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CHAPTER FIVE
FINITE ELEMENT MODELING

5.1 General

To study the behavior of NSRPC beams of the present research
theoretically, numerical method was adopted and represented through
finite element analysis. The theoretical analysis was performed by using
the finite element models in the finite element package ANSYS!?.

The accuracy and validity of the adopted finite element procedure
are checked and verified in this chapter by comparison of the ANSYS
output with the experimental results. The beneficial effects of using
nanosilica and fiber reinforcement to strengthen and increase the shear
capacity of beams are very well assured and confirmed by such
comparison. The accuracy of the finite element models was determined
by ensuring that the ultimate load, deflection, cracks propagation and
applied theory of failure were reasonably predicted with the overall
structural response and load-deflection behavior were found in reasonable
agreement with the experimental test results.

The material properties throughout simulation using finite elements
approach and the governing constitutive relationships are considered over
these elements and expressed in terms of unknown values at element
corners. An assembly process results in a set of equations. Solution of

these equations gives the approximate behavior of the models.
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5.2 Finite Element Modeling

Reinforced concrete beams "RCB" were modeled by selecting a
suitable element that simulates the reality and this phenomenon was
adopted for all structural and materials elements. For concrete element,
the model is capable of predicting failure for concrete materials. Both
cracking and crushing failure modes are accounted for. The two input
strength parameters, ultimate uniaxial tensile and compressive strengths,
are needed to define a failure surface for the concrete. Modeling of main
steel reinforcement for main and stirrups was discrete representation.
Discrete representation has been widely used. The reinforcement in the
discrete model used one dimensional bar elements that are connected to
concrete mesh nodes. Therefore, the concrete and the reinforcement mesh
share the same nodes and the same occupied regions. Full displacement
compatibility between the reinforcement and concrete is a significant
advantage of the discrete representation. Their disadvantages are the

restriction of the mesh and the increase in the total number of elements.

5.3 Assumptions

The assumptions made in the static analysis are summarized below:
1- Concrete and steel were modeled as isotropic and homogeneous
materials.
2- Steel was assumed to be an elastic-perfectly plastic material and
identical in tension and compression.
3- Initially plane sections remain plane after loading that is, the strain in
the concrete and the reinforcement is proportional to the distance from the

neutral axis.
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4- The maximum compressive strain in the concrete is assumed to be
0.005 mm/mm.

5- Perfect bond exits between different materials.

6- Self-weight of the beams was ignored.

7- Additives materials distributed uniformly through concrete.

5.4 Element Types

The elements types shown in Table 5.1 were used to simulate all

model tested beams.

Table 5.1 Element Types !

Element No. Element type Representation
1 SOLIDG65 Concrete cross section.
Longitudinal Steel reinforcement top and
2 LINKS
bottom.
3 LINKS8 Stirrups.
4 SOLID 45 Support.

5.4.1 SOLIDG65 Element
SOLIDG65 element is used for the 3-D modeling of solids with or

without reinforcing bars. SOLID65 element is capable of representing the
cracking in tension and crushing in compression. The element shown in
Fig. 5.1 is defined by eight nodes having three degrees of freedom at each
node, translations in the nodal x, y, and z directions.

The most important aspect of this element is treatment of nonlinear
material properties. The concrete model is capable to provide of cracking
in three orthogonal directions, crushing, plastic deformation, and creep.
The rebars are providing of tension and compression, but not shear. They
are also capable to provide of plastic deformation and creep. This element

was used to model the concrete.
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Tetrahedral Option
{not recommended)

Fig. 5.1 SOLIDG65 Element Geometry.

5.4.2 LINKS8 Element

This element can be used to model main and stirrups
reinforcement. The 3-D spar element is a uniaxial tension-compression
element with three degrees of freedom at each node, translations in the
nodal x, y, and z directions, no bending of the element is considered.
Plasticity, creep, swelling, stress stiffening, and large deflection

capabilities are included. Fig. 5.2 shows the geometry of link8 element.

Fig. 5.2 LINK8 Geometry.

5.4.3 SOLID45 Element

SOLIDA45 is used for the three-dimensional modeling of solid
structures(Fig.5.3). The element is defined by eight nodes having three
degrees of freedom at each node: translations in the nodal x, y, and z

directions. The element has plasticity, creep, swelling, stress stiffening,
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large deflection, and large strain capabilities. This type of element was
used to simulate plates placed at top of tested beam under the applied
loading and also to simulate supports. No real constant is needed for this

type of element.
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Fig. 5.3: SOLID45 Geometry.

5.5 Real Constant

The real constant for SOLID65 element requires information about
smeared reinforcement in three directions X, y and z, volume ratio and
orientation angle. In the present research, discrete representation of steel
reinforcement was adopted, but fiber reinforcement was inserted as a new
material mixed with cement mortar for different volume percentages.
Therefore, all real constants for SOLID65 element were equal to specified
fiber reinforcement in three directions according to the orientation. Also
that for Nano material was added to the solid65 as function of
compressive strength , tensile strength and modulus of elasticity.

The real constant for LINK8 requires information about the cross

sectional area of the reinforcing bars are shown in Table 5.2.
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Real
Constant
Set

Table 5.2 Real Constant for Model Beam

Element

Type

Constant

1

SOLID 65

Real Constant for Volume | Orientation Angle
Steel Fibers Ratio

0 90 | 90
0% 90 0 | 90
90 0 | O

0 90 | 90
90 0 | 90
90 90 | O

0 90 | 90
90 0 | 90
90 0 | O

Cross-sectional According to steel ratio

area mm?

Initial strain

mm/mm

Cross-sectional

area mm?

Initial strain

mm/mm
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5.6 Material Properties

Material numbers "1" represent the concrete beam. This element

requires linear isotropic material properties to properly model the

concrete. Modulus of elasticity, compressive strength of concrete and

tensile strength as actual values from tests were used. Poisson's ratio for

concrete was assumed to be 0.15 for all beams. Concrete material data

such as the shear transfer coefficients, tensile strength, and compressive

strength are described in Table 5.3.

Table 5.3 SOLID65 Concrete Material Data

Constant Meaning

1 Shear transfer coefficients for an open crack, Bo.

2 Shear transfer coefficients for a closed crack, f.

3 Uniaxial tensile cracking stress.

4 Uniaxial crushing stress positive.

5 Biaxial crushing stress positive.

6 Ambient hydrostatic stress state for use with constants 7 and 8.
Biaxial crushing stress positive under the ambient hydrostatic stress

! state constant 6.
Uniaxial crushing stress positive under the ambient hydrostatic stress

° state constant 6.

9 Stiffness multiplier for cracked tensile condition.

Typical shear transfer coefficients range from 0 to 1, with 0

representing a smooth crack with complete loss of shear transfer and 1

representing a rough crack with no loss of shear transfer. The coefficient

for open crack was set to 0.2, while the coefficient for closed crack was
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set to 0.7. These values are suitable and recommended by many
researchers. Material numbers 2 and 3 refer to LINK8 element which
represent longitudinal steel reinforcement and stirrups respectively, and
this element is assumed to be linear isotropic. Material number 4 refers to
SOLID 45 which is used to simulate supports and plates under applied
loading.

5.7 Modeling

NSRPC beams were modeled as prismatic beams as shown in

Fig. 5.4. The beam dimensions adopted in the present study were

analyzed and designed according to ACI — 318 — 2011 %,

P/2 P2

A
v

= Ln e

Fig. 5.4 NSRPC Beam

The nonlinear performance of steel was assumed to be linear —
perfectly plastic as shown in Fig. 5.5. Nonlinearity of concrete
represented by its compressive stress-strain curves depends on the mix
type and the type of additive materials. Fig. 5.6 shows the effect of NS
on compressive stress-strain curves, while Figs. 5.6 to 5.9 show
respectively the effects of SF, Vf and absence of NS and Vf on
compressive stress-strain curves.

In the application of finite element approach to nonlinear analysis,
one has to update the stiffness matrix constantly in order to take account

of the nonlinear effects that are present. The equilibrium configuration of
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the structure changes constantly, so those in present studies carry out the
analysis in a series of load increments. The equilibrium and kinematic
state of the structure at the end of the one load increment are used to
formulate the stiffness relationship for the solution of the next load
increment. Displacement control method was adopted to reach the
ultimate loading applied in experimental tests. In the present study
,nonlinear finite element analysis was used , the load was applied in
increments and the nonlinear problem was solved by a series of
linearized steps. The stiffness matrix relating the incremental force
vector with the incremental displacement vector was referred to as the
incremental stiffness matrix. Newton-Raphson numerical method was
adopted with accuracy 0.001 to solve the incremental loading steps. The
maximum 150 load steps applied was used to reach the final solution and

final results tests.

fy Full plastic

/

E

Stress (MPa)

Strain

Fig. 5.5 Stress-Strain Curve of Steel.
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Fig. 5.6: Stress-Strain Curves of NSRPC,
NS as a Variable
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Fig. 5.7: Stress-Strain Curves of NSRPC,
SF as a Variable
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Fig. 5.8: Stress-Strain Curves of NSRPC,
Vf as a Variable

Fig. 5.9: Stress-Strain Curves of NSRPC,
with Absence of NS and Vf
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5.7.1 Meshing

To obtain good results from the Solid65 element, the use of a cubic
mesh with ratio a round unity was adopted. The overall mesh of the finit
element model of the beam created in ANSYS is shown in Fig. 5.10. No
mesh of the reinforcement is needed because individual elements are
created in the model through the nodes created by the mesh of the

concrete volumes,

Fig. 5.10 Concrete Solid Meshing.

5.8 Boundary Conditions and Loads

The supports were simulated to match their real form in laboratory.
Four points loading was applied similar to the actual experimental
loading for each specimen. Since the actual loads were applied on top of
steel plates, these plates were simulated by choosing suitable elements
with width and thickness identical with those used in laboratory. The
application of the loads up to failure was done incrementally as required
by the Newton - Raphson procedure. Total applied load was divided into
a series of load increments representing the steps. Within each load step,
maximum of 150 iterations were permitted with a minimum number of

iteration equal to one.
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5.9 Results

According to models that simulated using finite elements approach

by ANSYS, the following performance was noted.

5.9.1 General performance
The general performance of all models that simulated by ANSYS
can be summarized as below:
1. Deflection was nonlinear.
2. Values of deflection greater than ACI Code, maximum
allowable limit were obtained.
3. A 45° diagonal crack was formed starting from each support
and propagating to top face of beam.
4. Cracks propagated towards top with plastic hinges developed
due to increase in loading.
5. There are enhancements in tensile stress of concrete due to
the presence of additive materials.
6. Strains in concrete along longitudinal axis at top and bottom
faces of the beam mid-span section were greater than their

allowable limits.
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5.9.2 Deflection

Deflections were evaluated and drawn to check the behavior of RC
beams. The central deflection was measured and recorded at every load
step which showed nonlinear behavior. Figs. 5.11 to 5.26 show the
deflected shapes of all the sixteen NSRPC beams of the present research
as predicted by the finite element package ANSYS. The deflected shape
of each beam was obtained by applying a series of load increments on the
beam in accordance with the beams ultimate load capacity as measured
experimentally. According to the specifications given by the ACI code¥!
the maximum allowable deflection for a simply supported beam under
service loading should not exceed "L/360". This gives a permissible value
of deflection for a 1.4 m span beam as small as 3.9 mm. It can be seen
from Figs.(5-27) to (5-43) that within the elastic range of the load-
deflection curve, the deflection at center of beam is below the allowable
value of 3.9 mm but at ultimate load it is far beyond that. Comparison
between the load deflection curves predicted by ANSYS with those
obtained experimentally (as shown in Figs. 5-76 to 5-91) indicates that
the beam showed a stiffer response in the elastic range according to
ANSYS in comparison with the experimental tests. However with
continuing deflection and propagation of cracking the reverse behavior
was noticed and the slope of the load-deflection curve according to
ANSYS was lower than that found experimentally. Comparison between
ANSYS results and those found experimentally for the values of
deflections obtained at first cracking load and at ultimate load are shown

in Tables5.4 and 5.5respectively.
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5.9.3 Cracks propagations

Figs. 5.44 to 5.59 show the cracks propagations for each beam model
at ultimate load. Each crack represents the average of three cracks (first,
second and third cracks) which may form in different directions x ,y and z.
The amount and concentration of cracks depend on the magnitude of the
applied loading, percentage of fiber reinforcement by weight, percentage of
Nano by volume and presence of stirrups. The effect of fiber reinforcement
enhanced the behavior of reinforced concrete beams because of its virtue in
increasing the resistance capacity of concrete against tensile stress and then
reduce cracks. On the other hand , the effect of nanosilica as a material
increases the compressive strength of concrete and therefore also helps in

reducing the propagation of cracks.

5.9.4 Strain

Figures 5.60 to 5.75 show the ANSYS results of the longitudinal
strains along the beam span. There are two zones according to the sign
convention, positive tension and negative compression. Because the beam
is simply supported the compression is at top and the tension is at
bottom. The presence of fiber reinforcement and nanosilica increased the
compressive strength of concrete and made the concrete more ductile in
tension zone. This enhanced the concrete to resist tensile stresses and

eventually reducing the cracks.
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Table 5.4 ANSYS Deflections at First cracking Loading Compared

with Experimental Results.

Beam | Deflection at | Deflection Acr ansys
first crack at first Acr exp.
load (mm) | crack load

experimental (mm)
ANSYS

Bl 3.2 3.2 1

B2 3.6 2.9 0.8
B3 3.5 2.7 0.77
B4 3.6 2.9 0.8
B5 2.8 2.3 0.82
B6 3.0 24 0.8
B7 3.6 2.3 0.63
B8 3.4 2.6 0.76
B9 3.7 2.8 0.75

B10 3.8 3.1 0.82

B1l1l 2.3 1.9 0.83

B12 15 1.6 1.06

B13 2.7 2.6 0.96

B14 1.9 2.6 1.4

B15 2.8 2.2 0.79

B16 4.5 3.8 0.84
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Table 5.5 ANSYS Deflections at Ultimate Load Compared with

Experimental Results.

Ultimate Maximum Maximum
Beam % Fiber load, Deflection - Deflection -
No. | Reinforcement | %Nanosilica (KN) Experimental | ANSYS (mm) | Acr ansvs
(mm) Acr exp.
Bl 2 0 215 14.5 16.04 11
B2 2 1 245 13.3 14.92 1.12
B3 2 2 255 12.7 13.84 1.08
B4 2 3 269 12.3 14.38 1.16
B5 2 3 243 13.8 13.21 0.96
B6 2 3 253 13.2 13.83 1.04
B7 0 3 90 5.7 6.42 1.13
B8 1 3 185 9.0 9.83 1.09
B9 2 3 312 115 12.81 11
B10 2 3 328 10.8 13.50 1.25
B11l 2 3 335 12.9 11.55 0.89
B12 2 3 416 134 13.10 0.97
B13 1 3 218 10.2 11.20 1.09
B14 1 3 275 11.0 12.60 1.14
B15 0 3 175 9.2 10.00 1.08
B16 0 0 70 6.0 5.44 0.91

150




Chapter Five

Finite Element Modeling

AN
x
— _—
16-043
-1 -2.588

AN

-s.302

AN

= — —
~6.424 —4-694 =3.364 ~1.834 =-30435
5.659 4.129 2.593 1.069 460615

Fig. 5.17 Deflected Shape of Beam (B7)

St T.ied

AN

= 582617
~12.182

AN

S5veas 7482 5.128 —T.TTE o -.a1s02

Fig. 5.18 Deflected Shape of Beam (B8)

151



AN

-5.808

ssssss

------

Fig. 5.25Deflected Shape of Beam (B15)

S——
3,201

264
aaaaaaaaaaaaa

152



Chapter Five Finite Element Madeling
30 250
g™ / Zw /
2 it £ 15
3 // T
g 150 §
3 / - 3 100 -
2100 =r=BLFR 2% - O N g ==B2-FR2%-1%N
3 / 2
< 50 a
0 0
0 5 10 15 20 0 5 10 15
Deflection (mm) Deflection (mm)

Fig. 5.27 Load — Deflection Curve of Beam

(B1).
300
~ 250 2
z
=)
w 200
4
:
§ 150 v
% 1w Vd —=B3FR 2% 2% N
i /
a
< 50
4
0
0 5 10 15
Deflection (mm)

Fig. 5.29 Load — Deflection Curve of Beam
(B3).

300

200 /

—_
=
=

=+=B5-FR 2% - 3%N

Applied loading (kN)
—
=

w
(=]

/

0 5 10 15
Deflection (mm)

[=1

Fig. 5.31 Load — Deflection Curve of Beam
(B5).

Fig. 5.28 Load — Deflection Curve of Beam

(B2).

0
~ 150 /
Z
=1
w 200
£
3
g1 P
FRT / SRR 3% N
s /
a
<5

0
0 5 10 15
Deflection (mm)

Fig. 5.30Load — Deflection Curve of Beam
(B4).

=

r

yd
/
/
//’

¥

0 5 10 15
Deflection (mm)

]
[
=

=

8

=+=B5-FR 2h- 3% N

Applied loadinf (kN)
—
=

(%]
=

Fig. 5.32 Load — Deflection Curve of Beam

(B6).

153



Chapter Five

Finite Element Modeling

100
£0 //
-
£
E) /
[}
S /
7 40
2
T
g- 0

0

0 5 10 15
Deflection (mm)

wtomB7-FR 0% - 3% N

8

100 /
50

Applied loadinf {(kN)
—
=

Deflection (mrm)

=8P 1% - %N

Fig. (5.33) Load — Deflection Curve of Beam Fig. 5.34 Load — Deflection Curve of Beam

(B7).

A

$ 250 /

/

yd

-

c

3

®

215

T

]

Z 100 //
-

<50

0 5 10
Deflection (mm)

15

w=p=BO-FR 2% - 3% N

Fig. 5.35 Load — Deflection Curve of Beam

(BY).

/

T

3

3100
o f

0 5 10
Deflection (mm)

15

=+=B11-FR 2%- 3% N

Fig. 5.37 Load — Deflection Curve of Beam

(B11).

(B8).
30 y,
~30
¢ 20 /
-
/
215 /
3 / ——B10R 2%- 34N
2 100
¢y f/
D A
0 5 10 15
Deflection (mm|

Fig. 5.36 Load — Deflection Curve of Beam

(B10).

Applied loadinf (kN)

.
oo
=

A

=~
=
=

4

o
(=]

//

a1
[ =1

=
=]

o
(=]

= o A2 L e

=]
<=1

(=1

0 5 10
Deflection (mm)

==B1)-FR 2%- 3% N

(B12).

Fig. 5.38 Load — Deflection Curve of Beam

154



Chapter Five Finite Element Modeling

250

(7]
=
=

r~
o
=

r~
=
=

r~
=
=

—
o
=

—
=
=

Applied loadinf (kN)
—
o
=13
Applied loadinf {(kiN)

—
=
=

/ =+=B13FR 1%-3%N // =+=B14FR 1%- 3% N

0 5 10 15 0 5 10 15
Deflection (mm) Deflection (mm)

[
=

(%]
=

0

=

Fig. 5.39 Load — Deflection Curve of Beam  Fig. 5.40 Load — Deflection Curve of Beam

(B13). (B14).
200 100
z

5150 &0
. : )
£ g
: R
§1m § 9
E =t=B15-FR 0% - %N E / =+=B16-FR0%- 0% N
) RS
&/ £/

0 0

0 5 10 5 0 5 10 15
Deflection (mm) Deflection {mm)

Fig. 5.41 Load — Deflection Curve of Beam  Fig. 5.42 Load — Deflection Curve of Beam
(B15). (B16).

450

400

350 83

300

250

200

Applied loading (kN)

150 -+ ——B10

—m—B11
100 -+

B12

B13
50

B14

o i B1S
o 5 10 15 20 B16
Deflection (mm)

Fig. 5.43 Load — Deflection Curve for all Beams.

155



Finite Element Modeling

[V — AN

TIME=1

Fig. 5.44 Crack Pattern of Beam (B1) at
Ultimate Load.

CRACKS AND CRUSHING AN

e
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Fig. 5.46 Crack Pattern of Beam (B3) at
Ultimate Load.

Fig. 5.47 Crack Pattern of Beam (B4) at
Ultimate Load.

Fig. 5.48 Crack Pattern of Beam (B5) at
Ultimate Load.
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Fig. 5.50 Crack Pattern of Beam (B7) at
Ultimate Load.

Fig. 5.49 Crack Pattern of Beam (B6) at
Ultimate Load.
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Fig. 5.51 Crack Pattern of Beam (B8) at
Ultimate Load.
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Fig. 5.52 Crack Pattern of Beam (B9) at
Ultimate Load.

Fig. 5.53 Crack Pattern of Beam (B10) at
Ultimate Load.

Fig. 5.54 Crack Pattern of Beam (B11) at
Ultimate Load.

Fig. 5.56 Crack Pattern of Beam (B13) at
Ultimate Load.
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Fig. 5.57 Crack Pattern of Beam (B14) at
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Fig. 5.59 Crack Pattern of Beam (B16) at

157




Chapter Five Finite Element Modeling

Ultimate Load. Ultimate Load.

AN |
NWODAL SOLUTION m MODAL SOLUTION

1 szee=1

= =um -1z
rrme=1
ErEnx  (ave)
Rexsm0
o 6142

st

=-.005752
S DolEE

— L I —
....... Slo0s732 -.o0iee 002433 Tooesza 010616
-.003706 .3aem-03 004478 .a08s7 o166

Flg 5. 60 Longltudlnal Stram of Beam (B1) Fig. 5.61 Longitudinal Strain of Beam (B2)

AN
nopAL soLuTzam
srEp-1
e -1
......
IoELx  (ave)
Reva=

. E——— I — L N S—
-B0S4E3 T soaens UV ceamees (P ooanas 00 govas 00 i S7008736 -.001836 002074 TooEaTI 009873
-.003776 c12ap03 T 00 Loosoea o000 Leosza o0 Lonieze

Fig. 5.62 Longitudinal Strain of Beam (B3)  Fig. 5.63 Longitudinal Strain of Beam (B4)

AN AN
[ — woaL souUTEON
EEEEEE a
et
Zime f
Emix  ove ik ave)
Reves
Dok 23320 S =t4.576
S 22505210 S = ioae
S Tloass S =-siaoan
—
—— o e s — — — —
003871 .133E-048 003308 008355 .o10883 SROOEABT | oaes  CUOEA3 o amgq UORREE L ess OURRNE o a SO0RILL L iois

Fig. 5.64 Longitudinal Strain of Beam (B5) Fig. 5.65 Longltudlnal Strain of Beam (B6)

NoDAL soLuTION AN [T AN
Trwet o
oo me. 893 Dk —10.593

L e ===

- oo e 5380 006366
— m— E— — T -.eom ) -.1242-09 ° -oozssz .o0szze " 007503
SOozeeR o ae0E-03 L0013 | .oo3eev __ — .oosves
.oozezs Lamse-03 .oozece 004726 -oossda

Fig. 5. 66 Longitudinal Strain of Beam (B7)  Fig. 5.67 Longitudinal Strain of Beam (B8)

158



Chapter Five

NODAL SOLUTION

— p— — —
~.00377s -.002413 ~830E-03 T 007873
- -.7318-03 002632 . 4 .

Fig. 5.68 Longitudinal Strain of Beam (B9)

NODAL SOLUTION

— — — —
Dozzs e 008343

oosies

NODAL SoLuTION
STEP=1

un =12
(ave)

.10z
EMn =-.004416
BMx =, 007935

_—— o L e — .
-.003048 " -.2888-03 " 003445 coams  C 007833

Fig. 5.72 Longitudinal Strain of Beam (B13)

NODAL SOLUTION AN
sTEE-1
suB =1
— =— — —
233 ~Loisas +936E-03 Toa3es T Lo0elt
-.002952 -.3852-03 002261 904867 007473

Fig. 5.74 Longitudinal Strain of Beam (B15)

— S— m— —
-00024 --00z48s 1091048 R ~908118
-.004257 - 722203 .oozE1s 008348 -oosEzsa

Fig. 5.69 Longitudinal Strain of Beam (B10)

uuuuuuuuu on AN
......

svm -1z

TIME=1

EFELX ava

REYE=0

Drx =14 16

s =-.GOSESL

Sae - 0081

—
-.004027 -.978m-03 00207 005118 -oosies

Fig. 5.71 Longitudinal Strain of Beam (B12)

— S— —
by - o0asas e TTaIEeE oneets

— =— m— —
by --ooI08 peEy s oeT0es
-.0a3171 -.247e-03 002677 .aus€ -oo8sa4

Fig. 5.73 Longitudinal Strain of Beam (B14)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
-.0an4se 226803 -oa1m .ga3z90 o057

Fig. 5.75 Longitudinal Strain of Beam (B16)
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5.10 Verification

Numerical analysis was adopted by ANSYS software to estimate
theoretically what were obtained by the experimental tests. Figs. (5.76) to
(5.91) show comparison between the experimental and theoretical load-
deflection curves. From these Figures the following points can be
concluded:

1. For most cases the deflection obtained by ANSYS was
found greater than the experimental value at the same
applied loading.

2. The general behavior of load — deflection has the same
shape in all tested NSRPC beams.

3. An apparent reduction in the stiffness of a NSRPC beam
can be noticed soon after the beam cracks

4. ANSYS predicts larger deflection at collapse than the

experimental value.
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Fig. 5.76 Load — Deflection Curve of Beam  Fig. 5.77 Load — Deflection Curve of Beam
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Fig. 5.78 Load — Deflection Curve of Beam

Fig. 5.79 Load — Deflection Curve of Beam
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Fig. 5.81 Load — Deflection Curve of Beam
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Fig. 5.82 Load — Deflection Curve of Beam

Fig. 5.83 Load — Deflection Curve of Beam
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Fig. 5.84 Load — Deflection Curve of Beam
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