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CHAPTER 1 

Proximal-Type Methods inVector Variational Inequality 

Problems    
    We employ the obtained results to propose a class of proximal-type method to 

solve the vector variational inequality problems, carry out convergent analysis on 

the method and prove convergence of the generated sequence to a solution of the 

vector variational inequality problems under some mild conditions. 

Sec (1.1) :Introduction 
Let ܪ be a real Hilbert space with inner product 〈. , . 〉and let ܶ ∶ ⇉ ܪ   be a ܪ 

maximal monotone operator. Consider the following problem: finding an ݔ ∈  ܪ 

such that 

0 ∈  .(ݔ)ܶ 

This problem is very important in both theory and methodology of mathematical 

programming and some related fields. One of the efficient algorithms for the above 

problem is the proximal point algorithm (PPA, in short). This algorithm was first 

introduced by Martinet and its celebrated progress was attained in the work of 

Rocks fellar . The classical proximal point algorithm generated a sequence 

 .଴ through the following iterationݖ with an initial point ܪ ∁ {୩ݖ}

௞ାଵݖ   = + ܫ)  ܿ௞ܶ)ିଵݖ௞                                                                      (1) 

where {ܿ௞} is a sequence of positive real numbers bounded away from zero. 

Rockafellar proved that for a maximal monotone operator T, the sequence {ݖ௞} 

weakly converges to a zero of T under some mild conditions. From then on, many 

works have been devoted to investigate the proximal point algorithm, its 

applications and generalizations  and the references therein for scalar-valued 

problems for vector-valued optimization problems[vector optimization is asubarea 
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of mathematical optimization where optimization problems with avector-valued 

opjective functions are optimized with respect to agiven partial ordering and 

supject to certain constraints.Amulti-opjective optimization problem:The objective 

space is the finite dimensional Euclidean space partially ordered by the 

component-wise”less than or equal to”ordered] . 

On the other hand, the concept of vector variational inequality was firstly 

introduced by Giannessi  in finite dimensional spaces. The vector variational 

inequality problems have found a lot of important applications in multiobjective 

decision making problems, network equilibrium problems, traffic equilibrium 

problems and so on. Because of these significant applications, the study of vector 

variational inequalities has attracted wide attention. Chen and Yang investigated 

general vector variational inequality problems and vector complementary problems 

in infinite dimensional spaces. Chen considered the vector variational inequality 

problems with a variable ordering structure. Yang  studied the inverse vector 

variational inequality problems and their relations with some vector optimization 

problems. 

Recently, Huang, Fang and Yang obtained some necessary and sufficient 

conditions for the nonemptiness and compactness of the solution set of a 

pseudomonotone vector variational inequality defined in a finite-dimensional 

space. Through the last twenty years of development, existence results of solutions, 

duality theorems and topological properties of solution sets of several kinds of 

vector variational inequalities have been derived. 

However there is no numerical method has be designed for solving vector 

variational inequality problems, even no conceptual one. Motivated by the classical 

results of Rockafellar’s, in this section we firstly try to construct a class of vector-

valued proximal-type method for solving a weak vector variational inequality 
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problemand prove the sequence generated by our method converges to a solution 

of the weak vector variational inequality problem under some mild conditions. 

we present some basic concepts, assumptions and preliminary results, we introduce 

the proximal-type method and carry out convergence analysis on the method, we 

draw a conclusion and make some remarks. 

In this section, we present some basic definitions and propositions for the proof of 

our main results. 

Let ܥ =  ܴା௠   ⊂  ܴ௠ ܽ݊݀ ܥଵ = ‖ݔ‖ା௠ܴ ߳ ݔ}   =  1}.  We define, for any ݕଵ, ଶݕ  ∈

 ܴ௠, 

ଵݕ ≤஼ ଶݕ ଶ if and only ifݕ  − ଵݕ   ∈  ;ܥ 

ଵݕ ≰௜௡௧ ଶݕ ଶ if and only ifݕ  − ଵݕ   ∉  .ܥݐ݊݅ 

The extended space of ܴ௠ is ܴ௠= ܴ௠⋃{−∞ܥ, ܥ∞− where ,{ܥ∞+  is an 

imaginary point, each of the coordinates is −∞ and the imaginary point +∞ܥ is 

analogously understood 

(with the conventions ∞ܥ + ܥ∞ = ,ܥ∞  (ܥ∞+)ߤ  =  for each positive ܥ∞+ 

number μ). The point ݕ ∈  ܴ௠ is a column vector and its transpose is denote by 

ݕ > ܶ. The inner product in ܴ௠ is denoted by 〈. , . 〉 

Let ܺ଴ be a nonempty subset of ܴ௡ and let ܶ݅ ∶  ܺ଴  →  ܴ௡, ݅ ∈  [1, . . . ,݉] be 

vector-valued functions. Let ܶ ∶=  ( ଵܶ, . . . , ଵܶ) be a a ݊ ×  ݉ matrix which 

columns are ௜ܶ(ݔ), and let 

(ݔ)ܶ  =  ( ଵܶ(ݔ), . . . , ௠ܶ(ݔ)),ܶ(ݔ)்(ݒ)  =  (〈 ଵܶ(ݔ),ݒ〉, . . . , 〈 ௠ܶ(ݔ),  ்(〈ݒ

for every ݔ ∈  ܺ଴ and ݒ ∈ ܴ௡. For any  ⋋∈ ଴ܺ :(ܶ)ߣ ଵ, a mappingܥ   →  ܴ௡ is 

defined by 

(ݔ)(ܶ)ߣ  =  ෍ߣ௜

௠

௜ ୀଵ
௜ܶ(ݔ), ∋ ݔ  ܺ଴.                                                                                  (2) 
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Definition (1.1.1)[1]:  Avector variational inequality (VVI in short) is a problem 

of finding ݔ∗ ∈ ܺ଴ such that 

− ݔ)்(∗ݔ) ܶ(ܫܸܸ) (∗ݔ   ≰஼\{଴} ݔ∀,0  ∈ ܺ଴ 

where ݔ∗ is called a solution of problem (VVI). 

Definition (1.1.2)[1]: Aweak variational inequality (WVVI in short) is a problem 

of finding 

∗ݔ ∈ ܺ଴ such that 

− ݔ)்(∗ݔ)ܶ        (ܫܸܸܹ) ݔ∀,௜௡௧஼ 0∀ (∗ݔ  ∈ ܺ଴, 

where ݔ∗ is called a solution of problem (WVVI). Denote by ܺ∗the solution set of 

problem (WVVI). 

Let ߣ ∈  ଵ, consider the corresponding scalar-valued variational inequalityܥ

problem of finding 

∗ݔ  ∈  ܺ଴ such that: 

,(∗ݔ)(ܶ)ߣ〉ఒ(ܲܫܸ) − ݔ 〈∗ݔ   ≥ ݔ∀0  ∈ ܺ଴ . 

Denote by ݔ∗ be the solution set of(ܸܫ ⋋ܲ). 

It is worth noticing that the partial order ≤ ௞ݔ is closed in the sense that if ܿݐ݊݅  ⟶

 ∗ݔ 

as ݇ ⟶ ௞ݔ ,∞  ≤௜௡௧஼  0, then we have ݔ∗ ≤௜௡௧஼  0. This is because of the 

closeness of the set 

ܵ = : ܴ௠ \ (−݅݊ܥݐ). 

Definition (1.1.3)[1]: Let ܺ଴  ⊂  ܴ௡ be nonempty, closed and convex, and ܨ ∶

 ܺ଴  ⟶  ܴ௡ be a single-valued mapping. 

(i) ܨ is said to be monotone on ܺ଴ if, for any ݔଵ,ݔଶ ߳ ܺ଴, there holds 

(ଵݔ)ܨ⟩  − ,(ଶݔ)ܨ〉  ଵݔ  − 〈ଶݔ   ≥  0. 

(ii) F is said to be pseudomonotone ܺ଴ if, for any ݔଵ,ݔଶ  ∈  ܺ଴ , there holds 

< ,(ଶݔ)ܨ〉 ଵݔ  − 〈ଶݔ   ≥  0 ⟹ ଵݔ,(ଵݔ)ܨ〉   − 〈ଶݔ   ≥  0 . 
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Clearly, a monotone map is pseudomonotone. 

Now we give the definitions of C-monotonicity of a matrix-valued map. 

Definition (1.1.4)[૚]: ݐ݁ܮ ܺ଴  ⟶  ܴ௡ be nonempty, closed and convex. ܶ ∶  ܺ଴  ⟶

 ܴ௡×௠ is amapping, which is said to be C-monotone on ܺ଴  if, for any ݔଵ, ଶݔ  ∈  ܺ଴, 

there holds 

(ଵݔ)ܶ)  − ଵݔ)்((ଶݔ)ܶ   − (ଵݔ   ≥஼  0. 

Proposition (1.1.5)[૚]: ݐ݁ܮ ܺ଴ and T be defined as we have the following 

statements: 

(i) T is C-monotone if and only if, for any ߣ ∈ (ܶ)ߣ ଵ, the mappingܥ  ∶  ܺ଴  ⟶  ܴ௡ 

is monotone. 

(ii) if T is ܥ − ∋ ߣ then for any ,݁݊݋ݐ݋݊݋݉ (ܶ)ߣ ,ଵܥ  ∶  ܺ଴  ⟶

 ܴ௡݅݁݊݋ݐ݋݊݋݉݋݀ݑ݁ݏ݌ ݏ. 

Definition (1.1.6)[1]: Let ܮ ⊂  ܴ௡×௠ be a nonempty set. The weak and strong    

C-polar cones of L are defined, respectively, by 

 

஼௪଴ܮ ∶= ௡ܴ ߳ ݔ}  ∶ (ݔ)݈   ≱௖  0, ∀݈ ∈  (3)                                                               ;{ܮ 

And 

஼௦଴ܮ ∶= ௡ܴ ߳ ݔ}  ∶ (ݔ)݈   ≤௖  0, ∀݈ ∈  (4)                                                                ;{ܮ 

 

Definition (1.1.7)[1]: Let ܭ ⊂  ܴ௡ be nonempty, closed and convex, ܨ ∶ ⊃ ܭ 

 ܴ௡  →  ܴ௠ ∪ ݊ ܣ .be a vector-valued mapping {ܥ∞+}  × ݉ matrix V is said to be 

a strong subgradient of ݔ̅ ݐܽ ܨ  ∈  ݂݅ ܭ 

(ݔ)ܨ − (ݔ)ܨ  − − ݔ)்ܸ  (ݔ  ≥஼ 0      ∀௫ ∈  .ܭ

A ݊ ×  ݉ matrix V is said to be a weak subgradient of F at ¯x ∈  if ܭ

 
Denote by ௖߲

௪(ݔ¯)ܨ the set of weak subgradients of F on K at ݔ. 
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Let ܭ ⊂ ܴ௡ be nonempty, closed and convex. A vector-valued indicator function 

 is defined by ݔ of K at (ܭ | ݔ)߲

 
An important and special case in the theory of weak subgradient is that when 

(ݔ)ܨ  = ∨ becomes a vector-valued indicator function of K, we obtain (ܭ | ݔ)߲

߳ ௖߲
௪(ܭ|∗ݔ)ߜ  if and only if 

                                                             (5) 

Definition (1.1.8)[1]: A set ܸ ௄ܰ
௪ (ݔ∗)  ⊂  ܴ௡×௠ is said to be a weak normality 

operator set to K at ݔ∗, if for every ܸ ߳ ܸ ௄ܰ
௪ (ݔ∗) the inequality holds. 

Clearly, ܸ ௄ܰ
௪ (∗ݔ)   =  ௖߲

௪(ܭ | ∗ݔ). As for the scalar-valued case, we know that 

∗ݒ  ∈ ௄ߜ߲ (∗ݔ)   =  ௄ܰ(ݔ∗) if and only if 

                                                                   (6) 

where ߲(ݔ)ܭ is the scalar-valued indicator function of K. The inequality (1.1.6) 

means that ݒ ∗ is normal to K at ݔ∗. 

Definition (1.1.9)[1]: Let ܸ ௄ܰ
௪  (. ) ∶  ܴ௡ ⟹ ܴ௡×௠ be a set-valued mapping, 

which is said to be a weak normal mapping for K, if for any ݕ ∈ ∋ ܸ,ܭ   ܸ ௄ܰ
௪  

(y) such that 

                                                        ( 7) 

ܸ ௄ܰ
௦  (. )is said to be strong normal mapping for K, if for any ݕ ∈ ∋ ܸ,ܭ   ܸ ௄ܰ

௦      

                                                            (8) 
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As in , the normal mapping for K is a set-valued mapping, which is defined as 

follows: if for any ݕ ∈ ∋ ܸ,ܭ   ܸ ௄ܰ
௪such that 

‖ܺܣ‖ ≤  ‖ܺ‖ܯ‖ܣ‖

 

Let ‖ܣ‖୑ be a matrix norm of the matrix ܣ ∈  ܴ௡×௠. In this section, we always 

assume that the matrix norm ‖ܣ‖୑ is compatible with ‖. ‖, ݅. ݁. , 

 
for all ܣ ∈  ܴ௠×௡ and x ∈ ܴ௡. We now introduce a new notion. 

Definition (1.1.10)[1]: Let ܶ ∶  ܺ଴ →  ܴ௡×௠ be a mapping, which is said to be 

norm sequentially bounded if for any bounded sequence {ݔ௞}  ⊂ ܺ଴, it holds that 

the sequence {‖ܶ(݇ݔ)‖ெ} is bounded. 

Next we will introduce the definition and some basic results about the 

maximal monotone mapping. 

Definition (1.2.11)[1]: Let a set-valued map ܩ ∶  ܺ଴  ⊂  ܴ௡  ⟹ ܴ௡ be given, it is 

said to be monotone if 

 
for all z and ݖ in ܺ଴, all w in G(z) and ¯ (ݖ¯)ܩ ݊݅ ݓ. It is said to be maximal 

monotone if, in addition, the graph 

 
is not properly contained in the graph of any other monotone operator from ܴ௡to 

ܴ௡. 

Lemma (1.2.12)[1]:  Let K be a nonempty closed and convex subset of ܴ௡. Let 

ଵܶ ∶  ܴ௡ ⟹  ܴ௡ be the normal mapping to K and ଶܶ ∶  ܴ௡ →  ܴ௡ be any single-
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valued monotone operator such that K ⋂ ݀݉݋( ଶܶ) ≠ ∅ ; and ଶܶ is continuous on 

K. Then, we have ଵܶ  +  ଶܶ is a maximal 

monotone operator. 

Lemma (1.1.13)[1]: ( Minty’s theorem) Let ߣ >  0 and T : ܴ௡  ⇉  ܴ௡ be 

monotone. Then (ܫ +  ଵ is monotone and nonexpansive. Moreover, T isି(ܶߣ

maximal monotone if and only if rge(ܫ + + ܫ) In that case .ܴ݊ =( ܶߣ  ଵ isି(ܶߣ

maximal monotone too, and it is a single-valued mapping from all of ܴ௡ into itself. 

Next we will introduce some fundamental definitions of the asymptotic analysis. 

Definition (1.1.14)[1]: Let K be a nonempty set in ܴ௡. Then the asymptotic cone 

of the set K, denoted by ܭଵ, is the set of all vectors ݀ ∈  ܴ௡ that are limits in the 

direction of the sequence {ܺ௞}  ⊂  K, namely 

 
                                             (9) 

In the case that K is convex and closed, then, for any x଴ ϵ K, 

 
                                                                (10) 

Definition (1.1.15)[1]: A set-valued mapping S ∶  R୬  ⇉  R௠ is said to be outer 

semicontinuous (ݏ ݊݅ ܿݏ݋ℎݐݎ݋) ܽݔ ݐ if 

 
where 

 

= ห∃ܺ௞ݑ} → ܺ,∃ ௞ܰ → , ℎݐ݅ݓ,ݑ ௞ܰ  ∈ (௞ݔ)ܵ
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Sec (1.2) : Main Results 

Proposition (1.2.1)[1]: Let ܺ଴ ⊂  ܴ௡ be nonempty, closed and convex, and 

ܸ ଡ଼ܰబ
୵  (.) be a weak normal mapping for ܺ଴. For any ݔ∗ ߳ X଴, and ߮ ∈ ܸ ଡ଼ܰబ

୵  ,(∗ݔ) 

there exists ܽ ܥ ߳ ߣଵ such that ߮(ߣ) ߳ ௑ܰబ(ݔ∗). 

Proof: By the definition of the weak normal mapping, we know that 

 
It follows that 

 
and 

 
That is 

 
By the convexity of ܺ଴, one has there exists ܽ ߣ∗  ∈  such that {0}\ܥ

 
Since ‖ߣ∗‖ >  0, one obtains that 

 

Clearly, we have ఒ∗

‖ఒ∗‖
∈ ߣ ଵ  Without loss of generality, letܥ = ఒ∗

‖ఒ∗‖
, one has 

 
That is   ߮ߣ ∈ ௑ܰబ(ݔ∗) The proof is complete.  

We propose the following exact proximal-type method (PTM, in short) for 

solving the problem (WVVI): 

Step (1) : Taken ܺ଴  ∈  ܺ଴; 
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Step (2) : Given any ܺ௞ ∈ ܺ଴, if ܺ௞ ∈  ;Then, the algorithm stops .∗ݔ

otherwise goes to step (3); 

Step (3) : If ܺ௞ ∉ ܺ∗. We define ܺ௞ାଵ by the following conclusion: 

              (11) 

where the sequence ߣ௄  ∈ ଵ,ℰ௞ܥ  ∈  (0, ℰ], ℰ > 0 and V ௑ܰబ
୵(.) is the weak normal 

mapping to ܺ଴. Go to step (2). 

Remark (1.2.2)[1]: The algorithm PTM is actually a kind of exact proximal point 

algorithm, where 

the sequence ߣ௄  ∈  ଵ is called as scalarization parameter, a bounded exogenousܥ 

sequence of positive real numbers {ℰ௞} is called as regularization parameter. For 

every x୩  ∉  X∗, we try to find a x୩ାଵ such that 0 ϵ R௡ belongs to the inclusion 

(11). 

Next we will show the following results. 

Theorem (1.2.3)[1]: Let ܺ଴  ⊂  R௡ be nonempty, closed and convex, ܶ ∶  ܺ଴  ⟶

 ܴ௡×௠ be continuous and C-monotone on ܺ଴, if dom ܶ ⋂ ݅݊ܺݐ଴  ≠  The ߠ 

sequence {ݔ௄} generated by the method (PTM) is well-defined. 

Proof: Let ݔ଴  ∈  ܺ଴ be an initial point and suppose that the method (PTM) reaches 

step k. We then show that the next iterate ݔ୩ାଵ does exist. By the assumptions, T(.) 

is continuous and C-monotone on ܺ଴, we have ߣ(ܶ) is monotone and continuous 

on ܺ଴  for anyߣ ∈ ߣ ܽ ଵ. From the Proposition (1.2.1), there existsܥ   ∈  ଵ suchܥ 

that the mapping V ଡ଼ܰబ
୵  (.)ߣ is a normal mapping on ܺ଴. Thus, by the assumption 

dom ܶ⋂݅݊ݐX଴  ≠  ߶ and Lemma (1.1.11), one has that for any ݔ ∈  ܺ଴, the 

mapping (ܸ ௑ܰ଴(ݔ) +  ,is maximal monotone. Without loss of generality ߣ((ݔ)ܶ

let ߣ௞  =  By Lemma (1.1.12), one obtains that .ߣ 



11 
 

 
Hence, for any given ℰ௞ݔ௞ܴ௡, there exists aݔ௞ାଵ ∈   ܺ଴ such that 

 
                                            (12) 

and 

 
That is the inclusion (11) holds. The proof is complete.  

Theorem (1.2.4)[1]: Let the same assumptions as in Theorem(1.2.3) hold. Further 

suppose that ܺ଴ஶ⋂[T(ܺ଴)]஼௪଴= {0} and ܺ∗ is nonempty and compact . Then, the 

sequence {ݔ௞} generated by the method (PTM) is bounded. 

Proof: From the method (PTM), we know that if the algorithm stops at some 

iteration, the point ݔ௞  will be a constant thereafter. Now we assume that the 

sequence {ݔ௞}  will not stop after a finite number of iteratives. From the 

Proposition (1.2.1), we know that there exists ߣ௞ ߳ ܥଵ and ߮௞ାଵ  ∈  ܸ ௑ܰబ
௪  (ܺ௞ାଵ) 

such that߮௞ାଵߣ௞ ∈  ܸ ௑ܰబ
௪  (ܺ௞ାଵ)From the inclusion (11), one has that 

 
By the fact of ߮௞ାଵߣ௞ ∈  ܸ ௑ܰబ

௪  (ܺ௞ାଵ), we obtain that 

 
                                            (13) 

 

It follows that 

                         (14) 
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On the other hand, we know that for any given ߣ௞ ∈ -ଵ, the following scalarܥ

valued variational inequality problem (ܸ ܫ ఒܲ௞) has a nonempty solution set, where 

 
Without loss of generality, let ݔ∗  ∈  ܺ∗ and ݔ∗ is also a solution of problem 

ܫ ܸ) ఒܲ௞). Hence, we have 

 
By the ܥ  of T, one has that ݕݐ݅ܿ݅݊݋ݐ݋݊݋݉−

 
                                            (15) 

Combining (14) with (15), we obtain that 

 
From the method (PTM), we know that ℰ௞ >  0. It follows that 

 
That is 

 
             (16) 

Clearly, the sequence { ‖ݔ௞  −  .ଶ} is nonnegative and nonincreasing‖∗ݔ 

Furthermore { ‖ݔ௞  −  ଶ}  is also bounded below, as denoted by ݈∗ the lower‖∗ݔ 

bound of the sequence. By the fact (15), we have 
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and 

                                                                      (17) 

From the inequality (15), one has that 

 
for all ݔ∗ ∈  ܺ∗. By the nonemptiness and compactness of ܺ∗, we conclude that 

  .is bounded. The proof is complete {௞ݔ}

Theorem (1.2.5)[1]: Let the same assumptions as in Theorem (1.2.3) hold. We 

also assume that T is norm sequentially bounded. Then any accumulation point of 

 .is a solution of problem (WV V I) {௞ݔ}

Proof: If there exists ݇଴  ≥  1 such that ݔ௞బା௣  = ௞బݔ  ≤ ݌∀,   1. Then, it is clear 

that ݔ୩଴ is the unique cluster point of {ݔ୩ } and it is also a solution of problem 

(WV V I). Suppose that the algorithm does not terminate finitely. Then, by 

Theorem (1.2.3), we have that {ݔ୩} is bounded and it has some cluster points. Next 

we show that all of cluster points are solutions of problem (WV VI). Let ݔො be a 

cluster points of {ݔ୩} and {ݔ୩୨} be a subsequence of {ݔ୩}, which converges to ݔො. 

From the limit (16), we know that ݈݅ ௝݉⟶ஶฮݔ௞௝ାଵ − ௞௝ฮݔ   = 0. That is 

௞௝ାଵݔ − ݆ ݏܽݔ  ⟶ ∞By the inclusion (11), one has that there exist ߣ௞௝  ∈  ଵ suchܥ 

that 

߮௞௝ାଵ ∈∨ ௫ܰబ
௪  

 
and 

 
It follows that 
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                               (18) 

From (17), we know that ݈݅ ௝݉⟶ஶฮݔ௞௝ − ௞௝ାଵฮݔ   = 0. Since ߣ௞௝ ∈  Cଵ, by the 

compactnessof Cଵ, we know that the sequence {ߣ௞௝} has a convergent 

subsequence. Without loss ofgenerality, we assume that ߣ௞௝ ⟶  Furthermore we .ߣ

have ߣ ∈  Cଵ and ߣ ≠  0. Thus, taking the limit in (17), we deduce the following: 

                                               (19) 

We claim that the sequence {φ୩୨ାଵߣ௞௝} is bounded. Suppose that, in contrast, 

without loss of generality, we assume that ฮφ୩୨ାଵߣ௞௝ฮ → ∞ and
஦ౡౠశభఒೖೕ
ฮ஦ౡౠశభఒೖೕฮ

⟶ ݓ ∈

ܴ௡ݓ  ≠ 0From  (18), we know that 

 
since T is norm sequentially bounded, which yields that 

                           (20) 

for some μ > 0. Obviously, the equality (20) contradicts with the assumption ݓ  ≠

0. 

Thus, the sequence {φ୩୨ାଵߣ௞௝}  is bounded. Without loss of generality, we assume 

that. 

φ୩୨ାଵߣ௞௝ ⟶ ෝݓ  ∈ ܴ௡ Furthermore, from (19) and the continuity of T, we derive 

that 

 
Hence, we have 
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Meanwhile, from the definition of weak normal mapping and Proposition ??, we 

have ݓ ∈ ௫ܰ଴(ݔො). By the definition of ௫ܰ଴(ݔො), we know that 

 
That is 

 
                        (21) 

Thus 

 
                        (22) 

We conclude that ˆx is a solution of problem (WV V I). The proof is complete.  

Theorem (1.2.6)[1]: Let the same assumptions as those in Theorem (1.2.5) hold. 

Then the whole sequence {ݔ௞} converges to a solution of problem (WV V I). 

Proof: Suppose that, in contrast, both ݔො and  ݔ෤ are two distinct cluster points of 

 and {௞ݔ}

 
By Theorem (1.2.5), we know that ݔො and ݔ෤ are solutions of problem (WV V I). By 

virtue of Theorem (1.2.3) and the proof of Theorem (1.2.4), we know that there 

exist ߣመ and ߣሚ ∈  ଵ  such thatܥ

 
                        (23) 

By the C-monotonicity of T, one obtains 

 
                        (24) 
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From (19), one has 

 
                        (25) 

Similarly with (20), we know 

 
                        (26) 

and 

                                                    (27) 

Combining (25)with(26), we obtain that both sequences {‖ݔ௞ − ௞ݔ‖} ݀݊ܽ{ො‖ଶݔ −

 ො ‖ଶ} are nonnegative and nonincreasing, hence they are convergent. So there existݔ

෠ܤ , ෨ܤ ∈  ܴ such that 

 
                        (28) 

Clearly, we have 

 
                        (29) 

Combining (28) with (29), we deduce the following 

                          (30) 

Taking ݇ =  ݇௜ in (30), we obtain that 

 
Changing the places of ݔොܽ݊݀ ݔ෤ in (28) and repeating ݇ =  ݇௜in (30), we have that 
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Thus, we conclude that 

 
which establishes the uniqueness of the cluster points of {ݔ௞ }. The proof is 

complete. 
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CHAPTER 2 

Variational Inequalities in Finite Dimensional Spaces 
Some existence theorems of Carath´eodory weak solutions for the 

differential inverse variational inequality are also established under suitable 

conditions. An application to the time-dependent spatial price equilibrium control 

problem is also given. 

Sec (2.1) :Main Result 
Let K ⊂ܴ୬ be a nonempty, closed, and convex set and ݃ ∶  ܴ୬ →  ܴ୬ be a function. 

An inverse variational inequality (denoted by IVI(K, g)) is formulated as follows: 

find ݔ∗ ∈ ܴ୬, such that 

(∗ݔ)݃  ∈ ,ܭ < ෤݃ − ,(∗ݔ)݃  ∗ݔ > ݅ ≥  0,∀ ෤݃ ∈  (1)                                                         .ܭ

Let SOLIVI(K, g) denote the solution set of this problem. We write ̇ݔ ∶=  ௗ௫
ௗ௧

for the 

time derivative of a function x(t). In this article, we introduce and study the 

following differential  Received July 15, 2013; revised March 17, 2014. The work 

was  inverse variational inequality (denoted by DIVI): 

                                                (2) 

 

where  Ω: =  [0,ܶ ] × ܴ௠, (ܩ,ܤ,݂) ∶  →  ܴ௠ × ܴ௠×௡ × ܴ௡ are given functions and 

ܨ ∶  ܴ௡ → ܴ௡ is a single-valued linear function. A point (x, u) is called a 

Carath´eodory weak solution of DIVI (1) if and only if x is an absolutely 

continuous function on [0, T ] and u is an integrable function on [0, T ] such that 

the differential equation satisfied for almost all t ∈[0, T ] and u(t) 



19 
 

∈SOLIVI(K,((ݐ)ݔ,ݐ)ܩ  +  for almost all t ∈[0, T ]. The set of all ((·)ܨ 

Carath´eodory weak solutions (x, u) of the initial-value DIVI (1) is denoted by 

SOLDIVI(K,G + F). 

It is well known that the variational inequality theory has wide applications 

in optimization, engineering, economics, and transportation. 

And ordinary differential equation with smooth input functions are a 

classical paradigm in applied mathematics that have existed for centuries. Yet, as 

evidenced by the growing literature that has surfaced in recent years on multi-

rigid-body dynamics with frictional contacts and on hybrid engineering systems, 

ordinary differential equations are inadequate to deal with many naturally 

occurring engineering problems that contain inequalities and disjunctive 

conditions. For solving these problems, and studied differential variational 

inequality (DVI) in finite-dimensional Euclidean spaces which significantly 

extends these differential equations and open up a broad paradigm for the 

enhanced modeling of complex engineering system. Recently, introduced and 

investigated a class of differential mixed variational inequalities in finite 

dimensional spaces. Very recently, and studied differential vector variational 

inequalities in finite-dimensional spaces.  

On the other hand, first introduced and studied the inverse variational 

inequalities in finite dimensional Euclidean spaces. They pointed out that there are 

many control problems appearing in economics, transportation, and management 

science and energy networks can be modeled as the inverse variational inequalities, 

but they are difficult to be formulated as the classical variational inequalities. 

Furthermore, developed a proximal point based algorithm for solving the inverse 

variational inequality. proposed two projection-based methods for solving the 

inverse variational inequality. considered the dynamic power price problem and 

characterized the optimal price as a solution of an inverse variational inequality. 
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studied the time-dependent spatial price equilibrium control problem and modeled 

it as an evolutionary inverse variational inequality. Some related work concerned 

with the inverse variational inequalities; and the references therein. Obviously, if 

the function f is single-valued, setting u = f(x) and ݃(ݑ)  =  ݂ିଵ (u), then the 

inverse variational inequality is transformed into the classical variational 

inequality. However, this transformation fails when f is set-valued. Moreover, in 

many real applications, explicit forms of function cannot be obtained which also 

causes failure of this transformation .Therefore, it is important and interesting to 

consider an ordinary differential equation whose right-hand function is 

parameterized by an algebraic variable that is required to be a solution of an 

inverse variational inequality containing the state variable of the system. 

   We give the linear growth of the solution set for the differential inverse 

variational inequality (1) under various conditions. Moreover, we show the 

existence theorems concerned with the Carath´eodory weak solutions for the 

differential inverse variational inequality (1) in finite-dimensional spaces. We also 

give an application to the time-dependent spatial price equilibrium control problem 

under some suitable conditions. 

 we will introduce some basic notations and preliminary results. 

Definition(2.1.1)[2]: A map ݂ ∶  ܴ௡ →  ܴ௡ is said to be (i) para-monotone on a 

convex set ܭ ⊂ ܴ௡ if f is monotone on K, that is 

 
and the following property holds: for any v, u ∈K, we have 

 
 (ii) strongly monotone on K if there exists a constant ߙ >  0 such that, for any v, u 

∈K, we have 



21 
 

 
Definition(2.1.2)[2]:A map ܨ ∶   Ω →  ܴ௡ (respectively, ܤ ∶ Ω →  ܴ௡×௠) is said to 

be Lipschitz continuous if there exists a constant ܮி >  0 (respectively, ܮ஻ >  0) 

such that, for any 

,(ݔ,ଵݐ) ,ଶݐ) (ݕ  ∈ Ω, we have 

 
 

In the rest of this article, we assume that the following conditions (A) and (B) hold: 

(A) f, B, and G are Lipschitz continuous functions on Ω with Lipschitz constants 

௙ܮ > ஻ܮ ,0  >  0, and ீܮ >  0, respectively; 

(B) B is bounded on Ω with ܤߪ ∶= ‖(ݔ,ݐ)ܤ‖ஐ∋(௧,௫)݌ݑݏ  < ∞. 

Let 

        (3) 

Lemma (2.1.3)[2]:  Let ܨ ∶ Ω ⇉ ܴ௠ be an upper semicontinuous set-valued map 

with nonempty closed convex values. Suppose that there exists a scalar pܨ >  0 

satisfying 

 
(4) 

Then, for every ݔ଴ ∈ ܴ௡,ܫܦ ∶ ∋ ˙ݔ  ,ݐ)ܨ ,(ݔ (0)ݔ  =  ଴ has a weak solution in theݔ 

sense of Carath´eodory, 

Lemma (2.1.4)[2]: Let ℎ ∶  Ω ×  ܴ௠ →  ܴ௡ be a continuous function and ܷ ∶  Ω ⇉

ܴ௠ be a closed set-valued map such that for some constant ηU > 0, 



22 
 

 
let ݒ ∶  [0,ܶ ]  →  ܴ௡ be a measurable function and ݔ ∶  [0,ܶ ]  →  ܴ௡ be a 

continuous function satisfying (ݐ)ݒ  ∈ ℎ(ݐ, ,ݐ)ܷ,(ݐ)ݔ ∋ ݐ for almost all (((ݐ)ݔ

[0,ܶ ]. Then, there exists a measurable function ݑ ∶  [0,ܶ ]  →  ܴ௠ such that 

(ݐ)ݑ  ∈ ,ݐ)ܷ (ݐ)ݒ and ((ݐ)ݔ  =  ℎ(ݐ, ∋ ݐ for almost all ((ݐ)ݑ,(ݐ)ݔ [0,ܶ ]. 

Lemma (2.1.5)[2]: Let (f,G,B) satisfy conditions (A) and (B), and ܨ ∶  ܴ௡ →   ܴ௡ 

be a continuous map. Suppose that there exists a constant 0 <ߩ such that, for all 

∋ ݍ  ,(Ω)ܩ

                              (5) 

 

Then, there exists a constant ܨߩ >  0 such that (2) holds for the map ܨ >  0 

defined by (1). 

Hence, F is an upper semicontinuous closed-valued map on ߩ . 

Proof: Because f and G are Lipschitz continuous on Ω, we know that f,G have 

linear growth on Ω in x, that is, for some positive constants ܨߩ and ܩ݌ and for any 

(ݔ,ݐ)  ∈ Ω, 

                                                         (6) 

and 

                                                                       (7) 

from (3), (4), and (5), we can obtain the fact that there exists 0< ܨߩ such that (2) 

holds. Thus, F has linear growth. 



23 
 

Next, we prove that F is upper semicontinuous on Ω. We need only to prove that F 

is closed. Let sequence {(ݐ௡, {(௡ݔ  ⊂ Ω be a sequence converging to some vector 

,଴ݐ) (଴ݔ  ∈ Ω 

and {݂(ݐ௡ (௡ݔ,  + ,௡ݐ)ܤ  ଴ݖ ௡}converges to some vectorݑ(௡ݔ ∈ ܴ௠ as ݊ →

௡ݑ ݁ݎℎ݁ݓ,∞  ∈ 

,௡݊ݐ)ܩ,ܭ)ܫ ܸܫܮܱܵ (௡ݔ  +  is {௡ݑ} for every n. It follows that the sequence ((·)ܨ 

bounded, and has a convergent subsequence, denoted again by {ݑ௡}, with a limit 

 ଴ ∈ܴ௡. As F is continuous and K is nonempty, closed, and convex, it is easy toݑ

obtain 

 
and so F is closed.  

Lemma (2.1.5)[2]: Let (f,G,B) satisfy conditions (A) and (B), and ܨ ∶  ܴ௡ →  ܴ௡ 

be a continuous and para-monotone map on ܴ௡. Suppose that ܱܵܫ ܸܫܮ൫ܭ, ݍ +

൯(·)ܨ ≠ ∋ ݍ ݕ݊ܽ ݎ݋݂ ∅  .(Ω)ܩ

Then, SOLIV I(K, q + F(·)) is closed and convex for all ݍ ∈  .(Ω)ܩ

Proof: Let{ݑ௡}  ⊂ + ݍ,ܭ)ܫ ܸܫܮܱܵ ௡ݑ ℎݐ݅ݓ ((·)ܨ  →  ଴. Applying the closednessݑ 

and convexity of K and the continuity of F, we deduce that ݑ଴ ∈ ,ܭ)ܫ ܸܫܮܱܵ + ݍ

,ܭ)ܫ ܸܫܮܱܵ and so ((·)ܨ  + ݍ ∋ ݍ is closed for all ((·)ܨ   Next, we prove .(Ω)ܩ

that ܱܵݍ,ܭ)ܫ ܸܫܮ + ∋ ݍ is convex for all((·)ܨ  .(Ω)ܩ ,ଵݑ ݐ݁ܮ ଶݑ ∈

,ܭ)ܫ ܸܫܮܱܵ + ݍ  ,Then .((·)ܨ 

+ ݍ (ଵݑ)ܨ   ∈ ,ܭ + ݍ (ଶݑ)ܨ   ∈  (8)                                                                                .ܭ

Moreover, for any ܨ෨ ∈  we have ,ܭ

෨ܨ〉 − − ݍ  〈ଵݑ,(ଵݑ)ܨ   ≥  0                                                                                    (9) 

and 

෨ܨ〉 − − ݍ  ,(ଶݑ)ܨ  〈ଶݑ  ≥  0                                                                                  (10) 
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It follows from (6) that, for every ߣ ∈ [0, 1], we have 

 
= + ݍ  (෤ݑ)ܨ   ∈ ,ܭ (11) 

where 

෤ݑ  = ଵݑߣ   +  (1 −  .ଶݑ(ߣ 

Letting ܨ෨  = + ݍ  = ܨ ˜ and (8) ݊݅ (ଶݑ)ܨ  + ݍ   i, respectively, one has (ଵݑ)ܨ 

(ଶݑ)ܨ〉  − ,(ଵݑ)ܨ  ଵݑ − 〈ଶݑ   ≥  0                                                                         (12) 

Because ܨ is para-monotone, we know that ܨ(ݑଶ)  =  It follows .(ଵݑ)ܨ 

from(8)and(9)that 

෨ܨ〉 − − ݍ  ,(ଵݑ)ܨ  ଵݑߣ  +  (1 − 〈ଶݑ(ߣ   ≥  0, 

which means that 

෨ܨ〉 − − ݍ  〈෤ݑ,(෤ݑ)ܨ   ≥  0. 

This shows that ݑ෤ ∈ + ݍ,ܭ)ܫ ܸܫܮܱܵ ,ܭ)ܫ ܸܫܮܱܵ and so ((·)ܨ  + ݍ  is ((·)ܨ 

convex for any ݍ ∈   .(Ω)ܩ

Lemma(2.1.6)[2]: Let (f,G,B) satisfy conditions (A) and (B), and ܨ ∶  ܴ௡ →

 ܴ௡ ܾ݁ ܽ ܿݏݑ݋ݑ݊݅ݐ݊݋ and para-monotone map. Suppose that there exists a constant 

< ݌  0 such that (3)holds for any ݍ ∈ ,ܭ)and SOL ,(Ω)ܩ + ݍ (ܨ  ≠ ∅for any q ∈

G(Ω). Then, DIVI(2) has a weak solution in the sense of Carath´eodory. 

Proof:  Similar to the proof of Proposition 6.1 in [19], by Lemmas (2.1.2), we can 

deduce that DIVI(1) has a weak solution in the sense of Carath eodory.  

Theorem (2.1.7)[2]: Let ܭ ⊂ ܴ௡ be a nonempty compact convex subset and F : 

ܴ௡  →  ܴ௡ be a continuous and para-monotone map. Suppose that q + F is 

invertible and (ݍ + ݍ,ܭ)ܫ ܸܫܮܱܵ ,ଵ is continuous on ܴ௡. Thenି(ܨ  +  is a ((·)ܨ

nonempty compact convex set in K for any ݍ ∈ ܴ௡, and there exists ݌ >  0 such 

that (3) holds for any ݍ ∈ ܴ௡. 

Proof: For any ݑ ∈ ܴ௡, let 
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(ݑ)݃  = + ݍ)  (ݑ)ଵି(ܨ   =  .ݕ 

Then, 

(ଵݑ)݃〉  − ,(ଶݑ)݃  − ଵݑ 〈ଶݑ  = ଵݕ〉  − ,ଶݕ  + ݍ (ଵݕ)ܨ   − − ݍ   〈(ଶݕ)ܨ 

= ଵݕ 〉 − ଶݕ  (ଵݕ)ܨ,  −  .〈(ଶݕ)ܨ 

Now, the monotonicity of F implies that g is monotone on ܴ௡. For any ݍ ∈ ܴ௡, we 

know that ܱܵ(݃,ܭ)ܮ is nonempty and so there exists ݑ ∈  such that ܭ

෤ݑ〉 − (〈ݑ)݃,ݑ   ≥ ෤ݑ∀,0  ∈  (13)                                                                                          ܭ

It follows from (3) that there exists y ∈ܴ௡ such that ݍ + (ݕ)ܨ   ∈ ෤ݑ〉and ܭ − − ݍ 

,(ݕ)ܨ  〈ݕ  ≥ ෤ݑ∀,0   ∈ ,ܭ)ܫ ܸܫܮܱܵ which means that ,ܭ + ݍ  is nonempty for (ܨ 

any q ∈ܴ௡. Thus, Lemma (2.1.5) yields that SOLIV ܭ)ܫ, + ݍ  ,is a nonempty ((·)ܨ 

closed and convex set for every ݍ ∈ ܴ௡. Because K is compact, it follows that 

SOLIV ܭ)ܫ, + ݍ ∋ ݍ is a nonempty compact convex set for any ((·)ܨ  ܴ௡. This 

shows that there exists a constant ݌ >  0 such that (3) holds for any q ∈ܴ௡ 

Theorem (2.1.8)[2]: Let K ⊂ܴ௡ be nonempty compact convex set. Assume that 

ܨ ∶  ܴ௡ →  ܴ௡be a continuous and strictly monotone map such that ݍ +  is ܨ

surjective for any q ∈ܴ௡. Then,SOLIV ݍ,ܭ)ܫ +  is a singleton for any q ∈ܴ௡ ((·)ܨ

and there exists a constant ݌ >  0 such that(3) holds for any ݍ ∈ ܴ௡. 

Proof:  Because ܨ is continuous and strictly monotone on ܴ௡, it is easy to see that 

ݍ + + ݍ) is continuous and strictly monotone on ܴ௡. This implies that ܨ  ଵ isି(ܨ

strictly monotone and continuous on ܴ௡. we know that ܱܵܭ)ܮ, ݍ) +  ଵ) isି(ܨ

nonempty. From Theorem (2.1.7), it yields that SOLIV ܭ)ܫ, ݍ) +  .is nonempty ((ܨ

For any ݑଵ, ଶݑ ∈ ,ܭ)ܫ ܸܫܮܱܵ ݍ) +  we have ,((ܨ

+ ݍ (ଵݑ)ܨ   ∈ ,ܭ ෨ܨ〉 − − ݍ  ,(ଵݑ)ܨ  〈ଵݑ  ≥ ෨ܨ∀,0  ∈  ܭ

and 

+ ݍ (ଶݑ)ܨ   ∈ ,ܭ ෨ܨ〉 − − ݍ  ,(ଶݑ)ܨ  〈ଶݑ  ≥ ෨ܨ∀,0  ∈  .ܭ

It follows that 
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(ଵݑ)ܨ〉  − ,(ଶݑ)ܨ  ଵݑ − 〈ଶݑ   ≤  0. 

Now, the strictly monotonicity of F shows that ݑଵ =  ଶ and so there exists aݑ

constant ߩ >  0 

such that (3) holds for any ݍ ∈ ܴ௡.  

Theorem (2.1.9)[2]:  Let ܨ ∶  ܴ௡ →  ܴ௡ be a continuous and para-monotone map. 

Suppose that there exist ݑ଴, ଴ݕ ∈ ܴ௡ such that, for any ݑ, ∋ ݕ ܴ௡, 

 

 
                        (14) 

Moreover, assume that there exists ܨ଴  ∈ ܴ௡ such that 

                                                            (15) 

Then, SOLIV ܫ(ܴ௡,ݍ + ∋ ݍ is a nonempty, closed, and convex set for all ((·)ܨ 

ܴ௡ and there exists a constant ߩ >  0 such that (3) holds for any ݍ ∈ ܴ௡.     Proof:  

The problem ܫܸܫ(ܴ௡, + ݍ ∋ ݑ ݂݀݊݅ :(ܨ  ܴ௡such that ݍ + ෨ܨ〉 ௡ andܴ∋(ݑ)ܨ  −

− ݍ  〈ݑ,(ݑ)ܨ   ≥ ෨ܨ∀,0  ∈ ܴ௡,is equivalent to the problem ܸ ܫ(ܴଶ௡,ܲ) : find ݒ ∈

ܴଶ௡ such that 

෤ݒ〉 − 〈(ݒ)ܲ,ݒ   ≥ ෤ݒ∀,0  ∈ ܴଶ௡, 

where 

 

 
By the monotonicity of F, one has 
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which implies that P is monotone on ܴଶ௡. Thus, there exists ݒ଴  = ቀ୳బ
୷బ
ቁ 

such that 

 
which means that 

 
 

By Theorem (2.1.8), we know that SOL(ܴଶ୬, P) is a nonempty set and so SOLIV 

ݍ,ܴ݊)ܫ + ,௡ܴ)ܫ is nonempty. It follows from Lemma (2.1.6) that SOLIV ((·)ܨ ݍ +

∋ ݍ is a nonempty closed convex set for every ((·)ܨ ܴ௡. 

Next, we prove the second assertion. Suppose to the contrary, there exist {݇ݍ}  ⊂

ܴ௡ and {ݑ௞}  ⊂ ܴ௡ such that, for any ܨ෨  ∈ ܴ௡, 

                                                            (16) 

And 

 
Obviously, {ݑ௞} is unbounded. It follows from (16) that 
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and so 

 

Dividing by ฮu௞ฮ
ଶ
, we have 

 
 

Which contradicts (15).This shows that there exists a constant ݌ >  0 such that (3) 

holds for any ݍ ∈ ܴ௡.  

Theorem (2.1.10)[2]: Let ܨ ∶  ܴ௡ →  ܴ௡ be a continuous and para-monotone map. 

Suppose that 

SOLIV ܫ(ܴ௡,ݍ + ((·)ܨ   ≠  ∅for any q ∈ܴ௡ and there exists ܨ଴ ∈ܴ௡ such that 

                                       (17) 

Then, SOLIV ܫ(ܴ௡,ݍ +  is a nonempty closed convex set for all q ∈ܴ௡ and ((·)ܨ 

there exists aconstant ݌ >  0 such that (3) holds for all q ∈S, where S is bounded 

set. 

Proof : Similar to the proof of Theorem (2.1.7), we know SOLIV ܫ(ܴ௡, ݍ +  ((·)ܨ

is a nonempty 

closed convex set for all ݍ ∈ ܴ௡. 

Now, we prove the second assertion. If the assertion is not true, then there exist 

{௞ݍ}  ⊂ ܵ and {ݑ௞}  ⊂ ܴ௡ such that for any ܨ෨ ∈ ܴ௡, 
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                                                    (18) 

and 

 
It is clear that {ݑ௞} is unbounded. From (18), one has 

 
which means 

 
Dividing by ฮݑ௞ฮ, we have 

 
Because {ݍ୩ } is bounded, there exists a constant C such that 

 
which contradicts (17).  

In the rest of this article, let 

 
Obviously, S is a linear subspace of ܴ௡ and ܵୄis also a linear subspace of ܴ௡. 

Theorem (2.1.11)[2]: Let ܨ௡×௡ be a positive semi-defined matrix. Suppose that for 

any ݊ ∈ ܰ, 

we have 
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where I is the identity map on ܴ௡. Then, 

(i) SOLIV I(ܴ௡,ݍ +  .⊥is a nonempty closed convex set for all q ∈S ((·)ܨ 

(ii) there exists a constant ݌ >  0 such that 

 

Proof: We denote SOLIV ܫ(ܴ௡. , + ݍ  (1 −  ଵ
௡

+ ܨ(  ଵ
௡
 .(௡ܨ)௡ܫby SOLIV (ܫ

Assume for the sake of contrary that the contrary holds. Suppose that ⋃௡∈ே 

{௡ݑ} is unbounded. Then, there exists a sequence (௡ܨ)݊ܫ ܸܫܮܱܵ  ⊂ ܴ௡ such that, 

for any ܨ෨ ∈ ܴ௡, 

                                                  (19) 

where ‖ݑ௡‖ → ∞. Let 

 
Dividing by ∥ ௡ݑ ∥ଶ and taking n → ∞ in (19), we have 

 
As F is positive semi-defined, one has ⟨ܨ(ݑஶ),ݑஶ⟩= 0 and so u∞ ∈S. Because 

 
it follows from (19) that 

 
and so 
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Letting n → ∞ in the above inequality, we have 

 
It follows from ݑஶ∈S and ݍ ∈ ܵୄthat 

 
Taking ܨ ෩ =  is (௡ܨ)௡ܫ ஶ, we obtain a contradiction. Therefore, ܷ௡∈ே SOLIVݑ− 

bounded and so there exists a convergent subsequence with a limit u0. It follows 

from (19) that for any ܨ ෩ ∈ ܴ௡, 

෩ ܨ〉 − − ݍ  〈଴ݑ,(଴ݑ)ܨ   ≥  0,which implies that ݑ଴∈SOLIV ܫ(ܴ௡,ݍ +  and ((·)ܨ 

so SOLIV I(ܴ௡, + ݍ ∋ ݍ is nonempty for all ((·)ܨ  ܵୄ Similar to the proof of 

Lemma (2.1.8), we can prove that SOLIV I(ܴ௡, + ݍ  is nonempty, closed ((·)ܨ 

and convex set. 

Next, we prove the second assertion. If not, then there exist {ݍ௞}  ⊂

ܵ ଵ
஻
෩ ܨ such that, for any given{௞ݑ} ݀݊ܽ ∈ ܴ௡, 

                                                                        (20) 

 

and 

 
It follows that 

 

Because {ݍ௞}  ⊂ ܵ ଵ
஻

 is bounded, without loss of generality, we can assume that 
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and 

 
From (20), we have 

 
Letting ݇ →  ∞in the above inequality, one has 

 
As F is semi-defined, we obtain 

 
and so u∞ ∈S. Moreover, it follows from (20) that for any ܨ෨  ∈ ܴ௡, 

 
This means that 

 
and so 

 
As ݑஶ ∈ ܵ and ݍஶ ∈ ܵୄ, we have 
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which is a contradiction.  

Lemma (2.1.12)[2]: Let K be a nonempty closed convex set and ܨ ∶  ܴ௡ →  ܴ௡ be 

a paramonotone and continuous map. Assume that SOLIV ܭ)ܫ, ݍ + ((·)ܨ ≠ ∅for 

any ݍ ∈ ܴ௡ and the linear growth (3) holds. Then, ܣ ∶  ܴ௡ →  ܴ௡ is continuous, 

where A is defined by (ݍ)ܣ  = ∋ ݍ for any(ݑ)ܨ  ܴ௡ and u ∈SOLIV ݍ,ܭ)ܫ + ·)ܨ 

)). 

Proof: Let ݍ௡ → ௡ݍ,ܭ)ܫ ௡∈SOLIVݑ and ݍ   + ௡ݍ ,Then .((·)ܨ  + (௡ݑ)ܨ   ∈  and ܭ

for any ܨ෨ ∈  ,ܭ

෨ܨ〉 − ௡ݍ  − ,(௡ݑ)ܨ  〈௡ݑ  ≥  0. 

It follows that {ݑ௡} is bounded and so there exists a convergent subsequence of 

 ଴. Because K is closed and F isݑ with a limit ,{௡ݑ} denoted again by ,{௡ݑ}

continuous, we have ݍ + (଴ݑ)ܨ  ∈  ܭ

and 

෨ܨ〉 − ଴ݍ  − ,(଴ݑ)ܨ  〈଴ݑ  ≥ ෨ܨ∀,0  ∈  .ܭ

This means that ݑ଴ ∈SOLIV I(K, q + F(·)). Suppose that there exists another 

convergent subsequence of {ݑ௡}, denoted again by {ݑ௡}, with a limit ݑଵ. Then, 

,ܭ)ܫ ଵ∈SOLIVݑ ݍ +  .((·)ܨ

From the proof of Lemma (2.1.8), it is easy to see that F(u) is a constant for all 

∋ ݑ ,ܭ)ܫ ܸܫܮܱܵ ݍ + (଴ݑ)ܨ and so ((·)ܨ  =  It follows that .(ଵݑ)ܨ 

(௡ݍ)ܣ  = (௡ݑ)ܨ   → (ଵݑ)ܨ   =  (ݍ)ܣ 

and so ܣ ∶  ܴ௡ → ܴ௡is continuous.  

Theorem (2.1.13)[2]:Let ܨ ∈ ܴ௡×௡ be a psd-plus matrix [positive-definite 

matrix:In linear algebra,asymmetric n×n real matrix M is said to be positive 
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definite if the scalar ݖଵ Mz is positive for every non-zero column vector z of n real 

numbers.Here ்ݖ denotes the transpose of z. 

More generally,an n×n Hermition matrix M is said to be positive definite if the 

scalar݂݋ ݖ ݎ݋ݐܿ݁ݒ ݊݉ݑ݈݋ܿ ݋ݎ݁ݖ݊݋݊ ݈݈ܽ ݎ݋݂ ݁ݒ݅ݐ݅ݏ݋݌ ݀݊ܽ ݈ܽ݁ݎ ݏ݅ ݖܯ∗ݖ n 

complex number.Here ݖ∗ denotes the conjugate transpose of z ]suppose that 

SOLIV ܫ(ܴ௡,ݍ + ((·)ܨ  ≠ ∅for all q ∈ܴ௡ and there exists a constant ݌ >  0 such 

that (3) holds. Let ܦ ∶  ܴ௡ → ܴ௡ be a continuous map such that 

                                                     (21) 

for some constant ܮ஽ ∈ (0, ଵ
ఘ

 ). Then, for any ݍ ∈ ܴ௡, SOLIV ܫ(ܴ௡,ݍ +  is a (ܪ

nonempty closed set, where ܪ = + ܨ   and ,ܦ 

                                (22) 

Assume further that there exist constants ܮ஺ >  0 and ܮ ∈ (0, ଵ
௅ಲ

) such that 

                            (23) 

where A is defined as that in Lemma (2..1.18) Then, for any ݍ௜ ∈ ܴ௡ and 

௜ݑ ∈SOLIV ܫ(ܴ௡ + ݍ,  ,with i = 1, 2 (ܪ

                                                   (24) 

and for every ݍ ∈ ܴ௡, 

 
where (ݍ)ݒ  = ොݑ ܨ  (ݍ)ݓ,  = ݍ  + ොݑ for any (ොݑ)ܪ ∈ ,௡ܴ)ܫ ܸܫܮܱܵ ݍ +  and ,(ܪ

,௡ܴ)ܫ is the inverse image of v(q). Consequently, SOLIV (ݍ)ݒଵିܨ + ݍ  is a (ܪ 
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convex set.                                                                                                             

Proof: Similar to the proof of Theorem (2.1.11), we can obtain all the results 

except for the last one. Now, we prove the last result. For any ݑଵ, ଶݑ  ∈

,ܴ݊)ܫ ܸܫܮܱܵ + ݍ ଵݑܨ‖ by the inequality (24), we know that ,(ܪ  −  ଶ‖= 0. Thisݑܨ

means that Fu is a constant vector for all ݑ ∈ ,௡ܴ)ܫ ܸܫܮܱܵ ݍ +  Furthermore, it .(ܪ

follows from (23) that ‖ݑܦଵ − ‖ଶݑܦ =  0. Thus, Du is a constant vector and so is 

H(u) for all ݑ ∈ + ݍ,௡ܴ)ܫ ܸܫܮܱܵ  .(ܪ 

For any ݑ ∈ ,௡ܴ)ܫ ܸܫܮܱܵ + ݍ ෨ܨ and (ܪ  ∈ ܴ௡, one has ݑܨ = ොݑ ܨ   =  (ݍ)ݒ 

and so ݑ ∈  As .(ݍ)ݒଵିܨ

(ݍ)ݓ  = + ݍ  ,(ොݑ)ܪ  ොݑ ∈ ,௡ܴ)ܫ ܸܫܮܱܵ + ݍ  ,(ܪ 

we know that v(q) and w(q) are constants. Moreover, for any u ∈SOLIV ܫ(ܴ௡, + ݍ

 we have ,(ܪ 

 
which implies that 

 
and so 

 
It follows that Conversely, for any ݑ ∈ ݒ}⋂(ݍ)ݒଵିܨ ∶  ൻܨ෨ − ,(ݍ)ݓ  ≤ ݅ݒ ෨ܨ∀,0  ∈

ܴ௡}, we have 

= ݑܨ (ݍ)ݒ   = ොݑ ܨ  , 

where ݑො∈SOLIV I(ܴ௡, q + H). It follows from (23) that ݑܦ = ොand so H(u)ݑܦ   =

 H(ݑො). 

Consequently, we have 
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and so u ∈SOLIV I(ܴ௡, + ݍ  This shows that .(ܪ 

 
Next, we show that SOLIV I(R୬, q +  H) is a convex set. In fact, for any uଵ, uଶ ∈ 

SOLIV I(R௡ , q +  H), we only need to show that ݑො  =  λuଵ  +  (1 −  λ)uଶ ∈

SOLIV I(ܴ௡ + ݍ, for all λ(ܪ  ∈ [0, 1].Because ܨ(ݑଵ)  = (ଵݑ)ܨ   =  one has ,(ݍ)ݒ 

 
 

which means that ݑො∈ିܨଵv(q). Moreover, for any ܨ෨ ∈ ܴ௡, we have 

 
It follows that 

 
and so 

 
which shows that ݑො ∈ ,௡ܴ)ܫ ܸܫܮܱܵ + ݍ  .(ܪ 

Theorem (2.1.14)[2]: ܨ ݐ݁ܮ ∶  ܴ௡ →  ܴ௡ be a given linear map and (f,G,B) satisfy 

conditions (A) and (B). Then, DIVI(1) has a weak solution in the sense of 

Carath´eodory under any one of the following conditions: 

(a) ܭ ⊂ ܴ௡is a nonempty compact convex set, and ܨ ∶ ܴ௡ →  ܴ௡ is continuous 

and para-monotone such that q + F is invertible and (ݍ +  ଵ is continuous onି(ܨ 

Rn for all ݍ ∈ ܴ௡; 

(b) ܭ ⊂ ܴ௡ is a nonempty, compact and convex set, and ܨ ∶  ܴ௡ →  ܴ௡ is 

surjective, continuous, and strictly monotone; 



37 
 

(c) ܭ =  ܴ௡,ܨ ∶  ܴ௡ →  ܴ௡is continuous and para-monotone, and there exist 

,଴ݑ ଴ܨ,଴ݕ ∈ ܴ௡ such that (14) and (15) hold; 

(d) ܭ =  ܴ௡,ܨ ∶  ܴ௡ →  ܴ௡ is continuous and para-monotone, and there exist 

,଴ݑ ଴ܨ,଴ݕ ∈ ܴ௡ such that (15) and (18) hold; 

(e) F is a positive semi-define matrix such that, for any n ∈N 

 
where I is the identity map on ܴ௡; 

(f) ܨ = ෠ܨ    + ෠ܨ where ,ܦ  ∈ ܴ௡×௡ is a psd-plus matrix such that (15) and (16) 

hold and D is a continuous map such that (22) and (24) hold. 

Proof: It follows from Theorems (2.1.7)–(2.1.13) that SOLIV I(K, q + F) is a 

nonempty, closed and convex set and satisfies condition (3). By Lemma( 2.1.5), we 

know that DIVI (1) has a weak solution in the sense of Carath´eodory.  
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Sec (2.2): An Application 
In this section, we will give an application of the DIVI to the time-dependent 

spatial price equilibrium control problem. 

we consider the time-dependent spatial price equilibrium control problem. Assume 

that a single commodity is produced at m supply markets, with typical supply 

market denoted by i and is consumed at n demand markets, with typical demand 

market denoted by j, during the time interval [0, T ] with T > 0. (i, j) denotes the 

typical pair of producers and consumers for i = 1, · · · ,m and j = 1, · · · , n. Let 

Si(t) be the supply of the commodity produced at supply market i at time t ∈[0, T ] 

and group the supplies into a column 

vector 

(ݐ)ܵ  =  (ܵଵ(ݐ), ܵଶ(ݐ),· · · ,ܵ௠(ݐ))  ∈ ܴ௠. 

Let ܦ௝(t) be the demand of the commodity associated with demand market j at time 

t ∈[0, T ] and group the demands into a column vector 

(ݐ)ܦ  = ((ݐ)௡ܦ, · · ·,(ݐ)ଶܦ,(ݐ)ଵܦ)   ∈ ܴ௡. 

Let ݔ௜௝(t) be the commodity shipment from supply market i to demand market j at 

time ݐ ∈ [0,ܶ ] and group the commodity shipments into a column vector (ݐ)ݔ  ∈

ܴ௠௡. Suppose that for all ݐ ∈ [0,ܶ ],  

 
Now, we consider the problem from the policy-maker’s point of view and present 

the time dependent optimal control equilibrium problem. Under this perspective, 

by adjusting taxes u(t), it is possible to control the resource exploitations        

S(x(t), u(t)) at supply markets and the consumption D(x(t), u(t)) at demands 

markets. It is known that the tax adjustment is an efficient means of regulating 

production and consumption. Specifically, if the policy-maker is concerned with 
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restricting production or consumption of a certain commodity, then higher taxes 

will be imposed; whereas if the government aims to encourage production or 

consumption of some commodities, subsidies will be imposed . we introduce the 

function of commodity shipments x(t) and regulatory taxes u(t) as follows: 

,(ݐ)ݔ,ݐ)ܹ ((ݐ)ݑ  = ,(ݐ)ݔ)ܦ,((ݐ)ݑ,(ݐ)ݔ)ܵ)  ∋ ݐ∀, ܶ(((ݐ)ݑ [0,ܶ ]. 

Obviously, the map W is defined as ܹ ∶  [0,ܶ ]  ×  ܴ௠௡ ×  ܴ௠ା௡ →  ܴ௠ା௡. We 

assume that then map W(t, x, u) can be written as 

,ݐ)ܹ ((ݐ)ݑ,(ݐ)ݔ  = ,ݐ)ܩ  ((ݐ)ݔ  + ∋ ݐ∀,((ݐ)ݑ)ܨ  [0,ܶ ] 

such that G(t, x) is a Carath´eodory function (that is, it is measurable in t for all 

∋ ݔ ܴ௠௡and continuous with respective to x) and F(u) is Lipschitz continuous. 

Moreover, assume that there exists γ(t) ∈ܮଶ(0, T ) such that 

‖(ݔ,ݐ)ܩ‖  ≤ (ݐ)ߛ   +  .‖ݔ‖

Thus, it is easy to know that 

ܹ ∶  [0,ܶ ]  × ଶ([0,ܶ ],ܴ௠௡)ܮ   × ଶ([0,ܶ ],ܴ௠ା௡)ܮ  →  .ଶ([0,ܶ ],ܴ௠ା௡)ܮ 

Finally, we suppose that the following lower and upper capacity constrains are 

satisfied: 

(ݐ)ݓ  = (ݐ)ݓ,((ݐ)ܦ,(ݐ)ܵ)   =  ,((ݐ)ܦ,(ݐ)ܵ) 

where ܵ(ݐ), (ݐ)ܵ  ∈ (ݐ)ܦ,(ݐ)ܦ,ଶ([0,ܶ ],ܴ௠)ܮ  ∈ ,ଶ([0,ܶ ],ܴ௡)ܮ 0 ≤ (ݐ)ܵ   <

∋ ݐ for almost all (ݐ)ܵ [0,ܶ ] ܽ݊݀ 0 ≤ (ݐ)ܦ  < ∋ ݐ for almost all (ݐ)ܦ [0,ܶ ]. 

We note that the capacity constrains are assumed to be independent of x and u. 

We introduce the set of feasible states as follows: 

= ܭ} ∋ ݓ  (ݐ)ݓ :(௠ା௡ܴ,[ ܶ,0])2ܮ ≤ (ݐ)ݓ  ≤ ∋ ݐ  ݈݈ܽ ݐݏ݋݈݉ܽ ݎ݋݂ (ݐ)ݓ 

 [0,ܶ] }. 

 we say that ݑ∗(t) is an optimal regulatory tax if it makes the corresponding state 

W(t, x(t), ݑ∗(t)) satisfying the constraint W(t, x(t), ݑ∗(t)) ∈ К 

and for almost all t ∈ [0, T ], the following three conditions hold: 
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W୰(t, x(t), u∗(t))  =  wr(t)  ⇒ u௥∗  (t)  ≥  0, r =  1, 2,· · · , m +  n, 

W୰(t, x(t), u∗(t))  =  wr(t)  ⇒ u௥∗  (t)  ≤  0, r =  1, 2,· · · , m +  n, 

w୰(t)  < ,ݐ)ݎܹ  ,(ݐ)ݔ u∗(t))  < wr(t)  ⇒ u௥∗  (t)  =  0, r =  1, 2,· · · , m +  n. 

  It is easy to see that a regulatory tax vector (ݐ)∗ݑ  ∈  ଶ([0,ܶ ],ܴ௠ା௡) is optimalܮ

if and only if it solves the following inverse variational inequality: 

ܹ(൫(ݐ)∗ݑ,(ݐ)ݔ൯߳К,∫ (ݐ)ݓ⟩ ,ݐ)ܹ− ்,(ݐ)∗ݑ,(ݐ)ݔ
଴ ≥ ݐ݀(ݐ)∗ݑ (ݐ)ݓ∀,0 ∈ К⟩      (24) 

On the other hand, we know that there is a relationship between the change rate of 

commodity shipments x(t) and regulatory taxes u(t) with the commodity shipments 

x(t). We require that 

  (25) 

where ݂ ∶  [0,ܶ ]  ×  ܴ௠௡ →  ܴ௠௡ ܽ݊݀ ܤ ∶  [0,ܶ ]  ×  ܴ௠௡ →  ܴ௠௡×(௠ା௡) are two 

maps satisfying some suitable conditions.  

Combining (24) and (25), we know that (x(t), u(t)) is a Carath´eodory weak 

solution of the following DIVI problem: 

                      (26) 

Specially, suppose that ݓ௥(ݐ) and ݓ௥ (t) are constants for ݎ =  1, 2,· · · ,݉ +  1 

and 
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where ݔ =  Then, all the conditions of (b) in Theorem (2.1.14) are . ்(௠ݔ, · · ·,ଵݔ) 

satisfied and so it shows that DIVI (26) has a Carath´eodory weak solution (x(t), 

u(t)). 
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CHAPTER 3 

Theory in Reflexive Smooth Banach Spaces and 

Applications to P-Laplacian Elliptic Inequalities 
Variational inequality theorems are proved and applied to study existence of 

nonzero positive weak solutions for p-Laplacian elliptic inequalities and a 

population model of one species arising in mathematical biology. 

Sec(3.1) : A variational inequality theory in reflexive smooth 

Banach spaces 
   We develop a theory for variational inequalities of the form  

− ݔܬ) ,ݔܣ  − ݔ (ݒ   ≤ ∋ ݒ ݎ݋݂ 0   (1)                                                                              ܭ

in a reflexive smooth Banach space X, where ܬ ∶  ܺ →  ܺ∗is a duality map with a 

gauge function and ܣ ∶ ⊃ ܦ  ܺ →  ܺ∗is a demi continuous S-contractive map. 

A theory for variational inequalities (1) with J = I, the identity map, and A being a 

demicontinuous S-contractive map in Hilbert spaces was established in , and an 

index theory for such variational inequalities with condensing maps in Hilbert 

spaces was developed in . However, these theories cannot be applied to treat p-

Laplacian elliptic inequalities with ݌ ≠ 2. An index theory for (1) with J being 

strictly monotone and coercive and A compact was established in. 

The key requirements are that A is compact and the map rA must be continuous, 

where r is the unique solution map of (1) with J. However, it is known that rA may 

not be continuous if A is demicontinuous. We refer to for the related study on a 

class of maps of S-type and to for the study of the fixed point equation ݔ =  .ݔܣݎ 

To develop the theory for variational inequalities (1) in reflexive smooth Banach 

spaces, we employ the method used in , where the variational inequality theory for 

demicontinuous S-contractive map in Hilbert spaces is established. The main ideas 
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originate from the Granas topological transversality which was developed in order 

to study existence of fixed points for nonlinear maps . 

Following , we introduce the essential maps for the variational inequality (1) in the 

class of demicontinuous S-contractive maps in reflexive smooth Banach spaces 

and prove three standard properties of variational inequalities: 

existence property, normalization and homotopy property. These properties are 

generalizations of those in , where the spaces involved are Hilbert spaces. 

Sufficient conditions for maps to be essential or non-essential are provided. These 

conditions are similar to those used in the fixed point index theories or variational 

inequality theory , namely, the Leray–Schauder type conditions and the conditions 

implying that the fixed point index is zero. Some variational theoremsare proved, 

where the generalized projections introduced by Alber play important roles. The 

proofs of these results are more difficult than those in Hilbert spaces . 

As applications of the variational inequality theory, we study existence of nonzero 

positive weak solutions for the following p-Laplacian elliptic inequalities 

                                      (2) 

where Δ௣ is the p-Laplacian operator and Ω is a bounded and connected open set in 

R௡. 

Existence of positive or nonzero positive weak solutions of the Laplacian elliptic 

inequalities (2) when  =  2 , where 2 ≤ > ݌  ݊ and the critical point theory was 

applied. 

To the best of our knowledge, when 2 ≤  ݊ <  there is little study on existence ,݌

of nonzero positive weak solutions of the p-Laplacian elliptic inequality (2). 

Our theory is suited to treating (2) with 2 ≤ n <p. One of our conditions imposed 

on f is 
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,ݔ) ݂|  |(ݑ  ≤ .ܽ ݎ݋݂ (ݔ) ݎ݃  ݁. ∋ ݔ ∋ ݑ ݈݈ܽ ݀݊ܽ ߗ   [0,  (3)                                       [ݎ

  This condition (3) is more general than those used in , where suitable upper bound 

conditions related to uα are imposed on |݂ (ݔ, -We refer for the study of p .|(ݑ

Laplacian equations with ݌ > 2, where a condition imposed on f is stronger than 

(3). 

  we establish the variational inequality theory in reflexive smooth Banach spaces., 

we prove some variational inequality principles. we apply this variational 

inequality theory to study (2). we obtain results on the existence of nonzero 

positive weak solutions for (2) with the specific nonlinearity arising in 

mathematical biology. 

Let X be a Banach space and ܺ∗its dual space. Recall that X is strictly 

convex if ∥ + ݔ ݕ  ∥ ≤  2 for x, ݕ ∈ 1ܤ߲ ∶= ∋ ݔ}  ܺ ∶∥ ݔ ∥ =  1}with ݔ ≠  is ;ݕ

smooth if the limit ݈݅݉௧→଴ିݐଵ(∥ ݔ + ݕݐ ∥ −∥ ݔ ∥)exists for x, ݕ ∈  ଵ. It isܤ߲

known that if X is reflexive, then the following assertions hold: 

(i)X is strictly convex if and only if ܺ∗is smooth;  

(ii) X is smooth if and only if ܺ∗is strictly convex. Recall that X has property (H) if 

௡ݕ ⇀ ௡ݕ ௡∥ → ∥y∥ together implyݕ∥ and ݕ →  Every locally uniformly convex .ݕ 

Banach space is reflexive, strictly convex and has the property (H). 

Recall that a continuous function Φ : ܴା → ܴାis said to be a gauge function if ߔis 

a strictly increasing function with Φ(0) = 0 and ݈݅݉ݐ௧→ஶ Φ(t) = ∞. Assume that 

ܺ∗is strictly convex. A map ܬ ∶  ܺ →  ܺ∗is said to be a duality map with gauge 

function Φ if, for each x ∈X, (J(x), x) = Φ(∥x∥)∥x∥and ∥Jx∥ = Φ(∥x∥). When Φ(t) = 

t, J is called a normalized duality map. J is a bounded single-valued map and is 

demicontinuous, that is, if {ݔ௡ } ⊂X and ݔ௡ → x ∈X together imply Jݔ௡ ⇀Jx, 

where the symbols→and ⇀to indicate strong and weak convergence, respectively. 
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Moreover, J is monotone and if we assume further that X is strictly convex, then J 

is strictly monotone, that is, 

− ݕܬ) ,ݔܬ  − ݕ (ݔ   > ∋ ݕ,ݔ ݎ݋݂ 0 ݔ ℎݐ݅ݓ ܺ ≠  (4)                                                      ݕ

Note that the smoothness of X or the strict convexity of ܺ∗is not sufficient for a 

duality map to be strictly monotone . 

A map ܶ ∶ ⊃ ܦ  ܺ →  ܺ∗is of ܵା-type if {ݕ௡}⊂D with ݕ௡ ⇀ ∋ ݕ ܺ and 

,௡ݕܶ)݌ݑݏ ݈݉݅ ௡ݕ − (ݕ   ≤  0 together imply ݕ௡ →  It is easy to verify that J is of . ݕ 

ܵା-type if either X has the property (H) or there exist ߪ > 0 and ߙ > 0 such that 

− ݑܬ) ,ݒܬ  − ݑ (ݒ   ≥ ߪ  ∥ − ݑ ݒ  ∥ఈ ∋ ݒ,ݑ ݎ݋݂ ܺ                                                   (5) 

 A map ܣ ∶ ⊃ ܦ  ܺ →  ܺ∗is said to be compact if A is continuous and A(Ω) is 

relatively compact for each bounded subset Ω of D. If T: ܦ ⊂ ܺ →  ܺ∗is of ܵା-

type and ܣ ∶ ⊃ ܦ  ܺ →  ܺ∗is compact, then ܶ +  .is of ܵା-type ܣ 

A map A : ܦ ⊂ ܺ →  ܺ∗is said to be S-contractive (on D) if J − A is of ܵା-type. It 

is obvious that if A is S-contractive on D, then A is S-contractive on Ω for every 

subset Ω of D. Moreover, the sum of an S-contractive map and a compact map is 

S-contractive. Now, we establish a theory for variational inequality of the form 

− ݔܬ) ,ݔܣ  − ݔ (ݒ  ≤ ∋ ݒ ݎ݋݂ 0   (6)                                                                               ܭ

where ܬ ∶  ܺ →  ܺ∗is a duality map with gauge function Φ and ܣ ∶ ⊃ ܦ  ܺ →

 ܺ∗is an S-contractive map on D. 

In the rest of this section, we always assume that X is a reflexive smooth 

Banach space. Hence, its dual space ܺ∗is strictly convex. 

Variational inequalities for maps of monotone types arise in physics, mechanics, 

engineering, control, optimization, nonlinear potential theory and elliptic 

inequalities and have been widely studied, The theories of variational inequalities 

(1) in Hilbert spaces were established where ܬ = -and A is a demicontinuous S ܫ 

contractivemapor a condensing map. However, these theories cannot be applied to 
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tackle the p-Laplacian elliptic inequalities with ݌ ≠ 2. The related studies on the 

fixed point equations and on variational inequalities for maps of S-type  

The variational inequality (3) is said to have a solution in D if there exists x ∈D 

such that (3) holds. The complementarity problem of A: 

− ݔܬ) ,ݔܣ  (ݔ = − ݔܬ)  ݀݊ܽ 0  (ݒ,ݔܣ  ≥ ∋ ݒ ݎ݋݂ 0   (7)                                           ܭ

is said to have a solution in D if there exists ݔ ∈  .such that(4) holds ܦ

  A closed convex set K in X is called a wedge if ݔߣ ∈  for x ∈K and λ ≥ 0. If a ܭ

wedge K also satisfies ܭ ∩ (ܭ−)  =  {0}, then K is called a cone. A wedge which 

is neither a cone nor a subspace of X is called a proper wedge. It is well known that 

if K is a wedge in X, then x ∈D is a solution of the variational inequality (6) if and 

only if x ∈D is a solution of the complementary problem (7). If K is a subspace of 

ܺ∗, then ݔ ∈ ݔܬ) is a solution of the variational inequality (6) if and only if ܦ −

(ݒ,ݔܣ =  0for all v ∈K, that is, ݔܬ −  . is orthogonal to K ݔܣ 

Let ܭ be a closed convex set in X and let D be a bounded open set in X such 

that ܦ௞ = D ∩ K≠∅. We denote by ܦ௞തതതതand ߲ܦ௄ the closure and the boundary, 

respectively, of ܦ௞ relative to K. for some properties among these sets. We denote 

by ܸ(ܦ௞ ,ܺ∗)the set of all demicontinuous S-contractive maps A : ܦ௞തതതത → ܺ∗such 

that (6) has no solutions on ∂ܦ௄ .we generalize the definition of essential maps 

related to variational inequalities from Hilbert spaces to reflexive smooth Banach 

spaces. 

Definition (3.1.1)[3]:  A map ܣ ∈  ௄ if forܦ is said to be essential on(∗ܺ,௄ܦ)ܸ

each map φ ∈V(ܦ௄, ܺ∗) with φ(x) = Ax for x ∈∂DK , the variational inequality of 

φ 

− ݔܬ) ,(ݔ)߮  − ݔ (ݒ  ≤ ∋ ݒ ݎ݋݂ 0   (8)                                                                           ܭ

has a solution in ܦ௄ . 
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The following important properties of essential maps are generalizations 

from Hilbert spaces to reflexive smooth Banach spaces. 

Theorem(3.1.2)[3]:  Let K be a closed convex set in a reflexive smooth Banach 

space X and let D be a bounded open set in X such that ܦ௄ ≠ ∅. Then the 

following assertions hold.  

(P1) (Existence property) If ܣ ∈  is essential on  , then (6) has a solution(∗ܺ,௄ܦ)ܸ

in ܦ௞ . 

(P2) (Normalization) Assume that J is of ܵା-type and strictly monotone. If u ∈  ,௄ܦ

then ݑܬො  is essential on DK , where Jݑො(x) ≡ Ju for x ∈ܦ௞തതതത . 

(P3) (Homotopy property) Let ܦ௞തതതത ≠ ܤ,ܣ and let ܭ ∶ ௄തതതതܦ →  ܺ∗be demicontinuous 

S-contractive maps. Assume that the variational inequality of ℎ(ݐ,・)has no 

solutions on ∂ܦ௄ for each t ∈  [0, 1], where ℎ ∶  [0, 1]  × ௄ܦ  →  ܺ∗is defined by 

ℎ(ݐ, (ݔ  = + ݔܣݐ   (1 −  .Bx(ݐ 

Then A is essential onܦ௄ if and only if B is essential onܦ௄ . 

Proof:  ( ଵܲ)The result follows from Definition (3.1.1) with φ = A. 

( ଶܲ) ܦ ݂ܫ௄ = ොݑthen K is bounded since D is bounded. Since J is of S+-type, J ,ܭ  : 

K → ܺ∗is a demicontinuous S-contractive map. ݐ݁ܮ ߮ ∈ ௄ܦ)ܸ ,ܺ∗)with ߮(ݔ)  =

ොݑܬ   for x ∈ ௄ܦ ௄ . Sinceܦ߲ =  the variational inequality of φ has a solution in K ܭ 

and ݑˆܬ is essential on ܦ௄ . If ܦ௄ ≠  has a ݑˆܬ then the variational inequality of ,ܭ

unique solution in ܦ௄ and has no solutions on ߲ܦ௄ . Hence, ݑܬො ∈

.(∗ܺ,௄ܦ)ܸ ∋ ߮ ݐ݁ܮ ௄ܦ)ܸ ,ܺ∗)with ߮(ݔ)  = (ݔ)ොݑܬ   = ∋for x ݑܬ   ௄ . Define aܦ߲

map ܶ ∶ → ܭ   ܺ∗by 

= ݔܶ ቊ φ(x) if x ∈ D୏
J(u) if x ∈ K\D୏

, 
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Then T is a demicontinuous S-contractive map. If K is bounded, the variational 

inequality of T has a solution in K. If K is unbounded, noting that ܦ௄ is bounded, 

we have for every ݔ଴ ∈  ,ܭ

lim
୶∈୏,∥୶∥→ஶ

sup (୘୶,୶ ି ୶బ)
(୎୶,୶)

 = lim
୶∈୏,∥୶∥→ஶ

sup (୎(୳),୶ ି ୶బ)
(୎୶,୶)

=  0 < 1. 

By a method similar to the first part of the proof of Theorem(3.1.1) we can show 

that the variational inequality of T has a solution ݔ ∈ ∋ We prove x .ܭ  ௄ . Inܦ

fact, if x ∈K\ܦ௄ , then ݔ ≠ = ݔܶ and ݑ  By (4) and the strict monotonicity of .ݑܬ 

J, we have 

0 < − ݔܬ)  − ݔ,ݑܬ  (ݑ   = − ݔܬ)  ,ݔܶ  − ݔ (ݑ   ≤  0, 

a contradiction. Hence, ߮(ݔ)  =  and x is a solution of the variational inequality ݔܶ 

of φ. By Definition (3.1.1), ݑܬො  is essential on ܦ௄ . 

(P3) Assume that B is essential on ݐ݁ܮ. ܭܦ ߮ ∈  with φ(x) = A(x) for x(∗ܺ, ௄ܦ)ܸ

∗௄ Define ℎܦ∂∋ ∶  [0, 1]  × ௄ܦ  →  ܺ∗by ℎ∗(ݐ, (ݔ  = (ݔ)߮ݐ   +  (1 −  Let F.(ݔ)ܤ(ݐ 

be the set of all the solutions in DK of variational inequality ofℎ∗(t, ・) for t ∈ [0, 

1]. Then F≠∅since B is essential on ܦ୏ . We prove that F is closed in X. In fact, let 

 ଴. Thenݐ →୬ݐ with [0, 1] ⊃ {୬ݐ} F with un → u and⊃ {௡ݑ}

௡ݑܬ) −  ℎ∗(ݐ௡ ,(௡ݑ, − ݊ݑ (ݒ  ≤ ∋ ݒ ݎ݋݂ 0   (9)                                                             ܭ

Since J, B and φ are demicontinuous, ݑܬ௡  −  ℎ∗(ݐ௡, (௡ݑ  ⇀ − ݑܬ  ℎ∗(ݐ଴,  and(ݑ

௡ݑܬ}  −  ℎ ∗ ,୬ݐ)  ௡)}is bounded. This impliesݑ

௡ݑܬ)  −  ℎ∗(ݐ୬,ݑ௡), − ݑ (ݒ  → − ݑܬ)   ℎ∗(ݐ଴, ,(ݑ − ݑ ݒ ݎ݋݂,(ݒ  ∈  ܭ

                                                                                                                               (10) 

Noting that ݑ௡  →  and ݑ 

௡ݑܬ)| −  ℎ∗(ݐ୬, ,(௡ݑ ௡ݑ − |(ݑ   ≤ ∥ − ݊ݑܬ  ℎ∗(ݐ୬, (௡ݑ ∥∥ ௡ݑ − ݑ  ∥, 

we have 

lim
௡→ஶ

( ௡ݑܬ − ℎ∗(ݐ௡, ௡ݑ,(௡ݑ − (ݑ = 0                                                                           (11) 
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Let v ∈K. Then 

௡ݑܬ) − ℎ∗(ݐ୬, ,(௡ݑ ௡ݑ  − (ݑ   + ௡ݑܬ)   −  ℎ∗(ݐ୬,ݑ௡), − ݑ (ݒ   

= ௡ݑܬ)  −  ℎ∗(ݐ୬, ,(௡ݑ ௡ݑ −  .(ݒ 

This, together with (6)–(8), implies 

− ݑܬ)  ℎ∗(0ݐ, ,(ݑ − ݑ (ݒ   ≤ ∋ ݒ ݎ݋݂ 0   ܭ

and ݑ ∈  . ܨ

 By Urysohn’s lemma there exists a continuous functionߣ ∶ ௄ܦ  →  [0, 1]such that 

(ݔ)ߣ  =  0 for ݔ ∈ (ݔ)ߣ ௄ andܦ߲  = ∋ ݔ ݎ݋݂ 1  ܶ Define a map . ܨ ∶ ௄ܦ  →  ܺ∗by 

= ݔܶ (ݔ)߮(ݔ)ߣ   +  (1 −  .(ݔ)ܤ((ݔ)ߣ 

Then T is a demicontinuous S-contractive map. Since 

= ݔܶ (ݔ)ܤ   =  ℎ∗(0, ∋ ݔ ݎ݋݂ (ݔ  ௞ܦ߲

and the variational inequality of ℎ∗(0,・)has no solutions on ߲ܦ௄ ,ܶ ∈

 ௄, by Definition (3.1.1), the variationalܦ Since B is essential on .(∗ܺ,௄ܦ)ܸ

inequality of T has a solution ݔ଴ ∈ . ௞ܦ ଴ݐ ݐ݁ܮ = ଴ݔܶ Then .(଴ݔ)ߣ  = ℎ∗(ݐ଴,ݔ଴)and 

x0 is a solution of variational inequality of ℎ∗(ݐ଴,・). Hence, ݔ଴ ∈ , ܨ (଴ݔ)ߣ  =  1 

and ܶݔ଴ =  ଴ is a solution of variational inequality ofφ. Byݔ It follows that .(଴ݔ)߮ 

Definition (3.1.1), A is essential on ܦ௄ . For the converse, the proof is exactly 

same. 
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Sec(3.2): Variational Inequality Theorems 
In this section we prove some results on existence of solutions of (3). We 

first prove the following result under the Leray–Schauder type condition. 

Theorem (3.2.1)[3]:   Let ܭ be a closed convex set in a reflexive smooth Banach 

space X and D a bounded open set in X such that ܦ௞ = ∅and ܦ௄ ≠  Assume that .ܭ

J is of ܵା-type and strictly monotone. Assume that ܣ ∶ ௄ܦ  →  ܺ∗is a 

demicontinuous S-contractive map satisfying the following condition. 

଴ݔ There exists (ୗܮ) ∈  ො଴hasݔ௄ such that the variational inequality of tA + (1 − t)Jܦ

no solutions on ∂ܦ௄ for each t ∈(0, 1). 

Then (3) has a solution in ܦ௞ . Moreover, if (3) has no solutions on ∂ܦ௄ , then A is 

essential on ܦ௞ . 

Proof: Assume that (3) has no solutions on ∂ܦ௄ . Define ℎ ∶  [0, 1]  × ௞ܦ  →  ݕܾ∗ܺ 

ℎ(ݐ, (ݔ  = + ݔܣݐ   (1 −  .଴ݔܬ(ݐ 

By Theorem(3.1.2) (P2), ݔܬො଴ is essential on ܦ௞. Note that the variational inequality 

of Jݔො଴ has no solutions on ∂ܦ௄ . It follows from 

(P3) with ܤ =   . ௄ܦ ො଴ that A is essential onݔܬ 

The following result provides general conditions which ensure that (3) has nonzero 

positive solutions from Hilbert spaces to reflexive smooth Banach spaces. 

Theorem (3.2.2)[3]: Let K be a closed convex set in a reflexive smooth Banach 

space X and let ܦଵ, ܦ be bounded open sets in X such that ܦ୏ଵ ≠ ୏ଵܦ,∅ ≠K and 

୏ܦ
ଵ
ܣ ୏ . Assume thatܦ⊃ ∶ ୏ܦ  →  ܺ∗satisfies the following conditions. 

(H1) ܣ ∈  . ୏ܦ is essential on(∗ܺ,୏ܦ)ܸ

(H2) ܣ ∈ ୏ܦ)ܸ
ଵ

,ܺ∗)is not essential on ܦ୏ଵ 

Then (3) has a solution in ܦ୏\ܦ୏ଵ . 
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Proof: Since A is not essential on ܦ୏ଵ , there exists ߮ ∈ ୏ଵܦ)ܸ ,ܺ∗)with ߮(ݔ) =

∋ ݔ ݎ݋݂ ݔܣ   . ୏ଵܦ ୏ଵ such that the variational inequality of φ has no solutions inܦ߲

Define a map ܶ ∶ ୏ܦ  →  ݕܾ∗ܺ 

= ݔܶ ቊ ∋ ݔ ݂݅ (ݔ)߮ ୏ଵܦ

∋ ݔ ݂݅ ݔܣ ୏ଵܦ\୏ܦ
, . 

Then T is a demicontinuous S-contractive map on ܦ୏ . Moreover,  ܶ ∈

= ݔܶ ݀݊ܽ (∗ܺ,୏ܦ)ܸ ∋ ݔ ݎ݋݂ ݔܣ   ୏ , it followsܦ ୏ . Since A is essential onܦ߲

from (P1) that the variational inequality of T has a solution ݔ଴ in ܦ୏ . Since the 

variational inequality of φ has no solutions in ܦ୏ଵ , we have ݔ଴ ∈ ୏ܦ\୏ܦ
ଵ

 and thus 

  .଴ is a solution of (3)ݔ

The following result gives conditions under which the maps are not essential. 

Lemma (3.2.3)[3]:  Let K be a wedge in a reflexive smooth Banach space X and D 

a bounded open set in X such that ܦ୏ ≠ ∅. Assume that ܣ ∈  is bounded(∗ܺ,୏ܦ)ܸ

and satisfies the following condition. 

∋ ݁ There exists (ଵܧ) ∥ with ܭ ݁ ∥ =  1 such that the variational inequality of ܣ +

< ߚ ௄ for eachܦ∂ has no solutions on ̂݁ܬߚ  0. 

Then A is not essential on ܦ୏ . 

Proof: Since J, A and ܦ୏ are bounded, ߬ ∶= ∥}݌ݑݏ  − ݔܬ ݔܣ  ∥∶ ∋ ݔ  {୏ܦ  <

< 0ߚ ݐ݁ܮ.∞  ߬ /∥ ݁ܬ ܵ ݌ܽ݉ ܽ ݂݁݊݅݁ܦ.∥ ∶ ୏ܦ  →  ݕܾ∗ܺ 

= ݔܵ + ݔܣ   Then S is a demicontinuous S-contractive map and it follows .݁ܬ଴ߚ 

from (ܧଵ) that ܵ ∈  We prove that the variational inequality of S has no .(∗ܺ,୏ܦ)ܸ

solutions on ܦ௄ . In fact, if not, there exists x ∈ܦ୏ such that (ݔܬ − ,ݔܵ  − ݔ (ݒ   ≤

 0 for each ݒ ∈ = ݒ Taking .ܭ + ݔ   ݁ implies (ݔܬ − ,ݔܵ  ݁)  ≥  0. Hence, (ݔܬ −

,ݔܣ  ݁)  ≥ ,݁ܬ଴ߚ)  ݁)and 

଴ߚ ∥ ݁ܬ ∥ = ,݁ܬ଴ߚ)  ݁)  ≤ − ݔܬ)  ,ݔܣ  ݁)  ≤ ∥ − ݔܬ ݔܣ  ∥∥ ݁ ∥ ≤  ߬ , 
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which contradicts the choice of ߚ଴. (P1), S is not essential on ܦ୏ . Define ℎ ∶

 [0, 1]  × ୏ܦ  →  ܺ∗by ℎ(ݐ, (ݔ  = + ݔܣݐ   (1 −  Then .ݔܵ(ݐ 

ℎ(ݔ,ݐ)  = + ݔܣ  − ଴(1ߚ  (ݔ,ݐ) ݎ݋݂ ݁ܬ(ݐ   ∈  [0, 1]  ×  .୏ܦ 

By (E1) and ܣ ∈  the variational inequality of h(t, ・) has no solutions ,(∗ܺ,୏ܦ)ܸ

on ∂DK for each t ∈  [0, 1]. 

(P3), A is not essential on ܦ୏. 

Combining Theorem(3.2.1)and Lemma(3.2.3),and using Theorem(3.2.2) we obtain 

the following result. Its proof is similar to that of Theorem(3.2.4) and we omit it. 

Theorem (3.2.4)[3]:   Let K be a wedge in a reflexive smooth Banach space X and 

let ܦଵ, D be bounded open sets in X such that 0 ∈ ௄ଵതതതതܦ ଵ andܦ ⊂  ௄ . Assume thatܦ

J is of S+-type and strictly monotone. Assume that ܣ ∶ ௄തതതതܦ  →  ܺ∗is a bounded 

demicontinuous S-contractive map satisfying the following conditions: 

(i) (LS) of Theorem( 3.2.1) holds on ∂ܦ௄ . 

(ii) (ܧଵ) of Lemma( 3.2.3) holds on ߲ܦ௄ଵ   

Then (4) has a solution on ܦ௞തതതത\ܦ௄ଵ  .  

In the following, we generalize Theorem(3.2.4) and study existence of 

eigenvalues for variational inequalities. a function ݀∗ ∶  ܺ∗  ×  ܺ →  ܴis defined by 

,ݑ)∗݀ (ݔ  = ∥ ݔ ∥ଶ− ,ݑ)2  (ݔ  + ∥ ݑ ∥ଶ                                                                           (9) 

Definition (3.2.5)[3]:  Let K be a nonempty closed convex set in a Banach space 

X. A map ݎ ∶  ܺ∗   →  is said to be the (generalized) projection from ܺ∗to K if it ܭ 

satisfies 

,ݑ)∗݀  ((ݑ)ݎ  = (ܭ,ݑ)∗݀  ∶= ,ݑ)∗݀}݂݊݅  (ݔ ∶ ∋ ݔ  ∋ ݑ ݎ݋݂ {ܭ ܺ∗. 

Lemma (3.2.6)[3]:  Let K be a nonempty closed convex set in a reflexive and 

strictly convex Banach space X. Then there exists a unique 

projection ݎ ∶   ܺ∗  →  .ܭ 
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Proof:  Since X is reflexive, it follows from Theorem (3.1.2) that r(u) exists for 

∋ ݑ ܺ ∗. Since X is strictly convex, by Theorem (3.1.2) is unique.  

  From now on, we always assume that X is a reflexive, strictly convex and smooth 

Banach space and ܬ ∶  ܺ →  ܺ∗is the normalized dual map. Since X is strictly 

convex, J is strictly monotone . 

Lemma (3.2.7)[3]:  Let K be a nonempty closed convex subset of X. Let ݑ ∈

ܺ∗and ݔ ∈  :Then the following assertions are equivalent .ܭ

(i) (ݔܬ − ,ݑ  − ݔ (ݒ   ≤ ∋ ݒ ݈݈ܽ ݎ݋݂ 0   .ܭ

(ii) ݔ =  .(ݑ)ݎ 

By Lemma (3.2.7), it is easy to prove the following result. 

Lemma (3.2.8)[3]:  Assume that 0 ∈ (ݑ)ݎ Then .ܭ  =  0 if and only if (ݑ, (ݒ  ≤

 0 for ݒ ∈ ∋ ݑ if and only if ܭ ∥ if and only if∗ܭ−  ݑ ∥ଶ=  where ,(ܭ,ݑ)∗݀ 

∗ܭ = ∋ ݑ}  ܺ∗ ∶ ,ݑ)  (ݒ  ≥ ∋ ݒ ݎ݋݂ 0   {ܭ

is the dual cone of K. 

The following result gives relations between J and ݀∗ 

Lemma (3.2.9)[3]:  (i) ݀∗(ݔ,ݑ)  =  0 if and only if ݑ =  .ݔܬ 

(ii) ݑ ∈ (ܭ,ݑ)∗݀ if and only if(ܭ)ܬ  =  0. 

Proof:  (i) Assume that ݀∗(ݑ, (ݔ  =  0. Since (ݔ,ݑ)  ≤ ∥ ݑ ∥∥ ݔ ∥, we have 

0 = ∥ ݔ ∥ଶ− ,ݑ)2  (ݔ  + ∥ ݑ ∥ଶ≥ ∥ ݑ ∥ଶ−  2 ∥ ݑ ∥∥ ݔ ∥  + ∥ ݑ ∥ଶ=  (∥ ݔ ∥

 − ∥ ݑ ∥)ଶ. 

This implies that ∥ ݑ ∥ = ∥ ݔ ∥and (ݔ,ݑ)  =  ଵ
ଶ

[∥ ݑ ∥ଶ+ ∥ ݑ ∥ଶ]  = ∥ ݑ ∥∥ ݔ ∥. 

Since J is a single-valued map, u = Jx. Conversely, assume that ݑ =  Since J is .ݔܬ 

a normalized duality map from ܺ ݋ݐ ܺ∗, ∥ = (ݔ,(ݔ)ܬ) ݔܬ ∥∥ ݔ ∥ ܽ݊݀ ∥ ݔܬ ∥ = ∥

ݔ  ,(8) ݕܤ.∥

,ݑ)∗݀ (ݔ  = ,ݔܬ)∗݀  (ݔ  = ∥ ݔ ∥ଶ− ,ݔܬ)2  (ݔ  + ∥ ݔܬ ∥ଶ= ∥ ݔ ∥ଶ−  2 ∥ ݔ ∥ଶ + ∥

ݔ ∥ଶ=  0. 
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(ii) Let u ∈J(K) and let x ∈K be such that ݑ =  Then .ݔܬ 

,ݑ)∗݀ ((ݑ)ݎ  = (ܭ,ݑ)∗݀   = (ܭ,ݔܬ)∗݀  ≤ ,ݔܬ)∗݀  (ݔ  =  0 

and ݀∗(ݑ, ((ݑ)ݎ  = (ܭ,ݑ)∗݀   =  0. Conversely, if ݀∗(ݑ, ((ݑ)ݎ  =  0, then by (i), 

we have ݑ = ((ݑ)ݎ)ܬ   ∈   .ܭ

(i)Where X is assumed to be auniformly convex and uniformly smooth Banach 

space. Lemma (3.2.9)(ii)We give two examples of generalized projections in 

଴ܹ
ଵ,୮(Ω) and ܮ௣(Ω). 

Let ଴ܹ
ଵ,୮:= ଴ܹ

ଵ,୮(Ω) is the Sobolev space with the standard norm 

∥u∥ ଴ܹ
ଵ,୮= ቀ∫ |∇u(x)|p dxஐ ቁ

ଵ/୮
                                                                            (12) 

where ∇u(x) =ப୳(୶)
ப୶ଵ

, . . . , ப୳(୶)
ப୶୫

, |∇u(x)| =൤∑ ൬ ப୳
ப୶୩

ଶ
൰௠

୩ୀଵ ൨
భ
మ
and Ω is a bounded and 

connected open set in ܴ௡(݊ ≥  1). Itis known that ଴ܹ
ଵ,୮ 

is a uniformly convex and smooth Banach space. Hence, ଴ܹ
ଵ,୮ is a reflexive, 

strictly convex and smooth Banach space with property (H). The dual space of 

଴ܹ
ଵ,୮is denoted by ܹିଵ,୮(Ω),where 1/݌ + = ′݌/1  1. 

We denote by P the standard positive cone of ଴ܹ
ଵ,୮ , that is, 

ܲ =  ൛ݑ ∈ ଴ܹ
ଵ,୮: (ݔ)ݑ ≥  0 ܽ. ݁.  ൟ                                                                      (13)ߗ ݊݋

We need the following weak comparison principle. 

Lemma(3.2.10)[3]:. Assume that w, u ∈ ଴ܹ
ଵ,୮ satisfy  

((ݔ)ݒ,(ݔ)ݓܬ)  ≤ ∋ ݒ ݎ݋݂ ((ݔ)ݒ,(ݔ)ݑܬ)  ܲ ܽ݊݀ ܽ. ∋ ݔ.݁ (ݔ)ݓ Then.ߗ  ≤

.ܽ ݎ݋݂ (ݔ)ݑ  ∋ ݔ.݁  .ߗ

Remark (3.2.11)[3]:  By Lemma (3.2.10) we see that if ݑܬ ∈  .P∋ ݑ then ,∗݌

Moreover, if (ݔ)ݑܬ  ≥  0 for a.e. x ∈Ω, then ݑ ∈ ܲ. 

Example (3.2.12)[3]: The map r : ܹିଵ,୮ᇱ→ P defined by 

(ݔ)(ݑ)ݎ  = ,(ݔ)ݑ′݌ܬ}ݔܽ݉  0} 
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is the generalized projection from ܹିଵ,୮ᇱto P, where 

(ݔ)ݑ௣ܬ  = ∥ ݑ ∥
ௐబ

భ,౦
ଶି୮  for x ∈Ω                                                               (14)(ݔ)ݑܲ߂−)

is the normalized dual map from ଴ܹ
ଵ,୮ to ܹିଵ,୮ᇱand 

(ݔ)ݑ௣߂  = ∑ ப
ப୶୧

୬
୧ୀଵ ௣ିଶ|(ݔ)ݑߘ|) ப୳(୶)

ப୶୧
). 

Proof: Let u ∈ ଴ܹ
ଵ,୮,ߗା = ∋ ݔ}  ߗ ∶ (ݔ)ݑ௣ᇱܬ   ≥ = −ߗ ݀݊ܽ {0  ∋ ݔ}  ߗ ∶

(ݔ)ݑ௣ᇱܬ   < 0}. (ݔ)ݓ ݐ݁ܮ  = ,(ݔ)ݑ௣ᇱܬ}ݔܽ݉  ∋ ݔ ݎ݋݂ {0  .ߗ

Then (ݔ)ݓ  = (ݔ)ݓ௣ܬ   = ∋ ݔ ݎ݋݂ 0  ߗ −and 

(ݔ)ݓ  = (ݔ)ݓ௣ܬ ݀݊ܽ (ݔ)ݑ௣ᇱܬ   =  for x ∈Ωା (ݔ)ݑ 

since ܬ௣ܬ௣ᇱu(x) = u(x) for x ∈Ω. Since ܬ௣ᇱ(ݔ)ݑ  < 0 for ݔ ∈ ߗ −, it follows from 

Remark( 3.2.10) that (ݔ)ݑ  ≤ ∋ ݔ ݎ݋݂ 0  ߗ −. Let 

∋ ݒ = ߦ ݀݊ܽ ܲ − ݓ௣ܬ)  − ݓ,ݑ   Then .(ݒ 

= ߦ න [J୮w(x)  −  u(x)][w(x)  −  v(x)] dx
ஐ

 

= ∫ [J௣w(x)  −  u(x)][w(x)  −  v(x)] dxஐା +∫ (ݔ)ݓ௣ܬ] − (ݔ)ݓ][(ݔ)ݑ  −ஐି

 ݔ݀ [(ݔ)ݒ 

=∫ ≥ ݔ݀ (ݔ)ݒ(ݔ)ݑ  0ஐି  

The result follows from Lemmas (3.2.7) and (3.2.6).  

By a proof similar to that of Example( 3..2.12), we obtain the following 

result. 

Example (3.2.13)[3]:  The map ݎ ∶ (ߗ)௤ܮ   →  ௣ defined byܭ 

(ݔ)(ݑ)ݎ  = ,(ݔ)ݑ௤ܬ}ݔܽ݉  0} 

is the generalized projection from ܮ௤(Ω) to ܭ௣, where 

(ݔ)ݑ௣ܬ  = ∥ ݑ ∥ଶି௣௅௣(ஐ) ∋ ݔ ݎ݋݂ (ݔ)ݑ௣ିଶ|(ݔ)ݑ|  ߗ
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and ܭ௣: = ∋ ݑ}  (ߗ)௣ܮ ∶ (ݔ)ݑ   ≥  0 ܽ. ݁.  .{ߗ ݊݋

Theorem (3.2.14)[3]:  Let K be a wedge in X with (ܭ)ܬ ∩ ∗ܭ ≠  {0}.  be ܦ,ଵܦ ݐ݁ܮ

bounded open sets in X such that 0 ∈ ௄ଵܦ ଵ andܦ ⊂  ,௄ .Suppose J is of ܵାtypeܦ

ܣ ∶ ௄ܦ  →  ܺ∗is a bounded demicontinuous S-contractive map and ܤ ∶ ௄ଵതതതതܦ  →  ܺ∗is 

a compact map. 

Assume that the following conditions hold. 

(ℎଵ) A satisfies (ܮୗ) of Theorem (3..2.1) on  . 

(ℎଶ) Either ܤ(߲ܦ௄ଵ) ∩ (∗ܭ−)   =  ∅or the following conditions hold. 

(i) inf{∥ ݔܤ ∥∶ ∋ ݔ  {௄ଵܦ߲  > 0. 

(ii) ܤ(߲ܦ௄ଵ) ∩ ((ܭ)ܬ\(∗ܭ−))   =  ∅. 

(ℎଷ) The variational inequality of ܣ + ௄ଵܦ߲ has no solutions on ܤߣ  < ߣ ݎ݋݂  0. 

Then (6)) has a solution on ܦ୏\ܦ௄ଵ  . 

Proof:  Assume that (6) has no solutions on ܦ୏ ∪ ௄ଵܦ߲  . By (ܮୗ) and Theorem 

(3.2.1), A is essential on ܦ୏ . Since(ܭ)ܬ ∩ ∗ܭ ≠ {0},there exists ݁ ∈ ∥ with ܭ ݁ ∥

 =  1 such that ݁ܬ ∈  :We prove the following assertion .∗ܭ

଴ߣ There exists (ଶܧ) > 1 such that the variational inequality of ܣ + + ܤ଴ߣ   መ݁ܬߚ 

has no solutions on ߲ܦ௄ଵ  for eachߚ ≥  0. 

In fact, if not, there exist {ݔ௡}  ⊂ ௄ଵܦ߲ , {௡ߣ}  ⊂ (1,∞) with ߣ௡ →  ∞, {௡ߚ}  ⊂

 [0,∞)such that 

௡ݔܬ) − ௡ݔܣ)  + ௡ݔܤ௡ߣ  + ௡ݔ,(݁ܬ݊ߚ  − (ݒ   ≤ ∋ ݒ ݈݈ܽ ݎ݋݂ 0   (15)                          ܭ

Taking ݒ = ௡ݔ  +  ݁ ݅݊ (13) implies 

௡ߚ ∥ ݁ܬ ∥ = ,݁ܬ)௡ߚ  ݁)  ≤ ௡ݔܬ)  − ,௡ݔܣ  ݁)  − ,௡ݔܤ)݊ߣ  ݁) 

and 

βn
௡ߣ

≤
∥ − ݊ݔܬ ௡ݔܣ  ∥

∥ ݁ܬ ∥ ௡ߣ
+
∥ ௡ݔܤ ∥
∥ ݁ܬ ∥
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Since ܦ௄ଵതതതത, ௡ߣ and B are bounded and ܣ,ܬ  →  ∞,  is bounded. We may{௡ߣ/௡ߚ}

assume that ߚ௡/ߣ௡ → ௡ݔܤ,଴ߚ  → ௡ݔ and ݓ  ⇀ ∋ ݔ .ܭ ∋ ݒ ݐ݁ܮ  ,By(15) .ܭ

൬
Jߣ௡ −  Aߣ௡

௡ߣ
൰ − ௡ݔܤ)  − (ݓ   − (

β୬
௡ߣ

− ,݁ܬ(଴ߚ  –௡ݔ (ݒ  − + ݓ)  ,݁ܬ଴ߚ  ௡ݔ − (ݒ   

≤  0. 

Taking limit implies −(ݓ + ,݁ܬ଴ߚ  − ݔ (ݒ   ≤  0 for ݒ ∈  and ܭ

+ ݓ) ,݁ܬ଴ߚ (ݑ  ≤ ∋ ݑ ݎ݋݂ 0   (16)                                                                           ܭ

This, together with ݁ܬ ∈  implies ,∗ܭ

,ݓ) (ݑ  ≤ (ݑ,݁ܬ଴ߚ)−   ≤ ∋ ݑ ݎ݋݂ 0   (17)                                                                       ܭ

By Lemma( 3.2.8), we have (ݓ)ݎ  =  0. 

(i) If the first condition of (ℎଶ) holds, then (ݓ)ݎ  =  0 implies that 

݂݅݊{∥ (ݔܤ)ݎ ∥∶ ∋ ݔ  {௄ଵܦ߲  =  0, 

where r is the same as in Lemma (3.2.6). Hence, there exists {ݑ௡}  ⊂  ௄ଵsuch thatܦ߲

(௡ݑܤ)ݎ  →  0. Since B is compact, we may assume that ݑܤ௡ → ∋ ݓ   .(௄ଵܦ߲)ܤ

Since r is continuous, (ݓ)ݎ  =  0. By Lemma (3.2.8), ݓ ∈  ,Hence .∗ܭ− 

(௄ଵതതതതܦ߲)ܤ  ∩ (∗ܭ−)  ≠ ∅, 

which contradicts the hypothesis ܤ(߲ܦ௄ଵതതതത)  ∩ (∗ܭ−)   =  ∅. 

(ii) Under the second condition of (h2), if ݓ ∈  then by Lemmas (3.2.9)(ii) ,(ܭ)ܬ

and (3.2.8), 

∥ ݓ ∥ଶ= ,ݓ)∗݀  ((ݓ)ݎ  = (ܭ,ݓ)∗݀   =  0. 

Hence, we have ݓ =  0, which contradicts inf{∥ ݔܤ ∥∶ ∋ ݔ  {௄ଵܦ߲  > 0. ̸ ݓ ݂ܫ ∈

∋ ݓ ,then noting that r(w) = 0, we have by Lemma (3.2.8) ,(ܭ)ܬ  ,Hence .∗ܭ− 

∋ ݓ (ܭ)J\(∗ܭ−) ∩ (௄ଵܦ߲)ܤ and(ܭ)ܬ\(∗ܭ−) ≠  ∅, a contradiction. 

Define a map ܶ ∶ ௄ଵܦ  →  ܺ∗by ܶݔ = + ݔܣ   Then T is a demi-continuous .ݔܤ଴ߣ 

S-contractive map and the variational inequality of T has no solutions on ܦ௄ଵ  . 

Hence, T∈ ௄ଵܦ)ܸ ,ܺ∗)and T is bounded since A and B are bounded. It is shown 
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above that the variational inequality of ܣ + + ܤ଴ߣ  ௄ଵܦ߲ መ݁ has no solutions onߚ   

for each ߚ ≥  0. By Lemma( 3.2..3), T is not essential on ܦ௄ଵ  . By (ℎଷ), the 

variational inequality of ܣݐ +  (1 − = ܶ(ݐ  + ܣ  ௄ଵܦ߲ has no solutions on ܤ଴ߚݐ   

for ݐ ∈  [0, 1]. 

It follows from Theorem (3.1.2)(P3) that A is not essential on ܦ௄ଵ  . By Theorem 

(3.2.1), (6) has a solution in ܦ୏ \ܦ௄ଵ  . The result follows.  

Remark (3.2.15)(3]:  It is easy to show that if B(ܦ௄ଵ) ⊂  then Theorem ,(ܭ)ܬ

(3.2.14)(ii) is satisfied, and if (ܭ)ܬ  ∩ ∗ܭ  ≠  {0}, ܭ ℎ݁݊ݐ ≠  .ܭ− 

By Lemma (3.2.8) one can prove that (h2) is equivalent to inf{∥r(Bx)∥ :ݔ ∈

{௄ଵܦ߲  > 0. 

By the proof of Theorem( 3.2.14), we obtain the following result on the existence 

of eigenvalues of variational inequalities. 

Theorem (3.2.16)[3]:  Let K be a wedge in X with J(K)∩ܭ∗ ≠ {0} and D a 

bounded open set in X such that ߲ܦ௄ ≠ ∅. Suppose J is of ܵାtype, A : ܦ௞തതതത  →  ܺ∗is 

a bounded demicontinuous S-contractive map and ܤ ∶ ௄ܦ  →  ܺ∗is a compact map. 

Assume that (ℎଵ)–(ℎଶ)of Theorem 3.4 hold on ߲ܦ௄ . Then there exists ߣ ≥  0 such 

that the variational inequality of ܣ +  .௄ܦ߲ has a solution on ܤߣ 

Proof:  The proof is by contradiction. We may assume that (6) has no solutions on 

 ௄ . If the result were false, then (h3) of Theorem (3.2.7) holds on  . By the proofܦ߲

of Theorem (3.2.14) we see that under (h2), A is not essential on ܦ௄ . On the other 

hand,by (ℎଵ) and Theorem (3.2.1), A is essential on ܦ୏ .  

In Theorem( 3.2.14), K is required to satisfy (ܭ)ܬ  ∩ ∗ܭ  ≠  {0}. From the 

following result, we see that the last condition can be dropped if K is a proper 

wedge. 
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Theorem(3.2.17)[3]:   Let K be a proper wedge in ܺ.  be the same ܤ,ܣ,ܦ,ଵܦ ݐ݁ܮ

as in Theorem (3.2.14). Assume that (ℎଵ) of Theorem (3.2.14) holds on ߲ܦ௄ and 

(ℎଷ) of Theorem(3.2.14).  holds on ܦ୏ଵ . Assume that the following conditions hold. 

(ℎଶᇱ ) B(∂ܦ୏ଵ) ∩ J((K ∩ (−K)) = ∅. 

(ℎଶᇱᇱ) ݀∗(ܭ,ݓ)  < ∩ ܭ,ݓ)∗݀ ∋ ݓ for((ܭ−)  (ܭ,ݓ)∗݀ with (୏ଵܦ߲)ܤ  > 0. 

Then (6) has a solution on ܦ௄തതതത\ܦ௄ଵ  . 

Proof:  The proof is similar to that of Theorem (3.2.14) and we sketch the proof. 

We can choose ݁ ∈ ∩ ܭ ∥ with(ܭ−)  ݁ ∥ =  1. We prove that (ܧଶ) holds. In fact, 

if not, there exists {ݔ௡}  ⊂ ௡ݔܤ ௄ଵsuch thatܦ߲ → ∋ ݒ and (3.2.9) holds. Letݓ   ܭ

and ݑ = + ଴݁ߚ   .ݒ 

Then ݑ ∈  Note that J is homogeneous and odd operator BY(17), we have .ܭ

(଴݁ߚ−)ܬ)  − ,ݓ  (଴݁ߚ−)  − (ݒ   = + ݓ)  + ଴݁ߚ,݁ܬ଴ߚ  (ݒ   = + ݓ)  (ݑ,݁ܬ଴ߚ   

≤  0. (17) 

Since ݁ ∈ ∩ ܭ ∋ ଴݁ߚ− we have ,(ܭ−)  (ݓ)ݎ ,By (18) and Lemma (3.2.7) .ܭ  =

 ଴݁. This implies thatߚ− 

∩ ܭ,ݓ)∗݀ ((ܭ−)   ≤ (଴݁ߚ−,ݓ)∗݀   = ,ݓ)∗݀  ((ݓ)ݎ  = (ܭ,ݓ)∗݀   

≤ ∩ ܭ,ݓ)∗݀   ((ܭ−) 

and ݀∗(ܭ,ݓ ∩ ((ܭ−)   = ∋ ݓ Since .(ܭ,ݓ)∗݀   it follows from (ℎଶᇱᇱ) ,(௄ଵܦ߲)ܤ

that ݀∗(ܭ,ݓ)  =  0. Hence, ݀∗(ܭ,ݓ ∩ ((ܭ−)   =  0. 

By Lemma (3.2.9)(ii), ݓ ∈ ∩ ܭ)ܬ (௄ଵܦ߲)ܤ and((ܭ−)   ∩ ∩ ܭ)ܬ  ((ܭ−)  ≠ ∅, 

which contradicts (ℎଶᇱ ).  

In Theorems (3.2.8)–(3.2.10), K is not a subspace of X. To obtain results when K 

is an infinite dimensional subspace in X, we first prove the following lemma. 

Lemma (3.2.18)[3]:  Let K be a wedge in X such that ߲ܭଵ = ∋ ݔ}  ܭ ∶ ∥ ݔ ∥ =

 1}is not compact. Assume that ܦଵ is a bounded open set in X such that ܦ௄ଵ ≠∅. 
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Assume that B : ܦ௄ଵ→ ܺ∗is a compact map such that the first condition of (h2) in 

Theorem (3.1.4) holds.Then there exists e ∈∂ܭଵsuch that  

((௄ଵܦ߲)ܤ)ݎ−  ∩ ݁ߚ}  ∶ ≤ ߚ   0}  =  ∅                                                                          (18) 

Proof:  The proof is by contradiction. If (18) were false, then for each ݔ ∈  ,ଵܭ߲

there exists ߚ௫x ≥ 0 such that ߚ௫ݔ ∈  .((௄ଵܦ߲)ܤ)ݎ− 

Let =  ݂݅݊{∥ (ݔܤ)ݎ ∥∶ ∋ ݔ   ௄ଵ}. Then by the first condition of (ℎଶ) and Remarkܦ߲

௫ߚ (3.2.15) ≥ < ߙ  0 for each x ∈߲ܦ௄ଵ . Let  ܳ = ݔ௫ߚ}  ∶ ∋ ݔ   ଵ}. Thenܭ߲

:ఈܭ߲ = ∋ ݔ}  ܭ ∶ ∥ ݔ ∥ = {ߙ   ⊂ ∪ ܳ)݋ܿ  {0})  ⊂ ((௄ଵܦ߲)ܤ)ݎ−)݋ܿ  ∪  {0}). 

Since B is compact and r is continuous, ݎ(ܤ(߲ܦ௄ଵ))is relatively compact and 

  .ଵܭ߲ is compact, which contradicts noncompactness ofߙܭ߲

Theorem (3.2.19)[3]:  Let K be an infinite dimensional subspace in ܺ.  ܦ,ଵܦ ݐ݁ܮ

be bounded open sets in X such that 0 ∈ ௞ଵതതതതܦ ଵ andܦ  ⊂  . ܭܦ

Suppose J is of ܵାtype, ܣ ∶ ௄ܦ  →  ܺ∗is a bounded demicontinuous S-contractive 

map and ܤ ∶ ௞ଵതതതതܦ  →  ܺ∗is a compact map. 

Assume that (ℎଵ), the first condition of (ℎଶ), and (ℎଷ) of Theorem (3.2.14) hold. 

Then there exists ݔ ∈  .୏ଵ such that x − Ax is orthogonal to Kܦ\௄ܦ

Proof:  Assume that (6) has no solutions on ∪ ௄ଵܦ߲  . By (LS) and Theorem( 3.2.1), 

A is essential on ܦ௄ . By Lemma (3.1.18), there exists e ∈K with ∥e∥ = 1 such that 

(18) holds. We prove that (ܧଶ) holds. In fact, if not, a similar proof to that of 

Theorem (18) 

shows that (15) holds. Let v ∈K and ݑ = + ଴݁ߚ  ∋ ݑ Then .ݒ   By (15), we .ܭ

have 

(଴݁ߚ−)ܬ)  − ,ݓ  (଴݁ߚ−)  − (ݒ   = + ݓ)  + ଴݁ߚ,݁ܬ଴ߚ (ݒ   = + ݓ)  ,݁ܬ଴ߚ  (ݑ  

≤  0. 
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By Lemma (3.2.7)(ݓ)ݎ  = ∋ ଴݁ߚ ଴݁. Hence, we haveߚ−   which ,((௄ଵܦ߲)ܤ)ݎ− 

contradicts (18). An argument similar to that ofTheorem (3.2.14) shows that A is 

not essential on ܦ௄ଵ  . The result follows from Theorem (3.2.14). 

By a similar proof to that of Theorem (3.2.16), we obtain the following result on 

the existence of eigenvalues. 

Theorem (3.2.20)[3]:  Let K be an infinite dimensional subspace in X and D a 

bounded open set in X such that ߲ܦ௄ ≠ ∅. Assume that J is of ܵ+ type, ܣ ∶ ௄തതതതܦ  →

ܺ∗is a bounded demicontinuous S-contractive map and B : ܦ௄ →  ܺ∗is a compact 

map. Assume that (ℎଵ) and the first condition of (ℎଶ) of Theorem (3.2.14) hold on 

≤ ߣ ௄ . Then there existsܦ  0 such that the variational inequality of ܣ +  has a ܤߣ 

solution on ߲ܦ୏ . 

In this section, we apply the results obtained  to study the existence of 

nonzero positive weak solutions for p-Laplacian elliptic inequalities 

ቊ−ݑ݌߂
(ݔ) ≥  ݂ ൫(ݔ)ݑ,ݔ൯݂ݎ݋ ܽ. ∋ ݔ.݁ ߗ

(ݔ)ݑ, = ,ߗ߲ ݊݋ 0 
                                                                   ( 19) 

where Ω is a bounded and connected open set in ܴ௡ with meas(ߗ)  > 0. 

The p-Laplacian elliptic inequalities (19) and equations arise in the study of 

Newtonian fluids (p = 2) and non-Newtonian fluids (݌ ≠ 2)such as dilatant fluids 

< ݌) 2)and pseudoplastic fluids (1 < > ݌ 2). 

In the following, we study the case when 2 ≤ n <p. We always assume that the 

following conditions hold. 

∋ ݊ (଴ܥ) ܰ, the set of natural numbers, and 2 ≤  ݊ < > ݌ ∞. 

݂ (ଵܥ) ∶ × ߗ   ܴ+ →  ܴ satisfies the Carathéodory conditions, that is, ݂ (・,  is (ݑ

measurable for each fixed ݑ ∈ ܴାand f (x, ・) 

is continuous for a.e. ∋ ݔ  .ߗ

< ݎ For each (ଶܥ) 0 there exists ݃ݎ ∈ ାଵܮ (Ω) such that 
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|(ݑ,ݔ) ݂| ≤  ݃௥(ݔ)݂ݎ݋ ܽ. ݁. ∋ ݔ ∋ ݑ ݈݈ܽ ݀݊ܽ ߗ  [0,  (20)                                           [ݎ

We note that the condition (ܥଶ) do not require the upper bound of |݂ (ݔ,  to|(ݑ

depend on u, so it is more general than those used, where f satisfies suitable lower 

and upper bound conditions depending on u. 

We define a map ܬ ∶  ଴ܹ
ଵ,௣ →  ܹିଵ,௣′by 

(ݔ)ݑܬ =  (21)                                                                                                          (ݔ)ݑ௣߂− 

Then ܬ  is a duality map from ଴ܹ
ଵ,௣  toܹିଵ,௣ with the gauge function (ݐ)ߔ  =

∋ ݐ ݎ݋݂ ௣ିଵݐ  ܴା , and J is (p−1)-homogeneous,that is, (ݑܿ)ܬ  =

 ܿ௣ିଵݎ݋݂ (ݑ)ܬ ܿ ∈ ܴାܽ݊݀ ݑ ∈ ଴ܹ
ଵ,௣ . Moreover, 

(ݒ,ݑܬ) = ෍න ൬|(ݔ)ݑߘ|௣ିଶ
ݑ݀
݅ݔ߲

൰
ఆ

௡

௜ୀଵ

ݑ√߲
݅ݔ߲

,ݑ ݎ݋݂ ݔ݀ ∋ ݒ ଴ܹ
ଵ,௣                              (22) 

ܽ݊݀ 

,ݑܬ) (ݑ = ∥ ݑ ∥
ௐబ

భ,೛
௣ ∋ ݑ ݎ݋݂ ଴ܹ

ଵ,௣                                                                            (23) 

Since ଴ܹ
ଵ,௣has the property (H) and is strictly convex, J is of ܵାtype and is strictly 

monotone. 

We denote by P the standard positive cone of ଴ܹ
ଵ,௣0 given in (12). We define a 

map ܣ ∶  ܲ →  ܹିଵ,௣ᇱܾy 

,ݑܣ) (ݒ  = න ݂ ൫(ݔ)ݑ,ݔ൯(24)                                                                                ݔ݀(ݔ)ݒ
ஐ

 

 

Since P is a cone in ଴ܹ
ଵ,௣, we see that u ∈P is a solution of the variational 

inequality 

− ݑܬ) ,ݑܣ  − ݑ (ݒ   ≤ ∋ ݒ ݎ݋݂ 0  ܲ                                                                           (25) 

if and only if u ∈P is a solution of the complementary problem 

(ݑ,ݑܬ)  = ,ݑܣ)   (26)                                                                                                            (ݑ
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and 

,ݑܬ) (ݒ ≥ ,ݑܣ)  ∋ ݒ ݎ݋݂(ݒ ܲ                                                                                         (27) 

Definition (3.2.21)[3]:  A function ݑ ∈ ଴ܹ
ଵ,௣is called a positive weak solution of 

the p-Laplacian elliptic inequality (3.2.1) if ݑ ∈ ܲ and u satisfies the following 

inequality: 

෍ න ( |∇u(x)|௣ିଶ
ஐ

௡

௜ୀଵ

∂u
∂xi

൰ ≤ ݔ݀ න ݂ ൫ݔ, ∋ ݒ ݎ݋݂ ݔ݀(ݔ)ݒ൯(ݔ)ݑ ܲ                (28)
ஐ

 

By (22), (24) and Definition (3.2.21), we see that u ∈ ଴ܹ
ଵ,௣ is a positive weak 

solution of (19) if and only if ݑ ∈ ܲ and usatisfies (27). Hence, if ݑ ∈ ܲ is a 

solution of the variational inequality (19), then u is a positive weak solution of 

(19). This allows one to apply the theory developed  to the variational inequality 

(27) to study existence of positive weak solution of the 

 p-Laplacian elliptic inequality(19). 

Lemma (3.2.22)[3]: Under the hypothesis (ܥ଴), the following assertions hold. 

(i) ଴ܹ
ଵ,௣ ⊂  .(ߗ)ܥ

(ii)

 

(iii) ݂ܫ {ݑ௞}  ⊂ ଴ܹ
ଵ,௣ ݐ݅ݓℎ ݑ௞ ⇀ ∋ ݑ ଴ܹ

ଵ,௣ , ௞ݑ ℎ݁݊ݐ →  .(ߗ)ܥ ݊݅ ݑ 

< ݎ ݐ݁ܮ ௥ܲ ݐ݈݁ ݀݊ܽ 0 = ∋ ݑ}  ܲ ∶ ∥ ݑ ∥ௐబ
భ,೛< ߲ ݀݊ܽ {ݎ ௥ܲ = ∋ ݑ}  ܲ ∶ ∥ ݑ ∥ௐబ

భ,೛=

 .{ݎ 

Now, we prove the following result which shows that the map A defined in 

(24) maps P into ܹିଵ,୮ᇱand is compact. 

Lemma (3.2.23)[3]:  Under the hypotheses (ܥ଴)–(ܥଶ), the map A defined in (24) 

maps P into ܹିଵ,୮ᇱand is compact. 
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Proof: Let ݎ > 0 and let ݑ ∈ ∥ ℎݐ݅ݓ (ߗ)ାܥ ݑ ∥௖(ஐ)തതതത≤  there exists ,(ଶܥ) ݕܤ.ݎ 

݃௥  ∈ ାଵܮ  ,such that (18) holds. Hence(ߗ)

ห݂ ൫ݔ, ൯ห(ݔ)ݑ ≤  ݃௥(ݔ)݂ݎ݋ ܽ. ݁. ∋ ݔ  (29)                                                                        ߗ

We prove that the Nemytskii operator f defined by 

(ݔ)ݑ݂  =  ((ݔ)ݑ,ݔ) ݂ 

maps ܥା(ߗ) ܮ ݋ݐଵ and is continuous. In fact, let ݑ ∈ ∥ = and r(ߗ)ାܥ

ݑ ∥஼(ఆ).ݕܤ (ܥଵ),  ,is measurable and by (29)((・)ݑ,・) ݂

we have 

                                                     (30) 

and ݂ݑ ∈ ∋ ݑ ݎ݋݂ ଵܮ {݇ݑ} ݐ݁ܮ.(ߗ)ାܥ  ⊂ ௞ݑ ℎݐ݅ݓ(ߗ)ାܥ → ∋ ݑ 

,(ߗ)ܥ ݊݅ (ߗ)ାܥ ,ݏ݅ ݐℎܽݐ ∥ ௞ݑ − ݑ ∥஼(ఆ)→  0.ܶℎ݁݊ ݑ௞(ݔ)  →  (ݔ)ݑ 

∋ ݔ ݎ݋݂  ,(ଵܥ) ݕܾ ݀݊ܽ ߗ

݂ ൫ݔ, ൯(ݔ)௞ݑ →  ݂ ൫ݔ, .ܽ ݎ݋൯݂(ݔ)ݑ ݁. ∋ ݔ Ωഥ                                                              (31) 

Let ݎ = ∥}݌ݑݏ  ݇ݑ ∥஼(ఆ), ∥ ݑ ∥஼(ఆ)}.ܶℎ݁݊ ݎ <  we have ,(29) ݕܤ.∞

,ݔ) ݂| ((ݔ)௞ݑ  − ,ݔ) ݂  |((ݔ)ݑ  ≤ ,ݔ) ݂|  |((ݔ)௞ݑ  + ,ݔ) ݂|  |((ݔ)ݑ  ≤

 2݃௥ .ܽ ݎ݋݂ (ݔ)  ݁. ∋ ݔ Ωഥ. 

This, together with (31) and the Lebesgue dominated convergence theorem, 

implies that 

lim
௄→ஶ

∥ ௞ݑ݂  − ݑ݂  ∥௅భ=  lim
 ௞→ஶ

න ((ݔ)௞ݑ,ݔ) ݂|  − ݔ݀ |((ݔ)ݑ,ݔ) ݂ 
ఆ

 

=∫ lim୩→ஶ|݂ (ݔ, ((ݔ)௞ݑ  − ,ݔ) ݂  ఆݔ݀ |((ݔ)ݑ  

න
ఆ

lim
୩→ஶ

,ݔ) ݂| ((ݔ)௞ݑ  − = ݔ݀ |((ݔ)ݑ,ݔ) ݂   0 . 
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Hence, ݂ ∶  ܿା(ߗത)  →  .ଵ is continuousܮ 

Now, we prove that A maps P into ܹିଵ,୮ᇱand is compact. In fact, let u∈

∋ ݒ ݀݊ܽ ܲ ଴ܹ
ଵ,௣ . By Lemma (3.2.22)(i) and (ii), we 

see that 

(ݔ)ݒ ≤ ∥ ݒ ∥஼(ఆ)≤  ܿ଴ ∥ ݒ ∥ௐబ
భ,೛ ∋ ݔ ݎ݋݂ Ωഥ                                                              (32) 

where ܿ଴ is the same as in Lemma (3.2.22)(ii), and 

|(ݒ,ݑܣ)|  ≤ න |f (x, u(x))| |v(x)| dx ≤  ܿ଴ ∥ ݒ ∥ௐబ
భ,೛

ஐ
න |f (x, u(x))| dx < ∞.
ஐ

 

This shows that Au is well defined. Let ݒ௡,ݒ ∈ ଴ܹ
ଵ,௣ ݐ݅ݓℎ ݒ௡  → ଴ܹ ݊݅ ݒ 

ଵ,௣ . By 

Lemma (3.2.22)(ii), ∥ − ݊ݒ ݒ  ∥஼(ఆ)→  0. Since 

,௨ܣ)| −(௡ݒ ,ݑܣ)  |(ݒ ≤ න ห݂ ൫ݔ, (ݔ)௡ݒ|൯ห(ݔ)ݑ − ݔ݀|(ݔ)ݒ 
ఆ

≤ 

∥ ௡ݒ  − ݒ  ∥஼(ఆ) න |f (x, u(x))| dx
ఆ

 

we obtain (ܣ௨ ௨ܣ and (௨, vܣ) → (௡ݒ, ,∈ ܹିଵ,௣ᇱ. Hence, A maps P into ܹିଵ,௣ᇱ. By 

Lemma (3.2.22)(iii), ܣ ∶  ܲ →  ܹିଵ,௣ᇱis completely continuous and is compact.  

∋ ݃ ݐ݁ܮ  ݐ݈݁ ݀݊ܽ {0}\(ߗ)ାஶܮ

 

                         (33) 

for each ݃ ∈ there exists ܳ௚ ,{0}\(ߗ)ାஶܮ ∈ ଴ܹ
ଵ,௣ ∩  such that the({0}\(ߗ)ାܥ)

followingp-Laplacian equation holds: 

                                           (34)         
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Now, we prove our main result on the existence of nonzero positive weak 

solutions of (19). 

Theorem (3.2.24)[3]:  Assume that (ܥ଴)–  :and the following conditions hold (ଶܥ)

(i) There exist ݎ଴ > 0, < ߝ 0 ܽ݊݀ ߮௥బ ∈ ାܮ
ஶ(ߗ)\{0}such that 

(ݑ,ݔ) ݂ ≤  ൫ߤఝ௥଴ − .ܽ ݎ݋݂ ௣ିଵݑ(ݔ)൯߮௥଴ߝ  ݁. ∋ ݔ ∋ ݑ ݈݈ܽ ݀݊ܽ ߗ  ଴,∞)        (35)ݎ] 

(ii) There exist ߩ଴  > 0, < ߝ 0 and ߰ߩ଴ ∈  such that{0}\(ߗ)ାஶܮ

,ݔ) ݂ (ݑ ≥  ቀߤఝೝబ + ቁߝ  ߰ఘ଴(ݔ)ݑ௣ିଵ ݂ݎ݋ ܽ. ݁. ∋ ݔ ∋ ݑ ݈݈ܽ ݀݊ܽ ߗ  (36)        [଴ߩ,0] 

Then (19) has a nonzero positive weak solution in P. 

Proof:  By Lemma (3.2.23), ܣ ∶  ܲ →  ܹିଵ,௣ᇱis compact. By (ܥଶ), for this ݎ଴ given 

in the condition (i), there exists ݃௥బ ∈ ାܮ
ଵ   (ߗ)

such that 

,ݔ) ݂| |(ݑ  ≤ .ܽ ݎ݋݂ (ݔ)଴ݎ݃  ݁. ∋ ݔ ∋ ݑ ݈݈ܽ ݀݊ܽ തߗ  [0,  ,[଴ݎ

     

,ݔ) ݂| |(ݑ ≤ (ݔ)଴ݎ݃  + 0ݎ߮ߤ)  − .ܽ ݎ݋݂ ௣ିଵݑ(ݔ)଴ݎ߮(ߝ  ݁. ∋ ݔ ഥ ߗ ݑ ݈݈ܽ ݀݊ܽ

∈ ܴା                                                                                                                                      (37) 

Let 

                                               (38) 

We prove that the variational inequality of tA has no solutions on ߲ ௥ܲ  for ݐ ∈

 [0, 1]. In fact, if not, there exist ݑ ∈ ߲ ௥ܲ  and ݐ ∈  [0, 1]such that 

− ݑܬ) − ݑ,ݑܣݐ  (ݒ   ≤ ∋ ݒ ݎ݋݂ 0  ܲ. 

By (26), we have 

,ݑܬ) (ݑ = ,ݑܣݐ)  (ݑ = ݐ  ∫ f ൫x, u(x)൯u(x)dx                                                             ஐ (39) 

By (11) and (33), we have 
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௥బ߮ߤ ∫ ߮௥బ(x)u௣(x) dx ≤ ∥ u ∥
௪బ
భ,೛

௣
ஐ                                                                    (40) 

By (22), (37),(39),(40) and Lemma (3.2.22)(ii), we have 

∥ ݑ ∥
௪బ
భ,೛

௣ =(Ju,u)=t∫ ݂൫ݔ, ݔ݀(ݔ)ݑ൯(ݔ)ݑ ≤ ∫ ,ݔ)݂| ((ݔ)ݑ |ஐஐ u(x)dx 

 
This implies that 

ߝ ∥ ݑ ∥
ௐబ

భ,೛
௣ ≤ ܿ଴߮ߤ௥బ ∥ ݑ ∥ௐబ

భ,೛∥ ݃௥బ (ݔ)  ∥௅భ  ݁ݒℎܽ ݁ݓ ݀݊ܽ 

∥ = ݎ ݑ ∥ௐబ
భ,೛≤ ቀିߝଵܿ଴ߤఝೝబ ∥ ݃௥బ(ݔ) ∥௅భቁ

ଵ
௣ିଵ <  ,ݎ 

a contradiction. Hence, A satisfies Theorem( 3.2.4)(LS) on : =  ߲ ௥ܲ  . 

Let 0 < ,ݎ}min> ߩ  ܿ଴ିଵߩ଴}, where r is the same in (38). By Lemma (3.2.22)(ii), 

 
and by (36), we obtain 

     (41) 

Let 

 
where ߶టഐబ  satisfies (34) with g = ߰஡଴ . Hence, we have 

                                (42) 
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We prove that the variational inequality of ܣ + ߲ መ݁ has no solutions onܬߚ ஡ܲ for 

< ߚ  0. In fact, if not, there exist ݑ ∈ < ߚ and ߩ߲ܲ  0 such that 

                                                   (43) 

BY(41)we see that ݂ ((ݔ)ݑ,ݔ)  ≥ .ܽ ݎ݋݂ 0  ݁. ∋ ݔ Ωഥ and ݑ ∈  ,Hence .ߩ߲ܲ

 
This, together with (43), implies 

 
for ݒ ∈ ܲ. 

By Lemma (3.2.10), we have 

u(x) ≥ β 

                                                                      (44) 

Let 

                               (45) 

Then by (44) we see that 0 < ≥ ߚ   ߬ < ∞and 

                                                    (46) 

By (41), (46) and (42), we have for ݒ ∈ ܲ, 
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where ߪ = టഐబߤ 
ିଵ టഐబߤ)

+  By Lemma (3.2.10), we have . ߬(ߝ 

 
By (45), we have ≥ < ߪ   ߬ , a contradiction. Hence, A satisfies Theorem (3.2.4) 

(E1) on ܦ௄ଵ := ߲ ஡ܲ. By Theorem (3.2.4), (19) has a nonzero positive weak solution 

in P.  

As a special case of Theorem (3.2.24), we consider existence of nonzero positive 

weak solutions for the p-Laplacian elliptic inequalities 

                                                                (47) 

By Theorem (3.2.24), we obtain the following result which is easily verified in 

applications when the nonlinearity is independent of the variable x. 

Corollary (3.2.25)[3]:   Assume that (ܥ଴) holds and ݂ ∶  ℝ →  ℝ is continuous and 

satisfies the following condition: 

                                                             (48) 

where ߤଵ = ≡ ݃ ௚ withߤ   1 is given by (33). 

Then (47) has a nonzero positive weak solution in P. 

As illustrations, we study existence of nonzero positive weak solutions of the p-

Laplacian elliptic inequality 

                (49) 
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arising in mathematical biology, where u(x) denotes the population density of one 

species at location x, r is the intrinsic growth rate of the species, ܭ >  0 is the 

carrying capacity of the species, the term ݑ௣ିଵ(ݔ)(1 −  represents the ((ݔ)ݑ 

logistic growth rate of order p, and the term ୟ୳ಉ(୶) 
ୠା୳ಋ (୶)

 contains the functional 

response of Holling type III, where α = γ , and the parameters ܽ ≥ ,ߙ,ܾ,0  < ߛ  0. 

To make the population persist on every location x ∈Ω, one needs to find nonzero 

positive solutions or weak solutions u satisfying (ݔ)ݑ  > ∋ ݔ ݎ݋݂ 0   .ߗ

It is well known that the Laplacian elliptic equation with logistic growth rates 

                                           (50) 

has a unique nonzero positive solution in C(ߗ) if ݎ ∈  and has no nonzero ,(∞,ଵߤ)

positive solutions in C(ߗ)) if r ∈  where n = 1, where n ≥ 1. for the study of ,[1ߤ,0)

the Laplace equations related to (50). Hence, it is interesting to know whether (49) 

has nonzero positive solutions in ଴ܹ
ଵ,୮ even when ܽ =  0. 

In the following, using Corollary (3.2.25), we prove a result on existence of 

nonzero positive weak solutions in ଴ܹ
ଵ,୮ of (49)under the assumption (ܥ଴), where 

݊ ∈ ܰand 2 ≤  ݊ < > ݌  ∞, and we allow ܽ >  0 and ߙ ≠  . ߛ

Theorem (3.2.26)[3]:   Assume that (ܥ଴) holds, ܽ ≥  0 and ܾ >  0. ∋ ݌ ݐ݁ܮ

∋ ߙ ,(∞,0) ∋  and (∞,݌) (0,∞). Then (49) has a nonzero positive weak solution 

in P for ݎ ∈  .(∞,ଵߤ)

Proof:  We define a function ℝା  →  ℝ by 

 
Then 



71 
 

 
and 

 
The result follows from Corollary (3.2.25).  

   We end this section by considering the following eigenvalue problems on 

variational inequalities: 

                  (51) 

We first prove the following result. 

Lemma (3.2.27)[3]:   Let ܬ୮ and J be the same as in (11) and (19), respectively. 

Then 

 
Proof:    for each ݃ ∈  ାஶܮ

∋ ݃߶ there exists ,{0}\(ߗ) ଴ܹ
ଵ,௣ ∩ ܥ)  +  such that ({0}\(ߗ)

            (52) 

It follows that ܬథ௚ ≠ థ௚ܬ݀݊ܽ 0 ∈  ,Moreover .(ܲ)ܬ

 
and  ܬథ௚ ∈ ܲ∗. Hence, ܬ(ܲ)  ∩  ܲ∗ ≠  {0}. It is obvious that the second result 

follows from the first one and (11).  
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By applying Theorem (3.2.16), we prove the following eigenvalue result on the 

variational inequalities (51). 

Theorem (3.2.28)[3]:   Assume that (ܥ଴) holds and f and g satisfy (ܥଵ) and (ܥଶ). 

Assume further that the following conditions hold. 

(i) There exists ݑ଴ >  0 and ݉ ∈  (0[ ܿ଴ଶ ݉݁ܽ(ߗ)ݏ ]ିଵ) 

such that 

,ݔ) ݂| |(ݑ  ≤ .ܽ ݎ݋݂ ݑ݉  ∋ ݔ.݁ ∋ ݑ ݀݊ܽ ߗ  [0,  ଴]                                            (53)ݑ

whereܥ଴ is the same as in Lemma (3.2.22). 

(ii) There exists ߫ >  0 such that 

(ݑ,ݔ)݃  ≥ .ܽ ݎ݋݂ ߫  ∋ ݔ.݁ ∋ ݑ ݈݈ܽ ݀݊ܽ ߗ ℝା                                                    (54) 

Then for each ∈ (0. ୳బ
ୡబ

], there exists ߣ >  0 such that (51) has a positive weak 

solution in ߲ ୰ܲ . 

Proof:   Let Jp be the normalized duality map defined in (11). By Lemma (3.2.27), 

we have ܬ௣(ܲ)  ∩  ܲ∗ ≠  {0}. ∋ ݎ ݐ݁ܮ (0, ௨బ
௖బ

]. 

We prove that the variational inequality of tA has no solutions on ߲ ௥ܲ  

 for ݐ ∈  [0, 1]. In fact, if not, there exist u ∈߲ ௥ܲ  and ݐ ∈  [0, 1]such that 

 
By Lemma (3.2.22)(ii), we have 

 
By (26), (53) and Lemma (3.2.22)(ii), we have 
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≤ ݉‖݊‖௖൫ஐ൯
ଶ (Ω) ݏܽ݁݉ ≤ ௪బ‖ݑ‖(Ω) ݏ଴ଶ݉݁ܽܥ ݉

భ,೛
ଶ ≤ ௪బ‖ݑ‖

భ,೛
ଶ  

a contradiction. Hence, A satisfies Theorem (3.2.15) (h1) on ܦ௄: =  . ݎ߲ܲ 

We define a map ܤ ∶  ܲ →  ܹିଵ,௣ᇱby 

                                                                (55) 

Since (ܥ଴) holds and g satisfies (ܥଵ) and (ܥଶ), by Lemma (3.2.23), the map B 

defined in (55) maps P intoW−1,p′ and is compact. 

For each ݒ ∈ ܲ\{0}, by (55) and (54), we have 

 
This implies that ݑܤ ∈ ܲ∗and 

 

Hence, ܤ(߲ ௥ܲ  ) ∩  (−ܲ∗)  =  ∅and the first condition of (ℎଶ) in Theorem 3.4 holds 

on ܦ௄: =  ߲ ௥ܲ  . The result follows from Theorem (3.2.13).  
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Chapter 4 

AGlobal Error Bounds for Generalized Mixed Quasi 

Variational Inequalities 
By using    these gap functions we obtain global error bounds for the 

solution of generalized mixed quasi variationalin equality problem s in Hilbert 

spaes.The results given in this chapter  generalize and improve some 

corresponding knownresults. 

Sec (4.1): Preliminaries and basic facts 
In recent years, considerable interest has been shown in developing various 

extensions and generalizations of variational inequalities related to set-valued 

operators, non convex optimization and non monotone operators. A useful and 

important generalization of variational inequalities is a mixed variational inequality 

containing the nonlinear term. For the applications of the mixed variational 

inequalities, see for example and the references therein. Due to the presence of the 

nonlinear term, one cannot develop the projection-type algorithms for solving the 

mixed quasi-variational inequalities, which motivated authors to develop another 

technique. This technique is related to the resolvent of the maximal monotone 

operator. The main idea of this technique was introduced by Brezis  Further by 

using the concept of the resolvent operator technique, many authors introduced and 

studied the various resolvent equations to develop the sensitivity analysis for 

mixed variational inequalities. 

One of the classical approach in the analysis of variational inequality problem is to 

transform it into an equivalent optimization problem via the notion of gap function, 

see for example and the references therein. This enables us to develop descent-like 

algorithms to solve variational inequality problem. Besides these, gap functions 
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also turned out to be very useful in designing new globally convergent algorithms, 

in analyzing the rate of convergence of some iterative methods and in obtaining the 

error bounds. Gap functions have turned out to be very useful in deriving the error 

bounds, which provide a measure of the distance between solution set and an 

arbitrary point. Recently, many error bounds for various kinds of variational 

inequalities have been established, see for example and the references therein. 

Throughout this section, let H be a real Hilbert space, whose inner product and 

norm are denoted by ·, · and  · , respectively. Let C(H) be a family of nonempty 

compact subsets of H. Let S, T, : H → C(H) be the set-valued operators and 

 g : H → H be asingle-valued operator. ߮ݐ݁ܮ(·,·) ∶ ܪ  × ܪ → ܴ ∪  {+∞} be a 

continuous bifunction with respect to both arguments. Let F : H × H → R be a 

bifunction satisfying F(x, x) = 0, for all x ∈ H. For given nonlinear operator 

 N(·, ·) : H × H → H, we consider the following generalized mixed quasi 

variational inequality problem, denoted by GMQVIP, which consists in finding x ∈ 

H, u ∈ S(x), v ∈ T(x) such that 

((ݕ)݃,(ݔ)݃)ܨ  + ,ݑ)ܰ  (ݕ)݃,(ݒ  − (ݔ)݃  + ((ݕ)݃,(ݔ)݃)߮  ((ݔ)݃,(ݔ)݃)߮−   ≥ ݕ∀,0  ∈               (1)

The quasi variational inequality problems are definitely most notable one among 

the several variants of variational inequality problems. An important reason for this 

is that a number of problems involving the non convex, and nonsmooth operators 

arising in optimization, mechanics and structural engineering theory can be studied 

via the generalized mixed quasi variational inequalities, see for example and the 

references therein. 

If g ≡ I, the identity operator and F ≡ 0, then GMQVIPis equivalent to generalized 

mixed set-valued variational inequality problem, denoted by GMSVVIP, which 

consists in finding x ∈ H, u ∈ S(x), v ∈ T(x) such that 
N(u, v), y −  x +  φ(x, y) −φ(x, x) ≥  0,∀y ∈  H                                                                              (2) 

a problem studied by using the auxiliary principle techniques. 
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If φ(x, y) = φ(y), S ≡ 0 and T : H → C(H) are set-valued operator, N(u, v) = T(x), 

then problem GMSVVIP (2) collapses to set-valued mixed variational inequality 

problem, denoted by SVMVIP, which consists in finding x ∈ H such that 

                                      (3) 

which was considered by Tang They introduced two regularized gap functions for 

above SVMVIPand studied there differentiable properties. 

If T is single valued, then problem SVMVIPreduces to mixed variational 

inequality problem, denoted by MVIP, which consists in finding x ∈ H such that, 

⟨T(x), y − x⟩  +  φ(y)  − φ(x)  ≥  0,∀y ∈  H,                                                            (4) 

    We introduced three gap functions for MVIP and by using these We obtained 

error bounds. 

    If the function φ(·) is an indicator function of a closed set K in H, then problem 

MVIP (4) reduces to set-valued variational inequality problem, denoted by SVVIP, 

which consists in finding x ∈ K such that: 

, ݑ〉 :(ݔ)ܶݑ∃ ݕ − 〈ݔ + (ݕ)߶  − (ݔ)߶ ≥ 0 ,∀∈  (5)                                                   ܪ

 

   They obtained some existence results for global error bounds for gap function 

under strong monotonicity. Later,defined gap functions and by using it they 

obtained finiteness and error bounds properties for above set-valued variational 

inequalities. 

   If T is single valued and K : H → C(H) be a set-valued mapping, such that K(x) 

is a closed convex set in H, for each x ∈ H, then above problem SVVIP(5)is 

equivalent to quasi variational inequality problem, denoted by QVIP, which 

consists in finding x ∈ K(x) such that: 

,(ݔ)ܶ⟩ − ݕ ⟨ݔ  ≥  0,∀y ∈  K(x)                                                                            (6) 

ݑ∃ ∈ (ݔ)ܶ ∶ ,ݑ  ݕ − + ݔ (ݕ)߮   − (ݔ)߮  ≥ ݕ∀,0  ∈ ,ܪ
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   They derived local and global error bounds for above quasi variational inequality 

problems in terms of the regularized gap function and the D-gap function. 

Inspired and motivated by the recent research work above, we introduce gap 

functions and error bounds for generalized mixed quasi variational inequality 

problems. Since this class is the most general and includes the previously studied 

some classes of variational inequalities as special cases, therefore our results cover 

and extend the previously known results under weaker conditions.   

   Further we define normal residual vector R(x, θ ) to derive the global error 

bounds for the solution of GMQVIP(1)we introduce a regularized gap function for 

GMQVIP(1)and derived error bounds without using Lipschitz continuity 

assumption, we introduce D-gap function and derive error bounds for the solution 

of the GMQVIP(1)under some weaker conditions. 

In order to establish resolvent equations for the GMQVIP(1)we needed the 

following definitions and results. 
Dentition (4.1.1)[4]:  Let F : H ×  H → ℝ and ϕ ∶  H ×  H → ℝ be two bifunctions. Then  
( a )  F  i s  s a i d  t o  b e  m o n o t o n e  i f ,  F(x, y)  +  F(y, x)  ≤  0,∀x, y ∈  H ; 

(b) ϕ  is  said to be skew-symmetric if, ,ݔ) ߶  (ݔ  − ,ݔ) ߶ (ݕ  − (ݔ,ݕ) ߶  +

(ݕ,ݕ) ߶   ≥ ,ݔ∀,0  ݕ ∈ .ܪ  

Remark (4.1.2)[4]:  Clearly if the skew-symmetric bifunction φ(·, ·) is bilinear, 

then φ(x, x) ≥ 0, ∀x ∈ H. In fact, 

,ݔ)߶ (ݔ  − (ݕ,ݔ)߶  − ,ݕ)߶ (ݔ  + ,ݕ)߶  (ݕ  = ݔ)߶  − ,ݕ ݔ − (ݕ  ≥ ݕ,ݔ∀,0  ∈  .ܪ

The skew-symmetric bifunctions have the properties which can be considered an 
analog of monotonicity of gradient and non negativity of second derivative for the 
convex function.    

Definition (4.1.3)[૝]:   ܵݐ݁ܮ,ܶ, ∶ ܪ  →  be the set-valued operators, N(·, ·) : H (ܪ)ܥ
× H → H be the nonlinear operator and g : H → H be a single-valued operator, 
then 
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(a) N is said to be strongly mixed g-monotone, if there exists a constant α > 0 such 

that 

  N(u, v) − N(u0, v0), g(x) − g(x0) ≥ α‖g(x)  −  g(ݔ଴), ‖ଶ 

  for all x, x0∈ H, u ∈ S(x), u0∈ S(x0), v ∈ T(x), v0∈ T(x0); 

 

 

(b) N is said to be mixed Lipschitz continuous, if there exist constants ߚ, ߜ >  0 such 

that 

  ‖N(u, v)  −  N(u0, v0)|  ≤ β‖u0 −  u‖  +  δ‖v0 −  v‖ଶ, 

  for all ݔ, ଴ݔ ∈ ,ܪ ݑ ∈ ଴ݑ,(ݔ)ܵ ∈ ,(଴ݔ)ܵ ݒ ∈ ଴ݒ,(ݔ)ܶ ∈  ;(଴ݔ)ܶ

(c) T is said to be M-Lipschitz continuous, if there exists a constant μ > 0 such that 

  M(T(x), T(ݔ଴)) ≤ߤ ∥x − ݔ଴ ,ݔ∀,∥ ଴ݔ ∈  ܪ

  where M(·, ·) is the Hausdorff metric on C(H). 

(d) g is said to be Lipschitz continuous, if there exists a constant L > 0 such that 

(ݔ)݃‖    − ‖((଴ݔ)݃ ≤ ݔ‖ܮ − ,ݔ∀,‖଴ݔ ଴ݔ ∈  ;ܪ
 

(e) g is said to be strongly nonexpanding, if there exists a constant ߬ >  0 such that 

(ݔ)݃‖ − ‖(଴ݔ)݃ ≥ ݔ‖߬ − ,ݔ∀,‖଴ݔ ଴ݔ ∈  ܪ

Remark (4.1.4)[4]:  From (d) and (e) 

ݔ‖߬ − ‖଴ݔ ≤ (ݔ)݃‖  − ‖((଴ݔ)݃ ≤ ݔ‖ܮ −  ,‖଴ݔ

implies that τ ≤ L. A mapping g : R → R defined as ݃(ݔ)  = ଵ
௫మ

ݔ∀,  ∈ [1, 2] is 

Lipschitz continuous and strongly nonexpanding with L = 4 and τ = ଵ
଼
 , 

respectively, while g(x) is not affine. 

The following theorem is a special case of results given by Chang 

Theorem (4.1.5)[4]:  Let X be a closed convex subset of a Hausdorff topological 

vector space E and G : X × X → R be a bifunction. Assume that the following 

conditions hold: 

(i) G(x, x)  ≥  0,∀x ∈  X; 
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(ii) G is monotone; 

(iii) For each y ∈ X fixed, the function x → G(x, y) is upper-hemicontinuous, i.e., 

lim
௧→଴

݌ݑݏ + ݓݐ)ܩ  (1 − ,ݔ(ݐ  (ݕ  ≤ ,ݔ)ܩ  ,ݔ∀ (ݕ ∋ ݓ,ݕ  ܺ, ∋ ݐ  [0, 1] 

(iv) For each ݔ ∈  ܺ fixed, the function ݕ → ,ݔ)ܩ   is convex and lower (ݕ

semicontinuous; 

(v) there exists a compact subset K of E and there exists ݕ଴  ∈ ∩ ܭ   ܺ such that 

,ݔ)ܩ (଴ݕ  < ∋ ݔ ℎܿܽ݁ ݎ݋݂ 0   .ܭ\ܺ 

Then the set {ݔ∗∈ X : G(ݔ∗, (ݕ  ≥ ∋ ݕ∀,0   ܺ} is nonempty convex and compact.  

< ߠ ݐ݁ܮ      0 be a number. For a given bifunction F, the associated Yosida 

approximation,ܨఏ  , over K ⊂ H and the corresponding regularized operator, ܣఏ
ி , 

are defined as follows: 

,ݔ)ఏܨ (ݕ =  〈
1
ߠ

ݔ) − ఏܬ
ி(ݔ),ݕ − 〈ݔ ఏܣ ݀݊ܽ 

ி(ݔ) =  
1
ߠ

ݔ)  − ఏܬ 
ி(ݔ)) 

Where ܬఏ
ி ∶ → ܪ ఏܬ ݏܽ ݂݀݁݊݅݁݀ ܪ

ி(x)=(1 + ఏܬߠ
ி)ିଵ(ݔ) ݅ݎ݁ݐܽݎ݁݌݋ ݐ݊݁ݒ݈݋ݏ݁ݎ ݏ. 

Remark (4.1.6)[4]:   (i) If ܨఏ(x, y) = ݌ݑݏ௨∈ெ௫〈ݕ,ݑ −  and K = H, M being a 〈ݔ 

maximal monotone operator, it directly yields  

 

ఏܬ
ி(ݔ) =  (1 + ఏܣ.(ݔ)ଵି(ܯߠ

ி(x) = ܯఏ(ݔ) 

   where ܯఏ := భഇ (I − (I + θ M)−1) is the Yosida approximation of M and I is the 

identity operator;  

(ii) Resolvent operator ܬఏ
ி is nonexpansive, i.e. 

 

  ฮܬఏ
ி(ݔ) − ఏܬ 

ி(ݕ)ฮ ≤ ݔ‖ − ݕ,ݔ∀,‖ݕ ∈ .ܪ

(iii) From above, we get 

ఏ,థܬ
ி (ݔ) =  ( 1 + ,ݔ)߶߲ 0 . )ିଵ  ≡  (1 +  ଵି((ݔ)߶߲
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where  ߶: ܪ × → ܪ   ܴ ∪  {+∞} is a convex, proper and lower-semicontinuous 

function in second argument. The subdiffer- ential ∂φ of φ is maximal monotone 

with respect to the second argument, where ߲߶(ݔ)  ≡  .(·,ݔ)߶߲ 

Now we prove following important result for the characterization of resolvent 

operator ܬఏ ,థ
ி ,(x). 

Lemma (4.1.7)[4]:  Let H be a real Hilbert space ܪ. ܨ ݐ݁ܮ ∶ × ܪ  → ܪ 

 ܴ ܽ݊݀ ߶ ∶ × ܪ  < ߠ R be nonlinear bifunctions and let → ܪ   0. Suppose that the 

following conditions are satisfied: 

(i)F satisfies condition (i)–(iv) in Theorem(4.1.5).  

(ii) ߶ is skew-symmetric, convex in second argument and continuous; 

(iii) For each fixed ݖ ∈ ∋there exists a compact subset K of E and y0 ,ܪ  ∩ ܭ   ܪ 

such that ݔ)ܨߠ, (଴ݕ + ݔ〉  − ,ݖ 〈଴ݕ + (଴ݕ,ݔ)߶ߠ  − (ݔ.ݔ)߶ߠ < ∋ ݔ ℎܿܽ݁ݎ݋0݂  ܭ\ܪ

Then for each fixed ݖ ∈ H, find x ∈ H such that   

,ݔ)ܨ ߠ (ݕ  + − ݔ  ,ݖ  − ݕ + ݔ  ,ݔ)߶ ߠ  (ݕ  − (ݔ,ݔ)߶ ߠ   ≥ ∋ ݕ∀,0   (7)                ܪ 

has a unique solution if and only if x = ܬఏథ(௫),
ி [z].   

Proof:   For each fixed z ∈ H, define G : H × H → R by   

,ݔ)ܩ (ݕ  = ,ݔ)ܨ ߠ  (ݕ  + − ݔ  ,ݖ  − ݕ + ݔ  ,ݔ)߶ ߠ  (ݕ  − (ݔ,ݔ)߶ ߠ   ≥ ∋ ݕ,ݔ∀ ,0   .ܪ 

Evidently (ݔ,ݔ)ܩ  = ∋ ݔ∀,0   .and condition (i) of Theoorem(4.1.5)is satisfied ܪ 

Further since F is monotone and ߶ is skew-symmetric, then we have 
(ݕ,ݔ)ܩ  + ,ݕ)ܩ  = (ݕ,ݔ)ܨ] ߠ   + ,ݕ)ܨ  [(ݔ  + − ݔ  − ݕ,ݖ  + ݔ  − ݕ  ,ݖ  − ݔ + ݕ  (ݕ,ݔ)߶] ߠ   

− ,ݔ)߶ ߠ  (ݔ  + ,ݕ)߶  (ݔ  −  [(ݕ,ݕ)߶ 

≤ − ݔ−  2ݕ 
≤ 0, 

i.e., G is monotone and thus condition (ii) of Theorem(4.1.5) is satisfied. Since F is 

upper hemicontinuous and φ are continuous, we have that for each ݔ, ∋ ݓ,ݕ

,ܪ   ,[1 ,0] ∋ ݐ

lim
௧→଴

݌ݑݏ + ݓݐ)ܩ  (1 − ,ݔ(ݐ   (ݕ
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≤ lim
௧→଴

supݓݐ)ܨߠ + (1 − (ݕ,ݔ(ݐ + lim
௧→଴

ݓݐ〉݌ݑݏ + (1 − ݔ(ݐ − ݕ,ݖ − 1)ݓݐ −  〈ݔ(ݐ

݈݉݅ ߠ +
௧→଴

݌ݑݏ ݓݐ)߶] + (1 − (ݕ,ݔ(ݐ − ݓݐ)߶ + (1 − ,ݔ(ݐ ݓݐ + (1 −  [(ݔ(ݐ

≤ (ݕ,ݔ)ܨߠ + lim
௧→଴

݌ݑݏ ݓ)ݐ〉 − (ݖ + (1 − ݔ)(ݐ − ,(ݖ ݕ)ݐ − (ݓ + (1− ݕ)(ݐ − (ݔ + (ݕ,ݔ)߶ߠ − ,ݔ)߶ߠ  〈(ݔ

≤ (ݕ,ݔ)ܨߠ + lim
௧→଴

݌ݑݏ ݓ〉ଶݐ〉]  − ݕ,ݖ − 〈ݓ + −1) ݐ ݔ〉(ݐ − ,ݖ ݕ − 〈ݓ + (1 − ݔ)ଶ(ݐ − ݕ,ݖ −  [〈(ݔ

−(ݕ,ݔ)߶ߠ+ .ݔ)߶ߠ  (ݔ

≤ (ݕ,ݔ)ܨߠ + ݔ〉 − ݕ,ݖ − 〈ݔ + ,ݔ)߶ߠ   (ݔ

=C(x,y). 

Thus condition (iii) of Theorem(4.1.5) of is satisfied. Since for each x ∈ H, F(x, ·) 

is convex and lower semicontinuous and ߶ is convex in the second argument and 

continuous, it is easily observe that for each ݔ ∈  is convex and lower (·,ݔ)ܩ,ܪ 

semicontinuous and thus condition (iv) of is satisfied. Evidently condition (iii) 

implies that G satisfies condition (v) of Theorem(4.1.5) Hence it follows from 

Theorem(4.1.5) that there exists a point x ∈ H such that (ݕ,ݔ)ܩ  =  H, that ∋ ݕ∀,0 

is, for each fixed ݖ ∈  there exist x ∈ H such that ,ܪ 

,ݔ)ܨ ߠ (ݕ  + − ݔ  ,ݖ  − ݕ + ݔ  ,ݔ)߶ ߠ  (ݕ  − ,ݔ)߶ ߠ  (ݔ  ≥ ∋ ݕ∀,0   .ܪ 

   In order to show that x ∈ H is unique solution of(7), for each fixed ݖ ∈  let ,ܪ 

,1ݔ ∋ 2ݔ  ,be any two solutions of(7) Then ܪ 

we have     

(ݕ,1ݔ)ܨ ߠ  + 1ݔ   − ,ݖ  − ݕ 1ݔ   + (ݕ,1ݔ)߶ ߠ   − ,1ݔ)߶ ߠ  (1ݔ  ≥ ∋ ݕ∀ ,0  (8)              .ܪ 

(ݕ,2ݔ)ܨ ߠ 2ݔ +   − − ݕ,ݖ  2ݔ   + (ݕ,2ݔ)߶ ߠ   − ,2ݔ)߶ ߠ  (2ݔ  ≥ ∋ ݕ∀ ,0  ( 9)             .ܪ 

Taking y = ݔଶ in(8) and y = ݔଵ in(9) and then adding these two inequalities, we get 

,ଵݔ)ܨ) ߠ (ଶݔ  + ,ଶݔ)ܨ  ((ଵݔ  − (ଵݔ,ଵݔ)߶] ߠ   − ,ଵݔ)߶  (ଶݔ  − (ଵݔ,ଶݔ)߮   

+ ,ଶݔ)߶  [(ଶݔ  ≥ ଵݔ〉  − ,ଶݔ  ଵݔ  −  .〈ଶݔ

Since F is monotone, ߶ is skew-symmetric and θ > 0, the preceding inequality 

reduces to 

ଵݔ‖  − ଶ‖ଶݔ   ≤  0 
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which implies that ݔଵ=ݔଶ. Hence x ∈ H is unique solution of (7) 

Therefore, it follows that for each z ∈ H, write the unique solution of (7) as 

 x =  ܬ଴,థ(௫)
ி  H. Then for all y ∈ H, we have ∋[ݖ]

ఏ,థ(௫)ܬ൫ ܨߠ
ி ൯ݕ,[ݖ] ఏ,థ(௫)ܬ〉 +

ி [ݖ] − ,ݖ ݕ − ఏ,థ(௫)ܬ
ி 〈[ݖ] + ఏ,థ(௫)ܬ) ߶ߠ

ி ,[ݖ] ఏ,థ(௫)ܬ
ி ([ݖ] ≥ 0   (10) 

Henceܬఏ,థ(௫)
ி → ܪ :  is well defined and single-valued mapping. Further, we ܪ 

observe from Remark(4.1.6) that x = ܬఏ,థ(௫)
ி  if and only if x is a solution of This [ݖ]

completes the proof.  

Lemma (4.1.8)[4]:  ݔ ݕ݊ܣ ∈ ,ܪ  ∋ ݑ ∋ ݒ,(ݔ)ܵ   is a solution of (ݔ)ܶ 

GMQVIP(1) if and only if ݔ ∈ ∋ ݑ,ܪ  ,(ݔ)ܵ  ∋ ݒ  :satisfies the relation (ݔ)ܶ 

(ݔ)݃  = ଴,థ(௫)ܬ 
ி (ݔ)݃]   − ,ݑ)ܰ ߠ   ,[(ݒ

where ߠ >  0 is a constant and ܬఏ,థ(௫)
ி  is resolvent operator. 

Proof:   Let ݔ ∈ ,ܪ  ∋ ݑ ,(ݔ)ܵ  ∋ ݒ  be solution of GMQVIP (1)then (ݔ)ܶ 

((ݕ)݃,(ݔ)݃)ܨ  + (ݕ)݃,(ݒ,ݑ)ܰ   − (ݔ)݃   + ((ݕ)݃,(ݔ)݃)߶   − ((ݔ)݃,(ݔ)݃)߶   ≥ ∋ ݕ∀,0   ,ܪ 

which can be written as 

((ݕ)݃,(ݔ)݃)ܨ ߠ  + (ݔ)݃   − (ݔ)݃]   − ,ݑ)ܰ ߠ  (ݕ)݃,[(ݒ  − (ݔ)݃   + ((ݕ)݃,(ݔ)݃)߶ ߠ   −

((ݔ)݃,(ݔ)݃)߶ ߠ   ≥ ∋ ݕ∀,0   .ܪ 

Thus, by invoking Lemma(4.1.7) we have 

(ݔ)݃  = ଴,థ(௫)ܬ 
ி (ݔ)݃]  −  ,[(ݒ,ݑ)ܰ ߠ 

the required result.  

Definition (4.1.9)[4]:   Let K be the domain of the GMQVIP(1) A function p : K 

→ R is said to be a gap function for the GMQVIP(1)if it satisfies the following 

properties: 

(ݔ)݌(݅)  ≥ ∋ ݔ∀,0   ;ܭ 

(ii)p(x∗) = 0, if and only if ݔ∗ solves the GMQVIP(1). 

We now define the residual vector R(x, θ ) by relation   



83 
 

,ݔ)ܴ ( ߠ  = (ݔ)݃   − ଴,థ(௫)ܬ 
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  (11)                                         .[(ݒ

Invoking Lemma(4.1.8) one can observe that ݔ ∈ ,ܪ  ∋ ݑ ∋ ݒ,(ݔ)ܵ   is a (ݔ)ܶ

solution of GMQVIP(1)if and only if, x ∈ H is a root of the equation 

,ݔ)ܴ ( ߠ  =  0.                                                                                                       (12)

The residual vector ܴ(ߠ,ݔ ) is a gap function for GMQVIP(1) 

Now by using residual vector ܴ(ݔ,  i.e. gap function, we derive the global error ( ߠ

bounds for the solution of GMQVIP(1) 

Theorem (4.1.10)[4]:   Assume that all conditions of Lemma(4.1.7)hold. Let x0 ∈ 

H be a solution of GMQVIP(1) let N(·, ·) be strongly mixed g-monotone with 

constant ߙ >  0 and mixed Lipschitz continuous with constants ߚ, < ߜ  0, 

respectively. Let g : ܪ → < ܮ be Lipschitz continuous with constant ܪ   0 and 

strongly nonexpanding with constant ߬ >  0. Suppose ܵ,ܶ ∶ → ܪ  -be a M (ܪ)ܥ 

Lipschitz continuous with constants ߤ,ߟ >  0, respectively. If for any ρ > 0, 

ฮܬఏ.థ(௫)
ி (ܹ) − ఏ.థ(௫)ܬ

ி (ܹ) ฮ ≤ ݔ‖݌ − ݓݕ,ݔ∀,‖ݕ ∈  (13)                                            ܪ

then 
1
ܿଵ
,ݔ)ܴ‖ ‖(ߠ ≤ ݔ‖ − ‖଴ݔ ≤ ܿଶ‖ܴ(ݔ, ∋ ݔ∀   ,‖(ߠ  ܪ

where ܴ(ݔ,  . is residual vector defined by(11)  and c1, c2 are generic constants ( ߠ

proof: let ݔ଴ ∈ ଴ݑ, ܪ ∈ ,(ݔ)ܵ ଴ݒ ∈  .ℎ݁݊ݐ(1) ܲܫܸ ܳ ܯ ܩ ݂݋ ݊݋݅ݐݑ݈݋ݏ ܽ ܾ݁(ݔ)ܶ
((ݕ)݃,(0ݔ)݃)ܨ  + (ݕ)݃,(0ݒ,0ݑ)ܰ   − (0ݔ)݃   + ((ݕ)݃,(0ݔ)݃)߮   − ((0ݔ)݃,(0ݔ)݃)߮   ≥ ∋ ݕ∀ ,0  .ܪ 

Substituting ݃(ݕ) = ఏ.థ(௫)ܬ
ி (ݔ)݃] −  .in above inequality , we have ([(ݒ,ݑ)ܰߠ

ܨ ቀ݃(ݔ଴), ఏ,థ(௫)ܬ
ி ቁ(ݔ)݃] − ,ݑ)ܰߠ [(ݒ ,଴ݑ)ܰ〉 + ,(଴ݒ ఏ,థ(௫)ܬ

ி (ݔ)݃] − ,ݑ)ܰߠ [(ݒ −  〈(଴ݔ)݃

 

+ ߶൫݃(ݔ଴), ఏ,థ(௫)ܬ
ி (ݔ)݃] − ,ݑ)ܰߠ ൯[(ݒ − ߶൫݃(ݔ଴)൯ ≥ 0                                         (14) 

Taking ݖ = (ݔ)݃   − ,ݑ)ܰ ߠ  = ݕ and (ݒ  we get (10)݊݅(଴ݔ)݃ 
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ఏ,థ(௫)ܬ൫ ܨ ߠ
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  ଴ݔ)݃,[൯(ݒ

+ ఏ,థ(௫)ܬ〉  
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  [(ݒ  − (ݔ)݃   + (଴ݔ)݃,(ݒ,ݑ)ܰ ߠ   − ఏ,థ(௫)ܬ 

ி (ݔ)݃]  

−  〈[(ݒ,ݑ)ܰ ߠ 
(ݔ)߶,ߠܬ ߮ ߠ +

ܨ (ݔ)݃] − ,ݑ)ܰ ߠ  (଴ݔ)݃,[(ݒ − (ݔ)߶,ߠܬ߮ ߠ 
ܨ  

(ݔ)݃]   − ,ݑ)ܰ ߠ  ,(ݒ ఏ,థ(௫)ܬ
ி , (ݔ)݃]  − ,ݑ)ܰ ߠ  [(ݒ  ≥  0. 

Which implies that 

ఏ,థ(௫)ܬ)ܨ
ி (ݔ)݃] − .ݑ)ܰߠ (0ݔ)݃[(ݒ

− ,ݒ)ܰ〉  (ݒ +
1

ߠ
൫(ݔ)߶,ߠܬ

ܨ (ݔ)݃] − .ݑ)ܰߠ [(ݒ − (ݔ)߶,ߠܬ(ݔ)݃
ܨ ൧݃(ݔ) − ,ݑ)ܰߠ (ݒ

− 〈(0ݔ)݃

+ ൫(ݔ)߶,ߠܬ
ܨ (ݔ)݃] − .ݑ)ܰߠ [(ݒ − (ݔ)߶,ߠܬ(ݔ)݃

ܨ ൧(ݔ)߶,ߠܬ
ܨ (ݔ)݃]

− .ݑ)ܰߠ (ݔ)߶,ߠܬ[(ݒ
ܨ (ݔ)݃]

− .ݑ)ܰߠ  (15)                                                                                                                    [(ݒ

Adding (14) and (15) , we get  

,ఏథ(௫)ܬ൫ܨ
ி (ݔ)݃] − ൯(଴ݔ)݃,[(ݒ,ݑ)ܰߠ + ,ఏథ(௫)ܬ(ఏݔ)൫݃ܨ

ி (ݔ)݃] −  ൯[(ݒ,ݑ)ܰߠ

+ ,଴ݑ)ܰ〉 (଴ݒ ,ݑ)ܰ− (ݒ +
1
ߠ ቀ݃

−(ݔ) ,(ݔ)߶ߠܬ 
ܨ −(ݔ)݃] ,ݑ)ܰߠ ቁ[(ݒ ,(ݔ)߶ߠܬ

ܨ −(ݔ)݃] [(ݒ,ݑ)ܰߠ

−  〈(ఏݔ)݃

,(ݔ)߶ߠܬ)߶+
ܨ −(ݔ)݃] −(0ݔ)݃,[(ݒ,ݑ)ܰߠ ,(ݔ)߶ߠܬ)߶

ܨ −(ݔ)݃] ,[(ݒ,ݑ)ܰߠ ,(ݔ)߶ߠܬ)
ܨ −(ݔ)݃]  ([(ݒ,ݑ)ܰߠ

,(0ݔ)݃)߶+ ,(ݔ)߶ߠܬ
ܨ −(ݔ)݃] ൯(0ݔ)݃,(0ݔ)൫݃߶−,[(ݒ,ݑ)ܰߠ ≥ ݕ∀ 0 ∈  .ܪ

Since F(0,0) is monotone and ߶(0,0) is skew – symmetric, therefore 

,଴ݑ)ܰ〉 (଴ݒ − ,ݑ)ܰ  (ݒ +
1
ߠ
൫݃(ݔ)  − ଴,థ(௫)ܬ

ி (ݔ)݃]  − ,ݑ)ܰ ߠ  , [൯(ݒ ଴,థ(௫)ܬ
ி (ݔ)݃]  

− ,ݑ)ܰ ߠ  [(ݒ  − 〈(ݔ)݃  ≥ 0 

Which implies that 
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                     (16) 

Since. N(·, ·) is strongly mixed g-monotone and g is strongly nonexpanding, 

therefore for α > 0, we have 

ଶݐߙ ∥ ଴ݔ  − ݔ  ∥ ଶ ≤ ߙ  ∥ (଴ݔ)݃  − (ݔ)݃  ∥ଶ 

≤ ⟨ ,଴ݑ)ܰ  (଴ݒ  − ,ݑ)ܰ  (଴ݔ)݃,(ݒ  − (ݔ)݃  ⟩ 

= (଴ݒ,଴ݑ)ܰ〉   − ,− (଴ݔ)݃,(ݒ,ݑ)ܰ  ఏ,థ(௫)ܬ
ி (ݔ)݃]  − , + [(ݒ,ݑ)ܰ ߠ  ఏ,థ(௫)ܬ

ி (ݔ)݃]  

− [(ݒ,ݑ)ܰ ߠ   −  〈(ݔ)݃ 

(଴ݒ,଴ݑ)ܰ〉 =  − ,ݑ)ܰ  ,− (଴ݔ)݃,(ݒ ఏ,థ(௫)ܬ
ி (ݔ)݃]  − ,ݑ)ܰ ߠ   〈[(ݒ

(଴ݒ,଴ݑ)ܰ〉+  − ,ݑ)ܰ  ,(ݒ , ఏ,థ(௫)ܬ
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  [(ݒ  −  〈(ݔ)݃ 

≤
1
ߠ
, −(ݔ)݃〉 ఏ,థ(௫)ܬ

ி (ݔ)݃] − ,ݑ)ܰ ߠ  ,[(ݒ , ఏ,థ(௫)ܬ
ி (ݔ)݃] − ,ݑ)ܰ ߠ  [(ݒ −  〈(଴ݔ)݃

(଴ݒ,଴ݑ)ܰ〉+  − ,ݑ)ܰ  ,(ݒ , ఏ,థ(௫)ܬ
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  [(ݒ  −  〈(ݔ)݃ 

≤ −
1
ߠ
, −(ݔ)݃〉 ఏ,థ(௫)ܬ

ி (ݔ)݃] − ,ݑ)ܰ ߠ  ,[(ݒ , ఏ,థ(௫)ܬ
ி (ݔ)݃] − ,ݑ)ܰ ߠ  [(ݒ − 〈(଴ݔ)݃

+ ,0ݑ)ܰ − (0ݒ ,ݑ)ܰ  ,(ݒ ఏ,థ(௫)ܬ
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  [(ݒ  − (ݔ)݃ 

≤ −
1
ߠ
, −(ݔ)݃〉 (ݔ)߶,ߠܬ

ܨ (ݔ)݃] − ,ݑ)ܰ ߠ  (ݔ)݃,[(ݒ − ,ݑ)ܰ ߠ   〈[(ݒ

+ 
1
ߠ
, −(ݔ)݃〉 ఏ,థ(௫)ܬ

ி (ݔ)݃] − ,ݑ)ܰ ߠ  (ݔ)݃,[(ݒ −  〈(଴ݔ)݃

+

1
ߠ
, − (ݔ)݃ ఏ,థ(௫)ܬ

ி (ݔ)݃]  − (ݔ)݃,[(ݒ,ݑ)ܰ ߠ   −   (଴ݔ)݃ 

 

,଴ݑ)ܰ〉+ –(଴ݒ ,(ݒ,ݑ)ܰ  ఏ,థ(௫)ܬ
ி –(ݔ)݃] –[(ݒ,ݑ)ܰ ߠ   〈(ݔ)݃ 

≤ −
1
ߠ
ଶ‖(ߠ,ݔ)ܴ‖ +

1
ߠ
,ݔ)ܴ‖ (ݔ)݃‖‖(ߠ − ‖(଴ݔ)݃ + ,଴ݑ)ܰ‖ (଴ݒ ,ݑ)ܰ−  ‖(ߠ,ݔ)ܴ‖‖(ݒ



86 
 

Now using the mixed Lipschitz continuity of the operator N(·, ·) and the M-

Lipschitz continuity of S and T, we have 

≤ −
1
ߠ
,ݔ)‖ ଶ‖(ߠ +  

ܮ
ߠ
ݔ‖‖(ߠ,ݔ)ܴ‖ − ‖଴ݔ + ଴ݑ‖ߚ) − ‖ݑ + ଴ݒ‖ −  ‖(ߠ,ݔ)ܴ‖(‖ݒ

≤ −
1
ߠ
ଶ‖(ߠ,ݔ)‖ +  

ܮ
ߠ
,ݔ)ܴ‖ ݔ‖‖(ߠ − ‖଴ݔ + ଴ݔ‖ߚ) − ‖ݔ + ଴ݑ‖ߤߜ  −  ‖(ߠ,ݔ)ܴ‖(‖ݑ

≤  
ܮ
ߠ
≤  ൬

ܮ
ߠ

+ ߟߚ + ൰ߤߜ ଴ݔ‖ − ,ݔ)ܴ‖‖ݔ ଶ‖(ߠ,ݔ)ܴ‖.‖(ߠ

+ ൬
ܮ
ߠ

+ ߟߚ + ൰ߤߜ ଴ݔ‖ − ,ݔ)ܴ‖‖ݔ  ‖(ߠ

Which implies that ‖ݔ − ‖଴ݔ  ≤  ଵ
ఈఛమ

 (௅
ఏ

+ + ߟߚ  (ߤߜ  ∥ ,ݔ)ܴ ( ߠ ∥, from which we 

have∥ ݔ − ଴ݔ  ∥ ≤  ܿଶ ∥ ,ݔ)ܴ ( ߠ ଶܿ ݁ݎℎ݁ݓ,∥  =  ଵ
ఈఛమ

+ ܮߠ)  + ߟߚ  .(ߤߜ 

From the definition of residual vector(11) we have 

‖( ߠ,ݔ)ܴ‖  =  ቛ݃(ݔ)  − (ݔ)߶,ߠܬ
ܨ (ݔ)݃](ݔ)   − ,ݑ)ܰ ߠ   ቛ[(ݒ

=  ቛ݃(ݔ)  − (଴ݔ)݃   + (ݔ)߶,ߠܬ 
ܨ (଴ݔ)݃](଴ݔ)  − ,଴ݑ)ܰ ߠ  [(଴ݒ  − (ݔ)߶,ߠܬ 

ܨ (ݔ)݃](ݔ)  − ,ݑ)ܰ ߠ  ቛ[(ݒ . 

≤ ቛ ݃(ݔ)  − (଴ݔ)݃  (ݔ)߶,ߠܬ + 
ܨ (଴ݔ)݃](଴ݔ)  − ,଴ݑ)ܰ ߠ  [(଴ݒ  − (ݔ)߶,ߠܬ 

ܨ (ݔ)݃](଴ݔ)  − ,ݑ)ܰ ߠ  ቛ[(ݒ  

+ ቛ(ݔ)߶,ߠܬ
ܨ (ݔ)݃](଴ݔ)  − ,ݑ)ܰ ߠ  [(ݒ  − (ݔ)߶,ߠܬ 

ܨ (ݔ)݃](ݔ)  − ,ݑ)ܰ ߠ   ቛ[(ݒ

By using Lipschitz continuity of g, nonexpansiveness of ܬఏ,∅
ி ,φ and assumption(13) 

we have 

( ߠ,ݔ)ܴ  ≤ − ݔ‖ܮ  ‖0ݔ   + (0ݔ)݃‖   − ‖(ݔ)݃   + ,ݑ)ܰ)‖ ߠ  (ݒ  − ,0ݑ)ܰ  ‖(0ݒ  

+ ଴ݔ‖ߩ   −  .‖ݔ 

≤ + ܮ2)  − ݔ‖(ߩ  ‖0ݔ   + ,ݑ)ܰ)‖ ߠ  (ݒ  − ,0ݑ)ܰ   .‖(0ݒ

Now from the mixed Lipschitz continuity of the operator N(·, ·) and M-Lipschitz 

continuity of S and T, we have 

,ݔ)ܴ‖ ‖( ߠ  ≤ + ܮ2)  + ߩ  + ߟߚ) ߠ  − ݔ‖((ߤߜ  ‖଴ݔ  =  ݇ଵ‖ݔ −  ,‖଴ݔ 

which implies that 
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− ݔ‖ ‖଴ݔ  ≥
1
݇ଵ
,ݔ)ܴ‖  ‖( ߠ

where ݇ଵ  = + ܮ2  + ߩ  + ߚߟ) ߠ    .This completes the proof .(ߤߜ 

In this section our main motivation is to overcome the non differentiability of 

normal residual vector R(x, θ) i.e. the gap function, defined bywhich is a serious 

drawback of the normal residual gap function. Now, by using an approach due to 

Fukushima, we construct another gap function associated with problem 

GMQVIP(1.1), which can be viewed as a regularized gap function. For θ > 0, the 

functions ܩఏ is defined by 

(ݔ)ఏܩ = max
௬∈ு.௚(௬)∈ு

ቄ−ܨ൫݃(ݔ),݃(ݕ)൯+ 〈ܰ(ݑ, (ݔ)݃,(ݒ − 〈(ݕ)݃ − ߶൫݃(ݔ),݃(ݔ)൯ − ଵ
ଶఏ
(ݔ)݃‖ −

 ଶቅ                                                                                                                                              (17)‖(ݕ)݃

which is finite valued everywhere and is differentiable whenever all operators 

involved in ܩఏ (ݔ), are differentiable. We note that the function ܩఏ  (ݔ) can be 

written as 

(ݔ) ఏܩ  = ,(ݔ)݃)ܨ−  (ݔ)߶,ߠܬ
ܨ (ݔ)݃](ݔ)  − ,ݑ)ܰ ߠ   ([(ݒ

,ݑ)ܰ + (ݔ)݃,(ݒ  − (ݔ)߶,ߠܬ 
ܨ (ݔ)݃](ݔ)  − ,ݑ)ܰ ߠ  [(ݒ  − ,(ݔ)݃)߶  (ݔ)߶,ߠܬ

ܨ (ݔ)݃](ݔ)  

−  ([(ݒ,ݑ)ܰ ߠ 

 ݃ (ݔ)  − ଴,థ(௫)ܬ
ி (ݔ)

1
2ఏ
(ݔ)݃]‖  − ,ݑ)ܰ ߠ  (18)                                                  .‖2[(ݒ

 
Theorem (4.1.11)[4]: Assume that all conditions of Lemma hold and R(x, θ ) is 

residual vector defined by(17) then the function ܩఏ (x) for θ >  0 defined, is a gap 

function for GMQVIP(1) 

Proof:    Taking z =  g(x) −  θ N(u, v)and y =  g(x)݅݊(10), we get 

 F(ߠܬ,థ(௫)
ி [g(x)  −  θ N(u, v)], g(x))  + థ(௫),ߠܬ

ி [g(x)  −  θ N(u, v)]  −  g(x)  

+  θ N(u, v), g(x)  − థ(௫),ߠܬ 
ி [g(x)  −  θ N(u, v)] 
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థ(௫),ߠܬ)߶  +
ி [g(x)  −  θ N(u, v)], g(x))  −  θ ߶(ߠܬ,థ(௫)

ி [g(x)  

−  θ N(u, v)], థ(௫),ߠܬ
ி [g(x)  −  θ N(u, v)])  ≥  0. 

Now we have 

F(ߠܬ,థ(௫)
ி [g(x)  −  θ N(u, v)], g(x))  +  ⟨ N(u, v)  −  ଵఏ (g(x)  − థ(௫),ߠܬ

ி [g(x)  

−  θ N(u, v)]), g(x)  − థ(௫),ߠܬ 
ி [g(x)  −  θ N(u, v)] ⟩ 

థ(௫),ߠܬ)߶ +
ி [g(x)  −  θ N(u, v)], g(x))  − థ(௫),ߠܬ)߶ 

ி [g(x)  −  θ N(u, v)], థ(௫),ߠܬ
ி g(x)  

−  θ N(u, v)])  ≥  0, 

which can be written as, 

F(ߠܬ,థ(௫)
ி [g(x)  −  θ N(u, v)], g(x))  +  N(u, v), g(x)  − థ(௫),ߠܬ 

ி [g(x)  −  θ N(u, v)] 

థ(௫),ߠܬ)߶ +
ி [g(x)  −  θ N(u, v)], g(x))  − థ(௫),ߠܬ)߶

ி [g(x)  −  θ N(u, v)], థ(௫),ߠܬ
ி [g(x)  

−  θ N(u, v)]) 

≥
1
ߠ

 ݃ (x)  − థ(௫),ߠܬ 
ி [g(x)  −  θ N(u, v)], g(x)  − థ(௫),ߠܬ 

ி [g(x)  −  θ N(u, v)].       (19)

Adding(18)and(19) also by using monotonicity of F(·, ·) and skew-symmetry of 

߶(·,·), we get 

(ݔ) ఏܩ  ≥  
1
ߠ

(ݔ)݃   − థ(௫),ߠܬ 
ி (ݔ)݃]  − ,ݑ)ܰ ߠ  (ݔ)݃,[(ݒ  − థ(௫),ߠܬ 

ி (ݔ)݃]  

− [(ݒ,ݑ)ܰ ߠ   −  
1

ߠ2
(ݔ)݃  − థ(௫),ߠܬ 

ி (ݔ)݃]‖  − ,ݑ)ܰ ߠ   ଶ‖[(ݒ

≥  
1
ߠ
,ݔ)ܴ‖ ଶ‖( ߠ  −  

1
ߠ2

,ݔ)ܴ‖ ଶ‖( ߠ  =  
1

ߠ2
,ݔ)ܴ‖  .ଶ‖( ߠ

Clearly, we have ܩఏ(ݔ)  ≥  0, for all ݔ ∈  .ܪ 

Now from the above conclusion, if ܩఏ (x) = 0, then ܴ(ߠ,ݔ )  =  0. Hence by, we 

see that ݔ ∈  is a solution of GMQVIPConversely, if x ∈ H is a solution of ܪ 

GMQVIP(1), then g(x) = ߠܬ,థ(௫)
ி (ݔ)݃]  −  consequently, from and with ,[(ݒ,ݑ)ܰ ߠ 



89 
 

condition ݔ)ܨ, (ݔ  =  0, for all ݔ ∈ (ݔ)ఏܩ we have that ,ܪ   =  0. This completes 

the proof.  

Now, we derive the error bounds without using the Lipschitz continuity of the ܰ(·,·

). 

Theorem (4.1.12)[4]:  Let ݔ଴ is a solution of GMQVIP(1) Suppose that ܰ(·,·) is 

strongly mixed g-monotone with constant ߙ >  is monotone, ߶(·,·) is (·,·)ܨ,0 

skew-symmetric and g is strongly nonexpanding with constant τ > 0, then 

ݔ‖ − ‖଴ݔ ≤
1

ට(ߙ − 1
(ߠ2

ഓ
ඥܩఏ     ∀ݔ ∈ ,ܪ ߠ >

1
ߙ2

 

Proof:   From(17), it can be written as, 

ఏܩ (ݔ)   ≥ ((଴ݔ)݃,(ݔ)݃)ܨ−   + (ݔ)݃,(ݒ,ݑ)ܰ   − (଴ݔ)݃   − ((଴ݔ)݃,(ݔ)݃)߶   

+ ((ݔ)݃,(ݔ)݃)߶   −  
1

ߠ2
(ݔ)݃‖  −  .ଶ‖(଴ݔ)݃ 

By using strongly mixed g-monotonicity of N(·, ·), we have 

(ݔ)ఏܩ ≥ ൯(଴ݔ)݃,(ݔ)൫݃ܨ−  + (ݔ)݃,(ݒ,ݑ)ܰ  − (଴ݔ)݃  −  ߶൫݃(ݔ),݃(ݔ଴)൯ −

 ߶൫݃(ݔ),݃(ݔ଴)൯ + ((ݔ)݃,(ݔ)݃ −  ଵ
ଶఏ
(ݔ)݃‖  −  ଶ                                                        (20)‖(଴ݔ)݃ 

Since ݔ଴ ∈ ,ܪ  ଴ݑ ∈ ,(ݔ)ܵ  ଴ݒ ∈ T(x) be a solution of GMQVIP(1), then   

൯(଴ݔ)݃,(ݔ)൫݃ܨ + (ݔ)݃,(ݒ,ݑ)ܰ  − (଴ݔ)݃  −  ߶൫݃(ݔ),݃(ݔ଴)൯

−  ߶൫݃(ݔ),݃(ݔ଴)൯ +  ((ݔ)݃,(ݔ)݃
  

Taking y = x in above inequality             

((ݔ)݃,(଴ݔ)݃)ܨ  + ,଴ݑ)ܰ  (ݔ)݃,(଴ݒ  − (଴ݔ)݃   + ((ݔ)݃,(଴ݔ)݃)߶   

− ((଴ݔ)݃,(଴ݔ)݃)߶   ≥  0. 
            (21)

Combining(20)(21)then using monotonicity of F and skew-symmetry 

of ߶, respectively, we get 
  

(ݔ)ఏܩ ≥ (ݔ)݃‖ߙ − ଶ‖(଴ݔ)݃ −
1

ߠ2
(ݔ)݃‖ −  ଶ‖(଴ݔ)݃ 
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Further, using the strongly nonexpandicity of g, we have 

(ݔ)ఏܩ ≥ ቀߙ − ଵ
ଶఏ
ቁ ߬ଶ‖ݔ −  ,଴‖ଶݔ

  

 
 
  Whichimplies   

 
  

 
  

 
       

ݔ‖ − ‖଴ݔ ≤
ଵ

ට(ఈି భ
మഇ)ഓ ඥܩఏ(ݔ). This completes the proof.  

Sec (4.2):Global Error Bounds for GMQVIP(1) 
In this section, we consider another gap function associated with GMQVIP(1), 

which can be viewed as a difference of two regularized gap functions with distinct 

parameters, known as D-gap function. The D-gap function for GMQVIP(1) with 

parameters ߠ >  ߰ >  0 is defined as 

, ఏటܩ (ݔ)  = (ݔ) ఏܩ   − ∋ ݔ∀,(ݔ) టܩ   ,ܪ 

   Now, D-gap function associated with the GMQVIP(1) is given by 

ఏటܩ  , (ݔ) = max
௬∈ு.௚(௬)∈ு

൯(ݕ)݃,(ݔ)൫݃ܨ−} + −(ݔ)݃,(ݒ,ݑ)ܰ〉 〈(ݕ)݃ − ߶൫݃(ݔ),݃(ݕ)൯

+  ((ݔ)݃,(ݔ)݃)߶

+ 
1

2߰
−(ݔ)݃‖ ଶ‖(ݕ)݃ −

1
ߠ2

−(ݔ)݃‖ ,{ଶ‖(ݕ)݃ ݔ ∈ ,ܪ ෨ߠ > ߰ > 0                                               (22) 

The D-gap function defined by(22)can be written as 

, ఏటܩ (ݔ) = −F( (ݔ)߶,ߠܬ
ܨ (ݔ)݃] − ,(ݒ,ݑ)ܰ߰ (ݔ)߶,ߠܬ

ܨ (ݔ)݃] − ,ݑ)ܰ߰  [(ݒ

,(ݒ,ݑ)ܰ + (ݔ)߶,ߠܬ
ܨ (ݔ)݃  − ,ݑ)ܰ ߰  [(ݒ  − (ݔ)߶,ߠܬ 

ܨ (ݔ)݃]  − ,ݑ)ܰ ߠ   [(ݒ

Further, it can be written as, 

(ݔ) ఏటܩ  = (ݔ)߶,ߠܬ)ܨ− 
ܨ (ݔ)݃]  − ,ݑ)ܰ ߰  ,[(ݒ (ݔ)߶,ߠܬ

ܨ (ݔ)݃]  − ,ݑ)ܰ ߠ   ([(ݒ

,ݑ)ܰ + ( ߠ,ݔ)ܴ,(ݒ  − ( ߰,ݔ)ܴ   − (ݔ)߶,ߠܬ)߮ 
ܨ (ݔ)݃]  − ,ݑ)ܰ ߰  ,[(ݒ , (ݔ)߶,ߠܬ

ܨ (ݔ)݃]  

− ,ݑ)ܰ ߠ   ([(ݒ

   
                                                   (23)                                                                                                                         
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Next, we derive global error bounds for GMQVIP(1). 

Theorem (4.2.1)[4]:  Assume that all conditions of Lemma(4.1.8) hold and 

 R(x, θ ) is residual vector defined by(10) then for all x ∈ H, ߠ෨ >  ߰ >  0, we have 

 
In particular ܦ஘ ,ந (x) = 0, if and only if, ݔ ∈  solves GMQVIP(1) ܪ 

Proof:  Taking ݖ = (ݔ)݃   − ,ݑ)ܰ ߠ  ஘,஦(୶)ܬ = and y (ݒ
୊ (ݔ)݃]  −  [(ݒ,ݑ)ܰ ߰ 

in(19), we get 

which implies that 

     
(23)            

Combining(22)and(23) also by using monotonicity of F(·, ·) and skew-symmetry 

of φ(·, ·), we get 

            (24) 
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which implies the left-most inequality in the assertion. 

In a similar way, by taking  

 in(9) we 

get 

 
which implies that 

     (25) 

Combining, we get 

                    (26) 

which implies the right-most inequality in the assertion. Combining(24)and(26) we 

obtain the required result.  

Finally, we derive a global error bound for GMQVIP(1) 

Theorem( 4.2.2)[4]:   Let x0 is a solution of GMQVIP(1) Suppose that N is 

strongly mixed g-monotone with constant ߙ >  0, F(·, ·) is monotone, ߮(·,·) is 

skew-symmetric and g is strongly nonexpanding with constant ߬ >  0 , then 

 
Proof:   From(21), it can be written as, 
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By using strongly mixed g-monotonicity of N(·, ·), we have 

              (27) 

Since ݔ଴ ∈ H, ݑ଴ ∈ S(x), ݒ଴ ∈ T(x) be a solution of GMQVIP(1), then 

F(g(ݔ଴), g(y)) + N(ݑ଴, ݒ଴ ), g(y) − g(ݔ଴) + φ(g(ݔ଴), g(y)) − φ(g(ݔ଴), g(ݔ଴)) ≥ 0. 

Taking y = x in above inequality 

         (28) 

Combining(27)and(28) then using monotonicity of F and skew-symmetry of φ, 

respectively, we get 

 
Further, using the strongly nonexpandicity of g, we have 

 
which implies 

 
Which completes the proof. 


