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Abstract

Chaotic Optical Communication (COC) system is a novel communication scheme
that utilizes an optical chaotic waveform as carrier of information, in secure

communication applications.

In this work, we have studied an implemented AC-couple Optoelectronic Feedback
Semiconductor Laser (OEFSL). This work has been expanded to configure 2°

laser oscillators network.

The physical model of such chaotic system has been demonstrated by means of
physical parameters, the time scales of each parameter are different. To solve this

problem, a dimensionless transformation has been made.

We have started from the creation of the chaotic simulation system, study the
properties and determine the control parameters that lead to regular behavior.
Chaotic behavior has been generated by selecting the experimental initial
conditions for the OEFSL under appropriate conditions. We have a lot consider
effectively analyze the behavior of a dynamical system under the influence control
parameters. This step has been done by modeling and programming the system

above using MATLAB packages.

In order to achieve the synchronization condition between master and slave
oscillators, a unidirectional coupling configuration is implemented, in this
configuration, the coupling between master and slave enables the master oscillator

to fully driving and controlling the slave.

The master-slave configuration is expanded to implement Optoelectronic Feedback

Semiconductor Laser Network (OEFSLN) by means of Simulink environment in
Y



MATLAB package to implement 256 chaotic oscillators. The synchronization
condition among the all network oscillators has been achieved by means of

coupling factor. We consider this approach is very fruitful step to build OEFSLN.
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Chapter one: Introduction and Literature Review

1 Chapter one: Introduction and Literature Review

1.1 Introduction

Nonlinear dynamics of semiconductor lasers (SL) have been widely investigated
due to their useful applications in nonlinear optics, laser spectrometry, optical
communications and optical chaos communications especially. As an important
aspect of the nonlinear dynamics, multi stability in a SL with feedback or optical
injection has been investigated experimentally and theoretically. In recent years,
the SLs with the optoelectronics feedback (OEFB) have received considerable
attention due to their application in optical chaos communication (Sivaprakasam
and Shore, 1999). SL rate equations are used to model the dynamics of a SL with
OEFB.

Chaos is an inherent feature of many nonlinear systems. In particular, the transition
from order to disorder occurs with universality, irrespective of physical properties
of the systems. Chaos occurs in optics, both in lasers and in nonlinear optical
devices. Such systems, which are fundamentally simple both in construction and in
the mathematics that describe them, provide excellent opportunities for
investigating these nonlinear phenomena as well as for technological innovation
(Tricker, 2002). An early pioneer of the theory was Edward Lorenz whose interest
in chaos came about accidentally through his work on weather prediction in
(Lorenz and N., 1993). The CO, laser was described by six rate equations model
given by (Pisarchik et al., 2001). The semiconductor laser subjected to the
feedback injection is suitable way to produce a chaotic dynamic. These chaotic
systems using semiconductor lasers can be described by three dynamic rate
equations (Al Naimee et al., 2009).
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In order to understand these complex dynamics, frequently observed in biological
environments, and to provide controllable and reproducible experiments,
considerable efforts have been devoted to the search of analogous phenomena in
nonlinear optical systems, and HC has been found in CO, laser with feedback
(Pisarchik et al., 2001).

1.2 Chaos Signal:

Chaos is a paradigmatic name used to describe deterministic dynamical systems
whose behavior is complex, unpredictable and extremely sensitive to initial
conditions. Chaos is theoretically and experimentally encountered in almost all
types of lasers (solid-state, gas, semiconductor, etc...). Methods to lead lasers to
chaos are numerous and based on two necessary conditions: nonlinearity and
threefold dimensionality. Hence, when the nonlinearity of the laser (system) is not
strong enough, an external nonlinear element can be introduced. Along the same
line, when the dimensionality of the laser system is not high enough, it can be
increased by parameter modulation or by feedback loops (Chembo Kouomou,
2006).

There are three basic dynamical properties that collectively characterize chaotic
behavior. First, it exhibits an essentially continuous and possibly banded frequency
spectrum that resembles random noise. Second, it is sensitive to initial
conditions—that is, nearby orbits in the phase space (a geometrical perspective in
which the dynamical states are plotted against each other so that time becomes
implicit) diverge rapidly. Third, it contains an ergodicity and mixing of the

dynamic orbits, which in essence implies the wholesale visit of the entire phase
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space by the chaotic behavior and a loss of information because of the loss of
predictability (Silva, 2011).

1.3 Chaotic Application:

Chaotic systems are used in various applications due to their ability to generate
highly complicated signals by a simple recursive procedure (Silva, 2011). Chaotic
sequences are attractive candidates for use in signal analysis, signal synthesis,

practical engineering, and communications applications.

Chaotic systems are used as models for a wide range of signal processing
applications as well as for practical engineering systems like analog-to digital
converters and power converters. Chaotic systems have the potential to give rise to
good joint source—channel codes due to their ability to separate orbits of nearby
initial states while maintaining global boundless, thus conforming to energy and

peak amplitude constraints (Tricker, 2002).
1.4 Chaos Generation:

Ideal components to generate optical chaotic signal are semiconductor lasers which
can act as carrier transmitters and receivers in optical communication systems.
Different control parameters play crucial roles in generating a chaotic behavior of
the laser output. These parameters are laser power, injection current of the laser

diode and the amplifier gain (Soucek, 1992).
1.5 Optical Communication with Chaotic:

Semiconductor lasers are the most important light sources for optical
communications because of their compact size, efficiency, high speed, and
3
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semiconductor laser has the ability to be electrically pumped and current
modulated (Liu et al., 2001).

Single-mode semiconductor lasers, such as the distributed-feedback lasers and the
vertical-cavity surface emitting lasers, are particularly important for high bit- rate
optical communication systems. For these reasons, single-mode semiconductor
lasers are used as transmitters and receivers for chaotic optical communications
(Liu et al., 2001). Figure 1.1 shows the operating principle of a chaos-based optical
communication system. In this system, a data message encoded on a
deterministically chaotic carrier is recovered by using a receive incorporating a

similar deterministically chaotic oscillator (Syvridis and Bogris, 2006).

The transmitter consists of a chaotic oscillator forced by external feedback to
operate in the chaotic regime, producing a chaotic carrier that use to carry
information by encoded on this chaotic carrier using different techniques. In a
chaotic optical communication system, a nonlinear dynamical system is used to
generate the chaotic signal for message transmission. Messages are embedded
through chaos signal then Message recovery process is achieved by comparing the
received signal with a reproduced chaotic signal which synchronizes with the

transmitter chaotic signal (Syvridis and Bogris, 2006).
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TRANSMISSION SUBTRACTION
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TRANSMITTER
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ONLY
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Figure 1-1 Chaos-based optical communication systems(Liu et al., 2001)

1.6 Chaos Synchronization:

Since the early 1990s researchers have realized that chaotic systems can be
synchronized. The recognized potential for communications systems has driven
this phenomenon to become a distinct subfield of nonlinear dynamics, with the
need to understand the phenomenon in its most fundamental form viewed as being
essential. All forms of identical synchronization, where two or more dynamical
system execute the same behavior at the same time, are really manifestations of
dynamical behavior restricted to a flat hyper plane in the phase space (Ding and
Ott, 1994).

Synchronization of chaos is a phenomenon that may occur when two, or more,
chaotic oscillators are coupled, or when a chaotic oscillator drives another chaotic
oscillator. Because of the butterfly effect, which causes the exponential divergence
of the trajectories of two identical chaotic system started with nearly the same
initial conditions, having two chaotic system evolving in synchrony might appear

quite surprising. However, synchronization of coupled or driven chaotic oscillators


http://en.wikipedia.org/wiki/Chaos_theory
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Is a phenomenon well established experimentally and reasonably understood
theoretically (Fischer et al., 2000).

Chaos synchronization in discrete-time has been extensively studied, due to its
potential applications for secure communication. Different types and various
powerful methods and techniques of chaos synchronization have been reported to

Investigate chaos synchronization in discrete dynamical systems(Ouannas, 2014)
1.7 The aim of the Work:

The aim of this work is to implement and investigate the chaotic optoelectronics

network based on AC-coupled optoelectronic feedback semiconductor lasers.

In addition: network synchronization among 256 chaotic oscillators would be

investigated in this study.
1.8 Thesis Layout:
This thesis contains four chapters summarized as follows:
Chapter One:
Presents an introduction and literature review
Chapter Two:
Discuss and explain the Chaos concept and chaos generation techniques.

Nonlinear dynamics of semiconductor lasers (SLs), a SL with OEFB as chaos
generator, chaos signal, chaos synchronization and chaos application in secure

optical communication.
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Chapter Three:
Discuss Implementation Techniques including:

- Describe the implementation and design of the proposed model.
- Providing a detailed explanation for designing each part of the system.

- Netware block oscillators design.
Chapter Four:

Results and Discussion which includes:

The free running operation results.

Generation of chaos signal results.

- Coupling system synchronization chaos.

- System responds and effects to the variable.

- Results due to the Feedback injection current (d,) and feedback
strength (&) variation.

- Conclusions.

- Future work.

- Recommendations.
1.9 Literature review:

(Fischer et al., 2000) presented experimental evidence for the synchronization of
two semiconductor lasers exhibiting chaotic emission on sub nanosecond time
scales. The transmitter system consists of a semiconductor laser with weak to

moderate coherent optical feedback and therefore exhibits chaotic oscillations.
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The receiver system is realized by a solitary semiconductor laser in which a

fraction of the transmitter signal is coherently injected.

(Chen and Liu, 2000)generated a chaotic carrier waveform from different chaotic

state in transient rather than from a fixed chaotic state in static.

The discrete distribution of homoclinic orbits has been investigated numerically
and experimentally in a CO2 laser with feedback. The narrow chaotic ranges
appear consequently when a laser parameter (bias voltage or feedback gain)
changes exponentially. Up to six consecutive chaotic windows have been
observed in the numerical simulation as well as in the experiments. Every
subsequent increase in the number of loops in the upward spiral around the saddle
focus is accompanied by the appearance of the corresponding chaotic
window(Pisarchik et al., 2001)

(Sivaprakasam et al., 2001) used an optical coupling to affect synchronization
between two diode lasers in a master-slave configuration. The effect of frequency
detuning between the master and slave lasers on the character of the observed
synchronization has been studied. Experimental conditions are found under which
the synchronization plot (formed by plotting the output power of the slave laser
against that of the master at each instant in time) makes a transition from a
positive gradient to a negative gradient. (Wieczorek et al., 2001) has been studied
sudden changes in the chaotic output of an optically injected semiconductor laser.
Bifurcations that cause abrupt changes between different chaotic outputs, or even
sudden jumps between chaotic and periodic output are identified. These sudden
chaotic transitions involve attractors that exist for large regions in parameter

space. They have used modern tools from bifurcation theory that is facilitated
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experimental exploration of these transitions. The authors in (Al Naimee et al.,
2009) have been demonstrated experimentally and theoretically the existence of
slow chaotic spiking sequences in the dynamics of a SL with ac-coupled OEFB.
The time scale of these dynamics is fully determined by the high-pass filter in the
feedback loop and their erratic, though deterministic, nature is evidenced by

means of inter-spike interval (I1SI) probability distribution.

They showed that this regime is the result of an incomplete homoclinic scenario to
a saddle focus, where an exact homoclinic connection does not occur (Tricker,
2002). (Al Naimee et al., 2010) have studied experimentally and theoretically the

dynamics of a SL with ac-coupled nonlinear OEFB.

A period doubling sequence of small periodic and chaotic attractors was observed,
each of them displaying excitable features. These results extend the fixed point
based excitability concept also to the case of higher-dimensional attractors. The
transitions between chaotic and periodic mixed mode oscillation, experimentally
observed (Tricker, 2002). We report on experimental evidence of generation and
control of low spiking events in a semiconductor laser. (Abdalah et al., 2010) have
studied experimentally and theoretically an experiment has been carried on a
semiconductor laser with an electro-optic feedback, set in a parameter range
where chaos occurs. The feedback is modulated by 1 kHz and 10 kHz,
frequencies, 50mV amplitudes. The dependence of the injected current on the
feedback fraction is observed. (Abdalah et al., 2010) experiments and modeling
chaotic spiking behavior has been recently reported in semiconductor lasers with

optoelectronic feedback showing strict similarities with homoclinic chaos.
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The same dynamics can be explored in LEDs with the same feedback
configuration. (Abdalah et al., 2011) has been presented the experimental results
for the synchronization of chaotic optical network, Experimental configurations
for particular cases of asymmetric coupling in the case of three and six coupled
oscillators. Also reported and characterize synchronization phenomena in such
optoelectronic networks. This approach allows controlling the parameter
mismatch between the coupled units, what usually occurs in the experimental

setups.
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2 Chapter — Two: Theoretical concepts
2.1 Chaotic Theory:

Chaos Theory studies the behavior of dynamical systems that are highly sensitive
to initial conditions; an effect which is popularly referred to as the butterfly effect.
Small differences in initial conditions yield widely diverging outcomes for chaotic
systems, rendering long-term prediction impossible in general (Argyris et al.,
2005). This happens even though these systems are deterministic, meaning that
their future behavior is fully determined by their initial conditions, with no random
elements involved. In other words, the deterministic nature of these systems does
not make them predictable. This behavior is known as deterministic chaos, or
simply chaos (DeCusatis, 2002). Chaotic behavior can be observed in many natural
systems, such as the weather. Explanation of such behavior may be sought through
analysis of a chaotic mathematical model, or through analytical techniques such as

recurrence plots (Werndl, 2009).
2.1.1 Chaotic dynamics:

In common usage, "chaos™ means "a state of disorder", but the adjective "chaotic"
is defined more precisely in chaos theory (Danforth, 2013). Although there is no
universally accepted mathematical definition of chaos, a commonly used definition
says that, for a dynamical system to be classified as chaotic, it must have the

following properties:

i. It must be sensitive to initial conditions;
ii. It must be topologically mixing; and
iii.  Its periodic orbits must be dense.
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The requirement for sensitive dependence on initial conditions implies that there is
a set of initial conditions of positive measure which do not converge to a cycle of
any length (Danforth, 2013).

2.1.2 Sensitivity to initial conditions:

Sensitivity to initial conditions means that each point in such a system is arbitrarily
closely approximated by other points with significantly different future trajectories.
Thus, an arbitrarily small perturbation of the current trajectory may lead to
significantly different future behavior (Medio and Lines, 2001). Sensitivity to
initial conditions is popularly known as the "effect”, as show in figure 2.1 so
called due to Edward Lorenz in 1972 to the American Association for the
Advancement of Science in Washington, D.C. entitled Predictability: Does the
Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas. The flapping wing
represents a small change in the initial condition of the system, which causes a
chain of events leading to large-scale phenomena. Had the butterfly not flapped its
wings, the trajectory of the system might have been vastly different (Medio and
Lines, 2001).
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Figure 2-1 butterfly effect in Lorenz model(Lorenz and N., 1993)
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2.1.3 Strange attractors:

The states variable representations in phase space describe the chaotic states so
evolution of the state can be represented as one dimension (1D) time series
(fig2.2), also the evolution of the state variable can be represented simultaneously
in a (n) dimension (nD) phase space(fig2.3). When the system is chaotic, the
trajectory is called a ‘‘strange attractor’’. The Lorenz attractor displays chaotic
behavior. These two plots demonstrate sensitive dependence on initial conditions

within the region of phase space occupied by the attractor.

S0 100
(a.u)

Figure 2-2 Figure 2.2 the time series Lorenz model(Lorenz and N., 1993)

Figure 2-3 the strange attractor Lorenz model(Lorenz and N., 1993)
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2.1.4 Research Directions for Engineering Applications with Chaotic Lasers:

The research directions with chaotic lasers for engineering applications are
summarized in Figure 2.4. There are three main research directions treated in this
book, related to the concepts of how to harness chaos. For chaos communication

applications, the characteristics of chaos are used in a straightforward way, that is,

The determinism of chaos results in synchronization ability of chaos, and the
middle degrees of complexity are suitable to hide a message signal. By contrast,
for the applications of random number generation, the randomness of chaos needs
to be maximized and determinism of chaos needs to be eliminated by converting
analog chaos signals to binary signals. The important technique is how to extract
and distill the randomness from deterministic chaos for this application. The
research on random number generation requires a new engineering approach of
chaos for maximizing the randomness of chaos (Argyris et al., 2005). By contrast,
control and stabilization of chaos is a technique to completely avoid Complexity
and instability of chaos. To design and establish ultra stable lasers, chaos control
techniques may be useful for the suppression of chaotic instabilities. The features
of deterministic chaos including unstable periodic orbits can be utilized for
controlling chaos. The research on controlling chaos is the opposite direction of the
research on random number generation, depending on minimizing or maximizing

the complexity of chaos, respectively (Argyris et al., 2005).
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Random Order

—— e

Random Randomness Chaos control Ultrastable
number extraction /distillation Chaos stabilization laser
generator

Chaos
synchronization

[ Chaos communication ]

Figure 2-4 Three research directions for chaotic lasers engineering applications (Argyris et al., 2005).

2.2 Classification of Generation Techniques of Chaos in Lasers:

For commercially available lasers (e.g., class B lasers including SL and SSI). The
dynamics of the electric field and the population inversion are treated, and the time
scale for exchanging the energy between these two physical variables is
characterized by the “relaxation oscillation frequency”, which determined by a

combination of three parameters (Baker and Gollub, 1996):

I.  The photon life time.
ii.  The population inversion life time.

iii.  The pumping rate above threshold.

Class B lasers provide stable laser intensity in most situations, since there are only
two variables of the electric field and the population inversion that are not satisfied
with the condition for generating deterministic chaos. At least one more degree of
freedom (i.e., one variable) is required for the generation of chaos (Strogatz, 1994)
(Baker and Gollub, 1996).
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The techniques for generating chaos with additional degrees of freedom can be

classified into the following types:

I.  Optical feedback (with or without time delay);
1.  Optical coupling and injection;
iii.  External modulation (for pump or loss);

iv. Insertion of nonlinear devices.
2.2.1 Optical Feedback:

The dynamics of semiconductor lasers with time-delayed optical feedback is a
typical example of feedback-induced chaos in lasers. An external mirror is placed
in front of the laser cavity, and the laser light is reflected back from the external
mirror and re injected into the laser cavity, as shown in (Figure 2.5a) the optical
self-feedback signal may disturb the balance of the carrier—photon interaction in
the laser medium and induce the instability of laser intensity. In this situation, the
temporal dynamics is determined by the two dominant frequency components: the

relaxation oscillation frequency and the external cavity frequency (Uchida, 2012).

The relaxation oscillation frequency is proportional to the square root of the
normalized pump power divided by the carrier lifetime and the photon lifetime, as
shown in Equation (2.1), so it is determined by the characteristics of the
semiconductor medium. The typical value of the relaxation oscillation frequency of
semiconductor lasers is a few GHz. On the other hand, the external cavity
frequency (f ¢ ) depends on the distance between the facet of the laser cavity and

the external mirror (i.e., the external cavity length) as,
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Where ( Ley) is the external cavity length (one-way), (n) is the refractive index in
the external cavity, and (c) is the speed of light. The nonlinear interaction between
the relaxation oscillation frequency and the external cavity frequency results in the

quasi periodicity route to chaos as the feedback strength increases (Uchida, 2012).
2.2.2 Optical Coupling and Injection

The unidirectional or mutual optical coupling from one laser to another laser can

generate chaotic instability of laser output, as shown in Figure (Figure 2.5b).

It is worth noting that the laser intensity has two dominant frequency components
one is the optical-carrier frequency (f.) determined by the optical wavelength ()
and the speed of light(C) as:

fe== .. (2.2)

x| a

When the detuning of the optical carrier frequencies between an injection and
injected lasers is set to the order of the relaxation oscillation frequency, the
nonlinear interaction between the optical-carrier frequency detuning and the
relaxation oscillation frequency can occur and chaotic fluctuation may appear. The
control of the detuning of the optical-carrier frequency, as well as the coupling

strength, is crucial for chaos generation in this method (Uchida, 2012).
2.2.3 External Modulation

When an external modulation is added to the pumping of a laser system as shown
in (Figure 2.5¢) (i.e., pump modulation), chaotic instability of laser intensity may

appear. The external modulation frequency needs to be set around the relaxation
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oscillation Frequency of the laser, so that the nonlinear interaction between the
external modulation frequency and the relaxation oscillation frequency may result

in the generation of chaos (Uchida, 2012).

The external modulation can also be applied to the loss of the laser cavity, which is
referred to as loss modulation. Chaotic dynamics is typically observed through the
quasi periodicity route to chaos as the external modulation strength is increased
(Uchida, 2012).

2.2.4 Insertion of Nonlinear Element

The insertion of a nonlinear element may cause chaotic dynamics, as shown in
(Figure 2.5d). For example, chaotic intensity fluctuation is observed in a solid-state

laser system with a nonlinear crystal for second-harmonic generation (SHG).

The mode-mode interaction between the fundamental wavelength and the SHG
wavelength occurs in a nonlinear fashion, and chaotic dynamics may be observed.
Also, when a saturable absorber is inserted in a gas-laser system, complex chaotic

dynamics may be observed.

An additional degree of freedom enhances the nonlinear atom-photon interaction

in the laser medium and leads to chaotic intensity fluctuations (Uchida, 2012).

Mirror
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-
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*

(a) Optical feedback
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Figure 2-5(a,b,c,d,e) Chaos Generation techniques(Uchida, 2012).
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2.2.5 Semiconductor Laser with Optoelectronic Feedback

In optoelectronic feedback signal can be used for generation of chaos in
semiconductor lasers. The laser output is detected by a photo detector and is
converted into an electronic signal. The electronic signal is fed back to the
injection current for pumping to induce instability of laser output. The feedback
signal of the laser intensity only interacts with the dynamics of the carrier density,
but not the electric field of the laser, thus it is considered as incoherent optical
feedback (Ohtsubo, 2013). The light emitted from a semiconductor laser is
detected by a photo detector and the detected photocurrent is fed back to the

injection current through a bias circuit.
2.2.6 Recurrence Formula

In this section, the basic concept of deterministic chaos and related terminologies
are introduced and described. First, a basic mathematical formula is introduced for
the observation of deterministic chaos in discrete time system (Uchida, 2012). A

discrete sequence is considered as:
XgBPX1BX B B Xy ... (23)

A recurrence formula (also referred to a “map”.) can be defined by a function (f)

that relates (X,.1) with (X, for all n, that is

Xpt1 = F(Xp) v v v . (2.4)

First, (x,) can be obtained from (Xo) by using equation (2.6) when (X,) is given as

an initial condition. Then, (X,) is obtained from (x;), and (X3) is obtained from (x,),

and finally all x, (n =1, 2,...N) Value can be calculated directly from the initial
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condition as shown in Equation (2.3). In this sense, the map is completely
deterministic by using the rule of equation (2.6) and the initial condition (Xo)
(Uchida, 2012). One of the simplest models to exhibit chaos is the Logistic map.

The Logistic map is written as:
Xpt1 = ax,(1—x,)....(2.5)
Where:
0<x,<1land0<a<4....(2.6)

Where (a) is a parameter for the map. To observe chaos we can select (a) equal to
4,

2.2.7 Chaotic Sequence:

A sequence of the discrete variable (x,) in the Logistic map (a=4) is shown in
Figure 2.5a. It is surprising that the time sequence shows an irregular behavior
even though Eq. (2.5) is quite simple and completely deterministic. The
deterministic rule of Eq. (2.5) can be depicted as a quadratic relationship between
xn and xnpl, as shown in Figure 2.5b. This simple recurrence formula can produce
an exotic irregular behavior without external noise term in Eq. (2.6). It may seem
that the irregular sequence shown in Figure 2.6a is predictable because the
sequence is derived from the deterministic rule if the rule and the initial condition
are known, this is true, however, the initial condition with infinite. Precision is
necessary for the prediction. In real chaotic dynamical systems, it is impossible to
identify the initial conditions with infinite precision. In addition, there is an

important characteristic of deterministic chaos, known as sensitive dependence on
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initial conditions, which describe in Figure 2.6 (a). Therefore, a tiny error of the
initial conditions makes a chaotic irregular sequence Unpredictable. This fact
indicates chaos can be unpredictable for long-term duration, Even though the

deterministic rule exists and only short-term prediction is attainable (Uchida,
2012).
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Figure 2-6 (a) Sequence of discrete variable (xn) and (b).

Quadratic relationship between (xn) and (xn+1) in logistical map (a=4). (Uchida, 2012).
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Figure 2-7 Show the sensitive dependance on initial conditions
in the logistical map(a=4) (Uchida, 2012).
(@) Two sequences of (x,) starting from slightly different initial condition

(b) The destance of the two sequences in the semilogarithmic scale
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2.2.8 Bifurcation Diagram and Two-Dimensional Dynamical Map

Another important characteristic of chaos is a transition among different dynamical
States such as:

I. Steady state.
ii. Periodic state.

li.  Chaotic sequences.

Is referred to as bifurcation in the logistic map, so when the parameter value (a) is
changed, different states of sequences can be obtained as shown in Figure 2.9
shows the sequences of different values of (a) (Uchida, 2012).

(a) (b)
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(d)
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Figure 2-8 sequence of (xn) at different value of (a) in logistic map(Uchida, 2012).

(a) Periodic-1  (b) periodic-2 (c) periodic-4 (d) chaos
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Also When one of the laser parameter values is changed (e.g., the optical feedback
strength is increased in a semiconductor laser), the transition is found from a
period-1 oscillation (Figure 2.9 a) and a quasi periodic oscillation (Figure 2.9 b)
before a chaotic oscillation is observed, the bifurcation is known as the quasi
periodicity route to chaos, and this result strongly indicates the existence of
deterministic chaos, since bifurcation can be observed only in deterministic
systems, but not in stochastic systems. The observation of bifurcation is thus one of
the most convincing pieces of evidence of deterministic chaos if one of the laser
parameters is accessible and changeable, particularly for experimental data
(Uchida, 2012).
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Figure 2-9 Experimental results as bifurcation diagram as function of the feedback strength
Periodic  (b) Quasi periodic(Uchida, 2012).
2.3 Chaos Synchronization Concepts:
Synchronization of chaos is a phenomenon that may occur when two, or more,

chaotic oscillators are coupled, or when a chaotic oscillator drives another chaotic

oscillator.
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Synchronization occurs when oscillatory (or repetitive) systems via some kind of
interaction adjust their behaviors relative to one another so as to attain a state

where they work in unison.(Mosekilde et al., 2002)

Also chaos synchronization refers to a procedure where two chaotic oscillators
(either identical or non identical) adjust a given property of their motion to a
common behavior (Argyris et al., 2005). Interacting chaotic oscillators are of
interest in many areas of physics, biology, and engineering. In the biological
sciences, for instance, one of the challenging problems is to understand how a
group of cells or functional units, each displaying complicated nonlinear dynamic
phenomena, can interact with one another to produce a coherent response on a
higher organizational level (DeCusatis, 2002). Synchronization comes from the
Greek words syn (with) and chronos (time) occurring at the same time.
Synchronization refers to an adjustment of rhythms of oscillators due to weak

interactions:

Oscillator: (self-sustained): active system with internal source of energy

mathematically described by an autonomous system (ODE, map).
Rhythms: frequency or period of oscillations.

Coupling: interaction or transmission of information between system:

unidirectional (forcing) or bidirectional (mutual interaction) (Werndl, 2009).

Chaos synchronization in discrete-time has been extensively studied, due to its
potential applications for secure communication. Different types and various
powerful methods and techniques of chaos synchronization have been reported to

investigate chaos synchronization in discrete dynamical systems (Danforth, 2013).
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2.3.1 Complete Synchronization (CS):

Existence of a type of synchronization for both amplitude and phase, and more

generally for all state variables x; of a dynamical system (Medio and Lines, 2001):

Zl:i’l = Fy(x, K1 (x1,%2)) e o (3.1)

Zzzxz = Fa (x5, K2(x4,%2)) o von oo (3.2)

Then: (X;=X;) Asymptotically

2.3.2 Generalized synchronization (GS):

Existence of functional relationship between state variables of systems 1 and 2

X; =¢P(Xg) oo (3.3)

Depending on the smoothness of y we distinguish weak or strong GS. Because of
the butterfly effect, which causes the exponential divergence of the trajectories of
two identical chaotic system started with nearly the same initial conditions, having
two chaotic system evolving in synchrony might appear quite surprising (Medio
and Lines, 2001).

2.3.3 Identical synchronization:

This is a straight forward form of synchronization that may occur when two
identical chaotic oscillators are mutually coupled, or when one of them drives the

other. If (X¢,X2,,...,Xn) @and (X'y, X'5,...,X"n) denote the set of dynamical variables that
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describe the state of the first and second oscillator, respectively, it is said that

identical synchronization occurs when there is a set of initial conditions :
[X1(0), X2(0),....Xn(0)], [X'1(0), X2(0),....X'n(0)]

Such that, denoting the time by:
t, [X'i(t)-xi((t)|—0, for i=1,2,...,n, when t—o0

That means that for time large enough the dynamics of the two oscillators verifies
x'i(t)=xi(t), for i=1,2,...,n,

In a good approximation, this is called the synchronized state in the sense of
identical synchronization (Medio and Lines, 2001). Most of the synchronization
techniques belong to the master-slave (drive-response) system configurations in
which the two chaotic systems are coupled in such a manner that the performance
of the second (slave /response) system is influenced by the first (drive/master)
system and the first system is not disturbed by the exertion of the second (slave /

response) system. (Medio and Lines, 2001).
2.3.4 Generalized synchronization:

This type of synchronization occurs mainly when the coupled chaotic oscillators
are different, although it has also been reported between identical oscillators.

Given the dynamical variables:

(X1, X2,,-.0,Xn) @nd (Y1,Y2,,-++,Ym)

27



Chapter — Two: Theoretical Concepts

That determine the state of the oscillators, generalized synchronization occurs
when there is a functional, ®, such that, after a transitory evolution from

appropriate initial conditions, it is:

[yl (t) ' Y2 (t) yre 7ym(t)]:cD [Xl(t) ) XZ(t) yeeesXn (t)]

This means that the dynamical state of one of the oscillators is completely
determined by the state of the other. When the oscillators are mutually coupled this
functional has to be invertible, if there is a drive-response configuration the drive
determines the evolution of the response, and ® does not need to be invertible.
Identical synchronization is the particular case of generalized synchronization
when @ is the identity [S]. Among all types of synchronization, generalization
synchronization (GS) has been extensively considers. In (GS), two chaotic systems
are said to be synchronized if there exists of fundamental relationship between the

states the drive and response chaotic system (Baker and Gollub, 1996).
2.3.5 Phase synchronization:

The phase of oscillations may be locked by periodic external force; another

situation is the locking of the phases of two interacting oscillators.

phase synchronization of chaotic system define as, ‘appearance of a certain relation
between the phases of interacting systems or between the phase of a system and
that of an external force, while the amplitudes can remain chaotic and are, in
general, non-correlated (Uchida, 2012). This form of synchronization, which
occurs when the oscillators coupled are not identical, is partial in the sense that, in
the synchronized state, the amplitudes of the oscillator remain unsynchronized, and

only their phases evolve in synchrony.

28



Chapter — Two: Theoretical Concepts

The characterize phenomenon in phases synchronization analysis, while the
amplitudes vary chaotically and are practically uncorrelated. Coupling a chaotic
oscillator with a hyper chaotic one, we observe another new type of
synchronization, where the frequencies are entrained, while the phase difference is
unbounded.(Rosenblum et al., 1996)

Observation of phase synchronization requires a previous definition of the phase of
a chaotic oscillator. In many practical cases, it is possible to find a plane in phase
space in which the projection of the trajectories of the oscillator follows a rotation

around a well-defined center, so if:

¢l (t) and @2 (t)

Denote the phases of the two coupled oscillators; synchronization of the phase is

given by the relation:

ne; (t) =mo (1)
with (m) and (n) whole numbers (Uchida, 2012).
2.3.6 Anticipated and lag synchronization:

In these cases the synchronized state is characterized by a time interval (t) such

that the dynamical variables of the oscillators:
(x1, x2,,..., xn) and (X'y, X',...,X"1)
Are related by:

Xi(t)=xi(t+7)
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This means that the dynamics of one of the oscillators follows, or anticipates, the
dynamics of the other. Anticipated synchronization may occur between chaotic
oscillators whose dynamics is described by delay differential equations, coupled in
a drive-response configuration. In this case, the response anticipates the dynamics
of the drive. Lag synchronization may occur when the strength of the coupling

between phase-synchronized oscillators is increased (Medio and Lines, 2001).
2.3.7 Amplitude envelope synchronization:

This is a mild form of synchronization that may appear between two weakly
coupled chaotic oscillators. In this case, there is no correlation between phases nor
amplitudes; instead, the oscillations of the two systems develop a periodic
envelope that has the same frequency in the two systems. This has the same order
of magnitude than the difference between the average frequencies of oscillation of
the two chaotic oscillators (Medio and Lines, 2001). Often, amplitude envelope
synchronization precedes phase synchronization in the sense that when the strength
of the coupling between two amplitude envelope synchronized oscillators is
increased, phase synchronization develops. All these forms of synchronization
share the property of asymptotic stability. This means that once the synchronized
state has been reached, the effect of a small perturbation that destroys
synchronization is rapidly damped, and synchronization is recovered again.
Mathematically, asymptotic stability is characterized by a positive Lyapunov
exponent of the system composed of the two oscillators, which becomes negative
when chaotic synchronization is achieved. Some chaotic systems allow even
stronger control of chaos. Both synchronization of chaos and control of chaos
constitute parts of cybernetic Physics (Ohtsubo, 2013).
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2.4 Coupling Schemes and Synchronization Types:

To synchronize chaotic temporal waveforms, laser systems need to be coupled to
each other. Coupling schemes are very important to consider synchronization of

chaos. The coupling schemes can be mainly classified into two types:

. Unidirectional Coupling (one way).

Il Bidirectional Coupling a mutual (two-way) couplings.
2.4.1 The unidirectional coupling:

The unidirectional coupling is treated mainly for engineering applications purpose
specifically optical communications. Unidirectional is the one of the simplest
coupling schemes for chaos synchronization made by a unidirectional Injection
from one laser (referred to as a drive laser) to another laser (referred to as a
response laser). The output of the drive laser is directly injected into the response
laser. The subtraction of the outputs between the drive and response lasers can be
used as an injection signal to the response laser as a coupling factor that control
the state of coupling to successive synchronization between driver and response
laser systems (Medio and Lines, 2001). The synchronization between coupled
chaotic circuits has attracted the interest of the research community because there
are rich and multi-disciplinary phenomena with broad range applications, such as
in broadband communication systems, in secure communications and in
cryptography. For this reason many coupling schemes between identical nonlinear
circuits with chaotic behavior have been presented. However, the basic drawback

of the majority of these schemes is the request the coupled circuits to be identical.
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Figure 2-10 Block diagram of the schemes of the chaos synchronization(Medio and Lines, 2001).
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Figure 2-11 Block diagram of the schemes of the chaos synchronization with feedback in the drive laser
(Medio and Lines, 2001).
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2.4.2 Synchronization of Chaos for Communication Applications

The idea of synchronization of chaos leads to a possible application for
communication. The application of synchronization of chaos to secret
communication systems was suggested in early work, it was discovered that a
chaotic transmitter could consist of an electronic circuit that generated nonlinear
dynamics and chaos. A message to be concealed with small amplitude is added to
the chaotic fluctuations of one of the dynamical variables and transmitted to a
receiver, while another chaotic variable was separately transmitted. The receiver
consisted of a subsystem of the circuits in the transmitter that generated the
dynamics of the transmitter and was driven by the separately transmitted signal.
The receiver synchronized to the chaos of the transmitter for the given operating
parameters, and one could recover the message from the chaos through a
subtraction at the receiver. An elegant variation of the method was introduced
above that did not require the separate transmission of a driving signal to the
receiver(Cuomo and Oppenheim, 1993). It was shown that the receiver could
actually synchronize to the chaotic dynamics of the transmitter even when a
message was added to the chaotic driving signal from the transmitter. The
synchronized output from the receiver was then used to subtract out the
information from the transmitted signal. The synchronization was not perfect, and
the message, treated as a perturbation of the chaotic signal, had to be small

compared to the chaos (Medio and Lines, 2001).

Synchronization of chaos is a phenomenon that may occur when two, or more,
chaotic oscillators are coupled, or when a chaotic oscillator drives another chaotic

oscillator. (Israr Ahmed, December 2015)
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3.1 Introduction

Semiconductor laser (SL) with optoelectronic feedback system may be expressed
mathematically by a set of differential equations that represents (OEFSL). this set
reduces and converting the physical mathematical description to dimensionless
equations by (Al Naimee et al., 2009). In this work we have modified the previous
model (system) to new dimensionless equations as Al Naimee, 2016. By this new
modification, the implementing and programming of the optoelectronic feedback

system has been achieved by MATLAB package and Simulink.

Due to simulation, the considered system of chaotic oscillator has been modeled by
selecting experimental parameters (Sora et al., 2010). The existences of slow
chaotic spiking sequences appear in the dynamics of the simulating model results.
The behavior and characteristic of the simulated model is described according to

the following parameters:

I.  System parameters setting.
Ii.  Initial condition value.

ilii.  Time interval responds.

3.2 Mathematical Model:

The dynamics of the photon density S and carrier density N can be described by
the usual single-mode SL rate equations, SL rate equations are used to model the
dynamics of a SL with OEFB. Due to the theoretical concepts the numerical

simulating outputs of the model fully describe dynamics of a SL according to
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model parameters and conditions. So in specifics state chaos been generating as

model output(Chan and Liu, 2005)

single-mode SL rate equations appropriately modified in order to include the ac-

coupled feedback loop’

S= 9N -NO <Yo]S v v @)
Ni= Lo+ Fe()HeV-yN-g(N -N)S.......... (i)
I= -yl + KS. (iii)

Where | is the high-pass filtered feedback current (before the nonlinear amplifier),
fe (I) = AI/(1+s'D) is the feedback amplifier function, I, is the bias current, e the
electron charge, V is the active layer volume, g is the differential gain, Ntis the
carrier density at transparency,y, and y. are the photon damping and population
relaxation rate, respectively, v IS the cutoff frequency and k is a coefficient
proportional to the photo detector responsively. For numerical and analytical
purposes, it is useful to rewrite equations (i,ii,iii),in dimensionless form, we

introduce the new variables:

x= (g/yc)S, y=g/yo(N-Nt) ,w = (g/kyc) I-x, and the time scale t'=yot.
Then the rate equations become as the following form:

The first rate equation is:

S=[g(N -Nt) —yo]S........... (i)
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Using: x= (g/yc)S ,S=xyc/g

¥= (&/70)(N-Np) ,N-N=yvo/g

t'=yot,d t'=y,dt ,dt=d t'/yo,1/dt=ye/ d T’
Substitute in (1):
d/dt(xyo/g)=[2(yyo/9)-volxvc/g
dx/dt(yc/g)=xyyovc/g-xvoyc/g
Yo OX/ d t'=xyyo-xYo,dividing by (yo):

X =Xy-X,

K(1)=x(y-1) | @)

The second rate equation is:

N= [(I, +f= (1))/eV] - vcN - g(N-N,)S....... (i)
Since N-N&=yyo/g N=yyo/g+N;
Then d/dt(yyo/9)= [(lo+fe(1))/eV] - v(yyo/9+Ny) - gl(yvo/g)(xvc/9)]
And Since: fe(I)=AI/(1+SI)
Then (vo/g)dy/dt= [(Is+AL/1+$1)/eV]-ve(yyolg +No) —(xyVove/g),
Dividing by (y¢/Q),

dy/dt=g/yo[(Is+Al/1+S1)/eV] - [gyc/yo(yyo/d+No] -xyye
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vo(dy/ d ) =g/yol (Io+Al/1+SD/eV] - [gYe/vo(yyolg +N)] Xyve
y(0)=g/o2[(lo+AL1+SD)/eV] - [gYe/162(yyo/g+No)] - (xyve/¥o)

y= (glo/yo2eV) + ghyo2[(Al/eV(1+SD)] - (yyc/y0) - (2Yc/¥o2)Ne- (xyYe/Yo)
Since a=Ak/eVy,, A=eVyoo/k

Then y=glo/ve2eV +g/vo2[(eVyoal/k)/ eV(1+SD]- (yyc/vo)- (2Y¢/102)Ne-XyYe/Yo
Since y=y./Yo,

Then y=glo/vo2eV+ [gal/kyo(1+8D)]-yy — (vygNv/'vo) - xyy

Since W= (g / ky)l-x , wtx=gl/ky.,gl=ky.(w+X)

Then y=glo/vo"eV+ [akyo(w-+x)/kyo(1+$1)] <(vgNe/yo) - v - xyy

y= (lo/vo'eV) + ay[(w+x) /(1+8D] ~(veNv'vo) - yy - xyy

Since S=ys$k/g, Sg=y.s8k $=Sg/ky.

Then y=glo/vo‘eV + ay[(w+x)/1+S(gl/kyc)] (veNvvo) - yy - xyy

Since gl / ky, = (W+Xx),

Then y=glo/yo e Vv + ay[ (wx)/1+s(w+x)]-(yeNv'v0) - Yy -Xyy

And since f(w+x) = a[(w+x)/1+S(w+x)],

Then y=glo/yo’eV + y(W+X) - yeNi/yo - yy — XyY,

y=glo/yo’eV -ygNi/yo + Ye(W+X) - yy — XyY,
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y=g/v0"(Io/eV-ycNy) + y(W+X) - yy — xyy,
y=v8/Yove(lo/eV -yeNp) + y(w+X) - yy — xyy,
y=vig/ vovc[(lo-eVycNy/eV] + f(w+x) - y - Xy},
Since lp=eVy(vo/g + Ny), Iy =eVyeyo/g + eVycNy,

Then o :(Io — It)/(lth - It)1

y: y[ 60 _y+f(W+X) - Xy] .................................. (b)

And the third rate equation is:

I=-yfl +KS......(iii)
Since w= (g/ky)l-x, I= (kyc/g)(w+x),
Then d/dt[ky/g(w+X)] =-y¢l+kS
(Yokyo/g)(WHx)( ') =-yfl+kS
Since S=[g(N-Ny)-yo]S=[g(yY0/9) — YolyX/g,
S=[yvo-vol(voX/9), S=(vevoX/g)(y-1)
Then (yokyc/g)(W+x) = (-yekyo/g)(W+x) +(kyeyox/g)(y-1),
Dividing by( yoky/Q),
WHK = (-y#/70)(WHX) + X(y-1),

W = (-ye/v0) (W+X) + X(y-1) =X,
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Since x= x(y-1),
Then w = (-yi/yo) (W+X),

Let: e=y¢/vo,

W becomes = -g(w+x)  [--rororrerereeeeeee (c)

The results of these modifications can be written as following:

b () (T2 ) I (a)
V= 7[00-y+f(W+X) - Xy]....... (b)
W = -8(WHX)eteeeeennrreeosrmennses (©)

Where o, is the bias current and € is the feedback strength, y is the population
inversion relaxation rate. These are rate equations of SL in dimensionless form in

order to compute and for numerical and analytical purpose.

These equations representing the non linear dynamical system which produced
HC in SL with OEFB. The first equation represents the photon density or the
intensity for output laser ray, the second equation represents the population
inversion, while the third equation represents the feedback which is necessary to
produce chaos this feedback consist from the intensity of laser output and the
current bias(Al Naimee et al., 2009).

(Al Naimee et al.,, 2009) Laser diode with optoelectronic feedback model

mathematically describes by above dimensionless differential equations as follow:
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x =X(y-1) (3.1)
y =v(8 —y + f(w +x)-xy) (3.2)
W= -g (W +X) (3.3)

Based on AL Naimee System, 2009 In this work we provide new generation of
AL Naimee System AL Naimee System, 2016 Laser diode with optoelectronic
feedback model mathematically describes by three models dimensionless

differential equations as follow:

x = x(y-1) (3.4)
Y=Y —y+ 1oy ) (3.5)
W= -g (W *+X) (3.6)

Where 9, is the bias current and ¢ is the feedback strength, y is the population
inversion relaxation rate. These are rate equations of SL in dimensionless form in

order to compute model simulation and analytical purpose in my work.
3.3 System model Implementation:

The semiconductor laser with optoelectronic AC-coupled feedback physical model
(Egs.3.1-3.3) has different time scale (Photon density, carrier density, feedback
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strength current) Due to the mathematical model dimensionless, three differential

equations Chaos generator model been implemented.

Then according to these equations SL with OEFB model simulation structure

consists of three sub system describe as follow:

e X —Equation part.
e Y —Equation part.

e W —Equation part.

Using Matlab Simulink to modeling (x-equation) as shown in (fig3.1)

— 1

g S e o + > X
3
5
Hm |_:rodud

Integrator

Figure 3-1 X-Equation Part
This figure describes Matlab Simulink implementation of equation (3.4)

(x = x(y-1)) in the OEFSL simulation model.
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Delta x 'y - Y
Y-dot
- L e T

1.017 -+

e+

Sum

10.001

Gama

Figure 3-2 Y-Equation Part

Figure (3.2) describe Matlab Simulink implementation of equation (3.5)

w
(1+sw)

y=v(6,—y+ - xy) in the OEFSL simulation model.

¥-dot
Epslon

1is
- epslon *W + X-dot

Figure 3-3 W-Equation Part
Figure (3.3) describe Matlab Simulink implementation of equation (3.6)

W= -¢ (w + x) in the OEFSL simulation model.
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Figure 3-4 Integrated Single Oscillator Model (X, Y and W Equation)

Figure (3-4) describe the implementation of the OEFSL simulation model that
consists of the three equations parts connected configuration to be works as the

single laser oscillator

This oscillator simulates the behavior of OEFB physical model and generates

chaos signal under specifics setting parameters and other operation values.
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The dynamics of this oscillator based on the variation of the operation parameters

values such as pumping current (30) and feedback strength (g).

The single laser oscillator (fig3.4) model is duplicates with the same structure

components and different operations value that mention in (table 3.1) to be use in

coupling mode as:

Master Os¢

Master laser oscillator.

Slave laser oscillator.

X

y1 -data

b
=

Twa Oscs Scope

Product!

epslont

i}

wl

wi-data

¥y
-

y2-1 Productd

X dot I . X

y2

y2 data

Delts2

0.001

Gamma2

Products

Slave Osc

Coupling Facter
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Figure(3-5) describe the implementation of the OEFSL simulation model consists
of two laser system representing master - slave laser system configuration with

Unidirectional coupling configuration depend on master laser and couple factor(R).

The mater oscillator drives slave oscillator through the coupling sub system that
describes in (fig 3.9) as unidirectional coupling configuration that mention in
Chapter (3) section (3.3.1).

3.4 Coupling Configuration:

In order to achieve synchronization state between master and slave oscillator
Unidirectional coupling configuration is implemented according to theoretical

concepts that mention in (ch.3).

The coupling sub system enables the master oscillator to fully driving and

controlling slave oscillator as appear in system results.
Unidirectional mathematically expression based on:
I.  Master oscillator feedback strength.
ii.  Slave oscillator
ii.  Coupling Factor
So unidirectional coupling configuration (UCC) mathematically express as follow:
UCC —R *(x1dot -x2dot)............ (3.4)

Coupling system implemented due to the coupling equation as follow:
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Scope

X2
R
couple

N2-dot ! Dobuple | —

v

w

Coupling Factor (R) &

To slave
Dobuplep couple Slave Osc [ Xi-dot
From Mater{X1-dot) :fxi-dot Cuuplésui:
system
Couplesub
system
X1-dot
I-b I—
\._.-"a_J
(i)Block diagram (ii) Sub Components (iii) Complet Connection

Figure 3-6 Unidirectional Coupling Configuration sub system

Figure (3-6) describe the implementation of the unidirectional coupling
configuration based on the equation (3.4) this sub system consists of three
parameters ,coupling factor(R),master laser components(x1-dot) and the slave laser

component(x2-dot).
3.5 System Parameters and Configuration Value:

The oscillator model dynamic behaviors and characteristics describe according to
the system results that obtain from system Simulink model running. The model

results take respectively according to the following parameters:

e Model parameters setting.

¢ [nitial condition value.
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e Time interval responds.

Different results values obtain from different model running and setup values such
as initial condition, feedback strength and injected bias current. The selected values
and tune parameters enable the models to simulate the physical behaviors and
dynamics of OEFSL simulation model such as the transition from steady state to

periodic and chaotic state that clearly appear in system results.
3.6 Running and operation:

As mention in chapter (2), the theoretical concepts of OEFSL chaos generation is
achieved and effects of bias current and feedback strength have been demonstrated.
Matlab Software package used to analyze the time series generated in the chaos
regime. The analysis concerns the study of the system attractors and the time

series as form of model results due to the following running mode types.

I.  Free Running Mode (FRM).

ii.  Coupling Running Mode (CRM).

3.6.1 Free Running Mode:

In this mode of operation the coupling factor enables the master and slave laser to
work identically as there is no coupling between them so the generated signal (Xy)

at the master laser and (X,) at the slave laser describe this running mode (FRM).

The operation and setting parameters for each oscillator are selecting to be
different in each one so the master oscillator differs from the slave oscillator
resulting different time series in (FRM).
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To control the operation mode and toggle between free mode and coupling mode
the coupling sub system enable easily the switching between (FRM) and (CRM)

through the selection value of the coupling factor (R) as follow:

Table (3.1) Running mode as function of (R)

Coupling factor Value(R) | Operation Mode

Zero Free Mode

None zero Coupling Mode

Also the condition of the coupling sub system and the value of (R) determine the

synchronization state.
3.6.2 Coupling Running Mode:

In this mode of operation the master oscillator control and driving slave oscillator
through the coupling sub system based unidirectional coupling configuration

theoretical concepts and techniques. Coupling running mode depends on:

I.  Setting parameters for each oscillator.

Ii.  Appropriate selection of coupling factor (R).

So the coupling factor (R) value changes to enable master oscillator to change

slave oscillator state in each of the following cases:

I.  Free running identical state in both oscillators when (R=0).
ii.  Coupling running A synchronize state between oscillators when (R > 1).

iii.  Coupling running full synchronization between oscillators when (R=0.0.2).
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3.7 Dynamics model:

The dynamics of Semiconductor laser with optoelectronic feedback simulation
model behavior is studied according to the oscillators time series output signal
(X,) and simulation time interval so model behavior and dynamics be explain in
each of the following states with respects to the setting parameters and operation
values so the simulation model results describe the transition among the following

states:

I. Steady state.

il. Periodic state.

OEFSL simulation model transition from steady state to periodic state and chaotic
state as the dc-pumping current was varied as explained in system results and

discussion.
3.8 Netware oscillators: OEFSL

The master-slave configuration is expanded to implement Optoelectronic Feedback
Semiconductor Laser Network (OEFSLN) by means of Simulink environment in
MATLAB package to implement 256 oscillators. The synchronization condition

among the all network oscillators has been achieved by means of coupling factor.

So Netware oscillators design to support chaos application and sciences such as
secure chaos communication and neural network. The OEFSLN modeling design
based on the:

I.  Master oscillator base model as in figure (3.4).
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1i.  Slave oscillator base model as in figure (3.8).

iii.  Unidirectional coupling configuration base model (3.9).

Netware oscillator model organize as driver sub system (one master oscillator) and
number of slave oscillators (255 oscillators) work as (response) sub system as seen
in figure (3.13). So number of slave arranged in block of oscillator as in figure
(3.13) that fully control and driving by master oscillator through the coupling sub

system.

The OEFSLN consist of (32) blocks each one contain (8) laser then the overall

number of laser system are (256) deferent laser systems.
The design model aim to:

I.  Implementing Netware chaotic oscillator model.

Ii.  Implementing and apply unidirectional coupling configuration.
iii.  Increasing number of oscillator.
iv.  Study the Netware dynamics.

v. Approve the full state synchronization between all oscillators.

3.8.1 Netware Structure sub systems:
The Netware oscillators implementing according to the following sub system:

I.  Use single master oscillator as driver for all slaves’ oscillators.
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ii.  Slave model changes initial condition to provide number of different
master oscillators.

ii.  Modified coupling sub system as block sub system to support the
connection and coupling to all slaves oscillator blocks.

Iv. Tuned scope components to be able to view the generated chaotic of

each block of oscillators, (8) display channel in each scope.

3.8.2 Block structure:

Network consists of (32) block (block 1) up to (block 32). As in figure (3.13) each
block consists of (8) oscillators as show in (fig3.14). (Block-1) contain (master
oscillator) and (6) slave oscillators, so this block works as master driving block for
all other block (2 up to 32). Each block accepts coupling factor(R) as the first input
and (x1) as the second input from driving master (block-1),then produce (8) output
as the chaotic signal from each of the (8) slave oscillators such as (block-2) in
figure(3.10).
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Figure 3-10 Netware oscillators all block model diagram
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3.8.3 Master block interconnection:

The master oscillator provides two outputs port (X1) and (X1-dot) as in figure
(3.14), the (7) Slave oscillators are connected to the master oscillator through
(coupling sub system) block that provide unidirectional coupling configuration.
The coupling sub system block connect to each slaves oscillator block as seen in
figure (2.14) so the coupling subsystem figure(3.19) accepts three inputs this three

input explain as follow :

1. The coupling factor (R): share and connected to all coupling sub systems.
2. X1-dot of master oscillator: share and connected to all coupling sub
systems.

3. X,-dot of slave , . n is the number of slave oscillators.(1 up to 255).

So the coupling sub system provide one output that connected to each slave

oscillators as coupling with the master oscillator named in block (couple).
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4 Chapter — Four: Results and Discussion

4.1 Introduction:

The selected operation values and the other control parameters enables OEFSL
simulation model and adapts its operation to simulate semiconductor laser with

optoelectronic feedback actual physical system.

The simulation model dynamics explain due to the model results also the effects

of bias current and feedback strength also have been demonstrated.

Results analysis based on the time series generated and the chaos regime through
the model dynamics. The analysis concerns the study of the system attractors, the

time series and the indicator of synchronization behavior.
4.2 The dynamics of semiconductor laser with optoelectronic feedback:

In this section system behavior and response demonstrated to explain the

semiconductor laser with optoelectronics feedback.

The simulation model is running in different running modes as mention in chapter
(3) section (3.6) then the dynamics of the system clear describe according to these
different forms of result. The selected parameters and operation conditions values
associated to each running modes mention as the table value for each case. The
procedure steps for model run and results taken also are explained. The OEFSL
model system structure implementing as a levels approach starting from the (single
oscillator level), (two oscillators coupled level) and (Netware oscillator’s level) so
the result takes in each of these levels. The model parameters that use during

running modes can be listed as follow:
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v :The population inversion relaxation rate, at the model(Gama).

0q: Bias current, at the model (delta).

¢ : Feedback strength, at the model (epsilon).

Initial states.(Xo,Yo,Wo).

Simulation Time Interval.

4.2.1 Procedure and steps:

Single oscillator:

The operation and setting values defined by the parameters v, &o €, initial condition

and simulation time interval are selected as in table (4.1). The model system toggle

between the steady state and the chaotic spiking the system passes through a period

and period doubled and chaotic. The time series and system attractors illustrate this

transition and dynamics as in results forms.

Table 4-1 Single oscillator operation value

Parameters | Time (second) Pop-inverse | Biascurrent | Feedback | S Initial state
strength(e) X0 | YO| WO
Gama () Delta(do)
Values 50000 - 600000 1*10-12 1.015;1017 0 111 0.022 | 1 | 0.005

The procedure running mode use the operation the value in table(4.1) as fixed

values then vary the feedback strength(g) and get model results as seen below:
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Figure 4-1- time series (x1) when the feedback strength (g) =0, 0=1.015

The time series in (figure 4-1(a)) describe the steady state (no oscillation)

Attractor

0.05F .
0.04 .
003} .
0.02} .

0.01F -

-0.01F -

1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.08 n.ovr
W

Figure 4-2 : (2- D attractor when the feedback strength (g) =0, 60=1.015)

The time series in (figure 4-1(b)) describe the steady state (no oscillation)
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3D Attractor

*x 10

4.8 -]

4.6 -]

4.4

42

0.0225

1 0.021

Figure 4-3 : 3- D attractor when the feedback strength (¢) =0, 60=1.015

Figure 4-4 : Time series (x1) when the feedback strength (¢) =0, 60=1.017

The time series in (figure 4-1(d)) describe the steady state (no oscillation)
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Attractor
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Figure 4-5 : 2-D attractor when the feedback strength (g) =0, 60=1.017

2-D attractor in (figure 4-5) describe the steady state (no oscillation)

3 D Attractor
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4_85 -
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1 0022
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17 p.oz1s

Figure 4-6 : 3-D attractor when the feedback strength (g) =0, 60=1.017

Table 4-2 Single oscillator operation value

Parameters | Time (second) Pop-inverse | Bias current Feedback S Initial state
strength(e) X0 | Y0 | WO

Gama (Yy) Delta(do)
Values 50000 - 1200000 1*10-3 1.015 -0.5e-5;-1.5e-5 | 11| 0.022 | 1 | 0.005

62




Chapter — Four: Results and Discussion

Figure 4-7 : Time series (x1) when the feedback strength (g) = (-0.5*107)
The time series in (figure 4-2(a)) describe the periodic state (oscillation) when (g) increased

2-D Attractor
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w

Figure 4-8 : 2-D attractor when the feedback strength (g) = (-0.5*10)

The time series in (figure 4-2(b)) describe the periodic state (oscillation) when (g) increased
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3D Attractor

0.05

099 o

Figure 4-9 : 2-D attractor when the feedback strength (g) = (-0.5*10-5)

The time series in (figure 4-2(c)) describe the periodic state (oscillation) when (g) increased
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Figure 4-10 : Time series when the feedback strength (¢) = (-1.5*10-5)
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2-D Attractor
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Figure 4-11 : 2-D attractor when the feedback strength (g) = (-1.5*10-5)
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Figure 4-12 : 3-D attractor when the feedback strength (g) = (-1.5*10-5)
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Table 4-3 Single oscillator operation value

Parameters | Time (second) Pop-inverse Bias Feedback | S Initial state
current strength(g) X0 |YO| WO
Gama (y)
Delta(do)
Values 50000 - 600000 2*10-9 1.017 3*10™ 111 0.022 | 1 | 0.005

Figure 4-13 : Time series when the feedback strength (c) increase to = 3*10™

x 10"

10 -,

3D Attractor

Figure 4-14 :  3-D attractor the feedback strength () increase to = 3*10-5
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Table 4-4 Single oscillator operation value

Parameters | Time (second) | Pop-inverse Bias current Feedback | S Initial state
strength(e X0 | YO WO
Gama () Delta(do) g ()
Values 50000 - 1*10-3 1.03,1.04,1.06 -2e-5 11 0.022 | 1 | 0.005
1200000

The procedure running mode use the operation the value in table(4.4) as fixed

values then vary the bias current (s0) and get model results as seen below:

Figure 4-15 : Time series (x1) when the bias current (80) =1.03
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2- DAttractor
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w
Figure 4-16 : 2-D attractor when the bias current (60) =1.03
3 D Attractor

015 ~

Figure 4-17 : 3-D attractor when the bias current (30) =1.03
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Figure 4-18 : Time series (x1) when the bias current (50) =1.04
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Figure 4-19 : 2-D attractor when the bias current (60) =1.04
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3 D Attractor

Figure 4-20 : 3-D attractor when the bias current (60) =1.04

4.3 Single Oscillator result discussion:

Therefore due to the model results as show in result forms figure (4.1) up to figure
(4.4), the system model approves and matches the theoretical concepts of the chaos
generation and SL with OEFD in contact of the following dynamics features due to

the model parameters and setting:

I. Steady state.
ii. Periodic state
iii. Chaotic state

a) The effect of the feedback strength (g) in chaos generation when the bias
current (80) is fixed as in table (4.1) so:
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I.The steady state appears when (¢=0) as seen in figure (4.1- a, d).

Il. The periodic state with low amplitude appears when (g) increases to
(-0.5*10-5) as seen in figure (4.2-a).

11i.The chaotic state appears with high and low spikes when (€) increases to
(1.5*10-5) as seen in figure (4.2-d).

Iv. So the feedback strength (€) cause the model to be transition from
steady state to periodic state and chaotic stat respectively when (g)
increased and other parameters not change .

b) The effects of the bias current(50) in chaos generation and model dynamics
seen as results form (4.4) that base on table(4.4) when feedback strength (¢)

Fixed to (-2*10-5) and bias current (60) changes to (1.03) and (1.04) in this case as
seen in results forms in figure changes bias current to (1.03) resulting regular
chaotic clearly when more increase to bias currents cause the generated chaotic

spike to be smooth and regular as in figure(4.4- d)
ii.  Unidirectional Coupling Configuration:

As mention in chapter (3) section (3.6.1) and (3.6.2) the model had been setting
according to the selected values and then the mode of operation also be determine

as follow:

Model running modes are:

1. Free Running Mode (FRM).
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The Selected operation value for both the master and slave oscillator mention in
table (5.5) and the free running mode (FRM) determine by the coupling factor (R)
as mention in chapter (3)table (table 3.1) .

Table 4-5 Single oscillator operation value

Parameters Time In (second) | Parameters | Gama | Delta | Epsilon | S Initial state

X0 YO | WO
Master Osc 0 - 3000000 Master Osc | 0.001 1.017 | -2e-5 11 | 0.022 1 0.005
Slave Osc Slave Osc 0.001 1.017 -2e-5 11 | 0.022100 |1 0.0051

The two oscillators are setting as in table (4.5) and the coupling factor set to (0) to

select free running mode as model design and then results appear as follow:

Figure 4-21 Time series for the master (upper) and slave (lower) oscillator

In free running mode when (R=0)
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2 - D Master Osc Attractor
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Figure 4-22 ;.  2-D master oscillator attractor in Free running mode when (R=0)

2 - D Slave Osc Attractor
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Figure 4-23 :  2-D slave oscillator attractor in Free running mode when (R=0)
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3 D Master Osc Attractor

0.08
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Figure 4-24 : 3-D master oscillator attractor in Free running mode when (R=0)

3 D Slave Osc Attractor

0.08

0995 ¢

Figure 4-25 : 3-D slave oscillator attractor in Free running mode when (R=0)
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Figure 4-26 : Time series for the master (upper) and slave (lower) oscillator

In (FRM), when (R=0) Master Osc (60) change to (1.03)

2 - D Master Osc Attractor
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Figure 4-27 :  2-D master oscillator attractor in (FRM) when (R=0)

And master Osc (do) change to (1.03)
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2 - D Slave Osc Attractor

0.05F

0.04

003

x2

0.02r

0.0

-0.01

! 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
W2

Figure 4-28 : 2-D master oscillator attractor in (FRM) when (R=0)

3 D Master Osc Attractor

015 -

Figure 4-29 :  3-D master oscillator attractor in (FRM) when (R=0) and

Master Osc (do) change to (1.03)
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3 D Slave Osc Attractor

Figure 4-30 : 3-D slave oscillator attractor in (FRM) when (R=0)

2. Coupling Running Mode (CRM).

Now the model is running with same values as in (FRM) as mention in table (4.1)
up to table (4.5) respectively except the coupling factor value that changes from
(R=0) to (R not equal 0) so in this condition the model runs in coupling running
mode and the master oscillator drive the slave oscillator as in the following result

forms.

'Il‘qlll‘dlli' I%,”-;fl;l L'l'l,"']}\'\}' .II‘;,'l"JJIﬁ bbb
| |

Figure 4-31 : Time series for the master (upper) and slave (lower) oscillator
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In (CRM), when (R=0.02)
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Figure 4-32 : 2-D master oscillator attractor in (CRM) when (R=0.02)
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Figure 4-33 : 2-D slave oscillator attractor in (CRM) when (R=0.02)
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3 D Master Osc Attractor

Figure 4-34 : 3-D master oscillator attractor in (CRM) when (R=0.02)

3 D Slave Osc Attractor

0.08

Figure 4-35: 3-D slaver oscillator attractor in (CRM) when (R=0.02)
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Increasing the master Osc bias current (so) to (1.03) and other value not change as
in table (4.5) and run the model in (CRM) :

Figure 4-36 : Time series for the master (upper) and slave (lower) oscillator

In (CRM), when (R=0.02) Master Osc & (d0) change to (1.03)
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Figure 4-37 ;. 2-D master oscillator attractor in (CRM) when (R=0.02)
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Master Osc (d0) change to (1.03)

2 - D Slave Osc Attractor
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Figure 4-38 : 2-D slave oscillator attractor in (CRM) when (R=0.02)
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Figure 4-39 : 3-D master oscillator attractor in (CRM) when (R=0.02)
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3 D Slave Osc Attractor

0.15 ~

Figure 4-40 : 3-D slave oscillator attractor in (CRM) when (R=0.02)

Increasing coupling factor to (0.2) and repeating (CRM) and get results as follow:

Figure 4-41 : Ttime series for the master (upper) and slave (lower) oscillator

In (CRM), when (R=0. 2) Master Osc (d0) change to (1.03)

82



Chapter — Four: Results and Discussion
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Figure 4-42 : 2-D master oscillator attractor in (CRM) when (R=0.2)
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Figure 4-43 :  2-D Slave oscillator attractor in (CRM) when (R=0.2)
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3 D Master Osc Attractor

0.08

Figure 4-44 : 3-D master oscillator attractor in (CRM) when (R=0.2)

3 D Slave Osc Attractor

Figure 4-45 : 3-D Slave oscillator attractor in (CRM) when (R=0.2)
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Master Osc

Figure 4-46 : Time series for the master (upper) and slave (lower) oscillator

In free running mode when (R=1). (alfa=1.03)

3 D Master Osc Attractor

Figure 4-47 :  2-D slave oscillator attractor in (CRM) when (R=1)
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3 D Slave Osc Attractor

Figure 4-48 : 3-D slave oscillator attractor in (CRM) when (R=1)
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Figure 4-49 : Coherence Vs Coupling factor
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Figure 4-50 Indicator of Synch-behavior When(R=0)

No synchronization between master and slave laser
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Figure 4-51 Indicator of Synch-behavior When(R=0.03)

Indicate synchronization between master and slave laser
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iii. Netware Oscillator:

Interacting chaotic oscillators are of interest in many areas of physics, biology, and
engineering. In the biological sciences, for instance, one of the challenging
problems is to understand how a group of cells or functional units, each displaying
complicated nonlinear dynamic phenomena, can interact with one another to
produce a coherent response on a higher organizational level(Mosekilde et al.,
2002).

The model of the Netware oscillators operation mode is symmetrical to the
unidirectional coupling configuration that base on the coupling techniques and the
initial condition for each of the individual oscillator that be arrange and coupled as

a NetWare structure .

The key points in Netware oscillator model design is the sensitivity to initial
conditions from this facts all other operation values and parameters are
symmetrical between oscillators and the initial conditions for each individual

oscillator are different as mention in table (4.6).
(i)  Netware free running mode(NFRM):

In this mode run the NetWare oscillator according to the operation parameters and
the initial condition (table 5.6) and the coupling factor (R=0) and get model results

s follow:
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Tirne offset: O

Figure 4-52 Scope-1 (Master and slavel- up to slave-7)

(NFRM) when (R=0) — No sync between oscillators

89




Chapter — Four: Results and Discussion

Figure 4-53 Scope-32 (slave- 248 up to slave- 255)

(NFRM) when (R=0) — No sync between oscillators
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(i)  Netware coupling running mode(NCRM):
Also this mode of operation is symmetrical to the (NFRM) except the coupling

factor value that change to (0.2, 1, 1.2) and then get model results respectively as

follow:

M azter Dzc

Figure 4-54 :  Scope-1 (Master and slavel- up to slave-7)

(NFRM) when (R=0.5) — full sync between oscillators
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Time offset: 0

Figure 4-55: Scope-32 (slave- 248 up to slave- 255)

(NFRM) when (R=0.5) — full sync between oscillators
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Figure 4-56 : Scope-1 (master and slave- 1 up to slave- 7)

(NFRM) when (R=0.2) — full sync between oscillators
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ime offzet. 0

Figure 4-57 :  Scope-32 (slave- 248 up to slave- 255)

(NFRM) when (R=0.2) — full sync between oscillators
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Table 4-6 all NetWare oscillator initial conditions

Master 0.022 Slave-8 0.02208 Slave-16 0.022016 Slave-24 0.022024
Slave-1 0.02201 Slave-9 0.02209 Slave-17 0.022017 Slave-25 0.022025
Slave-2 0.02202 Slave-10 0.022010 Slave-18 0.022018 Slave-26 0.022026
Slave-3 0.02203 Slave-11 0.022011 Slave-19 0.022019 Slave-27 0.022027
Slave-4 0.02204 Slave-12 0.022012 Slave-20 0.022020 Slave-28 0.022028
Slave-5 0.02205 Slave-13 0.022013 Slave-21 0.022021 Slave-29 0.022029
Slave-6 0.02206 Slave-14 0.022014 Slave-22 0.022022 Slave-30 0.022030
Slave-7 0.02207 Slave-15 0.022015 Slave-23 0.022023 Slave-31 0.022031

Slave-32 0.022032 Slave-40 0.022040 Slave-48 0.022048 Slave-56 0.022056
Slave-33 0.022033 Slave-41 0.022041 Slave-49 0.022049 Slave-57 0.022057
Slave-34 0.022034 Slave-42 0.022042 Slave-50 0.022050 Slave-58 0.022058
Slave-35 0.022035 Slave-43 0.022043 Slave-51 0.022051 Slave-59 0.022059
Slave-36 0.022036 Slave-44 0.022044 Slave-52 0.022052 Slave-60 0.022060
Slave-37 0.022037 Slave-45 0.022045 Slave-53 0.022053 Slave-61 0.022061
Slave-38 0.022038 Slave-46 0.022046 Slave-54 0.022054 Slave-62 0.022062
Slave-39 0.022039 Slave-47 0.022047 Slave-55 0.022055 Slave-63 0.022063
[ S ] IR0 [ Bty (| e 609 | e [ T G ] e ] Il G |
Slave-64 0.022064 Slave-72 0.022072 Slave-80 0.022080 Slave-88 0.022088
Slave-65 0.022065 Slave-73 0.022073 Slave-81 0.022081 Slave-89 0.022089
Slave-66 0.022066 Slave-74 0.022074 Slave-82 0.022082 Slave-90 0.022090
Slave-67 0.022067 Slave-75 0.022075 Slave-83 0.022083 Slave-91 0.022091
Slave-68 0.022068 Slave-76 0.022076 Slave-84 0.022084 Slave-92 0.022092
Slave-69 0.022069 Slave-77 0.022077 Slave-85 0.022085 Slave-93 0.022093
Slave-70 0.022070 Slave-78 0.022078 Slave-86 0.022086 Slave-94 0.022094
Slave-71 0.022071 Slave-79 0.022079 Slave-87 0.022087 Slave-95 0.022095

Slave-96 0.022096 Slave-104 0.022104 Slave-112 0.022112 Slave-120 0.022120
Slave-97 0.022097 Slave-105 0.022105 Slave-113 0.022113 Slave-121 0.022121
Slave-98 0.022098 Slave-106 0.022106 Slave-114 0.022114 Slave-122 0.022122
Slave-99 0.022099 Slave-107 0.022107 Slave-115 0.022115 Slave-123 0.022123
Slave-100 0.022100 Slave-108 0.022108 Slave-116 0.022116 Slave-124 0.022124
Slave-101 0.022101 Slave-109 0.022109 Slave-117 0.022117 Slave-125 0.022125
Slave-102 0.022102 Slave-110 0.022110 Slave-118 0.022118 Slave-126 0.022126
Slave-103 0.022103 Slave-111 0.022111 Slave-119 0.022119 Slave-127 0.022127
Slave-128 0.022128 Slave-136 0.022136 Slave-144 0.022144 Slave-152 0.022152
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Slave-129 0.022129 Slave-137 0.022137 Slave-145 0.022145 Slave-153 0.022153
Slave-130 0.022130 Slave-138 0.022138 Slave-146 0.022146 Slave-154 0.022154
Slave-131 0.022131 Slave-139 0.022139 Slave-147 0.022147 Slave-155 0.022155
Slave-132 0.022132 Slave-140 0.022140 Slave-148 0.022148 Slave-156 0.022156
Slave-133 0.022133 Slave-141 0.022141 Slave-149 0.022149 Slave-157 0.022157
Slave-134 0.022134 Slave-142 0.022142 Slave-150 0.022150 Slave-158 0.022158
Slave-135 0.022135 Slave-143 0.022143 Slave-151 0.022151 Slave-159 0.022159
Slave-160 0.022160 Slave-168 0.022168 Slave-176 0.022176 Slave-184 0.022184
Slave-161 0.022161 Slave-169 0.022169 Slave-177 0.022177 Slave-185 0.022185
Slave-162 0.022162 Slave-170 0.022170 Slave-178 0.022178 Slave-186 0.022186
Slave-163 0.022163 Slave-171 0.022171 Slave-179 0.022179 Slave-187 0.022187
Slave-164 0.022164 Slave-172 0.022172 Slave-180 0.022180 Slave-188 0.022188
Slave-165 0.022165 Slave-173 0.022173 Slave-181 0.022181 Slave-189 0.022189
Slave-166 0.022166 Slave-174 0.022174 Slave-182 0.022182 Slave-190 0.022190
Slave-167 0.022167 Slave-175 0.022175 Slave-183 0.022183 Slave-191 0.022191
Slave-192 0.022192 Slave-200 0.022200 Slave-208 0.022208 Slave-216 0.022216
Slave-193 0.022193 Slave-201 0.022201 Slave-209 0.022209 Slave-217 0.022217
Slave-194 0.022194 Slave-202 0.022202 Slave-210 0.022210 Slave-218 0.022218
Slave-195 0.022195 Slave-203 0.022203 Slave-211 0.022211 Slave-219 0.022219
Slave-196 0.022196 Slave-204 0.022204 Slave-212 0.022212 Slave-220 0.022220
Slave-197 0.022197 Slave-205 0.022205 Slave-213 0.022213 Slave-221 0.022221
Slave-198 0.022198 Slave-206 0.022206 Slave-214 0.022214 Slave-222 0.022222
Slave-199 0.022199 Slave-207 0.022207 Slave-215 0.022215 Slave-223 0.022223
Slave-224 0.022224 Slave-232 0.022232 Slave-240 0.022240 Slave-248 0.022248
Slave-225 0.022225 Slave-233 0.022233 Slave-241 0.022241 Slave-249 0.022249
Slave-226 0.022226 Slave-234 0.022234 Slave-242 0.022242 Slave-250 0.022250
Slave-227 0.022227 Slave-235 0.022235 Slave-243 0.022243 Slave-251 0.022251
Slave-228 0.022228 Slave-236 0.022236 Slave-244 0.022244 Slave-252 0.022252
Slave-229 0.022229 Slave-237 0.022237 Slave-245 0.022245 Slave-253 0.022253
Slave-230 0.022230 Slave-238 0.022238 Slave-246 0.022246 Slave-254 0.022254
Slave-231 0.022231 Slave-239 0.022239 Slave-247 0.022247 Slave-255 0.022255
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4.4 Conclusions:

In conclusions, the chaotic spiking in semiconductor laser with an optical feedback
Is numerically demonstrated. It has been shown that the time scale of these
dynamics is fully determined by the feedback loop and their erratic though
deterministic. Several aspects of the dynamic response of chaotic system to
different values of feedback strength and bias current are studied, the
optoelectronic feedback strength effect on chaotic behavior, when the feedback
strength is high the chaotic signal has large amplitude and it decrease with the
decreasing of the feedback strength.

The attractors show that the attenuation value could control the chaotic amplitude.
The chaotic behavior could be studied in terms of attractor corresponding to time
series. The system could be controlled by these parameters.

Finally, in this work we presented numerical result on synchronization in chaotic

optoelectronic network.

We give numerical evidence showing that the coupling between master-slave
oscillators plays a crucial rule in synchronization mechanism, which start from
different conditions, leads eventually to their perfect synchronization in time scale.
The investigation of transition between non synchronization and synchronization
states in 256 laser oscillations is done by means of Simulink- MATLAB

environment.

The correlation of chaotic intensities of different oscillators and the coherence of
time scales are considered as a synchronization control parameters in

optoelectronic networks.
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4.5 Future Work:

e Bursting control in semiconductor lasers with optical feedback.

e The synchronization of matrix configuration (i.e. N*N oscillators) of chaotic
laser output with optical feedback.

e Trying to apply noise —induced phenomena especially synchronization on a
real communication systems.

e The investigation of the stochastic and coherence resonance in optical
feedback.
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