PREFACE

سورة النور 35

DEDICATION

إلى رمز السعادة في البلاد ،،
الى من للتقدم خير هادي ،،
اليك مع التواضع يا ملاذي ،،
اقدم ما يطيب له فؤادي ،،
قصائد لم تكن لولاك تهدى ،،
ولم يك ربما لولاك هادي ،،
فإن تقبل وذا أملي وقصدي ،،
أصير موقراً في كل نادي ،،
الي كل من علمني حرفاً علمي ،
اللي أمي وأبي ،،
اللي إخوتي وأخواتي ،،
الما إخوتي وأخواتي ،،
اللي الأخ الفقيد أحمد بابكر عبدالرحمن ،،

ACKNOWLEDGEMENT

First, all thanks to ALLAH, How helped me in achieving this work and without His care and guidance nothing could have been done.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ahmed El-Tayeb**; my professor of Reinforced Concrete Design, Faculty of Engineering, Sudan University of Science and Technology;

I am grateful to my supervisor **T. Tahani Mohamed El-Amen**; Lecturer; Structural Engineering Dept., Faculty of Engineering, Sudan University of Science and Technology, for her continuous supervision, kind help, valuable advice and guidance during the achievement of this work.

Thanks and appreciation are also extended to **Eng. Nyazi Tawfeeg**; Teaching assistant; Structural Engineering Dept., Faculty of Engineering, Sudan University of Science and Technology, for his kind help and support.

Finally, I should thank everyone helped me in making this work to see the light. My whole hearted gratitude and unlimited love to all of them.

ABSTRACT - ENGLISH

Reinforced concrete buildings comprises majority of buildings in urban areas. In reinforced concrete slabs the major challenge occurs when high dead-weight of concrete restricts the span length and thus longer spans are not feasible with normal construction practices.

It is a known fact that excellent concrete molding capability and various innovations over the past few years on maximizing the material utilization led to development of ribbed one way, two way and pre-stressed slabs.

In this study a comparison of materials quantity of waffle slabs and flat slabs has been carried out. For analysis purpose slabs are modeled in computer program SAFE V.12 and the output results obtained from the analysis are compared with the manual analysis results and then used in manual design. In this study a square slab of 6×6 m panels is modeled for both waffle and flat slab under the same loading conditions and using the same construction material. The models are used to study parameters like maximum deflection, maximum bending moment and punching shear resistance.

The amount of concrete and reinforcement required in slab signify the superiority of waffle slab over flat slab and consequently can be employed in various applications as an economical alternative for flat slab.

ABSTRACT - ARABIC

تشكل المباني الخرسانية الغالبية العظمى من المباني في المناطق الحضرية. للبلاطات الخرسانية المسلحة يكمن التحدي الرئيسي في تقين طول بحر البلاطة بالوزن الميت الكبير للخرسانة وبالتالي تكون الأبحر الطويلة غير مجدية في ممارسات البناء العادية.

من المعلوم أن الإبتكارات المختلفة خلال السنوات القليلة الماضية لزيادة استغلال المواد وكذلك المقدرة على صب الخرسانة بصورة ممتازة أدت إلى تطور البلاطات المعصبة ذات الإتجاهين وذات الإتجاه الواحد والبلاطات سابقة الإجهاد.

في هذه الدراسة تم عمل مقارنة من ناحية الكميات لبلاطة مسطحة وبلاطة معصبة في إتجاهين. لتحليل البلاطات تم استخدام برنامج الحاسوب "SAFE" وتمت مقارنة النتائج المتحصل عليها من التحليل مع نتائج التحليل اليدوي ومن ثم تم استخدام نتائج التحليل باستخدام الحاسوب في التصميم اليدوي لكل من البلاطتين. في هذه الدراسة تم نمذجة بلاطة مربعة بأبحر 6×6 م لكل من البلاطة المسطحة والمعصبة تحت نفس ظروف التحميل ونفس مواد التشييد. من خلال النماذج تمت دراسة كل من الترخيم و عزوم الانحناء القصوى ومقاومة القص الثاقب في البلاطات.

نتائج كميات الخرسانة وحديد التسليح المطلوبة تفيد بتفوق البلاطة المعصبة على البلاطة المسطحة وبناء على ذلك يمكن استخدامها في التطبيقات المختلفة كبديل إقتصادي للبلاطة المسطحة.

LIST OF CONTENTS

NO.		Page	
	PREFACE	ii	
	DEDICATION	iii	
	ACKNOWLAGE	iv	
	ABSTRACT-ENGLISH	V	
	ABSTRACT-ARABIC	vi	
	LIST OF CONTENTS	vii	
	LIST OF TABLES	X	
	LIST OF FIGURES	xii	
	LISS OF NOTATIONS ABBREVIATIONS	xiv	
	CHAPTER ONE		
1.1	INTRODUCTION	1	
1.2	OBJECTIVES OF STUDY	2	
1.3	METHODOLOGY OF STUDY	3	
1.4	CONTENTS	3	
CHAPTER TWO			
2.1	General	4	
2.2	Slab definition	4	
2.3	Classification of slabs	5	
2.4	Common types of slabs	6	
2.4.1	Solid slab	6	
2.4.2	Beamless slabs	7	

2.4.3	Ribbed slabs	9	
2.4.3.1	One-Way Ribbed Slab	12	
2.4.3.2	Two-Way Ribbed Slab "Waffle"	14	
2.5	Structural behavior of slabs	16	
2.5.1	Behavior of one –way slab	16	
2.5.2	Behavior of two-way slabs	18	
2.5.2.1	Two-way edge supported slabs	18	
2.5.2.2	Two-way column-supported slabs	24	
	CHAPTER THREE		
3.1	Introduction	30	
3.2	The direct Method	30	
3.2.1	Division of flat slab structures into frames	31	
3.2.2	Load arrangement	32	
3.2.3	Moments determination	33	
3.2.4	Division of panels	34	
3.2.5	Division of moments between column and middle	36	
	strips		
3.3	Finite Element Method	37	
3.3.1	Principle conception	38	
3.3.2	Formulation of the problem	39	
	CHAPTER FOUR		
4.1	ANALYSIS	45	
4.1.1	Manual analysis	45	
4.1.2	SAFE PROGRAME ANALYSIS	58	
4.2	DESIGN	64	
4.2.1	Flat slab design	64	

4.2.2	Waffle slab design	72
4.3	QUANTITIES	81
4.3.1	Concrete quantities	81
4.3.2	Reinforcing steel quantities	82
4.4	Comparison of results	84
4.4.1	Analysis results	84
4.4.2	Quantities results	86
	CHAPTER FIVE	
5.1	Conclusion	87
5.2	Recommendations	88
	REFERENCES	89
	APPENDIX A	90
	APPENDIX B	98

LIST OF TABLES

NO.		PAGE
3.1	Ultimate bending moment and shear forces	34
3.2	Distribution of design moments in panels of flat slabs	36
4.1	Flat slab information	45
4.2	Flat slab-design strip moments and shear forces	48
4.3	Flat slab-column strip moments	50
4.4	Flat slab-middle strip moments	51
4.5	Waffle slab information	52
4.6	Waffle slab-design strip moments and shear forces	54
4.7	Waffle slab-column strip moments	56
4.8	Waffle slab-middle strip moments	57
4.9	Maximum displacements in flat slab	58
4.10	Reactions of flat slab	59
4.11	Forces of the flat slab design strip	60
4.12	Maximum displacements in waffle slab	61
4.13	Reactions of waffle slab	62
4.14	Forces of the waffle slab design strip	63
4.15	Flat slab-column strip design moments	64
4.16	Flat slab-middle strip design moments	66
4.17	Waffle slab-column strip design moments	72

4.18	Waffle slab-middle strip design moments	75	
4.19	Flat slab-column strip moment comparison	84	
4.20	Flat slab-middle strip moment comparison	84	
4.21	Waffle slab-column strip moment comparison	85	
4.22	Waffle slab-middle strip moment comparison	85	
4.23	Concrete quantities comparison	86	
4.24	Reinforcing steel quantities comparison	86	

LIST OF FIGURES

NO.		PAGE
2.1	Solid slab	6
2.2	plane view of Beam-and-Girder system	6
2.3	Flat Plate	8
2.4	Flat Slab with drop panel and column capitals	8
2.5	Flat Slab with column capitals	9
2.6	Ribbed slab with permanent blocks	9
2.7	Ribbed slab without permanent blocks	10
2.8	Ribbed hollow core slabs	10
2.9	One-Way ribbed slab formed using blocks	12
2.10	Arrangement of block in One-Way hollow blocks	13
2.11	One-Way hollow block slab cross section	13
2.12	Arrangements of waffle slab	14
2.13	waffle slab formed using steel pans	15
2.14	waffle slab formed using hollow blocks	15
2.15	waffle slab appearance	16
2.16	Deflected shape of uniformly loaded one-way slab	17
2.17	Unit strip basis for flexural design	18
2.18	Two-way slab on simple edge supports	19
2.19	moments and moment variation in a uniformly loaded	23

2.20	column supported two-way slabs	26
2.21	Moment variation in column supported two-way slab	27
2.22	Portion of slab to be included with beam	29
3.1	Definition of panels and bays	33
3.2	Division of panels in flat slabs	35
4.1	Flat slab-design strip under consideration	46
4.2	Ultimate load and span length	48
4.3	Ultimate moments in the design strip	49
4.4	Division of panels into column & middle strips	49
4.5	Column strip of flat slab	50
4.6	Middle strip of the flat slab	51
4.7	Waffle slab-design strip under consideration	53
4.8	Ultimate load and span length	54
4.9	Ultimate moments in the design strip	55
4.10	Division of panels into column & middle strips	55
4.11	Column strip of waffle slab	56
4.12	Middle strip of waffle slab	57
4.13	Model of flat slab	58
4.14	Model of the waffle slab	61
4.15	Flat slab top reinforcement	83

TABLE OF NOTATIONS AND ABBREVIATIONS

	Roman upper case letters	
A	Area	
A_s	Area reinforcement steel	
E	Young's modulus	
I	Moment of inertia	
$\mathbf{M}_{\mathbf{x}}$	Bending moment in x-direction	
M_{y}	Bending moment in y-direction	
P	Point load	
V	Shear force	
Roman lower case letters		
b	Width	
d	Effective depth of cross—section	
h	Height	
k	Structural stiffness	
l	Length	
q	Distributed load	
S	Space between reinforcement bars	
и	Displacement.	
F_{cu}	Characteristic compressive strength of concrete	
$f_{ m y}$	Yield stress	
Greek lower case letters		
β	Moment distribution factor.	
E	Strain	
ϕ	Diameter	

υ Poisson's ratio

	Abbreviations
DOF	Decrees of Freedom
FEM	Finite Element Method
FD	FEM-Design
SM	Strip Method
YL	Yield Line Theory