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Abstract

Class imbalance is one of the challenges of machine learning and data mining fields.
Imbalanced data set degrades the performance of data mining and machine learning
techniques as the overall accuracy and decision-making would be biased to the majority
class, which leads to misclassifying the minority class samples or furthermore treated
them as noise. The classification problem of imbalanced data gets complicated whenever
the class of interest is relatively rare and has small number of instances compared to the
majority class. Moreover, the cost of misclassifying the minority class is very high in
comparison with the cost of misclassifying the majority class as occurs in many real
applications such as medical diagnosis, fraud detection, network intrusion

detection...etc.

In this dissertation, we started by investigating the problem of two class classification. A
series of experiments are conducted using imbalanced data with its original distribution,
balanced data using sampling methods and meta learning methods. Then, we developed
a hybrid ensemble that implemented multi resampling methods at various rates. The
experimental results on many real world applications for two class imbalanced data sets,
confirms that the proposed hybrid ensembles have better performance using different

evaluation measures.

Next, we investigated the multi class imbalanced problem. A series of experiments are
conducted using direct multi class classification and meta learning methods. We
developed a hybrid Error Correcting Output Code ensemble utilizing weighted
Hamming distance and AdaBoost meta learning method. The experimental results on
many real applications multi class imbalanced data sets show that our proposed hybrid
ensemble performed effectively better by improving the classification performance in

minority classes and significantly outperformed other tested methods.
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