CHAPTER1
Proximal-Type Methods inVector Variational Inequality

Problems

We employ the obtained results to propose a class of proximal-type method to
solve the vector variational inequality problems, carry out convergent analysis on
the method and prove convergence of the generated sequence to a solution of the

vector variational inequality problems under some mild conditions.
Sec (1.1) :Introduction

Let H be a real Hilbert space with inner product (.,.)and let T: H =3 H be a
maximal monotone operator. Consider the following problem: finding an x € H
such that
0 € T(x).

This problem is very important in both theory and methodology of mathematical
programming and some related fields. One of the efficient algorithms for the above
problem is the proximal point algorithm (PPA, in short). This algorithm was first
introduced by Martinet and its celebrated progress was attained in the work of
Rocks fellar . The classical proximal point algorithm generated a sequence
{zX} C H with an initial point z° through the following iteration.

zKtl = (I + ¢, T) 1z¥ (1)
where {c,} is a sequence of positive real numbers bounded away from zero.
Rockafellar proved that for a maximal monotone operator T, the sequence {z*}
weakly converges to a zero of T under some mild conditions. From then on, many
works have been devoted to investigate the proximal point algorithm, its
applications and generalizations and the references therein for scalar-valued

problems for vector-valued optimization problems[vector optimization is asubarea



of mathematical optimization where optimization problems with avector-valued
opjective functions are optimized with respect to agiven partial ordering and
supject to certain constraints. Amulti-opjective optimization problem:The objective
space is the finite dimensional Euclidean space partially ordered by the
component-wise”less than or equal to”ordered] .

On the other hand, the concept of vector variational inequality was firstly
introduced by Giannessi in finite dimensional spaces. The vector variational
inequality problems have found a lot of important applications in multiobjective
decision making problems, network equilibrium problems, traffic equilibrium
problems and so on. Because of these significant applications, the study of vector
variational inequalities has attracted wide attention. Chen and Yang investigated
general vector variational inequality problems and vector complementary problems
in infinite dimensional spaces. Chen considered the vector variational inequality
problems with a variable ordering structure. Yang studied the inverse vector
variational inequality problems and their relations with some vector optimization
problems.

Recently, Huang, Fang and Yang obtained some necessary and sufficient
conditions for the nonemptiness and compactness of the solution set of a
pseudomonotone vector variational inequality defined in a finite-dimensional
space. Through the last twenty years of development, existence results of solutions,
duality theorems and topological properties of solution sets of several kinds of
vector variational inequalities have been derived.

However there is no numerical method has be designed for solving vector
variational inequality problems, even no conceptual one. Motivated by the classical
results of Rockafellar’s, in this section we firstly try to construct a class of vector-

valued proximal-type method for solving a weak vector variational inequality



problemand prove the sequence generated by our method converges to a solution
of the weak vector variational inequality problem under some mild conditions.
we present some basic concepts, assumptions and preliminary results, we introduce
the proximal-type method and carry out convergence analysis on the method, we
draw a conclusion and make some remarks.
In this section, we present some basic definitions and propositions for the proof of
our main results.
Let C = RT* <€ R™and C; = {x e R"||x|| = 1}, We define, for any y,,y, €
R™,

y1 <c yp ifandonlyify, — y; € C,

y1 £int Vo ifandonly if y, — y, & intC.
The extended space of R™ is R™= R™MU{—oC(C,+0co(C}, where —ooC is an
Imaginary point, each of the coordinates is —oo and the imaginary point +ooC is
analogously understood
(with the conventions ocoC + coC = oo(C,u(+oC) = +ooC for each positive
number p). The point y € R™ is a column vector and its transpose is denote by
y = T. The inner product in R™ is denoted by (., .)

Let X, be a nonempty subset of R* and let Ti : X, — R™ i € [1,...,m] be
vector-valued functions. Let T := (Ty,...,T;) be a a n x m matrix which
columns are T;(x), and let

T(x) = (To(x),... . Tm(x)), T(x) () = (Ty(x),v),..., (T (x), v))"
for every x € X, and v € R™. For any X€ C;, a mapping A(T): X, = R" is
defined by

M) = D AL Ti0,x € X, @)



Definition (1.1.1)[1]: Awvector variational inequality (VVI in short) is a problem
of finding x* € X, such that
WVDT (x)"(x — x*) %oy 0,Vx € X
where x* is called a solution of problem (VVI).
Definition (1.1.2)[1]: Aweak variational inequality (WVVI in short) is a problem
of finding
x* € X, such that
wvvl)  TH)T(x — x*) Vipee 0,Vx € X,,
where x* is called a solution of problem (WVVI). Denote by X*the solution set of
problem (WVVI).
Let A € (C,, consider the corresponding scalar-valued variational inequality
problem of finding
x* € X, such that:
(VIP) (A(T)(x*), x — x*) = OVx € X,.
Denote by x* be the solution set of(VIP,).
It is worth noticing that the partial order < intc is closed in the sense that if x;, —
X
as k — oo, x; <inte 0, then we have x* <;,;c 0. This is because of the
closeness of the set
S =: R™\ (—intC).
Definition (1.1.3)[1]: Let X, < R™ be nonempty, closed and convex, and F :
Xo — R™ be a single-valued mapping.
(i) F is said to be monotone on X, if, for any x,, x, € X, there holds
(F(x1) — (F(x2), %y — x3) = 0.
(i) F is said to be pseudomonotone X, if, for any x;,x, € X, , there holds

<(F(x2),x;1 — x3) =2 0 = (F(x1),x; — x3) = 0.



Clearly, a monotone map is pseudomonotone.
Now we give the definitions of C-monotonicity of a matrix-valued map.
Definition (1.1.4)[1]: Let X, — R™ be nonempty, closed and convex. T : X, —
R™™ is amapping, which is said to be C-monotone on X,, if, for any x;,x, € X,,
there holds

(T(x1) — T (1 — x1) 2¢ 0.
Proposition (1.1.5)[1]: Let X, and T be defined as we have the following
statements:
(i) T is C-monotone if and only if, for any A € C;, the mapping A(T) : X, — R"
IS monotone.
(if) if T is C — monotone, then forany A € C;, A(T) : X, —
R™is pseudomonotone.
Definition (1.1.6)[1]: Let L < R™™ be a nonempty set. The weak and strong

C-polar cones of L are defined, respectively, by

YO := {xeR": I(x) £, 0, VI € L}; 3)
And
L2 :={xeR": I(x) <. 0, VI € L}, (4)

Definition (1.1.7)[1]: Let K < R™ be nonempty, closed and convex, F : K c
R™ - R™U {+(} be a vector-valued mapping. A n x m matrix V is said to be
a strong subgradient of F at x € K if
F(x)— Fx)— VT(x — x)>,0 V,€EK.
A n x m matrix V is said to be a weak subgradient of Fat x € K if
F(’L) — F(ﬂ_}) — VT(R;‘ — 1_) fmtc 0 VYVoeK
Denote by 0¥ F( x) the set of weak subgradients of F on K at Xx.
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Let K < R™ be nonempty, closed and convex. A vector-valued indicator function
d(x | K) of K at x is defined by

R i 0e R* if x € K;
iz | K= . h
‘|‘OO(‘;,, it & 5’:‘ K.
An important and special case in the theory of weak subgradient is that when
F(x) = d(x| K) becomes a vector-valued indicator function of K, we obtainvVv
ed? 5(x*|K) if and only if
W' (x —2*) Zince 0 V2 € K. -
Definition (1.1.8)[1]: Aset V NY (x*) c R™™ is said to be a weak normality
operator set to K at x*, if for every V e V N (x*) the inequality holds.
Clearly, V Ny (x*) = d%(x* | K). As for the scalar-valued case, we know that
v* €06k (x*) = Ng(x™) if and only if
W, e—x)<0 YowekXK
(6)
where dK(x) is the scalar-valued indicator function of K. The inequality (1.1.6)
means that v = is normal to K at x™*.
Definition (1.1.9)[1]: Let VNZ (.): R™ = R™™ be a set-valued mapping,
which is said to be a weak normal mapping for K, if forany y € K,V € V Ny
(y) such that

VT(LU —y) Z2imc 0, Ve K.
(7

V Ng (.)is said to be strong normal mapping for K, if forany y € K,V € V N

VT(CU —y) <c0, VrelkK.
€))



As in , the normal mapping for K is a set-valued mapping, which is defined as
follows: if forany y € K,V € V Ny'such that
I1AXII < lAlMI1X]]

Let [|A|ly be a matrix norm of the matrix A € R™ ™. In this section, we always

assume that the matrix norm [|A||y is compatible with ||.]],i.e.,

e —y) <0, Yexe K

forall A € R™™ and x € R™. We now introduce a new notion.
Definition (1.1.10)[1]: Let T : X, » R™™ be a mapping, which is said to be
norm sequentially bounded if for any bounded sequence {x;} < X,, it holds that
the sequence {||T (xk)||} is bounded.

Next we will introduce the definition and some basic results about the
maximal monotone mapping.
Definition (1.2.11)[1]: Let a set-valued map G : X, € R™ = R™ be given, it is

said to be monotone if
(z—Z,w—w) >0

for all z and z in X, all win G(z) and win G(z). It is said to be maximal

monotone if, in addition, the graph
gph(G) ={(z,w) e " x R" |w € G(2)}
is not properly contained in the graph of any other monotone operator from R™to
R™.
Lemma (1.2.12)[1]: Let K be a nonempty closed and convex subset of R™. Let

T;: R™ = R" be the normal mapping to K and T, : R™ —» R™ be any single-



valued monotone operator such that K N dom(T,) # @ ; and T, is continuous on
K. Then, we have T; + T, is a maximal

monotone operator.

Lemma (1.1.13)[1]: ( Minty’s theorem) Let A > 0 and T : R™ 3 R"™ be
monotone. Then (I +AT)~! is monotone and nonexpansive. Moreover, T is
maximal monotone if and only if rge(I + AT )= Rn. In that case (I +AT)™ ! is
maximal monotone too, and it is a single-valued mapping from all of R™ into itself.
Next we will introduce some fundamental definitions of the asymptotic analysis.
Definition (1.1.14)[1]: Let K be a nonempty set in R™. Then the asymptotic cone
of the set K, denoted by K;, is the set of all vectors d € R™ that are limits in the

direction of the sequence {X,} c K, namely

oo - 2 I
K> ={d € R"| 3ty — 400, and zy € K, lim — =d}
: ' ktoo

©)

In the case that K is convex and closed, then, for any x, € K,

K*={deR"zg+tde K,¥ t > 0}.
(10)
Definition (1.1.15)[1]: A set-valued mapping S: R™ =3 R™ is said to be outer

semicontinuous (osc in short) at x if

limsup S(z) c S(z).

T—+T =
where

limsup S(z) = U lim sup S(z)

T—s T 0
L —+T

= {u|EIXk — X,3N, - u,with N, € S(xz)



Sec (1.2) :-Main Results
Proposition (1.2.1)[1]: Let X, € R™ be nonempty, closed and convex, and
V Ny’ () be a weak normal mapping for X,. For any x* € X,, and ¢ € V Ny’ (x),
there exists a A € C; such that ¢(4) € Ny (x7).
Proof: By the definition of the weak normal mapping, we know that
<,:T[;1' —x*) Zinec 0, Vr € Xp.

It follows that
@' (x — z*) € R™\intC, Vz e X,
and
¢ (Xo — z°) C R™\intC.

That is

¢! (Xo—z%) NintC = 0.
By the convexity of X, one has there exists a A* € C\{0} such that

(pA*,z—2*) <0, Vze X,
Since ||A*]| > O, one obtains that

LA - - :
-i,i,-:—_H‘;tf -z <0, VzrelX,.

>

A A

gl € C; Without loss of generality, let 1 = o one has

Clearly, we have

570 . T*'} 20 Vi .X.[).
» i |

Thatis @A € Ny (x™) The proof is complete.

We propose the following exact proximal-type method (PTM, in short) for
solving the problem (WVVI):

Step (1) : Taken X, € Xo;



Step (2) : Given any X, € X,, if X, € x*. Then, the algorithm stops;
otherwise goes to step (3);
Step (3) : If X;, € X*. We define X, by the following conclusion:

0 € T(rps1) A+ I-"r_-?"%.'r_%i”(rk_ﬂﬁ;; + k(T — Tk) 11
where the sequence Ay € C1,E, € (0,€],€ >0 and V Ny(.) is the weak normal
mapping to X,. Go to step (2).

Remark (1.2.2)[1]: The algorithm PTM is actually a kind of exact proximal point
algorithm, where
the sequence Ay € C; is called as scalarization parameter, a bounded exogenous
sequence of positive real numbers {€,} is called as regularization parameter. For
every X, & X*, we try to find a xi;; such that 0 e R" belongs to the inclusion
(112).

Next we will show the following results.
Theorem (1.2.3)[1]: Let X, < R™ be nonempty, closed and convex, T : X, —
R™™ be continuous and C-monotone on X,, if dom T NintX, # 6 The
sequence {xx } generated by the method (PTM) is well-defined.
Proof: Let x, € X, be an initial point and suppose that the method (PTM) reaches
step k. We then show that the next iterate xj,, does exist. By the assumptions, T(.)

Is continuous and C-monotone on X,, we have A(T) is monotone and continuous
onX, for anyA € C,. From the Proposition (1.2.1), there exists a A € C; such
that the mapping V Ny’ ()2 is a normal mapping on X,. Thus, by the assumption
dom TNintX, # ¢ and Lemma (1.1.11), one has that for any x € X,, the
mapping (V Nyo(x) + T(x))A is maximal monotone. Without loss of generality,

let 4, = A. By Lemma (1.1.12), one obtains that

10



rge{ (VNx, () +T() A +ead()} = R"
Hence, for any given &, x, R"™, there exists ax;,, € X, such that
exxr € (T + E-F_-'“‘n-'r_%“)[r;;_i);’u; + EpThy1
(12)
and
0 € (I'+ VNx ) (Tkt1) M + Ep{Zri1 — Tk)

That is the inclusion (11) holds. The proof is complete.

Theorem (1.2.4)[1]: Let the same assumptions as in Theorem(1.2.3) hold. Further
suppose that X$* N[T(X,)]1¥°= {0} and X* is nonempty and compact . Then, the
sequence {x;} generated by the method (PTM) is bounded.

Proof: From the method (PTM), we know that if the algorithm stops at some
iteration, the point x;,, will be a constant thereafter. Now we assume that the
sequence {x,} will not stop after a finite number of iteratives. From the

Proposition (1.2.1), we know that there exists 1, € C; and @y 41 € V Ny, (Xi41)

such thatgy 1A, € V Ny’ (Xj.4+1)From the inclusion (11), one has that
0 = T (i +1) Ak + Crt1 Ak + €k(Thy1 — k).
By the fact of @y 414k € V Ny (Xk1), We obtain that
(Prt1Ap, T — Trg1) <0, Vz e X,.

(13)

It follows that

(T(Tht1) Mk + ex(Zry1 — Tr), T — 2r41) > 0, Vr € X,.
T(Tr11) ) _ (14)

11



On the other hand, we know that for any given A, € C;, the following scalar-

valued variational inequality problem (V IP;;) has a nonempty solution set, where

(VIP,) (TE)z—27) 20, VzeX

Without loss of generality, let x* € X* and x™ is also a solution of problem

(V IPy;,). Hence, we have

(T(z* ) A, x* — Zpq1) < 0.
By the C — monotonicity of T, one has that

(T (Zps1) Ak, " — Ty1) < 0.

(15)
Combining (14) with (15), we obtain that
{er(Thy1 — k), T* — Tpy1) > @
From the method (PTM), we know that £, > 0. It follows that
(Thr1 — Tpy 7 — Tp1) 2l
2({Trt1 — Tk, ') + 2Tk — Tret15Zk41) 2> 0
lzell® —2{zx, 2%) + [|2*[1* = l|2a ] +2(2x, Trsa) — 2rgall* = |1 Zoa 1P + 2{2psa, 2%) — |27 > O.
That is
| zier — ¥ |1P<)| e —2* 1 — || 2 — zoe ||°
(16)

Clearly, the sequence {|lx, — x*||*} is nonnegative and nonincreasing.
Furthermore { ||x, — x*[|?} is also bounded below, as denoted by [* the lower

bound of the sequence. By the fact (15), we have
Z | 2k — Trga [|P<[[ 2o — z* || =1* <|| 2o — z* |P< o0
k=0

12



and
lim || zx — 241 ||= 0.
k—+4oo (17)
From the inequality (15), one has that

|z — 2*|| < ||z — =7

for all x* € X*. By the nonemptiness and compactness of X*, we conclude that
{x; } is bounded. The proof is complete.
Theorem (1.2.5)[1]: Let the same assumptions as in Theorem (1.2.3) hold. We
also assume that T is norm sequentially bounded. Then any accumulation point of
{x; } is a solution of problem (WV V I).

Proof: If there exists k, = 1such that x ,, = xi,,¥p = 1. Then, it is clear

that xy, IS the unique cluster point of {x; } and it is also a solution of problem
(WV V 1). Suppose that the algorithm does not terminate finitely. Then, by
Theorem (1.2.3), we have that {x, } is bounded and it has some cluster points. Next
we show that all of cluster points are solutions of problem (WV VI). Let X be a

cluster points of {x;.} and {x;} be a subsequence of {x,}, which converges to %.
From the limit (16), we know that lim; o, ||xxj+1 — xx;]| = 0. Thatis
Xkj+1 — xas j — ocoBy the inclusion (11), one has that there exist A;; € C; such
that
Okj+1 EV NE

T(Tr,+1) Ak, + (Pr;41) Ak, + Ex; (T, 41 —28,) =0

and
T (zk;4+1) Ak, + (©;4+1) Ak; + €, (Thy41 —2x,)|| = 0.

It follows that

13



02| T(xk,+1) Ak, + (Or;+1) Ak, || =€k || (Zk; — Thy51) ||
(18)

From (17), we know that lim; o ||xx; — Xxj+1]| = 0. Since A, € C;, by the
compactnessof C;, we know that the sequence {A;;} has a convergent

subsequence. Without loss ofgenerality, we assume that 4;; — . Furthermore we

have 1 € C, and 2 # 0. Thus, taking the limit in (17), we deduce the following:

dim |[T(za;41) Ak, + (r;41) Ar || = 0.
pe (19)

We claim that the sequence {@yj+14x;} is bounded. Suppose that, in contrast,

Pkj+14kj —

without loss of generality, we assume that ||@y;412k;|| = and”(p ] W E
Kj+14kj
R™w =+ OFrom (18), we know that
1T (zi: 0 IM, 44053 A T(Ziri) e Phcridis
s T (Tr;41) Ak Phy1 gl %] (Tr;41) Mk, Prj41A%; 1= [0+,
j—+oo | or, 1Ak, | | [/ D VSN | R (/S D Vol |
2
since T is norm sequentially bounded, which yields that
T (zr;+1) Ak, || < (1T (k1) | a | Ans || = (1T (205 00) Ie € pp < o
(20)

for some p > 0. Obviously, the equality (20) contradicts with the assumption w #
0.

Thus, the sequence {@y;+14x;} is bounded. Without loss of generality, we assume
that.

Pkj+1Akj — W € R™ Furthermore, from (19) and the continuity of T, we derive

that
|IT(2)A +&| = 0.

Hence, we have



Meanwhile, from the definition of weak normal mapping and Proposition ??, we

have w € N, (X). By the definition of N,,(X), we know that
(@,rz—2)<0 VzelX,
That is
(T(EAz—2) >0 VzeX,
(21)
Thus
T(£)"(z — £) ¢ —intC Vz e Xy

(22)
We conclude that “x is a solution of problem (WV V I). The proof is complete.
Theorem (1.2.6)[1]: Let the same assumptions as those in Theorem (1.2.5) hold.
Then the whole sequence {x; } converges to a solution of problem (WV V 1).
Proof: Suppose that, in contrast, both X and X are two distinct cluster points of
{x;}and

hm =, % bm . = Z.
: Z] . i
J—+ec i— 400

By Theorem (1.2.5), we know that ¥ and X are solutions of problem (WV V 1). By
virtue of Theorem (1.2.3) and the proof of Theorem (1.2.4), we know that there

exist A and 1 € C; such that
(T(E)A, & — Bryy) <0, (T(ENF — 1) <0
(23)
By the C-monotonicity of T, one obtains

(T(Zep)A 2= Tya) <0, (T(Zpy1) A, T — Tpea) < 0.

(24)
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From (19), one has

(Tl — Tk ) =0, T —EZR T — By >0

(25)
Similarly with (20), we know
| Ty — = '|2‘£|ﬁ Ip —T ||2 — || Tk — Trpa ||j-
(26)
and
| T — Z P<[l 26 — 2 P — || 2 — Ziar |12 -
(27)

Combining (25)with(26), we obtain that both sequences {||x; — £||2}and {||x; —
& |1?} are nonnegative and nonincreasing, hence they are convergent. So there exist

B, B € R such that

Jim ||z~ 7 = B, Jim |z~ ||= 3.
(28)
Clearly, we have
|z — 2 |°=|| zx — & ||® +2(zx — £, — 2)+ || 2—2 ||?
(29)
Combining (28) with (29), we deduce the following
Jim (z — &5 — &) = 5(6° - B~ || 2= 2 ).
o (30)

Taking k = k; in (30), we obtain that

Changing the places of Xand X in (28) and repeating k = k;in (30), we have that
| £ — 2 |20 6"
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Thus, we conclude that

which establishes the uniqueness of the cluster points of {x; }. The proof is

complete.
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CHAPTER 2

Variational Inequalities in Finite Dimensional Spaces

Some existence theorems of Carath’'eodory weak solutions for the
differential inverse variational inequality are also established under suitable
conditions. An application to the time-dependent spatial price equilibrium control
problem is also given.

Sec (2.1) :Main Result

Let K cR™ be a nonempty, closed, and convex setand g : R™ — R™ be a function.
An inverse variational inequality (denoted by IVI(K, g)) is formulated as follows:
find x* € R™, such that

gx*) eK,<g— g(x*),x*>i = 0,vg € K. (D)
Let SOLIVI(K, g) denote the solution set of this problem. We write x := %for the
time derivative of a function x(t). In this article, we introduce and study the
following differential Received July 15, 2013; revised March 17, 2014. The work

was inverse variational inequality (denoted by DIVI):
([ i(t) = f(t, x(t)) + B(t, x()u(t),
§ u(t) € SOLIVI(K, G(t,z(t)) + F(-))

l (V) =%, @

where Q:= [0,T] > R™ (f,B,G): » R™ x R™™ x R™ are given functions and
F: R™ > R™ is a single-valued linear function. A point (X, u) is called a
Carath’eodory weak solution of DIVI (1) if and only if x is an absolutely
continuous function on [0, T ] and u is an integrable function on [0, T ] such that

the differential equation satisfied for almost all t €[0, T ] and u(t)
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eSOLIVI(K,G(t,x(t)) + F(:)) for almost all t €[0, T ]. The set of all
Carath’eodory weak solutions (x, u) of the initial-value DIVI (1) is denoted by
SOLDIVI(K,G + F).

It is well known that the variational inequality theory has wide applications
In optimization, engineering, economics, and transportation.

And ordinary differential equation with smooth input functions are a
classical paradigm in applied mathematics that have existed for centuries. Yet, as
evidenced by the growing literature that has surfaced in recent years on multi-
rigid-body dynamics with frictional contacts and on hybrid engineering systems,
ordinary differential equations are inadequate to deal with many naturally
occurring engineering problems that contain inequalities and disjunctive
conditions. For solving these problems, and studied differential variational
inequality (DVI) in finite-dimensional Euclidean spaces which significantly
extends these differential equations and open up a broad paradigm for the
enhanced modeling of complex engineering system. Recently, introduced and
investigated a class of differential mixed variational inequalities in finite
dimensional spaces. Very recently, and studied differential vector variational
inequalities in finite-dimensional spaces.

On the other hand, first introduced and studied the inverse variational
inequalities in finite dimensional Euclidean spaces. They pointed out that there are
many control problems appearing in economics, transportation, and management
science and energy networks can be modeled as the inverse variational inequalities,
but they are difficult to be formulated as the classical variational inequalities.
Furthermore, developed a proximal point based algorithm for solving the inverse
variational inequality. proposed two projection-based methods for solving the
inverse variational inequality. considered the dynamic power price problem and

characterized the optimal price as a solution of an inverse variational inequality.
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studied the time-dependent spatial price equilibrium control problem and modeled
it as an evolutionary inverse variational inequality. Some related work concerned
with the inverse variational inequalities; and the references therein. Obviously, if
the function f is single-valued, setting u = f(x) and g(u) = f~! (u), then the
inverse variational inequality is transformed into the classical variational
inequality. However, this transformation fails when f is set-valued. Moreover, in
many real applications, explicit forms of function cannot be obtained which also
causes failure of this transformation .Therefore, it is important and interesting to
consider an ordinary differential equation whose right-hand function is
parameterized by an algebraic variable that is required to be a solution of an
inverse variational inequality containing the state variable of the system.

We give the linear growth of the solution set for the differential inverse
variational inequality (1) under various conditions. Moreover, we show the
existence theorems concerned with the Carath’eodory weak solutions for the
differential inverse variational inequality (1) in finite-dimensional spaces. We also
give an application to the time-dependent spatial price equilibrium control problem
under some suitable conditions.

we will introduce some basic notations and preliminary results.
Definition(2.1.1)[2]: A map f: R™ - R™ is said to be (i) para-monotone on a

convex set K < R™if f is monotone on K, that is

(flv)— f(u),v—u) >0, Vv,u€e K,
and the following property holds: for any v, u €K, we have

(f(v) = f(u),v—u) =0= f(v) = f(u)

(i) strongly monotone on K if there exists a constant « > 0 such that, for any v, u

€K, we have
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()~ F(u), v~ ) > oo — ul

Definition(2.1.2)[2]:A map F : Q — R™ (respectively, B : Q » R™™) is said to
be Lipschitz continuous if there exists a constant Lp > 0 (respectively, Lg > 0)
such that, for any
(t1,x), (ty,y) € Q, we have

F(ty, ) — F(ta,y)|| < Lp(|ty — to| + ||z —y|]),

(respectively, ||B(t1,2) — B(t2,y)|| < Lp(|t1 — t2| + ||lo — y||)).

In the rest of this article, we assume that the following conditions (A) and (B) hold:
(A) f, B, and G are Lipschitz continuous functions on Q with Lipschitz constants
L > 0,Lg > 0,and L; > O, respectively;

(B) B is bounded on Q with 0B := sup x)eall B(t, x)|| < 0.

Let

F(t,0) = {f(t,«) + B(t,0)u: u € SOLIVI(K,G(t.0) + F)}. o

Lemma (2.1.3)[2]: Let F : Q =3 R™ be an upper semicontinuous set-valued map
with nonempty closed convex values. Suppose that there exists a scalar pF > 0

satisfying

sup{|ly|| : y € F(t,x)} < pr(1 + ||2]|), V(t,z) € Q
(4)

Then, for every x° € R™, DI : x* € F(t,x),x(0) = x° has a weak solution in the
sense of Carath’eodory,
Lemma (2.1.4)[2]: Let h: Q x R™ — R™ be a continuous function and U : Q 3

R™ Dbe a closed set-valued map such that for some constant nU > 0,
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sup ul| < 9o (L4 ([z]),  V(t,z) € Q.

uel (t,z)

let v: [0,T] - R™ be a measurable function and x: [0,T] - R™ be a
continuous function satisfying v(t) € h(t,x(t), U(t,x(t))) for almost all t €
[0,T]. Then, there exists a measurable function w: [0,T] = R™ such that
u(t) € U(t,x(t)) and v(t) = h(t,x(t),u(t)) for almostallt € [0, T ].

Lemma (2.1.5)[2]: Let (f,G,B) satisfy conditions (A) and (B), and F : R™ - R"
be a continuous map. Suppose that there exists a constant p> 0 such that, for all
q € G(Q),

sup{||u|| : v € SOLIVI(K,q+ F)} < p(1+ ||q|]). 6)

Then, there exists a constant pF > 0 such that (2) holds for the mapF > 0O
defined by ().

Hence, F is an upper semicontinuous closed-valued map onp .

Proof: Because f and G are Lipschitz continuous on Q, we know that f,G have
linear growth on Q in X, that is, for some positive constants pF and pG and for any
(t,x) € Q,

|f (@t x)]| < pr (L4 |l]])

and

| (7)
from (3), (4), and (5), we can obtain the fact that there exists pFF >0 such that (2)

(6)

G(t,x)|| < pa(1+|z|).

holds. Thus, F has linear growth.
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Next, we prove that F is upper semicontinuous on Q. We need only to prove that F
Is closed. Let sequence {(t,, x,)} < Q be a sequence converging to some vector
(to,x9) €EQ

and {f(t,,x,) + B(t,, x,)u,}converges to some vector z, € R™ as n —
oo, where u, €

SOLIV I(K,G(t,n,x,) + F(:)) for every n. It follows that the sequence {u,} is
bounded, and has a convergent subsequence, denoted again by {u,}, with a limit
uy €R,. As F is continuous and K is nonempty, closed, and convex, it is easy to

obtain

f(tn, xn) + B(tn, tn)un — z0 = f(to,wo0) + B(to, xo)uo € F(to, xo
and so F is closed.

Lemma (2.1.5)[2]: Let (f,G,B) satisfy conditions (A) and (B), and F : R™ - R"
be a continuous and para-monotone map on R™. Suppose that SOLIV | (K ,q+
F(-)) # 0 for any q € G(Q).
Then, SOLIV I(K, q + F(+)) is closed and convex for all g € G(Q).

Proof: Let{u,,} <€ SOLIV I(K,q + F(:)) with u,, » uy. Applying the closedness
and convexity of K and the continuity of F, we deduce that u, € SOLIV I(K,q +
F(:)) and so SOLIV I(K,q + F(:)) is closed for all g € G(Q). Next, we prove
that SOLIV I(K,q + F(:))is convex for all q €G(Q).Let uy,u, €
SOLIV I(K,q + F(-)). Then,

q + F(u;) €K,q + F(uz) €K. (3
Moreover, for any £ € K, we have

(F—q — F(uy),u;) =2 0 9)
and

(F—q — F(up),up) 2 0 (10)
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It follows from (6) that, for every A € [0, 1], we have

Mg+ F(u1)) + (1 = A)(g + F(u2)) = ¢+ AF(u1) + (1 — A\)F(u2)

= q + F(ii) €K,(11)
where

i =Au; + (1 — Du,.
Letting F = q + F(uy)in(8)and”“F = q + F(u,) i, respectively, one has
(F(uz) — F(uy) g — up) 2 0 (12)
Because F is para-monotone, we know that F(u,) = F(uy). It follows
from(8)and(9)that

(F—q — F(uy),Au; + (1 — Duy,) = 0,

which means that

(F— q — F(%),%) > 0.
This shows that # € SOLIV I(K,q + F(:)) and so SOLIV I(K,q + F(:)) is
convex for any g € G(Q).
Lemma(2.1.6)[2]: Let (f,G,B) satisfy conditions (A) and (B), and F: R™ —
R™ be a continuous and para-monotone map. Suppose that there exists a constant
p > 0 such that (3)holds for any g € G(2), and SOL(K,q + F) # ¢forany q €
G(Q). Then, DIVI(2) has a weak solution in the sense of Carath’eodory.
Proof: Similar to the proof of Proposition 6.1 in [19], by Lemmas (2.1.2), we can
deduce that DIVI(1) has a weak solution in the sense of Carath eodory.
Theorem (2.1.7)[2]: Let K < R™ be a nonempty compact convex subset and F :
R™ — R™ be a continuous and para-monotone map. Suppose that g + F is
invertible and (¢ + F)~1 is continuous on R™. Then, SOLIV I(K,q + F(-)) is a
nonempty compact convex set in K for any g € R™, and there exists p > 0 such
that (3) holds for any g € R".

Proof: For any u € R™, let
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gw) = (@ + 7' =y
Then,
(gu1) — g(uz)uy — uz) = (y1— y2.9 + F(y1) — q = F(y2))
=(y1 = ¥2,F(y1) = F(y2)).
Now, the monotonicity of F implies that g is monotone on R,,. Forany g € R™, we
know that SOL(K, g) is nonempty and so there exists u € K such that
(i — u,g(w)) = O,ViieK (13)
It follows from (3) that there exists y €R,, such that g + F(y) € K and{(ii — q —
F(y),y) = 0,Vii € K, which means that SOLIV I(K,q + F) is nonempty for
any q €R,,. Thus, Lemma (2.1.5) yields that SOLIV I(K,q + F(:)) is a nonempty,
closed and convex set for every g € R™. Because K is compact, it follows that
SOLIV I(K,q + F(-)) is a nonempty compact convex set for any g € R™. This
shows that there exists a constant p > 0 such that (3) holds for any g eR™
Theorem (2.1.8)[2]: Let K cR™ be nonempty compact convex set. Assume that
F: R™ — R"™be a continuous and strictly monotone map such that g +F is
surjective for any g eR™. Then,SOLIV I(K,q + F(-)) is a singleton for any g eR™
and there exists a constant p > 0 such that(3) holds for any g € R™.
Proof: Because F is continuous and strictly monotone on R™, it is easy to see that
q + F is continuous and strictly monotone on R™. This implies that (g + F)~ ! is
strictly monotone and continuous on R™. we know that SOL(K,(q + F)™1) is
nonempty. From Theorem (2.1.7), it yields that SOLIV I(K, (g + F)) is nonempty.
For any u;,u, € SOLIV I(K,(q + F)), we have
q+ F(u) €K (F—q — F(u)),u;) > O,VF €K
and
q + F(u,) € K(F— q — F(uy),u,) > 0,VF € K.
It follows that
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(F(uy) — F(uz) us — up) < 0.
Now, the strictly monotonicity of F shows that u; = u, and so there exists a
constant p > 0
such that (3) holds for any g € R™.
Theorem (2.1.9)[2]: Let F: R™ —» R™ be a continuous and para-monotone map.

Suppose that there exist u,, yo, € R™ such that, for any u,y € R™,

(q+ F(u),u — ug) — (u,yo) + (ug, y)

2 2
: — +oo as |lul|” + |ly||* — +oo.
(EENRE: el + ]

(14)

Moreover, assume that there exists F© € R™ such that

(F(u) — FOu) _

g 1

lim inf ‘
luf—o0 Ju||? 5)
Then, SOLIV I(R™,q + F()) is a nonempty, closed, and convex set for all g €
R™ and there exists a constant p > 0 such that (3) holds for any ¢ € R™.  Proof:
The problem IVI(R™, q + F): find u € R™such that ¢ + F(u)€R™ and (F —
g — F(u),u) = 0,VF € R™,is equivalent to the problem V I(R?",P) : find v €
R?™ such that
(7 — v,P(v)) = 0,V¥ € R?™,

where

By the monotonicity of F, one has
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i
F(U-l) — U1 — F(“-z) — Y2 Uy — Uz
<P(1‘.’1) = P[l'g).'l'l — 't‘g) — (
Uy — Uz Y1 — Y2

= (F'(u ) F(ug) —y1 + y2,u1 — ug) + (uq — ug,y1 — y2)

< (UQ) U1 — 'Ug)
Sl
which implies that P is monotone on R?™. Thus, there exists v, = (%)
0
such that
(P(v),v — vg) {(g+ F(u) —y,u—ugp) + (u,y — yo
(v) o/ _ M () ’f‘ O'O - J — Yoi — 4o as |-u||2—|— |y|2—:,—|—:x:.
vl (el + llyl12)2

which means that

— 400 as ||v]| — +oc.

By Theorem (2.1.8), we know that SOL(R?™, P) is a nonempty set and so SOLIV
I(Rn,q + F(-)) is nonempty. It follows from Lemma (2.1.6) that SOLIV I(R",q +
F(*)) is a nonempty closed convex set for every g € R™.
Next, we prove the second assertion. Suppose to the contrary, there exist {gk} c
R™ and {u*} < R™ such that, for any £ € R",
(F—¢" = F(u"),u*) >0,

(16)
And

& k
[u®|| > k(1 + [lg"])
Obviously, {u*} is unbounded. It follows from (16) that
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<FO . qk, . F(uk), uk> > ()
and so
(F(u*) — FO,ub) < (—¢", u").

Dividing by ||u*||”, we have

Tk} — FO 5k
liminf< () )

< 0,
AR R 0

Which contradicts (15).This shows that there exists a constant p > 0 such that (3)
holds for any g € R™.

Theorem (2.1.10)[2]: Let F : R™ — R™ be a continuous and para-monotone map.
Suppose that
SOLIV I(R™ q + F(-)) # ¢for any g €R™ and there exists F® €R™ such that

F(u) — F% u
() _ L — 400 as ||lu|| — +oo.
[Jul| (17)

Then, SOLIV I(R™, q + F(:))is a nonempty closed convex set for all ¢ eR™ and

there exists aconstant p > 0 such that (3) holds for all q €S, where S is bounded
set.

Proof : Similar to the proof of Theorem (2.1.7), we know SOLIV I(R™, q + F(%))
IS a nonempty

closed convex set for all g € R™.

Now, we prove the second assertion. If the assertion is not true, then there exist

{q*} c S and {u*} < R™ such that for any F € R™,
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—

(F —q¢" — F(u®),u") >0,

and

(18)

lu®ll > B+ [lg"]).
It is clear that {u*} is unbounded. From (18), one has
(% — * — ™ =0
which means
{Fa™) — F9,a% < (—a". 0",
Dividing by ||u¥||, we have

(Pl —B0 4% (—a® o)

I u
Because {g* } is bounded, there exists a constant C such that

(F(u®) — F9, uF) )
A < ‘T.
e =

which contradicts (17).

In the rest of this article, let

S:={veR": (Fv,v) =0}
Obviously, S is a linear subspace of R™ and S+is also a linear subspace of R™.
Theorem (2.1.11)[2]: Let F,,«, be a positive semi-defined matrix. Suppose that for
anyn €N,
we have

SOLIVI (R”. T l)F b ) £,

r n

29



where 1 is the identity map on R™. Then,
(i) SOLIV I(R™,q + F(-)) is a nonempty closed convex set for all g €S.L.

(i) there exists a constant p > 0 such that
sup{||ul| : w € SOLIVI(R™,q+ F(-))} < p(1+ |ql).

Proof: We denote SOLIV I(R™.,q + (1 — %)F + %1) by SOLIVL,(E,).

Assume for the sake of contrary that the contrary holds. Suppose that U,y
SOLIV In(F,) is unbounded. Then, there exists a sequence {u,} < R™ such that,
for any F € R,

~ 1 1
<F o {ir S (1 - _)F(“fn) ER _I(“ﬂ,) Uﬂ> Z 0.
(2!

(19)
where [|u,|| — . Let

lim

==/ .
n—oo H u.n

Dividing by Il u,, II? and taking n — oo in (19), we have

(Flus), uos) < 0.

As F is positive semi-defined, one has (F (i), U )= 0 and so uc €S. Because

<(1 . Lraga %I(uﬂ_). u.n> >0,

n

it follows from (19) that

i

(F —q.uy) >0

F— q. i > 0.
unll /
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Letting n — oo in the above inequality, we have

o~

(F — q,us) = 0.

It follows from u,€S and g € Stthat

e

(F i) 2

Taking F = —u,,, we obtain a contradiction. Therefore, U,.cy SOLIV I,,(F,) is
bounded and so there exists a convergent subsequence with a limit u0. It follows
from (19) that for any F € R™,

(F — q — F(ug),up) = O,which implies that u,€SOLIV I(R"™ q + F(-)) and
so SOLIV I(R™ q + F(:)) is nonempty for all g € S* Similar to the proof of
Lemma (2.1.8), we can prove that SOLIV I(R™ q + F(:)) is nonempty, closed
and convex set.

Next, we prove the second assertion. If not, then there exist {g*} c

S%and {u*}such that, for any given F € R™,

(F — ¢* — F(u*),u*) >0 (20)

and
|w®|| > &1+ ||¢*])).
It follows that

1l _

lim [|u®| =00, lim Hq
c— 00 k— oo Hilk

Because {g*} c S% Is bounded, without loss of generality, we can assume that
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and

) Uk
e - =
oo g

= - . k
F—q¢"—Fl(u ) u S
|uk |ukl| [ —

Letting k — ooin the above inequality, one has

D

From (20), we have

(i) ) < O
As F is semi-defined, we obtain

(Bl ) =0

and so uc €S. Moreover, it follows from (20) that for any F € R™,
(F — ¢*,u®) > 0.

This means that

o k i k

(F —qg

) >0

I

and so

-

(F'— g ooy = 0.

As u,, € Sand g, € S, we have
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(F,u00) > 0,

which is a contradiction.
Lemma (2.1.12)[2]: Let K be a nonempty closed convex set and F : R™ - R™ be
a paramonotone and continuous map. Assume that SOLIV I(K,q + F(:)) # @for
any g € R™ and the linear growth (3) holds. Then, A: R™ - R™ is continuous,
where A is defined by A(q) = F(u)forany g € R™ and u eSOLIV I(K,q + F(:
).
Proof: Let q,, = q and u,€SOLIV I(K,q™ + F(-)). Then, g, + F(u,) € K and
forany F € K,
(F— qn— F(un),un) = 0.

It follows that {u,} is bounded and so there exists a convergent subsequence of
{u,}, denoted again by {u,}, with a limit u,. Because K is closed and F is
continuous, we have g + F(u,) €K
and

(F— qo— F(up),u,) = 0,VF € K.
This means that u, €SOLIV I(K, q + F(-)). Suppose that there exists another
convergent subsequence of {u,}, denoted again by {u,}, with a limit u;. Then,
u, €SOLIV I(K,q + F(")).
From the proof of Lemma (2.1.8), it is easy to see that F(u) is a constant for all
u € SOLIV I(K,q + F(-))and so F(uy) = F(uy). It follows that

A(qn) = F(un) —» F(uy) = A(q)
and so A : R™ — R™is continuous.
Theorem (2.1.13)[2]:Let F € R™™ be a psd-plus matrix [positive-definite

matrix:In linear algebra,asymmetric nxn real matrix M is said to be positive
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definite if the scalar z! Mz is positive for every non-zero column vector z of n real
numbers.Here zT denotes the transpose of z.

More generally,an nxn Hermition matrix M is said to be positive definite if the
scalarz*Mz is real and positive for all nonzero column vector z of n
complex number.Here z* denotes the conjugate transpose of z ]suppose that
SOLIV I(R™,q + F(:)) =+ ¢for all g eR™ and there exists a constant p > 0 such
that (3) holds. Let D : R™ — R™ be a continuous map such that

ID@)| < Lolull, Ve R -

for some constant L, € (O,%). Then, for any g € R™, SOLIV I(R",q + H) is a

nonempty closed set, where H = F + D, and
sup{||u|| : w € SOLIVI(R™,q+ H)} < plL+ ||QI|_J.
1— {)L n (22)

Assume further that there exist constants L, > Oand L € (0O, Li) such that
A

{ |A(q1) — Alg2)| < Lallar — a2l Va1,92 € R™,

|D(uy) — D(u2)|| < L||F(u1) — F(u2)||, Vui,us € R™,
(23)

where A is defined as that in Lemma (2..1.18) Then, for any gq‘' € R™ and
ut €SOLIV I(R"™,q + H) withi=1, 2,

Lalla — gof
Fauj — Fus|] < — i
1w 2| £ == il

(24)

and for every g € R™,
SOLIVI(R",q+H) = F~'u(q)[ {v: (F' —w(q).v) > 0,YF' € R"}.
where v(q) = F t,w(q) = q+ H(&) forany & € SOLIV I(R",q + H), and

F~1v(q) is the inverse image of v(q). Consequently, SOLIV I(R",q + H) isa
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convex set.
Proof: Similar to the proof of Theorem (2.1.11), we can obtain all the results
except for the last one. Now, we prove the last result. For any u,, u, €
SOLIV I(Rn,q + H), by the inequality (24), we know that ||Fu, — Fu,||= 0. This
means that Fu is a constant vector for all u € SOLIV I(R™, q + H). Furthermore, it
follows from (23) that [[Du; — Du,|| = 0. Thus, Du is a constant vector and so is
H(u) forall u € SOLIV I(R",q + H).
Forany u € SOLIV I(R™,q + H)and F € R®, onehas Fu = Fii = v(q)
and sou € F~1v(q). As

w(q) = q + H(@), 4 € SOLIV I(R",q + H),
we know that v(g) and w(q) are constants. Moreover, for any u eSOLIV I(R",q +

H), we have
(F —q— H(u),u) >0,

which implies that

and so
<I} —w(q),u) > 0.

It follows that Conversely, for any u € F~'v(q)N{v : (F — w(q),vi = 0,VF €
R™}, we have

Fu = v(q) = F 1,
where Z€SOLIV I(R™, g + H). It follows from (23) that Du = Diand so H(u) =
H(1).
Consequently, we have

0<{(F—w(q),u) =(F —q— Hu,u) = (F —q— Hu,u)
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and so u eSOLIV I(R™, q + H). This shows that
SOLIVI(R™,q+ H) = F~'v(q) ﬂ{af : (l} —w(q),v) >0, VF' ¢ R™}

Next, we show that SOLIV I(R™, g + H) is a convex set. In fact, for any u,,u, €
SOLIVI(R™,q + H), we only need to show that &# = Au; + (1 — A)u, €
SOLIV I(R™ q + H)for all A € [0,1].Because F(u;) = F(uy;) = v(q), one has

F(Aup + (1 = MNug) = AF(u1) + (1 = AN F(uz) = v(q),

which means that fi€F ~1v(q). Moreover, for any F € R™, we have

o

(F —w(q),u1) >0, {F —w(q),uz) > 0,

It follows that

e

(F —w(q), 1) >0

and so
i€ F~(q) [ v : (F —w(qg),v) >0, VF € R"}.

which shows that @t € SOLIV I(R",q + H).

Theorem (2.1.14)[2]: Let F : R™ — R™ be a given linear map and (f,G,B) satisfy
conditions (A) and (B). Then, DIVI(1) has a weak solution in the sense of
Carath’eodory under any one of the following conditions:

(@) K < R™is a nonempty compact convex set, and F : R™ - R™ is continuous
and para-monotone such that q + F is invertible and (¢ + F)~?! is continuous on
Rn forall g € R™;

(b) K € R™ is a nonempty, compact and convex set, and F: R™ - R™ is

surjective, continuous, and strictly monotone;
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(c) K = R™"F: R™— R"is continuous and para-monotone, and there exist
Ug, Vo, F° € R™ such that (14) and (15) hold;
(d K = R™F: R"—> R™ is continuous and para-monotone, and there exist
Up, Yo, F® € R™ such that (15) and (18) hold:;

(e) F is a positive semi-define matrix such that, for any n eN

SOLIVI (R”.q + (1~ l)F ;= EI) #+ 0,

n’ 1

where 1 is the identity map on R";

() F = F + D, where F € RV is a psd-plus matrix such that (15) and (16)
hold and D is a continuous map such that (22) and (24) hold.

Proof: It follows from Theorems (2.1.7)—(2.1.13) that SOLIV I(K, g + F) is a
nonempty, closed and convex set and satisfies condition (3). By Lemma( 2.1.5), we

know that DIVI (1) has a weak solution in the sense of Carath’eodory.
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Sec (2.2): An Application

In this section, we will give an application of the DIVI to the time-dependent
spatial price equilibrium control problem.
we consider the time-dependent spatial price equilibrium control problem. Assume
that a single commodity is produced at m supply markets, with typical supply
market denoted by i and is consumed at n demand markets, with typical demand
market denoted by j, during the time interval [0, T ] with T > 0. (i, j) denotes the
typical pair of producers and consumers fori=1, - - - mandj=1, .-, n. Let
Si(t) be the supply of the commodity produced at supply market i at time t €[0, T ]
and group the supplies into a column
vector

St) = (51(£), S2(t), - - S (t)) €R™.

Let D;(t) be the demand of the commodity associated with demand market j at time

t €[0, T ] and group the demands into a column vector

D(t) = (D1(t), D2(t), - -, Dn(t)) €R™
Let x;;(t) be the commodity shipment from supply market i to demand market j at
time t € [0,T ] and group the commodity shipments into a column vector x(t) €
R™", Suppose that for all t € [0,T ],

M m

S =Y z50), Dil)=) =s{l).

j=1 i=1
Now, we consider the problem from the policy-maker’s point of view and present
the time dependent optimal control equilibrium problem. Under this perspective,
by adjusting taxes u(t), it is possible to control the resource exploitations
S(x(t), u(t)) at supply markets and the consumption D(x(t), u(t)) at demands
markets. It is known that the tax adjustment is an efficient means of regulating

production and consumption. Specifically, if the policy-maker is concerned with
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restricting production or consumption of a certain commodity, then higher taxes
will be imposed; whereas if the government aims to encourage production or
consumption of some commodities, subsidies will be imposed . we introduce the
function of commodity shipments x(t) and regulatory taxes u(t) as follows:

W(t,x(t), u(t)) = (S(x(t),u(t)), D(x(t),u(t)))T ,vt € [0,T].
Obviously, the map W is defined as W : [0,T] x R™ x R™* - R™M*" \W\e
assume that then map W(t, x, u) can be written as

W(t,x(t), u(t)) = G(t,x(t)) + F(u(t)),vt €[0,T]
such that G(t, x) is a Carath’eodory function (that is, it is measurable in t for all
x € R™and continuous with respective to x) and F(u) is Lipschitz continuous.
Moreover, assume that there exists y(t) €L?(0, T ) such that
NG, 0Ol < y(t) + lIx]|.
Thus, it is easy to know that
W : [0,T] x L>([0,T],R™) x L*([0,T ],R™*™) — L3([0,T ],R™*™).
Finally, we suppose that the following lower and upper capacity constrains are
satisfied:
w(t) = (S(6), D)), w(t) = (5(t), D(1)),

where  S(t),S(t) € L*([0,T],R™),D(t),D(t) € L*([0,T],R™),0 < S(t) <
S(t) for almost all t € [0,T]and 0 < D(t) < D(t) for almost all t € [0,T].
We note that the capacity constrains are assumed to be independent of x and u.
We introduce the set of feasible states as follows:
{K = w € L2([0, T],R™™): w(t) < w(t) < w(t) for almost all t €
[0, 71}
we say that u*(t) is an optimal regulatory tax if it makes the corresponding state
W(t, x(t), u*(t)) satisfying the constraint W(t, x(t), u*(t)) € K

and for almost all t € [0, T ], the following three conditions hold:
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W (tx(0),u™() = wr(t) =u- () 2 0r = 1,2--- . m+n,
W (tx(0),u™ () = wr(t) =u- () < 0r = 1,2--- m+n,
we(t) < Wr(t,x(t),u"(t)) <wr(t) >u-(t) = 0,r = 1,2, m+ n.

It is easy to see that a regulatory tax vector u*(t) € L*([0,T ], R™*") is optimal
if and only if it solves the following inverse variational inequality:
W ((x(t), u*(£))eK, fOT(w(t) — W(t,x(t),u*(t),u*(t)dt <0,vw(t) €K) (24)
On the other hand, we know that there is a relationship between the change rate of

commodity shipments x(t) and regulatory taxes u(t) with the commodity shipments

X(t). We require that

#£(t) = (i, #(t)) + B, z(E) )ilt), for almost all ¢t € [0, 77,

(25)
where f: [0,T] x R™ —» R™and B: [0,T] x R™ — R™(M+1) are two
maps satisfying some suitable conditions.

Combining (24) and (25), we know that (x(t), u(t)) is a Carath’eodory weak

solution of the following DIV problem:

[ 2(t) = f(t,z(t)) + B(t, z(t))u(t),

u(t) € SOLIVI(—K, —G(t,z(t)) — F (")),
z(0) = z5.

g

) (26)
Specially, suppose that w,.(t) and w, (t) are constants for r = 1,2,--- m+ 1

and
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f(t ‘:C) = ‘ 3 -'6;1?1
\amt
/ tsin(xzy) 0 0
tsin(zz) 0 0
B(t,z) =
\tsin(:r-m) 0 --- 0
( Alf’t |
Elhz) =

t .
Ame + Tom

\ 0

Fla] =,

where x = (x;,- -+, x,,)T . Then, all the conditions of (b) in Theorem (2.1.14) are

satisfied and so it shows that DIVI (26) has a Carath’eodory weak solution (x(t),
u(t)).

41



CHAPTER 3
Theory in Reflexive Smooth Banach Spaces and

Applications to P-Laplacian Elliptic Inequalities

Variational inequality theorems are proved and applied to study existence of
nonzero positive weak solutions for p-Laplacian elliptic inequalities and a

population model of one species arising in mathematical biology.

Sec(3.1) : A variational inequality theory in reflexive smooth

Banach spaces

We develop a theory for variational inequalities of the form
(Jx — Ax,x —v) < Oforv €K (1)
in a reflexive smooth Banach space X, where J : X — X™is a duality map with a
gauge functionand A: D < X — X"is a demi continuous S-contractive map.
A theory for variational inequalities (1) with J = 1, the identity map, and A being a
demicontinuous S-contractive map in Hilbert spaces was established in , and an
index theory for such variational inequalities with condensing maps in Hilbert
spaces was developed in . However, these theories cannot be applied to treat p-
Laplacian elliptic inequalities with p # 2. An index theory for (1) with J being
strictly monotone and coercive and A compact was established in.
The key requirements are that A is compact and the map rA must be continuous,
where r is the unique solution map of (1) with J. However, it is known that rA may
not be continuous if A is demicontinuous. We refer to for the related study on a
class of maps of S-type and to for the study of the fixed point equation x = rAx.
To develop the theory for variational inequalities (1) in reflexive smooth Banach
spaces, we employ the method used in , where the variational inequality theory for

demicontinuous S-contractive map in Hilbert spaces is established. The main ideas
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originate from the Granas topological transversality which was developed in order
to study existence of fixed points for nonlinear maps .

Following , we introduce the essential maps for the variational inequality (1) in the
class of demicontinuous S-contractive maps in reflexive smooth Banach spaces
and prove three standard properties of variational inequalities:

existence property, normalization and homotopy property. These properties are
generalizations of those in , where the spaces involved are Hilbert spaces.
Sufficient conditions for maps to be essential or non-essential are provided. These
conditions are similar to those used in the fixed point index theories or variational
inequality theory , namely, the Leray—Schauder type conditions and the conditions
implying that the fixed point index is zero. Some variational theoremsare proved,
where the generalized projections introduced by Alber play important roles. The
proofs of these results are more difficult than those in Hilbert spaces .

As applications of the variational inequality theory, we study existence of nonzero

positive weak solutions for the following p-Laplacian elliptic inequalities

—Apu(x) = f(x,u(x)) foralmostevery (a.e.)x € £2,

u(x) =0 onds2,
(2)

where A, is the p-Laplacian operator and Q is a bounded and connected open set in
R™,

Existence of positive or nonzero positive weak solutions of the Laplacian elliptic
inequalities (2) when = 2 , where 2 < p <n and the critical point theory was
applied.

To the best of our knowledge, when 2 < n < p, there is little study on existence
of nonzero positive weak solutions of the p-Laplacian elliptic inequality (2).

Our theory is suited to treating (2) with 2 < n <p. One of our conditions imposed

onfis
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If (x,u)] < gr (x) fora.e.x € Nand allu € [0,7r] 3)
This condition (3) is more general than those used in , where suitable upper bound
conditions related to uo are imposed on |f (x,u)|. We refer for the study of p-
Laplacian equations with p > 2, where a condition imposed on f is stronger than
(3).

we establish the variational inequality theory in reflexive smooth Banach spaces.,
we prove some variational inequality principles. we apply this variational
inequality theory to study (2). we obtain results on the existence of nonzero
positive weak solutions for (2) with the specific nonlinearity arising in
mathematical biology.

Let X be a Banach space and X*its dual space. Recall that X is strictly
convex if [x + ylI< 2 for x, y €0dBl:= {x € X:[l x |= 1}with x # y; is
smooth if the limit lim. ot 2(ll x + ty | =l x I)exists for x, y € dB,. It is
known that if X is reflexive, then the following assertions hold:

()X is strictly convex if and only if X™is smooth;

(if) X is smooth if and only if X*is strictly convex. Recall that X has property (H) if
v, =y and lly, Il — llyll together imply y,, — y. Every locally uniformly convex
Banach space is reflexive, strictly convex and has the property (H).

Recall that a continuous function ® : R, — R, is said to be a gauge function if ®is
a strictly increasing function with ®(0) = 0 and limt;_,, ®(t) = . Assume that
X*is strictly convex. A map /: X — X"is said to be a duality map with gauge
function @ if, for each x €X, (J(x), X) = O(lIxI)lIxlland IIxIl = O(lIxIl). When ®(t) =
t, J is called a normalized duality map. J is a bounded single-valued map and is
demicontinuous, that is, if {x,, } =X and x,, — X €X together imply Jx,, —Jx,

where the symbols—and —to indicate strong and weak convergence, respectively.
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Moreover, J is monotone and if we assume further that X is strictly convex, then J
Is strictly monotone, that is,
(Jy — Jx,y — x) >0 forx,y € Xwithx #y 4)
Note that the smoothness of X or the strict convexity of X*is not sufficient for a
duality map to be strictly monotone .
A map T:D cX - X*is of S*-type if {y,}cD with y, =y €X and
lim sup(Tyy, yo, — v) < 0 together imply y,, = y . Itis easy to verify that J is of
S*-type if either X has the property (H) or there exist o > 0 and @ > 0 such that
Ju—-—Jvu—-—v) 2cllu—-vI% foruv €X (5)
Amap A: D c X — X"is said to be compact if A is continuous and A(Q) is
relatively compact for each bounded subset Q of D. If T: D c X — X*is of S*-
typeand A: D ¢ X — X*is compact, then T + A is of S*-type.
Amap A:D c X — Xissaid to be S-contractive (on D) if J — A is of S™-type. It
IS obvious that if A is S-contractive on D, then A is S-contractive on Q for every
subset Q of D. Moreover, the sum of an S-contractive map and a compact map is
S-contractive. Now, we establish a theory for variational inequality of the form
(Jx — Ax,x —v)< Oforv €K (6)
where J: X — X%is a duality map with gauge function ® and A: D c X —
X"is an S-contractive map on D.

In the rest of this section, we always assume that X is a reflexive smooth
Banach space. Hence, its dual space X™is strictly convex.
Variational inequalities for maps of monotone types arise in physics, mechanics,
engineering, control, optimization, nonlinear potential theory and elliptic
inequalities and have been widely studied, The theories of variational inequalities
(1) in Hilbert spaces were established where ] = [ and A is a demicontinuous S-

contractivemapor a condensing map. However, these theories cannot be applied to
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tackle the p-Laplacian elliptic inequalities with p # 2. The related studies on the
fixed point equations and on variational inequalities for maps of S-type

The variational inequality (3) is said to have a solution in D if there exists x €D
such that (3) holds. The complementarity problem of A:

(Jx — Ax,x) = Oand (Jx — Ax,v) = Oforv €K @)
Is said to have a solution in D if there exists x € D such that(4) holds.

A closed convex set K in X is called a wedge if Ax € K forx eKand A> 0. If a
wedge K also satisfies K n (—K) = {0}, then K is called a cone. A wedge which
Is neither a cone nor a subspace of X is called a proper wedge. It is well known that
If K is a wedge in X, then x €D is a solution of the variational inequality (6) if and
only if x €D is a solution of the complementary problem (7). If K is a subspace of
X*, then x € D is a solution of the variational inequality (6) if and only if (Jx —
Ax,v) = Ofor all v €K, that is, Jx — Ax is orthogonal to K .

Let K be a closed convex set in X and let D be a bounded open set in X such
that D, = D N K#@. We denote by D,and dDy the closure and the boundary,
respectively, of D, relative to K. for some properties among these sets. We denote
by V(D ,X*)the set of all demicontinuous S-contractive maps A : D, — X*such
that (6) has no solutions on 6Dy .we generalize the definition of essential maps
related to variational inequalities from Hilbert spaces to reflexive smooth Banach
spaces.

Definition (3.1.1)[3]: A map A € V(Dg, X™)is said to be essential on Dy if for
each map ¢ eV(Dg, X™) with ¢(x) = Ax for x eoDK , the variational inequality of
¢

(Ux — p(x),x —v) < Oforv €K (8)

has a solution in Dy .
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The following important properties of essential maps are generalizations
from Hilbert spaces to reflexive smooth Banach spaces.
Theorem(3.1.2)[3]: Let K be a closed convex set in a reflexive smooth Banach
space X and let D be a bounded open set in X such that Dy # @. Then the
following assertions hold.
(P1) (Existence property) If A € V(Dg, X*)is essential on , then (6) has a solution
in Dy, .
(P2) (Normalization) Assume that J is of S*-type and strictly monotone. If u € Dy,
then Ji is essential on DK, where Jii(x) = Ju for X €D, .
(P3) (Homotopy property) Let D, # K and let A, B : D, — X*be demicontinuous
S-contractive maps. Assume that the variational inequality of h(t, - )has no
solutions on 8D, for each t € [0, 1], where h: [0,1] < Dy, — X*is defined by
h(t,x) = tAx + (1 — t)Bx.
Then A is essential onDy if and only if B is essential onDy .
Proof: (P;)The result follows from Definition (3.1.1) with ¢ = A.
(P,) If Dx = K, then K is bounded since D is bounded. Since J is of S+-type, Jii:
K — X™is a demicontinuous S-contractive map. Let ¢ € V(Dg,X")with ¢(x) =
Ju for X € dDg . Since Dy = K the variational inequality of ¢ has a solution in K
and J"u is essential on D . If D # K, then the variational inequality of /"u has a
unique solution in D, and has no solutions on 8D, . Hence, Jii€
V(Dg,X*). Let @ € V(Dg, X )with ¢(x) = Jii(x) = Ju for x€ dDg . Define a
mapT: K = X'by

L =] @) ifx € Dk
J(u) if x € K\Dg'

47



Then T is a demicontinuous S-contractive map. If K is bounded, the variational
inequality of T has a solution in K. If K is unbounded, noting that Dy is bounded,

we have for every x, € K,

(Tx,x — Xq) (J(u).x —Xq)
- = —_— < 1
x€K,|[x[l>co sup (Jx,x) x€K, [Ix||>00 sup (Jxx) 0

By a method similar to the first part of the proof of Theorem(3.1.1) we can show
that the variational inequality of T has a solution x € K. We prove X € Dy . In
fact, if x eK\Dy , then x # u and Tx = Ju. By (4) and the strict monotonicity of
J, we have
O< (Ux —Jux —u) = (Jx — Tx,x —u) <0,

a contradiction. Hence, ¢(x) = Tx and x is a solution of the variational inequality
of ¢. By Definition (3.1.1), Jii is essential on Dy .

(P3) Assume that B is essential on DK . Let ¢ € V(Dg , X™)with ¢(x) = A(x) for x
€0Dg Define h* : [0,1] % Dx = X*by h*(t,x) = te(x) + (1 — t)B(x).LetF

be the set of all the solutions in DK of variational inequality ofh*(t, - ) for t € [0,

1]. Then F=@since B is essential on Dx . We prove that F is closed in X. In fact, let
{u,} cF withun — uand {t,} < [0, 1] with t,— t,. Then
(Ju, — h*(t,,uy),un — v) < 0 forv €K 9
Since J, B and ¢ are demicontinuous, Ju,, — h*(t,, u,) = Ju — h*(ty,,u)and
{Ju, — h * (t,, u,)}s bounded. This implies

(Ju, — h'(tp,uy),u — v) > (Ju — h*(ty,w),u — v),forveK

(10)
Noting that u,, = u and
|Jup = A7 (tn un) Uy — W] <N jun — A7 (tn, up) Il upy — w ll,
we have
lim (Jup — R (tn, un), un —u) =0 (11)
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Let v eK. Then
Uun = h*(tn, un) un — u) + (Juy — h'(ty, un) u — v)
= (un = h'(tn, un) up — v).
This, together with (6)—(8), implies
(Ju — h*(t0,u),u — v) < Oforv €K
andu €F .

By Urysohn’s lemma there exists a continuous functiond : Dy — [0, 1]such that
A(x) = Oforx € dDg and A(x) = 1forx € F.DefineamapT : Dy —» X*by
Tx = Ax)p(x) + (1 — A(x))B(x).

Then T is a demicontinuous S-contractive map. Since

Tx = B(x) = h*(0,x) for x € aDy

and the variational inequality of h*(0, - )has no solutions on 0Dy ,T €
V(Dg,X*). Since B is essential on Dg, by Definition (3.1.1), the variational
inequality of T has a solution x, € Dy, . Let t, = A(xy). Then Txy, = h*(ty, x¢)and
X0 is a solution of variational inequality of h*(t,, - ). Hence, xo € F ,A(xy) = 1
and Txy = @(xp). It follows that x, is a solution of variational inequality ofe. By
Definition (3.1.1), A is essential on Dy . For the converse, the proof is exactly

Same.
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Sec(3.2): Variational Inequality Theorems

In this section we prove some results on existence of solutions of (3). We
first prove the following result under the Leray-Schauder type condition.
Theorem (3.2.1)[3]: Let K be a closed convex set in a reflexive smooth Banach
space X and D a bounded open set in X such that D, = @and Dy # K. Assume that
J is of S*-type and strictly monotone. Assume that A: Dy — X*is a
demicontinuous S-contractive map satisfying the following condition.
(Ls) There exists x, € Dy such that the variational inequality of tA + (1 — t)JX,has
no solutions on oDy for each t €(0, 1).
Then (3) has a solution in D, . Moreover, if (3) has no solutions on dDg , then A is
essential on Dy, .
Proof: Assume that (3) has no solutions on dDy . Define h : [0,1] %< D; = X*by

h(t,x) = tAx + (1 — t)]x,.

By Theorem(3.1.2) (P2), Jx, is essential on D, . Note that the variational inequality
of JX, has no solutions on oD . It follows from
(P3) with B = JX, that A is essential on Dy .
The following result provides general conditions which ensure that (3) has nonzero
positive solutions from Hilbert spaces to reflexive smooth Banach spaces.
Theorem (3.2.2)[3]: Let K be a closed convex set in a reflexive smooth Banach

space X and let D!, D be bounded open sets in X such that D¢ # @, Dg #K and

-1 —
DxCDy . Assume that A : Dg — X*satisfies the following conditions.
(H1) A € V(Dg, X™)is essential on Dy .

—1
(H2) A € V(Dg, X*)is not essential on Dg

Then (3) has a solution in DK\D_é :
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Proof: Since A is not essential on Dg , there exists ¢ € V(Dg, X*)with ¢(x) =

Ax for x € 0Dg such that the variational inequality of ¢ has no solutions in D .
Defineamap T : Dx — X*by
" :{ (@) if x €D}

Ax if x € Dg\Dg
Then T is a demicontinuous S-contractive map on Dg . Moreover, T €
V(Dg,X*) and Tx = Ax for x € dDg . Since A is essential on Dk , it follows

from (P1) that the variational inequality of T has a solution x, in D . Since the

variational inequality of ¢ has no solutions in Dg , we have x, € DK\511< and thus
X, 1S a solution of (3).

The following result gives conditions under which the maps are not essential.
Lemma (3.2.3)[3]: Let K be a wedge in a reflexive smooth Banach space X and D
a bounded open set in X such that Dx + @. Assume that A € V(Dg, X™)is bounded
and satisfies the following condition.

(E;) There exists e € K with || e || = 1 such that the variational inequality of A +
B] é has no solutions on 0Dy for each 8 > 0.

Then A is not essential on Dy .

Proof: Since J, A and Dx are bounded, 7:= sup{llJx — Ax |l: x € Dg} <
o.Let O > /| Je Il. Define amap S : Dg = X*by

Sx = Ax + ByJe. Then S is a demicontinuous S-contractive map and it follows
from (E,) that S € V(Dg, X™). We prove that the variational inequality of S has no
solutions on Dy . In fact, if not, there exists X €Dk such that (Jx — Sx,x — v) <
0 for each v € K. Taking v = x + e implies (Jx — Sx,e) = 0. Hence, (Jx —
Ax,e) = (ByJe, e)and

BollJe l = (ByJe,e) < (Jx — Ax,e) <l Jx — Axlllell < 7,
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which contradicts the choice of S,. (P1), S is not essential on Dx . Define h :
[0,1] x Dx = X*by h(t,x) = tAx + (1 — t)Sx. Then

h(t,x) = Ax + Bo(1 — t)je for (t,x) € [0,1] % Dy.
By (E1) and A € V(Dk, X"), the variational inequality of h(t, -+ ) has no solutions

on oDK foreachte [O,1].

(P3), A is not essential on Dy.

Combining Theorem(3.2.1)and Lemma(3.2.3),and using Theorem(3.2.2) we obtain
the following result. Its proof is similar to that of Theorem(3.2.4) and we omit it.

Theorem (3.2.4)[3]: Let K be a wedge in a reflexive smooth Banach space X and

let D!, D be bounded open sets in X such that 0 € D, and D_,l( C Dy . Assume that
J is of S+-type and strictly monotone. Assume that A : Dy — X*is a bounded
demicontinuous S-contractive map satisfying the following conditions:

(i) (LS) of Theorem( 3.2.1) holds on oDy .

(ii) (E;) of Lemma( 3.2.3) holds on 0D}

Then (4) has a solution on D, \D3 .

In the following, we generalize Theorem(3.2.4) and study existence of
eigenvalues for variational inequalities. a function d* : X* x X — Ris defined by
d*(u,x) =l xI1*= 2(uw,x) + 1l ul? 9)
Definition (3.2.5)[3]: Let K be a nonempty closed convex set in a Banach space
X.Amapr: X* — K is said to be the (generalized) projection from X*to K if it
satisfies
d*(u,r(w)) = d"(u,K) := inf{d"(u,x) : x €K} foru € X*.

Lemma (3.2.6)[3]: Let K be a nonempty closed convex set in a reflexive and
strictly convex Banach space X. Then there exists a unique

projectionr: X* — K.
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Proof: Since X is reflexive, it follows from Theorem (3.1.2) that r(u) exists for
u € X . Since X is strictly convex, by Theorem (3.1.2) is unique.

From now on, we always assume that X is a reflexive, strictly convex and smooth
Banach space and J: X — X"is the normalized dual map. Since X is strictly
convex, J is strictly monotone .

Lemma (3.2.7)[3]: Let K be a nonempty closed convex subset of X. Let u €
X*and x € K. Then the following assertions are equivalent:
() (Jx —u,x —v) <O0forallv eK.
(i) x = r(u).
By Lemma (3.2.7), it is easy to prove the following result.
Lemma (3.2.8)[3]: Assume that 0 € K. Then r(u) = 0 if and only if (u,v) <
Oforv € Kifand only ifu € —K*if and only if | u |1?>= d*(u,K), where
K'={u€eX*: (wv) = 0forv € K}

is the dual cone of K.
The following result gives relations between J and d*
Lemma (3.2.9)[3]: (i) d*(u,x) = Oifandonly ifu = Jx.
(i) u € J(K)ifand only if d*(u,K) = 0.
Proof: (i) Assume that d*(u,x) = 0. Since (u,x) <l u llll x I, we have
0 =lxl*= 2(w,x) +lulP=Nul®*= 20ulllxl +lul*= (lxI
— 1 u )2

This implies that lull=1 x lland (u,x) = §[||u||2+||u||2] =Mlulllxl.

Since J is a single-valued map, u = Jx. Conversely, assume that u = Jx. Since J is
a normalized duality map from X to X*, (J(x),x) =l Jx 1l x ll and Il Jx I =l
x Il. By (8),

d*(u,x) = d*(Jx,x) =l x1°= 2(x,x) + 1 Jx =1 x1?= 21 x I> + |

x I?= 0.
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(i) Let u €J(K) and let x €K be such that u = Jx. Then
d*(u,r(w)) = d*(u,K) =d*(Jx,K) < d*(Jx,x) =0
and d*(u,r(w)) = d*(u,K) = 0. Conversely, if d*(u,r(u)) = 0, then by (i),
we have u = J(r(u)) € K.
()Where X is assumed to be auniformly convex and uniformly smooth Banach

space. Lemma (3.2.9)(ii)We give two examples of generalized projections in
W, P(Q) and LP(Q).

Let W, P:= W, "P(Q) is the Sobolev space with the standard norm

i ?= (f, [Pulp dx) (12)

2\1z
ou(x) ou(x) IVU(X)| :[Z{(”:l<% )] and Q is a bounded and

ox1' "7 9xm'’

where Vu(x) =

connected open set in R™(n = 1). Itis known that WP
is a uniformly convex and smooth Banach space. Hence, W, P is a reflexive,
strictly convex and smooth Banach space with property (H). The dual space of
W, Pis denoted by W~ "P(Q),where 1/p + 1/p’ = 1.
We denote by P the standard positive cone of Wol’p , that is,
P={ue Wol’p:u(x) > Oa.e.on} (13)
We need the following weak comparison principle.
Lemma(3.2.10)[3]:. Assume that w, u EWOLp satisfy
Jw(x),v(x)) < (Ju(x),v(x)) forv e Pand a.e.x € 2. Thenw(x) <
u(x) fora.e.x € 0.
Remark (3.2.11)[3]: By Lemma (3.2.10) we see that if Ju € p*, then u €P.
Moreover, if Ju(x) > O fora.e. x€Q, thenu € P.
Example (3.2.12)[3]: The map r : W ~1P'— P defined by

r(w)(x) = max{Jp'u(x),0}
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is the generalized projection from W ~1P’to P, where

Jpu(x) = Il w5 (—APu(x)for x €Q (14)
0

is the normalized dual map from Wol'p to w~1P’and

_ 0 _o 0u(x)
Apu(x) =T, = (IPu@)P2Z3).

Proof: Let u €W,”0,={x €2: Ju(x) = 0tand 2—= {x €0 :
Jpu(x) <0} Let w(x) = max{/,u(x),0} for x € Q.

Thenw(x) = Jyw(x) = 0 forx € 2 —and

w(x) = Jpu(x)and J,w(x) = u(x) for x €Q,

since J,/p,U(X) = u(x) for x €Q. Since J,u(x) <0 for x € 2 —, it follows from
Remark( 3.2.10) that u(x) < O for x € 2 —. Let

v EPand¢ = (J,w — u,w — v). Then

§ = f Lpw(x) — u@)I[w(x) — v(x)] dx

Q
= Jo W) — uGOIlw(x) — v)] dx+f,_[/pw(x) — u()]w(x) —
v(x)] dx
=f,_u)v(x)dx < 0
The result follows from Lemmas (3.2.7) and (3.2.6).
By a proof similar to that of Example( 3..2.12), we obtain the following
result.
Example (3.2.13)[3]: The map r : L7(2) — K, defined by
r(u)(x) = max{/,u(x),0}
is the generalized projection from L7(Q) to K,, where

Jpu(x) =1 127 gy u()IP~2u(x) for x € 0
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and K,:= {u € LP(2) : u(x) = Oa.e.on }.
Theorem (3.2.14)[3]: Let K be a wedge in X with J(K) n K* # {0}. Let D*, D be
bounded open sets in X such that 0 € D! and D_,l( c Dy .Suppose J is of S, type,

A: Dg — X*is a bounded demicontinuous S-contractive map and B : D_,l( - X"is
a compact map.

Assume that the following conditions hold.

(h,) A satisfies (Lg) of Theorem (3..2.1) on .

(h,) Either B(0Dg) N (—K*) = @or the following conditions hold.
(i) inf{ll Bx II: x € D%} > 0.

(i) B(Dg) N ((-K")V(K)) = @.
(h3) The variational inequality of A + AB has no solutions on D} for 2 > 0.

Then (6)) has a solution on Di\D} .
Proof: Assume that (6) has no solutions on Dg U dDL . By (Lg) and Theorem
(3.2.1), A'is essential on Di . SinceJ(K) N K* # {O},there exists e € K with || e ||
= 1suchthat Je € K*. We prove the following assertion:
(E,) There exists A, > 1 such that the variational inequality of A + 1,B + fBfe
has no solutions on dD} for eachp = O.
In fact, if not, there exist {x,} c aD} {1,,} < (1, ) with 1, - o {B,} C
[0, co)such that
(Uxn, — (Ax, + A,Bx, + Bnje),x, — v) < Oforallv €K (15)
Taking v = x, + e in (13) implies

BnllJe I = Bn(e,e) < (xn — Axp,e) — An(Bxy, e)
and

Il Jxn — Axy |l N I Bxy, |l
Il Je Il 1, Il Je |l

M
An
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Since D_,l( J,A and B are bounded and A, — oo, {B,/A,}is bounded. We may
assume that 8,/4,, = Bo,Bx, = wand x,, = x € K.Letv € K. By(15),

A, — Ady Bn
() = Brw = w) = G = Bollesta= v) = (w + foJe,xy — v)

An
< 0.
Taking limit implies —(w + ByJe,x — v) < Oforv € K and
(w +ByJe,u) < Oforu €K (16)
This, together with Je € K™, implies
(w,u) < —(ByJe,u) < 0 foru €K (a7

By Lemma( 3.2.8), we have r(w) = 0.
(i) If the first condition of (h,) holds, then r(w) = 0 implies that
inf{ll 7(Bx) Il: x € D%} = 0,
where r is the same as in Lemma (3.2.6). Hence, there exists {u,} < dDgsuch that
r(Bu,) — 0. Since B is compact, we may assume that Bu, - w € B(aD_,l().
Since r is continuous, r(w) = 0. By Lemma (3.2.8), w € —K"*. Hence,
B(dD1) n (-K*) # @,
which contradicts the hypothesis B(aD_,l() n (—K*) = @.
(if) Under the second condition of (h2), if w € J(K), then by Lemmas (3.2.9)(ii)
and (3.2.8),

Il wl?= d*(w,r(w)) = d*(w,K) = 0.
Hence, we have w = 0, which contradicts inf{ll Bx l: x € dDt} > 0.If w/ €
J(K), then noting that r(w) = 0, we have by Lemma (3.2.8), w € —K™. Hence,
w € (—K*)\J(K)and B(dD3) N (-K*)\J(K) # @, a contradiction.
Define a map T : D_,l( - X*by Tx = Ax + AyBx. Then T is a demi-continuous
S-contractive map and the variational inequality of T has no solutions on D} .
Hence, Te V(D% X*)and T is bounded since A and B are bounded. It is shown

57



above that the variational inequality of A + A,B + fe has no solutions on dD}
for each § > 0. By Lemma( 3.2..3), T is not essential on D} . By (hs), the
variational inequality of tA + (1 — t)T = A + tB,B has no solutions on dD}
fort € [0, 1].

It follows from Theorem (3.1.2)(P3) that A is not essential on D} . By Theorem
(3.2.1), (6) has a solution in Dk \D& . The result follows.

Remark (3.2.15)(3]: It is easy to show that if B(D_,l() c J(K), then Theorem
(3.2.14)(ii) is satisfied, and if J(K) n K* #= {0}, then K + —K.

By Lemma (3.2.8) one can prove that (h2) is equivalent to inf{l[r(Bx)ll :x €
dD:} > 0.

By the proof of Theorem( 3.2.14), we obtain the following result on the existence
of eigenvalues of variational inequalities.

Theorem (3.2.16)[3]: Let K be a wedge in X with J(K)YNK* # {0} and D a
bounded open set in X such that 9D, # @. Suppose J is of S*type, A : D, — X*is
a bounded demicontinuous S-contractive map and B : Dy — X™is a compact map.
Assume that (h)—(h,)of Theorem 3.4 hold on dDy . Then there exists A = 0 such
that the variational inequality of A + AB has a solution on dDy.

Proof: The proof is by contradiction. We may assume that (6) has no solutions on
0Dy . If the result were false, then (h3) of Theorem (3.2.7) holds on . By the proof
of Theorem (3.2.14) we see that under (h2), A is not essential on Dy . On the other
hand,by (h,) and Theorem (3.2.1), A is essential on Dy .

In Theorem( 3.2.14), K is required to satisfy J(K) n K* # {0}. From the
following result, we see that the last condition can be dropped if K is a proper

wedge.
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Theorem(3.2.17)[3]: Let K be a proper wedge in X.Let D!,D, A, B be the same
as in Theorem (3.2.14). Assume that (h,) of Theorem (3.2.14) holds on dDg and
(h3) of Theorem(3.2.14). holds on D . Assume that the following conditions hold.
(h2) B(@Dg) N I(K N (=K)) = 9.
(h)) d*(w,K) <d*(w,K n (—K))forw € B(dDg) with d*(w,K) > 0.
Then (6) has a solution on D, \D} .
Proof: The proof is similar to that of Theorem (3.2.14) and we sketch the proof.
We can choose e € K N (—=K)with |l e | = 1. We prove that (E,) holds. In fact,
if not, there exists {x,,} © dDz}such that Bx,, » wand (3.2.9) holds. Let v € K
andu = fye + v.
Then u € K. Note that J is homogeneous and odd operator BY(17), we have
U(=Boe) — w,(=Boe) — v) = (w + BoJe,foe + v) = (w + Boje,u)
< 0.(17)

Sincee € K n (—K), we have —f,e € K. By (18) and Lemma (3.2.7), r(w) =
—Lye. This implies that

d*(w,K n (—=K)) < d"(w,—Bye) = d*(w,r(w)) = d*(w,K)

< d*(w,K n (—K))

and d*(w,K n (=K)) = d*(w,K). Since w € B(dDy), it follows from (h3)
that d*(w,K) = 0. Hence, d*"(w,K n (=K)) = 0.

By Lemma (3.2.9)(ii), w € J(K n (—=K))and B(dD%) n J(K n (—K)) # @,
which contradicts (h5).

In Theorems (3.2.8)—(3.2.10), K is not a subspace of X. To obtain results when K
is an infinite dimensional subspace in X, we first prove the following lemma.
Lemma (3.2.18)[3]: Let K be a wedge in X such that dK; = {x e K: [l x Il =

1}is not compact. Assume that D! is a bounded open set in X such that D} #@.
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Assume that B : D_,l(—> X*is a compact map such that the first condition of (h2) in
Theorem (3.1.4) holds.Then there exists e €0K;such that
—r(B(dD})) N {fe: f = O} = ¢ (18)
Proof: The proof is by contradiction. If (18) were false, then for each x € 0K,
there exists B, x > 0 such that B, x € —W).
Let = inf{ll (Bx) ll: x € dDL}. Then by the first condition of (h,) and Remark
(3.2.15) B, = a > 0 for each x €0Ds. Let Q = {B,x: x € dK,}. Then

0K, = {x €K:llxll= a} cco(Q U {0}) cco(—r(B(3DL)) U {0}.
Since B is compact and r is continuous, r(B(dDz))is relatively compact and
dKais compact, which contradicts noncompactness of dK; .
Theorem (3.2.19)[3]: Let K be an infinite dimensional subspace in X.Let D1, D
be bounded open sets in X such that 0 € D' and D! < DK .
Suppose J is of S, type, A: Dy — X*is a bounded demicontinuous S-contractive
map and B : D_,% — X™is a compact map.
Assume that (h,), the first condition of (h,), and (h3) of Theorem (3.2.14) hold.
Then there exists x € Dk \Dj such that x — Ax is orthogonal to K.
Proof: Assume that (6) has no solutions on U dD% . By (LS) and Theorem( 3.2.1),
A is essential on Dy . By Lemma (3.1.18), there exists e €K with |lell = 1 such that
(18) holds. We prove that (E,) holds. In fact, if not, a similar proof to that of
Theorem (18)
shows that (15) holds. Let v eK and u = fye + v. Then u € K. By (15), we
have

U(=Boe) — w,(=Boe) — v) = (W + foJe,foe + v) = (w + Boje,u)

< 0.
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By Lemma (3.2.7)r(w) = —pBye. Hence, we have Bye € —r(B(dDg)), which
contradicts (18). An argument similar to that ofTheorem (3.2.14) shows that A is
not essential on D} . The result follows from Theorem (3.2.14).

By a similar proof to that of Theorem (3.2.16), we obtain the following result on
the existence of eigenvalues.

Theorem (3.2.20)[3]: Let K be an infinite dimensional subspace in X and D a
bounded open set in X such that 0D, # @. Assume that J is of S+ type, A : Dy —

X*is a bounded demicontinuous S-contractive map and B : D, — X*is a compact
map. Assume that (h,) and the first condition of (h,) of Theorem (3.2.14) hold on
Dy . Then there exists A = 0 such that the variational inequality of A + AB has a
solution on dDx .

In this section, we apply the results obtained to study the existence of

nonzero positive weak solutions for p-Laplacian elliptic inequalities

{—Apu(x) > f (x,u(x))fora.e.x €0 (19)
,u(x) = 0on an,

where Q is a bounded and connected open set in R™ with meas(2) > 0.

The p-Laplacian elliptic inequalities (19) and equations arise in the study of
Newtonian fluids (p = 2) and non-Newtonian fluids (p # 2)such as dilatant fluids
(p > 2)and pseudoplastic fluids (1 <p < 2).

In the following, we study the case when 2 < n <p. We always assume that the
following conditions hold.

(Co) n € N, the set of natural numbers,and2 < n <p < oo,

(Cy) f: 2 x R+ — R satisfies the Carathéodory conditions, that is, f (- ,u) is

measurable for each fixed u € R and f(x, * )

Is continuous for a.e.x € .

(C,) For each r > 0 there exists gr € L1 (Q) such that

61



If (x,u)] < g,(x)fora.e.x € andallu € [0,r] (20)
We note that the condition (C,) do not require the upper bound of |f (x,u)|to
depend on u, so it is more general than those used, where f satisfies suitable lower
and upper bound conditions depending on u.

We define amap J : WP » W~ "P'hy

Ju(x) = —4,u(x) (21)
Then J is a duality map from Wol'p toWw P with the gauge function &(t) =
tP"fort €eR, , and J is (p—1)-homogeneous,that is, J(cu) =

cP~YJ(u) for ¢ € Ryand u € W,"P . Moreover,

n
du\ ovu
Ju,v) = ZJ <||7u(x)|p'2 —)idx foru,v € Wol’p (22)
it Jg dxi/ o0xi
and
Ju,u)=1llu "Z/Olp foru € Wol’p (23)

Since Wol’phas the property (H) and is strictly convex, J is of S, type and is strictly
monotone.

We denote by P the standard positive cone of W01,p0 given in (12). We define a
mapA: P - W~ 1P'py

(Au,v) = jﬂ f (x,ulx))v(x)dx (24)

Since P is a cone in W, ”, we see that u €P is a solution of the variational

inequality

(Ju — Au,u —v) < Oforv €P (25)
if and only if u €P is a solution of the complementary problem

Ju,u) = (Au,u) (26)
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and
(Ju,v) = (Au,v)forv € P (27
Definition (3.2.21)[3]: A function u € Wol'pis called a positive weak solution of

the p-Laplacian elliptic inequality (3.2.1) if u € P and u satisfies the following

inequality:

n 0
zi:1fg ([Vu()|P~—2 6_>l(J|) dx = jﬂ f (x,u(x))v(x)dx forv € P (28)

By (22), (24) and Definition (3.2.21), we see that u ewol'p Is a positive weak
solution of (19) if and only if u € P and usatisfies (27). Hence, if u € P is a
solution of the variational inequality (19), then u is a positive weak solution of
(19). This allows one to apply the theory developed to the variational inequality
(27) to study existence of positive weak solution of the

p-Laplacian elliptic inequality(19).

Lemma (3.2.22)[3]: Under the hypothesis (C,), the following assertions hold.

(i) WP < C ().

(i)

1.p i1 Erti—' nip—1) __ ook
lullce = f{}"“”wt‘lj,pfﬂr ue W,", wherecy = [meas(,Q)](.” ﬂ) =, § = mp_np and v(§) =) ., A3

(i) If {u,} c Wol’p withu, = u € Wol’p thenuy, —» uin C(2).
Letr >0andletB.= {u €P:llu ||W01,p< rtand 0B- = {u €P:|lu IIW01,p=
r}.

Now, we prove the following result which shows that the map A defined in
(24) maps P into W~1P’and is compact.
Lemma (3.2.23)[3]: Under the hypotheses (Cy)—(C,), the map A defined in (24)

maps P into W ~1P’and is compact.
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Proof: Let + >0 and let u € C,(Q) with Il u ll@y< 7.By (C;), there exists
g, € LY (2)such that (18) holds. Hence,

|f (x,u(x))| < g,(x)fora.e.x €N (29)
We prove that the Nemytskii operator f defined by

fulx) = f (x,u(x))
maps C,(2)toL; and is continuous. In fact, let u € C,(2)and r = |

U llceay. By (C1), f (- ,u(- ))is measurable and by (29),

we have

[ f (x, u(x))| dx < / g (x) dx < 00
2 2,

(30)
and fu €L! foru € C,(Q).Let {uk} c C,(Q)withu, - u €
C.(2) in C(Q), that is, || u, — u ley— O.Thenw(x) — u(x)

for x € 2 and by (C,),
f(xue(x)) = f (x,ulx))foraex € (31)

Letr = sup{ll uk liceoy, Il © llcpy} Thenr < . By (29), we have

If Coue(®)) = f (xouC)l < If (oue@))] + If Geu(x))] <
29, (x) fora.e.x € Q.
This, together with (31) and the Lebesgue dominated convergence theorem,
implies that
K—oo

lim I fue — fullp= ]Llfolof If (twe(x)) — f (x,u(x))| dx
0

=y Ml (@) = f (e u(0)] dx
| limif o) - f el dx = 0,
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Hence, f : ¢, (2) — L, is continuous.

Now, we prove that A maps P into W~1P’and is compact. In fact, let ue
P and v € W,'? . By Lemma (3.2.22)(i) and (ii), we

see that

v(x) <llvl co Il v lly1p forx € Q (32)

C(Q)—

where c, is the same as in Lemma (3.2.22)(ii), and

|(Au,v)| < j F 0 U] IVOOT dX < o 1w Tl 0 j If (% UG dx < oo,

This shows that Au is well defined. Let v,, v € W, P withv, — vinW,"? . By

Lemma (3.2.22)(ii), Il vn — v li¢(y— 0. Since

(A v) — (A, v)| < j 1 (w0 |lon ) — v(0)ldx <
N

v, — v IIC(Q)j If (X, u(x))| dx
0}

we obtain (4, v,) — (A, V) and A, € W~1P'. Hence, A maps P into W~1?". By
Lemma (3.2.22)(iii), A : P - W~1?'is completely continuous and is compact.
Let g € LY (2)\{0} and let

Ug = mf{[ |[Vux)|P dx/f X u)Pdx:ue (W]‘D)Jr 2)\{0}
(33)

for each g € L7 (12)\{0}, there exists Q, € Wol'p N (C.(2)\{0})such that the

followingp-Laplacian equation holds:

{—Ap@g(x} = ;.zgg(x}wg_l(x) fora.e.x € £2,

@g(x) =0 onag2. (34)
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Now, we prove our main result on the existence of nonzero positive weak
solutions of (19).
Theorem (3.2.24)[3]: Assume that (Cy)- (C,) and the following conditions hold:
(i) There exist o > 0, > 0 and ¢, € LT (2)\{0}such that
f (x,u) < (.Uq;ro — &)@ro(x)uP! fora.e.x €Nandallu € [ry,»)  (35)
(ii) There exist p, > 0, > 0 and Yp, € LT (2)\{0}such that
f (x,u) = (,u(pro + e) PYoo(x)uP~ fora.e.x €Randallu € [0,p]  (36)
Then (19) has a nonzero positive weak solution in P.
Proof: By Lemma (3.2.23), A: P - W~1P’is compact. By (C,), for this r, given
in the condition (i), there exists g, € LL ()
such that

If (x,u)| < gro(x) fora.e.x € Nand allu € [0,1;],

If (x,u)] < gro(x) + (uer0 — &)ery(x)uP~! fora.e.x € 2 and all u
ER, 37)
Let

.,
r > max {po. (™ cortgy, llgrollp1) ™" } :
(38)

We prove that the variational inequality of tA has no solutions on dB. for t €
[0, 1]. In fact, if not, there exist u € dP. and t € [0, 1]such that

(Ju — tAu,u — v) < Oforv €P.
By (26), we have

Ju,u) = (tAu,w) = t [, f (x, u(x))u(x)dx (39)
By (11) and (33), we have
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1, Jo @r, GOUP(X) dx < 1lu llfvé,p (40)

By (22), (37),(39),(40) and Lemma (3.2.22)(ii), we have
Il u ||€Vl,p:(Ju,u):th f(x,u(x))u(x)dx < fQ If (c,u(x))  Ju(x)dx

< fg o Ru() dx + (g, — €) fg o (OUP () dx

< Nl lgr (Ol + (g, — EDtag lulty, 1.

< Collully o I8r (Ot - Iy — £ty NI 1.
This implies that

ellu II;l,ps cott@r, Il u Il 121l gp, (x) 2 and we have
0 0

1
_ -1
r=lu ||W01,pg (g 1c0u(,,r0 Il gr, (x) IILl)p <,

a contradiction. Hence, A satisfies Theorem( 3.2.4)(LS) on:= 0dB. .

Let 0 < p <min{r,c;1py}, where ris the same in (38). By Lemma (3.2.22)(ii),
u(x) < llullc < collull,1» =cop < po forx e L andallu € 9P,
0
and by (36), we obtain

f(x, ux)) > (Hy,y + 8)1,bpo(x)up_l(x) fora.e.x € 2 andallu e aP,.

(41)
Let
e(x) = P (x) forx e £2,
where ¢¢po satisfies (34) with g = 1, . Hence, we have
(Je, v) = P f /" x)eP~ 1 (x)v(x)dx forv € P.
“ (42)
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We prove that the variational inequality of A + Bfe has no solutions on dF, for

S = 0. Infact, if not, there exist u € dPp and f > 0 such that
(Ju—Au — BJe,v) =0 forv eP.
BY (41)we see that f (x,u(x)) = 0 fora.e.x € Qandu € dPp. Hence,
(Au, v) = fgf(x. ux))v(x)dx >0 foru e dP,andv € P.
This, together with (43), implies

(Ju, v) > (Au, v) + (e, v) > B(le, v) = (j (ﬁﬁe) . 1-') for v € P.

forv € P.

By Lemma (3.2.10), we have
u(x) > p

1
u(x) > Br-Te(x) forae.x € £2.

Let

1
T=supil >0:ux)=>¢rTe(x)forae.x e 2;.

Then by (44) we seethat0 < f < 7 < coand

1

u(x) > tr-le(x) fora.e.x € 2.

By (41), (46) and (42), we have for v € P,
(Ju,v) > (Au,v) + B(Je, v) > (Au, v) = / f(x,u(x))v(x)dx

&2

2 (Kyp, +8)f Vo WP (X)0(x) dx

2
1
> (Hy,, + E,‘)Tf L”fpo(x}ep_l(x)v(x) dx = o (Je,v) = (j (crpffe. U)
Q
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where 0 = “‘7’;1)0 (wao + &)t . By Lemma (3.2.10), we have

1
u(x) = opr-le(x) forae.x e $2.

By (45), we have > ¢ > 7, a contradiction. Hence, A satisfies Theorem (3.2.4)
(E1) on D}:= dF,. By Theorem (3.2.4), (19) has a nonzero positive weak solution
in P.

As a special case of Theorem (3.2.24), we consider existence of nonzero positive
weak solutions for the p-Laplacian elliptic inequalities

—Apu(x) = f(u(x)), x € £2,

w(x) =0 onos2. 47)
By Theorem (3.2.24), we obtain the following result which is easily verified in
applications when the nonlinearity is independent of the variable x.

Corollary (3.2.25)[3]: Assume that (C,) holdsand f : R — R is continuous and

satisfies the following condition:

, f(u) i g k)
lim sup - il % llmlt‘lf?.
u—oc U u—0+ U (48)

where u; = ug with g = 1 is given by (33).
Then (47) has a nonzero positive weak solution in P.

As illustrations, we study existence of nonzero positive weak solutions of the p-

Laplacian elliptic inequality

forae.x € £2,

—Apu(x) > ruP~1(x) (1 -
u(x) =0 onas2,

u(x) ) au®(x)
K b + u¥(x)

(49)
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arising in mathematical biology, where u(x) denotes the population density of one
species at location x, r is the intrinsic growth rate of the species, K > 0is the

carrying capacity of the species, the term uP~1(x)(1 — u(x)) represents the

au®(x)

bru¥ () contains the functional

logistic growth rate of order p, and the term

response of Holling type III, where a =y, and the parametersa = 0,b,a,y > 0.
To make the population persist on every location X €Q, one needs to find nonzero
positive solutions or weak solutions u satisfying u(x) > 0 for x € 0.

It is well known that the Laplacian elliptic equation with logistic growth rates

—Au(x) = ru(x)(1 —u(x)) forae.x € £,
u(x) =0 onas2, (50)

has a unique nonzero positive solution in C(2) if r € (uy, o), and has no nonzero
positive solutions in C(R)) if r € (0, u1], where n = 1, where n > 1. for the study of
the Laplace equations related to (50). Hence, it is interesting to know whether (49)
has nonzero positive solutions in Wol'p even whena = 0.

In the following, using Corollary (3.2.25), we prove a result on existence of
nonzero positive weak solutions in Wol'p of (49)under the assumption (C,), where
n ENand2 < n < p <o,andweallowa > Oand a # y .

Theorem (3.2.26)[3]:  Assume that (Cy) holds, a = 0 and b > O.Letp €
(0,0), @ € (p,©) and € (0, ). Then (49) has a nonzero positive weak solution
in P for r € (uq, ).

Proof: We define a function R, — R by

: U au®
() = ruP~! (1—-—) = .
/ K b+ u¥

Then
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. f) . u .au*P
lim —— =r lim (1——)—11m —=iF o> BBy
u—0+ uP~1 u—0+ K u—0+ b 4 uY
and
f(u) ) u _ auF?
m—:rhm(l——)-—hm = —00 < [41.
u—oo b1 U—00 K u—oo b 4 u¥?

The result follows from Corollary (3.2.25).
We end this section by considering the following eigenvalue problems on

variational inequalities:
—||u||i/_fp.ﬂpu(x) >fx,ux)) + Arg(x,u(x)) fora.e.x € 2,
0
u(x) =0 onds2. (51)

We first prove the following result.
Lemma (3.2.27)[3]: Let J, and J be the same as in (11) and (19), respectively.
Then

J(P) N P* £ {0} and Jp(P) N P* £ {0}.
Proof: foreachg € L%

(2)\{0}, there exists pg € WP n (C + (2)\{0}) such that

Jog(xX) = —Appg(x) = ,ugg(x)gag_1(x) #0 foraexe 2,

@g(x) =0 onads2. (52)

It follows that J4, # 0 and]y, € J(P). Moreover,

Jpg.v) = [ ,ugg(x}gﬁg_l(x)t.!(x) dx >0 forveP
J 52

and Jgq € P*. Hence, J(P) n P*# {0}. It is obvious that the second result

follows from the first one and (11).
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By applying Theorem (3.2.16), we prove the following eigenvalue result on the
variational inequalities (51).

Theorem (3.2.28)[3]: Assume that (C,) holds and f and g satisfy (C,) and (C5).
Assume further that the following conditions hold.

(i) There exists uy > Oandm € (O[ c2meas() 171)

such that

If (x,u)] < mufora.e.x €Nandu € [0,uy] (53)
whereC, is the same as in Lemma (3.2.22).

(if) There exists ¢ > 0 such that

glx,u) = ¢fora.e.x €Randallu € R, (54)

Then for each € (O.?], there exists A > 0 such that (51) has a positive weak

solution in dF, .

Proof: Let Jp be the normalized duality map defined in (11). By Lemma (3.2.27),
we have J,(P) N P* # {0} Letr € (o,%].

We prove that the variational inequality of tA has no solutions on dP.
fort € [0,1]. Infact, if not, there exist u €dP. and t € [0, 1]such that

(Jpu —tAu,u—v) <0 forveP
By Lemma (3.2.22)(ii), we have

u(x) < llulle) < collully1p = cor <ug forx € £2.
0
By (26), (53) and Lemma (3.2.22)(ii), we have
lull? 1, = lull? 1, = (pu, u) = (tAu, u) =t f f(x, u(x))u(x) dx
Wy Wo -

< ff(x._ u(x))u(x)dx < mf u?(x) dx
2 2
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2 2
< mllnlli(ﬁ)meas (Q) < m Cimeas (Q)lllLllW(:)L,p < ||u||Wé,p

a contradiction. Hence, A satisfies Theorem (3.2.15) (hl) on Dg:= 0dPr .
We defineamap B: P » W~ 1P'py

(Bu, v) = f g(x, u(x))v(x) dx.
£ (55)

Since (C,) holds and g satisfies (C;) and (C,), by Lemma (3.2.23), the map B
defined in (55) maps P intoW—1,p’ and is compact.
For each v € P\{0}, by (55) and (54), we have
|| Bu || HUHWLp > (B, v) = gf v(x)dx >0 foru,veP
0 ?

This implies that Bu € P*and

|Bu|| = o sup{/ wx)dx : w e E3P1} >0 foruelP.
2

Hence, B(dB-) N (—P*) = @and the first condition of (h,) in Theorem 3.4 holds
on Dg:= 0P, . The result follows from Theorem (3.2.13).
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Chapter 4

AGIlobal Error Bounds for Generalized Mixed Quasi

Variational Inequalities

By using these gap functions we obtain global error bounds for the
solution of generalized mixed quasi variationalin equality problem s in Hilbert
spaes.The results given in this chapter  generalize and improve some

corresponding knownresults.

Sec (4.1): Preliminaries and basic facts

In recent years, considerable interest has been shown in developing various
extensions and generalizations of variational inequalities related to set-valued
operators, non convex optimization and non monotone operators. A useful and
important generalization of variational inequalities is a mixed variational inequality
containing the nonlinear term. For the applications of the mixed variational
inequalities, see for example and the references therein. Due to the presence of the
nonlinear term, one cannot develop the projection-type algorithms for solving the
mixed quasi-variational inequalities, which motivated authors to develop another
technique. This technique is related to the resolvent of the maximal monotone
operator. The main idea of this technique was introduced by Brezis Further by
using the concept of the resolvent operator technique, many authors introduced and
studied the various resolvent equations to develop the sensitivity analysis for
mixed variational inequalities.

One of the classical approach in the analysis of variational inequality problem is to
transform it into an equivalent optimization problem via the notion of gap function,
see for example and the references therein. This enables us to develop descent-like

algorithms to solve variational inequality problem. Besides these, gap functions
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also turned out to be very useful in designing new globally convergent algorithms,
in analyzing the rate of convergence of some iterative methods and in obtaining the
error bounds. Gap functions have turned out to be very useful in deriving the error
bounds, which provide a measure of the distance between solution set and an
arbitrary point. Recently, many error bounds for various kinds of variational
inequalities have been established, see for example and the references therein.
Throughout this section, let H be a real Hilbert space, whose inner product and
norm are denoted by -, - and -, respectively. Let C(H) be a family of nonempty
compact subsets of H. Let S, T, : H — C(H) be the set-valued operators and

g : H — H be asingle-valued operator. Leto(:,): H>*x H - RU {+x} be a
continuous bifunction with respect to both arguments. Let F: H x H — R be a
bifunction satisfying F(x, x) = 0, for all x € H. For given nonlinear operator

N(-, -) : H x H — H, we consider the following generalized mixed quasi
variational inequality problem, denoted by GMQVIP, which consists in finding x €
H, u € S(x), v € T(x) such that

F(g(x),9()) + N(u,v),g(y) —g(x) + 9(g(x).9()) — ¢(g(x).g(x)) = 0, vy € (1)
The quasi variational inequality problems are definitely most notable one among
the several variants of variational inequality problems. An important reason for this
Is that a number of problems involving the non convex, and nonsmooth operators
arising in optimization, mechanics and structural engineering theory can be studied
via the generalized mixed quasi variational inequalities, see for example and the
references therein.

If g = I, the identity operator and F = 0, then GMQVIPis equivalent to generalized
mixed set-valued variational inequality problem, denoted by GMSVVIP, which
consists in finding x € H, u € S(x), v € T(x) such that

N(u,v),y — x + o(x,y) —@(x,x) = 0,vy € H (2)

a problem studied by using the auxiliary principle techniques.
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If o(x,y)=¢(y), S=0and T : H— C(H) are set-valued operator, N(u, v) = T(x),
then problem GMSVVIP (2) collapses to set-valued mixed variational inequality
problem, denoted by SVMVIP, which consists in finding x € H such that
ueTHx): u,y—x + o(y) —p(x) = 0,Vy € H, (3)
which was considered by Tang They introduced two regularized gap functions for
above SVMVIPand studied there differentiable properties.
If T is single valued, then problem SVMVIPreduces to mixed variational
inequality problem, denoted by MVIP, which consists in finding x € H such that,
(TEAY =x) + @(y) —@(x) = 0,vy € H, (4)

We introduced three gap functions for MVIP and by using these We obtained
error bounds.

If the function ¢() is an indicator function of a closed set K in H, then problem
MVIP (4) reduces to set-valued variational inequality problem, denoted by SVVIP,

which consists in finding x € K such that:
JuT(x): (u,y —x)+ ¢(y) —¢p(x) =0,vEH (5)

They obtained some existence results for global error bounds for gap function
under strong monotonicity. Later,defined gap functions and by using it they
obtained finiteness and error bounds properties for above set-valued variational
inequalities.

If T is single valued and K : H — C(H) be a set-valued mapping, such that K(x)
Is a closed convex set in H, for each x € H, then above problem SVVIP(5)is
equivalent to quasi variational inequality problem, denoted by QVIP, which
consists in finding x € K(x) such that:

(T(x),y — x) = 0,vy € K(x) (6)
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They derived local and global error bounds for above quasi variational inequality

problems in terms of the regularized gap function and the D-gap function.
Inspired and motivated by the recent research work above, we introduce gap
functions and error bounds for generalized mixed quasi variational inequality
problems. Since this class is the most general and includes the previously studied
some classes of variational inequalities as special cases, therefore our results cover
and extend the previously known results under weaker conditions.

Further we define normal residual vector R(x, 0 ) to derive the global error
bounds for the solution of GMQVIP(1)we introduce a regularized gap function for
GMQVIP(1)and derived error bounds without wusing Lipschitz continuity
assumption, we introduce D-gap function and derive error bounds for the solution
of the GMQVIP(1)under some weaker conditions.

In order to establish resolvent equations for the GMQVIP(1)we needed the

following definitions and results.

Dentition (4.1.1)[4]: LetF:H x H - Rand ¢ : H x H — R be two bifunctions. Then
(a) F is said to be monotone if, F(x,y) + F(y,x) < 0,vx,y € H;

(b) ¢ is said to be skew-symmetric if, ¢ (x,x) —¢ (x,y) — ¢ (y,x) +
¢ (y,y) = 0,Vx,y € H.
Remark (4.1.2)[4]: Clearly if the skew-symmetric bifunction (-, ) is bilinear,
then ¢(x, x) > 0, VX € H. In fact,

¢(x,x) —p(x.y) —d(y.x) + ¢(v,y) = ¢p(x—y.x—y) = O,Vx,y € H.
The skew-symmetric bifunctions have the properties which can be considered an

analog of monotonicity of gradient and non negativity of second derivative for the
convex function.

Definition (4.1.3)[4]: LetS,T,: H — C(H) be the set-valued operators, N(:, -) : H
x H — H be the nonlinear operator and g : H — H be a single-valued operator,
then
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(@) N is said to be strongly mixed g-monotone, if there exists a constant o > 0 such
that

N(u, v) = N(u0, v0), g(x) — g(x0) > allg(x) — 9(xo), I
for all X, o€ H, u € S(x), Uo€ S(Xo), v € T(X), Vo€ T(Xo);
(b) N is said to be mixed Lipschitz continuous, if there exist constants 8, > 0 such
that
IN(u,v) — N(uO,v0)| <Bllu0 — ull + 3[Iv0 — vl|?,
forall x,x, € H,u € S(x),uy € S(x0),v € T(x),vy € T(xp);
(c)T is said to be M-Lipschitz continuous, if there exists a constant p > 0 such that
M(T(X), T(xp)) <u IIX—x¢ VX, xy € H
where M(:, -) is the Hausdorff metric on C(H).
(d)g is said to be Lipschitz continuous, if there exists a constant L > 0 such that
lg(x) —gxa))ll < Lllx — xoll, ¥x, xo € H;
(e)g is said to be strongly nonexpanding, if there exists a constant T > 0 such that
lg () — gQeo)ll = Tllx — xoll, Vx, xo € H
Remark (4.1.4)[4]: From (d) and (e)
Tllx = xoll < llg(x) — gl < Lllx — xoll,
implies that T < L. A mapping g : R — R defined as g(x) = x—lz Vx € [1, 2] is

Q|-

Lipschitz continuous and strongly nonexpanding with L = 4 and t =

respectively, while g(x) is not affine.

The following theorem is a special case of results given by Chang

Theorem (4.1.5)[4]: Let X be a closed convex subset of a Hausdorff topological
vector space E and G : X x X — R be a bifunction. Assume that the following
conditions hold:

() G(x,x) = 0,vx € X;
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(if) G is monotone;
(i) For each y € X fixed, the function x — G(X, y) is upper-hemicontinuous, i.e.,
Iti_r>r(l)sup G(tw + (1 — t)x,y) < G(x,y) Vx,y,w € X,t € [0,1]

(iv) For each x € X fixed, the function y — G(x,y) is convex and lower

semicontinuous;

(v) there exists a compact subset K of E and there exists y, € K N X such that

G(x,y0) < Oforeachx € X\K.

Then the set {x*e X : G(x*,y) = 0,Vy € X} is nonempty convex and compact.
Let & > 0 be a number. For a given bifunction F, the associated Yosida

approximation,F, , over K ¢ H and the corresponding regularized operator, A% |

are defined as follows:

1 1
Fo(x,y) = (5(x —J5(x),y — x) and Aj(x) = g (x— J§ (x))

Where J§ : H — H defined as J§(X)=(1 + 6J5)~(x) is resolvent operater.
Remark (4.1.6)[4]: (i) If Fg(X, ¥) = supyemc(u,y — x) and K = H, M being a

maximal monotone operator, it directly yields

Jo () = (L +60M)™(x). Ag(x) = My (x)
where My := < (I — (I + 6 M)—1) is the Yosida approximation of M and I is the
identity operator;

(ii) Resolvent operator J§ is nonexpansive, i.e.

5 ) = JE O < lIx = yll, vx,y € H.
(iif) From above, we get

Jop(x) = (1+00¢(x,.)" = (1+3p(x))"
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where ¢: H x H - R U {+oo} is a convex, proper and lower-semicontinuous
function in second argument. The subdiffer- ential o¢ of ¢ is maximal monotone
with respect to the second argument, where d¢(x) = d¢(x,").
Now we prove following important result for the characterization of resolvent
operator J 4.(X).
Lemma (4.1.7)[4]: Let H be a real Hilbert space H.LetF: H x H —
Rand ¢ : H x H — R be nonlinear bifunctions and let & > 0. Suppose that the
following conditions are satisfied:
(i)F satisfies condition (i)—(iv) in Theorem(4.1.5).
(i) ¢ is skew-symmetric, convex in second argument and continuous;
(iif) For each fixed z € H, there exists a compact subset K of E and yo€ K N H
such that 6F (x,y,) + (x — z,y0) + 0¢(x,y,) — 0¢p(x.x) < Oforeach x € H\K
Then for each fixed z € H, find x € H such that
OF(x,y) + x —zy —x + 60¢(x,y) — 0 ¢p(x,x) = 0,Vy € H @)
has a unique solution if and only if X = J§ ., [2].
Proof: For each fixed z € H, define G: H x H — R by
G(x,y) = 0F(x,y) + x — z,y — x + 0¢(x,y) — 0 ¢p(x,x) = 0O, Vx,y € H.
Evidently G(x,x) = 0,vx € H and condition (i) of Theoorem(4.1.5)is satisfied.
Further since F is monotone and ¢ is skew-symmetric, then we have
Gx,y) + Gr,= 0[F(x,y) + F.x)] + x —zy —x +y —zx —y + 6[p(xy)
= 0¢(x.x) + d(y.x) — 9(v.¥)]
<—x — y2
<0,
I.e., G is monotone and thus condition (ii) of Theorem(4.1.5) is satisfied. Since F is
upper hemicontinuous and ¢ are continuous, we have that for each x,y,w €

H,t €]0,1],
Itirgsup G(tw + (1 — x,y)
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< Itlirg sup OF (tw + (1 — t)x,y) + Itm sup(tw + (L —t)x — z,y — tw(1 — t)x)
+6 Limsup [p(tw + (1 = 1)x,y) — p(tw + (1 = O)x, tw + (1 = £)x)]
< OF(x,y) + limsup (¢(w — 2) + (1 = )(x = 2), t(y —w) + (1 = O)(y —x) + 66(x,y) — 09 (x, X))
< OF(x,y) +limsup [(¢*(w —zy —w) +t (1 = t){x — 2,y —w) + (1 = )*(x — 2,y — X))]
+0p(x,y) — 0¢(x. x)
< OF(x,y) +{(x —z,y —x) + 0¢(x,x)
=C(xy).
Thus condition (iii) of Theorem(4.1.5) of is satisfied. Since for each x € H, F(X, -)
Is convex and lower semicontinuous and ¢ is convex in the second argument and
continuous, it is easily observe that for each x € H,G(x,") is convex and lower
semicontinuous and thus condition (iv) of is satisfied. Evidently condition (iii)
implies that G satisfies condition (v) of Theorem(4.1.5) Hence it follows from
Theorem(4.1.5) that there exists a point X € H such that G(x,y) = 0,Vy € H, that
is, for each fixed z € H, there exist x € H such that
OF(x,y) + x —zy —x +0¢(x,y) — 0 ¢(x,x) = 0,Vy € H.
In order to show that x € H is unique solution of(7), for each fixed z € H, let

x1,x2 € H be any two solutions of(7) Then,

we have
GF(xlvy) + X1 -2y —x1 + 0 ¢(xlvy) -0 ¢(X1,X1) > Ovvy € H. (8)
QF(Xz,y) + X0 — 2,y — Xo + 7] ¢(X2,y) — 0 ¢(X2,X2) = O,Vy € H. (9)

Taking y = x, in(8) and y = x, in(9) and then adding these two inequalities, we get
0 (F(x1,x2) + F(x2,%1)) — 6 [9p(x1,%1) — ¢(xq,x2) — @(x2,%1)
+ P(xz,x2)] = (% — x5, — x2).
Since F is monotone, ¢ is skew-symmetric and 6 > 0, the preceding inequality
reduces to

llx; — x,lI* < 0
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which implies that x;=x,. Hence x € H is unique solution of (7)
Therefore, it follows that for each z € H, write the unique solution of (7) as

X = J§ oy[2]€ H. Then for all y € H, we have

OF (J§ p0[2].¥) + Ub ozl = 2.y — J§ pwl2]) + 00 U§ s002] 1§ p00[2]) = 0 (10)
Hence]qub(x): H — H is well defined and single-valued mapping. Further, we

observe from Remark(4.1.6) that x = ]g’(p(x)[z] if and only if x is a solution of This

completes the proof.

Lemma (4.1.8)[4]: Anyx € Hu € S(x),v € T(x)is a solution of

GMQVIP(1) ifandonly if x € H,u € S(x),v € T(x) satisfies the relation:
9(x) = Jope lg(x) — 6 N(u,v)],

where & > 0 s a constant and jqub(x) Is resolvent operator.

Proof: Letx € H,u € S(x),v € T(x) be solution of GMQVIP (1)then

F(g(x).g(¥)) + N(w,v),g(y) — g(x) + ¢(g(x),9(y)) — ¢(g(x),g(x)) = 0,vy € H,
which can be written as

0F(g(x).g) + g(x) — [g(x) = ON(w,v)].g(y) — g(x) + 0 P(g9(x).9(y)) —
0 $(g(x).g(x)) = O,Vy € H.
Thus, by invoking Lemma(4.1.7) we have

9(x) = Jhpwlg(x) — 6 N(u,v)],
the required result.
Definition (4.1.9)[4]: Let K be the domain of the GMQVIP(1) A function p : K
— R is said to be a gap function for the GMQVIP(1)if it satisfies the following
properties:
()p(x) = 0,vx € K,
(ipp(x*) = 0, if and only if x* solves the GMQVIP(1).

We now define the residual vector R(x, 0 ) by relation
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R(x,0) = g(x) = Jogpmlg(®) — 6 N(w,v)] (11)
Invoking Lemma(4.1.8) one can observe that x € Hyu € S(x),v €T(x) is a
solution of GMQVIP(1)if and only if, x € H is a root of the equation
R(x,6) = 0. (12)
The residual vector R(x, 8 ) is a gap function for GMQVIP(1)

Now by using residual vector R(x, 8 ) i.e. gap function, we derive the global error
bounds for the solution of GMQVIP(1)

Theorem (4.1.10)[4]: Assume that all conditions of Lemma(4.1.7)hold. Let x0 €
H be a solution of GMQVIP(1) let N(-, -) be strongly mixed g-monotone with
constant « > O and mixed Lipschitz continuous with constants 3,8 > O,
respectively. Let g : H — H be Lipschitz continuous with constant L > 0 and
strongly nonexpanding with constant ¢ > 0. Suppose S,T: H —» C(H) be a M-
Lipschitz continuous with constants n,u > 0, respectively. If for any p > 0,
6.6 W) = Jh.6coW) || < pllx =yl vx,yw € H (13)
then

1
RGN < lx = xoll = colIR(x, O)l, vx € H
1

where R(x, 8 ) is residual vector defined by(11) and c, C; are generic constants .
proof: let x, € H ,uy € S(x), vy € T(x)be a solution of G M Q VIP (1)then.

F(g9(x0),9(»)) + N(u0,v0),9(y) — g(x0) + ¢(g9(x0),9(»)) — #(9(x0),g9(x0)) = Ovy € H.

Substituting g(y) :]g_¢(x) [g(x) — 6N (u,v)]) in above inequality , we have.
F (g(xO)v]g,cp(x)[g(x)) — ON(w,v)] + (N(uo, v0).Jg o) [9(x) — ON(w, v)] = g(xo))

+ ¢(g(xo),]§,¢(x)[g(x) — ON(u, U)]) - qb(g(xo)) =0 (14)
Taking z = g(x) — 6 N(u,v) andy = g(x,)in(10) we get
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0 F (J§plg(x) — 6 N(u,v))], g(x,
+ Jhpolg(®) = 6N, v)] — g(x) + 0 N(u,v),g(x0) — J§peolgx)
— O N(u,v)])

+0 9 1,ylg() = 0 Nwv)] g(xo) = 6 91}

[9(x) — 6 N(w,v).J§ px) [9(x) — 6 N(w,v)] = O.
Which implies that

FUgp00lg(x) = on(u.v)]g(xo)

(V) = (096D — NG 0)] = 9G] ) — 00 Cv)

- g(xo)>
+ (/8 o la() = onCuv)] = g (I 5Vt sy L9 ()
— ON(w.v) /g 4y L9 (x)

— HN(u. v)] (15)
Adding (14) and (15) , we get

F(JE o [9(x) = BN (1, )], 9(x0)) + F(g(66) b p [9) — BN (a1, v)])

+ (N (o, vo) — N(u,v) + %(g(x) = Tope [9C) = ON @, 0)]) gy [9G) = BN (1, v)]

— g(x9))
+0 g0, [9C) = ON W, )], 9(%0) = DU gy [9CO) = ON (W, 1)1, U g [9(¥) — ON (w, v)])

+¢(g(xo),]g¢(x)’[g(x) — ON(u, v)],—p(g(xp), g(x0)) = 0 Vy € H.
Since F(0,0) is monotone and ¢(0,0) is skew — symmetric, therefore
1
(N(ug,vo) = N(w,v) + (9 ~Jopemla(x) — 6 N(u,v))],J5.600[g(x)

— 6Nwv)] - g(x))=0
Which implies that

84



(N(wo. vo) — N, v), ga) — J§ 5 [80) — ON(w, v)])
1
s i (g‘(x) —jg_mx-,[g(x) — 6N(u, v)].jg_qb[x][g{x) —6N(u,v)] —g(xg)). (16)
Since. N(:, -) is strongly mixed g-monotone and g is strongly nonexpanding,

therefore for o > 0, we have
at? lxg — x1%2< all glx) — gx) II?
<{ N(upvg) — N(w,v),g(x0) — g(x) )
= (N(uo,v9) — N(u,v),9(x0) = Jhp0[9(x) = 6 N(w,v)] +J§ 50y [9(x)
— O N(u,v)] — gx))
=(N(ug,v9) = N(u,v), g(x0) = J§ py[g(x) = 6 N(u,v)])
+(N(ug, v9) — N(u,v),.J5sylg(x) — 6 N(u,v)] — g(x))
1
<59t~ J6.600lg () = 6 N(w, )], Jg (x)lg (x) — 6 N(u, v)] = g(xo))
+(N(ug, v9) — N(u,v),.J5sylg(x) — 6 N(u,v)] — g(x))
1
< —5{g0)- J6.600lg(x) = 6 N(w, )], Jg ) [g (x) — 6 N(u, v)] = g(x0))
+ N(u0,v0) — N(u,v),J§ 5lg(x) — 6 N(u,v)] — g(x)

< {90~ 5y l9(x) — 0 NG )], 9(x) — 8 N(w. )]

1
+ (9= Jopwlg() = 6 N(w,v)] g(x) = g(x0))
1
5 F
+ g(x) = Joplg(x) — 6 N(u,v)], g(x) — g(xo)

+(N (ug, vo)— N(w,v),Jg oy [g(x)- 6 N(u, )]~ g(x))

1 1
< —gllll?(x,é’)ll2 + 2 IRCe, Ol g () — g Cxo)ll + 1N (o, o) — N (w, V) NIRCx, D)
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Now using the mixed Lipschitz continuity of the operator N(:, -) and the M-

Lipschitz continuity of S and T, we have

1 L
< — N O + ZIRCE,O)lllx = xoll + (Bllug — ull + llvg = v IRCx, )]
1 , L
<~ 11Ge O)IE + ZIIRCe, O)lllx — xoll + (Bllxo — x1l + Sullty ~ ulDIIRCx, B)]
L L )
< =< (5 1+ 8 llxo = xllIRG, O IRCx,0)]

+ (g + Bn + 6;1) 2o — x[llIRCx, 6) ]

1

at?

Which implies that ||x — x| < (§+ pn + 6u) Il R(x,0) I, from which we

havell x — xo I < ¢ I R(x,0) ll,wherec, = # (6L + pn + 6u).
From the definition of residual vector(11) we have
IRGe 0 = [|gG) =T g g() — 8 N )|
= ||9G) = 9G0) + Ty X0)9(x0) = 8 N(ito,v0)] = Jg 4y @g(x) = 6 N, v)]|.
< || 900 = 9(x0) + Jg gy @ax0) = 8 N(ito, v6)] = Jg gy @o)g(x) — 6 N, )|
+ |75, 600 C)gG) = 8N )] = Jg 40 @g) — 6 N, v)]|
By using Lipschitz continuity of g, nonexpansiveness of ]5’@,@ and assumption(13)
we have
R(x,0) < Lllx — xoll + llg(x0) — gl + 6 [[(N(u,v) — N(uo, vo)ll
+ pllxg — x|I.
< 2L + p)llx = xoll + 6 I(N(w, v) — N(uo, vo)ll.
Now from the mixed Lipschitz continuity of the operator N(:, -) and M-Lipschitz
continuity of S and T, we have
IR(x,0)Il < 2L + p + 6 (Bn + Sp))llx — xoll = kyllx — xoll,

which implies that
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1
lIx — xoll Zk—llR(x,G)ll
1

where k; = 2L + p + 8 (nf + 6u). This completes the proof.

In this section our main motivation is to overcome the non differentiability of
normal residual vector R(x, 0) i.e. the gap function, defined bywhich is a serious
drawback of the normal residual gap function. Now, by using an approach due to
Fukushima, we construct another gap function associated with problem
GMQVIP(1.1), which can be viewed as a regularized gap function. For 6 > 0, the

functions Gg is defined by

Go() = _max {=F(g(0), g()) + (N, v). g(x) — ) — $(9 (), 9()) — 35 llg () —

g} (17)
which is finite valued everywhere and is differentiable whenever all operators
involved in Gy (x), are differentiable. We note that the function Gg (x) can be

written as
Go (x) = —F(g(x).J5 ,y@Lg(x) — 6 N(w,v)])
+ N v), g(x) = J5,y@I() — 8 N v)] — $(g(x).JE ,y@Ig ()
— 6 N(u,v)])

1
g(x) —]g,qb(x)(X)le[g(X) — 6 N(u,v)]2]|. (18)

Theorem (4.1.11)[4]: Assume that all conditions of Lemma hold and R(x,6) is
residual vector defined by(17) then the function Gg (X) for 8 > 0 defined, is a gap
function for GMQVIP(1)
Proof: Takingz = g(x) — 8 N(u,v)andy = g(x)in(10), we get
FUsp[000 — BNUWI9()) +J5em[a() — 8NV — g(x)
+ BN, V), 900 — Jpmw[90) — 6 N(U,V)]
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+ U900 — BN,V 9(X)) = 8 (g [9(X)
— BN(U W19 — ONU W) = 0
Now we have
FUb o000 — ONUW1.909) + ( NUV) = 5009 —J5g00[0(0)
= ONUWID,90) — Jogm[90) — ON(UV)] )
+ U5 3800 — 8NUWLI) — dUbpe 000 — 8 NUVILJE 59 ()
— 6N(u,v)]) = 0,
which can be written as,
FUpp[900) = 8N(U W] 9(x) + NU,V),9() — J5e[0() — 8 N(U,V)]
+ U5 p0l00) = ONUWIL (X)) — dUsew[a() — 6 N(U V)] Jp e [9(X)
— O N(u,v)])

1
> 5g(X) ~ Jopo[00) — ONUWILI) — Jopmlg() — ONU,V)].  (19)
Adding(18)and(19) also by using monotonicity of F(-, -) and skew-symmetry of
d(-,-), we get

1
Go (x) 2 5 9(x) — Jopeld(x) — O Nw )], 9(x) — J5p[9(x)
1
— ONw )] - 59() - Jogpelllg(x) — 6 N »)]I?

>1||R 0)||? 1R 0 2—1R 0)||?
Z 3 (x,0) 2‘9|I (x,0)ll —29|I (x,0)Il~.

Clearly, we have Gy(x) = O, forallx € H.
Now from the above conclusion, if Gg (X) = 0, then R(x,6 ) = 0. Hence by, we
see that x € H is a solution of GMQVIPConversely, if x € H is a solution of

GMQVIP(1), then g(x) = ]g(p(x)[g(x) — 0 N(u,v)], consequently, from and with
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condition F(x,x) = O, for all x € H, we have that Gg(x) = 0. This completes
the proof.

Now, we derive the error bounds without using the Lipschitz continuity of the N(:,:

).
Theorem (4.1.12)[4]: Let x, is a solution of GMQVIP(1) Suppose that N(:,-) is
strongly mixed g-monotone with constant « > 0O, F(:,-) is monotone, ¢(:,") is

skew-symmetric and g is strongly nonexpanding with constant t > 0, then
1 1
||x—xollsﬁ Gy Vx€H, 9>Z

(@ —55)

Proof: From(17), it can be written as,
Go (x) 2 —F(g(x).g(x0)) + N(u,v), g(x) — g(x) — ¢(g(x). g(x0))

+ 9(9().9) — 55 lgG) — gCDI
By using strongly mixed g-monotonicity of N(, ), we have
Go(x) = —F(g(x),g(xp)) + N(u,v), g(x) — g(xo) — ¢(g(x), g(x)) —
$(90(0), g(x)) + g(x), 9(x)) = 5 lg(x) = g(xo)II2 (20)
Since x5 € H,uy € S(x), vy € T(X) be a solution of GMQVIP(1), then
F(9(0), g(x0)) + N(w), g(x) = g(x0) = $(g(x),9(x0))
— $(9(x), g(x)) + g(x), 9(x))
Taking y = x in above inequality
F(g(x0),9(x)) + N(uo,v0). g(x) — g(xo) + ¢(g(x0).9(x))
= $(9(x0). 9(x0)) = 0.

Combining(20)(21)then using monotonicity of F and skew-symmetry

(21)

of ¢, respectively, we get

1
Go(x) = allg(x) — g(x)lI* — == llg(x) — g(xo)II?
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Further, using the strongly nonexpandicity of g, we have

Go(x) = (@ — 25) 2llx — xolI2,

Whichimplies

lx — xoll < \/(7,/69 (x). This completes the proof.
a-)

Sec (4.2):Global Error Bounds for GMQVIP(1)
In this section, we consider another gap function associated with GMQVIP(1),
which can be viewed as a difference of two regularized gap functions with distinct
parameters, known as D-gap function. The D-gap function for GMQVIP(1) with
parameters 8 > 1 > 0is defined as
Goy  (x) = Gg (x) — Gy (x),Vx € H,
Now, D-gap function associated with the GMQVIP(1) is given by

Goy ()= _max_{~F(g(x).g(») + N v).g() = g»)) — $(9(x). 9())
+ $(g(x), g(x))
+ 5219 G) ~ 9O — 5 llg ) — gOIhx € H. = >0 (22)

2y
The D-gap function defined by(22)can be written as

Goy , (x) = —F(Jg,9[9(x) = YN, v), 75,y [9(x) — YN (u, v)]
FN@ )09 = YN )] = Jh,ol9() — 8 N, v)]
Further, it can be written as,
Goy (x) = —FUp,9lg(x) = ¥ N(u,v)]J5,9[l9(x) — 6 N(u,v)])
+ N v),R(x,0) — R(x, ) — ¢Uy,m[9(x) — ¥ N(w,v)], J;,[9(x)
— 6 N(u,v)])
+ 0 4001860 — YN VLI 0[50~ YN@, D+ 5 IRG )1 = 55 IRG D)2
(23)
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Next, we derive global error bounds for GMQVIP(1).
Theorem (4.2.1)[4]: Assume that all conditions of Lemma(4.1.8) hold and
R(x, 0 ) is residual vector defined by(10) then for all x € H, 8 > ¥ > 0, we have

3 79 1 (4 1
2 (? K 5) IR, ¥)I? < 11Dg,g @Il < 5 (E 9

In particular Dg y (X) =0, if and only if, x € H solves GMQVIP(1)

) IR, )12

Proof: Taking z = g(x) — 6 N(w,v) and y = Jg,lg(x) — ¥ N(u,v)]
in(19), we get
OF (g 50 [8(%) — ON (U, V)], J§ 0 [8) — YN @, v)])
+ (5 50|80 — ON, V)] — g(x) + ON(, V), Jj 50y [8) — YN, V)] — Jj 0 [8(¥) — ON(u, V)])
+00 (5 46 [8%) — ONW, V)] ]} 40 [8%) — Y N(u, v)])
— 00§ 4o [8K) —ONW, V), I} 454,[8@) —ON@, v)]) > O,
which implies that

FI5 560[8X) — ON(W. V). J§ 40[8X) — ¥ N@. v)])) + (N, v), R(x. 8) — R(x, ¥/))
= %W"- 0).R(x.0) = R, Y1) = B 400 [8X) — ONGU VLI 4 [86) — YN, V)])
+Up 40 l8K) — ONW, V). Jf 40 [8(X) — ON(u, V)]).
(23)
Combining(22)and(23) also by using monotonicity of F(:, -) and skew-symmetry
of (-, *), we get

1 . 1 1
Doy 01l 2 5 (Rex. 0. Rix. 8) = Rex. ¥7) + 57 IRGx Y2 = 55 1R, O)]?

i (% ) %) IRG. I + 5 (Rex. 6). Rx. 8) — Rex. )

— o IRG.8) — R )12 — 5 (R ). R 6) — R, )

1.1 1 1
= 3 (5~ 7) IR I + 35 1R6.6) - Rex w2

1 f
> 5|7 — g ) IR& ¥I%,
2(w 9) (24)

| =

91



which implies the left-most inequality in the assertion.
In a similar way, by taking

X :jg‘(ﬁ(x)[g(x) — YN, v)]."z=g(X)— ¥N(u.v)and y :jg_(p(x)[g(x) —ON(u,v)] in(9) we

get
VF( 00 [86) — UN@W, V)] Jj 500 [8C) — ON(u, v)])
+ 548X — UNW, V)] — g(x) + YN, ), ]} 500 [8X) — ONW, V)] = J§ 40[8%) — YN (u, v)])

YD 4 [8X) — YN WL 4 [8X) — NG, V)])
U (800 — UNW VLI 4 [20) — YN, V) = 0,

which implies that
F(§ 0l80) — N, v)].Jj 40[2X) — ON(u, v)]) — (N(u, v), R(x, 6) — R(x, ¥))

. _% (R, W), R, 0) = R V) — 0 00260 — YN VLIE 50 [26) — ON@, v)])
+¢U£¢[M[g(x': : WN(U V)]jzhnuj[gtx} = 1:5"”(“ \")])

(25)
Combining, we get
Do,y 0 = o (RG. Y. R&. ) — RGx. Y)) + 55 IR W)I? = 5 IRG. O
_ % (% - %) IR(x. 6)|* — ﬁ[lﬁ[x.@}—.‘?{x. ]l
- %(%—g) IRGe, ©)]12, (26)

which implies the right-most inequality in the assertion. Combining(24)and(26) we
obtain the required result.

Finally, we derive a global error bound for GMQVIP(1)

Theorem( 4.2.2)[4]: Let x0 is a solution of GMQVIP(1) Suppose that N is
strongly mixed g-monotone with constant « > 0, F(-, -) is monotone, ¢(:,-) is

skew-symmetric and g is strongly nonexpanding with constant ¢ > 0, then

PRy 1.7 1
Il =xoll < — Doy  VxeH, a:»z(g—ﬁ),

Proof: From(21), it can be written as,
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Dy (x) = —F(g(x), g(x0)) + (N(u, v). g(x) — g(x0)) — d(g(x), g(x0)) + P(g(x), gx))
+ 571860~ 800 — 571860 ~ 260
By using strongly mixed g-monotonicity of N(, ), we have
Dy 4 (x) > —F(g(x), g(X0)) + (N(Uo, vo), gx) — g(X0)) + a[|gx) — go)|I?
~ D@00, 8000) + B0, 50+ 51560~ 8Co)I? - 55l -SC oy
Since x, € H, uy € S(X), vy € T(x) be a solution of GMQVIP(1), then

F(9(x0), 9(¥)) + N(uo, vo ), 9(y) — &(x0) + @(g(x0), 9(¥)) — ¢(g(x0), 9(xo)) = 0.
Taking y = x in above inequality

Fg(x0). () + (N(Uo, Vo), 8) — &x0)) + P (o). 81)) — P(EX0). 8*0)) 2 0. (5gy

Combining(27)and(28) then using monotonicity of F and skew-symmetry of o,

respectively, we get
1 1
Doy %) = eflg() — g&o)lI* + 7718 () — g o) I* — Z5llg(®) — gxo)l*.

Further, using the strongly nonexpandicity of g, we have

Doy 002 (a+ 57— 55 ) 2k —xoll

which implies

[1X —Xoll < —————="/Do.y ).

Which completes the proof.
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