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Abstract

We study the bounded variation , tensor products of Banach Lattices,
tensor norms , operators in the category , the interpolation of injective or
projective tensor products of Banach spaces . We give the decomposition of
spaces of distributions induced by tensor product bases, homogeneous
orthogonally additive polynomials on Banach Lattices , on spaces of
continuous functions and positive tensor products . We determine the
localized polynomial frames on the interval with Jacobi weights and on the
ball. We also determine the sub-exponentially localized kernels and frames
induced by orthogonal expansions. We show the operator space UMD
property and constants for non-commutative LP- spaces and for a class of
iterate Lp(lq) spaces .
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Introduction

The theory of dual functors in the category B of Banach spaces is applied to
the study of tensor norms in the sense of Grothendieck. The dual functors

of the tensor norms arising from the projective and inductive tensor

product as well as from more general tensor norms, such as the norms dp

of Saphar, are identified as various spaces of operators, which include p-
integral and absolutely p-summing operators. We show result on tensor
products of general vector lattices to give a construction for the projective
tensor product of the Banach space .

We show a general result on the factorization of matrix-valued analytic

functions. We deduce from it that if (Eo, E4) and (Fo, Fl’)are interpolation

pairs with dense intersections, then under some conditions on the spaces

As is well known the kernel of the orthogonal projector onto the

2 _
polynomials of degree ™Min L ((‘)a,ﬁ'[_ 11]), (‘)a,ﬁ(t) = (-1 + t)B’

can be written in terms of Jacobi polynomials.

Almost exponentially localized polynomial kernels are constructed on the

d d — (1 [|2\R-1/2
unitball B” in R with weights wu(x) (1 - 1[x]|) , 1 20' by

smoothing out the coefficients of the corresponding orthogonal projectors.

Rapidly decaying kernels and frames (needlets) in the context of tensor
product Jacobi polynomials are developed based on several constructions

of multivariate C cutoff functions. These tools are further employed to
the development of the theory of weighted Triebel-Lizorkin and

d
Besovspaceson [~ 1, 1]",

We study the operator space UMD property, introduced by Pisier in the

context of noncommutative vector-valued Lp-spaces. It is unknown
whether the property is independent of P in this setting. We show that for



1 <p,q <, the Schatten g-classes Sq are OUMDP. The proof relies on

properties of the Haagerup tensor product and complex interpolation.

We mention that the first super-reflexive non-UMD Banach lattices were
constructed by Bourgain. Our results yield another elementary construction

of super-reflexive non-UMD Banach lattices, i.e. the inductive limit of Xn,

which can be viewed as iterating infinitely many times LP(Lq)'

We introduce bilinear maps of order bounded variation, semivariation and
norm bounded variation.

The main result is a representation theorem for homogeneous orthogonally
additive polynomials on Banach lattices. The representation theorem is
used to study the linear span of the set of zeros of homogeneous real-
valued orthogonally additive polynomials.
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