A sll pasull all sy
Sudan University of Science and Technology

College of Graduate Studies
College of Computer science and Information

Technology

Implementing Integrating Enterprise
Systems in Sudan -Using Enterprise
Service Bus (ESB)

daddl)

This thesis is submitted in partial fulfillment of the academic requirements
for the degree of
Master in Computer Science

By: Ahmed Hamza Abdelmonim.
Supervisor: Dr.Wisal M. Tingari.

February 2016

¢\MY\
paa il RN Ga Al 3681

oron (BLR] G5l 5 80) W) 1525 Y1 Gl o ieb5)
#1520 s U aSyjang allilay Wy (2l g (o
o (0 1R 180551 AR B2 81 314] ()
(S 9 (29
(SB8ual g (A Al

Acknowledgements

| would first like to thank my Allah. Special thanks to Dr. Wisal M. Tingari, the door
to her office was always open whenever | ran into a trouble spot or had a question
about my research or writing. She consistently allowed this research to be my own
work, but steered me in the right direction whenever she thought | needed it.

Finally, I must express my very profound gratitude to my wife, my family and my
friends, for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing this
thesis. This accomplishment would not have been possible without them. Thank you.

Abstract

The main objective of this research is to implement an enterprise system integration
using an enterprise service bus (ESB) in Sudan.

The research questions are; what framework to be used to complete the integration?
And what are the mechanisms that will be used to make sure that the integration
process is successful? Finally, how to choose the workflow engine and what are the
criteria for the choice. To achieve the research objectives, different approaches to
integrate enterprise systems were studied, and enterprise service bus (ESB) was
selected. Accordingly the integration environment was set up, and an appropriate
workflow engine was demonstrated. Finally, the required adaptors of each integrated
system were developed, and the proposed system was tested and implemented.

The research recommends for the use of cluster architecture and load balancing ESB.
Moreover, it recommends of use security token service and service locator to
maximize the benefits of ESB.

L
Aeda) JBU dpngie 2855 IR (e I3 5 (1 gaall (8 A) i) (pn Sl A0 kit sl (e gl
Ay e A AV e s AadaiV) (g JalSil) dplee JLeSY adiivgns 521 JUaY) 8 Lo ¢ Canll Al
Gitadl | JolSill Calie Jae ppe &l jae Jlia) & o g oS JalSl dlae o (e 2SN 5 LY Lo
Eaanll Cana

LSSl A0y a5 elli g gn o s deadd) Jil dngia JUEa) &5 5 JalSl (5)k e Ao sana Al 53
Sl Ay Jaadi g sl &5)l

8 9 na ae dgalaie W 5 o o) aly H laadd) JA 20y 8 Jlea¥) ao) s dangia pladiul oo Gl Dlua 6
(Sl 4 g e 30l 3 Clanal) dasa g cpalil) Clead alasiin)

List of Contents

| Topic Page
Dedication i
Acknowledgements I
Abstract ii
ualdigll iV
List of Contents \
List of Tables Vil
List of Figures Vil
List of Abbreviations X

CHAPTER ONE: INTRODUCTION
1.1 Preface 1
1.2 Problem Statement 1
1.3 Research Significance 1
1.4 Research Objectives 2
1.5 Research Questions 2
1.6 Research Methodology 2
1.7 Research Structure 2
CHAPTER TWO: THEORETICAL BACKGROUND
2.1 Introduction 3
2.1.1 Key Concepts 3
2.1.2 Integration Strategies 4
2.2 Service Oriented Architecture 7
2.3 Enterprise Service Bus 8
2.3.1 Service Virtualization 9
2.3.2 ESB Routing Rule 10
2.3.3 ESB's Core Functionalities 10
2.3.4 Enterprise Service Bus Model 11
2.4 Related Work 12
CHAPTER THREE: METHODOLOGY
3.1 Preface 14
3.2 The Proposed Enterprise Service Bus 14
3.2.1 Criteria 14
3.2.2 Motivation for Choosing Talend ESB 16
3.3 The Proposed Workflow System 17
3.4 Implementation 18
34.1 Introduction to Talend ESB solutions 18

3.4.2 Talend ESB Features 18
3.4.3 Talend ESB Products and Architecture 24
3.4.4 Introduction to Bonita Business Process Management 25
3.4.5 Introduction to OpenKM Document Management 25
System
3.4.6 Case Study 25
3.4.7 System Design and Implementation 28
3.4.8 Bonita Workflow Management System 42
3.4.9 OpenKM DMS 53
3.4.10 System Testing 54
3.5 System Deployment 59
CHAPTER FOUR: CONCLUSION AND RECOMMENDATIONS
4.1 Conclusion 64
4.2 The Result 64
4.3 Recommendations 64
REFERENCE 65
APPENDICES
APPINDEX A: Bonita Code 68
APPINDEX B: ESB Code 70

Vi

List of Tables

Topic Page
3.1 Workflow Criteria Matrix 18
3.2 Service Properties 29
3.3 tESBProviderRequest Properties 34
3.4 tXMLMap Properties 35
3.5 tWebService Properties 36
3.6 tESBProviderResponse Properties 38
3.7 tLogCatcher Properties 38
3.8 tLogRow Properties 39
3.9 tESBProviderFault Properties 39
3.10 tJavaRow Properties 40

Vil

List of Figures

Topic Page
2.1 Point-to-Point Approach 5
2.2 EAI Approach 6
2.3 ESB Approach 7
2.4 ESB Request-Response Flow Review 9
2.5 ESB Evaluation 10
2.6 Enterprise Service Bus Model 11
3.1 Overview of Karaf Components 19
3.2 The Integration Perspective with a Service Design 21
3.3 The Integration Perspective with a Job Design 22
3.4 Apache Camel Architecture 23
3.5 The Mediation Perspective 24
3.6 The Current Business Model 26
3.7 The New Business Model 27
3.8 The Consumer Activity 28
3.9 Service Creation Process 29
3.10 Service Schema 30
3.11 Service Virtualization 31
3.12 Service Port type 32
3.13 Job Design Repository 33
3.14 OkmAuth_login Job 34
3.15 OkmAuth_login tXMLMap 35
3.16 tWebService WSDL Configuration 36
3.17 tWebService Input Mapping 37
3.18 tWebService Output Mapping 37
3.19 Upload Document Job 40
3.20 Talend ESB Runtime 41
3.21 Apache Karaf Service List 41
3.22 Authentication Connector 43
3.23 Connector General Information 44
3.24 Connector Parameters 45
3.25 Authentication Connector Request Parameters 46
3.26 Connector Response Configuration 47
3.27 Connector Output Operations 48
3.28 Connector Output Expression 48
3.29 Upload Document Definition 49
3.30 Upload Connector Request Parameter 50

Vil

3.31 Edit Document Connector Definition 51
3.32 Download Document Connector request parameter 51
3.33 Check-out Document Connector request parameter 52
3.34 Check-in Document Connector Definition 53
3.35 Check-in Document Connector Request Parameter 53
3.36 OpenKM Main Page 54
3.37 Login Test Case 55
3.38 Upload Test Case 56
3.39 Download Test Case 56
3.40 Check-out Test Case 57
3.41 Document after Check-out 58
3.42 Update Document Test Case 59
3.43 Document after Check-in 59
3.44 Deployment Model 60
3.45 Bonita Upload Stage 61
3.46 OpenKM Taxonomy 61
3.47 Bonita Download Stage 62
3.48 OpenKM Check-out Status 62
3.49 Bonita Update Stage 63
3.50 OpenKM Version View 63

List of Abbreviations

ESB Enterprise Service Bus
OpenKM | Open Knowledge Management
DMS Document Management System
EAI Enterprise Application integration
MIS Management information system
MOM Message Oriented Middleware
SOA Service Oriented Architecture
WSDL | Web Services Description Language
SOAP | Simple Object Access Protocol
HTTP | Hypertext Transfer Protocol
XML Extensible Markup Language
SMB Small and Medium Businesses
GUI Graphical User Interface
B2B Business-to-Business
CPU Central Processing Unit
BPMS | Business Process Management System
WFMS | Workflow Management System
TCO Total Cost of Ownership
OEM Original Equipment Manufacturer
J2EE Java 2 Enterprise Edition
CIM Common Information Model
DICOM | Digital Imaging and Communications in Medicine
WSN Wireless Sensor Networks
GG Google Gadgets
NI National Instruments
DAQ Data AcQuisition
EIP Enterprise Integration Patterns
ASF Apache Software Foundation
API Application Program Interface
JAX-WS | Java API for XML Web Services
JAX-RS | Java API for RESTful Web Services
OSGl Open Service Gateway Initiative
JMX Java Management Extensions
JAR Java ARchive
KAR Karaf ARchive
JMS Java Message Service
SVN Subversion

JSON JavaScript Object Notation
STS Security Token Service
SAML | Security Assertion Markup Language
XPDL | XML Process Definition Language
JPBM | java Business Process Management
LGPL Lesser General Public License
GPL General Public License
GWT Google Web Toolkit
JDK Java Development Kit
RDBMS | Relational DataBase Management System
ERP Enterprise resource planning
TAC Talend Administration Center
SAM Service Activity Monitoring
loT Internet of Things

Xl

Chapter One: INTRODUCTION

1.1.Preface

One of the challenges facing the architect is the integration of applications.
Implementing enterprise integrations can be complex and daunting, especially for
organizations with a legacy information technology environment. The practical approach
to integrations should result in maximizing return on investment and achieve a forward-
looking, flexible architecture aligned with broader enterprise architecture goals and the
emergence of new technologies in the marketplace. An enterprise service bus (ESB) is a
standards-based connectivity layer used to integrate distributed systems across functional,
enterprise and/or geographic boundaries

It provides acombination of service enablement, messaging, transformation, routing
and mediation to address a wide variety of enterprise integration challenges. The ESBs are
reliably and securely connected distributed systems and remote locations in a flexible way
while reducing the number, size and complexity of application interfaces. ESBs have
primarily been the province of only large companies. Gartner estimates that core ESB
features are adopted by more than 50% of large organizations (Gartner, 2013), but this
pattern is changing. The mid-market is now experiencing faster growth in application
integration than large enterprises who have been locked into proprietary, non-standard,
"black box" solutions, with little input into the evolution of the ESB products they have
come to rely on to integrate their business applications.

1.2.Problem Statement

Any x company might have a set of information systems, such as enterprise resource
management system, document management system, email, project management system
and test management system. All of these systems are isolated from each other and there
is no exchange of any data because they are not integrated. Recently x company decided
to integrate workflow management system and document management system to
standardize the scattered enterprise processes between their systems. And the main
obstacle to implementation is the lack of proper integration between systems.

Although there are several methods to integrate the system, still the question what
is an optimal method that could meet the needs of the organization to achieve its goals in
an integrated, safe and easy system maintenance and follow-up with the possibility of
adding any future systems.

1.3.Research Significance

Lack of interoperability, most of the institutes, companies and corporations in the Sudanese
market have many systems, but most of that systems are isolated and there is no exchange
of information.

High cost, there are some companies were integrated their systems using non-suitable

1

methodologies, that caused a rise in the cost of maintenance, follow-up and administration
operations.

1.4.Research Objectives

The main objective of this research is to implement enterprise system integration in Sudan.
Through:

a.
b.
C.
d.

Prepare ESB environment

Specify the workflow engine

Integrate the workflow engine with DMS
Test the new shipped system

1.5.Research Questions

To overcome the previously presented shortages in previous, this research may provide
convincible answers to the following research questions:

a.

b.

What framework to be used to complete an integration between the two enterprise
systems?

What are the mechanisms that will be used to make sure that the integration process
is successful and that the system is stable?

How to choose the workflow engine and what are the choice criteria?

1.6.Research Methodology

To achieve the above-mentioned objective the following methods will be followed:

a.

b.

oo

Selecting the ESB integration approach, and define the suitable framework that can
be applied to the conducted problem.

Set up the integration environment which includes and not limited to the data model
format, the communication protocol, and message notation.

Selecting the appropriate workflow engine.

Develop the required adaptor in each the integrated system.

Validate and test the proposed system and its components from the view of
transparency and information exchange among the system.

1.7.Research Structure

This research will be structured as follows

Chapter one introduction, while in chapter two we will talk about the theoretical

background and related work with discussion to their advantages and disadvantages. In
chapter three: will discuss the methodology and the framework for proposed solution and
the implementation. Finally in chapter four: draw a conclusion and future work.

Chapter Two: THEORETICAL BACKGROUND

2.1.Introduction

In this chapter previous research has been reviewed to provide a clear thought about the
enterprise integration then ESB has been defined in more details, lastly, the proposed ESB
and the Workflow management system has been provided.

2.1.1. Key Concepts

a. Enterprise Application Integration (EAI)

According to (Freivald, 2010) EAI (enterprise application integration) refers to
the plans, methods, and tools aimed at modernizing, consolidating, and coordinating the
computer applications in an enterprise. Typically, an enterprise has existing legacy
applications and databases and wants to continue to use them while adding or migrating
to a new set of applications that exploit the Internet, e-commerce, extranet, and other
new technologies. Enterprise also prefers the business processes and the data are shared
without being forced to change their structures. And that what EAI provide to them.

Enterprise Application Integration, or EAI, has existed as a technical term since
the early 2000s, but the central problem that it attempts to solve is much older. In a
nutshell, EALI is an approach, or more accurately, a general category of approaches, to
providing interoperability between the multiple disparate systems that make up a typical
enterprise infrastructure.

According to (ALSENE, 1994)"Since the early days of computing,
organizations have aspired to integrated, enterprise-wide information system
architectures. Throughout the years, these aspirations have been reflected in the quest
for integrated Management Information System (MIS), enterprise-wide data models,
and integrated databases".

According to (Woolf, 2012) enterprise application integration is not an easy
task because integration is not just one style or method to be used. The approach
used to accomplish integration in a typical organization is related to their applications,
developed or bought from third party vendors, operating on different platforms
and using diverse technologies inside or even outside the company. Additionally,
some applications are not designed to be integrated with other applications but their
data is critical to other applications. All of this makes the process of integrating
applications complicated and critical to every enterprise.

b. Message Oriented Middleware (MOM)

Message-oriented middleware (MOM) is software or hardware infrastructure
supporting sending and receiving messages between distributed systems. It allows
software components that have been developed independently and that run on different
networked platforms to interact with one another. (Wikipedia, 2013)

C. Service Oriented Architecture (SOA)

Service-oriented architecture (SOA) is a design pattern based on distinct pieces
of software providing application functionality as services to other applications via a
protocol. This is known as service-orientation. It is independent of any vendor, product
or technology. (MSDN, 2004)

d. Web Services

A Web service is a method of communication between two electronic devices
over a network. It is a software function provided at a network address over the Web
with the service always on as in the concept of utility computing (Anon., n.d.)

The W3C defines a Web service as A Web service is a software system designed to
support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. (W3, 2004)

e. Message Broker

A message broker is an architectural pattern for message validation, message
transformation and message routing. It mediates communication amongst applications,
minimizing the mutual awareness that applications should have of each other in order
to be able to exchange messages, effectively implementing decoupling. (Gregor Hohpe,
2003)

f. Enterprise Service Bus (ESB)

ESB is an “Architectural Pattern”, “We describe the enterprise service bus first
and foremost as an architectural pattern. In fact, it is possible to construct service buses
from a variety of different underlying integration technologies. The architecture pattern
remains valid and is a guiding principle to enable the integration and federation of
multiple service bus instantiations.” (High, 2006)

2.1.2. Integration Strategies
Integration can be complex and expensive. There are many integration software
vendors in the marketplace. The first step is to determine the integration strategy that
will best achieve the business needs. Integration technologies and concepts have
evolved over the last decade, leading to a multitude of architectures and products in the
IT market. However, according to (Sachin Chandra, 2009) there are really three broad
integration strategies:

i. Point-to-Point integration

In a point-to-point integration approach, each application is integrated directly with
the other application via an interface module. While interfaces of this type can be
built and implemented relatively quickly and cheaply, the approach has limited
consideration for enterprise-wide data integration. As more applications are
interconnected with each other, the number of integration modules multiply
exponentially. Additionally, those interface modules are directly impacted by
underlying application upgrades and data changes.

Application 1

Application 3 Application 4

Application 5 | . Application 6

Application 2

Figure 2.1: Point to Point Approach (Sachin Chandra, 2009)

ii. Spoke-and-hub integration

In a broker approach to EAI, a central integration engine called the broker, resides
in the middle of the network, and provides all message transformation, routing, and
any other inter-application functionality. All communication between applications
must flow through the hub, allowing the hub to maintain data concurrency for the
entire network. The broker model allows loose coupling between applications, but
like any other architecture model that uses a central engine is that the broker can
become a single point of failure for the network.

Integration

Business
Logic

b 4
A Adapter Adapter 7
Application 3 Application 4

Figure 2.2: EAI Approach (Sachin Chandra, 2009)

iii. Enterprise Service Bus Integration
The ESB Integration strategy is also based on the spoke-and-hub integration
topology. With the advent of open, Web-based, and service-oriented business
applications, EAI middleware applications have evolved to support Web-based
communication standards such as SOAP, XML, HTTP, and other services. The bus
architecture sought to lessen the burden of functionality placed on a single
component by distributing some of the integration tasks to other parts.

Appl__’i’cat"ion; 1

Wrapper

Integration

Business
Wele|[e:

Figure 2.3: ESB Approach (Sachin Chandra, 2009)

2.2.Service Oriented Architecture

In order to define the role of SOA in system integration the related literature in this area
was reviewed to illustrate the characteristics of SOA which are beneficial to EAI
as a new architectural approach for EAL. It is noticeable that the literature usually talks
about SOA and web services because web services are one of the suitable methods
to implement SOA architectural model in practice.

The first characteristic of SOA is the definition of service in different literature. (Woolf,
2012) ldentified Service as Shared business functions which are well-defined and
universally available and responds to requests from “service consumers”. According
to (High, 2006) SOA is comprised of services that are modularized. These modularized
services can then provide coordination to support real-time business processes to function
correctly throughout the enterprise. The authors pointed out that SOA is the result of
evolution in programming languages and paradigms, distributed computing and business
technology.

According to (Woolf, 2012) in SOA integration of a new application is done by using
existing remote services provided by other applications, thus calling a service can be
regarded as integration between applications. SOA based integration tools usually
provide enough simplicity to call an external service the same as a local method.

7

According to (Papazoglou, et al., 2007), the benefit of using SOA approach is loose
coupling allows to break down the integration logic into distinct and easily manageable
pieces. Moreover, service orchestration and service choreography are two characteristics
that mainly define the interaction protocols coordinating and controlling how services are
collaborating.

(Amjad Umara, 2009) Claim that sometimes SOA will not be able to improve the
enterprise system regarding complicated issues like:

i. Ifthe target applications are too inflexible and costly to maintain, the integration
in-place approach does not work.

ii. Outdated and old functionalities will remain in the system and also the
possibility of using a new product more flexible to SOA approach will be
ignored.

iii. SOA is producing a great deal of confusion due to its specific array of standards
and new products.

According to (Ravi Khadka, 2013) Migration is a multifaceted process that involves
technical, organizational and business issues. To manage such a multifaceted process,
a central governing body with the suitable governance of the entire migration process
is indispensable. Needless to say, a legacy to SOA migration is a complex and
challenging process and any failure can threaten the success and fortune of an
enterprise.

2.3.Enterprise Service Bus

An enterprise service bus (ESB) is a software architecture for middleware that provides
fundamental services for more complex architectures. For example, an ESB incorporates
the features required to implement a service-oriented architecture (SOA). In a general sense,
an ESB can be thought of as a mechanism that manages access to applications and services
(especially legacy versions) to present a single, simple, and consistent interface to end-users
via Web- or forms-based client-side front ends. (Rouse, 2012)

According to (IBM, 2009) an ESB enables standards-based integration between loosely-

coupled applications and services within and across
a. Services oriented architectures — distributed applications are composed of granular
reusable services with well-defined, published and standards-compliant interfaces
b. Message-driven architectures - applications send messages through the ESB to
apps
c. Event driven architectures - applications generate and consume messages
anonymously

2.3.1. Service Virtualization

SOA Federation solutions focus on taking existing services and ensuring that they
meet the requirements of enterprise SOA. To achieve this, the SOA Federation
solutions offer a set of core capabilities one of them is Service Virtualization.
According to (SOA, 2014) Service Virtualization provides location transparency,
service mobility, impedance tolerance and reliable service delivery without
requiring a re-platforming of existing platforms or introducing yet another service
platform to support the required solution architecture. It can be divided into three
sub-categories as follow
a. ESB inter-connects Requestor and Provider
i Interactions are decoupled
ii. Supports key SOA principle — separation of concerns
b. ESB Provides Service Virtualization of
I Location and identity
ii. Interaction pattern and protocol
iii. Interface
C. ESB also enables Aspect-oriented Connectivity or Mediation
I Security
ii. Log
ii. Management

Request Flow

Service
Requestor

Protocol Routing & Data ESB Base
Translation Transformation Data Format
ESB Base Flow/Group of Protocol
Data Format Mediations Translation

Response Flow

Service Service

Figure 2.4: ESB Request-Response Flow Review (IBM, 2009)

2.3.2. ESB Routing Rule

In environments where integration is a subject of interest, there exists the necessity
to route the messages in an efficient way. This means that a service consumer only
receives that piece of information it is interested in, based on the content of the
message. In conventional systems, the service provider explicitly specifies the
intended message consumers using a unicast or multicast address. This loosely
coupling of services also requires some discovery agency, which is capable of
connecting the service requestors with the service consumers. Such a discovery of
services and binding them does not necessarily happen at design time. It can happen
at run-time, dependent on the needs of the service requestor. Content-based routing
now comes in play, enabling to read messages and route messages to the right
service consumer based on the content of the message. The rule how to interpret the
content of the message is called a routing rule. Content-based routing is at the core
of systems which integrate between services via the publish-and-subscribe pattern.
(yenlo.nl, 2010)

Direct Connectivity Traditional Enterprise
(Without middleware) Message Queuing Message Brokering Service Bus

Connectivity,
mediation &
custom
adaptation logic

Mediation &

custom
adaptation logic

" Connectivity,
mediation & custom
adaptation logic

Lines of maintainable code

Application Application Application

All connectivity, Removes the Removes the Reduces
mediation and connectivity connectivity + application to its
custom logic logic from the mediation logic core business
buried within the application from the functions
application. application (i.e. a service)

Reduced development and maintenance; increased flexibility and reuse

Figure 2.5: ESB Evaluation (IBM, 2009)

2.3.3. ESB's Core Functionalities

There are a number of different ESB products available on the market today, An
ESB product should provide a number of core functionalities to be utilized in
application integration, below is the summarized list of feature according to (Mason,
2014)

10

a. Location Transparency: A way of centrally configuring endpoints for messages,
so that a consumer application does not require information about a message
producer in order to receive messages

b. Transformation: The ability of the ESB to convert messages into a format that
Is usable by the consumer application.

c. Protocol Conversion: Similar to the transformation requirement, the ESB must
be able to accept messages sent in all major protocols, and convert them to the
format required by the end consumer.

d. Routing: The ability to determine the appropriate end consumer or consumers
based on both pre-configured rules and dynamically created requests.

e. Enhancement: The ability to retrieve missing data in incoming messages, based
on the existing message data, and append it to the message before delivery to its
final destination.

f. Monitoring / Administration: The goal of ESB is to make integration a simple
task. As such, an ESB must provide an easy method of monitoring the
performance of the system, the flow of messages through the ESB architecture,
and a simple means of managing the system in order to deliver its proposed
value to an infrastructure.

g. Security: ESB security involves two main components - making sure the ESB
itself handles messages in a fully secure manner and negotiating between the
security assurance systems used by each of the systems that will be integrated.

2.3.4. Enterprise Service Bus Model
The previous literature, in general, provides the following conceptual model to
introduce ESBs.

E SB [SERVICE CONTAINER l SERVICE REGISTRY l CONNECTORS I TRANSFORMATIONS ES B

ROUTING JL DRCHESTRATION][MESSAGING l SECURITY

|

Figure 2.6: Enterprise Service Bus Model (Talend, 2012)

11

According to the above conceptual model, ESBs play a mediator among different
applications based on different platforms and data types. The integration mechanisms
provided by an ESB assists the easier way of adding new applications to the integration
landscape. Applications communicate with each other through their connection to the
ESB, while the complications of implementation the logic behind the integration is
mainly dealt by the ESB (Chappell, 2004).

2.4.Related Work

In this section, the literature related to the related work were gathered and reviewed to be
able to know the best practices and lessons learned in implementing ESB in different
industries.

According to (Dai, 2011) dedicated ESB for power systems has been designed and
implemented, the proposed design meeting IEC 61970/61968 standards, and has been
developed by Java 2 Enterprise Edition (J2EE) and divided into adaptation layer, service
layer and data layer. Common information model (CIM) has been used as the standard of
data exchange model and XML has been used to describe the message. The author didn't
show a best practice that is followed but he claimed that Objectives of the institution has
achieved significantly by used the ESB, but the ESB framework needs more effort in
security and log functions.

According to (Chongwen Wang, 2010) DICOM is very complex technology, most of the
hospitals used the point-to-point methodology to integrate their DICOM communications.
Which eventually lead to high cost of maintenance and expanding process, so to reduce
the cost and share the DICOM devices more efficiency. ESB has been designed and
implemented to carry the DICOM communication, it has been divided into four modules
connector module, message management module, DICOM entity protocol module and
service unit module. The author claimed that they are succeeded in implementing
communication between DICOM sender and ESB, but according to author the framework
needed a lot of work to be more reliable and stable.

According to (Chunmiao, 2012) the purpose of use ESB in Metallurgical production is
improve the efficiency and reduce the maintenance cost by providing a model based on
ESB to manage the various processes in production. The author designed a new production
model that centralized service bus Metallurgical based on the automation and control
system. The new model has made great progress in Metallurgical production in china, but
compared with international Metallurgical industry there is a considerable gap.

It is not clear why both (Dai, 2011) , (Chunmiao, 2012) and (Chongwen Wang,
2010) designed and implemented their own ESB from scratch, they are not provided any
justifies or proof that existing ESB framework did not fit their requirements. But they said
there was a significant improvement in their case study after implemented ESB
architecture.

According to (Mulik, 2009) their case studies about an enterprise that has distributed

12

business division. Each one of this division having its own solution that handling its
operational functions. Nevertheless, these business units need to integrate with corporate
functions and shared services on real-time as well on loosely coupled basis. And the author
used the ESB to achieve the enterprise needs. The author chose the Appropriate ESB
framework based on clear and reasonable criteria, mainly the ESB vendor reputation and
pricing license (TCO). The lessons learned from this research could be as follows:

a. Be prepared to have some vendor lock-in unless there is an unusually high level of

commitment to standards within an organization.
b. Provision for proportionately higher coordination efforts in such projects.

According to (U. Raza, 2012) a novel approach has been presented for monitoring a typical
plastics industry environment based on three major technologies: Wireless Sensor
Networks (WSN), Service Oriented Architecture (SOA) and Google Gadgets (GG). This is
applied to a heterogeneous network of WSN nodes and National Instruments (NI) high-
speed data acquisition (DAQ) devices. Although SOA mostly used to make software
resource run as service, according to the author SOA architecture has been used to enable
hardware resources like WSN to be accessed as a service. So to achieve their goal, a
proposed system to monitor micro injection molding has been designed and implemented.
ESB has been implemented as one of three core modules -WSO2 used as ESB- and the ESB
responsible for thousands of WSN that integrated with ESB and GG and DAQ. According
to the author, the proposed system has proven to be flexible and easy to use. In future, the
author aims to monitor the complete Micro Injection Molding. The author describes
systems integration implementation beyond traditional forms of integration, where they
used the concepts of SOA, ESB, 10T to link between factory systems and wireless sensor
network systems of mechanical devices, which lead them to develop monitor and control
system with an acceptable cost.

13

Chapter Three: METHODOLOGY

3.1.Preface

To achieve the research objective; implementing an enterprise system integration in Sudan,
the ESB integration approach was selected, and a suitable framework was defined to be
applied to the conducted problem. The following were the phases adopted:

e Setting the criteria for selecting an appropriate mechanism to integrate an enterprise
system.

e Selecting the appropriate workflow engine.
e Preparing the integration environment which includes data model format,
communication protocol, and message notation.

e Developing the required adaptor in each integrated system.
e Validating and testing the proposed system and its components; based on the view
of transparency and information exchange among the system.

3.2.The Proposed Enterprise Service Bus

3.2.1 Criteria

A. According to (Wé&hner, 2013) it is hardly possible to create a good and useful matrix
because the products offer different functionalities and concepts. Besides, the feature
list also changes virtually every day in the IT world.

Therefore, and based on the literature review, the author suggests the following
criteria:

i. Usability: How complicated is the installation? How many tools are needed? Is
the development environment intuitive?

ii. Maintainability: How do you administer the product? Is there a GUI for
monitoring services?

iii. Community: Are there active public forums or mailing lists? Are numerous
articles, tutorials, articles, and videos available? Is the product supported by
several companies?

iv. Enterprise Support: What support options are offered ("business hours",
"24/7" hotline vs. Email vs. on-site support, etc.)? Can the required service level
agreements be guaranteed? Is support offered in your preferred language?

v. Functionality: Are all the required functionalities offered?

vi. Flexibility: Can you customize functionalities of the product to fit my needs?

vii. Expandability: Is it possible to expand the product? is the product and its
interfaces based on standards?

14

viii.

Connectors: Are adapters for all required technologies available? Are there
adapters for B2B products such as SAP or Salesforce? How easily can | build
your own adapter?

Cost: What is the full cost (total cost of ownership) of the product - including
maintenance, all required ancillary products, connectors, etc.)?

Licensing: What licensing or subscription model is used? What happens when
requirements change (more computers, more CPUs, switching to virtual
machines, etc.)? Are upgrades for free? Are downgrades possible, too? Are the
costs "foreseeable™ at all, is the price list even understandable?

According to his claim there no winning ESB product and it is advisable to pre-define your
own needs, and then to evaluate which products are best suited.

B. While (Gartner, 2013) define key technical characteristics that slightly differ from
the previous criteria.
~Technical characteristics

Vi.

Vil.

viii.

Communications: Vendor offerings must implement an interoperability layer
that supports interactions among application and system components via a
variety of. Vendor offerings must also enable a broad array of interaction styles
— such as request/reply, conversational, publish and subscribe, and
asynchronous messaging. Finally, vendor offerings should provide support for
the idempotent delivery of messages — that is, the ability to (1) guarantee the
delivery of each message, (2) to deliver each message only once and (3) to
deliver messages in the order sent by the source program(s).

Data Transformation: Vendor offerings should support the translation of data
from the format, structure and semantics native to the source application to that
required by the target applications.

Orchestration: Vendors should provide technology that hosts the execution of
process logic spanning interactions with multiple back-end services or
applications with the aim of implementing composite services or automated
system-to-system processes.

Application Connectivity: Vendors should provide an array of adapters or
wrappers — that is, a technology that combines design tools and runtime
software to implement programs that act as "glue," bridging protocol differences
and connecting to databases, as well as most popular packaged applications and
Saas offerings.

Development Environment: Each vendor must provide a software application
that provides comprehensive facilities to enable integration staff to efficiently
design, implement, test and deploy integration interfaces and service interfaces.
B2B Interactions: Vendors should provide connection provisioning
capabilities for B2B protocols. Vendors should also support Web services-based
connections with external business partners.

Governance: Governance is the assignment of decision rights to ensure
desirable behavior. Vendor support is expected for managing the lifecycle of
integration solutions during design time and to manage qualities of service at
runtime. Expected functionality includes a registry/repository, policy definition
and management, and APl management.

Security: Vendors should enable implementation of effective security support
to enable capabilities such as authentication of endpoints, authorization of
service or interface access, message/document encryption/decryption...etc.

15

iX. Administration and Monitoring: Vendors should provide technology that
enables visibility into and effective management of the solutions that are created
through the integration of programs and services.

According to (A., 2010) the support for open standards has to be one of the main
characteristics to be considered. Other important characteristics to take into account
are the followings: the implementation support, the ease of use and the GUI support.
Obviously, there are no standard criteria that can be used in ESB evaluation, so the
decision maker needs to do his homework and define what the criteria that suit their
needs.

“Democratizing” is introducing a democratic system or democratic principles to make
something accessible to everyone. Open source software democratizes the ESB by making
it accessible to a much broader group of developers and organizations. By addressing the
primary challenges developers face—access to low-cost, powerful development tools that
are stable, easy-to-use and fully supported. According to (Thompson, 2010), “With several
commercially supported alternatives available, open-source ESBs have moved from a
developer-initiated experiment to a viable choice for mainstream organizations.” Small
and medium businesses (SMBs), as well as departmental users, can now gain the
productivity, efficiency and cost advantages of application integration that until now were
only exploitable by larger enterprises. Enterprise-class integration is now accessible to a
greater number of organizations that can not only participate in the economic benefits of
ESBs but can ensure an ongoing voice in how their ESB software evolves to support the
needs of the ESB user community over time.

3.2.2 Motivation for Choosing Talend ESB

According to (Asankha C. Perera, 2013) the Talend ESB SE 5.3.1 performed slightly
better than the Mule CE 3.4.0 ESB and encountered only 3 HTTP level errors for
11,138,400 requests. While The WSO2 ESB 4.7.0 suffered a severe response corruption
defect for payloads larger than 16KB, and a failure of the XSLT test cases.

According to (Gartner, 2013) Talend ESB pursues an open-core, commercial open-
source model providing mission-critical features, support and maintenance via
subscriptions. The vendor offers BPMS functionality via a partnership with Bonitasoft.
And although a relative newcomer to the ESB suite market, Talend is the first vendor to
offer a platform that integrates a suite for application integration with data integration
and BPM technologies through a common repository/environment.

According to (Gartner, 2013) Talend has many strengths that listed as follows
a. Strengths
i. Talend Open Studio for ESB is a robust suite founded on the broadly adopted
Apache CXF, Camel, Karaf and ActiveMQ open-source offerings, to which its
engineers are active contributors.

16

Talend uses a graphical approach to implementing Apache Camel Enterprise
Integration Patterns, which includes an all-in-one feature for testing the
implementation of these enterprise integration patterns.

Talend's go-to-market approach of five platform offerings (Big Data, Data
Management, Data Services, Enterprise Integration and Master Data
Management), with all the platforms integrated via a single repository, is
unique.

b. Cautions

Talend is a relatively young company, founded in 2005 and dual-headquartered
in Los Altos, California, and Suresnes, France. It is methodically expanding into
its established markets (that is, the U.S. and EMEA) and is opening up its
Asia/Pacific efforts with offices in Tokyo and Beijing. However, its products do
not have a worldwide installed base comparable with the leading integration
vendors.

B2B support is limited to the most common B2B file formats. However, these
can be configured into the product.

Talend looks to Apache projects and its R&D staff to provide adapters, some of
which are also contributed by community members. While Talend provides
adapters to SAP, Microsoft CRM and salesforce.com, it only offers a limited set
of application integration adapters for widely deployed commercial packaged
applications, such as PeopleSoft and Siebel.

3.3 The Proposed Workflow System

All of the research that has been done related to choosing workflow management system
(WEFMS), leading us to one question “What functionality and capabilities should a WFMS
provide for it to fit the enterprise requirement?”

They claim that there are no WFMS that can be suitable for all enterprises, instead, the
enterprise should define the criteria and evaluate the WFMS available in the market.
According to (Boucher, 2012), the criteria that have been chosen are

a.

0o o0 o

Ability to fully integrate with your company’s line-of-business application
Ability to create and configure simple or complex processes

Management dashboard for performance metrics

Allow for multiple users interface deployment options

Reasonable TCO

OEM agreement support

The WFMSs that has been evaluated are Bizagi, Bonita and Activiti. The following table
illustrates the evaluated result

17

Table 3.1: Workflow Criteria Matrix
Criteria / WE Bizagi | Bonita | Activiti

Ability to fully integrate with your company’s line-of- | 4/

business application

Ability to create and configure simple or complex | +/

processes

Management dashboard for performance metrics \
N
X
X

<] 2

Allow for multiple users interface deployment options
Reasonable TCO

2 22l 2 20 =2
X | X |~ X

OEM agreement support

So Bonita WFMS has been chosen to be the workflow engine to the company and to be
integrated with DMS system or any other system that will implement in the company.

3.4 Implementation

In the following section of implementation, Preparing the integration environment has been
set up which includes data model format, communication protocol, and message notation. Then the
required adaptor in each integrated system has been developed. Finally validating and testing the
proposed system and its components; based on the view of transparency and information exchange
among the system.

3.4.1 Introduction to Talend ESB solutions

The Enterprise Service Bus (ESB) has always been the cornerstone of every vendor's
Service Oriented Architecture (SOA) strategy. (Talend, 2014) Talend ESB is a considerable
improvement on previous ESBs in that it:

a. has relatively small footprint

b. uses proven open source technologies

c. enables easy integration of existing applications and infrastructures
This chapter gives a high-level overview of Talend ESB solutions, their components, and
features. It also describes the integration process between Bonita workflow management
system and OpenKM document management system using Talend ESB.

3.4.2 Talend ESB Features

According to (Gartner, 2013) Talend ESB is a versatile and flexible ESB that allows
organizations to address diverse integration challenges. It supports a broad set of standard
transports and protocols, as well as enterprise integration patterns (EIPS).

Leveraging Apache CXF, Apache Camel and Apache ActiveMQ open source
integration projects, Talend ESB makes enterprise-class integration accessible by
delivering a cost-effective and easy-to-use way to integrate and expand systems and
applications.

18

Apache CXF is an open source services framework, Apache CXF helps companies
build and develop services using frontend programming APIs like JAX-WS and JAX-RS.
(CXF, 2016)

Apache Camel is an open source integration framework that lets developer leverage
EIPs to implement routing, transformation and mediation rules. (Camel, 2015)

a. Web Services Support

Talend ESB helps the developer to create new web services or to service-enable existing
applications and interfaces for use with the web. Talend ESB leverages the features of
Apache CXF for developing and deploying web Services and REST applications.
According to (CXF, 2016) Apache CXF supports all important web services standards
and fully complies to the Java API for XML web Services (JAX-WS) specification.
Talend ESB supports the creation of SOAP and REST web services and offers WS-*
functionality including support for WS- Addressing, WS-Reliable Messaging, and WS-
Security over both HTTP and JMS transports. (Talend, 2014)
In addition, the web services stack in Talend ESB distributions goes well beyond
Apache CXF, with support for:
i. OSGi containers
ii. Graphical Data Service Development using the Talend Studio
iii. Advanced Service Governance using Deployment Time Policies
iv. Central deployment and configuration options via Web User Interfaces and
JMX-based APIs
v. Management and monitoring of services

b. Standard OSGi Runtime

According to (Talend, 2015) the standard runtime in Talend ESB is an OSGi
container. The OSGi implementation shipped with Talend ESB is Apache Karaf
using Eclipse Equinox as OSGi Runtime, providing a lightweight container into
which various components and applications can be deployed.

Console Deployer Provisionning Blueprint

Figure 3.1: Overview of Karaf Components (Talend, 2014)

19

Karaf supports the following features:

i. Hot deployment: Karaf monitors any file inside the [home]/deploy directory.
So if a file is copied to this directory, it is automatically installed inside the
runtime; subsequently, this can be updated or deleted, and Karaf will act
correspondingly.

ii. Dynamic configuration: Services are usually configured through a standard
OSGi service, using property files, which are monitored; changes are
propagated to the service.

ii. Logging: using a centralized logging back end supported by Log4J.

iv. Managing instances: Karaf provides simple console commands for managing
multiple instances.

c. Messaging

Talend ESB embeds Apache ActiveMQ message broker to support a number of
different messaging options. ActiveMQ is written in Java and implements the JMS
specification.

The job of the message broker is to transport events between distributed
applications, guaranteeing that they reach their intended recipients. The broker,
therefore, must be highly available, performant, and scalable for this goal, which
Apache ActiveMQ provides an easy to use way in Talend ESB, as it is embedded
in Talend Runtime. (Talend, 2014)

d. Talend Studio

The Talend studio provides a graphical development tool with:
i. an Integration perspective
ii. aMediation perspective
iii. aJava perspective (Enterprise and Platform studios including m2eclipse
Plugin)
iv. asoapUl perspective (Enterprise and Platform studios only)
These are discussed in more detail in the rest of this section.

I. Integration Perspective
The Integration perspective is a graphical tool within the Talend Studio which
allows the developer to use the extensive list of data adapters and components
to build ESB data services and export them for standalone or for deployment in
a local Talend Runtime container.

20

Fie Eit Wndow Help

107 A Vfw @R i (Wi Qs § tons & e

B 3 Debug 35 Mediaion |

fiRepostoy 12 . = 5| H 537 0 @ TaendOpenStudie | OpeskMDoc Dlwsdl 11 =4
= =2
" LOCAL Cperkld Al S
E 7 Business Modek s
£ Job Designs
= 0‘:“'“ ml - 5 OMDocument © 00Decument
= Op = 7 -
O =t = DKMDecumentPort 7 $ setPeperiis
5 Test! fttpe/ ocalho HITRES.. £ Piimput F parameters T sefrogerties
OTstz @eutpat parameters & s#Progerbzfeponss
A o —
B @iepestontacastion 7 Pepustantscaston & Pepaskenacegton
(p CPrlest 1
£ Senvices ‘g PathNotFoundEsception 7 PathhctFoundBsception] PathNotfoundbreption
£ OpenOdiath 01 “pledbregion T Lodregion # LodBregton
a epgmon
5 OpeniMDoc ! — - e . e
Qo0 el g Versonbirepion ¥ Vesicnbrepion 2 Vesiontiception
£ Teetll g Dstshasebacaction © Datsbasescastion 7 Dstzbasebacesion
& =t “g AccessDenedEnception 7 AccessDeniedEuception 2| AccessDenedEecegtion
& T=i201
. § move
73 Contexts — — —
Code yimpat 7 parameters £ mne
J SO Templates G eupat T parameters & movePespense
&5 Metadatz o temssEeation temBussieetion = tenfesshicetion
% Documentation = , = r = 3
3 Recrdlebin @ FepostorgEecesticn I Fepostonyacepbion] Repostenbaception
@ PathNotFoundEscegtion 7 PahNctFoendbacepbion] PathNetFomndbreption
.=_E =t ‘_’ = i
& port :
Genenal Name | P¥MDocumentPost
| Docomeni®08. | Bnging: OXMDocumentSoazBinding v
Bl | ddeess bt Nocalbest KTSESBOMS Documest
Probocok: 0 v
N ER =0

Figure 3.2: The Integration Perspective with a Service Design

A Service in the 'Services' node is a Web-Service defined by a WSDL. The WSDL
can be just imported, created from scratch in the tooling using the embedded
graphical WSDL editor or an existing WSDL can be imported and then edited
within the studio. In this case, the service is based on this WSDL information and

each service operation can then be implemented in the job design node.

21

e

%

Talend Opan Studio for £5B (34120143207 1530) | OpenkM {Connection: Local)

=

He Edt Yiew Yindow Hep

_ | {3 Repostory £ 0

0~ &~

= LOCA: Opentd

{7 Busimess Modek
;3 Job DS‘;HS
J OpenkMaush
= OpenkMBoc
= OtMDocument

& measSmple

& USMDocument cresteSimple 0

J Teset
 Testl
J Test2
3 mmmeEmmemme 2.1

4 OPrTeall]

CpenMaud &1

£ CpeOec

.
O ogE oo

§ Taend Ogen Soudic

g4;:§:¥ S
teml) .
£53ProvdeRequest 1 DN Mzg 1 tiogiow 2
¢ &£
_—‘i]
? -
/P & =osTposentli siogae 1
iy

Figure 3.3: The Integration Perspective with a Job Design

I OpentMDoc 01wed

g *keb O¥MDocument cresteSimgie 01 32

LD e e]

= Palstte =

= Big Data

= 3 Debug 3B Medisfion

= Business Inbeligence

= Chars

rocen

= Businsss
= Cosd

= Custom

Code

& taroosy

P T Js

= Diata Guality

= Datzhases

— A5

SR

= DatNET
SBI

=653

= REST

= Mk

= Fls

= gt

= Intesnet

| pSMELLES

A data service Job is a graphical design, of one or more components connected
together, that allows the developer to set up and run data service operations. Jobs
address all of the different sources and targets that you need for data integration
processes and combine it with Web services. Additionally, in enterprise and
platform studios, the developer can use the shared repository feature to work in
larger teams, and share resources. It has the facility of team collaboration - team
members can store and share their business models, integration and service jobs,
integration services and metadata in an industry-standard source manager (SVN).

ii. Mediation Perspective

This section first deals with Apache Camel, and then the Mediation
perspective which is a graphical interface to this functionality.

Apache Camel

The Mediation functionality of Talend ESB is based on the Apache Camel
project. The core of the Camel framework is a routing engine. It allows the
developer to define routing rules that accept and send messages through
components. There are no restrictions on the message format - for example,

22

Java objects, XML, JSON, plain text and so on, can be used. These routing
rules are based on the book (Woolf, 2012); et al. Thus, Apache Camel is a
framework allowing developers to assemble Endpoints / Processors into
workflows (Routes) to achieve higher level functionality (Wikipedia, 2014).
It facilitates application integration by leveraging Enterprise Integration
Patterns (EIPs) to essentially assemble scalable services, and make message-
based system integration simpler to design and implement.

cam el Filter Processor
Integration Engine And Router b
Camel Endpoints
Router Processor
* Camel can send o
messages to them Ao
* Or Receive Messages)
from them i
JMS HTTP

Camel Components

Component Component

* Provide a uniform
Endpoint Interface

* Act as connectors
to all other systems

File
Component
—

e

JMS Provider

HTTP Client Local File
ActiveMQ | IBM | System
Tibco | Sonic ...

Camel Processors

* Are use to wire
Endpoints together

* Routing

* Transformation

* Mediation

* Interception

* Enrichment

* Validation

* Tracking

* Logging

Figure 3.4: Apache Camel Architecture (Camel, 2013)

ii. Mediation perspective

On top of Apache Camel, and integrated with the Talend Studio, the Route
Builder (Mediation perspective) is a GUI that allows a developer to build

these Routes in a visual way.

23

il

Find component...
23 Routes
1 Contexts T

Code ' ‘ ‘ ' cMe‘_ssﬁ'g‘ingEndpoint_Z

(3 Recycle bin

(= Messaging
2 cCXF

(= Miscellaneous

:,heMﬁldsnL L cLoop

(=% Processor
Pt ; ‘ a ‘ « s+ cDelayer
»a{ > % >£——j—,~b—0n 3
il routel ; ; route o=, Wwhen2 (order2) | ’ 4 cExchangePattern
jEndpoint _ cMessageFilter 1 cMessageRouter 1 cMessagingEndpoint_3

n

¢ & cProcessor

(= Routing
otheringel » :
: i o -+ cDynamicRouter

F‘ +3- cldempotentConsumer

—uo ¥ cMessageFilter

cMessagingEndpoint 4 /% cMessageRouter

-

$ m J < cRecipientList
== Designer| Code es cRoutingSlip

@ o |0 Job(Rout | ¢ Compone (" Run (Job e 2

cMessageFilter 1 Job eurofins

T,
oZ Outline 23 > = X
% Problems | " Contexts(B -+ cSplitter

[Defau x|

cMessageRouter_1 Execution

cMessagingEndpoint_1 Basic Run Name

K SRR aSa SR ISP Nahiin Biim | 9 Run ‘ ‘

Figure 3.5: The Mediation Perspective

3.4.3. Talend ESB Products and Architecture

Talend provides ESB functionality in four different packages described in the following
sections (Talend, 2015)

a. Talend ESB Standard Edition (SE)

Talend ESB standard edition is a standards-based connectivity layer used to
integrate distributed systems across functional, enterprise, and geographic
boundaries. Capabilities include messaging, web services, intelligent routing, and
data transformation. It is available under the open source apache license.

b. Talend Open Studio for ESB

Talend open studio for ESB — an eclipse-based tooling environment for modeling,
configuring, deploying and managing data services — includes Talend ESB standard
edition.

C. Talend Enterprise ESB

Enterprise ESB is designed for application teams that need to manage development
projects across teams and operate their integrated production environments across

24

their enterprise in a coherent manner. As such, Talend ESB includes all of the
functionality of Talend open studio for ESB and extends it with team collaboration,
enterprise management and other capabilities.

d. Talend Platforms

Talend platforms extend Talend enterprise ESB with advanced clustering, business
process management, application integration, extended data mapping and data
management features allowing firms to increase business productivity, deliver
projects faster, and lower operating costs.

3.4.4 Introduction to Bonita Business Process Management

Bonita BPM is an open-source business process management and workflow suite created
in 2001. It was started in France national institute for research in computer science and
then had incubated several years inside of the French computer science company Groupe
Bull. Since 2009, the development of Bonita is supported by a company dedicated to this
activity: Bonitasoft. (Wikipedia, 2013)

Bonita BPM has three major components (BonitaSoft, 2014):

a. Bonita Studio: allows the user to graphically modify business processes following
the BPMN standard.

b. Bonita BPM Engine: The BPM engine is a JAVA API that allows the developer
to interact programmatically with his processes. It is available under LGPL. It relies
on Hibernate.

c. Bonita Portal: is a portal that allows each end-user to manage in a webmail-like
interface all the tasks in which he or she is involved.

Bonita BPM is open source and can be downloaded under GPL.

3.4.5 Introduction to OpenKM Document Management System

OpenKM is a free libre document management system that provides a web interface for
managing arbitrary files. OpenKM is developed using Java technology based on Java EE
standards and the tomcat server. (wikipedia, 2015)

3.4.6 Case Study
a. Analysis
i. System Problem
In most of the institutions that want to use the document management system, they

need to address the business process, in spite of all the features offered by OpenKM
system in the following document management, it still suffers from a defect and

25

failure in business process management. Some institutions have the BPM and some
do not have, in all cases, the Foundation would like to work integration between
document management system, BPM and the rest of the Enterprise Systems.

So-hoc basis appeared to use the ESB to achieve the goals of integration
between the old and new systems, taking into account the approved criteria such as
expansion, maintenance, performance, and security.

ii. Business Model

The research subject company owns several information systems, constituting
document management system, enterprise resource management system, e-mail
system and project management system, and was able to link some of the
information systems. But the rate of change in business requirements led to that
there must be a workflow system in the company, the problem is that the current
enterprise architecture that was used in integrated the systems was peer-to-peer, and
the possibility of accepting the expansion, change and maintenance in this
architecture is low and costing the company a lot of money.

The needs of the institution are that there must be a mechanism for
integration with an ability that all the services separate from each other, low systems
dependency. With the possibility of change some service without affect by the rest
of the integrated systems. The possibility of expansion and the addition of new
services at the lowest possible costs.

So the institution's desire to not only to integrate systems but accompany
future changes likes the increasing in information use and direction of most of the
institutions to the cloud computing and internet services, which requires the
existence of the possibility of future integration with external services also.

DMS < > WFMS

ERP < > MAIL

Figure 3.6: The Current Business Model

26

DMS WFMS

& $:
& &

ERP MAIL

m
o

Figure 3.7: The New Business Model

iii. Consumer Activity Diagram
The action sequence will begin when an employee uses the system to request
new service. The activities will be as follows:
a. Workflow system will connect to the enterprise data bus and ask for
permission to use the document management service.
b. Workflow management system will send attachments to the Enterprise
service bus.
c. The manager will ask the workflow system to retrieve the document
from the Enterprise service bus.
d. The manager will update the document and sent it back to the Enterprise
service bus.

27

; M ' ® -0 @ -0 i
> Getinfo | & GetAuth > Uplead » Dispiay
- | {) | |

Employee lane

BonitaOpenkKmintegrate

L S |
()

(q \ o (& | |
O‘ | & Disgtay | = Dspay | "'.;hg;:. od e it
resut | Result bt

End1 3 i

Manager

t ~ (o

~LY
theckn |

sepice |

Figure 3.8: The Consumer Activity

3.4.7 System Design and Implementation

There are a number of parts been involved in developing this service, which has been
implemented by reused existing functionalities and components, and it include created a
DMS service provider, created a WFMS consumer and export the service to a Talend
runtime container. Lastly service activity monitor has been used to be sure of service flow.

a. Talend Enterprise Service Bus

Powered by the leading Apache open source integration projects, Talend ESB is a
standards-based connectivity layer used to integrate distributed systems across functional,
enterprise, and geographic boundaries. Capabilities include messaging, web services,
intelligent routing, and data transformation. Its modular architecture allows it to be easily
expanded to suit most enterprise requirements.

i. Service Design

The Integration perspective of Talend studio combines data integration with Web services
and enables the graphical design of a Service which includes a WSDL file and one or more
data service Jobs that addresses all of the different sources and targets required to publish
the Web service. The WSDL editor makes it possible to create and edit WSDL files
graphically, automating most of the tasks involved with these processes.

28

A Service has been designed in the Integration perspective of Talend studio, using
following steps
a. Import existing WSDL files from OpenKM DMS for structured viewing.
b. Associate Services with data service Jobs.
c. Create and add items to the repository for reuse and sharing purposes (in other
projects or Services or with other users).

The Integration perspective of Talend studio enables the developer to create a
Service from an existing WSDL file or to create a new WSDL file from scratch using the
WSDL editor. When created a service for the first time the following dialog box displays
to help developer define the main properties of the new Service.

¥ Tadand Open Studio for ESB (56120141207 _1530) | OpenkM (Connectian: Local) -0
(ot W Mol
(i Repostoey L AT T B Takesd Dol New Seevice Sy
LOCAL Gporid A 3 servce in the repostory :
it o for ESB
5 Job Desigrs
Servic Name OpankmOnds
& ﬂ of your daa
- St Purpose Resawch s
Code
LT 500 Trnplates Descriphion | OaaS service provides
S Metadata
B Docurmmimation I.
3 Racyche bin 2
Author riGralend com o
Lok
Vesion M'm
Fist cred | (] © \View and confligure the propentes of your
Foght ek St deveopmant v frse i Jobomp in ihe Compenent t=o
Path Select

and view the resuls

= Owime
An outhne 5 oot ssalebie) Neat » Fitich Cance

1 rensdected LA R B B 2

Figure 3.9: Service Creation Process

Table 3.2: Service Properties

Field Description

Name The name of the new Service.

Purpose Service purpose or any useful information regarding the Service use.
Description Service description.

29

Author A read-only field that shows by default the current user login.

Locker A read-only field that shows by default the login of the user who owns
the lock on the current Service.

Version Read-only field

Status List to select from the status of the Services you are creating.

Path List to select from the folder in which the Service will be created.

In the next step [Assign WSDL] has been selected, and then [Import existing WSDL] has
been selected, when finished a screen has appeared as shown in figure 3.10.

Fle B Window Hep

20 A VA 29 o MenQuE e d e = 3 Debug 33 Mesiion | *
CBigesty i E 5| #5770 § HedGpensute | T Openituth 2lusd 1 T OpenikMDoc el e
~ LOCL Op=ibM A =
= 7 Business Modeks &

2 :‘?:95 { & CiMasth

£ Do=iMiusm 0 & grrtfie _

Q@ ONMath 21 Plirpa F parmeters %] grartfice

£ 95‘3'?'“‘2:‘5 :"l Fosipt T perzmeten [#] grantfoleRessonse
- — Sfmcttont:n | ¢ Pediciomt | & Sepestoyfocion
§ e 11 oPsfourdirmion | ¢ Patctfundeitn [PatthlofoundEucestion
g oafsks L (g DetabessEnceiion T DatbaseEacegtion [Dezbasshirenton
: ;’:ffa “ Bicedeiediagtion | © AusDeisdbregion (8 AccesDevidioaion
§ gelisersdyiie 1 § =y
§ ganflcke 21 Blirpst - perzmeters & ol
: Z:;;;:‘ﬂ‘ gl {ostpt I parzmeters [8] st ssfResporse
Qhodli TpPeostonEscegtizn = Paprsizracestion [E| RepostonfExcepion
@ resciefiole 1 pPahlofourdisopton | - PathNotfoundiecepion 8] PathotroundBacepbion

i pgl’::fﬁ“ u E,oammm = Daskasebicertion §m=nm

£ T2l ‘g AccessDeniecErception T AresssDenssdbicepbios [l SocessDeniedioepton

£ =101 e

Pmpstis = =0
© port

oMt

- Decumsns g OMM&sESoepBindng v
L Ldgres e ocdost ST ESEONG Lt ’

\w s

Figure 3.10: Service Schema

The figure 3.10 gives a basic WSDL skeleton which contains:

30

a. Service used to aggregate a set of related ports which specify addresses for bindings,
thus defining a single communication endpoint. In this research two services have been
created OkmAuthentication and OkmDocument, OkmAuthentication service provide to
the consumer the right authentication and make sure that every request from any
consumer is not a threat for the service provider. While OkmDocument service provide
to consumer service like upload, edit, retrieve documents.

b. A binding specifies the concrete protocol and data format specifications for the
operations and messages defined by a particular port type. ESB has many core
principles and the most important of the them are:

e ESB interconnects requester and provider which mean Interactions are
decoupled and separation of concerns.

e ESB provides Service virtualization of Location and identity, Interaction pattern
and protocol, and Interface Binding operation uses to be part of fulfilling the
previous principle see figure 3.11, the service has been published in the address
[http://localhost:8077/ESB/DMS/] so every consumer will request service from
that address. While the DMS is actually in a cloud environment and the ESB
runtime installed on a local machine, although that the WFMS consumer will
communicate with the ESB on a local machine. All ESB services have been
published as web services using SOAP protocol.

c. Port type, a set of abstract operations that each refers to an input message and output
messages.

Service Service
Requestor l . . Provider

Figure 3.11: Service Virtualization

31

Fle Edt Pefacor Window Hep

00 &7 V2 %% oo e v & by =i % Debug 3 Medizion | *
C Bfgesty ' S35/ ¢ 37 TC § TendGpeSufo | OpealMf Qladl L1, T OpeMoc Llvsd e
;:E L—Og:“wm Pingat T paamders & ks "‘ i

:a-; Joh Desgs &l cupst T pramdEss & rmstEnifspons: 1

 Sevicss Do | 7 Agestmfuegien (€ Fepshonrepion

[2”[‘:“;’: u[Qfatifoniueton | [Paoforndraion | (€ PathltfeundBucegtin
g oetfrestedfies 1 g Datzbaebrastion 7 Dafabessfocegion [€ Daabasebirestion
§ otCrastedlisers 11 {g AccessDenedBizaption T AccessDenesbecepbion & AccessDessedbrastion
g ol § ofks
: g:z‘: P - E ot
& oefokBker b ¥ paamstes € et
§ plsensd] pFmcpdidaietinaton | © Pndsdlidpetieion £ Pncpildanteiiecto N
2 gewsasﬁdde u §hoe
:::::j Pingat 7 pramdes (€ bogn
& bogin-00MAuth logn 01 Qoupst T pramdens £ loginfesporss
\ et Diepimogion | P Rgostogficepien [Peposhonoreglon
§ resckeinie 21 = = = ; = :
g reatelie g lebxbusion ¢ Detabesehscepion IS Datbascharegtion
£ ComtMPocll {g AccessDenedBizaption 7 AccessDenesbeception (& AccessDemsedbrastion /
£ Tl

7 Coaterts @ cuipet ¥ pIamses [oetlmrtedliserPsponze

- (ode {p PepostonBirepion 7 Repostorytocepban £ PeposiorfBregicn

;;; i:’:‘:"-" QRiictomibegton | T Panliofosdbomion | [PatheFeundbeption

B Docmestaien g D2abxebirertion 7 DetzbeseEacepticn € Dasbaebirestion

3 Peydebn [AccessDeniedSreption i AccesDenvedEuception (€ AccessDeniedbrestion

v

The properties view that located on the lower part of the designing editor of Talend studio,
displays a list of attributes and editable attribute values of a selected WSDL object and
contains the following tabs to edit:

a. The general tab displays a list of object attributes.

b. Documentation tab, specifies the information developer want the user to read.

c. Extensions tab used to add extension components.

After the WSDL file has been created, some operations in the WSDL file has been chosen
to associate with a data service provider Job to implement the Web service.

b. Job Design

A job design or data service Jobs is the runnable layer of a business model. It is a graphical

32

design, of one or more components connected together, that allows the developer to set up and
run data flow management processes. A job design translates business needs into code, routines,
and programs, in other words, it technically implements company/organization data flow.

Fie B2 Window e

0- A~ 7/4d W & i W hues & bouye) T Ovbeg 4 Musiation
Vbl = 81 4557 T D& Tewnd Gpen Stusic 5=
af Socy e-= ihd4 | ! r

= OcAL Operit 1
B Welcome to Talend Open Studio for ESB 3
e
e 0‘7.'3‘:"" This powerul and Beisbie tool heips you take controt of your cata
""'. w' Betore vou gel started hers e the Dasics
4 0 legin
S5 Octh legin)1
¢ 1 Upentiac

o @ CKMDocurrent . I . I.
4 i checlan
o — 0 oo =

Vs OOMDscument checkin (L1

4L thednu
44 OMDscumant_shackoun 01
o = crenfelenge st create a Job using the Job Designer Cvop source taget, and Fansfornalion Wew and configure the properties of your
% CRMDecument_ cesteSimpie 0.1 Raght click on Job Designs and choase Create components ¥om ihe Paiotta o your Job comp nhe Component tah
4 i gelortert Job b
3 QOMOscument getContentt (1
TTed
= Tast! Anc inally, use the Run Job b 10 esecule your Job and wew the resuts
Testd
5 Mo veem 21
55 OfnTes it
 Sevekm

o Contests

Code
J S0t Teveptaten
B Metadata
I Docunetaton
'S Resycdde b

i€ >

¥ nems sefecied

Figure 3.13: Job Design Repository

i. Authentication

Authentication job is associated with login operation in OkmAuth service, any login
process between the DMS provider and any consumer must be through this job, the job

accepts two parameters username and password, and return security token that the
consumer must use it in any request later.

33

Fie Edt View Window Help

O A 284 G & @ul@oe v W e G 2 Looate & Eachange 5 % Debug 38 Medision

& TdeniCpmSudo (b %ok OKMS loginG1 22 g

28 rowdefienuest |

EBFrowd=tasit 1

= =2 -
- o g &
SService 1E588ondefesponse 1 thogCalrher |
4 r
"=n nen =
e e =
ot fow -
HMLMNp XM Map 2 Eogiom 1
£8Prondarfadt 2 E8Poadetaut 3

Figure 3.14: OkmAuth_login Job

Authentication job is about receiving the username and password from consumer and then
pass to integrated document system in ESB, after that it must return back to the consumer
a security token or fault message. The authentication job contains the following components
and has been listed in Table 3.2, Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7 and

Table 3.8.
Table 3.3: tESBProviderRequest Properties
Component ESB/Web Services
family
Function Wraps Talend job as web service.
Purpose Waits for a request message from a consumer and passes it to the next
component.
Usage This component covers the possibility that a job can be wrapped as a

service, with the ability to input a request to a service into a Job and return
the Job result as a service response.

The tESBProviderResponse component can both deliver the payload of a
SOAP message and also access the HTTP and SOAP headers of a service.
The tESBProviderRequest component should be used with
the tESBProviderResponse component to provide a Job result as a

34

response, in case of a request-response communication style.

Table 3.4: tXMLMap Properties

Component Processing/XML

family

Function tXMLMap is an advanced component fine-tuned for transforming and
routing XML data flow (data of the Document type), especially when
processing numerous XML data sources, with or without flat data to be
joined.

Purpose tXMLMap transforms and routes data from single or multiple sources to
single or multiple destinations.

Usage Possible uses are from a simple reorganization of fields to the most
complex jobs of data multiplexing or de-multiplexing transformation,
concatenation, inversion, filtering and so on. It is used as an intermediate
component.

Fra vy R Nps My

i somi 3 Var

Labymn

fema e2nor Trew whers sttor Egrmmcn sdtos

Coluerm Key Type ¥ N Dais Pattars Lergth Pretitien Defe. Ceoen Colene ey Type vt N Date Pastare Length Prexition Defa. Caeen

paslond Dzcum e y} 1l wnemsme Sting v

o 4k ' v & W

prryy o Cancel

Figure 3.15;: OkmAuth_login_tXMLMap

35

tXMLMap component has been used to convert the data that comes from
tESBRequestProvider, in the login job it has been used to extract the username and
password from XML file request that sends by the consumer and then converts to text base
variable that can be passed to the next tWebService component.

Table 3.5: tWebService Properties

Component Internet
family
Function tWebservice calls the defined method from the invoked Web service

and returns the class as defined, based on the given parameters.

Purpose This component calls a method via a Web service in order to retrieve
the values of the parameters defined in the component editor.

Usage This component can be used as an input or as an intermediate
component. It must be linked to an output component.

15301 | CpenkM (Comnection Locs - 9

1 O Deboy 38 Messtion

WL et mupging | Cuiput mapping

WSBL | “Metge/ dem cpervim ceon DaeniW senices DALl Browe

Pze bare
TG Post

- v

Operation v >
i Prondedeporse, | toglacrer |

CpripaanEe ity

Nest » o« Carcel

Figure 3.16: tWebService WSDL Configuration

In figure 3.16 the WSDL field web service address has been entered

36

> R

[http://demo.openkm.com/OpenKM/servicessOKMAuUth?wsdl], after that from port name

list a portType has been selected. Finally from operation list the login (parameters): string
service has been chosen.

| Coenih (Conmacyion tocs

1tz
WL | ot rrapoerg . Outnt reeeny
e Menegeres Fatz Map
O Eperien et
Lameere = R
vt mnnd — * e ere |- pewreonrn s

= * 1e3peewerd |- pewreen ym

kbt | Raylante. |
* Bk Yooy ¢ o Concnl

»
Lol

o
Loghow |

I O Deveg W Meganan

4

Figure 3.17: tWebService Input Mapping

In figure 3.17 a connection between the input schema — username and password -

and the input parameter - parm: username and parm: password - of the defined
Web service have been created

WA | s rapmng | Quaper rappey

el

L
| <] pasamna
| - peersterronee

Cizen ki [Tomaciod Loca

Lasgs

o J o Corant

- v,
L
!
oy
5y
Legtaw

I O Desug 3§ Meten ||

Figure 3.18: tWebService Output Mapping

37

In figure 3.18 a connection between the service call result - return - and the output
schema - parm: response - of the defined Web service has been created.

Table 3.6: tESBProviderResponse Properties

Component | ESB/Web Services

family

Function Serves a Talend Job cycle result as a response message.

Purpose Acts as a service provider response builder at the end of each Talend Job
cycle.

Usage The tESBProviderResponse component only is used with

the tESBProviderRequest component to provide a Job result as a response
for a web service provider, in the case of a request-response
communication style.

While tESBProviderRequest acting like the listener to consumer request, the
tESBProviderResponse handle the response to that request, using tXMLMap and
built-in schema, to send the response in a suitable XML data.

Table 3.7: tLogCatcher Properties

Component Logs & Errors

family

Function Fetches set fields and messages from Java
Exception, tDie and/or tWarn and passes them on to the next
component.

Purpose Operates as a log function triggered by one of the three: Java
exception, tDie or tWarn, to collect and transfer log data.

Usage This component is the start component of a secondary Job which
automatically triggers at the end of the main Job

tLogCatcher and tLogRow are very useful in the development and debug mode
because Talend components are not that easy to implemented. While in the Talend
wiki and development reference the examples are made to look simple,
unfortunately, it is not. So it was important to use those components to solve the

38

problems that faced the research implementation in Talend open studio.

Table 3.8: tLogRow Properties

Component Logs & Errors

family

Function Displays data or results in the Run console.

Purpose tLogRow is used to monitor data processed.

Usage This component can be used as an intermediate step in a data flow or
as an end object in the Job flowchart.

Table 3.9: tESBProviderFault Properties

Component ESB/Web Services

family

Function Serves a Talend job cycle result as a fault message of the web service in
case of a request-response communication style.

Purpose Acts as Fault message of the Web Service response at the end of a Talend
Job cycle.

Usage This component only is used with the tESBProviderRequest component.

While tlogCatcher and tLogRow catch the exceptions inside the job, the
tESBProviderFault main job is to throw the fault message to other consumers.

39

ii. Upload Document

% o R -

tESBProviderRequést 1 YavaRow 1 tESBProviderResponse 1

~
b n
. omponRentOl e
tlogRow_1 tLogRow_2

N 4

p®

OMLMap_ 1 tWebServiceinput_1

o o

IESBProviderFault_b IESBProvides Fault_7

gner | Code

Figure 3.19: Upload Document Job
Upload document job is about receiving the content from consumer and then pass to
integrated document system in ESB, it has the most components that have been mentioned
early in previous authentication job, in addition to the tJavaRow component.

Table 3.10: tJavaRow Properties

Component Custom Code

Family

Function tJavaRow allows the developer to enter customized code which can
integrate into a Talend program. With tJavaRow, the developer can enter
the Java code to be applied to each row of the flow.

Purpose tJavaRow allows the developer to broaden the functionality
of Talend Jobs, using the Java language.

Usage This component is used as an intermediary between two other
components. It must be linked to both an input and an output component.

Although the Talend ESB said that, there no need to write a code. Unfortunately, it
is not true. Will talk about it in next chapter.

iii. Edit document, Download document and Update document, all of them have the same
job design, the difference are:

40

a. Everyone has unique service that associated with it, which mean difference in
schema and data flow.

b. Everyone has unique java code inside the tJavaRow component.

c. Everyone has a slight difference in tXmlIMap component configuration.

Publishing Wrapped Service

Talend studio provides the ability to deploy a job as a web service in order for the job to be
called by other applications via the internet. With Talend studio, any job can be exported and
exposed as a web service. But before export job the Talend runtime has been started and has
been checked using command terminal.

== Karaf = = “

AZ2:39 PH 2,985 wsdlZxml
AZ2:39 PH 1.878 wsdlZxml.bat
a82:37 PH 2.976 lvalidator
az2:37 FH 1.874 v lvalidator.bat
az2:37 FH 2.6496 xsdZusdl
1z2-87-280914 ©02:3% PH 1.875 xsd2Zwsdl.bat
28 File<s>» 62 _.224 hytes
2 Diwvds>» 242,.300.964.864 hytes free

K:=~TOS_ESB~Runtime_ ESBEE~bin>cd ..
K:=~TOS_ESB“Runtime_ ESBEE>cd container“bin
K:~TOS_ESB“~Huntime_ ESBSEscontainer~bin>trun

(version S5.6.1>

Hit ‘<tabh>’ for a list of available commands
and ‘L[cmd]l —help” for help on a specific command.
Hit “<ctrl-d>»’ or ‘osgi-shutdown’ to shutdown the THUN.

karaf Btrun> =_

Figure 3.20: Talend ESB Runtime

o Karaf

[2361 [Active 11
[2371 [Active 11
orage =I: Persistencg 5. 6.1>

Commons 10 .2 _@>
Talend ESB :: Auxiliary
[2381 [Active

L
L
[Talend ESB :: Auxiliary
orage :: Persistence File (5.6.1>
[2321 [Active 110 1L Talend ESB :: Auxiliary
L
L
L

: Persistence JCR (5.6.12
Talend ESB :: Auxiliary

[Active 1 [Created
Talend ESB :: Auxiliary

:: Server (5.6.12
[Active 1 [Created
Talend ESB :: Locator ==

:: REST Service (5.6.1>
[Active 1I
iz Common <5.6.1>
[Active 11I [Started Talend ESB :: Locator ::
vy i :: S0AP Service (5.6.1>
2543 [ﬁgtzuE\ 1 [Created 1IL Talend ESB :: Locator ::

[2611 [Active 1 [Created OpenKMAuth—control-hundle
(A.1>

L é62] [Active [Created OKMAuth_login <{B.1>
[2631 [Active [Created OKMDocument_createSimple (€

a._1>
é E§4] [Active [Created OpenKMDoc—control-hundle X

k;PaPEtPun)

Figure 3.21: Apache Karaf Service List

41

Talend runtime is based on apache Karaf project, so to check the exported service
has installed correctly the command [list] has been used in Karaf command line,
and as mentioned in figure 3.21 the two service Authentication and OkmDocument
has been installed, activated and ready to use by another system.

3.4.8 Bonita Workflow Management System

Bonita is a workflow management system tool that has been used in the research to
implement the idea of workflow, holiday request has been used as an example of
workflow case study.

a. Business Model

The company has many workflow cases and most of them have documents
included, the growth of using workflow led to increasing in a number of
documents which needed to be stored in the central repository. Eventually, the
need for another system to manage the attached documents was necessary, but
the company needs to be sure the new system will be able to manage all
documents that come from other sources, so the integrate between company
systems simply must be SOA based principles.
b. Connectors

A connector is implemented in Bonita BPM in two parts, the definition, and the
implementation. This enables developers to change the implementation without
changing the definition. Several implementations can be created for a single
definition.

A connector is used in Bonita to integrate with another system, it has a many
support type of connections but in this research, it has been used a web service
connector.

i. Authentication connector

A connector is used to get authentication from DMS service provider. It use
SOAP protocol as shown in figures from 3.22 to 3.28.

42

Figure 3.22: Authentication Connector

43

2 B ~¥
@ P Get Infio - Get Auth
=
@
P Start1 i
L2k}
=
FEQ Q7T
_;,1? General 22 | Application | & Appearance E Simulation | 0 Validation status
& Get Auth
e ¢ Connectors description
Portal
Data Add... € getAuth -- webservice (1.0.0) -- OMN_FINISH
lteration Edit
Connectors
Operations BN
Up

Fast General

Specify the general information

Marme * | gethuth

Description | Get auth from ESB/DMS service provider

Select event * L

—_—
enter

I Val| | if connector fails... |Put in failed state

Mamed error

IM_

Figure 3.23: Connector General Information

In this stage general information has been entered, like connector name, description,
event state and what happen when connector fail as shown in figure 3.23.

44

Connection parameters

Enter the webservice connection information

Llsername

Pazzword

Service NS * 1 | ESBMameSpace

Service name * 1 | getAuth

¥ & @

[oad Sawe Test

Figure 3.24: Connector Parameters

In this stage connector parameters have been entered, like service namespace and
service name as shown in figure 3.24, there are other options which are username
and password and it may be used in case of service provider asking for this

information.

45

Request parameters

Enter the WebService request information

SOAP action i Y e 4

Port name* i OKMAuthPort Y o 4

End point address* 1 http://localhost:B040/ services/ESB/DMS/ Auth 4 _?

Binding* 1 http://schemasxmlsoap.org/wsdl/soap/http Y 4

Envelope *

=Envelope xmlins="http://schemas.xmlscap.org/soap/envelope™ > ®
<Body>
<lagin xmins="http:/fws.openkm.com"=
<user xmins="">userl</user>
< password xmins="">pass1</password>
</legin=
< /Body=>
= /Envelope:
£ >

Switch editor to create a condition...

+ & @

[oad Save Test

Figure 3.25: Authentication Connector Request Parameters

Well, this is most important and sensitive stage in a connector implementation, most
of the information entered here have been extracted from service provider WSDL,
and one wrong character can make a connector fail. The first parameter is the port
name and it comes directly from the WSDL file, secondly, the endpoint address in
which the connector will call the service and as mentioned in figure 3.25 the
endpoint is localhost although the OpenKM DMS is hosted in the cloud, but thanks
to ESB who make the services isolated from each other. Binding is different from
SOAP1.1 to SOAP1.2, here it has been used SOAPL1.1 binding. Lastly, the
connector needs to have envelope body to be able to send the XML request.

46

Response configuration

Enter the response properties

[Returns envelope i

Switch editor to create a condition...

Returns body i

Switch editor to create a condition...

[] Print debug info i

Switch editor to create a condition...

¥ & @

Load Save Test

Figure 3.26: Connector Response Configuration

In connector response configuration stage it is just [return body] has been checked
to make it return an only response body as shown in figure 3.26, in development
normally the envelope to debug the response but when has been a switch to
production mode it was better to disable this feature.

47

Qutput operations

Retrieve connector outputs and store them in process variables

token B~ P Iskesvalueof |responseDocun [f v # (P E

Select target... - & Takes value of responseDocun GHw | F 3 E

Select target... > [P Takesvalue of sourceRespons GHw F @ @

Figure 3.27: Connector Output Operations

In connector output stage, the connector output has been retrieved and stored in a
specific variable as shown in figure 3.27.

iew

Expression type Groo: uick Start
MName * | responseDocumentEnvelope | Interpreter GROOVY

Categories
@ Connector output g

Pas User defined (0}
T Cotwtant | Select a variable... v | | Select a provided variable... Bonita (12)
Collection (47
@ variable . Mumber (68)
import org.w3c.dom.Document; String (267)
import org.w3c.dom.Element; Others (552)
import org.w3c.dom.Node;
import org.w3c.dom.Nodelist; .
import org.xml.sax.InputSource; Functions

| type filter text

// Clean response yml document
= responseDocumentBody. normalizeDocument();
// Get result node
Nodelist resultlist = responseDocumentBody.getEle ¥
£ >

Documentation
)V) Astomesi s resol

Return type | java.lang.String v | | Browse... |

| | Cancel |

OM_F

Figure 3.28: Connector Output Expression

In connector output expression stage, the expression code has been used to
manipulate the stored data because the retrieved data has been returned in XML

48

structure and then data has been extracted and converted to a type that Bonita tool
can understand. Figure 3.28 shows the expression.

ii. Upload Document connector

This connector is responsible for preparing the file, convert its content to a

byte stream and then send it to the service provider as shown in figures 3.29 and
3.30.

ff General 32 | W Application| & Appearance [Z Simulation | & Validation status
& Upload

General » Connectors description
Portal
et Add... é® UploadDoc -- webservice (1.0.0) -- ON_FINISH
lteration .
Connectors
Operations -
Down
Move...

Figure 3.29: Upload Document Definition

49

Request parameters

Enter the WebService request information

SOAP action Y e 4

Port name* 1 | OKMDocumentPort F e

End point address * http://localhost:8040/E5B/DMS/Document F e
Binding * http://schemas.xmlsoap.orgfwsdl/scap/http Y 4

Envelope ™ | <Envelope xmins="http://schemas.xmlsoap.org/soap/envelope ®
< Body=
< createSimple xmins="http://ws.cpenkm.com”>
<token xmlns=""=>5{token}= token=
<docPath xmlns="">5%docPath}</docPath=
< content xmlns="">5%{documentCont}</content=>
= fcreateSimple=
= Body=
< {Envelopes
£ >

Switch editor to create a condition...

Figure 3.30: Upload Connector Request Parameter

There is a few similarity between connectors implementation but they differ in
request parameter configuration because every connector has a unique envelope
structure. in this envelope, there are three variables that must be sent to endpoint
address which is the security token which uses to authenticate the request, document
path where the document must be stored in DMS system and document content
which using expression code later to convert from file to Unicode 64 byte stream.

iii. Edit Document connectors

This connector is responsible for download and check-out the file, as shown
in figures 3.31 to 3.33

50

_,f General 2 | Application | & Appearance E Simulation | & Validation status

& Check out

] ¢ Connectors description

Portal

Data | Add... | B DownloadDocument -- webzervice (1.0.07 -- OM_FINIZH

[teration Edit #% checkoutService -- webservice (1.0.0) -- ON_FINISH
Eme e dit...

Connectors
—_— |

Operations

Up

Figure 3.31: Edit Document Connector Definition

Edit document activity has two connectors as shown in figure 3.31 because
it contains two of processes, first the download document process and the
second is change the state of the document in DMS to update status.

ay Fa:i Request parameters

Enter the WebService request information

SOAP action i v &P

Port name * i OKMDocumentPort - | 7

End point address * i | http://localhost:2040/ESB/DMS/Documentfwsdl - F _?'
Binding * i http://schemas.xmlsoap.org/wsdl/soap/http - | F

Envelope ™ <Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope @
<Body>
< getContent xmins="http://ws.openkm.com">
<token xmlns=""=>%{token}= /token>

g <docld xmins="">5%{docPath}=/docld>
<checkout xmins="">true</checkout>
</getContent=
</Body>
</Envelope=
€ >

Switch editor to create a condition...

Figure 3.32: Download Document Connector Request Parameter
Figure 3.32 shows three variables that must be sent to endpoint address

which are security token, document path which used by DMS to get the
document, and Boolean flag which has been set a true value to tell the DMS

51

that the change of state will be after the download operation.

Fa:i8 Request parameters

Enter the WebService request information

SOAP action i - # P

Port name* 1 OKMDocumentPort A

End point address * i http://localhost:3040/ESB/DMS/Document v ¥ _?
Binding* 1 http://schemas.xmlsoap.org/wsdl/soap/http v F _?

Envelope™ | <Envelope xmins="http://schemas.xmlsoap.org/soap/envelope ®
<Body>
<checkout xrmlns="http://ws.cpenkm.com">
<token xmlns="">5{token}< token=
<docld xmins=""> 5 docPath}</docld=
</checkout>
</Body>
=/ Envelope=
£ >

|7

Switch editor to create a condition...

Figure 3.33: Check-out Document Connector Request Parameter

In this connector, there are two variables that have been sent to DMS through
ESB, security token and the document path as shown in figure 3.33.

iv. Update Document connector

This connector is responsible for update the document, and it has four
variables that must be sent to DMS through ESB which are security token,
the document path, document content, and comment. Groovy expression
code has been used to manipulate the file content and convert it to Unicode
64 to be understandable by DMS system. As shown in figures 3.34 and 3.35.

52

_,{?General &2 | W Application| A Appearance E Simulation | 0 Validation status

& check-in service

General ¢ Connectors description

Fortal

Data Add... B checklnService -- webservice (1.0.0) -- OM_FIMISH
Uemtion | | g,

Connectors

Operations Remove

Up
M

Figure 3.34: Check-in Document Connector Definition

Request parameters

Enter the Web5ervice request information

SOAP action i v 7P

Port name* i | OKMDocumentPort | 7

End point address * i | http://localhost2040/E5E/DMS/Document - ¥ _?
Binding* i | http://schemas.xmlsoap.org/wsdl/soap/http -~ §F ¥
Envelope® | <Envelope xmins="http://schemas.xmlsoap.org/soap/envelope/"> ®

<Body=
<checkin xmlns="http://ws.cpenkm.com">
<token xmlns="">%{token}< token>
<docld xmlns=""=>5{docPath}</docld=
<content xmlns=""= 5% checkinDocumentContent}=/content>
«comment xmlns="">no commit=</comment=
</checkin=
</Body>
=/Envelopex

Switch editor to create a condition...

Figure 3.35: Check-in Document Connector Request Parameter

3.4.9 OpenKM DMS

OpenKM is document management system that has been used in this research as

53

DMS service provider and has been integrated with ESB. The service was hosted
in cloud environment with the domain name http://demo.openkm.com/OpenKM/

Foow

- C A | demoopenkmoom Unert M/ frontend indes 80 =
B dgee [Honmkemiouis. Q BgtwastoBace. 0 loew il miys Ty Oedpngfopiic. 11 Talend €8 %esns. Agache faral Web .
Fie BN Tock Boskmants Teeyldes Hep (ipemon
[] o F & sAaR 10 “ Deskeap | Sewsh | Dttt |
,;-.Tmp, Fih oo
£ &) ohrerock »| ave = Languige S Update (ke Ao Vetves

3 Erternal Uy Y EerralUsery RS20 100) User |

am o 1582015 035858 User 0

HEND & wBw 15082015 0201 24 User 0

S Mgl & terpuies 18043015 0305 52 spabe

= i @ v 1R E5 £20551 o

. ketlpw Potmt: ATKE 1R00.2015 120048 Usm 0 "

Prepertes | ek | Gorurty | Rotsirs | et oy |
wan B4e00000 TB-LSIA0T-SCIDNNANG Subdcrided unins g
Name chreoct

Styw = Keyworss coud
Fareet Categores
Cossted. (9.00-2018 0106 45 ty Aameniats
Sebscrbed 14
. Categoves Fodes 5
= Mty Sty 4
TN [T
i Thessenn Beos 0
Tevglces Leyweeds [}
= wanay
(LT

OF comtmimt gatktll 1 JolgolJedo Silitlgo

Figure 3.36: OpenKM Main Page

3.4.10 System Testing
This tool has been used to make sure that all service provided by ESB are stable and

reliable
a. Introduction to Soap Ul

SoapUl is a free and open source cross-platform Functional Testing solution. With an
easy-to-use graphical interface and enterprise-class features, SoapUl allows the
developer to easily and rapidly create and execute automated functional, regression,
compliance, and load tests. In a single test environment, SoapUI provides complete test
coverage and supports all the standard protocols and technologies. (SoapUl, 2015)

54

http://demo.openkm.com/OpenKM/

b. Service Test

SoapUlI tool has been used to test four services

i. Login
BB P
& @lwto&m&mce
=) Openi
1 OMAuthSozpBinding ‘
51 O0ocmesoglioing || - | B3 @ 00 0|t/ oahetEB0K A
Y] Cﬂ-ﬂthoapﬁhdngTstSuite = 13 Z<soapw51vabpexrr.s.sca;:f.='h:,'§s:?:'fms.wis;3", < {1 <snapEnvelope xmins soap="ip schemas xmisoap ong'soaplemetpe>
3d b;infest(ase Te ‘; <sspen Bzadert xl_ Soapfodp
Y - TestS:zps 0 d ’;E (Sowéjm'.ﬁ)&f 3_ nugnR*p.:se:r:'s:’s; 'z'awvs:;e'm con’s
| ‘L"b!m _E & ﬂim» . E ﬂm;%gmnmmmmm
¥ hn et ch el 06 Hody>
8 Lo Tess) . & Opfngt-> dsmnenpe]
¥ SecurtyTests () - <oaSSHOOpESS </passnord:
£ logoutTestCe g ch oy
=B O0ocmenoplindngTe] | | ool
P y soapeny Envelbpe>
-8 checout TetCe e
¥ ceteimple TestCase M
#§ getContent TestCase l
¥

Figure 3.37: Login Test Case

The left side of the screen is requested panel and the right side is the response panel
from ESB. Using SoapUI the login request has been sent to local ESB and the ESB
sent a response to contain valid security token. This token has been used in all other
test cases.

ii. Upload document

In upload test case, three variable has been sent using SoapUl, security token
from login test case, document path, and document content as shown in figure
3.38. It has been used the website http://www.motobit.com/util/base64-decoder-
encoder.asp to convert the file to base64.

55

ereateSimple

getContent

P fe i @ O DO ® |hitp//localhost:2040/ESE/DMS/Document
g [=soapenv.Envelope xmins:soapenv= http:/fechemas.xmizoap.org/soap/envel = | ; E' [l «zoap:Envelope xmins soap="http./lschemas.xmizoap.org/scap/envelope™s
= <gpapenv: Header/> % |E] <==zoap:Body=
= E <soapenv:Body= = = <nsZ:createSimpleResponse xmins n=2="http://w=.openkm.com™=
£ = «ws.createSimples i = «return=
<!—-Optional—= <auther-useri</author=
=token=3e5855fc-15d9-4111-5c05-53efaScel9T c=feken= =created=2015-08-19T09:53:18.8901Z=/created =
=l—Optional—= =nedeClass=0=/nedeClass>
<docPath=/okm root/AhmedHamzaReseach/This Is Soapll Test bd</do <path=fokm:root’/AhmedHamzaReseach/This Iz Soapll Test tat</path=
<l—-Optional—= <permisgions=31</permissicns:
<content=-dGhpcyBpcyBOZXNOGZvciBPcGVUSH0gaWa0aWdyy XRIZC] <zubscriped-false=/subscribed-

=/ws.createSimple=
</soapenv:Body>
</zoapenv:Envelopes

=uuid=5e30651 b-bdf4-4dae-855e-41 cooceedel eT=/uuid=
= <actualVersion=
=actual=-true=/actual=
=author=user!=/author=
<checksum=36c1d170c55db8T4b87574a848cae515</checksum-
=created=2015-08-19T09:53:18Z=/created=
<name=1.0=/name>
<gizer43=/gize=
=/actualVersion=
<checkedOut-false</checkedOut=
=zcenvertibleToDxf-false=/convertibleToDxf>
zconvertibleToPdf-true</convertibleToPdf-
zconvertibleToSw f=true</convertibleToSw >
<descriptions=
<lasthodified=2015-08-19T09:53:18.901 Z=/lastM odified=
=locked=false=/locked=
<mimeType=textiplain</mimsType=
=zigned=falze</zigned=
<titlei=

-

Figure 3.38: Upload Test Case

iii. Download document
e Get file content

In download test case, two variables have been sent using SoapUl,
security token from login test case, document path. The response is long
string based on Unicode 64 as shown in figure 3.39.

b ‘e i E 00 B |http/localhostB040/ESE/DMS/Document

Rawy | #hAL

<docld=/okm:root/AhmedHamzaReseach/This s Soa
<checkout-true=/checkeut>
=/wz:getContent-
</zpapenv:Body=
</zoapenv.Envelopes

H <soapeny:Envelope xmins:soapeny= http:/fschemas. xmis| & || 2 H <soap:Envelope xmins:soap="http://schemas.xmisoap.ora/soap/envelopel™
<spapenv:Header/s E B <«soap:Body=
E <soapenv.Body: = B <nsZ:getContentResponse xmins:ns2="http:/ws.cpenkm.com™s
B <ws:getContent- b <return=dGhpcyBpeyB0ZXNNIGZvciBPcGVuS00gaWS0ZWdy Y XRIZCE3aXRo EVTQg==</return=
<l-Optional.—> <ing2:getContentResponses
<token=3e9855fc-15d9-4111-8c05-03efaSceldTes/ </snap.Body=
<l-Optional.—= <igpap:Envelope=

Figure 3.39: Download Test Case

56

e Check-out operation

In a check-out test case, two variables have been sent using SoapUl,
security token from login test case, document path as shown in figure
3.40. The response is empty envelope but when reviewed the DMS itself
the check-out flag has been enabled as shown in figure 3.41, arrow shape
has been used to clarify the check-out operation.

Fawe | HhAL

checkout
b o 2 B OB B |httpi/localhost3040/ESB/DMS/Document
[l <soapenv Envelope xmins:zoapeny= http://schemas. xmis| & | ; EI (] <soap:Envelope xmins:soap="http:/schemas xmlsoap.org/soap/envelopel™s
<soapenv:Header/> & |l =soap:Body=
£l <zoapenv:Body= = <ns2:checkoutResponse xmins: nz2="hitp://vs.o0penkm.com™=
B «ws.checkout = =/zpap.Body=:
<-Optional—= -:Isuap:Env&lup&>|
=token=-3e3855c-15d9-4111-8c05-93efaScelv e/
<-Optional—=

=docld=/okm:root/AhmedHamzaReseach/This Is Soa
<)wa:checkout:

</zoapeny.Body=
=/zoapenv.Envelope:-

Figure 3.40: Check-out Test Case

57

() OpenKM x Y #) createSimple x4\ ¥

L —

- = C f [} demo.openkm.com/OpenkM/frontend/index
° Apps How to keep yourJo...) Eight Ways to Blackl... 0 limew (nilel z5a2 ¥4 Developing

File Edit Tools Bookmarks Templates Help

hEES|: 3 | 8RB0 3|8

=& Taxonomy Path : /okm:root/AhmedHamzaReseach/

© (&% okm:root = TR
(& External Users E | This Is SoapUl Test.txt
& HH
(% HUB AD
(= templarios

&

(&% varios
= AhmedHamzaReseach

Figure 3.41: Document after Check-out

iv. Update document

In update test case, three variables have been sent using SoapUl, security token
from login test case, document path, and document content as shown in figure
3.42. The response is envelope contain the document properties like author,
created date and size. Figure 3.43 shows the document version has been
increased to 1.1, arrow shape has been used to clarify the update operation.

58

l checkin

’ +'l M0] |http:f,"lcn:alhust:EMﬂfESB!DMSfDncument

= <soapenvEnvelope xmins:zoapenv="http.//schemas.xmiz| & N

EI | EI H <zpap:Envelope xminz:zoap="http:/zchemas xmizoap.org/soaplenvelope™
o <goapenv:Header/> % |E <soap:Body:
= E =spapenv:Body: = B «n=2:checkinResponse xminz:ns2="hitp.//ws.openkm.com™s
B Bl =ws:checkin= B B <return:
<l-Optional—= <gctual=true</actual=
<token=-3e9855fc-15d9-4111-8c05-53efa5cels7 c=/ <guthor=useri</author=
<l-Optional—= <checksum:TE57e 76T 862 cf2ef 032257 bdbScBdé</checksum:
=docld=/okm:root’/AhmedHamzaReseach/This s Soa =comment=no comments/comment=
<-Optional—= zcreated=2015-08-19T10:03:04.62572=/created=
= zcontent=dGhpcyBpoyBIZXNOIGZyciBPcGVUS0g <name=1.1</name>
cGRhdGVKIGRhdGE=</content- =8ize-G8</size>
<-Optional.—= <Irefurn=
<comment=no comment</comment= </ngZ.checkinRezponzes
</wa:checkin= </znap.Body=

</zoapenv:Body=

</znap:Envelope=
</znapenv.Envelope:

Figure 3.42: Update Document Test Case

Path : /okmiroot/AhmedHamzaReseach/

|;| MName Title Language Size Update date Author Version
This Is SoapUl Test.tat English 68 Bytes 19-08-2015 13:03:04 User 1 1.1

i}

Properties | Notes | Security | History | Preview | Relations | Activity log |

Version |Date Author Size ﬁ Compact Preview
1.1 19-08-2015 13:03:04 User 1 68 Bytes Q

this is test for OpenkM integrated with ESB, with a new updated data
1.0 19-08-201512:53:18 User1 43 Bytes B + Restore

Figure 3.43: Document after Check-in

All test cases have been run successfully
3.5 System Deployment

When Bonita server has been started and the flow began, the only endpoint address is localhost

59

and ESB take the responsibility of making services connected, based on SOA principles as
shown in figure 3.44.

Bonita VWVFMS

Ta

2Ee

OpenkKM DMS

Figure 3.44: Deployment Model

Figure 3.45 shows the Bonita process begun and then in figure 3.46 shows the Document that
has been uploaded in OpenKM DMS. After the document uploaded Bonita process downloaded
it again to implement check-out operation as shown in figure 3.47 and the check-out flag has
been enabled as shown in figure 3.48, finally, the document after been modified it has been
updated in OpenKM DMS and the check-in operation has been executed as shown in figure

3.49 and 3.50.

60

(& Yoots M Poral

& D oaten t B8 © 3 N 4
B Vort Viuted | Gewng Stamed @ e - gl Ay
@Boni[asuﬂ BonitaOpenKMIntegrate walturbates | Logows | Bosita &M Partal
Get Info
Upload File
URL = File

|2040] - Reszarch and Application of the ESB Based an Agent in the Integration of the pdf

mudly e

Sontise® § 2013

g clme - Q F aPs@r g rananes

Figure 3.45: Bonita Upload Stage

C A [demo.openkm.com/OpenkKM/frontend/index

Apps How to keep your Jo... ¥ Eight Ways to Blackl... @ limauw uilel g555 ¥ Developing Applicat... 1.1 Talend ESB Featu...
File Edit Tools Bookmarks Templates Help
3| | Lo E3 [3 L @ | Eg = 2 2 # |4 0 h

E Taxonomy ‘ iPath : jokm:root/BonitaTes

& okmiroot Name Title | Languagell

|

o

(= AhmedHamzaReseach [[/~| [2010] - Research and Application of the ESB English

sty
(= BonitaTest ESB Test File.txt English
(=7 External Users |

&H HH

(% HUB AD
(2= templarios
(= TestLB

(&3 varios

Figure 3.46: OpenKM Taxonomy

61

{5 Bonita BPM Pol

€ @ locahost 3080/ bonitz/ports omepagel n=form&theme=53582000773554 1 122800 de=¢ C || Q Search w sE U & & 4 /“l

b Most Visited Jf - Netting Started &% ls - pabyafl 2ils...

BonitaOpenKMIntegrate

Display Result
Download Done, file will be in the K:/TOS_ESB/BonitaTest/OpentM/[2010] - Research and Application of the ESB Based on Agent in the integration of the.pdf

CLOSE

Figure 3.47: Bonita Download Stage

o= A e awm

C A [demo.openkm.com/OpenKM/frontend/index

Apps How to keep your Jo... ©F Eight Ways to Blackl.., 9 lizew (nilel g5 ¥4 Developing Applicat... 1.1

file Edit Tools Bookmarks Templates Help

J) | Co B & L @ | £3 z & = 4

= Taxonomy | [Path : Jokm:root/BonitaTest/

b (5% okm:root T = — s
(= AhmedHamzaReseach G ' - [2010]- Research and Application of the ESB |
bt ESB Test File.txt
=% External Users
=% HH
(%% HUB AD
(= templarios
[= TestLB

(7% uarine

Figure 3.48: OpenKM Check-out Status

62

€ | @& localhost:2080/bonita/portal/homepage?ui=form&itheme=5558200407728541 122 Bocale=er

) Most Visited | Getting Started #% oo - agbll &g,

(s Bonitasoft BonitaOpenKMI

Check In

Upload File
URL '» File
[2010] - Research and Application of the ESB Based on Agent in the Integration of the.pdf

modify remove

SUBMIT1

Figure 3.49: Bonita Update Stage

Document has been ready to be updated.

{J Openid x | %] cresteSmpls

C # [demo.osenkmoom/Opni M/
* Apps a Howtokespyoario.. @ BghtWastoBlach., O lswe delzse. ¥ Developing Applicat. 1.} Telend ESB Festu.. Apache Karsf Web T..
Fie Edi Tose GDockmaks Tempblss Hep

= = S
s = ¥ = . = i

Deskiop = Searth

0
i
-
G

=3 Taxnonoany Pafs - ‘okmooctSontzTest!
S L3 clroot = Nams Tt Lasguags Sce Upizie dae Auttor Versige
User i 11

= ‘amedtamzaReseach /- [0 - Ressarch and Appicason of the ESB £ Engish s03 19082815 163188
= BostaTest ESS TestFie it Engih S3Bgls 120835154735 Lser
&) EcemalUsers

& HE

GHED

= tempiarcs

& TestB

o vanos

Figure 3.50: OpenKM Version View

Document has been updated and version increased by 0.1

63

Chapter Four: CONCLUSION AND RECOMMENDATIONS

4.1.Conclusion
The research studied different methodologies to integrate enterprise systems. This is to
achieve successful and stable integration processes.

4.2.The Result

a. Three open sources were examined: OpenKM, Bonita and Talend ESB. OpenKM and
Bonita were found to be not free of charge, since they highly charge their costumers
for essential team training and for buying a startup package for the production phase.
Moreover, they only respond to queries of subscribed costumers previously paid for
their subscription.

b. Talend ESB was chosen among the others because of its advantage of providing ability
for writing codes during product customization.

c. Finally, the research ended by implementing and successfully testing ESB in a pioneer
company after setting up the integration environment and using an appropriate search
engine.

4.3.Recommendations
Based on the results the researcher recommends for the following studies and usages:

a. Use the service locator.

b. Use STS to increase security.

c. Upgrade to Talend platform or Talend enterprise to work with advanced
components that are not available in the standard edition like TAC component and
SAM server.

d. Use cluster container and load balancing in ESB runtime.

64

REFERENCES

A, G.-J.F.J. & M.-C. M., 2010. Evaluating Open Source Enterprise Service Bus, s.l.: s.n.

ALSENE, E., 1994. Computerized integration and the organization of work in enterprises. International
Labour Review, pp. 657-677.

Amjad Umara, A. Z., 2009. Reengineering for service oriented architectures: A strategic decision model
for integration versus migration. Journal of Systems and Software, 82(3), pp. 448-462.

Anon., n.d. [Online].

Asankha C. Perera, R. L., 2013. ESB Performance. [Online]
Available at: http://esbperformance.org/display/comparison/ESB+Performance
[Accessed January 2015].

BonitaSoft, 2014. development. [Online]
Available at: http://documentation.bonitasoft.com/product-bos-sp/development
[Accessed January 2016].

Boucher, K., 2012. Selecting a Workflow Management System for Your Company. [Online]
Available at: http://blog.lansa.com/application-modernization/workflow/selecting-workflow-
management-system-company

[Accessed March 2015].

Camel, A., 2013. Architecture. [Online]
Available at: http://camel.apache.org/architecture.html
[Accessed March 2016].

Camel, A., 2015. Apahe camel. [Online]
Available at: http://camel.apache.org/documentation.html
[Accessed 2015].

Chappell, D., 2004. Enterprise Service Bus. 1st ed. s.l.:s.n.
Chongwen Wang, Y. H., 2010. DICOM Communication Mechanism and Engineering Project, s.l.: s.n.

Chunmiao, X., 2012. The Study of Metallurgical Automation Based on Integrated Model of the Enterprise
Bus, s.l.: s.n.

CXF, A., 2016. CXF Overview. [Online]
Available at: https://cxf.apache.org/
[Accessed 2016].

Dai, P., 2011. Design and Implementation of ESB Based on SOA in Power System, s.l.: s.n.

65

Freivald, J., 2010. EAl — Enterprise Application Integration.
Gartner, 2013. Magic Quadrant for On-Premises Application, Integration Suites, s.l.: s.n.

Gregor Hohpe, W., 2003. Hub and Spoke [or] Zen and the Art of Message Broker Maintenance. [Online]
Available at: http://www.enterpriseintegrationpatterns.com/ramblings/03 hubandspoke.html
[Accessed June 2015].

High, R., 2006. SOA. SOA Foundation Architecture Whitepaper.
IBM, 2009. The ESB Architectural Pattern, s.l.: s.n.

Mason, R., 2014. enterprise-application-integration. [Online]
Available at: http://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb
[Accessed January 2016].

MSDN, 2004. Chapter 1: Service Oriented Architecture (SOA). [Online]
Available at: https://msdn.microsoft.com/en-us/library/bb833022.aspx
[Accessed November 2015].

Mulik, S., 2009. Using Enterprise Service Bus (ESB) for connecting Corporate Functions and Shared
Services with Business Divisions in a large Enterprise, s.l.: s.n.

Papazoglou, M. T. U. T. T. P., Dustdar, S. & Leymann, F., 2007. Service-Oriented Computing: State of the
Art and Research Challenges, s..: s.n.

Ravi Khadka, A. S. S. J.). H., 2013. Migrating a Large Scale Legacy Application to SOA: Challenges and
Lessons Learned, s.l.: s.n.

Rouse, M., 2012. enterprise-service-bus. [Online]
Available at: http://searchsoa.techtarget.com/definition/enterprise-service-bus
[Accessed 2015].

Sachin Chandra, R. J., 2009. A Practical Approach to Enterprise Integration, s.|.: Defense AT&L.

SOA, 2014. enterprise_service_bus. [Online]
Available at: http://www.soa.com/solutions/enterprise _service bus
[Accessed January 2016].

SoapUl, 2015. what-is-soapui. [Online]
Available at: http://www.soapui.org/about-soapui/what-is-soapui-.html
[Accessed 2015].

Talend, 2012. ESB Model. [Online]
Available at: www.talend.com/esb
[Accessed 2015].

Talend, 2014. Talend ESB Getting Started Guide 5.6.1. 2nd ed. s.l.:Talend Inc..
Talend, 2014. Talend ESB Infrastructure Services, s.l.: s.n.

Talend, 2015. Talend ESB Service. 1nd ed. s.l.:Talend Inc.

66

Talend, 2015. TalendOpenStudioComponentsReferenceGuide56EN. [Online]

Available at:
https://help.talend.com/display/TalendOpenStudioComponentsReferenceGuide56EN/Home
[Accessed january 2016].

Thompson, J. G., 2010. Predicts 2011: Application Integration, s.l.: s.n.

U. Raza, B. W. F. H., 2012. AN ENTERPRISE SERVICE BUS (ESB) AND GOOGLE GADGETS BASED MICRO-
INJECTION MOULDING PROCESS MONITORING SYSTEM , s.l.: s.n.

W3, 2004. Web Services Glossary. W3C.. [Online]
Available at: http://www.w3.0rg/TR/2004/NOTE-ws-gloss-20040211/#webservice
[Accessed 2015].

Wahner, K., 2013. ESB Integration. [Online]
Available at: http://www.infog.com/articles/ESB-Integration
[Accessed 2016].

Wikipedia, 2013. Bonita_BPM. [Online]
Available at: https://en.wikipedia.org/wiki/Bonita BPM
[Accessed January 2016].

Wikipedia, 2013. Message_oriented_middleware. [Online]
Available at: http://en.wikipedia.org/wiki/Message oriented middleware
[Accessed 2015].

Wikipedia, 2014. Apache Camel. [Online]
Available at: http://en.wikipedia.org/wiki/Apache Camel
[Accessed 2015].

wikipedia, 2015. OpenKM. [Online]
Available at: https://en.wikipedia.org/wiki/OpenKM
[Accessed 2016].

Woolf, H. &., 2012. Enterprise Integration Patterns. s.l.:s.n.

yenlo.nl, 2010. what-are-routing-rules-in-an-enterprise-service-bus-environment. [Online]
Available at: http://www.yenlo.nl/nl/what-are-routing-rules-in-an-enterprise-service-bus-environment/
[Accessed 2015].

67

APPINDEX A: Bonita Code

Upload document code

def byte[] filecontent =
apilccessor.getProcessAPI().getDocumentContent(docull.getContentStorageId());
//filecontent.encodeBase64();

byte[] decodedBytes = filecontent.encodeBase64().toString().decodeBase64();
return filecontent.encodeBase64().toString();

Download document code

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import org.bonitasoft.engine.api.APIAccessor;
import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.Nodelist;

import org.xml.sax.InputSource;

// Clean response xml document

responseDocumentBody.normalizeDocument();

// Get result node

NodeList resultList = responseDocumentBody.getElementsByTagName("return™);
Element resultElement = (Element) resultList.item(9);

String msg = "None";

//byte[] bFile = resultElement.getTextContent().bytes;

byte[] decodedBytes = resultElement.getTextContent().decodeBase64();

try {

//convert array of bytes into file
FileOutputStream fileOuputStream =

new
FileOutputStream("K:/TOS_ESB/BonitaTest/OpenkM/"+docull.getContentFileName());
fileOuputStream.write(decodedBytes);
fileOuputStream.close();
msg = "DownlLoad Done, file will be in the "+
"K:/TOS_ESB/BonitaTest/OpenKM/"+docull.getContentFileName();
}catch(Exception e){
msg = e.getMessage();
// e.printStackTrace();
}

return msg;

return "/okm:root/BonitaTest/"+docull.getContentFileName();

69

APPINDEX B: ESB Code

tJavaRow code inside check-out job

//Code generated according to input schema and output schema

globalMap.put ("file token", input row.token);
globalMap.put ("file docId", input row.docId);

tJavaRow code inside upload document

String s = new String(input row.content);
globalMap.put ("file token", input row.token);
globalMap.put ("file docPath", input row.docPath);
globalMap.put ("file content",s);

70

