Sudan University of Science and Technology
College of Engineering

School of Electronic Engineering

IP traffic classification using machine learning

Al alad 31k (e AN clily 4S o digdal

A Research Submitted In Partial fulfillment for the Requirements of the
Degree of B.Sc. (Honors) in Electronics Engineering

Prepared by:

1-Alaa Mohammed Yousif Ahmed
2-Aya FathelrahmanAwad Mohammed
3- MarwakEdriss Ali Mohammed

4- Noon Salah Mohammed Abdalgader

Supervisor

Dr. AbuaglaBabiker Mohammed Babiker

October 2016

G ousY G (D) @3 sdd) dn)y pwly 1550
e e (3) R3S Aty 1351 (2) gl
{(5) plao pdlo GuoY! ale (4) padly

{5 -1} E_ﬁll— =I5y gw

Dedication

To the big heart our dear father
To the fountain of patience and optimism and hope
To each of the following in the presence of God and His
Messenger, our dear mother
To those who have demonstrated to us, what is the most beautiful
of our brothers and sisters life
To the people who paved our way of science and knowledge

To the taste of the most beautiful moments with our friends

| guide this research

Acknowledgement

The work presented in this thesis was made possible by many people.
First of all, we would like to thank our supervisor AbuaglaBabiker
Mohammed Babiker and our co-supervisors Ahmed Abdallah for being
excellent mentors and for their guidance, feedback, and patience
throughout our studies. we would like to thank Mr.Haitham Ahmed for
the support .we would like to thank colleagues from the Department of
Electronic engineering school for being a truly wonderful bunch of

people.

Abstract

Network traffic classification is the foundation of many network
research works. In recent years, the research on traffic classification
based on machine learning method is giving more accuracy. The focus
of this research is to classify the traffic based on application type
specially (p2p, video, http) .Performance comparison among machine
learning classifiers have been done, results shows that C4.5 tree is the
suitable classifier based on accuracy and stability. This offline
comparison has been done by building training data sets using two
methods the first use WIRESHARK for sniff the network traffic the a
pre-classification has been done. The second approach is based on
SNORT for sniffing and detecting the type of application and then
extracted short flow by excel sheet and calculated the feature of flow
Evaluate the system by using only 7 features and its response with
good accuracy. The prototype system results reach average accuracy
82.7% by first data set and 88.9% by the second data set.

Finally, an idea of an online classifier has been presented based on
short flows so as to quick the reaction time regarding the enhancement

of the usage of the internet links.

oaliiual

o YN 43 Y1 b, i i) Ol 8 iy alina Cula o Y1 il A8y i
5S0n iad) 138 adle 48y dany AN aled aladiuly e) bl AS s Ciuleald el
pasadllany o 5l algall Gukill g o s o 1Y) Glly (ial e
AL i s 02 sl Al (e 43 e (il 5 gpdl) | aill a1) s
Cadh Gl Y1 A dliel A 45 it o) Cogll gl Al
 alai el 8y b (e dga)l AN 03 s Gpeaidl il B8N bl o agine 43 Hha
Sl e sane dee oGS (5 AY 4l (e i) Jil Juselil) ¢l 4 Jax)
Cllall Sase il Jae o3 5 LIS 5 Y el pladiul 35k e 41V aledl
Al amy | Coiaill & 63 ot g Cinalll addSul G gi JBN g zali) 138 (e deddal)
b S priall a5 JanSY) el il yuaad (385 JSA 8 lilall 71,8500 o5
2l S 5 s 4l Adaiul) ilS s ke A (ebal e aUaill a8 385 S
5 %88.9 5 Ls¥) il de sana 325k e %82.7 4) 48l o gia il oLl
Al UL e sana 5y ok

Gl G e iae Jil) ol 4 JAaxl aty Y Citatll oUas) 81 5 1l
oY) 85 da ghad aladiul Cpead il 4datul) a e (o 5S) juaill

List of Contents

CHAPTER TITLE PAGE
D =To [o= 4[] o PSSR STRR I
ACKNOWIEAGEMENT......oiiiiiiie e Il
ADSTFACT......oeie e v
oaldiaaall \%
T 0]l oT0]] (<] 01 K TR VI
LiSt Of TabIES.....ooviiiiee e VI
LISt Of FIQUIES ..o IX
List of Abbreviatio..........cccco i XI
Chapter One: INtroduCtioncccooieiiiiiiiie e 1
1.1 INtrOdUCTION......cviie it 2
1.2 Problem Statement..........ccooeiiiiiiii e 2
1.3 Proposed SOIULIONccociiieiiiii e 3
1.4 AImM and ODJECtIVES.......cccoviiiiiic e 3
15 State of the art.........cccoiiiiiii e, 3
1.6 Methodologycccoeiiiiiiiiie e 5
1.6.1 Pre-ProCeSSINGuvveeiiieeiiiiee et e s ete e e see e sre e sare e s ennae e enae e 5
1.6.2 Features Selection and EXtractionccccocceevvieiiieeniieennnnnn, 5
1.6.3 ML logarithm training...........cccccoviive i, 5
1.6.4 ClasSifiCation PrOCESSccoiivriiieeiiiiiiieeeiiiiiee e e e sire e e e e sirree e e 6
1.7 ThesiS OULIINESoocuiiiiiiii e 6
Chapter Two: Literature REVIEW..........ccovvvivieeiiiiiiie e 7
2.1 BacCKgroundccccoiiiiiiiee e 8
2.1.1 Quick Overview of P2P Networkingcccccccevvivvveeeiiiinnnnenn, 8
2.1.2 Port based classification.............ccccveiiiiiiiiiie e, 9
2.1.3 Payload based Classificationcccccoocviveeeiiiiiiee e, 10

VI

2.1.4 Host-behaviour-Based Approach..........cccccoviiiiiiiiiiinnne, 10

2.1.5 Statistical Properties Classification............cccccevvveeiiiienenne 10
2.1.6 Background on Machine Learningcccccceeviveesivneennnn 10
2.1.6.2 Machine Learning AlgorithmS...ccceeeeeeeeeeieeiceeeencenneen 12
2.2 Related WOIKooeiiiiie it 13
Chapter Three: Methodology.........cccccoveeiiii i 18
3.1 Pre-ProCESSING ...cccvvveeiiiieeiiiieeeeiiieeeeseeeasireeesstae e e nraeeesnnaeeeennees 19
3.2 Pre-classifiCationccccoouveeiiiiies e 20
3.3 Features Selection and EXtractioncccccevvvveeiiineennne, 20
34 Convertto ARFF ... 21
3.5 SEIECEIMLA ... 21
3.6 Machine Learning a logarithm trainingcccccoeevveennee. 21
3.7 ClassifiCation PrOCESS........ccuuteiiiiieeiiiiieeiiiiieessieeeesieeessnaee e 22
3.8 Using snort to collect and pre-classify accurate data set....... 22
3.8.1 INStall SNOKt.....coiiiiiiiie 22
3.8.2 Create SNOrt direCtorycccocvveeiiiii i 24
3.8.3 Configure Snort (edit snort.conf)cccccevviieeiiiiee e, 25
3.8.4 Create UL ... 26
Chapter Four: Result and diSCUSSIONccccveeviiveeiiiee e 30
4.1 Overview of the prototype systemccccceeevviieeiiiiieeciiiieenn, 31
4.1.1 OFfliNe PhaSecoovviiiiiiiiie e 31
Training dataset 1........cccvveeiiiiiiiee e 35
4.1.2 Training Data SEt 2........cccocvveiiiiiiii e 38
4.2 Evaluation and Validation.............cccccoviiiniiiiiii e, 39
4.3 CONCIUSION ...ttt 40
4.4.0N0NE PRESE........tviiiiiiiie e 40
Chapter five: Conclusion and Recommendations.................cc.ee.... 45
5.1 CONCIUSTON ...eiiiiiiiiie e 46

VII

5.2 ReCOMMENAATIONS ...t e e 46

References

VI

TABLE NO.

4.1
4.2
4.3

List of Tables

TITLE

Final result by data set 1.

Final result by data set 2.

Evaluation metrics.

PAGE

38
39
39

List of Figures

FIGURE NO. TITLE PAGE
2-1 The structure of peer-to-peer networking. 8
2-2 Traffic Classification Approaches 9
3-1 Flow diagram for Classification Task. 19
3-2 Features used for ip traffic classification. 20
3-3 Weka explorer Classification window GUI. 21
3-4 snapshoot of select the interface listening to. 23
3-5 snapshoot of packet capture. 24
3-6 snapshoot of creating log file. 25
3-7 snapshoot of snort.conf edit to specific rules. 26
3-8 snapshoot of p2p rules. 27
3-9snapshoot of detecting p2p packet from trace of internet. 28
3-10 snapshoot of packet save as CSV. 29
4-1 snapshoot of data capture by WIRESHARK. 31
4-2 snapshoot of data capture as csv. 32
4-3 snapshoot of flow data capture as csv . 33

4-4 snapshoot of flow data capture include needed feature as csv. 34

4-5snapshoot of flow data pre-classified saved as CSV. 34
4-6snapshoot of flow data capture include needed feature as ARFF. 35
4-7 snapshoot training dataset as AEFF format. 36
4-8 snapshoot of the training process doing by WEKA. 37
4-9 snapshoot of cross validation process doing by WEKA. 38
4-10 snapshoot of select the interface listening to. 41

4-11
4-12
4-13

snapshoot of packet capture.
snapshoot of creating flow of packet

snapshoot of classifier result.

Xl

42
43
44

List of Abbreviations

ARFF Attribute relation file format

Cl conditional independent

CSV Comma separated values

DAC directed acyclic graph

DNS Domain name server

FTP File transfer protocol

DPI Deep Packet Inspection

HTTP Hyper text transfer protocol
IANA Internet Assigned Numbers Authority
IMAP Internet message access protocol
IP Internet protocol

IPTV Television Internet protocol

ISP internet service provider

ML Machine Learning

P2P peer to peer

QoS Quality of service

SMTP Simple mail transfer protocol
SVM support vector machines

Xl

TCP Transmission control protocol

VoD Video on Demand

VolP voices over ip

XMl

Chapter One: Introduction

[Chapter One] [Introduction]

1.1 Introduction

The volume of network traffic is continuously increasing because of
new multimedia applications (like peer to peer (P2P), voice over
internet protocol (VolP) and video) and advancements in Internet
technology [1]. In this type of situation, application classification
becomes very important for managing quality of service (QoS) in the
Network and security monitoring for various internet service providers
(ISP) and other governmental and private organizations. Accurate and
efficient application classification is the key stone of network
monitoring, and on the basis of the classification results network
administrators can design various policies to enhance the network
security. However, the challenging task to classify the applications
based on the traffic characteristics due to the massive data in high-
speed networks[2]. Although various methods for traffic identification
have been proposed, not a single method identifies all types of Internet
traffic. Research community is responded by looking particular at

application of Machine Learning (ML) method.
1.2 Problem Statement

Network administrators need to know what is going over the networks
in order to manage the traffic in accordance with the requirements.
ISP needs to know what real bandwidth consumes over any type of
application to enhance the QoS. Moreover, both of them need to
manage the bandwidth according to the application used. Nowadays,
there exist some of the harmful applications which are designed
intentionally to avoid detection. There for an accurate and fast

classification approach is highly required.

[Chapter One] [Introduction]

1.3 Proposed Solution

To design and implement prototype system that classifies the internet
traffic based on applications type using machine learning.

1.4 Aim and Objectives

The main aim of this project is accurately and fast classification of the
IP traffic using machine learning to the corresponding application
type, this step is an essential requirement towards the accurate and fast
control of bandwidth. The detailed objectives are:

To propose a lightweight and accurate internet traffic classification
scheme.

To select a suitable measurement approach as well as relative features

for the classifiers.
To propose an online traffic classifier.

1.5 State of the art

Traffic classification techniques can be broadly divided into port and
packet payload based classification, behavioral identification
techniques, and statistical measurement based approaches [3]. Port
based classification techniques are now considered obsolete given the
frequent obfuscation techniques and dynamic range of ports used by
applications, packet payload inspection methods remain relevant
primarily due to their high classification accuracy. Payload based
classifiers inspect packet payloads using deep DPI to identify
application signatures of packets. Although the resulting classification
Is highly accurate it also presents significant computational costs as
well as being error-prone in dealing with encrypted packets. In
comparison, behavioral classification techniques work higher up the

networking stack and peruse the total traffic patterns of the end-points

[Chapter One] [Introduction]

(hosts and servers) such as the number of machines contacted and the
protocol used to identify the application being used on the host.
Behavioral techniques are highly promising and provide a great deal
of classification accuracy with reduced overhead compared to payload
inspection methods. However, behavioral techniques focus on end-
point activity and require parameters from a number of flows to be
collected and analyzed before successful application identification.
With increasing ubiquity of flow level network monitoring which
presents a low-cost traffic accounting solution, specifically utilizing
NetFlow due to scalability and ease of use, statistical classification
techniques utilizing flow measurements have gained momentum [4].
Statistical approaches exploit application diversity and inherent traffic
footprints (flow parameters) to characterize traffic and subsequently
derive classification benchmarks through data mining techniques to
identify individual applications. Statistical classification is considered
light-weight and highly scalable from an operational point of view
especially when real-time or near real-time traffic identification is
required. While traffic classification in the network core is
increasingly challenging and seldom implemented, application flow
identification at the edge or network ingress allows operators in
shaping the respective traffic further upstream [3]. Statistical flow
based traffic classifications however, due to minimal number of
available features in a typical flow record such as NetFlow, report low
classification accuracy and increasingly rely on additional packet
payload information to produce effective results [5]. The present work
picks up from this narrative and solely utilizes NetFlow attributes

using two-phased machine learning (ML), incorporating a

[Chapter One] [Introduction]

combination of unsupervised and supervised to achieve high accuracy

in application traffic classification.
1.6 Methodology

The method of Machine Learning traffic classification techniques
involves following steps. First traffic is captured with the help 5-tuple
(source and destination port, source and destination address and
protocol) and traffic flow is created , then flow statistical properties
are calculated in term of the each feature, to create the statistics data
set .The feature are called attribute. The attributes of network traffic
flow are calculated over more number of packets (such as minimum or
maximum packet sizes, variance of packet length, flow durations,
Direction of packet and inter arrival times of packets), then Machine
learning classifier is trained on features that are calculated from flow
that have labeled classed, then Machine learning algorithms are
applied for classification of unknown network traffic using previously
labeled classes[6].

After careful analysis of the system has been identified to have the
following modules

1.6.1 Pre-processing

Here the IP packets crossing across a network is collected and used for
constructing the flows by examining the header of packets.

1.6.2 Features Selection and Extraction

Here statistical features are defined and extracted to remove irrelevant
and redundant features from the feature set.

1.6.3 ML logarithm training

Here select the ML algorithm and training by using different data set

to reach optimizes training.

[Chapter One] [Introduction]

1.6.4 Classification process

The core of the system is classification process depend on apply ML a
logarithm to unknown data set to find the class name of applied
dataset.

1.7 Thesis Outlines

The rest of the work has been divided into five chapters; chapter 2
presents the literature review for internet Traffic classification and
critically analyze the previous and current techniques used. Chapter 3
describes the designed method; chapter 4show the implementation of
the proposed method, explains the results and gives the corresponding
discussions. Moreover, it also evaluates the validated the proposed
framework, and carries out performance comparison. Finally in
Chapter 5, concluding the work and propose a future research

directions.

Chapter Two: Literature Review

[Chapter Two] [Literature Review]

2.1 Background

This chapter presents some important aspects related to network
traffic classification, which are necessary to understand the content of
this thesis.
2.1.1 Quick Overview of P2P Networking

Data and information exchange or content distribution can be in
either client-server model or in Peer-to-Peer (P2P) model in addition to
hybrid approach. In a P2P network, every work station can play the role

of server as well as the client (as shown in figure2-1) below [7].

Individual user @

Indl'u'ndual usear ‘ ‘

Individual user Individual user

Figure 2-1: The structure of peer-to-peer networking. source:[8]

As seen in figure 2-1 above the movement of data in P2P can be
from several peers to one client [9].
Recently many application based on P2P infrastructure, all are considered
as bandwidth consume applications such as BitTorrent, IPTV , PPLive ,
VoD and others. As P2P networks facilitate file transfer and sharing add

some disadvantages such as Risks of downloaded content (when a file is

8

[Chapter Two] [Literature Review]

downloaded using the P2P software, it is not possible to know who
created the file or whether it is trustworthy), P2P software is vulnerable
to bugs [10].

Thier are many techinques used for internet traffic classification as

shown in Figure2-2 below ,descrip in brief in next section.

TRAFFIC CLASSIFICATION

_— Supervised

Machine Learning Unsupervised

Heuristics based

Flow Statistics

Figure 2-2: Traffic Classification source: [11].

2.1.2 Port based classification

In this method, the application type can be identified using port
numbers registered in IANA list. This method considered simple and
easy to implement classification of applications for online and real time
traffic. Nowadays it has shown lower accuracies (50% - 70%) because
some applications use dynamically port number (port hopping), some
application use other application ports (tunnelling). by above reason port

number method become ineffective [11].

[Chapter Two] [Literature Review]

2.1.3 Payload based Classification

In this scheme, the application type can be identified by using
contents of the packet payloads by extract signature from payload[12].
The ruslt show problem of port based method solved morever given high
accursy in resent internet traffic, but fail in encryption communication
moreover take more time to extract signatures , need high resource in
computation and the privacy laws may not allow administrators to
inspect the payload [13] .
2.1.4 Host-behaviour-Based Approach

In this method define the type of application by extract connection-
level patterns of the hosts observing at transport layer [14]. The main
advantage of this method is that there is no need for packet payload, but
cannot apply the method in online near real time classification [15].
2.1.5 Statistical Properties Classification

In this scheme the application type define by using the statistical
properties like inter-arrival time, packet length and flow duration to
classify the traffic. Solve all the problem mentions above and gain high
accurse depending of the number of features [16] .
2.1.6 Background on Machine Learning

Machine learning is the subset of algorithms developed in the
discipline of Artificial Intelligence and these algorithms use different
features to learn a set of rules in order to identify different classes [17].
Machine learning has wide range of applications such as search engines,
Image screening, marketing, forecasting, medical science, text and hand
writing are few among many. The input of a machine learning process is

a dataset of instances or examples (training data set) these instances are

10

[Chapter Two] [Literature Review]

statistical parameters in case of networking. Output of such process is the
knowledge learnt by the machine[18].
Types of Learning

There are two major types of machine learning in context of network
traffic classification. In this research the focus will be on supervised
learning, for understanding brief about two types present next.
Unsupervised (clustering)

In this technique the input does not need labeled data. It is finds a
way to naturally group the data sets also called clusters, but still these
clusters needs to be labeled by an expert. Earliest work done on
unsupervised technique uses Expectation maximization algorithm for IP
traffic classification based on application[19]. Issues with unsupervised
learning are that clusters do not map 1:1to applications, in ideal case
number of clusters formed are equal to the number of application to be
mapped, but practically that is not the case. The number of clusters is
often greater than the number of applications that is one single
application might dominate over the number of clusters or application
might spread over but do not dominate any of the clusters[20].
Supervised (classification)

It creates knowledge based structures which can help to classify the
new instances of different classes. Input instances are provided during the
learning processes which are pre-classified into classes and output of
such a process depends on these generalized instances[21].The dataset
provided for training is labeled and at this stage of process the time does
not matter that is how long it takes to process the sampled flows. More

the numbers of attributes or feature more will be the time to process them

11

[Chapter Two] [Literature Review]

and better will be the accuracy of classifier, different algorithm have
different set of rules developed from the provided dataset and their
performance[22]. The most common machine learning algorithms
applied to traffic classification are C4.5 Decision Tree, Naive Bayes,
Naive Bayes Kernal Estimation, Bayesian Network K-NN, Neural
network and SVM (support vector machines). Most successful results
have been obtained from C4.5 and SVM[23].

2.1.6.2 Machine Learning Algorithms

Here for understanding let us have a look on couple of most used
algorithms.

e C 4.5 Decision Tree

It is an algorithm developed by Ross Quinlan in 1992 as an
extension of ID3.

C4.5 algorithm uses and generate tree based structure which can be
used for Classification that is why it is also called statistical algorithm. It
uses concept of entropy theory for classification for example we have
data set S= {sl, s2....... sx.} where sl, s2sx Represents the training
samples of the data set which are characterized by different features, let
say {X1, X2...} are the corresponding features consisting target class.
Now C4.5 selects particular feature of the data set on each node, which is
used to split these samples into different classes. The idea of selecting the
feature depends on the normalized gain information from the samples,
feature with the highest normalized gain is selected and the decision is
made[24]. Some advantages of using decision trees are:

e Self Explanatory and easy to follow

e Can handle both numeric and nominal input attributes

12

[Chapter Two] [Literature Review]

e Can handle a data set with many errors including missing values

However, most decision trees require the target variable to only
have discrete values; they tend to perform well with non complex
attributes. Furthermore, they are very sensitive to the training data sets
any corrupt values close to the root node can change the whole structure
of the tree [25].

e SVM (Support vector Machine)

SVM are powerful algorithms used to solve classification and
regression problems. In order to classify the algorithm transform the
input data to a high dimensional hyper plane, where it becomes more
separable compared to the original form[26].This is done by using non
linear kernel functions, and then linear classifiers are used to construct
maximum margin hyper planes to separate the different classes in
training data. Two hyper planes are constructed both sides of the hyper
plane separating the data which tends to maximize the space between two
parallel hyper planes. The assumption made is larger the distance
between parallel hyper planes the better the generalization errors of the
classifier will be. SVM’s learns through historic cases in the form of data
point which contribute to very accurate classification, another advantage
of these algorithms is they can handle missing values and noise
effectively. However, these are complex and demands high memory
requirements [27].

2.2 Related work

Jayeeta Datta, Neha Katariaand and Neminath Hubballi in (2015)
propose a novel technique based on application behavior. Used
application semantics to identify a set of features which are subsequently

13

[Chapter Two] [Literature Review]

used by a classification algorithm to identify the class to which a packet
belongs. Experimented with a dataset collected for Google Hangout and
reported its detection performance using few classification algorithms
(Naive Base, j48 and AdaBoost) classification algorithms to assess the
detection performance[28].

Babak Rahbarinia , Roberto Perdisci , Andrea Lanzi and Kang Li
in (2014) present PeerRush, a novel system for the identification of
unwanted P2P traffic PeerRush goes beyond P2P traffic detection, and
can accurately categorize the detected P2P traffic and attribute it to
specific P2P applications, including malicious applications such as P2P
botnets. PeerRush achieves these results without the need of deep packet
inspection, and can accurately identify applications that use encrypted
P2P traffic. Implemented a prototype version of PeerRush and performed
an extensive evaluation of the system over a variety of P2P traffic
datasets. The results show that PeerRush can detect all the considered
types of P2P traffic with up to 99.5% true positives and 0.1% false
positives. Furthermore, PeerRush can attribute the P2P traffic to a
specific P2P application with a misclassification rate of 0.68% or less
[29].

ValentinCarela-Espa™nol,, Pere Barlet-Ros, and JosepSol’e-Pareta
present classification method based on machine learning process without
any human intervention using Net flow V5 to provide the features and
C4.5 method as decision tree. The evaluation dataset consists of six full-
payload traces collected at the Gigabit access link of the Technical
University of Catalonia. The traces are 15 minutes long with

approximately 3 millions of unidirectional sanitized flows for each trace.

14

[Chapter Two] [Literature Review]

The average overall accuracy for the complete dataset is about 90%. The
maximum overall accuracy is 93,6%, which corresponds to the trace used
in the training phase. The minimum overall accuracies are 86% and
88,5%. These lower results belong to the traces collected at night, when
the mix of traffic is more different than the trace used in the training
phase [30].

Hardeep Singh evaluated two different unsupervised machine
learning algorithm K-means and Expectation maximization for different
types of network traffic application. Results show that K-means have
higher accuracy then EM for all class of application. K-means have the
ability to produce cluster that have single traffic class and most of the
connection are placed in few clusters. EM also produced good quality of
clusters for various traffic applications. Each algorithm tries to make
cluster according to single application type. This approach gives good
accuracy and overcome the drawback of port based classification.
Moreover algorithm does not require pre classified set of data as a
training. These techniques can also be applied to real time classification
such as VolIP applications and streaming multimedia type of applications
that require special Quality of Service[6].

AmjadHajjar, JawadKhalife and JesusDiaz-Verdejo propose a novel
blind, quintuple centric approach by exploring traffic attributes at the
application level without inspecting the payloads. The identification
model is based on the analysis of the first application-layer messages in a
flow (quintuple), based on their sizes, directions and positions in the
flow. That using the proposed method it is possible to correctly classify
up to around98% of the TCP flows and 99% of the UDP sessions by only

15

[Chapter Two] [Literature Review]

analyzing the first 3 to 5 messages. The classifier uses the sizes of the
initial messages exchanged between the hosts involved in the
communication as inputs. This work focuses on the messages, not the
packets [31].

Jeffrey Erman and Martin Arlitt and AnirbanMahanti considers
two unsupervised clustering algorithms, namely K-Means and DBSCAN,
that have previously not been used for network traffic classification
evaluate these two algorithms and compare them to the previously used
Auto-Class algorithm, using empirical Internet traces. The experimental
results show that both K-Means and DBSCAN work very well and much
more quickly than Auto-Class. Our results indicate that although
DBSCAN has lower accuracy compared to K-Means and Auto-Class,
DBSCAN produces better clusters [32].

Yang Hongl, Changcheng Huangl, Biswajit Nandy2 and Nabil
Seddigh (2015) propose a novel iterative-tuning scheme to increase the
training speed of the classification algorithm using Support Vector
Machine (SVM) learning .Performance evaluation demonstrates that the
proposed iterative-tuning SVM exhibits a training speed that is two to ten
times faster than eight other previously proposed SVM techniques found
in the literature, while maintaining comparable classification accuracy
[33].

16

Chapter Three: Methodology

[Chapter three] [Methodology]

THE DESIGN METHOD

This chapter will discuss the design methodology for classification
task; furthermore it will highlight the approaches used to achieve the aim
by using two phase online and offline (more details about the two phases

in chapter 4). Step by step flow chart diagram describe traffic
Classification method (as shown in figure3-1).

_ —

Pre- Features Convert to Select the
classification extracted ARFF » MLA

4

MLa

Classification ‘ Classification process
results

-

Figure 3-1: Flow diagram for Classification Task.

logarithm
training

3.1 Pre-processing

Data collection which is usually called pre-processing, Here the IP
packets crossing network is collected and used for constructing the flows
by examining the header of packets. A flow can be define as successive
IP packets having the same 5-tuple: source IP, source port, destination IP,
destination port, and transport layer protocol.

19

[Chapter three] [Methodology]

3.2 Pre-classification

Is a process of adding a class feature to the extracted data, the last
column in data part is class and represents the values for each row. There
could be more than two values for class attribute but it depends on the
type of data or classification used. In reference to this study wonted to
classify the traffic as http, p2p and video. For this purpose it has three

9% ¢

class nominal values “p2p”, “http” and “video”.
3.3 Features Selection and Extraction

Feature selection process is to remove the irrelevant or redundant
feature from candidate feature set. Select features which have unique
properties among different applications. It is important to know the aim
wants to achieve, for example classification between different
applications requires different features, to be extracted. The main task
here is to select the attributes which have different values of p2p, http

and video as shown in figure 3-2 below.

source port

diestination port

total number of byte

avarage packet size
avarage interarrival time

tcp flag

protocol
Figure 3-2: Features used for ip traffic classification.

20

[Chapter three] [Methodology]

3.4 Convert to ARFF

Here convert the flow from excel accepted format (CSV) to WEKA
accepted format (ARFF).
3.5 Select MLA

Here applying the training data set with selected feature to many
MLA in WEKA and compeer between them by the time of building the
model and over all accuracy to find the stabile one with the station.
3.6 Machine Learning a logarithm training

Apply data set to select MLA. There are three different ways
provided by WEKA GUI to train a particular classifier to understand this

process figure 3-3 has been provided below.

Clessifier output

5
£7 Use training sct ¢

¢~ cupplied tect st
% Crossovaidation Folds |10
{~ Percentage spit ,@ O 1]

More options...

Classifier QOutput

{Mom) dass

Start |

Result list (right—dick for options)

Built Miodel

Figure 3-3: Weka explorer Classification window GUI.

The above figure is a screen shot of Weka explorer GUI, after

choosing the classifier there are training and testing options. In order to

21

[Chapter three] [Methodology]

train the classifier one can provide a separate training set which will
build a trained model. Then one can provide a test set to test the already
built model, this is one way of training and testing.

Another way of doing the same procedure is using cross validation,
by default the value of cross validation is 10 it means that WEKA will
split the training data in 10 equal parts and use 9/10 for training and 1/10
for testing the classifier, the process repeats 10 times until all the training
sets has been used to train and test the classifier and output of the process
it the best average model. The third option is the percentage split, the
specified value will split the data accordingly for example if the
percentage value is selected 66 percent then WEKA will use 66 percent
of data for training the classifier and 34 percent for testing the

performance of trained model.
3.7 Classification Process

In this phase the data is un known class when the data become over
the MLA and MLA doing the processing can decide the class of the data
and send to the control module.

3.8 Using snort to collect and pre-classify accurate data

set
3.8.1 Install Snort

To verify that Snort is installed and running correctly we run a
couple of commands from the Command Prompt. Open a command
prompt as Administrator, switch to the "C:\Snort\Bin" directory and run
"snort.exe -W" to see a list of interfaces available to Snort. The following

figure 3-4 is output from the command on Windows 7.

22

[Chapter three] [Methodology]

El Administrator: Command Prompt |iﬂ|ﬁj

s~Snort~binX>snort.exe —UW

—=> Bnort? L=

Uersion 2.2 _8_3-WIN32 GRE <(Build 383>

By Martin Roesch & The Snorxrt Team: http-. uvuu_snort.ovrgscontactiiteam
Copyright <C> 28014—2015 Cisco andsor» its affiliates. A1l »ights reser

Copyright <C> 19298-2013 Sourcefire. Inc.. et al.
Using PCRE werxsion: B.18 2818068625
Using ZLIEB wverxrsion:= 1.2_.3
Phy=sical Address IFPF Addre=ss Device Mame Description

i A:A0:00:606:686:600 ARAA: A00A - feBA - 00OA - 0000 - AAAA:c1ff tdab51l “~Device™
MPF_<{1D2A?347-B2BC—462?F-A321-F3EA46FELSC?5%> Atheros L1C PCI-E Ethernet Contr

ollex
A:88: 98 : 88 - 8@ - 3l AR : AR : feB0 - 00EA:-A0A - AAAA:-5cbHbc 1 bef “Device™

2 5]
MPF_<{6218D7C3—821D—<45DE—81E1 4807186218272 Microsoft

CcSnortsbinl

Figure 3-4: snapshoot of select the interface listening to.

As you can see, the computer has many interfaces. If want to use
Snort as a sniffer and watch all traffic on first interface, could issue the
command "snort.exe -i 1 -v". This command would run Snort in verbose
mode (-v) and have it listen on interface 1 (-i 1). It would also dump the
header of each packet to the screen. Note: You can use CTRL-C to

interrupt the running program as shown in figure 3-5.

23

[Chapter three] [Methodology]

Bl Administrator: Command Prompt | — e
0 0 E E

m

Figure 3-5 snapshoot of packet capture.

Let's start Snort as a sniffer to display packet headers and contents.
The command want to enter at command prompt is "snort.exe -i 1 -vd".
To stop sniffing packets, break out of the program by pressing Ctrl-C.
3.8.2 Create Snort directory
To create directory can use the next command and the output show
in figure 3-6.
C:\>snort -vde -l c:\Snort\log -i2

24

[Chapter three] [Methodology]

e+ C:AWINDOWSAsystem 3 2vcmd.exe - snort -vde -1 c:YSnortiog -i2

C:~snort —vwde —1 c:“\Snortslog —1i2
Running in packet logging mode

——== Ipitiali=zing Snort ==—
Initializing Output Plugins?
Log directory = c:~Snort~log
Initializing Metwork Interface “Device“NPF_<{4B319C62-—2381-45ED-A725-4
Decoding Ethernet on interface “Device~MPF_{4B317C6Z2-7381-45ED-A725—4

——== Inpitialization Complete ==—

—#} Snopt? (=

Uersion 2.8.6-0DBC—MySQL-FlexRESP-UWIN32 IPve GRE (Build 38
By Martin Roesch & The Snort Team: http:sswuw.snort.org.ssn
Copyright <C» 1998-2010 Sourcefire,. Inc.. et al.

Uzing PCRE version: 7.4 ZEA7-09-21

Using ZLIB version: 1.2.3

Mot Using PCAP_FRAMES

Figure 3-6 snapshoot of creating log file.
3.8.3 Configure Snort (edit snort .conf)

Configuration snort to use In packet logger mode, the program will
log packets to the disk by using below command And then Save changes
to snort.conf as shown in figure 3-7.

1 [Asnort\etc\snort .conf

1 [J Line #45 ipvar HOME_NET any — make this match your internal
network;

1 [0 Line #48 ipvar EXTERNAL_NET '$HOME_NET

) [J Line #104 var RULE_PATH rules

) [J Line #109 var WHITE_LIST_PATH rules

) [J Line #110- var BLACK_LIST_PATH rules

1 [0 Line #528&output log_tcpdump: tcpdump.log

1 [0 Line#52%utput alert_csv: marwa.csv default

[J [0 Line #543 - delete or comment out all of the “include

$RULE PATH” lines except:

25

[Chapter three] [Methodology]

1 [include SRULE_PATH/local.rules
[[include SRULE_PATH/snort.rules — add after local.rules

& casnortietc - Notepad++ [A o] D
T — dgLagg Settings Macro Run Plugins Window ? X
cHERRGR] 4 Wik D e| i@ 3|Lﬁ:|:=-3|§7'ﬂ’jﬂu CIORORER] =)

Hlsnon :nnfﬂ'Eappdataﬁmlas 3| B whtelst (3 E bizck st (3| B browser-chrome ries (3] B badtrafio s (3| Eprotoceltp s (3] B marwa.cov 1476735724 (3| B nies &3|H ries €3] Hb her s (3| E browsersl[+ [

542 # site specific rules

543 include $RULE_PATH\local.rules

544

545 # include $RULE_PATH\app-detect.rules

546 #include SRULE_PATH\attack-responses.rules
547 #include $RULE_PATH\backdoor.rules

542 @ #include $RULE PATH\bad-traffic.rules

549 ¢ include $RULE_PATH\blackli,
550 #include $RULE_PATH\botnet-
551 include $RULE PATH\brows 3
552 include SRULE PATH\brow .rules
553 # include SRULE_PATH\I
554 include $RULE_PATH\brows
555 # include SRULE PATH\bro =.rules
556 # include S$RULE_PATH\bro -webkit.rules
557 #include $RULE_] PATH\chat es
558 #include SRULE_PATH\content- rapla:_-.a rules
552 #include $RULE_PATH\ddos.rule

560 #include $RULE_PATH\dns.rule,

561 #include SRULE7PA1H\dns.ru1es

562 #include $RULE PATH\experimental.rules

include $RULE_PATH\exploit-kit.rules
include SRULE_PATH\exploi
include SRULE_PRTH\Fil
include $RULE_PATH\fil
567 # include $RULE_PATH\fil
#
#
#
#

include $RULE_PATH\Fil,
include $RULE PATH\fil
include SRULE_PATH\fil,
include $RULE_PATH\file-other.rules

572 # include $RULE_PATH\file-pdf.rule

573 #include $RULE PATH\finger.rule

574 #include $RULE PATH\ftp.rule 2
< 1,] I3

Normal text file length : 27000 lines : 687 Ln:551 Col:40 Sel:0|0 UNIX UTF-8& INS

A

Computer Network

Figure 3-7 snapshoot of snort.conf edit to specific rules.
3.8.4 Create rule

Default Snort installation doesn’t contain any rules/signatures.
Snort rules can be created by the user.

A rule composed of two distinct parts: the rule header, and the rule
options. The rule header contains the rules action, protocol, source and
destination IP Addresses and net masks, and the source and destination
ports information. The rule option section contains alert messages and
information on which parts of the packet should be inspected to
determine if the rule action should be taken. Here is a sample rule as
shown in figure 3-8.

26

[Chapter three] [Methodology]

P2p rule

#by Christopher Campesi

alert tcp SHOME_NET 1024: -> $EXTERNAL_NET 1024: (msg:"ET
P2P Ares Server Connection™; flow:established,to_server; dsize:<70;
content:"r|be|bloop|00|dV"; content:"Ares|00 0Oal"; distance:16;
reference:url,aresgalaxy.sourceforge.net;
reference:url,doc.emergingthreats.net/bin/view/Main/2008591; class type

-policy-violation; sid:2008591; rev:3;) .
[CASnortrules\p2p.rules - Notepad++ [Administrator] o0

File Edit Search View Encoding Language Settings Macro Run Plugins Window 7 X

sHHERLA 4 ket ¢ BE|ISIERER0 | SEDEE

[Elchangz log | = p2nnies B |Esrmrtm ﬂlEsrmrt conf BlEappdaaﬂ rules ﬂl B white list BlEh\ack list ﬂl B browszrchrome niles E!| Bl bad+reffic les Ei| Bl protocoltp niles alEmarwa sV 14767397246]' [E browsarfirefox nies ﬂl Bbrowse([«[»]
7t o

2
3 # This file contains (i) proprietary rules that were created, tested and cercified by

4 # Sourcefire, Inc. (the "VRT Certified Rules") that are distributed under the VRT M
5 # Certified Rules License Agreement (v 2.0), and (ii) rules that were created by

6 # Sourcefire and other third parties (the "GPL Rules") that are distributed under the

7 # GNU General Public License (GPL), v2.

g 3

9 # The VRT Certified Rules are owned by Sourcefire, Inc. The GPL Rules were created

10 # by Sourcefire and other third parties. The GPL Rules created by Sourcefire are

11 % owned by Sourcefire, Inc., and the GPL Rules not created by Sourcefire are owned by

12 # their respective creators. Please see http://www.snort.org/snort/snort-team/ for a

13 # list of third party owners and their respective copyrights.

14 ¢

15 # In order to determine what rules are VRT Cervified Rules or GPL Rules, please refer

16 # to the VRT Certified Rules License Agreement (v2.0).

17 #

18 g L
19 # P2P RULES I
R

21 #alert tcp SHOME NET any -> SEXTERNAL NET 1214 (msg:"Kazaa port in use"; flow:to_server;established; sid:10503; rev:l;)

22 #alert tcp SHOM:EJ‘ET any -> SEX‘IERNALﬁN‘ET 1214 (mag:"Kazaa client activicy"; flow:from client,established; content:"GEI"; content:"KazaaClient"; classtype:policy
QSO#alart tcp SHOMZE_N'ET any -> any SHTTP_PORTS (msg:Bit Torrent Client download"; uricontent:"BitTorrent"; uricontent:").exe"; classtype: bad-unknown; sid:10559; rev
24 falert tcp $HOME NET any -> SEXTERNAL NET any (msg:"Bit Torrent client usage"; content:"|00 00 40 09 07 00 00 00|"; offset:0; depth:4; classtype: policy-violatior
25 #Alert tep SHOM:E_N‘ET any -> sEX'IERNAL_NET any (meg:"p2p Gnutella client request"; flowito_server,established; content:"GNUTELLR OK"; depth:40; classtype:policy-vi
QEG#Alart tecp $HOME NET any -> SENTERNAL NET any (msg:"p2p Gnutella client file connection"; flow:from client,established; content:"K-Gnutel"; classtype:policy-wviole
27 alert tcp any any -» any any (msg:"testing p2p!": sid: 1000002:)

28 falert tcp SHOME NET any -> SEXTERNAL NET SHTTP_PORTS (msg:"ET P2F Bittorrent P2P Client User-Agent (Bittorrent/5.x.x)"; flow:to_server,established; content:"Usex
29 alert tcp $HOME NET any -> $EXTERNAL NET any (mag:"ET P2P BitTorrent Traffic"; flow: established; content:"|0000400907000000|"; depth:8; reference:url,bitconjurey
30 falert top $HOME NET any -> $EXTERNAL NET $HTTP PORTS (msg:"ET P2P BearShare P2P Gnutella Client HTTP Request "; flowito_server,established; content:"/gnutella/";
31 #alert tcp any any -» any 21 (msg:"Telnet NOB"; content:"|0000400907000000|"; rawbytes;)

32 #alert tcp any any -» any 80 (content:"cgi-bin/phf": offset:4; depthif:)

33 falert tcp any any -> any any (content:"ABC"; content:"EFG"; within:10;)

< I,] 3

Normnal text file length:3355 lines: 33 Ln:6 Col:86 Sel:0|0 UNIX UTF-8 INS

; Desktop E F i!g ":rﬂ . g g= J ; -) Gou - 3 10:57 AM

= 3 - —_—
Libraries Computer Network Control Pa... RecycleBin Control Pa.. Free Movi.. MozillaFir.. Opera RealPuyyy.. sudanim.. VLC medi.. Zain Conn... Wednesday

!! !! f Ol _E_) mrlwzomu

Figure 3-8 snapshoot of p2p rules.
And then extracting data set as shown in figure 3-9 And save the

ruslt in directory in CSV format. as shown in figure 3-10.

27

[Methodology]

[Chapter three]

= g o) =

BN Administrator: Command Prompt

&= &= & =

Al

] e o S O

= 5 5w &

aplir af il

ool R R R B R f)

o S S s s s s s =

o

oo oo &

= = &

o o S

o 5

ol Bl

Il

= =
= =

=g et ey

= = =

= = =
= = =
= = &=

= = &=

o 5 5 5 5

kol B B B R B s

aplliw)

Figure 3-9 snapshoot of detecting p2p packet from trace of internet.

28

[Chapter three]

[Methodology]

Home | Inset Pagelayout Formulas Data Review View
B Calibri S -a | -] | Shwrap est General - j‘ti ﬁ l;% e IE £ Autosum - ? ﬁ
~— 23 Copy = - & [&] Finn~
" Granarinn (B2 8] 5 0= 4] oo 5150 pA 8) oo St G | o oo | S0 3
Clipboard ir) Font ir) Alignment [r} Number ir) Styles Cells Editing
QA9 s |
i€ | 05/13-02:42:05.812139
A B c D E F G H 1 J K L M N) [) a R s I ulg
1 [os/1: 1 1000002 0 testing p2 TCP 108585 54042 74.125.13¢ 80 00:16:E0:C00:00:5E:004598 ***AP*** OxDAEES7 OXADEIDCEB 0XF696 63 0 130
2 |05/13-02:4 1 1000002 0 testing p2 TCP 10.8.4.156 49657 5.144.132. FEEATTRT ()F73828E OXDGAI2DEA 0x4125 127 0 25
3 |05/13-02:4 1 1000002 0 testing p2 TCP 161139.1¢ 49179 10.19.8.5 HEEpERS (x8D3022,0x270CF316 0x8000 124 0 31
4 |05/13-02:¢ 1 1000002 0 testing p2 TCP 108585 54083 74.125.13¢ ++£pp*** (x9133D8F 0XBLCSBAZS 0xF707 63 0 13
5 |05/13-02:¢ 1 1000002 0 testing p2TCP 108585 54192 173.194.2; eesEeGE OXEDADGCOXO 0x2000 62 0 13
6 |05/13-02:2 1 1000002 0 testing p2 TCP 10.19.85 554 161.139.1¢ #E£pp*** (x270CF310x8D302275 OXFFFF 63 0 aa
7 |0s/13-02:2 1 1000002 0 testing p2TCP 5.144.132. 20 10.8.4.156 **5pp=** OXEEFE9TF 0X25E281CC 0x78 33 0 19
8 |05/13-021¢ 1 1000002 0 testing p2 TCP 5.144.132. 80 10.8.4.156 50995 00:23:89:A00:16:E0:C0X562 =="A==** OXEEFEBBIOX25E281CC 0x78 33 0 19
9 05/13-02:¢ 1 1000002 0 testing p2 TCP 10.8.4.156 50995 5.144.132. 80 00:16:E0:C00:00:5E:00%46 **“A**** 0x25E281(OXEEFEBBB7 0x4125 127 0 5
10|05/13-02:¢ 1 1000002 0 testing p2 TCP 10.8.4.156 50995 5.144.132. 80 00:16:E0:C00:00:5E:00%46 ***AT*** 0y25E281(OXEEFECOD3 0x4125 127 0 s
11 |05/13-02:¢ 1 1000002 0 testing p2 TCP 108745 56372 69.171.23¢ 80 00:16:E0:C00:00:5E:00x40 *FATF** OxE10F0810xAT520FBY 0x3FBC 127 0 a4
12 |05/13-02:¢ 1 1000002 0 testing p2 TCP 1089186 56352 108.161.1¢ HEEpEES 0x37DAFBI0XFBB23FOD 0x4029 127 I
13|05/13-02:¢ 1 1000002 0 testing p2 TCP 216219.8 443 10.8.3.42 HEEAPTH* (xBAITATF0XADISIS3L 0x1E9C 42 0 32
14 |05/13-02:¢ 1 1000002 0 testing p2TCP 1085148 64861 125.56.21¢ FEERERS (xA24DIE OX168CFS94 0x410C 127 0 208
15 |05/13-02:¢ 1 1000002 0 testing p2 TCP 1089118 50760 54.239.15¢ e pEEES (x260DDC 0XICIBFSL 0x4029 127 0 1
16 05/13-02:¢ 1 1000002 0 testing p2TCP 103.21.81. 20 10.8.6.121 #£SAP=** (x130195¢ OX3CATBEET 0x36 40 0
17 |05/13-02:¢ 1 1000002 0 testing p2 TCP 23.23.138. 443 10.8.4.26 =*=p=*== (xDAACSE OXCBDF6TFC 0x250 £ 0 64
18 05/13-02:¢ 1 1000002 0 testing p2 TCP 23.23.138. 443 10.8.4.26 ===p=*== (xDAACSE OXCBDF734C 0x250 34 I
1905/13-02:¢ 1 1000002 0 testing p2 TCP 23.23.138. 44310.8.4.26 43595 00:23:89:A00:16:EC0X46 **TATT* OXDAACIEOXCBDFSDA4 0x250 " 0 64
20 05/13-02:¢ 1 1000002 0 testing p2 TCP 23.59.191. 44310.8.9.148 52195 00:23:89:A00:16:EG:COXIEL *FFAP*** 0x53E0CH: 0xDI3EDEED 0x22CC 41 0 1%
21|05/13-02:¢ 1 1000002 0 testing p2 TCP 208.117.2 80 10.8.6.73 FEEATERS 0x14A49EC 0X6ACSEA02 0x112 45 0 9%
W4 M| marwa ¥ 4 Al
Ready |

135 0 008 s U CE

Figure 3-10 snapshoot of packet save as CSV.

Then create a flow of packet by excel sheet and extracted the

needed feature and remove unneeded one by the same step of offline

phase in chapter four.

29

Chapter Four: Result and discussion

[Chapter four]

[Result and discussion]

4.1

Overview of the prototype system

Building two prototype of the system one for offline used to

determine the feature needed and ML algorithm used with accepted

accuracy then build the online one according with needed details.

4.1.1 Offline Phase

Build prototype of the system using WIRESHARK to capture the

traffic as shown in figure 4-1.

=] Bepression.. Clear Apgly s

e

Protocal Length
S5DP
ARP
DHCPVE
ARP
ARP
ARP
ARP
ARP
ARP
NBNS
ICMP
S5DP
NBNS
IcMP
ARP
IcMP
ICMP
ICMP
ICMP
ICMP
ICMP
ICMP
ARP

11111010 00101000 10010010

00000000 01000101 00000000
00000000 00000001 00010001
11111101 11101111 11111111
01101100 00000000 10001101
01000101 01000001 01010010

Deafile 1

AL
Jz....E.
yEoLo
N S P
$M-SEAR

175
60
157
60
42
42
42
60
60
92
74
175
92
74
42
74
74
74
74
74
74
74
60

‘ facebook.arff [Wireshark 2.0.1 (v2.0.1-0-g592a380 from master-2.0)]
File Edit View Go Capture Analyze Statistics Te\ephun! Tools Internals Help
00 4E L BEXS Qe DT L Qaan @Em % 8
Filter:
No. Time Source Destination
1 0.000000 172.27.161.253 239.255.255.250
2 0.097942 HewlettP_28:4e:72 Broadcast
3 0.134520 feB0: :d5f6:bd54:865Ff02::1:2
4 0.212004 HewlettP_5a:95:ef Broadcast
5 0.223375 HewlettP_d2:90:4e D-LinkIn_b6:8c:78
6 0.223422 HewlettP_d2:90:4e CiscoInc_f6:d4:a8
7 0.223459 HewlettP_d2:90:4e Broadcast
8 0.224319 D-LinkIn_b6:8c:78 HewlettP_d2:90:4e
9 0.225175 CiscoInc_f6:d4:a8 HewlettP_d2:90:4e
10 0.246823 172.27.162.246 172.27.163.255
11 0.254813 172.27.160.191 172.27.160.148
12 0.313379 172.27.163.132 239.255.255.250
13 0.349413 172.27.162.246 172.27.163.255
14 0.395292 172.27.160.191 172.27.160.14
15 0.395342 HewlettP_d2:90:4e Broadcast
16 0.395493 172.27.160.191 172.27.160.1
17 0.396231 172.27.160.1 172.27.160.191
18 0.397291 172.27.160.14 172.27.160.191
19 0.426600 172.27.160.191 172.27.160.1
20 0.426754 172.27.160.191 172.27.160.14
21 0.427525 172.27.160.1 172.27.160.191
22 0.428890 172.27.160.14 172.27.160.191
23 0.447612 pell ea:aa:fa Broadcast
@ Frame 1: 175 bytes on wire (1400 bits), 175 bytes captured (1400 bits) on interface 0
EThernet II, Src: HewlettP_5a:95:ef (28:92:4a:5a:95:ef), Dst: IPvdmcast_7f:ff:fa (01:00:5e:
@ Internet Protocol version 4, Src: 172.27.161.253, Dst: 239.255.255.250
® User Datagram Protocol, Src Port: 63558 (63558), Dst Port: 1900 (1900)
4 Hypertext Transfer Protocol
0000 00000001 00000000 01011110 01111111 11111111
0008 01001010 01011010 10010101 11101111 00001000
0010 00000000 10100001 00000001 11010011 00000000
0018 01111001 01100110 10101100 00011011 10100001
0020 11111111 11111010 11111000 01000110 00000111
Q028 Q001101 00100300 01001101 00101101 01010011
Dackete TIE1T Micolaad: TI617 A00 05

7fiff:fa)

Source Port Destination Port

1900

547

137

1900
137

Info
M-SEARCH * HTTP/1.1
who has 172.27.160.77 Tell 172.27.160.206

Solicit XID: 0x75584 CID: 000100011el78fba207c8f5:

who has 172.27.163.1937 Tell 172.27.161.253
who has 172.27.160.417 Tell 172.27.160.191
who has 172.27.160.2507 Tell 172.27.160.191
who has 172.27.160.1627 Tell 172.27.160.191
172.27.160.41 is at ec:22:80:b6:8c:78
172.27.160.250 is at 00:1f:ca:f6:d4:a8
Name query NB GAMEHI.DDNS.NET<00>

Echoe (ping) request
M-SEARCH ¥ HTTP/1.1
Name query NB GAMEHI.DDNS.NET<00>
echo (ping) request
who has 172.27.160.2397 Tell 172.27.160.191
echo (ping) request
Echo (ping) reply
echo (ping) reply
Echo (ping) request
Echoe (ping) request
Echo (ping) reply
Echo (ping) reply
who has 172.27.160.17 Tell 172.27.160.81

1d=0x0001, seq=6144/24, tﬂ:"

1d=0x0001, 5eq=6146/536, trl-

1d=0x0001, s5eq=6147/792, trl-
id=0x0001, seq=6147/792, ttl=
10-0x0001, seq-6146/536, ttl-
1d=0x0001, 5eq=6148/1048, ttl
id=0x0001, seq-6149/1304, ttl
1d=0x0001, 5eq=6148/1048, ttl
id=0x0001, seq=6149/1304, ttl

s T

¢ [@]

4]

= a0 () [

Figure 4-1 snapshoot of data capture by WIRESHARK.

And then save the data capture as CSV (to become readable by excel

sheet) as shown in figure 4-2.

31

[Chapter four] [Result and discussion]

ME i resw - Microsoft Excel ()

Home | Insert Pagelayout Formulas Data Review View @ -2 x
== | % cut N . - = . Pl Fm T B3 || I AutoSum -
B v Arial 11 o || b0 || Siwrap Tet General — ij ?jﬂ' ,L‘ﬂ =g ;J T ? ﬂ
" | o[BS) [ot e Bl ot Foa 2| et Do e, IR R
Clipboard U Font s Alignment 'i Number fa Styles Cells Editing
| AL - [fe| No. Iz
R Q P 0 N M L K J I H G F E D c B A
Source Po Destinatior Source Po Protocol Total Leng Arrival Tim Differentiat Protocol Frame len¢Protocol Destinatior Source PoLength Protocol Destinatior Source Time _|Nn, 1
80 QOct 17, 2016 14:17:20.05813600 86 80 86 TCP 2c0ffec8:£ 2a00:1450 0 1.2
57590 TCP 48 Oct 17, 20 0x00 TCP 82 TCP 57590 62 TCP 173.192.22172.27 165 0.085157 2 3
443 TCP 71 Oct 17, 20 0x00 TCP 85 TCP 443 85 TLSv1.2 17227 162173.241.2¢ 0.230738 34
443 TCP 40 Oct 17, 20 0x00 TCP 80 TCP 443 60 TCP 17227 162173.241.2¢ 0.230886 4 5
57458 TCP 40 Oct 17, 20 0x00 TCP 54 TCP 57458 54 TCP 173.241.2¢172.27 162 0.230987 5 8
57458 TCP 40 Oct 17, 20 0x00 TCP 54 TCP 57458 54 TCP 173.241.2¢172.27 162 0.231524 6 7
57445 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 57445 55 TCP 62.67.193.172.27 162 0.235136 7.8
Oct 17, 2016 14:17.20.36438800 80 60 ARP Broadcast Shenzhen 0.306252 8 9
57577 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 57577 55 TCP 198.47.1271172.27 162 0.307177 9/ 10
80 TCP 52 Oct 17, 20 0x00 TCP 86 TCP 80 66 TCP 172.27.162198.47.127 0.30808 10 11
443 TCP 52 Oct 17, 20 0x00 TCP 86 TCP 443 66 TCP 172.27.16162.67.193. 0.329385 1112
57473 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 57473 55 TCP 104.122.2(172.27 162 0.343218 12,13
80 TCP 52 Oct 17, 20 0x00 TCP 86 TCP 80 66 TCP 172.27.162104.122.2(0.344121 13 14
57547 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 47947 55 TCP 104.103.2:172.27 162 0.425227 1415
80 TCP 52 Oct 17, 20 0x00 TCP 66 TCP 80 66 TCP 172.27.16:104.103.22 0.426175 15/ 16
443 TCP 40 Qct 17, 20 0x00 TCP 60 TCP 443 60 TCP 172.27.16:173.241.2¢ 0.440678 16 17
57463 TCP 41 Oct 17, 20 0x00 TCP 556 TCP 57463 55 TCP 104.122.20172.27.16% 0.455196 17/ 18
57571 TCP 41 Oct 17, 20 0x00 TCP 556 TCP 57571 55 TCP 66.117.28.172.27 16 0.495182 18 19
80 TCP 52 Oct 17, 20 0x00 TCP 66 TCP 80 66 TCP 172.27.16:66.117.28. 0.496078 19 20
57573 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 57573 55 TCP 66.117.28.172.27 167 0.517176 20021
80 TCP 52 Oct 17, 20 0x00 TCP 66 TCP 80 66 TCP 172.27.16:66.117.28. 0.518092 21 22
443 TCP 52 Oct 17, 20 0x28 TCP 66 TCP 443 66 TCP 172.27.162104.122.2(0575418 22 23
57568 TCP 41 Oct 17, 20 0x00 TCP 56 TCP 57568 55 TCP 104.103.2:172.27 165 0.633104 23 24
' 80 TCP 52 Oct 17, 20 0x00 TCP 86 TCP 80 66 TCP 172.27.162104.103.2% 0.633974 24 25
57565 TCP 41 Oct 17, 20 0x00 TCP 55 TCP 57565 55 TCP 66.117.28.172.27 162 0.645149 25 26
80 TCP 52 Oct 17, 20 0x00 TCP 66 TCP 80 66 TCP 172.27 16:66.117.28. 0.646061 26 27
A —) FINSLRI
Ready [O/ 200,) U (+)
- - - —
1 slejefaflo]efle[e]efaf[z]a]e] 8500 B

Figure 4-2 snapshoot of data capture as csv.

Doing pre-processing of capture packet by excel sheet to convert it
to flow (by open the CSV file and sort with the 5-tuple (source port
,destination port , source IP ,destination IP and protocol) then calculate
the average of the size , the total number of byte and duration of the same

5-tuple and save as CSV again) as shown in figure 4-3.

32

[Chapter four] [Result and discussion]

flwodataset .csv - Microsoft Excel b
ayout Formulas Data Review View
. g e s | | o o = - o= . ! —1) m=lmEmE T = X AutoSum - %
11 - | = =/~ || 1 ~|| SiwWrap Text General ij ?"Ed A == = _D_J e~ W 5‘3
u -3 A [= S Merge & Center ~ ||| § + % o || %GB 5% %‘::&ﬁ_‘";'_ E:‘;;’Ef:_ Sélee';_ Insert Defete Format || - Clear~ gi?t':rﬁj SF;T:¢55
Font = Alignment = Number = Styles Cells Editing
£]
G F E D C B
Destination Port Source Port total number of byte Protocol Destination Source
1900 408 SSDP 239.255.255.250 172.27.160.184
80 313110 TCP 17227163172 95.101.34 .51
137 276 NBNS 172.27.163.255 172.27.160.70
443 300 TLSv1.2 172.27.163.172 216.58.208.226
138 243 BROWSER 172.27.163.255 172.27.161.158
58 357 DHCP 255.255.255.255 172.27.160.1
_I I 8080 3018 HTTP 17227163172 41.87.53.144
240 IGMPv3 2240022 169.254.139.130
443 594 TCP 172.27.163.172 185.29.133.208
4008 730 tcp 17227 163172 103.235.46 9
80 1428 tcp 172.27.163.172 104.103.237.114
80 2418 http 17227163172 151.101.61.7
80 642 tcp 172.20.163.172 156.154.200.36
443 2822 TLSv1.2 172.27.163.172 172.217.20.34
51084 492 TCP 172.27.163.172 172.27.161.119
80 516 Tcp 172.27.163.172 185.84.60.25
80 2173 TCP 127 27163172 192.132.33.31
80 11932 TCP 17227163172 22262114
49445 3294 DNS 172.27.163.172 41.67.16.2
80 12790 TCP 172.27.163.172 104.103.236.189
80 23150 TCP 172.27.163.172 104.116.245.27
443 640 TLSv1.2 17227163172 108.160.172.206
443 462 TCP 17227163172 104.122.200.225
443 246 TCP 172.27.163.172 128.30.52.100
443 1057 TCP 172.27.163.172 13.107.21.200
443 450 TCP 172.27.163.172 136.243.131.40
I T | #1, flwodat;
=] 100% (=)
- - -
e [sflefaflefafefella]afa] ® - SABDhk

Figure 4-3 snapshoot of flow data capture as CSV.
Then select the needed feature (source port, destination port,

protocol, average size, average inter-arrival time and total number of

byte), deleting other feature as shown in figure 4-4.

33

[Chapter four]

[Result and discussion]

flwodataset no ip .csv - Microsoft Excel [EENECE I
@ - = x
wl 2l] == = > AutoSum -
ip Text General - ij ?’;d L;‘d == & ;J — % l?a
e 5 oter || (8T S| Somcionst Fommat ol || msen Delcie romat | 5 q,,,. St fam
= Number = Styles Cells Editing
=
G = E D C B s
avareage-size Flags Destination Port Source Port total number of byte Protocol _|durat|on 1
136 0x00 1900 408 SSDP 43.23442 2
1379.339 0x02 a0 313110 TCP 50.54809 3
92 0x00 137 276 NBNS 24 46076 4
100 0x00 443 300 TLSwv1.2 48.61669 5
357 0x00 138 243 BROWSER 43.06447 &
2285 0x00 68 357 DHCP 102762 7
1508 0x02 8080 3016 HTTP B56.51545 8
G0 0x00 240 IGMPv3 9.320488 9
66 0x02 443 594 TCP 4793612 10
73 0x02 4008 730 tcp 94.10976 11
54.90909 0x02 a0 1428 tcp 83.79798 12
1208 0x02 80 2416 http 8623949 | 13
642 0x0D2 80 642 tcp 51.87892 14
470.3333 0x00 443 2822 TLSv1.2 95.12286 15
61.5 0x02 51084 492 TCP 24 64125 16
645 O0x02 80 516 Tcp 41.35414| 17
197.545 0x02 a0 2173 TCP 99.38959 18
947 0909 0x02 80 11932 TCP 61.96517 19
253.3846 0x00 49445 3294 DNS 66.75184| 20
737.6471 0x02 a0 12790 TCP 58.59948 21
756 667 0X02 80 23150 TCP 52 40262 22
199.3333 0X02 443 640 TLSv1.2 31.96651| 23
52 0X02 443 462 TCP 35.1392 24
43 0X02 443 246 TCP 12.4659 25
90.5 0X02 443 1057 TCP 3031535 26
48.57143 0x02 443 450 TCP 31.68326 27
1] ¥, flwodataset noip [4 4 » »
IR ey —
AR & s n
Figure 4-4 snapshoot of flow data capture include needed feature as CSV.
Add class name to the tanning data set as shown in figure4-5 below.
flwodataset no ip .csv - Microsoft Excel | |
iew View ® - = x
=|[=-~||rw || Siwrap Text General - ié % L;‘ﬂl' =] j\ _;_I j:‘ :';'Itjsum - % L?a
B3 wneroe = omte - (8 o S| Somamornar o ot || mmsen el Fomat || oy, Z% DRAD
Alignment = Mumber = Styles Cells Editing
=
| H G F E D c B A
class avareage-size Flags Destination Port Source Port total number of byte Protocol _|durat|cn 1
vedio 136 Ox00 1900 408 SSDP 43.23442 2
vedio 1379.339 0x02 80 313110 TCP 50.54809 | 3
vedio 92 0x00 137 276 NBNS 2446076 4
vedio 100 0x00 443 300 TLSv1.2 48.61669 5
vedio 357 0x00 138 243 BROWSER 43.068447| 6
vedio 228.5 0x00 58 357 DHCP 10.2762| 7
vedio 1508 0x02 8080 3016 HTTP 66.51545 8
vedio 60 0x00 240 IGMPv3 9.320488 9
vedio &6 0x02 443 594 TCP 47.93812 10
p2p 73 0x02 4008 730 tcp 9410976 11
p2p 64.90909 0x02 80 1428 tcp 83.79798 12
p2p 1208 0x02 80 2416 http 86.23.949 | 13
p2p 64.2 0x02 80 642 tcp 51.87892 14
p2p 470.3333 0x00 443 2822 TLSw1.2 9512286 15
p2p 61.5 0x02 51084 492 TCP 2464125 16
p2p 64.5 0x02 80 516 Tcp 41.35414 17
p2p 197.545 0x02 80 2173 TCP 09.38959 18
p2p 947.0909 0x02 80 11932 TCP 61.96517| 19
p2p 253.3846 0x00 49445 3294 DNS 66.75184| 20
HTTP 737.8471 0X02 80 12790 TCP £58.50948 21
HTTP 756.667 0X02 80 23150 TCP 5240262 22
HTTP 199.3333 0X02 443 640 TLSv1.2 31.96651 23
HTTP 52 0X02 443 462 TCP 351392 24
HTTP 43 0X02 443 246 TCP 12.4659 25
HTTP 90.5 0X02 443 1057 TCP 30.31535 26
HTTP 48 57143 0X02 443 450 TCP 31.68326 27
0 F, flwodataset noip |4 4 b b
W= 100% (=) o)
[elTelaellw] afaT SIS -

Figure 4-5 snapshoot of flow data pre-classified saved as CSV.

34

[Chapter four]

[Result and discussion]

By using of ARFF viewer convert excel sheet to ARFF format

accepted by WEKA platform as shown in figure 4-6.

) Weka GUI Choaser [=[=

=]

Program Visualization Tools Help

'WEKA

Applications

tes » ip classification using machine learning »

+[42]

E
*= ARFF-Viewer- Gi\server\flwodatasetnoip.arff

B

The University T
of Waikato ntrodu
e Microse
75 KB
Wiksto Envirenment far Knowriedgs Anslysis : finodataset no ip
Version 3.6.13 Mo. | duration | Protocol | total number of byte | Source Port | Destination Port| Flags | avareage-size | class ooonl
(c) 1959 - 2015 Nominzl | Nominal Numeric MNumeric Mumeric Nominal Numeric Nominal icros
The University of Waikato Sim |1 [43.23442 |ssDP 08.0 1900.0[0x00 136.0|vedio 29 KB
Hamilton, New Zealand "
2 [50.54808 [TCP 3131100 80.0 ox02 1379.339 vedio
7| |2 |2 3607 e 276.0 137.00x00 92,0[vedio UDAN
re 4 |48.51669 [TLSv1.2 300.0 443.0 0x00 100.0|vedio ND TE
Y5 [43.064... [prOW... 243.0 138.0(0x00 357.0|vedio Microst
semull cf[6 [10.2762 pHCP 357.0 68.00x00 228.5|vedio raffic 1
seml0 final 14 |7 es.51545 [P 3016.0 8080.0 0x02 1508, 0[vedio etFloy
siniffer | |B[s-320485 [1GMPv3 240.0 0x00 60.0|vedio Micros:
= 9 [47.93612[TCP 534.0 43.0 0x02 66.0|vedio
=i 2| [10_[e2.30575 tep 730.0 4008.0 0x02 73.0p2p
vm ware |11 [p3.797% [1328.0 50.0 0x02 64.90303]p20
Ktreme7.0 4|12 fee.23.... |twp 2416.0 50.0 ox02 1208.0[p2n
. a M| [B_[5re7eez]m 542.0 50.0 ox02 64.2jp2p
Cosme] 14 [95.12288 [TLSv1.2 2822.0 243.0 0x00 470.3333)p2n
e-learning | 15 [24.64125[TCP 92.0] 510840 ox02 61.5p2p
. ip classification using mac i 16 [41.35414[Tep 516.0 80.0 0x02 64.5p2p
| ACCOUNTING FOR NET 17 |99.38959 [TcP 2173.0 80.0 ox02 197,545/p20
| 4 py | lersesiziice 11932.0 80.0 ox02 947.0909|p20
CLASSIFICATION METH! = 19 |66.75184 DS 32940] 49445.0 0x00 253.3846/p2p
) METHOD AND SYSTEM & |[20_[58.59348[TcP 12790.0 80.0 ox02 737.64T1HTTP Jass.PP
| netmate-0.2.0-win32 21 [52.40262 [TCP 23150.0 80.0 ox02 756.667 HTTP NG i
22 [31.96651TSvL.2 640.0 43.0 ox02 159.3333HTTP 56 KB
pak 23 |[35.1392 [TcP 462.0 443.0 ox02 52,0[HTTP X
| weka-3-9-0 24 [12.965% [TCP 246.0 43.0 ox02 33.0HTTP '?J‘GE'P’
i
B netmate-0.20-win32.zip | [[30.31535[TCP 1057.0 43.0 ox02 90, 5HTTP o7 kB
8 26 [31.68326 TP 350.0 243.0 ox0z2 48.57143[HTTP !
poteap 27 [37.14648 TP 516.0 50.0 ox0z2 29.0HTTP creens
' B weka-3-9-0zip 28 [36.08866 [TCP 2088.0 243.0 ox0z2 50, 5[HTTP g
| security issues for cloud c + 29 [19.92987 [TCP 20208.0 243.0 ox0z2 420,8696HTTP NG i
datssetl.PNG Date taken: Specify date taken Size: 172 KB
PNG image Dimensions: 1365 x 767 Date created: 10/18/2016 1:07 AM
= ’ I - = o
ORC c[zle[=ofufle[alelollz]ala] |

Figure 4-6 snapshoot of flow data capture include needed feature as ARFF.

By using above steps now ready to extract the training and testing

data set below.

Training dataset 1

The data set conation of 10 flows for every application type and

contain of 7 features as shown in figure 4-7.

35

[Chapter four] [Result and discussion]

| Giserver\flwodatasetnoip.arff - Notepad++ = [t
File Edit Search View Encoding Llanguage Settings Macro Run Plugins Window 7 X
o= 3 To B wl] gt x| BE|ST !at:]l'[ntJ 2| @]

B dataset 1 test arff JI B set0%est aff .J} B rnew JI B set04 arff JI B http.pcapng ._J} Blrew arff JI B fwodstaset arff JI B fwodztaset test arff ._J} = [E .J} B iwodatzset noip csv £ [H fwodatasetroip arff E1 I ap I@

Brelation 'flwodataset no ip '

W e

@attribute duration {43.23442,50.54809,24.46076,48.61669,43.064472,10.2762,66.51545,9.320488,47.93612,94.10976,83.79798, £
4 Gattribute Protocol {S3DP,TCE,NENS,TLavl.2, BROWSER,DHCE,HTTE, IGMEv3,tcp,http, Tcp, DNS}

@attribute 'total number of byte' numeric

@attribute 'Source Port' numeric

@attribute 'Destination Port' numeric

Gattribute Flags {0x00,0x02,0%02}

@attribute avareage-size numeric

10 Q@attribute class {vedio,p2p,HTTE}

5w @

@data

13 43.23442,3sDP,408,?,1900, 0x00,136, vedio

14 50.54809,TCP,313110,80,?,0x02,1379.339, vedio
15 24.46076,NBNS,276,7?,137,0x00,92, vedio

16 48.61669,TL3v1.2,300,443,7?,0x00,100,vedio
17 43.064472,BROWSER, 243, ?,138,0x00,357, vedio
10.2762,DHCE, 357, 2, 68, 0x00, 228.5, vedio
66.51545,HTTP, 3016, 8080, ?, 0x02,1508, vedio
$.320488,I6MPv3, 240, 2, ?,0x00, 60, vedio
47.93612,TCP, 594, 443, 2, 0x02, 66, vedio
94.1097¢€, tep, 730,4008, 7, 0x02,73,p2p
83.79798, tcp, 1428,80,2,0x02, 64.50909,p2p
86.23.949%,http,2416,80,7,0x02,1208,p2p
51.87892, tcp, 642,80,2,0x02,64.2,p2p
95.12286, TLSv1.2,2822,443, 7, 0x00, 470.3333, p2p L
24.64125,TCP, 492,51084, 2, 0x02, 61.5,p2p
41.35414, Tep, 516,80, 2,0x02,64.5,p2p
99.38959,TCP,2173,80,2,0x02,197.545,p2p
€1.96517,TCP,11932,80,7,0x02,947.0909,p2p
66.75184,DNS, 3294, 45445, 2,0x00,253.384¢,p2p
58.59948, TCP, 12730,80,?,0x02,737.6471, HTTP
33 52.40262,TCP,23150,80,7?,0X02,756.667, HTTP
) — B T — v | FlEoecumentiap [

Normal text file length: 1813 lines: 42 Ln:1 Col:1 Sel:0|0 UNIX UTF-8 INS

g slzlelallolalelelelalalals] AT

¥
B

m

o @

W R o

& o

o w m

[R O R SO C AR O
3 . n 3 i

bRk

Figure 4-7 snapshoot training dataset as AEFF format.
Then open WEKA and enter the data set of training to train MLA
(after trying many algorithm like J48 tree,bayes navie and other find J48

Is more stable one)as shown in figure 4-8 below.

36

[Chapter four] [Result and discussion]

&} Weka Explorer | = | = = |

| Preprocess| Classify | Cluster | Assodiate I Select attributes | 'u"lsualize|
Classifier
[choose [148-co.zs-mz |

Test options Classifier output
(@) Use training set Kappa statistic 0.9481 a~
) Supplied test set Set... Mean absolute error 0.0409
- Root mean squared error 0.1429
(0) Cross-validation ~ Folds |10 Relatiwve absolute error 9.2053 %
() Percentage spiit o |66 Root relative sguared error 30.3413 %
Total Number of Instances 29
[More options...]
=== Detailed Accuracy By Class ===
l (Mom) dass - l
TP Rate FP Rate Precision Recall F-Measure ROC Are:
Stop 0.889 0 1 0.889 0.941 0.978
e]) 1 0.053 0.909 1 0.952 0.979
Result list {Eght-dld(.ﬁ:r options) 1 a N N 1 1
14:13:01 - bayes. NaiveBayes Weighted Avg. 0.9686 0.018 0.969 0.966 0.965 0.9286

14:13:29 - bayes.Bayeshet
14:13:42 - trees. 148

=== Confuszion Matrix ===
a b © <-- classified as
8 1 0] a=vedio E
010 0| b=pp
0 010 | ¢ = HITP
Pl n | b

Status

Ok #xo

Figure 4-8: snapshoot of the training process doing by WEKA.

Then select the cross validation mode as show in figure 4-9.

37

[Chapter four]

[Result and discussion]

& Weka Explorer

o X

| Preprocess| Classify | Cluster I Associate | Select attributes I \n'isualize|

Classifier
[Choose [148-Co.z5-m2

Test options

(71 Use training set

(71 Supplied test set Set...
(@ Cross-validation Folds |10

() Percentage split % |66

[More options. ..

(Mom) dass

[s |

Result list (right-dick for options)

14:13:01 - bayes.NaiveBayes
14:13:29 - bayes.Bayeshet
141342 - trees, 148
14:17:26 - trees.)48
14:17:32 - trees.)48
14:18:30 - trees.)48
14:24:29 - trees.)48

14:28:05 - trees.)48

Classifier output

Eappa statistic

Mean absolute error

Root mean squared error
Relative absolute error
Root relative sguared error
Total Number of Instances

=== Detailed Rccuracy By Class ===

IF Eate FP Rate
0.667 0.1
0.8 0.158
1 a
Weighted Avg. 0.828 0.085

=== Confusion Matrix ===

a b c <-- classified as
& 3 0| a=wedio

2 8 01| b=pip

0 010 | c = HITP

0.7408
0.145
0.3091
32.68232 %
65.5392 %
25
Precision Recall
0.75 0.667
0.727 0.8
1 1
0.828 0.828

F-Measure hzt
0.708
0.762

1
0.827

mn

&)

oo o0

oo

oW H
=]

m

Status
Ok

Figure 4-9: snapshoot of cross validation process doing by WEKA.
Table 4.1 Final result of data set 1.

TP Rate FP Rate Precision Recall F-Measure | ROC Class
Area
0.828 0.085 0.828 0.828 0.827 0.901 Avarge

0.667

0.1

0.75

0.667

0.706

0.831

Vedio

0.8

0.158

0.727

0.8

0.762

0.866

p2p

1

0

1

1

1

1

HTTP

4.1.2 Training Data Set 2

The data captured and detected by snort convert it to flow by excel

sheet then remove non needed feature then forwarded to ARFF format.

38

[Chapter four] [Result and discussion]

The data set conation of 10 flows and contain of 7 features. By apply the
above data set to MLA selecting by above step in weka platform reach

the following result as shown in below table4.2.

Table 4.2 Final result of data set 2.

TP FP Rate Precision |Recall |F-Measure | ROC Class

Rate Area

1 0.2 0.8 1 0.889 0.9 P2P

1 0 1 1 1 1 HTT
P

0 0 0 0 0 0.75 video

0.889 0.089 0.8 0.889 0.84 0.928 Avarge

4.2 Evaluation and Validation

High accuracy in field of network classification means low (positive
false, False negative rate) and high (True positive, True negative) the
table 4-3below explain.

Table 4.3 Evaluation metrics.

Belongs to —» X Y

X True positive False negative

Y False positive True negative

If it is a class “X” in which we are interested then the accuracy with

these parameters is measured as:

False positive — percentage of members belonging to Y but classified
as X.

39

[Chapter four] [Result and discussion]

True positive —> percentage of members of class X correctly classified
as X.
False negative —> percentage of members belonging to X incorrectly
classified as Y.
True Negative —— percentage of members not belonging to X and
correctly classified as .
There are two more metrics which are often used as Machine learning
evaluation metrics:
Recall: percentage of members belonging to X and correctly classified.

Precision: percentage of member classified as X truly belongs to X.

true positive

Accuracy =

true positives +false negative

Accuracy from data set 1 = 82.8%
Accuracy from data set 2 = 88.9%

4.3 Conclusion

As shown in Table 4.1 and Table 4.2 reach different Accuracy by
the same system and same feature that meaning the system is stable and
can be reach high Accuracy depending on training data set. More
accurate data set depending on efficiencies analysis of the data and the

number of instance in data set.

4.4 Online Phase

In this phase try to build system that capture the network traffic and

then save the capture packet and then convert it to short flow and then

40

[Chapter four] [Result and discussion]

extract the needed feature from flow and then use the ML a logarithm to
classify the flow to specific application type.

Select java language because the power of java runs anywhere JVM fond.
First of all create java project and import JINETPCAP library and WEKA
library in form of JAR file and then write simple code to do the job.
Capture the traffic first select the interface listening to as show in the

below figure 4-10.

: Search Project Hun Window Help
L-HE-®S I I RN
8 A3 yjojava i3 = B o= Outline 2
= 158 ® Last thing to do is close the pgap handle - S 13w s e s
" 159 + B, yio
- peap.close(); a 9 main(String

- ﬁ new Pc

string fname = "tests/test-afs.pcap™;

AP e NE
Pcap pcapl = Pcap.openQffline(fname, errbuf); » ﬁ new JB
String ofile = "tmp-capture-file.cap”™;
PcapDumper dumper = pcapl.dumpOpen(ofile); // output file

JBufferHandler<PcapDumper:> dumpHandler = new JBufferHandler<PcapDu

public woid nextPacket(PcapHeader header, ByteBuffer buffer, Pca

m

dumper.dump(header, buffer);
h
@override
public woid nextPacket(PcapHeader arg®, org.jnetpcap.nio.JBuffer a

PcapDumper arg2) {
Auto-generated method stub

m

T
¥s

pcapl.loop(1l@, dumpHandler, dumper);

-

1 « ” T 3 4 [[Tl

- Bl Console 2 = | =k El) s

yio [Java Application] CA\Program Files\Java\jre\bin\javaw.exe (Oct 20, 2016, 1:43:36 PM)

#2: “\Dewice\NPF_{A34C1C36-9148-4B6A-BDC3-C4E3F7@B@27A} [Anchorfree HSS WPN Adapter]
#3: “Device\NPF_{ABC2BREG-AC92-46EG-BDAC-C2395DCDCC14} [Microsoft]

#4: \Device\NPF_{BE21899B-1879-4743-98D5-1A944E5BE872} [Microsoft]

Choosing "Realtek PCIe GBE Family Controller’ on your behalf:

[3 4

[— T o Te= N o T -

Figure 4-10 snapshoot of select the interface listening to.

41

[Chapter four] [Result and discussion]

Then capture the traffic by 10 packet every time and extract the
below feature from every packet (Source IP , Destination IP , source
port , destination port, protocol, total length , size and inter arrive time)

and save the feature as array (as show in the below figure 4-11).

aarch Project Run Window Help
Y G S R al g e A R Quick Acces
J| rtjava &) Fainaljava 52 | [J] yjojava 32 [J] Wekanew.java it = 0 5= Outline &2 = B @ Welcome 52

Tcp tcp = new Tcp(); - B -

B %R e
4 jau-ﬂo

Ip4 ip = new Ip4(); N
byte[] sIP = new byte[4]; 4 9 main(String[]) </
byte[] dIP = new byte[4]; 4 Q new PcapPack

byte g= packet.getByte(o);
//System.out.println(g);
/iint, flag=tcp.flags();

@ - nextPacke
I ﬁ new JBufferHa

I
string sourceIP="";
String destIP="";
if(packet.hasHeader(ip)&&packet.hasHeader(tcp)){
sIP = packet.getHeader(ip).source();
sourcelP = org.jnetpcap.packet.fomat.Fomatthil:H

Go thr

dIP = packet.getHeader(ip).destination();

destIP = org.jnetpcap.packet.format.FormatUtils.:
S/ system.out.println("*"+sourceIP+"*"+destIP);

System.out.print("Source IP "+ sourceIP+"Destini

Samp
Try ou

// system.out.println("Destination IP "+ destIP)
// System.out.println("source port "+tcp.source(
// Ssystem.out.println("destination port “+tcp.de:
// System.out.println("size "+s); =
// System.out.println("total length"+g);
if(tcp.source()==88){
System.out.println("HTTP protocel”); <
< 1 | 3 [i 3

Iﬁ: Problems @ Javadoc @Declaration) Console 52 T 4 &| =3 \Eﬁ| #E~-f~-= 5

<terminated> yjo [Java Application] C:\Program Files\Java\jref\bin\javaw.exe (Oct 20, 2016, 2:20:50 PM)
source 172.27.163.172Destination IP 183.235.46.9source port 49394destination port 4887sizeldltot: »

Source
Source
Source
Source
Source
Source
Source

183,
183,
183,
172.
172.
183,
172.

235.46.
235.46.
235.46.

27.163

235.46

9Destination IP 172.27.163.172source
9Destination IP 172.27.163.172source
9Destination IP 172.27.163.172source

.172Destination IP 183.235.46.9source
27.163.

172Destination IP 183.235.46.9s0urce

.9Destination IP 172.27.163.172source
27.163.

4p@7destination port 49394size6@total
4e@7destination port 49394sizel2@tot:
4e@87destination port 49394size6Btotal
49394destination port 48@7sizeS4total
49394destination port 4887sizeS4total
4e@7destination port 49394size6@total

15Destination IP 172.27.163.172source port 49593destinaticn port 2869sizefBtot:

4

.

Figure 4-11 snapshoot of packet capture.

-

Convert packet to flow for every 10 packet look at Source IP

Destination IP, source port , destination port, protocol and sort the array

of packet based on the 5-tuple and save the same packet with 5-tuple as

42

[Chapter four]

[Result and discussion]

one flow (as show in the below figure4-12).

Search Project Run Window Help

L CA IR S R
AJ| Fainaljava &2 b = O E= Outline 3 =
System.out.pr:i.ntf("tcp.Sr‘c_por‘t:%d%n", tcp.sourc = = -] w @ =
System.out.printf("tcp.ack=3x&n", tcp.ack()); 4 Eau-ana
} a @°F main{5tring]|
P @. new JP:
af top
if (packet.hasHeader(tcp)) { aF hit
System.out.printf("tcp header::¥s¥n", tcp.toStri
} e NE
L i testFlowMay
if (packet.hasHeader(tcp) && packet.hasHeader(http)) 1 = fail(String)
System.out.printf("http header::%s%n", http);
¥
system.out.printf (" frame #Xd¥n", packet.getFrameNumb:
h
}, errbuf);
=
4 1 3 4 1
& Problems @ Javadoc [, Declaration & Console 52 b4 L%l =" | ™ > [I

<terminated> Fainal [Jawva Application] C:\Program Files'\Java'\jre?\bin'javaw.exe (Oct 20, 2016, 2:08:24 PM)

31.12.75.8:443 -> 192.168.181.11:47845 Tcp fw/rev/tot pkts=[68/8/68],
31.13.75.8:443 -> 192.163.181.11:58456 Tcp fw/rev/tot pkts=[32/8/32],
31.132.75.8:443 -> 192.168.181.11:58457 Tcp fw/rev/tot pkts=[36/8/36],

Tlow[186]
Tlow[187]
Tlow[188]
flow[189]
Tlow[196]
flow[191]
flow[192]
Tlow[193]

r | flow[194]
4

192
216
2es
192

L168.181.11 -> 192.168.181.255:17 Ip4 tot pkts=[1],

.58.2168.162:443 -> 192.168.181.11:53162 Tcp fw/rev/tot pkts=[68/8/68],
.285.151.159:888@ -> 192.163.181.13:55263 Tcp fw/rev/tot pkts=[28/e/z2e],
L.168.181.11 -> 192.168.181.1:17 Ip4 tot pkts=[8],

31.13.75.8:443 -> 192.163.181.11:58447 Tcp Tw/rev/tot pkts=[4/8/4],

192

.168.181.11 -> 192.168.181.255:17 Ipd4 tot pkts=[1],

Figure 4-12 snapshoot of creating flow of packet.

Feature extract for every flow calculate the average size (by average

the size of all packet on flow),total number of byte (by sum the total

length of all packet on flow) and duration(by subtract every two packet

inter arrive time for every packet on flow) then save the Source IP ,

Destination IP , source port , destination port, protocol, total number of

byte , average size and inter arrive time for every flow as array and

save array on text file .

43

[Chapter four] [Result and discussion]

Convert the text file to ARFF very sad to notate that this function is
non work very well. But to show the next step working use offline
converter.

Classify the flow to specifics application build an object from J48
tree to use as classification a logarithm. Read the file of training data set
and train the tree by the train data and then read the test data set from the
ARREF file save in before step and then display the class of each flow(as

show in the below figure4-13).

rch Project Run Window Help
A IR IS s

43 Wekanew.java I3 = B8 O= Outline 3

. . . a B Wekanew
train.setClassIndex(train.numAttributes() - 1); -

ab = new BufferedReader(new FileReader("G:/server/flwodataset
Instances test = new Instances(ab);
test.setClassIndex(test.numAttributes() - 1);

ab.close();

J48 tree = new J43();

m

tree.buildClassifier(train};
'/ System.out.println(train);

Instances labled3 = new Instances(test);
//system.out.println(test);
for(int i=8;i<test.numInstances();i++)

1
double wvalue=tree.classifyInstance(test.instance(i));
labled3.instance(i).setClassValue(value);

¥

System.out.println{labled3); S

L L3 LLL

4
&) Console 2 i "*l =k | ™ T B

=terminated> Wekanew [Java Application] C\Program Files\Java\jreP\bin\javaw.exe (Oct 20, 2016, 2:07:33 PM)

61.96517,TCP,11932,86, 7,802,947 . 8089, p2p
66.75184,DN5,3294,49445, 7, @x00, 253 . 3846, p2p
58.50048,TCP, 12798, 88, ?,8X02,737.6471,HTTP
52.48262,TCP,23158,80, 7 ,BX82,756.667 ,HTTP
31.96651,TLSvl. 2,548,443, 7,8X82,199, 3333 ,HTTP
35.1392,TCP,462,443, 7 ,8X82,52 ,HTTP

12,4659, TCP, 246,443, 7, 8X82, 43 ,HTTP
3@,31535,TCP,1857,443, ?,8X02,98.5,HTTP
31.68326,TCP,458,443, 7 ,8X82,48.57143 ,HTTP
37.14648,TCP, 516,88, 7, 8X82,49 ,HTTP
36.98866,TCP, 2088,443, ?,8X02,58.5,HTTP
19.42987,TCP, 282088,443, ?,8X02,420 ., 8696, HTTP

4 L

Figure 4-13 snapshoot of classifier result.

44

|

Instances train = new Instances(ab); - =k wW @ %

] = main(String

Chapter five: Conclusion and

Recommendations

[Chapter five] [Conclusion and Recommendations]

5.1 Conclusion

In this thesis demonstrated the application of supervised Machine-
Learning to classify network traffic by application. We illustrated the
performance both in terms of accuracy and trust in the resulting
classification of traffic. Several machine learning classifiers have been
evaluated, results showed that a C4.5 tree is most stable supervised
Machine-Learning for classifier is able to provide 82.7% accuracy from
training data set capture by WIRESHARK and 88.9% from data set
capture by snort. Furthermore, this research also starts building an online
classification module which based on the idea of short flows so as to
enable the concept of real time reaction or control; however a remaining

work is still there to complete the module in its final version.

5.2 Recommendations

v" Although, an offline and online phases of the classifiers have been posed
in this research, however In future researchers must plan to examine the
machine learning classifiers with different data sets in addition to
different number of features. That is to choose the optimum algorithm in
different situations. Moreover, it is also to fine tuning the selected
algorithm according to the suitable training datasets with acceptable
number of features so as to reach the goal of an accurate classifier with
minimum testing time. Thus, to deal with the quick response so as to give
fastest recovery.

v’ Update the dataset so as to include several application types

v Although a prototype of the online classification has been presented in
this thesis, however an additional effort is still required to complete the

online phase and apply a system on a real network based on this

46

[Chapter five] [Conclusion and Recommendations]

framework; moreover an evaluation and validation of the online is
required so as to determine the capabilities and limitation of the online
classifiers among different scenarios according to the network
environment.

v The outcome of the previous point (online phase) should be integrated
with a control phase to enhance the performance according to

administrative needed.

47

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

S.-H. Yoon, K.-S. Shim, S.-K. Lee, and M.-S. Kim, "Framework
for multi-level application traffic identification." pp. 424-427.

T. Qin, L. Wang, Z. Liu, and X. Guan, “Robust application
identification methods for P2P and VolIP traffic classification in
backbone networks,” Knowledge-Based Systems, vol. 82, pp. 152-
162, 2015.

S. Valenti, D. Rossi, A. Dainotti, A. Pescape, A. Finamore, and M.
Mellia, "Reviewing traffic classification," Data Traffic Monitoring
and Analysis, pp. 123-147: Springer, 2013.

Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang,
“A modular machine learning system for flow-level traffic
classification in large networks,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 6, no. 1, pp. 4, 2012.

P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti,
“Abacus: Accurate behavioral classification of P2P-TV traffic,”
Computer Networks, vol. 55, no. 6, pp. 1394-1411, 2011.

H. Singh, "Performance Analysis of Unsupervised Machine
Learning Techniques for Network Traffic Classification.” pp. 401-
404.
“http://searchnetworking.techtarget.com/definition/peer-to-peer
accessed on 1/3/2016.”

[8]“http://www2.connectseward.org/shs/students/students15/Q3/daltongo

[9]

[10]

[11]

[12]

[13]

[14]

cke/p2p/page2.html accessed on 1/3/2016.”

B. Anton, and A. Norbert, “PEER TO PEER SYSTEM
DEPLOYMENT,” Acta Electrotechnica et Informatica, vol. 16,
no. 1, pp. 11-14, 2016.

D. S. Touceda, J. M. S. Camara, and J. T. Isaac, "Privacy in Peer-
to-Peer Networks," Privacy in a Digital, Networked World, pp.
111-139: Springer, 2015.

R. Raveendran, and R. Menon, "An Efficient Method for Internet
Traffic Classification and Identification using Statistical Features."
A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss: Stochastic
packet inspection classifier for udp traffic,” IEEE/ACM
Transactions on Networking, vol. 18, no. 5, pp. 1505-1515, 2010.
J. Kim, J. Hwang, and K. Kim, “High-Performance Internet Traffic
Classification Using a Markov Model and Kullback-Leibler
Divergence,” Mobile Information Systems, vol. 2016, 2016.

A. Dainotti, A. Pescapé, and C. Sansone, "Early classification of
network traffic through multi-classification.” pp. 122-135.

48

http://searchnetworking.techtarget.com/definition/peer-to-peer
http://www2.connectseward.org/shs/students/students15/Q3/daltongocke/p2p/page2.html
http://www2.connectseward.org/shs/students/students15/Q3/daltongocke/p2p/page2.html
http://www2.connectseward.org/shs/students/students15/Q3/daltongocke/p2p/page2.html

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S.-H. Yoon, J.-S. Park, and M.-S. Kim, “Behavior Signature for
Fine-grained Traffic Identification,” Appl. Math, vol. 9, no. 2L, pp.
523-534, 2015.

L. Peng, B. Yang, Y. Chen, and Z. Chen, “Effectiveness of
Statistical Features for Early Stage Internet Traffic Identification,”
International Journal of Parallel Programming, vol. 44, no. 1, pp.
181-197, 2016.

O. Mula-Valls, “A practical retraining mechanism for network
traffic classification in operational environments,” Master Thesis in
Computer Architecture, Networks and Systems, Universitat
Politecnica de Catalunya, 2011.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine
learning: An artificial intelligence approach: Springer Science &
Business Media, 2013.

N. Namdev, S. Agrawal, and S. Silkari, “Recent Advancement in
Machine Learning Based Internet Traffic Classification,” Procedia
Computer Science, vol. 60, pp. 784-791, 2015.

J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic
classification using flow statistical properties and IP packet
payload,” Journal of Computer and System Sciences, vol. 79, no. 5,
pp. 573-585, 2013.

F. R. Taylor, “Evaluation of Supervised Machine Learning for
Classifying Video Traffic,” 2016.

B. Hu, and Y. Shen, “Machine learning based network traffic
classification: a survey,” Journal of Information and
Computational science, vol. 9, no. 11, pp. 3161-3170, 2012.

N.-F. Huang, G.-Y. Jai, H.-C. Chao, Y.-J. Tzang, and H.-Y. Chang,
“Application traffic classification at the early stage by
characterizing application rounds,” Information Sciences, vol. 232,
pp. 130-142, 2013.

A. Zhu, "A P2P Network Traffic Classification Method Based on
C4. 5 Decision Tree Algorithm." pp. 373-379.

R. Alshammari, and A. N. Zincir-Heywood, “Identification of
VoIP encrypted traffic using a machine learning approach,”
Journal of King Saud University-Computer and Information
Sciences, vol. 27, no. 1, pp. 77-92, 2015.

V. D'Alessandro, B. Park, L. Romano, and C. Fetzer, "Scalable
network traffic classification using distributed support vector
machines." pp. 1008-1012.

P. Pinky, and S. V. Ewards, “A Survey on IP Traffic Classification
Using Machine Learning.”

49

[28]

[29]

[30]

[31]

[32]

[33]

J. Datta, N. Kataria, and N. Hubballi, "Network traffic
classification in encrypted environment: A case study of Google
Hangout." pp. 1-6.

B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining
for unwanted p2p traffic,” Journal of Information Security and
Applications, vol. 19, no. 3, pp. 194-208, 2014.

V. Carela-Espanol, P. Barlet-Ros, and J. Solé-Pareta, “Traffic
classification with sampled netflow,” traffic, vol. 33, pp. 34, 20009.
A. Hajjar, J. Khalife, and J. Diaz-Verdejo, “Network traffic
application identification based on message size analysis,” Journal
of Network and Computer Applications, vol. 58, pp. 130-143, 2015.
J. Erman, M. Arlitt, and A. Mahanti, "Traffic classification using
clustering algorithms." pp. 281-286.

Y. Hong, C. Huang, B. Nandy, and N. Seddigh, "Iterative-tuning
support vector machine for network traffic classification.” pp. 458-
466.

50

