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Abstract  

 

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the 

central nervous system, which can be diagnosed by magnetic resonace imaging 

(MRI) by evidence of multiple patches wight of scar tissue in different parts of the 

central nervous system on flair and T2 waightet images.This study is an analytical 

study, which conducted at Antalia hospital in a period from September 2016 to 

December  2016 with sample of 50 MR brain images for patient having multiple 

sclerosis and 50 MR brain images for patient having small vascular disease. the 

aim of this study was to characterize MS plaques  in MR images using Texture  

analysis which facilitate patteren recognition that might not visible to human eye.  

The results reveal that the MS areas were very different from the rest of the tissues 

on FLAIR images with accuracy of 91.2%  and on  T2 images with classification 

accuracy of 89.5 %, as well classifiction of MS plaques and SVD  were very 

seperable, with classifiction accuracy of 100% (between both of them) on FLAIR 

images. 
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 المستخلص

  

 ٌوكي الوشكضي العصثً الجِاص ٌصٍة الوضهٌح الزاذٍح الوٌاعح الرِاب هشض ُْ  الورعذد فً الذهاغ الرصلة

تٍضاء  هرعذدج كل  تقعّالزي ٌظِش فٍَ على ش الوغٌاطٍسًتالشًٍي الرصٌْش طشٌق عي الرشخٍص ٌكْى أى

فً الصْس الوأخْرج على الضهي الثاًً  ّ كزلك تعذ  الوشكضي العصثً الجِاص هي هخرلفح أجضاء اللْى فً

 سثروثش هي الفرشج فً اًطالٍا هسرشفى فً أجشٌد ّقذ ذحلٍلٍح دساسح ًُ الذساسح ُزٍ .ذٍُْي اشاسج السْائل

 هصاتٍي  للوشضى الوغٌاطٍسً تالشًٍي للذهاغ سجصْ 01 هي ذرألف عٌٍح فً 6102 دٌسوثش إلى 6102

 هي كاى الِذف . الوصاتٍي توشض الأّعٍح الذهٌْح الصغٍشج للوشضى صْسج 01الورعذد ّ كزلك  تالرصلة

ذْصٍف الرصلة الورعذد فً الذهاغ فً صْس الشًٍي الوغٌطٍسً تاسرخذام ذحلٍل الٌسٍجً  , ُْ الذساسح ُزٍ

 ّكاًد الٌرائج كالاذً: أى .ٌوكي سؤٌرِا تالعٍي الوجشدج ّ اى كاى لا لوشضا ذْصٍف ذوكي هي الرً للصْس

الضهي الثاًً تعذ  صْس الطثٍعٍح فً الوخ فً  الأًسجح تقٍح عي جذا هخرلفح كاًد الورعذد الرصلة هٌاطق

ذصٌٍف  الوْصًّح على الضهي الثاًً تذقح الصْس ّعلى٪ 90.6 ذصٌٍف ذساّي ذٍُْي اشاسج السْائل تذقح

الورعذد ّأهشض الشعٍشاخ الذهٌَْ  العصثً الرصلة لٌْحاخ ّهقذسج علً الرصٌٍف تٍي٪. 59.0ذساّي 

 الضهي الثاًً تعذ ذٍُْي اشاسج السْائل. صْس على هٌِوا كل تٍي٪ 011 ذصٌٍف ذساّي الذقٍقح تذقح
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Chapter One 

Introduction 

1.1. Introduction 

Magnetic Resonance Imaging (MRI) had been used in diagnose of the central 

nervous system diseases such as tumors , abcesses and inflammatory diseases . it 

also give high resolution and good image contrast of the CNS. (Mark, 2003) 

One of the diseases that affect CNS is the Multiple sclerosis (MS) which is a 

chronic autoimmune inflammatory disease of the central nervous system featured 

by the onset of multifocal white matter inflammatory foci resulting in irreversible 

parenchymal damage. (Alastair, 2002)  

 MRI helps in the diagnosis of (MS) which requires evidence of multiple patches 

of scar tissue in different parts of the central nervous system and evidence of at 

least two separate attacks of the disease that detected by the Radiologist on both T2 

and FLAIR images . it also can be evaluated using  Texture analysis mothods 

which enabling disease characterization and quantification of disease distribution, 

these techniques may provide information that is not visible to human eye. 

(Alastair, 2002) 

The aim of this theises is to characterizeof MS in MR images using Texture  

analysis features .which has been used in similar studies like in the study of  

Michoux (2015)   on it they used Texture Analysis methods on T2-Weighted MR 

Images to Assess Acute Inflammation in Brain MS Lesions. 
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1.2. Problem of the study: 

Generally in radiology the pathology or any abnormality will be diagnosed by the 

radiologist as abnormal area depending on visual perception which is subjective 

and affected by many factors .this situation lead mostly some times to miss 

diagnosis also MS has a lot of difrential diagnosis with other diseases therefore 

texture analysis can provide second opinion for the radiologist to diagnose brain 

pathologies with some confident as well as it will draw his attention to the area of 

interest . 

1.3. Objectives: 

  General objective: 

    The general objective of this study is to is to characterizethe MS in MR images  

using Texture  analysis in order to reduce the miss detection rate.  

 Specific objective: 

 To extract texture feature from MR images using first order statistics.  

 To classify the extracted feature into four classes including MS plaques 

using K-means through Euclidian distance.  

 To generate a classification map from the classified features. 

 To apply linear discriminate analysis to generate model for linear 

classification on FLAIR and T2 Imaging .  

 To calculate the sensitivity, specificity and accuracy . 

 To use to discriminate analysis in difrentiation btween MS and other disease 

apear like it on the MR image (SVD) .   
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1.4. Significant of the study: 

This study will highlight the application of image analysis using image processing 

technique in characterizing brain pathologies on MR images , and hence it will 

facilitate quantitative approach in brain defect. 

1.5. Hypothesis of the study: 

The hypothesis is that by examining the nature of gray-level transitions in medical 

images, we can extract a subset of textural features, that will best characterize the 

pathology or disease process of interest (eg: MS). 

1.6. Overview of the study 

This study will falls into five chapters. Chapter one is an introduction as well as 

statement of the problem and study objective and significance of the study.  While 

Chapter two will include literature review ,and anatomical background and  

previous studies. Chapter three deals with the methodology, where it provides an 

outline of material and methods used to acquire the data in this study as well as the 

method of analysis approach. While the results were present in chapter four, and 

finally Chapter five include discussion of the results, conclusion and 

recommendation followed by references and appendices. 
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Chapter Two 

Literature Review  

2.1 Anatomy: 

The CNS has two main divisions:  

The brain, which occupies the cavity of the cranium. 

The solid spinal cord, which extends inferiorly from the brain and is protected by 

the bony vertebral column. The solid spinal cord terminates at the lower border of 

first lumber vertebra, with a tapered area called the conus medullaris Nerve root 

extensions of the spinal cord continue down to the first coccyx segment. The 

subarachnoid space continues down to the second segment of the sacrum. 

(Bontrager, 2014) 

2.1.1Neuron: 

Neurons, or nerve cells, are the specialized cells of the nervous system that conduct 

electrical impulses. Each neuron is composed of an axon, a cell body, and one or 

more dendrites. 

Dendrites are processes that conduct impulses toward the neuron cell body. An 

axon is a process that leads away from the cell body. The dendrites and cell bodies 

make up the gray matter of the brain and spinal cord, and the large myelinated 

axons make up the white matter. (Bontrager, 2014) 
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Fig (2-1): the Neuron  

 

2.1.2Brain and Spinal Cord Coverings—Meninges 

Both the brain and the spinal cord are enclosed by three protective coverings or 

membranes termed meninges. Starting externally, these are : 

1)Dura mater The outermost membrane is the dura mater, which means ―hard‖ or 

―tough mother.‖ It's  strong, fibrous brain covering. 

2)Pia mater The innermost of these membranes is the pia mater, literally meaning 

―tender mother.‖ This membrane is very thin and highly vascular and lies next to 

the brain and spinal cord. It encloses the entire surface of the brain, dipping into 

each of the fissures and sulci. 

3)Arachnoid Between the pia mater and the dura mater is a delicate avascular 

membrane called the arachnoid mater. (Bontrager, 2014) 

 

 

Fig (2-2): the Meninges (Bontrager 2014) 

2.1.3Three Divisions of Brain 

The brain can be divided into three general areas: (1) forebrain, (2) midbrain, and 

(3) hindbrain. These three divisions of the brain are divided further into specific 

areas and structures. (Bontrager, 2014) 
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Fig (2-3): shown the three divisions of the brain (Bontrager, 2014) 

2.1.3.1. Forebrain: 

It consists of three parts the first part of the forebrain is the large cerebrum, the 

second part is the thalamus and the third and final division of the forebrain is the 

hypothalamus. (Bontrager, 2014) 

2.1.3.1.1 Cerebrum: 

 The relative sizes of various structures, including the five lobes of the cerebrum. 

The surface layer of the entire cerebrum, about 2 to 4 mm in thickness, directly 

under the bony skull cap is called the cerebral cortex.  The total cerebrum occupies 

most of the cranial cavity. (Bontrager, 2014) 

Five Lobes of Each Cerebral Hemisphere Each side of the cerebrum is termed a 

cerebral hemisphere and is divided into five lobes. The four lobes lie beneath the 

cranial bones of the same name. The frontal lobe lies under the frontal bone, with 

the parietal lobe under the parietal bone. Similarly, the occipital lobe and the 

temporal lobe lie under their respective cranial bones. The fifth lobe, termed the 

insula, or central lobe, is more centrally located. (Bontrager, 2014) 

 



7 
 

 

 

Cerebral Hemispheres; 

The cerebrum is partially separated by a deep longitudinal fissure in the mid-

sagittal plane. This fissure divides the cerebrum into right and left cerebral 

hemispheres. Parts of the frontal, parietal, and occipital lobes . 

The surface of each cerebral hemisphere is marked by numerous grooves and 

convolutions, which are formed during the rapid embryonic growth of this portion 

of the brain. Each convolution or raised area is termed a gyrus.  A sulcus is a 

shallow groove, and the central sulcus, which divides the frontal and parietal lobes 

of the cerebrum, is a landmark used to identify specific sensory areas of the cortex. 

(Bontrager, 2014) 

A deeper groove is called a fissure, such as the deep longitudinal fissure that 

separates the two hemispheres.  

The corpus callosum, located deep within the longitudinal fissure and not visible 

on this drawing, consists of an arched mass of transverse fibers (white matter) 

connecting the two cerebral hemispheres. (Bontrager, 2014) 

 

(A)                                                        (B) 

Fig (2-4): lobes of the brain (A) superior view &(B) lateral view (Bontrager, 2014) 
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2.1.3.1.2Cerebral Ventricles: 

The ventricular system of the brain is connected to the subarachnoid space. There 

are four cavities in the ventricular system. These four cavities are filled with CSF 

and inter connect through small tubes. 

The right and left lateral ventricles are located in the right and left cerebral 

hemispheres. (Bontrager, 2014)  

The third ventricle is a single ventricle that is located centrally and inferior to the 

lateral ventricles. (Bontrager, 2014) 

The fourth ventricle is also a single ventricle located centrally, just inferior to the 

third ventricle. (Bontrager, 2014) 

CSF is formed in the lateral ventricles in capillary beds called choroid plexus, 

which filter the blood to form CSF. (Bontrager, 2014) 

 

2.1.3.2 Midbrain and Hindbrain 

The midbrain is seen as a short, constricted portion of the upper brainstem that 

connects the forebrain to the hindbrain. The hindbrain consists of the cerebellum, 

pons, and medulla. The cerebellum is the largest portion of the hindbrain and the 

second largest portion of the entire brain. (Bontrager, 2014) 

 

2.1.4 Gray Matter and White Matter 

The CNS can be divided by appearance into white matter and gray matter. White 

matter in the brain and spinal cord is composed of tracts, which consist of bundles 

of myelinated axons. Myelinated axons are axons wrapped in a myelin sheath, a 

fatty substance having a creamy white color. The white matter comprises mostly 

axons. (Bontrager, 2014) 
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Gray Matter The gray matter comprises the thin outer layer of the folds of the 

cerebral cortex and is composed of dendrites and cell bodies. Other gray matter of 

the brain includes more central brain structures, such as the cerebral nuclei or basal 

ganglia, located deep within the cerebral hemispheres, and the groups of nuclei that 

make up the thalamus. whereas the brain tissue under the cortex is white matter. 

This underlying mass of white substance is termed the centrum semiovale which 

are fibers that connect the gray matter of the cerebral cortex with the deep, more 

caudal parts of the midbrain and spinal cord. (Bontrager, 2014) 

The second major white matter structure is the corpus callosum a band of fibers 

that connect the right and left cerebral hemispheres deep within the longitudinal 

fissure. (Bontrager, 2014) 

 

Fig (2-5): A section of brain tissue through the cerebral hemispheres (Bontrager, 

2014) 

 

2.1.5 Cerebral Nuclei (Basal Ganglia) 

The cerebral nuclei, or basal ganglia, are paired collections of gray matter deep 

within each cerebral hemisphere. There are four specific areas or groupings of 
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these cerebral nuclei: the (1) caudate nucleus; (2) lentiform nucleus, comprising 

putamen and globuspallidus; (3) claustrum  and (4) amygdaloid nucleus or body. 

(Bontrager, 2014) 

 

2.1.6 Arterial Supply and venous daring: 

2.1.6.1 Arterial Supply : 

The brain receives arterial blood from two main pair of vessels and their branches, 

the internal carotid arteries and the vertebral arteries. Many normal variations of 

the arterial blood supply exist. ( Kelley, 2007) 

The Internal Carotid Arteries supply the frontal, parietal, and temporal lobes of 

the brain and orbital structures. These arteries arise from the bifurcation of the 

carotid arteries in the neck. The internal carotid artery then turns forward within 

the cavernous sinus, then up and backward through the dura mater, forming an S 

shape (carotid siphon) before it reaches the base of the brain . As the internal 

carotid artery exits the cavernous sinus, it branches into the ophthalmk artery just 

inferior to the anterior clinoid process. The internal carotid artery then runs lateral 

to the optic chiasm and branches into the anterior cerebral artery and the larger 

middle cerebral artery. The anterior cerebral artery and its branches supply the 

anterior frontal lobe and the medial aspect of the parietal lobe . The middle 

cerebral artery is by far the largest of the cerebral arteries and is considered a direct 

continuation of the internal carotid artery. The middle cerebral artery gives off 

many branches, as it supplies much of the lateral surface of the cerebrum, insula, 

and anterior and lateral aspects of temporal lobe; nearly all the basal ganglia; and 

the posterior and anterior internal capsule.( Kelley, 2007) 

Vertebral Arteries The vertebral arteries begin in The neck at the subclavian 

artery and ascend vertically through the transverse foramina of the cervical spine. 

The vertebral arteries curve around the atlanto-occipital joints to enter the cranium 
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through the foramen magnum . The two vertebral arteries unite ventral to the pons, 

to form the basilar artery . The vertebral and basilar arteries give rise to several 

pairs of smaller arteries that supply the cerebellum, pons, and inferior and medial 

surfaces of the temporal and occipital lobes. The four major pairs of arteries are 

listed in order from inferior to superior: posterior inferior cerebellar, anterior 

inferior cerebellar, superior cerebellar , and posterior cerebral . The posterior 

cerebral arteries can be divided into three major segments: precommunicating or 

peduncular (Pl), ambient (P2), and  quadrigeminal (P3) . The posterior 

communicating artery forms a connection between the posterior cerebral artery and 

the internal carotid artery . 

 ( Kelley, 2007) 

Circle Of Willis : The cerebral arterial circle, or circle of Willis, is a critically 

important anastomosis among the four major arteries (two vertebral and two 

internal carotid) feeding the brain. The circle of Willis is formed by the anterior 

and posterior cerebral, anterior and posterior communicating, and the internal 

carotid arteries. The circle is located mainly in the suprasellar cistern at the base of 

the brain. Many normal variations of this circle may occur in individuals. The 

circle of Willis functions as a means of collateral blood flow from one cerebral 

hemisphere to another in the event of blockage .( Kelley, 2007) 
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Fig (2-6): Circle Of Willis.( Kelley, 2007) 

 

2.1.6.2 Venous Drainage:  

The venous system of the brain and its coverings is composed primarily of the 

dural sinuses, superficial cortical veins, and deep veins of the cerebrum. Dural 

Sinuses The dural sinuses are very large veins located within the dura mater of the 

brain. All the veins of the head drain into the dural sinuses and ultimately into the 

internal jugular veins of the neck. The major dural sinuses include superior and 

inferior sagittal, straight, transverse, sigmoid, cavernous, and petrosal . The 

superior sagittal sinus lies in the medial plane between the falx cerebri and the 

calvaria. It begins at the crista galli, runs the entire length of the falx cerebri, and 

ends at the internal occipital protuberance of the occipital bone . The inferior 

sagittal sinus, which is much smaller than the superior sagittal sinus, runs 

posteriorly just under the free edge of the falx cerebri The  nferior sagittal 

sinusconverges with the great cerebral vein (vein of Galen) to form the straight 

sinus. The straight sinus extends along the length of the junction of the falx cerebri 
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and the tentorium cerebelli . The junction of the superior sagittal, transverse, and 

straight sinuses creates the large confluence of the sinuses .The transverse sinuses 

extend from the confluence between the attachment of the tentorium and the 

calvaria. As the transverse sinuses pass through the tentorium cerebelli, they 

become the sigmoid sinuses. The S-shaped sigmoid sinuses continue in the 

posterior cranial fossa to join the jugular bulbs of the internal jugular veins .( 

Kelley, 2007) 

The cavernous sinuses, located on each side of the sella and body of the sphenoid 

bone. Each cavernous sinus receives blood from the superior and inferior 

ophthalmic veins and communicates with the transverse sinuses by way of the 

petrosal sinuses .( Kelley, 2007) 

 

Fig (2-7): Venous Drainage.( Kelley2007) 
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2.2 Physiology of the nervous system: 

The divisions of the nervous system can be classified by location or by the type of 

tissue supplied by the nerve cells in the division. The central nervous system 

(CNS) consists of the brain and spinal cord. The remaining neural structures, 

including 12 pairs of cranial nerves, 31 pairs of spinal nerves, autonomic nerves, 

and ganglia, make up the peripheral nervous system which consists of afferent 

and efferent neurons. Afferent (sensory) neurons conduct impulses from peripheral 

receptors to the CNS. (Eisenberg, 2012) 

Efferent (motor) neurons conduct impulses away from the CNS to the peripheral 

effectors. The somatic nervous system supplies the striated skeletal muscles, 

whereas the autonomic nervous system supplies smooth muscle, cardiac muscle, 

and glandular epithelial tissue. (Eisenberg ,2012) 

The basic unit of the nervous system is the neuron, or nerve cell. A neuron 

consists of a cell body and two types of long, threadlike extensions. A single axon 

leads from the nerve cell body, and one or more dendrites lead toward it. Axons are 

insulated by a fatty covering called the myelin sheath, which increases the rate of 

transmission of nervous impulses. (Eisenberg, 2012) 

In involuntary reactions the impulse conduction route to and from the CNS is 

termed a reflex arc. Voluntary actions are commonly a reaction due to stimulation 

of a combination of sensors. The basic reflex arc consists of an afferent, or sensory, 

neuron, which conducts impulses to the CNS from the periphery; and an efferent, 

or motor, neuron, which conducts impulses from the CNS to peripheral effectors 

(muscles or glandular tissue). (Eisenberg, 2012) 

Impulses pass from one neuron to another at a junction called the synapse. 

Transmission at the synapse is a chemical reaction in which the termini of the axon 

release a neurotransmitter substance that produces an electrical impulse in the 

dendrites of the next axon. Once the neurotransmitter has accomplished its task, its 
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activity rapidly terminates so that subsequent impulses pass along this same 

route.(Eisenberg, 2012).  

The cerebral cortex is responsible for receiving sensory information from all parts 

of the body, and for triggering impulses that govern all motor activity. Just 

posterior to the central sulcus, the cerebral cortex has specialized areas to receive 

and precisely localize sensory information from the peripheral nervous system. 

Visual impulses are transmitted to the posterior portion of the brain; olfactory 

(smell) and auditory impulses are received in the lateral portions. The primary 

motor cortex is just anterior to the central sulcus. Because efferent motor fibers 

cross over from one side of the body to the other at the level of the medulla and 

spinal cord, stimulation on one side of the cerebral cortex causes contraction of 

muscles on the opposite side of the body. (Eisenberg, 2012)  

The premotor cortex, which lies anterior to the primary motor cortex, controls 

movements of muscles by stimulating groups of muscles that work together. This 

region also contains the portion of the brain responsible for speech, which is 

usually on the left side in right-handed people. In addition, the cerebral cortex is 

the site of all higher functions, including memory and creative thought. The two 

cerebral hemispheres are connected by a mass of white matter called the corpus 

callosum. These extensive bundles of nerve fibers lie in the midline just above the 

roofs of the lateral ventricles. (Eisenberg, 2012) 

 

2.3. Pathology: 

 

2.3.1. Infections of the central nervous system: 

The incidence of infectious diseases of the CNS has decreased with the widespread 

availability of antibiotics. Nevertheless, bacterial, fungal, viral, and protozoal 
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organisms can infect the brain parenchyma, meningeal linings, and bones of the 

skull.(Eisenberg, 2012) 

Meningitis: 

Meningitis is an acute inflammation of the pia mater and arachnoid, two of the 

membranes covering the brain and spinal cord. (Eisenberg, 2012) 

Brain Abscess: 

Brain abscesses are usually a result of chronic infections of the middle ear, 

paranasal sinuses, or mastoid air cells, or of systemic infections (pneumonia, 

bacterial endocarditis, osteomyelitis). (Eisenberg, 2012) 

 

 

2.3.2. Tumors of the central nervous system: 

Intracranial neoplasms manifest clinically as seizure disorders or gradual 

neurologic deficits (difficulty thinking, slow comprehension, weakness, headache). 

About 50% of CNS tumors are primary lesions, and the others represent 

metastases. (Eisenberg, 2012) 

Glioma: 

Gliomas, the most common primary malignant brain tumors, consist of glial cells 

(supporting connective tissues in the CNS) that still have the ability to multiply. 

They spread by direct extension and can cross from one cerebral hemisphere to the 

other through connecting white matter tracts, such as the corpus callosum. 

(Eisenberg, 2012) 

Meningioma: 

Meningiomas are benign tumors that arise from arachnoid lining cells and are 

attached to the dura. The most common sites of meningioma are the convexity of 

the calvaria, the olfactory groove, the tuberculumsellae, the parasagittal region, the 

sylvian fissure, the cerebellopontine angle, and the spinal canal. (Eisenberg, 2012) 
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Acoustic Neuroma: 

Acoustic neuromas are slowly growing benign tumors that may occur as solitary 

lesions or as part of the syndrome of neurofibromatosis. Such a tumor arises from 

Schwann cells in the vestibular portion of the auditory(eighth cranial) nerve. 

(Eisenberg, 2012) 

Metastatic Carcinoma: 

Carcinomas usually reach the brain by hematogenous spread. Infrequently, 

epithelial malignancies of the nasopharynx can spread into the cranial cavity 

through neural foramina or by direct invasion through bone., colon carcinomas, 

and testicular and kidney tumors also cause brain metastases(Eisenberg, 2012) 

 

2.3.3. Traumatic Processes of the Brain: 

Epidural Hematoma: 

Epidural hematomas are caused by acute arterial bleeding and most commonly 

form over the parietotemporal convexity. Acute arterial bleeding is usually caused 

by laceration of the medial meningeal artery. (Eisenberg, 2012) 

Subdural Hematoma: 

Subdural hematomas reflect venous bleeding, most commonly from ruptured veins 

between the dura and meninges. (Eisenberg, 2012) 

Intracerebral Hematoma: 

Traumatic hemorrhage into the brain parenchyma can result from shearing forces 

to intraparenchymal arteries, which tend to occur at the junction of the gray and 

white matter. Injury to the intima of intracranial vessels can cause the development 

of traumatic aneurysms, whichcan rupture. (Eisenberg, 2012) 

 

2.3.4. Vascular disease of the central nervous system: 
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The term cerebrovascular disease refers to any process that is caused by an 

abnormality of the blood vessels or blood supply to the brain. Pathologic processes 

causing cerebrovascular disease include abnormalities of the vessel wall, occlusion 

by thrombus or emboli, rupture of blood vessels with subsequent hemorrhage, and 

decreased cerebral blood flow caused by lowered blood pressure or narrowed 

lumen caliber. Cerebrovascular diseases include arteriosclerosis, hypertensive 

hemorrhage, arteritis, aneurysms, and arteriovenous malformations . (Eisenberg, 

2012) 

2.3.5. Multiple sclerosis: 

Multiple sclerosis (MS) is an inflammatory, autoimmune, demyelinating disease 

of the central nervous system. It generally strikes at an early age, most often the 

early adult years. Its most frequent symptoms include numbness, impaired vision, 

loss of balance, weakness, bladder dysfunction, and psychological changes. 

Fatigue is an early symptom in MS, often the earliest. The disease can wax and 

wane for up to 30 years, but in perhaps half of all cases it steadily progresses to 

severe disability and premature death.( Parris, 2001) 

MS owes its name to the presence of multiple sclerotic (hardened) lesions in the 

brain and spinal cord – multiple scars. The optic tract also is often involved. This 

disease has major autoimmune character, with T-cells and other immune effector 

populations entering the brain and attacking the nerve cells, stripping away their 

myelin insulation and sometimes destroying their axons and entire remaining 

structures. Principal patterns of demyelination and axonal degeneration are 

schematized in Fig (2-8).  

( Parris,  2001) 

MS is the most common cause of neurologic disability in young adults. The lesions 

of demyelination are histo-pathologically characteristic of the disease. Brain 

examination by MRI can accurately detect  these ―white matter plaques.‖ MRI 
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correlates well with the classic histopathology of the lesions, and is progressively a 

more sensitive tool for detecting the characteristic lesions of MS in situ, as 

compared to conventional functional evaluation. ( Parris, 2001) 

 

 

Fig (2-8): Demyelination and Axonal Degeneration in Multiple Sclerosis ( Parris, 

2001) 

Currently approved drug therapies for MS are highly toxic; the immune-suppress 

antscortisone,  prednisone, methotrexate, and cytoxan are still mainstays of 

conventional MS management. In 1993, interferon -1b was approved in the United 

States as attack prevention therapy, but this drug itself is burdened with frequent 

and severe adverse effects. The limitations of the conventional drug therapies for 

MS make imperative the development of a less toxic, integrative strategy for its 

management. 
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( Parris, 2001) 

2.3.6. Degenerative diseases: 

Alzheimer's Disease: 

Alzheimer's disease (presenile dementia) is a diffuse form of progressive cerebral 

atrophy that develops at an earlier age than the senile period. (Eisenberg, 2012) 

Cerebellar Atrophy: 

Isolated atrophy of the cerebellum may represent an inherited disorder, a 

degenerative disease, or the toxic effect of prolonged use of such drugs as alcohol 

and phenytoin (Dilantin) (Eisenberg, 2012) 

2.4. MRI physics : 

Magnetic resonance imaging  it is the function of proton spin density and 

relaxation time. 

To make MR image we need:  

Primary magnet. 

RF trans-receiver coil. 

Gradient coil. 

In addition to the ordinary computer input devices including the processing unit 

that use to reconstruct the MRI image and display it on the screen or store it in a 

disk.( Evert, 2004)  

2.4.1.Physical principal 

MRI image depend on the presence of protons which  is electrically charged and it 

rotates around its axis (spinning),this rotation generate a magnetic field around 
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each proton (In our body these tiny bar magnets (protons) are ordered in such a 

way that the magnetic forces equalize) . (Evert, 2004) 

The proton in the hydrogen (has 1 proton and 1 electron) were used to generate 

MRI image because first off all we have a lot of them in the human body and 

secondly the gyro magnetic ratio for Hydrogen is the largest; 42.57 MHz/Tesla. ( 

Evert, 2004) 

When put the hydrogen protons under the magnet they align with the magnetic 

field. This is happened in two ways, parallel and anti-parallel and process or 

―wobble‖ due to the magnetic momentum of the atom.  (Evert, 2004) 

 

A                                           B 

Fig (2-9): protons under the magnet they align with the magnetic field (A) and 

precess or ―wobble‖(B) (B0 is the indication for the magnetic field of the MRI 

scanner). ( Evert, 2004) 

This protons  precess at the Larmor frequency which  can be calculated from the 

following equation: 
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The Larmor frequency is needed to calculate the operating frequency of the MRI 

system, ( Evert, 2004) 

When protons align with the magnetic field  more protons aligned parallel or low 

energy state than there are anti-parallel or high energy state and the number of 

excess protons is proportional with B0. ( Evert, 2004) 

At the end there is a net magnetization (the sum of all tiny magnetic fields of each 

proton) pointing in the same direction as the system’s magnetic field. ( Evert, 

2004) 

2.4.2.The MRI image acquisition can be summarized into: 

2.4.2.1 Excitation 

Before the system starts to acquire the data it will perform a quick measurement 

(also called pre-scan) to determine at which frequency the protons are spinning 

(the Larmor frequency). This centre frequency is important because this is the 

frequency the system uses for the excitation step in which the proton were excited 

by sending and RF frequency. 

( Evert, 2004) 

This is where the Resonance comes from in the name Magnetic Resonance 

Imaging. 
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protons that spin with the same frequency as the RF pulse will respond to that RF 

pulse therefore the net magnetization will be ―flipped‖ 90º.(It is possible to flip the 

net magnetization any degree in the range from 1º to 180º). ( Evert, 2004) 

This process is called excitation. ( Evert,  2004) 

2.4.2.2 Relaxation 

When the net magnetization was rotated 90º into the X-Y plane this happened 

because the protons absorbed energy from the RF pulse this is a situation that the 

protons do not like ( they prefer to align with the main magnetic field) when the 

RF of now something happens that is referred to as Relaxation. ( Evert, 2004) 

The relaxation process can be divided into two parts: T1 and T2 relaxation. ( Evert, 

2004) 

2.4.2.2.1 T1 Relaxation: 

T1 is defined as the time it takes for the longitudinal magnetization (Mz) to reach 

63 % of the original magnetization. Each tissue will release energy (relax) at a 

different rate and that’s why MRI has such good contrast resolution. ( Evert, 2004) 

The protons want to go back to their original situation they do so by releasing the 

absorbed energy in the shape of (very little) warmth and RF waves in principle the 

reverse of excitation takes place(The net magnetization rotates back to align itself 

with the Z-axis). ( Evert, 2004) 

T1 Relaxation Curves 

T1 relaxation happens to the protons in the volume that experienced the 90º-

excitation pulse but not all the protons are bound in their molecules in the same 

way. One 
1
H atom may be bound loosely  , will release their energy much quicker 
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to their surroundings than protons, which are bound tightly . The rate at which they 

release their energy is therefore different. ( Evert, 2004)    

2.4.2.2.2 T2 Relaxation 

T2 is defined as the time it takes for the spins to de-phase to 37% of the original 

value. ( Evert, 2004) 

T1 and T2 relaxation are two independent processes. The only thing they have in 

common is that both processes happen simultaneously.T1 relaxation describes 

what happens in the Z direction, while T2 relaxation describes what happens in the 

X-Y plane. ( Evert, 2004) 

T2 Relaxation Curves 

Just like T1 relaxation, T2 relaxation does not happen at once. Again, it depends on 

how the Hydrogen proton is bound in its molecule and that again is different for 

each tissue. ( Evert, 2004) 

 

(A)                                         (B) 

Fig (2-10): T1 (A) and T2 (B) relaxation curves. ( Evert, 2004) 

Right after the 90° RF-pulse all the magnetization is ―flipped‖ into the XY plane 

the net magnetization changes name and is now called MXY. At time = 0 all spins 



25 
 

are in-phase, but immediately start to de-phase. T2 relaxation is also a time 

constant. ( Evert, 2004) 

2.4.2.3 Acquisition 

During the relaxation processes the spins shed their excess energy, which they 

acquired from the 90° RF pulse, in the shape of radio frequency waves. In order to 

produce an image we need to pick up these waves before they disappear into the 

space. ( Evert, 2004) 

This can be done with a Receive coil 

If we assume we have a 100% homogeneous magnetic field  then all the protons in 

the body would spin at the Larmor frequency. This also means that all protons 

would return signal. ( Evert, 2004) 

How do we know the location of coming signal? 

The solution to this problem can be found in the properties of an RF-wave, which 

are: phase, frequency and amplitude. 

First we will divide the body up into volume elements, also known as: voxels. 

Then we are going to code the voxels such that the protons, within that voxel, will 

emit an RF wave with a known phase and frequency. The amplitude of the signal 

depends on the amount of protons in the voxel this could be done using the 

Gradient Coils. ( Evert, 2004) 

Gradient coil 

Gradient coils are a set of wires in the magnet, which enable us to create additional 

magnetic fields, which are, in a way, superimposed on the main magnetic field B0. 

( Evert, 2004) 
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2.4.2.3.1 Signal Coding 

2.4.2.3.1.1 Slice Encoding Gradient 

If the Z- gradient is switched on. This will generate an additional magnetic field in 

the Z direction, which is superimposed on B0. The indication +Gz means there is a 

slightly stronger B0 field in the head as there is in the iso-centre of the magnet. A 

stronger B0 field means a higher Larmor frequency. Along the entire slope of the 

gradient there is a different B0 field and consequently the protons spin at slightly 

different frequencies. ( Evert, 2004) 

Within the slice there are still a lot of protons and we still don’t know from where 

the signal is coming from within the slice whether it comes from anterior, 

posterior, left or right, further encoding is therefore required . (Evert, 2004) 

2.4.2.3.1.2 Phase Encoding Gradient 

In order to code the protons further the Gy gradient is switched on very briefly. 

During the time the gradient is switched on an additional gradient magnetic field is 

created in the anterior-posterior direction. The effect is that the anterior protons 

will spin slightly faster than the posterior protons. ( Evert, 2004) 

When the Gy gradient is switched off, each proton within the slice spins with the 

same frequency BUT each has a different phase. 

We can determine two things: 

The signal comes from which slice (Slice Encoding) 

The signal contains a number of RF waves, which have the same frequency, but 

have different phases.  
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It is possible to tell whether the signal comes from anterior or from posterior. 

(Phase Encoding) all we need to do now is to do one more encoding to determine 

whether the signal comes from the left, the centre or the right side of the head. ( 

Evert, 2004) 

2.4.2.3.1.3 Frequency Encoding Gradient 

To encode in the left – right direction the third, and last, gradient (Gx) is switched 

on. This will create an additional gradient magnetic field in the left – right 

direction. ( Evert, 2004) 

The protons on the left hand side spin with a lower frequency than the ones on the 

right. They will accumulate an additional phase shift because of the different 

frequency, but – and this is utterly important - the already acquired phase 

difference, generated by the Phase Encoding gradient in the previous step, will 

remain. ( Evert, 2004) 

 

Fig (2-11): action of  phase & frequency Encoding Gradients.(Evert, 2004) 

Therefore We can pinpoint the exact origin of the signals, which are received by 

the coil using the frequency and the phase. ( Evert, 2004) 
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As a result small volumes (voxels) have been created. Each voxel has a unique 

combination of frequency and phase. The amount of protons in each voxel 

determines how strong (amplitude) the RF-wave . The signal received contains a 

complex mix of frequencies, phases and amplitudes each from a different location 

(voxel) within the slice. ( Evert, 2004) 

2.5 MRI Technique 

2.5.1 Equipment: 

 Head coil (quadrature or multi-coil array). 

Immobilization pads and straps. 

Ear plugs. 

High-performance gradients for EPI, diffusion and perfusion imaging. 

( Westbrook, 2008) 

2.5.2 Patient positioning: 

The patient lies supine on the examination couch with their head within the head 

coil. The head is adjusted so that the inter-pupillary line is parallel to the couch and 

the head is straight. The patient is positioned so that the longitudinal alignment 

light lies in the midline, and the horizontal alignment light passes through the 

nasion. Straps and foam pads are used for immobilization.( Westbrook, 2008) 

2.5.3 Suggested protocol 

Sagittal SE/FSE/incoherent (spoiled) GRE T1 

Medium slices/gap are prescribed on each side of the longitudinal alignment light 

from one temporal lobe to the other. The area from the foramen magnum to the top 

of the head is included in the image. ( Westbrook, 2008) 

Axial/oblique SE/FSE PD/T2  

Medium slices/gap are prescribed from the foramen magnum to the superior 

surface of the brain. Slices may be angled so that they are parallel to the anterior–
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posterior commissure axis. This enables precise localization of lesions from 

reference to anatomy atlases (Figures 8.3 and 8.4). Many sites have replaced the 

PD sequence with FLAIR . 

 SS-FSE or SS-EPI may be a necessary alternative for a rapid examination in 

uncooperative patients. ( Westbrook, 2008) 

 

Fig (2-12): Sagittal SE T1 weighted midline slice of the brain showing slice 

prescription boundaries and orientation for axial/oblique imaging. 

( Westbrook, 2008) 

 

 

Coronal SE/FSE PD/T2 

As for Axial PD/T2, except prescribe slices from the cerebellum to the frontal lobe 

(Fig (2-16)). ( Westbrook, 2008) 
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Fig (2-13): Sagittal SE T1 weighted image showing slice prescription boundaries 

and orientation for coronal imaging. ( Westbrook, 2008) 

2.5.4 Additional sequences 

Axial/oblique FLAIR/EPI (Fig(2-17)) 

Slice prescription as for Axial/oblique T2. This sequence provides a rapid 

acquisition with suppression of CSF signal. It may be useful when examining 

periventricular or cord lesions such as MS plaques.  

( Westbrook, 2008) 

 

Fig (2-14): Axial/oblique FLAIR image of the brain. Periventricular abnormalities 

will have a high signal intensity in contrast to the low signal of CSF which has 

been nulled using a long TI.( Westbrook, 2008) 

2.6 Deferential diagnoses of MS 

 

MRI is far superior to CT and typically demonstrates ovoid high T2W signal 

lesions within the corpus callosum and periventricular white matter that typically 

lie perpendicular to the ventricular margin. Other characteristic sites include the 

optic radiation, brainstem (dorsal), cerebellar peduncles and optic nerves. 

Abnormalities in the cerebral cortex, deep grey nuclei and 'peripheral' white matter 
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are less common, but are by no means rare. Acute lesions are usually ill-defined 

and may display surrounding oedema. The latter contributes to the 'target' 

appearance that is sometimes seen with acute plaques. Solid and 'ring-like' contrast 

uptake is a feature of acute demyelination, regardless of the cause. Large acute 

lesions may be mistaken for tumors if there is considerable mass effect. As lesions 

age they shrink, become more circumscribed and fail to enhance with contrast 

medium. Sagittal T2W, proton density and FLAIR sequences are recommended for 

routine diagnostic purposes. (Chapman, 2003) 

Differential Diagnosis: 

2.6.1 Normal  

A. Age-related white matter lesions — small peripheral white matter lesions are 

commonly seen in the normal ageing brain. Periventricular lesions are best seen on 

FLAIR MRI and may present as a thin uniform rim, frontal 'caps' or more patchy 

areas of signal change. The loose term small vessel ischaemia' is a convenient, but 

inaccurate, description of most age-related white matter change. (Chapman, 2003) 

2.6.2 Vascular  

A. 'Small vessel disease' — premature cerebrovascular disease in hypertensive 

and diabetic patients presents as either confluent or highly discrete white matter 

abnormalities. Ischaemic white matter lesions are located more peripherally than 

typical MS plaques and only very rarely do they involve the corpus callosum, 

dorsal brainstem or cerebellar peduncles. Discrete abnormalities within the ventral 

pons, basal ganglia and thalami that have low T1W and high T2W signal on MRI 

are consistent with small vessel infarcts. (Chapman, 2003) 

B. Vasculitis— imaging appearances are entirely non-specific and range from 

extensive confluent abnormalities to focal white matter lesions. Catheter 

angiography may demonstrate segmental irregularity and/or occlusion.  

(Chapman, 2003) 
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2.7.Texture Analysis: 

 

Texture can be defined as the relationship between the pixels; therefore it can pick 

up the microscopic structures and hence it is superior to visual perception which is 

solely subjective. Texture can be calculate using a window of appropriate size that 

depict the underlined textures using  features vector that correlated with the classes 

of interest for successful classification and segmentation of the underline textures 

through a suitable classifier (e.g. k-means, linear discriminate analysis, neural net 

work  etc…).Texture is an important characteristic for the analysis of many types 

of images. It can be seen in all images from multi spectral scanner images obtained 

from aircraft or satellite platforms (which the remote sensing community analyzes) 

to microscopic images of cell cultures or tissue samples (which the biomedical 

community analyzes). 

Despite its importance and ubiquity in image data, a formal approach or precise 

definition of texture does not exist. (Haralick, 1979) .  

Image texture, defined as a function of the spatial variation in pixel intensities 

(gray values), is useful in a variety of applications and has been a subject of intense 

study by many researchers. One immediate application of image texture is the 

recognition of image regions using texture properties. Texture is the most 

important visual cue in identifying these types of homogeneous regions. This is 

called texture classification. (Haralick, 1979) 

Image analysis techniques have played an important role in several medical 

applications. In general, the applications involve the automatic extraction of 

features from the image which is then used for a variety of classification tasks, 

such as distinguishing normal tissue from abnormal tissue. Depending upon the 

particular classification task, the extracted features capture morphological 
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properties, color properties, or certain textural properties of the image. (Clausi et. 

al., 2002) 

Texture is a combination of repeated patterns with a regular frequency. In visual 

interpretation texture has several types, for example, smooth, fine, coarse etc., 

which are often used in the classification of forest types. Texture analysis is can 

also be defined as the classification or segmentation of textural features with 

respect to the shape of a small element, density and direction of regularity. In the 

case of digital image, it is difficult to treat the texture mathematically because 

texture cannot be standardized quantitatively and the data volume is so huge. 

(Clausi et. al., 2002) 

2.7.1 Texture Analysis Types: 

Approaches to texture analysis are usually categorized into: 

 Structural, 

 Statistical, 

 Model-based and 

 Transform.( Materka, 1998) 

 

 

 

2.7.2 .Feature Estimation  

Numerous approaches to the quantification and characterization of image texture 

have been proposed, with most textural features falling under 3 general categories: 

syntactic, statistical, and spectral. (Kassner, 2010) 

2.7.2.1. Syntactic texture: 

 analysis identifies fundamentalor ―primitive‖ elements of the image, which are 

then linked through syntax. Although it appears to show potential for brain surface 

mapping and volumetry, to the best of our knowledge, there have been very few 
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reported applications of syntactic texture analysis to neuro-MR imaging.(Kassner, 

2010) 

2.7.2.2. Statistical Features: 

Statistical approaches do not attempt to understand explicitly the hierarchical 

structure of the texture. Instead, they represent the texture indirectly by the non-

deterministic properties that govern the distributions and relationships between the 

grey levels of an image. Methods based on second-order statistics (i.e. statistics 

given by pairs of pixels) have been shown to achieve higher discrimination rates 

than the power spectrum (transform-based) and structural methods. Human texture 

discrimination in terms of texture statistical properties is investigated in. 

Accordingly, the textures in grey-level images are discriminated spontaneously 

only if they differ in second order moments. Equal second order moments, but 

different third-order moments require deliberate cognitive effort. This may be an 

indication that also for automatic processing, statistics up to the second order may 

be most important. The most popular second-order statistical features for texture 

analysis are derived from the so-called co-occurrence matrix. They were 

demonstrated to feature a potential for effective texture discrimination in 

biomedical-images. The approach based on multidimensional co-occurrence 

matrices was recently shown to outperform wavelet packets (a transform-based 

technique) when applied to texture classification. ( Materka, 1998) 

2.7.2.3. Spectral Features: 

Co-occurrence or run-length features may lack the sensitivity to identify larger 

scale or more coarse changes in spatial frequency. Wavelet functions, for example, 

can be designed to evaluate spatial frequencies at multiple scales and have found a 

natural application to texture analysis. Readers will recognize the close relative of 

the wavelet transform, the Fourier transform, which can identify the spatial 

frequencies present in a signal intensity but cannot delineate temporal changes in 
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frequency content and presumes that all signals reflect a superposition of sinusoids. 

Sometime localization can be imparted to Fourier analysis by means of the 

windowed or ―short-time‖ method, which allows for the Fourier transform to be 

performed on sequential portions of the entire signal intensity, each of a set length 

or ―window.‖The wavelet transform provides even more flexibility by enabling us 

to trade some degree of spatial-frequency resolution for the ability to localize this 

frequency content in time. (Kassner, 2010) 

 

2.8. Previous Studies: 

- Zhang J, et al (2008) In there study, texture analysis was performed on MR 

images of MS patients and normal controls and a combined set of texture features 

were explored in order to better discriminate tissues between MS lesions, normal 

appearing white matter (NAWM) and normal white matter (NWM). Features were 

extracted from gradient matrix, run-length matrix, gray level co-occurrence matrix 

(GLCM), autoregressive model and wavelet analysis, and were selected based on 

greatest difference between different tissue types. The results of this study 

demonstrated that (1) with the combined set of texture features, classification was 

perfect (100%) between MS lesions and NAWM (or NWM), less successful 

(88.89%) among the three tissue types and worst (58.33%) between NAWM and 

NWM; (2) compared with GLCM-based features, the combined set of texture 

features were better at discriminating MS lesions and NWM, equally good at 

discriminating MS lesions and NAWM and at all three tissue types, but less 

effective in classification between NAWM and NWM. This study suggested that 

texture analysis with the combined set of texture features may be equally good or 

more advantageous than the commonly used GLCM-based features alone in 

discriminating MS lesions and NWM/NAWM and in supporting early diagnosis of 

MS. 
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- Theocharakis P, et al (2009) in their study a pattern recognition system has been 

developed for the discrimination of multiple sclerosis (MS) from cerebral micro-

angiopathy (CM) lesions based on computer-assisted texture analysis of magnetic 

resonance images. Twenty-three textural features were calculated from MS and 

CM regions of interest, delineated by experienced radiologists on fluid attenuated 

inversion recovery images and obtained from 11 patients diagnosed with clinically 

definite MS and from 18 patients diagnosed with clinically definite CM. The 

probabilistic neural network classifier was used to construct the proposed pattern 

recognition system and the generalization of the system to unseen data was 

evaluated using an external cross validation process. According to the findings of 

the present study, statistically significant differences exist in the values of the 

textural features between CM and MS: MS regions were darker, of higher contrast, 

less homogeneous and rougher as compared to CM. 

- Zhang et al (2007) The aim of their study was to investigate the performance of 

texture analysis in texture classification and tissue discrimination between MS 

lesions, normal appearing white matter (NAWM) and normal white matter (NWM) 

in order to support early diagnosis of MS. T2-weighted MR images of sixteen 

relapsing remitting MS patients and sixteen healthy subjects were selected. Based 

on the lesion size, sixteen regions of interests (ROIs) were chosen from MS patient 

MR images and healthy subject MR images for MS lesions, NAWM and NWM 

respectively. Texture features extracted from grey level co-occurrence matrix 

(GLCM) were selected based on greatest feature difference. For statistical analysis, 

raw data analysis (RDA), principal component analysis  and nonlinear discriminant 

analysis (NDA) were applied to the texture features. The k-nearest neighbor and 

artificial neural network methods were used for texture classification. Fisher 

coefficient and classification accuracy were used to evaluate the performance of 
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texture analysis. The results demonstrated that (1) classification was successful 

(>90.00%) between MS lesions and NAWM or NWM, less successful (88.89%) 

among the three tissue groups and worst (66.67%) between NAWM and NWM; (2) 

In statistical analysis, NDA outperforms RDA and principal component analysis; 

(3) artificial neural network classified more accurately than k-nearest neighbor 

method between NAWM and NWM, and among the three texture types. This study 

demonstrated that MRI texture analysis can achieve high classification accuracy in 

tissue discrimination between MS lesions and NAWM or NWM, which is valuable 

in supporting early diagnosis of MS. 

- Michoux et al (2015), studied the  evaluation of the performance of an alternative 

model assessing the inflammatory activity of MS lesions by texture analysis of T2-

weighted MR images. Brain blood barrier breakdown as assessed by contrast-

enhanced (CE) T1-weighted MR imaging is currently the standard radiological 

marker of inflammatory activity in multiple sclerosis (MS) patients. Twenty-one 

patients with definite MS were examined on the same 3.0 T MR system by T2-

weighted, FLAIR, diffusion-weighted and CE-T1 sequences. Lesions and mirrored 

contralateral areas within the normal appearing white matter (NAWM) were 

characterized by texture parameters computed from the gray level co-occurrence 

and run length matrices, and by the apparent diffusion coefficient . Statistical 

differences between MS lesions and NAWM were analyzed. ROC analysis and 

leave-one-out cross-validation were performed to evaluate the performance of 

individual parameters, and multi-parametric models using linear discriminant 

analysis (LDA), partial least squares and logistic regression  in the identification of 

CE lesions. apparent diffusion coefficient, and all but one texture parameter were 

significantly different within white matter lesions compared to within NAWM (p < 

0.0167). Using LDA, an 8-texture parameter model identified CE lesions with a 
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sensitivity Se = 70%and a specificity Sp = 76%. Using logistic regression, a 10-

texture parameter model performed better with Se = 86%/ Sp = 84%. Using partial 

least squares, a 6-texture parameter model achieved the highest accuracy with Se = 

88%/ Sp = 81%. Texture parameter from T2-weighted images can assess brain 

inflammatory activity with sufficient accuracy to be considered as a potential 

alternative to enhancement on CE T1-weighted images. 

- Loizou C, et al (2009) The objective of their work was to investigate six different 

MRI intensity normalization methods and propose the most appropriate for the pre-

processing of brain T2-weighted MR images acquired from 22 symptomatic 

untreated multiple sclerosis (MS) subjects and 10 healthy volunteers. image 

intensity normalization methods first  be applied to magnetic resonance (MR) 

images to further image analysis. Following image normalization, texture analysis 

was carried out in original and normalized images for normal appearing white 

matter (NAMW) and MS lesions, detected in transverse T2-weighted MR images. 

The best normalization method (Histogram Normalization (HN)) demonstrated a 

smaller Kullback Leibler divergence (0.05, 0.06) suggesting appropriateness for 

pre-processing MR images used in texture analysis of MS brain lesions.  

-Yu O, et al (1999) studied the distinct patterns of active and non-active plaques 

using texture analysis on brain MR images in multiple sclerosis patients . Out of 

thirty-two lesions identified in eight MS patients, nine were considered active, 

judging from their gadolinium uptake. Using discriminant analysis allowed to 

classify the lesions into two groups: active or non-active. An attempt to classify 

their level of activity by using only co-occurrence matrices was unsuccessful. 

Alternately, the same type of analysis performed on run length analysis criteria 

allowed the accurate classification of 88% of active lesions and 96% of non-active 

lesions. Using incremental discriminate analysis can reduce the number of useful 
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parameters. This method showed that among the 42 parameter , 8 only were highly 

significant and permitted an accurate classification. Five of these parameters are 

run length parameters, and three others are more directly related to the global 

distribution. The main interest of runlength parameters is that they allowed to 

demonstrate that the lesion structure was different in active and non-active plaques. 

- Johnston B, et al (1996) studied the segmentation of brain tissues in magnetic 

resonance images of the brain, they have implemented a stochastic relaxation 

method which utilizes partial volume analysis for every brain voxel, and operates 

on fully three-dimensional (3-D) data.  To improve lesion segmentation the authors 

have extended their method of stochastic relaxation by both pre- and post-

processing the MR images. The preprocessing step involves image enhancement 

using homo-morphic filtering to correct for non-homogeneities in the coil and 

magnet. Because approximately 95% of all multiple sclerosis lesions occur in the 

white matter of the brain, the post-processing step involves application of 

morphological processing and thresholding techniques to the intermediate 

segmentation in order to develop a mask image containing only white matter and 

Multiple Sclerosis (MS) lesion. This white/lesion masked image is then segmented 

by again applying the authors' stochastic relaxation technique. The process has 

been applied to multispectral MRI scans of multiple sclerosis patients and the 

results compare favorably to manual segmentations of the same scans obtained 

independently by radiology health professionals.  

- Harrison L, (2010) studied MRI texture analysis in multiple sclerosis . Their 

intention was to show which parts of the analysis are sensitive to slight changes in 

textural data acquisition and which steps tolerate interference. They used MRI 

datasets of 38 multiple sclerosis patients were used in this study. Three imaging 

sequences were compared in quantitative analyses, including a comparison of 
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anatomical levels of interest, variance between sequential slices and two methods 

of region of interest drawing. They focused on the classification of white matter 

and multiple sclerosis lesions in determining the discriminatory power of textural 

parameters. Analyses were run with MaZda software for texture analysis, and 

statistical tests were performed for raw parameters. And found that MRI texture 

analysis based on statistical, autoregressive-model and wavelet-derived texture 

parameters provided an excellent distinction between the image regions 

corresponding to multiple sclerosis plaques and white matter or normal-appearing 

white matter with high accuracy (nonlinear discriminant analysis 96%–100%). 

There were no significant differences in the classification results between imaging 

sequences or between anatomical levels. Standardized regions of interest were 

tolerant of changes within an anatomical level when intra-tissue variance was 

tested. 

- Ghazel et al (2006) In this work, they propose a semi-automated MS lesion 

detection system that combines the knowledge of the expert with the computational 

capacity to produce faster and more reliable MS segmentation results. In particular, 

the user selects coarse regions of interest (ROIs) that may potentially contain MS 

lesions. Then any MS lesions within the provided ROI's are then detected and 

segmented based on texture analysis. The method is applied on real MRI data and 

the results are qualitatively compared to a ground truth, which is manually 

segmented by a human expert. However, these automated methods generally 

produce segmentation results that agree only partially with the ground truth 

segmentation provided by the experts. They also suffer from miss-classification 

errors, especially false-negative miss-classification where true lesions are left 

undetected, which is a grave concern from a medical point of view.  
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Chapter Three 

 Materials and Methods  

3.1. Study design: 

This is analytical study of a case control type where normal MR images of the 

brain were taken as a reference.    

3.2. Study population: 

The  population of this study included patients having  multiple sclerosis and 

patients having small vascular desease and have done MRI .   

3.3. Study area and duration: 

This study had been achieved in Antalia hospital ( GE 1.5 T MRI machine)  and it 

was conducted from September  2016 to December  2016 

3.4. Sample size and type:  

The sample of this study was consisted from 50 MR brain ( FLAIR and T2) images 

selected conveniently from patient with MS and 50 MR brain FLAIR images from 

patient with SVD . 

3.5. Method of data collection and analysis: 

After that MR image were stored in computer disk they was viewed by the 

Radiant, Ant . DICOM in computer to select the section of image and uploaded it 

into the computer based software Interactive Data language    ( IDL ) where the 

DICOM image converted to TIFF format and the user then clicks on areas 

represents the gray matter, white matter, CSF and MS plaque . In these areas a 

window of 3×3 pixel will be set and the first order statistics were calculated, which 
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include mean , SD , energy and entropy . These features are then assigned as 

classification center used to classify the whole image into different classes using 

the Euclidean distance. The algorithm scans the whole image using a window of 

3×3pixel and computes the first order statistics and computes the distance ( the 

Euclidean distance ) between the calculated features and the class's centers and 

assigns the window to the class with the lowest distance. Then the window 

interlaced one pixel and the same process stated over till the entire image were 

classified the data concerning the gray matter, white matter  and MS plaque  will 

then be entered into SPSS with its classes to generate a classification score using 

stepwise linear discriminate analysis; to select the most discriminate feature that 

can be used in the classification of normal and abnormal brain tissues . then scatter 

plot using discriminate function is generated as well as classification accuracy and 

linear discriminate function equation to differentiate between normal and abnormal 

brain tissue for unseen images. 

3.6. Ethical approval: 

        Ethical approval is granted from Antalia  hospital where no patient 

identification data or individual patient detail is published. 
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Chapter four 

Results 

 

Fig 4-1: Scatter plot show the classification of brain tissues using linear 

discriminate analysis on FLAIR images for MS patients 

Table 4-1: Cross-tabulation table show the classification results tissues using 

linear discriminate analysis on FLAIR images for MS patients 

Classes 

Predicted Group Membership 

Total 
MS 

White 

matter 

Grey 

matter 
CSF 

Original 

MS 85.6 0.0 14.4 0.0 100.0% 

White matter 0.0 94.2 5.8 0.0 100.0% 

Grey matter 4.3 10.5 85.2 0.0 100.0% 

CSF 0.0 0.0 0.0 100.0 100.0% 

   Sensitivity =85.6% 

Specificity = 93.1% 

Accuracy =91.2% 
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Fig 4-2: Scatter plot show the classification of brain tissues using linear 

discriminate analysis onT2 images for MS patients 

Table 4-2: Cross-tabulation table show the classification results tissues using 

linear discriminate analysis on FLAIR images for MS patients 

Classes 

Predicted Group Membership 

Total 
MS 

White 

matter 

Grey 

matter 
CSF 

Original 

MS 91.1 0.0 8.9 0.0 100.0% 

White matter .3 85.3 14.4 0.0 100.0% 

Grey matter 15.4 2.6 82.0 0.0 100.0% 

CSF .6 0.0 0.0 99.4 100.0% 

Sensitivity = 91.1 % 

Specificity = 88.9 % 

Accuracy = 89.5 % 
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Fig 4-3: Error bar plot show the discriminate power of the mean textural feature 

distribution for the selected classes on FLAIR images for MS patients 

 

Fig 4-4: Error bar plot show the discriminate power of the mean textural feature 

distribution for the selected classes on T2 images for MS patients 
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Fig 4-5: Error bar plot show the discriminate power of the Stander Deviation 

textural feature distribution for the selected classes on FLAIR images for MS 

patients 

 

Fig 4-6: Error bar plot show the discriminate power of the Stander Deviation 

textural feature distribution for the selected classes on T2 images for MS patients 
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Fig 4-7: Error bar plot show the discriminate power of the energy textural feature 

distribution for the selected classes on FLAIR images for MS patients 

 

Fig 4-8: Error bar plot show the discriminate power of the energy textural feature 

distribution for the selected classes on T2 images for MS patients 
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Fig 4-9: Error bar plot show the discriminate power of the Entropy textural feature 

distribution for the selected classes on FLAIR images for MS patients 

 

Fig 4-10: Error bar plot show the discriminate power of the Entropy textural 

feature distribution for the selected classes on T2 images for MS patients 
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Fig 4-11: Scatter plot show the classification of brain tissues using linear 

discriminate analysis on FLAIR images for SVD & MS patients 

 

Table 4-3: Cross-tabulation table show the classification results tissues using 

linear discriminate analysis on FLAIR images for SVD & MS patients 

 

Classes 

 

Predicted Group Membership 

Total 
SVD 

White 

matter 

Grey 

matter 
CSF MS 

Original 

SVD 92.6 0.0 7.4 0.0 0.0 100.0% 

White matter 0.0 100.0 0.0 0.0 0.0 100.0% 

Grey matter 0.0 .7 99.3 0.0 0.0 100.0% 

CSF 0.0 .5 0.0 94.5 5.1 100.0% 

MS 0.0 0.0 0.0 1.5 98.5 100.0% 
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Fig 4-12: Error bar plot show the discriminate power of the mean textural feature 

distribution for the selected classes on FLAIR images for both MS & SVD patients 

 

 
Fig 4-13: Error bar plot show the discriminate power of the SD textural feature 

distribution for the selected classes on FLAIR images for both MS & SVD patients  
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Fig 4-14: Error bar plot show the discriminate power of the energy textural feature 

distribution for the selected classes on FLAIR images for both MS  & SVD 

patients 

 

 
Fig 4 -15: Error bar plot show the discriminate power of the entropy textural 

feature distribution for the selected classes on FLAIR images for both MS & SVD 

patients 
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Chapter five 

Discussion, conclusion and Recommendation 

 

The main aim of this study was to classify the brain tissues in MR images into 

normal tissues and  MS plaques  using Texture  analysis features  

5.1. Discussion: 

In this study there were four features extracted from the gray matter, white matter, CSF and 

MS plaque using window of 3×3 pixel. From these four features showed significent 

correlation with the perdifind classes (gray matter, white matter, CSF and MS 

plaque) they includes the mean , SD , energy and entropy. 

To classify brain tissue to normal and abnormal (MS) using linear discriminate 

analysis . the result of classification showed that MS areas were very different 

from the rest of the tissues on FLAIR Fig4-1 and T2 Fig 4-2 images with 

classification accuracy of 91.2% , sensitivity = 85.6% and  specificity = 93.1%  on 

FLAIR images Table 4-1 and classification accuracy of 89.5 % , sensitivity = 

91.1% and  specificity = 88.9%  on T2 images Table 4-2. 

From Fig 4-3&Fig 4-4 on FLAIR images the MS plaques has the highest mean 

than the rest of brain tissue but on T2 images the signal of CSF had the highest 

mean then come the MS becouse fluid signal is not attenuated. Also when use SD 

feature had discriminat better on T2 images ( between the MS and Gray matter)  

but on FLAIR there is interferans btween the classis (between the MS , Gray 

matter and CSF) ( Fig 4-5&Fig 4-6)  . 

The use of energy textural feature had discreminat between the MS plaques and 

other brain tissue successfully on FLAIR images but on T2 images there is a 

interfirence between the MS , white matter and CSF.  That means the MS contrast 

is well difreniated from normal brain tissue on FLAIR images (Fig 4-7&Fig 4-8). 
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When  use the discreminat power of the entropy textural feature on MS and normal 

brain tissues on FLAIR and T2 images has successfully differentiate between them 

on both sequences (Fig 4-9&Fig 4-10).    

As compared to study done by Zhang (2007) he used NDA to classify   between 

MS and NAWM found the accuracy = 90% but on 2008 when he used LR matrix 

the accuracy was 100% seam as this study when comparing the MS and the 

NAWM.  

From Fig 4-11 the result of the classifiction showed that the MS plaques were very 

different from SVD with classifiction accuracy of 100% between both of them ( no 

inter ferance ) on FLAIR images (Table 4-3 ). 

 In respect to the applied features the mean ,SD, energy and entropy on FLAIR 

images can diffrentiate between MS and SVD successfully and the best feature is 

the entropy  followed by mean then energy and the least is SD. And MS regions 

were darker, and lower contrast as compared to SVD.  

  ( Fig4-12, 4-13 , 4-14 & 4-15). 
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5.2. Conclusion: 

the aim of this study was to characterize of MS plaques  in MR images using 

Texture  analysis features which enabling disease characterization and 

quantification of disease distribution. 

This study is analytical study and  had been conducted at Antalia hospital in a 

period from September 2016 to December  2016 with sample which was consisted 

from 60 MR brain images for patient having multiple sclerosis. 

The result reveals that the MS areas were very different from the rest of the tissues 

on FLAIR images with classification accuracy of 91.2%  and on  T2 images with 

classification accuracy of 89.5%. And classifiction btween the MS plaques and 

SVD  are very different with classifiction accuracy of 100% between both of them 

( no inter ferance ) on FLAIR images 

In conclusion MS can be diagnosed objectively by: 

*sensitivity equal to 85.6% on FLAIR images using the following equations: 

MS = (25.663×mean) + (-.267×SD) + (-.107×energy) + (-3.060×entropy)  -260.181 

White matter = (26.430×mean) + (-.266×SD) + (-.122×energy) + (-3.261×entropy)  -214.736 

Grey matter = (26.550×mean) + (-.267×SD) + (-.103×energy) + (-3.232×entropy)  -238.124 

CSF = (8.120×mean) + (-.047×SD )+ (-.015×energy) + (-1.032×entropy)  -20.686   

*sensitivity equal to 91.1% on T2 images using the following equations: 

MS = (12.262×mean) + (-.008×SD) + (.033×energy) + (-1.412×entropy)  -140.994 

White matter = (8.580×mean) + (-.008×SD) + (.037×energy) + (-1.003×entropy)  -66.398 

Grey matter = (11.035×mean) + (-.009×SD) + (.028×energy) + (-1.281×entropy)  -109.351 

CSF = (10.690×mean) + (.016×SD )+ (.042×energy) + (-1.147×entropy)  -196.357 

Also  SVD can be diagnosed objectively by sensitivity equal to 92.6 % on FLAIR 

images using the following equation: 

SVD = (50.525×mean) + (-.198×SD) + (.062×energy) + (-6.093×entropy)  -507.786 
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5.3. Recommendation: 

 

 Large sample can be used to have better overall accuracy using 

representative data set. 

 Other type of diseases and feature can use or comparison between diseases 

have the same radiographic appearance. 

 IDL program should be adopted by the radiology department to deal with the 

challenging cases and to have an objective second opinion.   
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Appendix 

    

 

Image (A-1): FLAIR & T2 images for patient with MS 

 

    

 

Image (A-2): FLAIR & T2 images for patient with MS 
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Image (A-3): FLAIR & T2 images for patient with MS 

 

 

     

 

 Image (A-4): FLAIR   images for patient with SVD 

 

 


