Figure(6.13) Results of non-linear analysis of cylinderical laminated shell 

 
 

 

Table (6.8) Comparison of moments (103  × MX) at the centre of the shell 
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percent (%) 
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2 0.10 0.079 0.079 0.00 
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4 0.20 0.177 0.176 0.60 

5 0.25 0.236 0.235 0.40 

6 0.30 0.305 0.303 0.70 

7 0.35 0.387 0.385 0.50 

8 0.40 0.490 0.485 1.02 

9 0.45 0.628 0.617 1.80 

10 0.50 0.844 0.816 3.30 

 
 
 
 
 
 

Table (6.9) Comparison of resultant forces (103 x Nx) at the centre of the 

supported(hinged)  side shell 
 
 
 
 

Incr. 

No. 

Load KN  Green 

moments 

    N-m/m 

Geom. 

Moments 

N-m/m 

Difference 

percent (%) 

1 .05 .046 .046 0 

2 .10 .091 .091 0 

3 .15 .136 .136 0 

4 .2 .180 .180 0 

5 .25 .223 .224 .4 

6 .30 .266 .268 .8 

7 .35 .309 .311 .6 

8 .40 .351 .354 .9 

9 .45 .393 .398 1.3 

10 .50 .437 .445 1.8 
 

 
 

6.1.7 Doubly curved shell panel: 
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Next, we consider a spherical shell panel (R1=R2=R) under central point 

load. The shell panel is simply supported at all edges as shown in   Figure 

(6.14). The geometric and material parameters used are: 

R=96 in.  a=b=32 in.  h=0.1 in. 

E1=25E2, E2=1E6 psi, G12=G13=0.5E2, G23=0.2E2, v12=0.25 

The point load is taken to be   F0=100 lbs. The numerical results obtained 

using a mesh of 4x4 eight node elements in a quadrant of the shell are 

presented in Table(6.10), Good agreement between results obtained and 

that published in Ref.[33] can be observed. 

 
 
 

Figure (6.14) simply supported spherical shell panel under central point 

load 

Table (6.10) Maximum radial deflection (-w×10 in.) of a simply 

supported spherical shell panel under central point load. 

 

 
  Laminate                  Present                      Ref. [33]                  Diff.(%)   
             
   Orthotropic              0.9596                        1.0340                    7.1%     
 
     0/90                       0.9553                        1.0217                     6.5% 
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     45/-45                    0.5504                        0.6051                     9.0%     
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

6.2   DICUSSION OF RESULTS 
 

In this research computer program coded in FORTRAN 77 is developed 

for the analysis of geometrically nonlinear finite element laminated shell 

structures. Eight nodes degenerated finite element is used as a basic 

element for the finite element formulation. The formulation adopts Total 

Lagrangian formulation using both Green’s strain and Geometric strain. 

The nonlinear equilibrium equations are solved incrementally and 

iteratively adopting incremental process coupled with Newton-Raphson 

Method. 

In order to assess the performance of the formulation, seven laminated 

shell structures are analyzed using the developed formulation including 

cylindrical shell, spherical shells and flat plates. Here in after is the 

discussion of obtained results: 

In Example (6.1.1) a  simply supported square plate under uniform 

distributed load was analyzed. Rapid convergence of central deflection 

was observed even with coarse mesh. Here a question can be asked 

stating like this (what is the optimum number of finite elements are 

required for proper analysis?). More elements may lead to inaccurate 

results and expensive solution.  
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In example (6.1.2) an orthotropic plate subjected tom uniformly 

distributed load and simply supported is linearly and nonlinearly was 

analyzed. Vertical displacements obtained using Green’s strain and 

Geometric strain   is approximately the same and compare very well with 

results of Ref. [9]. The same data are presented in Table (6.5) confirm the 

above conclusion. 

In Example (6.1.3), a square laminated plate (0/90/90/0) is simply 

supported under sinusoidal load analyzed for deflections and stresses. The 

results obtained are in good agreement when compared with the 

analytical solution Ref. [7].  

The mathematical model proposed for predicting deflections in terms of 

modulus ratios E1/E2 perform very well as shown in the graph in Figure 

(6.5) and Table (6.4). 

Figure (6.6) conclude that deflections converge to FSDT (First Order 

Shear Deformation Theory) when side–to–thickness ratio reaches (100). 

CPT (Classical Plate Theory) is not affected by thickness. 

In Example (6.1.4), barrel vault under its own weight is linearly 

analyzed. This is a well known bench mark problem used by many 

authors for comparison. The vertical displacement of the centre of the 

free side is plotted for convergence. It observed that there is a rapid 

convergence even with coarse mesh see Figure (6.8).  Figures (6.5) and 

(6.5) show the variation of vertical and horizontal displacements with 

respect to the central angle. Good agreement was observed with data 

presented in Ref. [34]. 

The same barrel analyzed as laminated shell structures. Table (6.6) 

presents the displacements obtained and the difference between reference 

values and present values. Small differences are found’. 

In Example (6.1.5) pinched cylindrical shell shown in Figure (7.7) is 

linearly analyzed. This is another well-known benchmark problem. The 

circular cylinder with rigid end diaphram is subjected to a point load at 
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the centre on opposite sides of the cylinder , as shown in Figure 6.5. The 

displacent at point (A) is evaluated and compared with that found in 

ref.[6]. Some large differences was observed. It need to invesigate the 

reasons for this large differences. 

In Example (6.1.6) a hinged cylinderical two layer  shell  is analysed 

nonlinearly. 

The central displacents obtained using Green’s strain and Geometric 

strain are tabulated in Table (6,.8 ) for comparisons. Both results are in 

good agreement with results of Ref.[8]. To obtain a full path for this 

snap-through problem the solution method should be modified by using 

Arc-Length method in order to pass the limit points. 

In the last Example (6.1.7)a spherical shell subjected to concentrated 

load. Orthotropic, angle ply and cross ply scheme are formed. The 

displacement under the load  is evaluted . Good agreement between 

results obtained and that published in Ref. [21] can be observed. 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 
 

7.1 Conclusions: 
 
In this research computer program coded in FORTRAN 77 is developed 

for the analysis of geometrically nonlinear finite element laminated shell 

structures. Eight nodes degenerated finite element is used as a basic 

element for the finite element formulation. The formulation adopts Total 

Lagrangian formulation using both Green’s strain and Geometric strain. 

The nonlinear equilibrium equations are solved incrementally and 

iteratively adopting incremental process coupled with Newton-Raphson 

Method. The results obtained from analysis of different structure 

configuration are compared with known published results and hence the  

following conclusions are drawn: 

1. The degenerated eight node shell finite element shows good 

performance when used to analyze laminated shell structures. This 

is confirmed when comparing results obtained with analytical 

known solutions. 

2. Results obtained using Green’s strain are approximately the same 

as that obtained when using Geometric strain for both curved shells 

and flat shells (plates) 

3. The proposed mathematical model for predicting deflections in 

terms of modular ratios compare very well with finite element 

solutions 

4.  No shear locking is observed when using reduced  integration with 

eight Gauss point 
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5. Displacement and stresses obtained for plates are more accurate  

than that of shell , this may be due to the transformation of the 

constitutive equations , stresses and strains 

6. Percent difference for displacements are less than that for stresses 

for the same increment, the reason is that displacements are 

directly computed at Gauss points but stresses are derived from 

displacement , hence approximation is increased. 
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7.2 Recommendations for further studies: 
 
The following recommendations may be considered for future studies: 

1. The modification of the program to include material nonlinearity. 
2. Extending the program to solve dynamic practical problems. 
3. Incorporate Arc-Length Method to obtain full displacement path 

by passing limit points encountered during using Newton Raphson 
Method in solving non-linear equations. 

4. Develop smart interface for NFEAP using Visual Basic 
5. More cases can be formulated by altering loads, boundary 

conditions and mesh type. 
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