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ووا۟  وَإنِ َ  َ  تَععُ دُّ ِ   ِععْ ووَاآ  َ    ٱللَّهِ َ  إنِللَّهِ   تعُ عْ عُ وورٌۭ    ٱللَّهِ
ِ  يرٌۭ   لََ  عُ .(18) وللَّهِ  

 

لسورة النح  

 

 



i 
 

 

 

      

Dedication 

 

 

 

 

 

This thesis is dedicated to:  
 
        My parents’ soul, who infused the 
streak of hope at me to pursue my aim, 
 
       My wife Moniera, my best associate 

through every life. 

      My sons for their patience.   
 

 

 

 

 

 



ii 
 

   

Acknowledgement 

I express my deep sense of thankfulness to my supervisor Prof.Kais Al-

Naimee, for his consistent guidance and intellectual support which helped 

me to complete my research work successfully and submit the thesis in 

time. I can’t forget how he found time to spend with me- however busy 

he was- to go through my results, correct them and give suggestions for 

future works.  

 I am grateful to my co-supervisor Dr.Abdelmoneim Awadelgied for his 

support and encouragement throughout my research career; he always 

boosted my energy levels with his positive thoughts and pleasant 

behavior whenever I was about to be depressed. 

Thanks to Dr. Sora Abdalah   for her valuable advices and fruitful 

discussions which always created turning points in my research. 

 I also thank Dr. Wafa Salih for her timely advices. And my thanks 

extend to other staff and students of laser Institute laser.   

I thank my friends at Institute of laser for their affection and timely help 

which made my study days unforgettable specially (Abou- Asha and 

Naser Saeed).    

I am also thankful the library staff in Institute of laser for their love, and 

support which helped a lot for the successful accomplished of my 

research. 

    

 

 



iii 
 

 

 

Abstract 

In the last three decades a plethora of works has been devoted to study 

both stochastic coherence (SC) and stochastic resonances (SR) 

phenomena in chaotic dynamical systems.  

In this work we experimentally investigated the route to chaos in stable 

dynamical laser diode system via optoelectronic feedback, SC or CR and 

SR phenomena. Our work consists of three phases: 

 Firstly: we report the experimental evidence the spiking generation in 

semiconductor laser with a closed loop ac-coupled optoelectronic 

feedback.  The results show that when the feedback strength fixed in a 

certain value and fluctuating the values of the bias current, stability in 

chaotic regime decreases towards unstable behavior. 

At a given laser bias current value with changing in the feedback 

strength, the behavior of the stability laser diode regime displayed 

sequence gradation from stable, quasi-stable and chaotic states. 

The results declare that optoelectronic feedback is one of the important 

routes to the chaos, through the perturbations of bias current (δ) or 

feedback strength (ε) as control parameters.   

 Secondly: we show that dynamical nonlinear chaotic laser diode (LD) 

system, can display the main feature of coherence resonance, in particular 

the presence of noise signal exhibits oscillations whose regularity is 

optimal for some intermediate value of the noise intensity (D).   

Finally: we  observed that a dynamical chaotic system of (LD)  driven to 

both periodic weak forcing (signal) and random perturbation (white 

noise) sequentially,  shows a resonance (peak in the power spectrum) 
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where that peak is absent whenever either the forcing or the perturbation 

is absent, this feature so call stochastic resonance (SR).  

The presence of the noise becomes beneficial to signal up to a point 

where an increase of the noise improves the performance for transmitting 

or detecting the signal.  

At the end of this work, we summarized all the results obtained from this 

work, and also we suggested some works for future in the field of   

semiconductor laser applications.  
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 المستخلص

خلال العقود الثلاثة الأخيرة كُرستْ وفرة من الأعمال لدراسة كلًا من ظاىرتي رنين الترابط 
. المشوشة العشوائي في الأنظمة الديناميكية والرنين

 طريقة  ىي، الكيروضوئية(اتالتعميق)التغذية الخمفية  في ىذا البحث تم التحقق عممياً من أن 
 المستقر وكذلك تمت دراسة ظاىرة رنين الترابط و العشوائي  الثنائي الشواش في نظام  ليزرتوليدل

.  عممياً 

 :-جاء ىذا البحث مشتملًا عمي ثلاث مراحل ىي 

  خلال حمقة  مغمقة لمتيارالثنائي ذبذبات في ليزرتوجد بالدليل التجريبي أنو يمكن توليد : أووً 
.  الكيروضوئيةاتالمباشر وموصمو بالتعميق

أوضحت النتائج أن  إستقرارية  سموك النظام الميزري الفوضوي تتناقص نحو السموك الغير 
.  الكيروضوئية ثابتة القيمة بينما تكون شدة تيار الإنحياز متغيرةاتمستقر عندما تكون التعميق

 فإن اتكما أوضحت النتائج أيضا في حالة ثبوت شدة التيار عند قيمة معينة وتغيير قيم التعميق
. ضويةودريجاً متعاقباً من الحالة المستقرة إلي الحالة الشبو المستقرة إلي الحالة الف تظيرأالنظام 

 يظير  الثنائيتم التوصل إلي ان النظام الديناميكي اللاخطي الفوضوي في حالة  ليزر: ثانياً 
 ذات (قمم)ذرواتوبالتحديد فإن وجود إشارة الضوضاء يولد  ، الملامح الرئيسة لظاىرة ترد الترابط

. إنتظام تام عند القيمة المثالية لشدة الضوضاء

ومن ثم تضاف , أخيراً عندما تطبق إشارة دورية ضعيفة فقط في النظام الديناميكي الفوضوي
في طيف خرج الميزر  (قمة )إشارة الضوضاء فإنو يتولد في النظام ظاىرة الرنين العشوائي ذروة 

 .وتختفي ىذه الذروة بإختفاء الإشارة الدورية أو إشارة الضوضاء

أوضحت النتائج أن إشارة الضوضاء تكون مدعمة للإشارة الدورية إلي النقطة التي تكون عندىا 
 .قيمة الضوضاء مثالية بحيث تعمل في تحسين الأداء لإرسال أو إكتشاف الإشارة



vi 
 

 كل النتائج التي تم الحصول عمييا من ىذا العمل، وكذلك تم تمخيصفي نياية ىذا العمل 

يزرات أشباه  ل أنظمة في المستقبل في مجال تطبيقاتا من أجل القيام بوالمواضيع بعض تقترحأُ 

  .الموصلات
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CHAPTER ONE 

Introduction and basic concepts 

1.1 Introduction 

A nonlinear system is one that does not satisfy the superposition principle, 

or one whose output is not directly proportional to its input; but a linear 

system fulfills these conditions (Abdalah, 2013), in other words, a 

nonlinear system is any problem where the variable(s) to be solved for, 

cannot be written as a linear combination of independent components. 

Nonlinear problems are of interest to engineers, physicists and 

mathematicians because most physical systems are inherently nonlinear in 

nature. Nonlinear equations are difficult to solve and give rise to interesting 

phenomena such as chaos.
 
Some aspects of the weather (although not the 

climate) are seen to be chaotic, where simple changes in one part of the 

system produces complex effects throughout. A nonlinear system is not 

random  (Abdalah, 2013). 

Nature is complex. It features a multitude of systems which, though they 

may be simple, are unpredictable in their behavior, and seem not to be 

governed by the established deterministic laws of classical physics. 

For many years, scientists ignored such systems claiming that their 

unpredictability was a result of the limitations in the accuracy of 

measurements or pure chance. Others even rejected them as unscientific. 

However, in the 1970s, a new theory evolved, which, if its supporters are 

right, explains the diversity we observe in nature and provides an accurate 

http://en.wikipedia.org/wiki/Engineer
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Weather
http://en.wikipedia.org/wiki/Climate
http://en.wikipedia.org/wiki/Randomness
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and scientific description of the unpredictable phenomena in question. This 

is known as “Chaos Theory”; which is a field of study in mathematics, with 

applications in several disciplines including physics, engineering, 

economics, biology, philosophy, geology, computer science, politics, 

population dynamics, psychology and robotics. Chaos theory studies the 

behavior of dynamical systems that are highly sensitive to initial conditions 

(external forces) ( Csele, 2004, and Abdalah, 2013 ). 

 1.2 The aim of this work 

This work aimed to generate a chaos signal in a non-linear dynamical 

system by means of photo-current feedback (electro-optical feedback); also 

it aimed to control the behavior of the chaotic system via the noise. And to 

study the stochastic coherence (SC) or coherence resonance (CR) and 

stochastic resonance (SR) phenomena in chaotic non-linear dynamics 

systems, by using noise only or with an external signal. 

1.3 Chaos 

1.3.1 Chaos Background and Definitions 

 Chaos theory is applied in many scientific disciplines: mathematics, 

programming, microbiology, biology, computer, science, economics, 

engineering, finance, philosophy, physics, politics, population dynamics, 

psychology, and robotics (Tredicce, et al., 1985). 

 Chaos occurs in optics, both in lasers and in nonlinear optical devices. 

Such systems, which are fundamentally simple both in construction and in 

the mathematics that describe them, provide excellent opportunities for 

investigating these nonlinear phenomena as well as for technological 

innovation (Abdalah, Al-Naimee, and  Meucci, 2010). 
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 Chaotic behavior of a dynamic system has (a) a very large (possibly 

infinite) number of attractors (a set of values in the phase space to whom 

the system migrates over time, or iterations). And (b) is sensitive to initial 

conditions. Sensitivity to initial conditions means that each point in such a 

system is arbitrarily closely approximated by other points with significantly 

different future trajectories. Thus, an arbitrarily small perturbation of the 

current trajectory may lead to significantly different future behavior 

(Areechi, Meucci, and Gadomski, 1986). 

There are many possible definitions of chaos. In fact, there is no general 

agreement within the scientific community as to what constitutes a chaotic 

dynamical system] (Scholl, and Schuster, 2008). 

W.G.Flake defined Chaos as an Irregular motion of a dynamical system 

that is deterministic, sensitive to initial conditions, and impossible to 

predict in the long term with anything less than an infinite and perfect 

representation of analog values( Rontani,  and Citrin,  2005). But G.P. 

Williams defined Chaos as sustained and disorderly-looking long-term 

evolution that satisfies certain special mathematical criteria and that occurs 

in a deterministic non-linear system (Rontani, and Citrin, 2005). While E. 

Lorenz defined chaos as the property that characterizes a dynamical system 

in which most orbits exhibit sensitive dependence (Rontani, and Citrin, 

2005). 

Another definition of chaos is a type of unpredictable motion generated by 

deterministic differential equations, rules which generate chaos are called 

chaotic dynamical systems, and the space used to describe a system is often 

called the phase space ( Kaneko,  and Tsuda, 2001). 

 Chaos is an inherent feature of many nonlinear systems. In particular, the 

transition from order to disorder occurs with universality, irrespective of 
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physical properties of the systems (Abdalah, Al-Naimee, and Meucci, 

2010). 

The original meaning of chaos is a total disorder and ultimate 

unpredictability (Abraham, and Ueda, 2000, Zhang, Liu, and Wang, 2009). 

 In most of definitions chaotic processes are treated as solutions of 

nonlinear differential or difference equations, characterized by local 

instability and global boundedness. It means that solutions with close initial 

conditions will diverge to some finite distance after some time (so called 

sensitive dependence on initial conditions). Difference equations describe 

the evolution of system in continuous time (Strogatz, 1994). 

Chaotic behavior has been observed in the laboratory in a variety of 

systems including electrical circuits, lasers, oscillating chemical reactions, 

fluid dynamics, and mechanical and magneto-mechanical devices, as well 

as computer models of chaotic processes. Observations of chaotic behavior 

in nature include changes in weather, the dynamics of satellites in the solar 

system, the time evolution of the magnetic field of celestial bodies, 

population growth in ecology, the dynamics of the action potentials in 

neurons, and molecular vibrations. There is some controversy over the 

existence of chaotic dynamics in plate tectonics and in economics. One of 

the most successful applications of chaos theory has been in ecology, 

where dynamical systems such as the Ricker model have been used to show 

how population growth under density dependence can lead to chaotic 

dynamics. Chaos theory is also currently being applied to medical studies 

of epilepsy, specifically to the prediction of seemingly random seizures by 

observing initial conditions. A related field of physics called quantum 

chaos theory investigates the relationship between chaos and quantum 

mechanics. The correspondence principle states that classical mechanics is 

a special case of quantum mechanics, the classical limit. If quantum 
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mechanics does not demonstrate an exponential sensitivity to initial 

conditions, it is unclear how exponential sensitivity to initial conditions can 

arise in practice in classical chaos. Recently, another field, called 

relativistic chaos, has emerged to describe systems that follow the laws of 

general relativity. The initial conditions of three or more bodies interacting 

through gravitational attraction (see the n-body problem) can be arranged 

to produce chaotic motion (Strogatz, 1994, Alice Project, 1994). 

In chaos theory, the butterfly effect is the sensitive dependence on initial 

conditions; where a small change at one place in a nonlinear system can 

result in large differences to a later state. The effect derives its name from 

the theoretical example of a hurricane's formation being contingent on 

whether or not a distant butterfly had flapped its wings several weeks 

before (Alice Project, 1994). 

 The butterfly effect stipulates that "any act, despite the seeming simplicity 

of the apparently has influence and may develop this effect developed 

dramatically unexpected so that the butterfly's wings flap in California 

would lead to hurricanes and storms in China, after years!" And meaning 

that flutter butterfly's wings can cause a slight change in the universe 

(weather) starting and pitching to a series of events and lead to many 

changes in the end. The figure below shows the shape of butterfly effect: 

 

 

 

 

 

 

 

 



6 
 

 

 

 

 

 

 

 

                 

Figure (1.1): the butterfly effect. 

1.3.2 Attractors 

An attractor is a set of values in the phase space to which a system migrates 

over time, or iterations. It need not be one- or two-dimensional. Attractors 

can have as many dimensions as the number of variables that influence its 

system (Scholl, and Schuster, 2008). The chaotic attractor in phase space is 

densely sampled by an infinite number of unstable periodic orbits (Liu, and 

Ohtsubo, 1994). A range of possible attractors can be shown in figure 2.2. 

The attractors can either be: (a) fixed point, which represents a stable 

constant output, (b) a limit- cycle, which represents a periodic oscillation, 

(c) torus, which represents a quasi-periodic output power and (d) chaotic, 

which represents output power fluctuating chaotically (Mork, Tromborg, 

and Mark, 1992). 

 

 

 

 

 

Figure: (1.2) Schematic of attractors (Mork, Tromborg, and Mark, 1992). 
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A fixed point is a point of a function that does not change under some 

transformation. A limit cycle is an attractor that is periodic in time, that is, 

cycles periodically through an ordered sequence of states. A torus is an 

attractor consisting of N independent oscillations, plotted in phase space 

(Clayton, 1997). 

A strange attractor is an attractor which has non-integer dimension, or the 

dynamics on it are chaotic. Lorenz attractor is a butterfly-shaped strange 

attractor. It came from a meteorological model developed by Edward 

Lorenz in 1963 with three equations and three variables. It was one of the 

first strange attractors studied (Clayton, 1997). 

  . The system of differential equations involved only two nonlinear terms 

and was given by: (Hirsch,  Smale,  and Devaney  2004). 

x' = u(y − x) 

y' = Dx − y – xz ………………………………………………………(1.1) 

z' = xy − qz. 

Where u, D, and q are positive parameters and, moreover, ζ > b + 1, as in 

figure 1.3. 
 

 

 

 

 

 

 

 

Figure: (1.3) the Lorenz attractor. Two solutions with initial conditions 

P1 = (0, 2, 0) and P2 = (0, −2, 0), (Hirsch, Smale , And Devaney , 2004). 

 

The solution curves were displayed through two different initial conditions: 
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P1 = (0, 2, 0) and P2 = (0, −2, 0) when the parameters are: ζ = 10, b = 8/3, 

and r = 28. These are the original parameters that led to Lorenz’s discovery. 

It can be noted how both solutions start out very differently, but eventually 

have more or less the same fate, they both seem to wind around a pair of 

points, alternating at times which point they encircle. This is the first 

important fact about the Lorenz system: All non equilibrium solutions tend 

eventually to the same complicated set, the so-called Lorenz attractor. 

The Rossler system, it is a three-dimensional system similar in many 

respects to the Lorenz system. is given by:(Abdalah, Al-Naimee, and  

Meucci, 2010). 

x' = −y − z 

y' = x + ay ………………………………………………………. (1.2) 

z' = b + z(x − C) 

where a, b, and C are real parameters, as shown in figure 1.4 

 

 

 

 

 

 

 

 

 

Figure :( 1.4) The Rossler attractor (Hirsch, Smale , And Devaney , 2004).  

For simplicity, the case where a = 1/4, b = 1, and c ranges from 0 to 7, as 

with the Lorenz system, it is difficult to prove specific results about this 

system. A chaotic attractor is a trajectory in the phase space of chaotic 

variables and is frequently used of the analysis of chaotic oscillations 

(Ohtsubo, 2008). Since the laser output power at a stable oscillation is 
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constant, the attractor is a fixed point in the phase space of the output 

power and the carrier density. A period-1 signal, as the case in figure 

1.5(a), is a closed loop. The attractor of a period- 2 oscillation is a double-

loop as shown in figure 1.5(b).  

 

 

 

 

 

 

 

 

 
 

 

 

Figure:( 1.5) numerically calculated time series (left row), attractors (middle row), 

and power spectra (right row) for different feedback ratios (Ohtsubo, 2008). 

The chaotic attractor behaves in a rather different way from fixed state or 

periodic oscillations. At chaotic oscillations, the state goes around points 

within the closed compact space in the attractor; it never visits the same 

point in the space. The trajectory crosses in the attractor in figure 1.5(c). 

The chaotic trajectory goes around in a multi-dimensional space and never 

crosses in such a space. A chaotic attractor is quite different from other 

periodic oscillations and looks very strange. Therefore, it is sometimes 

called a strange attractor. 

 

1.4 Chaos Analysis Tools 

The properties of optical chaos can be illustrated by many parameters. So 

we can show these parameters as: 
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1.4.1 The Bursting 

 Bursting is a dynamic state where a neuron repeatedly fires discrete groups 

or bursts of spikes. Each such burst is followed by a period of quiescence 

before the next burst occurs. A burst of two spikes is called double, of 

three- spikes –triplet, four- quadruplet, etc (Szucs, et al., 2003). Burst mode 

is thought to be useful for signaling important events and routing 

information in the brain. In general, there are two types of bursting, firstly 

Input-driven bursting, where strong excitatory inputs produce a rapid 

activation and burst of action potentials, secondly Intrinsic bursting, where 

voltage-gated ion channels intrinsic to the neuron convert brief 

suprathreshold inputs into long-lasting bursts of action potential output.  

Some types of neurons are able to respond to current input by emitting an 

all- or non-burst response. This burst usually consists of a short phase of 

repeated action potentials, at a frequency of up to 350 Hz. This is followed 

by a prolonged refractory period. In contrast, neurons that fire tonically 

respond with action potentials at a rate proportional to the input current. 

Most mathematical models of bursting can be written in the singularly 

perturbed form as:  

 =   f(x, y)   (fast spiking) 

 = µ g(x, y)   (slow modulation)……… (1.3)  

Where x is the fast variable, a vector that simulates fast spiking of the 

neuron and y is the slow variable, a vector that modulates spiking activity. 

A topological classification of busters relies on the bifurcations of the fast 

subsystem (variable x) when the slow subsystem (variable y) is treated as a 

parameter. The subiculum is an example of a brain region where the rapid 
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transition between bursting and single-spiking is important for routing 

information out of the hippocampus. 

Some definitions could be taken into account to study the neural spiking 

signals, like interspike (intraburst), interburst, quiescent periods and active 

phase, as shown in figure (1.6). 

  

 

 

 

 

Figure: (1.6) the neural burst signal showing the duty cycle, active phase and inters 

pike, interburst, quiescent  periods ( Szucs,  et al.,  2003). 

1.4.2 Attractor in Phase Space 

The onset of deterministic chaos in a dynamical system requires a three 

dimensional phase space, which for some parameter values can provide one 

positive Liapunov exponent. 

We recall that a three dynamical system is characterized by three coupled 

first order differential equations as: 
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If the system is dissipative the sum of the Liapunov exponents’  is 

negative; this can be satisfied by the following sets of  signs (-,-,-);(-,-

,0);(-,0,0);(-,0,+).The first set has contraction in all three directions, thus 

yielding a fixed point attractor. The second set yields a limit cycle (stable 

orbit in the direction of the zero Liapunov exponents), the third one a tours 

(composition of two limit cycles with different periods). Eventually the 

fourth one (with the obvious constraint that the positive exponent be 

smaller than the absolute value of the negative one, order to satisfy the dis- 

sipativity condition) has a" strange" attractor, with a direction along which 

any initial small difference is expanded to a sizable value. This sensitive 

dependence on the initial condition amounts to loosing information in 

course of time and has been called "deterministic chaos" the rate of 

information loss is called K after the Russian mathematician Kolmogorov. 

Dissipative dynamical systems are characterized by the presence of some 

sort of internal “friction” that tends to contract phase space volume 

elements. Contraction in phase- space allows such systems to approach a 

subset of the phase- space called an attractor as the elapsed time grows 

large. Attractors therefore describe he long-term behavior of a dynamical 

system. Steady state or(equilibrium) behavior corresponds to fixed- point 

attractors, in which all trajectories starting from the appropriate basin- of- 

attraction eventually converge onto a single point.  For linear dissipative 

dynamical systems, fixed point attractors are the only possible type of 

attractor. Nonlinear systems, on the other hand, harbor a much richer 

spectrum of attractor types. For example, in addition to fixed-points, there 

may be exist periodic attractors such as limit cycles. There is also an 
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intriguing class of chaotic attractors called strange attractors that have a 

complicated geometric structure (Keizer, 1988). 

1.4.3 Bifurcation Diagram 

In mathematics, particularly in dynamical systems, a bifurcation diagram 

shows the possible long-term values (equilibrium/fixed points or periodic 

orbits) of a system as a function of a bifurcation parameter in the system. It 

is usual to represent stable solutions with a solid line and unstable solutions 

with a dotted line. The bifurcation is a period-doubling, a change from an 

N-point attractor to a 2N-point attractor, which occurs when the control 

parameter is changed. A bifurcation Diagram is a visual summary of the 

succession of period-doubling produced as r increases. The next figure 

shows the bifurcation diagram of the logistic map, r along the x-axis. For 

each value of r the system is first allowed to settle down and then the 

successive values of x are plotted for a few hundred iterations (Clayton, 

1997).  

 

 

 

 

 

Figure:(1.7) Shows the bifurcation Diagram of the logistic map, r along the x-axis  

between 0 and 4 (Clayton, 1997).  

We see that for r less than one, all the points are plotted at zero. Zero is the 

one point attractor for r less than one. For r between 1 and 3, we still have 

one-point attractors, but the 'attracted' value of x increases as r increases, at 

least to r=3. Bifurcations occur at r=3, r=3.45, 3.54, 3.564, 3.569 

(approximately), etc., until just beyond 3.57, where the system is chaotic.  
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However, the system is not chaotic for all values of r greater than 3.57.  

Let's zoom in a bit as in figure 1.8 below.  

 

 

 

 

 

 

 

 

 

Figure: (1.8) Shows the bifurcation Diagram of the logistic map, r along the x-axis 

between 3.4 and 4 (Clayton, 1997).  

Notice that at several values of r, greater than 3.57, a small number of x 

values are visited. These regions produce the 'white space' in the diagram. 

Look closely at r = 3.83 and you will see a three-point attractor. 

In fact, between 3.57 and 4 there is a rich interleaving of chaos and order. 

A small change in r can make a stable system chaotic, and vice versa 

(Clayton, 1997). 

The bifurcation sequence chaos of a semiconductor laser (SL) subject to 

delayed incoherent feedback was examined experimentally and numerically 

by Saucedo Solorio, Sukow,  Hicks and  Gavrielides; (Solorio, et al., 2002). 

While a bifurcation diagram for a SL with external optical feedback (OPB) 

was studied by Pieroux and Mandel (Pieroux,  and Mandel, 2003). 

There are many different bifurcations: saddle-node, Hopf, period doubling 

(flip), torus... (Rontani, and Citrin, 2005, Iooss, Ropert, and Stora, 1983).  

The saddle- node bifurcation is the basic mechanism by which fixed points 

are created and destroyed, as a parameter is varied. For example, the 
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system x'= r+x
2
, where (r) is a parameter, there are two fixed points , one 

stable and one unstable, as shown in figure 1.9.  

 

 

 

 

 

 

 

Figure: (1.9) Saddle-node bifurcation as r varied (Strogatz, 1994). 

As r ˂ 0, the parabola moves up and the two fixed points move toward each 

other. When r = 0, the fixed points coalesce into a half-stable fixed point at 

x = 0, the bifurcation occurred here. At r ˃ 0, this type of fixed point 

vanishes and there are no fixed points at alS 

 1.5 Time Series 

Time series is a set of measures of behavior over time (Clayton, (1997). 

 

 

1.6 Fast Fourier Transformation (FFT) 

The Fast Fourier Transformation is an older linear tool for examining time 

series transforms the time domain into a frequency domain, and examines 

the series for periodicity. The analysis produces a power spectrum and the 

degree to which each frequency contributes to the series (Clayton, (1997). 

If the series is periodic, then the resulting power spectrum reveals peak 

power at the driving frequency 
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1.7 The Feedback in Dynamic Systems 

A dynamical system is a system whose behavior changes over time, often 

in response to external stimulation or forcing. The term feedback refers to a 

situation in which two (or more) dynamical systems are connected together 

such that each system influences the other and their dynamics are thus 

strongly coupled. Simple causal reasoning about a feedback system is 

difficult because the first system influences the second and the second 

system influences the first, leading to a circular argument (Aström, and 

Murray, 2008).This makes reasoning based on cause and effect tricky, and 

it is necessary to analyze the system as a whole. A consequence of this is 

that the behavior of feedback systems is often counterintuitive, and it is 

therefore necessary to resort to formal methods to understand them.  Figure 

1.10 illustrates in block diagram form the idea of feedback.  

 

 

 

 

Figure: (1.10) block diagram form the idea of feedback (Aström, and Murray, 

2008). 

In the close loop system the output of the first system is used as the input of 

the second system, and the output of the second system becomes the input 

of the first system, creating a closed loop system and in the open loop 

system the interconnection between the second system and the first system 

is removed, and the system is said to be open loop (Aström, and Murray, 

2008). 

1.8 Chaos Generation in Semiconductor Laser System 
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All semiconductor lasers show chaotic behavior for additional 

perturbations such as optical feedback, optoelectronic feedback and 

external optical injection. And these three ways are the techniques for the 

generation of optical chaos in semiconductor laser.  We introduce each one 

of them in the following subsections. 

1.8.1 Laser Diode with Optical Injection 

The process of optical injection is illustrated in Fig. 1.11. A single 

frequency signal from a master source, generally a tunable laser, is injected 

into the active region of the slave laser diode. The master laser is optically 

isolated from the slave laser (typically by a polarization dependent optical 

isolator) (Argyris, et al. 2005, Lawrence, 2000). Similar to optical 

feedback, such optical injection has a variety of effects on the operating 

characteristics of the slave laser. It can induce various dynamic instabilities 

and chaotic behavior, locks the two lasers together in phase and frequency 

(injection locking), excite the relaxation oscillation frequency of the slave 

laser, or produce phase conjugation through four-wave-mixing. 
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Figure: 1.11 Schematic diagram of laser diode with optical injection from another 

laser source (Lawrence, 2000). 

1.8.2 Laser Diode with Optical Feedback 

Optical feedback is introduced into a diode laser by returning some portion 

of the optical output back into the device. This is shown schematically in 

Fig.1.12. There exist two types of all-optical feedback. One is the 

conventional mirror optical feedback (CMOF), where the laser output is 

coupled into the laser internal cavity by the CMOF and the laser phase 

changes with the delayed feedback time. Therefore, the dynamic behaviors 

of laser depend on the precision positioning of the conventional mirror. The 

other is the phase conjugate optical feedback (PCOF), which is 

considerably different from the CMOF. Compared with the CMOF, the 

PCOF can compensate feedback phase shift. Furthermore, semiconductor 

laser subject to PCOF can display richer chaotic dynamics or higher 

dimension chaos, and the dynamics do not depend on an accurately 

positioning of the phase-conjugate mirror (PCM) (Lawrence, 2000).  
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Figure: 1.12 Schematic diagram of laser diode with optical feedback (Lawrence,   

2000). 

 1.8.3 Laser Diode with Optoelectronic Feedback 

Semiconductor laser with delayed optoelectronic feedback is schematically 

shown in Fig. 1.13. In this configuration, a combination of photo detector 

and amplifier is used to convert the optical output of the laser into an 

electrical signal that is fed back to the laser by adding it to the injection 

current (Liu, Chen, and Tang, 2001). Because the photo detector responds 

only to the intensity of the laser output, the phase of the laser field is not 

part of the dynamics of this system. 

In optoelectronic feedback, chaotic pulses may be generating by positive or 

negative feedback. Positive optoelectronic feedback is different from 

negative optoelectronic feedback in the mechanism that drives the 

nonlinear dynamics of a semiconductor laser. In the case of negative 

optoelectronic feedback, the feedback current is deducted from the bias 

current. 
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Fig. 1.13 Schematic diagram of laser diode with delayed optoelectronic feedback 

(Liu, Chen, and Tang, 2001). 

This negative feedback current sharpens and extracts the first spike of the 

relaxation oscillation in the laser. In the case of positive optoelectronic 

feedback, however, the feedback current is added to the bias current. This 

positive feedback current tends to drive the laser into pulsing because of 

the mechanism of gain switching (Tang, and Liu, (2001). 

  Positive optoelectronic feedback has long been used to generate periodic 

short laser pulses. The repetition rate of the pulses is found to be an integral 

multiple of the inverse of the feedback-loop delay time that is closest to the 

relaxation resonance frequency of the laser.  

1.9 Diode Lasers 

The semiconductor lasers are unique when compared to other types of 

lasers. They are very small, they operate with relatively low power input, 

and they are very efficient. They also operate in a different way in that they 

require the merging of two different materials and the laser action occurs in 

the interface between those two materials. One of the materials has an 

excess of electrons (n-type) and the other material (p-type) has a deficit of 

electrons or an excess of holes (missing – electrons). When a forward bias 

voltage is placed across this junction the electrons are forced into the 
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region from the n-type material and holes are forced into junction from the 

p-type material. These electrons with a negative charge and the holes with a 

positive charge are attracted to each other, and when they "collide" they 

neutralize each other and in the process emit recombination radiation. The 

electrons in the n-type material exist (at normal operating temperatures) as 

a higher energy (conduction band) than the holes (valence band). This 

energy difference is designated as the band gap of the material, the amount 

of energy that is released when the recombination radioactive process 

occurs. Different material combinations have different band gaps and thus 

emit different wavelengths of light (Silfvast, 2004). 

1.10 Fiber Optic Transceiver 

The fiber optic transceiver includes both a transmitter and receiver in the 

same components; they are arranged in parallel so that they can operate 

with each others. Both the receiver and transmitter have their own circuits 

so that they can handle transmission in both directions as it shown in 

figure: (1.14). 

   

 

 

 

 

Figure: (1.14) Fiber optic transceiver block diagram (Fiber Optic Association 

1999- 2013). 

 Fiber optic transceivers can interface with two types of cables: single 

mode and multimode. The first type is an optical fiber that allows only one 
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mode to propagate; this fiber has a very small transmission at extremely 

high bandwidth and allows very long transmission distance. Multimode 

describes a fiber optic cable which supports the propagation of multiple 

modes; it may have a typically core diameter of 50 to 100µm with a 

refractive index that is graded or stepped. Multimode fiber allows the use 

of inexpensive light emitting diodes (LEDS) as light sources; the connector 

and coupling is less critical than with signal mode fiber. Distance 

alignment transmission and transmission ion bandwidth are less than with 

single fiber due to dispersion. Some fiber optic transceivers can be used for 

both single mode and multimode cables. 

 

 

 

Figure: (1.15) Single mode vs. Multimode fiber (Fiber Optic  Association 1999- 

2013). 

 1.10.1 Fiber Optic Transmitters 

Fiber optic transmitters covert electrical signals (current, voltage) into 

optical signals; and then inject them into light- conducting cable. They use 

light emitting diodes (LEDS) or laser diodes as their optical source; and 

they designed for use with either single mode or multimode fibers. 
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Fiber optic transmitters consist of an interface circuits, a source drive 

circuit and an optical source. The interface circuit drives electrical signals; 

the source drive circuit converts them to optical signals and triggers the 

LEDS or laser diode then sends the light signals to fiber optic cable; where 

they travel to their destination 

 1.10.2 The Receivers’ Information 

The receivers contain some type of fast photo detector, normally a photo 

diode, and suitable high speed electronics for amplifying the weak signal, 

and extracting the digital or may be analog data. For high data rates circuit 

for electronic dispersion must be included; the main function of the 

receiver is to decode data as its original source. It’s no secret that fiber 

optics is the way to go for data and voice communication. Fiber optics is 

that thin glass wires that carry data by form of light. A transmitter creates 

and codes light pulses which are sent down by means of an optical fiber. As 

the signal degrades regenerators amplify the signal again and transmission 

is completed (Ravindranadh, and Rao, 2013). 

1.11 Thesis Layout 

This research work organized into four chapters, chapter one is an 

introductory chapter, which describes the basic concepts of nonlinear 

dynamics systems; chaos and the description of the feedback types are 

given. Noise, coherence and stochastic resonance phenomena, their 

mechanism and their applications are described briefly in chapter two, the 

chapter three is discussed the experimental part, chapter four included  the 

experiments results, discussion, the conclusion of this research work and 

the future research suggestions.   
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CHAPTER TWO 

Noise, Coherence and Stochastic Resonance 

2.1 Introduction 

 In common use, the word noise means any unwanted sound. But 

technically, noise is unwanted electrical or electromagnetic energy that 

degrades the quality of signals and data (Dhobale, Boldhan, and Burange, 

2013).  Noise occurs in digital and analog systems, and can affect files and 

communications.  

Normally in hard-wired circuits the noise is of little or no consequence, but 

in wireless systems it’s a more significant problem. In general, noise 

originating from outside the system is inversely proportional to the 

frequency, and directly proportional to the wavelength.  At a low frequency 

such as 300 kHz, atmospheric and electrical noise are much more severe 

than at a high frequency like 300megahertz.  Noise generated inside 

wireless receivers, known as internal noise, is less dependent on frequency. 

  Engineers are more concerned about internal noise at high frequencies 

than at low frequencies, because the less external noise there is, the more 

significant the internal noise becomes. 

Communications engineers are constantly striving to develop better ways to 

deal with noise.  The traditional method has been to minimize the 

signal bandwidth to the greatest possible extent.   The less spectrum space a 

signal occupies, the less noise is passed through the receiving circuitry.  

However, reducing the bandwidth limits the maximum speed of the data 

that can be delivered.  Another, more recently developed scheme for 

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/analog
http://searchnetworking.techtarget.com/definition/kHz
http://searchnetworking.techtarget.com/definition/megahertz
http://searchenterprisewan.techtarget.com/definition/bandwidth


25 
 

minimizing the effects of noise is called digital signal processing. Using 

processing fiber optics, a technology far less susceptible to noise, is another 

approach. The types of noise are thermal noise, shot noise, flicker noise, 

burst noise, transit time noise and avalanche noise (Devi, and Shinde, 

2013). 

2.2 Types of Noise 

There are several types of noise sources in electrical circuits like:-  

1. Thermal or (Johnson – Nyquist) Noise.  

2. Shot Noise.  

3. 1/f Noise (Also called Flicker or Pink noise).  

4. White Noise.  

5. Burst Noise. 

However, we discuss some of important noise sources here. 

2.2.1 Thermal Noise    

Thermal noise goes under a number of names including Johnson-Nyquist  

noise, Johnson noise, or Nyquist noise (Ian, 1998). This noise gained its 

various names because it was first detected and measured by John B. 

Johnson in 1926, and later explained by Harry Nyquist - both were Bell 

Labs and working together. Thermal noise is a random fluctuation in 

voltage caused by the random motion of charge carriers in any conducting 

medium at a temperature above absolute zero. This electrical noise is 

generated as a result of thermal agitation of the charge carriers which are 

typically electrons within an electrical conductor.  Thermal noise actually 

occurs regardless of the applied voltage because the charge carriers vibrate 

as a result of the temperature. This vibration is dependent upon the 

temperature - the higher the temperature, the higher the agitation and hence 
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the thermal noise level.Thermal noise, like other forms of noise is random 

in nature. . Fig: 2.1 pictured the thermal noise. 

 

 

 

 

 

                 Time (s) 

Fig: 2.1 Thermal noise signal as seen on an oscilloscope trace (Ian, 1998). 

Thermal noise appears regardless of the quality of component used in 

circuits. The noise level is dependent only upon the temperature and the 

value of the resistance. Therefore the only ways to reduce the thermal noise 

content are to reduce the temperature of operation, or reduce the value of 

the resistors in the circuit. 

Other forms of noise may also be present; therefore the choice of the 

resistor type may play a part in determining the overall noise level as the 

different types of noise will add together. In addition to this, thermal noise 

is only generated by the real part of any impedance, i.e. the resistance. The 

imaginary part does not generate noise. The following equations are used 

for calculating Johnson noise (Romero, 1998, Ott, 1988). 

Johnson noise power PJ (rms) = (kTΔ f)                                                (2.1) 

Johnson noise voltage VJ (rms) = (4 kTRΔ f)                                     (2.2) 

Johnson noise current   IJ(rms) =  (4kTΔf/R)                                         (2.3) 

Where k is the Boltzmann constant (1.38 x 10-23 Joules/Kelvin), T is 

Temperature in Kelvin (K= 273+°Celsius), R is Resistance in Ohms, Δf is 

Bandwidth in Hz in which the noise is observed. 
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Johnson noise is typically modeled as a noiseless resistor either in series 

with a noise voltage source or in parallel with a noise current source 

(Sobering, 1999). Note that stray shunt capacitance limits noise voltage 

since as R increases, Δf decreases. Johnson noise models shows in figure  

below. 

 

 

 

 

 

Figure :( 2.2) Johnson noise models (Sobering, 1999). 

2.2.2 Shot Noise 

Shot noise results from the flow of current across a potential barrier, it is a 

statistical effect of the random emission of electrons (and holes) or the 

production of photoelectrons. It is found in vacuum tubes, transistors, and 

diodes. Shot noise is given by (Michael, 2005). 

I sh (rms) = (2 qI DCΔ f)
1/2

                                                                         (2.4) 

Where q represents electron charge (1.6x10 
-19

 coulombs), IDC denotes 

average current dc current (A) and B denotes noise bandwidth (HZ). 

Like Thermal noise, Shot noise is proportional to √Δf meaning that there is 

constant noise power per Hz bandwidth, i.e. it is white noise. 

2.2.3   Low Frequency Noise 

Low frequency noise (or excess noise) has a 1/f (where f denotes the 

frequency) power spectrum. This type of noise occurs only when current 

flows through a device in contradistinction to Johnson noise that does not 

 

R 
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require an applied voltage. In the case of 1/f noise, the charged particles 

move under the applied field and randomly encounter a scattering center or 

trap. The change in motion of the particle results in noise. The low 

frequency noise has a number of alternative names including excess noise, 

current noise, pink noise and semiconductor noise. This noise is in addition 

to the Johnson noise already present. 

Also referred to as contact noise (when found in detectors), excess noise 

(resistors), or flicker noise (vacuum tubes) (Ott, 1988). 1/f noise is not well 

understood. It increases without limit as frequency decreases. It has been 

measured at frequencies as low as 6 ×10−5Hz (≈ 5cycles/day). If an 

amplifier is 1/f noise limited, measurement accuracy cannot be improved 

by increasing the length of the measurement (averaging). In detectors, it is 

related to the quality of Ohmic contacts and surfaces states. It also appears 

in composition-type resistors, carbon microphones, switch and relay 

contacts, transistors and diodes and therefore all amplifiers. For a 

photovoltaic detector flicker noise current calculated by (Michael, 2005). 

irms =  k(i
α

b Δf/fβ)
1/2

                                                                                   (2.5) 

where k is proportionality constant, ib is the current through the detector, α 

= typically 2 and β = typically ~1. 

1/f noise is often ignored in noise computations where the system 

bandwidths are high; it is the dominant noise source in low-frequency 

applications (e.g. seismic detectors) 
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2.2.4 White Noise   

 White Noise is the noise that has constant magnitude of power over 

frequency, and its frequency spectrum is flat. Examples of White Noise are 

Thermal Noise, and Shot Noise.  

2.3 Coherence Resonance (CR) in Chaotic Systems 

A resonance is defined as the presence of a maximum in the response of the 

system as a function of some control parameter (for instance, the frequency 

of the external signal).  It is nowadays well established that, in some cases, 

the response of a nonlinear dynamical system to an external forcing can be 

enhanced by the presence of noise (fluctuations) (Palenzuela, et al. 2001). 

Coherence resonance (CR) is the phenomenon due to noise bridging 

different configurations of a bistable or multistable system. It refers to 

coherent motion stimulated by noise on the intrinsic dynamics of the 

system without the presence of an external periodic forcing (Arecchi, and 

Meucci, 2009). As noise is applied to a chaotic system, a train of an 

intensity spikes separated by an erratic inter-spike interval (ISI) appeared, 

and when the (ISI) distribution is smoothed out, by means of adding an 

external periodical force the CR phenomena is observed. 

The Inter-Spike Intervals is a model for studying the properties of irregular 

spiking homoclinic chaos and the dynamics of spiking and bursting in a 

neuron model. ISI mean measures time between consecutive spikes. The 

discrete distribution of ISI decays exponentially and have peaks located at 

all natural (Bodova, 2009). 

The coherence resonance CR occurs in an excitable system driven by noise. 

The output of such a system can become quite regular when an appropriate 

amount of noise is added. This phenomenon was initially called as SR 

without external periodic excitation or autonomous SR, and was named as 

CR later (Jin, and Haiyan, 2007). 



30 
 

 Huxley et al. found that the coherence of an excitable system could 

become maximal near saddle equilibrium by choosing a moderate amount 

of noise excitation. Pikovsky and Kurths investigated the effects of noise 

on the Fitz Hugh–Nagumo system and found CR by adding a limited 

amount of noise. Pradines et al.  showed that the CR relied on the 

coexistence of both slow and fast motions (Jin, and Haiyan, 2007).   

 The Fitz Hugh–Nagumo (FHN) model is a simple but representative 

example of excitable systems that occur in different fields of application 

ranging from kinetics of chemical reactions and solid-state physics to 

biological processes.  

The equations of motion for this system are: (Pikovsky,  and Kurths, 1997). 

Y
X

X
dt

dX


3

3

                                                                                     (2.6) 

)(tDaX
dt

dY
                                                                                       

(2.7) 

Here ε, a, are parameters and D governs the amplitude of the noisy external 

force ξ.   

According to the previous facts we notice that the noise has a constructive 

role which represented in the coherence and stochastic resonance 

phenomena. 

The mechanism of CR characterizes by two time scales:- 

Activation time ta (residence time in the ground state) which mean the time 

between end of one spike and the beginning of another in the time series of 

the signal spectrum; this time ta strong dependence on noise intensity and 

follows Kramer’s formula as in the equation bellow (Pikovsky,  and 

Kurths, 1997).  

 
 
ta 

 
Exp [ΔV ̸ D

2
]                                                                                  (2.8) 
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Where D denotes the noise intensity and Δv denotes the variation co-

efficient. 

The second time is the excursion time te (time needed to reach the ground 

state after the excitation event) or decay time of unstable state. 

The sum of these two times called the inter-spike interval tp . Figure 2.3 

depicted that.  

  

 

 

 

 

 

 

 

 

The first experimental observation of CR in an optical system has been 

recently made in a semiconductor laser with optical feedback (Giacomelli, 

et al., 2000). In that case, noise was added to the driving current of the 

laser, giving rise to a pulsed behavior in the system, in the form of the well 

known low-frequency fluctuations (LFF). The regularity of the dropout 

series initially increased with increasing noise level, and peaked for an 

optimal amount of noise. In our work we used same previous regime but 

with optoelectronics feedback to identification the CR phenomenon.  

 

Figure:( 2.3) the dynamics of the Fitz Hugh–Nagumo system [Eqs. (6), (7)] for a 

= 1.05,  = 0.01, D = 0.02 (Pikovsky,  and Kurths, 1997).  

 



32 
 

 

 

 

 

 

Figure 2.4: Coherence Resonance principle: proper noise intensity optimizes the 

periodicity of the system output. 

 CR may be calculated by deferent ways like Power Spectral Density 

(PSD), Auto Correlation Function (ACF), but we used the Co-efficient of 

variation (VN) or Normalized variation which is well common, as in 

equation bellow: 






T

TT
VN

22

                                                                                        

(2.9) 

Here T is the inter-spike time interval. 

 2.4 Stochastic Resonance (SR) in Chaotic Systems  

 Over the last two decades, stochastic resonance has continuously attracted 

considerable attention. The term is given to a phenomenon that is manifest 

in nonlinear systems whereby generally feeble input information (such as a 

weak signal) can be amplified and optimized by the assistance of noise. 

The effect requires three basic ingredients: firstly an energetic activation 

barrier or, more generally, a form of threshold; secondly a weak coherent 

input (such as a periodic signal); finally a source of noise that is inherent in 

the system, or that adds to the coherent input. Given these features, the 

response of the system undergoes resonance-like behavior as a function of 

the noise level; hence the name stochastic resonance. The underlying 

mechanism is fairly simple and robust. As a consequence, stochastic 
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resonance has been observed in a large variety of systems, including 

bistable ring lasers, semiconductor devices, chemical reactions, and 

mechanoreceptor cells in the tail fan of a crayfish (Gammaiton, et al., 

1998). 

By other words the stochastic resonance (SR) is a phenomenon where a 

signal that is normally too weak to be detected by a sensor, can be boosted 

by adding white noise to the signal, which contains a wide spectrum of 

frequencies. The frequencies in the white noise corresponding to the 

original signal's frequencies will resonate with each other, amplifying the 

original signal while not amplifying the rest of the white noise (thereby 

increasing the signal-to-noise ratio SNR which makes the original signal 

more prominent). Further, the added white noise can be enough to be 

detectable by the sensor, which can then filter it out to effectively detect the 

original, previously undetectable signal (Moss, Ward, and Sannita, 2004).  

2.4.1 The Single - to - Noise Ratio (SNR) 

In a noise added system it is convenient to define the signal to noise ratio as 

follows: 

)(/)(  nP SSSNR                                                                                      

(2.10) Where )(pS  indicates the peak of the output signal spectrum, 

calculated the frequency   of the periodic forcing signal and )(nS indicates 

the output signal spectrum at the same frequency   but without the 

periodic forcing signal (Ando, and Graziani, 2000). 

2.4.2 The Mechanism of the Stochastic Resonance 

When linear coupling takes place between signal and noise, usually the 

noise acts as a nuisance degrading the signal. In contrast, when certain 

http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Signal-to-noise_ratio
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types of nonlinear interaction take place between signal and noise, there 

may exist possibility of cooperation between the signal and the noise. The 

presence of the noise then becomes beneficial to the signal, up to a point 

where an increase of the noise may improve the performance for 

transmitting or detecting the signal. Stochastic resonance (SR) designates 

this type of nonlinear effect whereby the noise can benefit to the signal. 

This paradoxical effect was first introduced some twenty years ago in the 

domain of climate dynamics, as an explanation for the regular recurrences 

of ice ages. Since this origin, SR has been largely developed and extended 

to a broad variety of domains. Today, it is possible to synthesize the 

various forms observed for SR by means of the scheme of Fig: 2.5 

 

 

Figure:(2.5) A general scheme for stochastic resonance(Chapeau and Blondeau, 

2000). 

 The previous figure 2.4 consists in the possibility of increasing the 

similarity between the information-carrying or coherent input signal s and 

the output signal y by means of an increase of the level of the noise D. 

Stochastic resonance, as illustrated by the figure 2.5 above  involves four 

essential elements: 

(i) An information-carrying or coherent signal; s: it can be deterministic, 

periodic or none, or random. 

(ii) A noise D, whose statistical properties can be of various kinds (white or 

colored, Gaussian or none . . .). 
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(iii) A transmission system, which generally is nonlinear, receiving s and η 

as inputs under the influence of which it produces the output signal; y. 

(iv) A performance or efficacy measure, which quantifies some similarity 

between the output y and the coherent input s (it may be a signal-to-noise 

ratio, a correlation coefficient, Shannon mutual information . . .) (hapeau, 

and Blondeau, 2000).  

We can also calculate SR by the co-efficient of variation as in equation 2.9 

(periodic SR) or by the Cross Correlation Co-efficient (A periodic SR) see 

the equation 2.11 

ttt XXXXC  ))(( 2211                                                                   (2.11) 

Where: 1X  is the time series of a periodic input signal, 2X  is the time 

series of noise induced output signal and < >t  is time average. 

 SR has been found in ring lasers, in systems with electronic paramagnetic 

resonance, in tunnel diodes, in experiments with Brownian particles, in 

chemical systems, in visual perception, in the food detection system of 

paddlefish and in human cognition. 

2.4.3 A simple Model of Stochastic Resonance 

We will look at a one dimensional system, a particle in one space 

dimension, described by a Langevin equation with a potential of two 

minima together and a time-periodic forcing  it shows as in flowing figure: 
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Figure:(2.6) sketch of the double- well the minima are located at 1x (Gammaiton,  

et al. 1998). 

 The time independent potential find as flowing  (Hilbom, 2004).  

V(x) = ¼ x
2
 – ½ x                                                                                  (2.12) 

The periodic forcing, or (signal) is:  - A sin (t) x    

Sticking to our example, this is the periodic change in air pressure due to an 

approaching bird. We have introduced a constant A, the amplitude of the 

periodic forcing. 

The time dependent effective potential of the system is: 

V(x,t) = ¼ x
2
 – ½ x

2
 – A sin(t) x                                                          (2.13) 

Including noise leads to this Langevin equation: 

ttttt dwDdttAXXdwDdttXVdX 2)sin()(2),(
3

                         (2.14)       

The potential has two local minima at x = ±1. 
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In the context of the example of the introduction, the case x < 0 is that a 

neuron is not active and x   is the case that a neuron is active (active in 

the sense that the neuron distributes an electrical signal along its axon). 

The potential wall between the minima has a height of ½. If the amplitude 

of the periodic forcing is below this value, and there is no noise (D = 0), the 

system won’t be able to do a transition from one minimum to the other. 

Therefore, if we observe the system, i.e. the position of our particle as a 

function of time x(t), we won’t see any signal. According to our example, 

the neurons will stay in one state, like not active, and the poor cricket will 

have no chance to detect what is approaching. 

If we increase D to a very high value, the particle will jump arbitrarily 

between the two minima, and again we won’t see any signal. Heuristically 

it seems clear that there should be a value for D such that the signal to 

noise ratio is optimal: In this case the influence of white noise increases the 

signal to noise ratio to a level such that the signal is observable (Hilbom, 

2004). 

 The influence of noise with different amplitudes on the periodic forcing in 

a nonlinear dynamic regime illustrated below in figure 2.7.   
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Figure :( 2.7) Single realizations of x(t) in the periodically modulated double well 

potential, for three different values of the noise strength, D  (Wellens, Shatokhin, 

and Buchleitner, 2004). 

 The noise-induced synchronization of x(t) with the periodic input signal is 

poor for the lowest noise level (rare random transitions), optimal for 

intermediate noise strength (almost regular transitions) and again poor for 

strong noise (too frequent transitions per cycle of the periodic drive) 

(Wellens, Shatokhin, and Buchleitner, 2004).  

 2.4.4 Applications of Stochastic and Coherence Resonance   

The stochastic and coherence phenomena have much application in many 

fields; here we mentioned some of them as examples. 

Hugh a mound of applications in SR throughout a large spectrum of fields 

(about 1000 or more) published since 1981 like: 

 Optics 

 Biology 

 Neurology 

 Psychophysics 
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2.4.4.1 Neuroscience 

Stochastic resonance has been observed in the neural tissue of the sensory 

systems of several organisms (Kosko, and Bart, 2006). Computationally, 

neurons exhibit SR because of non-linearities in their processing. SR has 

yet to be fully explained in biological systems, but neural synchrony in the 

brain (specifically in the gamma wave frequency) has been suggested as a 

possible neural mechanism for SR by researchers who have investigated 

the perception of subconscious visual sensation (Ward, et al., 2006). 

2.4.4.2 Medicine 

SR-based techniques have been used to create a novel class of medical 

devices for enhancing sensory and motor functions such as vibrating 

insoles especially for the elderly, or patients with diabetic neuropathy or 

stroke (Gammaitoni,  et al., 1998). 

Stochastic Resonance has found noteworthy application in the field of 

image processing. 

2.4.4.3 Signal analysis 

A related phenomenon is dithering applied to analog signals before analog-

to-digital conversion (Gammaitoni, 1995). Stochastic resonance can be 

used to measure transmittance amplitudes below an instrument's detection 

limit. If Gaussian noise is added to a subthreshold signal, then it can be 

brought into a detectable region. After detection, the noise is removed. A 

fourfold improvement in the detection limit can be obtained (Palonpon, et 

al. 1998).  

 

http://en.wikipedia.org/wiki/Neural_oscillation
http://en.wikipedia.org/wiki/Gamma_wave
http://en.wikipedia.org/wiki/James_Collins_%28Boston_University%29
http://en.wikipedia.org/wiki/James_Collins_%28Boston_University%29
http://en.wikipedia.org/wiki/James_Collins_%28Boston_University%29
http://en.wikipedia.org/wiki/Dither
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Gaussian_noise
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As the SR the CR phenomenon has applications in many fields: 

 Neuronal and biological systems 

 Chemical models 

 Electronic circuits 

 Semiconductors laser 

2.5 Literature Review 

  In the last two decades the world has witnessed an enormous growth of 

results achieved in other sciences - especially chemistry and biology - 

based on applying methods of stochastic processes. One reason for this 

stochastic boom may be that the realization that noise plays a constructive 

rather than the expected deteriorating role has spread to communities 

beyond physics. Besides their aesthetic appeal these noise-induced, noise-

supported or noise-enhanced effects sometimes offer an explanation for so 

far open problems (information transmission in the nervous system and 

information processing in the brain, processes at the cell level, enzymatic 

reactions, etc.). 

They may also pave the way to novel technological applications (noise- 

enhanced reaction rates, noise-induced transport and separation on the 

nanoscale, and noise-supported phenomena in excitable systems.), where 

noise can play an eminent role as phenomena of structure formation. 

Spirals, fronts, kinks, interfaces, domains, growing surfaces, etc., usually 

modeled theoretically by physicists, are important for many real 

phenomena in physics, chemistry and biology, e.g. current filaments in 

semiconductors, catalytic reactions on surfaces, and the complex dynamics 

of the heart, of the brain, or of ecosystems. It is an amusing fact of history 

that the theory of stochastic processes was initiated in 1828 by Robert 

Browns observation of the irregular motion of pollen grains suspended in 
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water. As a botanist - which is more akin to a biologist than to a physicist - 

he was inclined to explain his observation by endowing the pollen grains 

with a vital force, the molecules of life. Actually, his biologically inspired 

idea has been revived recently by physicists opening the research field of 

active Brownian particles. Later, Brown convinced himself - and others - 

those tiny particles of inorganic substances were also subjected to the same 

motion. As a consequence, Brownian motion soon drifted from biology to 

physics where Einstein (1905) and Smoluchowski (1906) published 

theories, which proved to be a first major breakthrough. From this 

perspective it is interesting to see that stochastic processes and Brownian 

motion have made their way from biology to physics to chemistry and back 

to biology. In about 1980 R. Benzi, G. Parisi, A. Sutera,  A. Vulpiani   and 

C. Nicolis introduced a mathematical approach to qualitative explanation of 

the phenomenon of glacial cycles (Benzi, et al., 1981, Nicolis, 1982). The 

modern methods of acquiring and interpreting climate records indicate at 

least seven major climate changes in the last 700,000 years. These changes 

occurred with the periodicity of about 100,000 years and are characterised 

by a substantial variation of the average Earth's temperature of about 10K. 

In 1983, experimental studies by S. Fauve and F. Heslot showed the 

phenomenon of stochastic resonance in a simple electronic device (Fauve, 

and Heslot, 1983). The Schmitt trigger investigated by them is a very 

simple and well-known electronic circuit, characterized by a two state 

output and a hysteretic loop, extensively studied by physicists. The Schmitt 

trigger provides another interpretation to the phenomenon of stochastic 

resonance. A system displaying stochastic resonance can be considered as a 

sort of random ampler. The weak periodic signal which cannot be detected 

in the absence of noise can be successfully recovered if the system (the 

Schmitt trigger) is appropriately tuned. In other words, the weak underlying 
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periodicity is exhibited at appropriately chosen non-zero levels of noise, 

and gets lost if noise is either too small or too large. 

   It was not before 1988 when stochastic resonance was used again in 

experiments performed on an optical system known as bidirectional ring 

laser (McNamara, Wiesenfeld, Roy,1988). Thereafter, the effect of 

stochastic resonance has been found in a variety of physical systems and 

studied by a variety of physical measures of quality of tuning: passive 

optical bistable systems (Dykman, et al., 1991), in experiments with 

magnetoelastic ribbons (Spano, Fogle, and Ditto, 1992), in superconducting 

quantum interference devices (Hibbs, et al. 1995). In 1993 J. K. Douglass, 

L. Wilkens, E. Pantazelou, and F. Moss, were the first group to 

demonstrate SR in sensory neurons. They (surgically) isolated single 

mechanoreceptor neurons from crayfish tailfins, along with the associated 

nerve roots and abdominal ganglions, and immersed them in crayfish 

saline. The neuron was mounted vertically on an electromagnetic motion 

transducer activated by the sum of a signal and a random noise. In crayfish, 

mechanoreceptors are responsible for transuding the movements of small 

hairs into signals (spikes) that propagate along the nerve. The group 

showed noise-induced signal enhancement in ten out of the eleven 

mechanoreceptor cells tested. They concluded that they had demonstrated 

that biological systems had the ability to use SR and they raised the 

question of whether organisms had evolved to exploit SR (Douglass, et al., 

1993). In 1995 Collins, J., Chow, C. and Imho, T., demonstrate that a 

FitzHugh-Nagumo network of neurons has the capacity to detect a sub-

threshold multi-frequency signal using a noise source with known 

characteristics. The result is really interesting because, in the system 

investigated, it separates the persistence of SR conditions from the noise 

amplitude. This is an extension of the aperiodic SR (ASR) phenomenon, 
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observed in certain systems in the presence of aperiodic forcing signals, to 

complex systems (Collins, Chow, and Imho, 1995). In 1998 L. 

Gammaitoni, P. Haggis, P. Jung, and F. Marchesoni, have been described 

of the mechanism regulating the transitions of a stochastic system forced by 

a sub-threshold periodic component. More specifically, it describes the 

effect of oscillations of a quadratic potential forced by a periodic 

component. On account of the symmetry of the system the two wells of the 

potential alternately take on two different levels. The two Kramers rates, to 

which different meaning and significance can be attributed are associated 

with the two levels (Gammaitoni, L. et al. 1998). In 1999 Russell, D. F., 

Wilkens, L.A. and Moss, F., study of paddle fish feeding and showed that 

the paddle fish fed from a wider area when an optimal amount of noise was 

added to the system, compared to both the control, when no noise was 

added, and the case when high (above optimal) noise was added and 

suggest that paddle fish have evolved to use the noise produced by the sum 

of signals from individual Daphnia in a dense swarm to highlight the 

presence of a single Daphnia emitting its own signal (Russell, Wilkens, and 

Moss, F. 1999).  In 2000, Jia, Y.,Yu, S. N. and Li, J. R. studied the SR 

phenomenon in a bistable system under the simultaneous action of 

multiplicative and additive noises using the adiabatic limit method (Jia,  

Yu,  and Li,2000).  In 2003 Luo, X., and Zhu, S. studied SR in a bistable 

system driven by two different kinds of colored noises and found that there 

seemed to be a transition between one peak and two peaks in the curve of 

the SNR when either the noise correlation time or the coupling strength 

between the additive noise and the multiplicative noise was increased (Luo, 

and Zhu, 2003). In 2004, M. Avila, F. Jhon, de S. Cavalcante, L. D. Hugo, 

and R. Leite, have achieved the CR in a semiconductor laser without 

external noise, experimental, in the low frequency fluctuations of a chaotic 
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diode laser with optical feedback, and numerically using the Lang-

Kobayashi equations for a single solitary mode laser, without noise terms 

and proved that the fast deterministic dynamics plays the role of an 

effective exciting noise (Avila, M. et al. 2004). Also SR phenomenon 

studied by J. M. Buldu, J. Garcia-Ojalvo, M. C. Torrent, J. M. Sancho, C. 

R. Mirasso, and D. R. Chialvo,  in semiconductor lasers with optical 

feedback which operate in the low-frequency fluctuation (LFF) regime and 

concluded that the output intensity of the laser shows an irregular pulsated 

behavior in the form of sudden intensity dropouts and these resonances are 

caused by the help of external colored noise introduced through the 

pumping current of the laser and reported new type of stochastic resonance, 

where a nonlinear system shows a resonance at a frequency not present 

neither at its internal time scales nor at any external perturbation, this 

phenomenon, known as ghost resonance (Buldu,  et al. 2004). In 2007, 

Cao, L. and Wu, D. J., studied the SR of periodically driven linear system 

with multiplicative white noise and periodically modulated additive white 

noise (Cao, and Wu,   2007).  In 2008, P. S. Burada, G. Schmid, D. 

Reguera, M. H. Vainstein, J. M. Rubi, and P. Haggi, presented a novel 

scheme for the appearance of SR when the dynamics of a Brownian 

particle took place in a confined medium (Burada et al.2007). In 2009, Du, 

L. C. and Mei, D. C., investigated the SR phenomenon of a periodically 

driven time-delayed linear system with multiplicative white noise and 

periodically modulated additive white noise (Du, and Mei, 2009).     Wu, 

D., Zhu, S. and Luo, X. studied coupled bistable oscillators with different 

sources of diversity, and found that the resonance was reduced, and even 

disappeared, as the correlation length between the diversity increased (Wu,  

Zhu, and Luo, X. 2009). Stochastic Resonance and Coherence Resonance 

phenomena in experiments using CO2 lasers reported by F.T. Arecchi and 
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R. Meucci, and they were discussed a quasi-isotropic laser where noise 

induces switching between two intensity components with mutually 

orthogonal polarization, concluded SR an CR in dynamical systems as 

lasers, does not correspond to coexistence of stable fixed points as in the 

original formulation of SR and CR, but is rather due to different phase 

space trajectories associated with a saddle focus singularity. Applying the 

method of unified colored noise approximation (Arecchi, F. and Meucci, R. 

2009). In 2010, L. Zhao, X. Q. Luo, D. Wu, S. Q. Zhu, and J. H. Gu, 

investigated the phenomenon of entropic SR in a two-dimensional confined 

system driven by a transverse periodic force when colored fluctuation was 

included in the system (Zhao, et al. 2010).  In 2013 Y. Xu, J. Li, J. Feng, H. 

Zhang, W. Xu, and J. Duan, investigated the SR phenomenon induced by 

Levy noise in a second-order and under-damped bistable system, observed 

that the noise intensity and amplitude of external signal affect the systems 

output power spectrum that reaches a peak value at a constant frequency 

and the increase of the amplitude or noise intensity in a certain range 

further enhances this peak value, which illustrates that the appropriate noise 

intensity and amplitude lead to the optimal occurrence of the SR 

phenomenon (Xu,  et al.  2013). 
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CHAPTER THREE 

The Experimental Part 

3.1 Introduction 

This chapter consists of the description of the components of the 

experimental setup that used in this work, and it concentrated on the 

transition of the electrical signal because it represents the main purpose of 

the project. 

Also this chapter showed the method that followed to achieving chaotic 

signals by using semiconductor laser in nonlinear dynamical systems and 

how these chaotic signals affected by noise to obtain coherence and 

stochastic resonance. 

3.2 The Equipment 

We used a number of devices or equipments in this experimental work such 

as:- 

DC power supply, an optical transmitter, an optical receiver, an optical 

fiber, two cathode ray oscilloscopes, Ac-coupled nonlinear optoelectronic 

feedback (electro-optical feedback), function generator, variable amplifier, 

noise generator (White noise) source, an optical and electrical cables. 

3.2.1 DC Power Supply  

The  DC power supply of 0 -30 volts/ 5 amperes is used as electrical source 

to derived a signal with value of 5.2 volts through  an optical transmitter 

into injector with power input (5- 6)volts. The characteristics of this DC 

power supply showed in the table below. 
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 Table (3.1) Shows Characteristics of the DC Power Supply 30V/5A 

Item Data 

Device name DC power supply 30V/5A 

Voltage range 0- 30V 

Current range 0- 5A 

Line voltage 200-240V/AC 

Mains frequency 50H-60Hz 

Company MCH-China 

Efficiency +85% 

Ripple and noise 20 mA 

Size 7(w)x16(h)x22(D) 

Weight 1.35kg 

Load regulation 10-100% 

Line regulation 120-240V/AC 

In put current at 220V/AC,full load 0.44A 

DC power supply 30V/5A is pictured in figure 3.1 as it exhibited below. 

            

 

 

 

 

 

 

Figure: (3.1) shows the photograph of the DC power supply 30V/5A.   

 

 

 

3.2.2 Optical Transmitter  
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In this experiment a Philip Harris optical transmitter, which has electronic 

circuits to convert electrical signals (current, voltage) into optical signals in 

form of laser diode (LD) has been displayed in figure 3.2, it consists of: 

1. Power input 5-6V 

2. Monitor output 

3. Modulation input 300kz 

4. Optical source with output injector of 1mm diameter fiber 

5. Four capacitors, six diodes, seven resistances and one integral circuit  

 

 

 

 

 

 

 

                       Figure (3.2) the schematicview of optical transmitter. 

 

3.2.3 Optical fiber  

A single mode optical fiber is used to get alignment flexibility between the 

laser source in the optical transmitter and the photo detector in the optical 
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receiver. The most important specifications of this fiber are summarized in 

table (3.2).  

Table (3.2) the optical fiber specifications. 

Item Data 

Core diameter 8-10 nm 

Cladding diameter 125nm 

Core material SiO2 

Cladding material SiO2 

Channel 1FC/PC=0.25 

Length 3 meters 

Connectors FC/PC-ceramic 

Number of connectors 1 

    

3.2.4 Optical Receiver 

The Philip Harris optical receiver was used to reconvert the optical signal 

to an electrical signal the pictured shape of optical receiver showed in 

figure 3.3 its components are: 

1. Photo detector with input injector of 1mm diameter fiber 

2. Two Output unit 

3. Power input 5-6V. 

4. Adjust output with range of 0-10 maximum gain. 

5. Five capacitors, three diodes, sixteen resistances and two integral 

circuits.  
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Figure (3.3) an optical receiver. 

3.2.5 Analog Oscilloscope 

An oscilloscope, previously called an  Oscillograph, and informally known 

as a scope, CRO (for cathode-ray oscilloscope), or DSO (for the more 

modern digital storage oscilloscope), is a type of electronic test 

instrument that allows observation of constantly varying signal voltages, 

usually as a two-dimensional plot of one or more signals as a function of 

time. Non-electrical signals (such as sound or vibration) can be converted 

to voltages and displayed. Analog oscilloscope is used in this work to 

observe the change of an electrical signal over time, the waveform against 

the scales built into the screen of the instrument, beside that we used it as 

amplifier. This oscilloscope was manufactured in German, by HAMEG 

Company, type: HM 1004-3, 
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 power maximum is 38 watts at 240V/50Hz, AC 100-240V/50/16Hz. figure 

(3.4) illustrated this analog oscilloscope. 

 

 

 

 

 

 

 

Figure: (3.4) Analog Oscilloscope HM 1004-3. 

3.2.6 Digital Oscilloscope 

The digital oscilloscope with memory device was used in our work to 

display the electrical signals that amplified by the analog amplifier and the 

optoelectronic feedback device to be recorded. The specifications of this 

oscilloscope mentioned in table (3.3). 

 Table (3.3) the specifications of the digital oscilloscope. 

Item Data 

Device name  TDS2012c Two channel digital storage oscilloscope  

Voltage range 100-120 

Frequency 50-60Hz, when operate at 115V the frequency is 400Hz 

Company Tektronix 

Power maximum 30 watts in both case 

Serial NO. TDS2012c Co 19798 
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 The digital oscilloscope is pictured in figure 3.5 as it exhibited below. 

 

 

 

 

 

 

 

 

Figure: (3.5) TDS2012c Two channel digital storage oscilloscope photograph. 

3.2.7 Function Generator 

The function generator or the waveform generator is used in this work to   

accurate the frequency. The function generator provides a frequency from 

0.1 Hz to 100 kHz. And also we used it to form different waveforms, either 

a sinusoidal, triangular or square wave. Apart from being used in time 

processes control, a function generator can be used in the control of 

amplifiers.  Its specifications and photograph are in table (3.4) and figure 

(3.6) respectively. 
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Table (3-4) the specification of function generation 

Item Data 

Device name Function generation 

Order NO. 13652.93 

Serial NO. 360500183464 

Voltage 230 V    

Mains frequency 50/60 Hz 

Power consumption 10 VA 

Maximum output 

voltage 

10V/Ri =50Ω 

Distortion at 1KHz  

Company PHYWE - GERMAN 

 

 

 

 

 

 

 

Figure (3.6) Front view of the Function generator Order NO: 13652.93 

Where: 1) BNC connector 2) 4mm Output sockets 3) Offset control knob 

4) Amplitude control knob 5) Signal waveform step switch 6) Coarse 

frequency steep switch. 

 

 



54 
 

3.2.8 The White Noise Generator 

 AWG430 200 MS/s Arbitrary Waveform Generator from Tektronix, which 

have zero mean, Gaussian shape, bandwidth ranging from 20 Hz to 200 

KHz which has the ability to generate sine wave with the addition of 

white noise 

With independent control of both through a single channel, this property 

enables us to control of sinusoidal and noise intensities on both alone. 

 The photograph of the white noise generator pictured as in figure 3.7 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.7) Front view of the white noise  generator 

3.3 The Experimental setup 

One way for obtaining incoherent feedback via the injection current of the 

laser is the optoelectronic feedback, and it is efficient technique to 

externally control the spectral features of semiconductor lasers. 

 Many control parameters play crucial roles in generating a chaotic 

behavior of laser output. These parameters are laser power, injection 

current of the laser diode and the amplifier gain.  Figures (3.7-a), (3.7-b) 

illustrated Schematic   and photographic the experimental setup. 
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Figure (3.8-a): Schematic experimental setup for chaotic generation. 

Where: DC, power supply, (O.T), optical transmitter, (O.F), optical fiber 

(O.Rx), optical receiver, (C.R.O), cathode ray oscilloscope.  

 

 

 

 

 

 

 

 

Figure (3.8-b): Photographic experimental setup for chaotic generation 

Where: 1) DC power supply. 2) Optical transmitter. 3) Optical fiber. 4) 

Optical receiver. 5) C.R.O, used as amplifier. 6) Optoelectronic feedback. 

7) C.R.O, with memory device.  
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3.4 The Method  

The experimental setup of generating chaos signal by optoelectronic 

feedback was layout as in previous two figures. It contains of DC power 

supply, optical transmitter, optical fiber, optical receiver, two cathode ray 

oscilloscopes (C.R.Os) one of them has output behind and the other with 

memory device, and photo-electronic feedback. In this experiment we 

derived an electrical signal (voltage), with value of 5.2 V from the DC 

power supply 30V/5A, through the input injector: 5-6V on the optical 

transmitter.  

The optical transmitter converted the voltage (electrical) signal to an 

optical signal and triggered the laser diode (LD), in the visible region 

which represented as an optical source. 

The output signal (an optical signal) from the optical source was launched 

into an optical fiber and transmitted to fast photo detector on the optical 

receiver which reconverted the optical signal to an electrical signal again. 

Then the spectrum of the output electrical signals, observed into the 

oscilloscope that deals as amplifier because the signal attenuated through 

the optical fiber cable. 

In this work the current was back injected to the power source again via the 

technique so called photo electronic feedback, which forced the signal to 

the unstable state or chaos signal, and this chaotic signal displayed on the 

other oscilloscope with memory device to be recorded. 

After the free chaotic signal generated in dynamic system (it must be 

nonlinear system) by means of the optoelectronic feedback; the sinusoidal 

wave from the function generator device was added to accurate the 

frequency of the chaotic signals. To do that the frequency was adjusted at 

limit value as 10khz, 20khz,… and varied the voltage between 10mV,  

20mV,30mV,…for each frequency value . And the same thing has done for 
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fixing the voltage at certain values and changed the values of the 

frequency. Figure below shows the addition of function generator device to 

the setup of chaotic signal generation.  

  

         

 

 

 

 

 

Figure (3.8-c) Experimental setup photographic with the waveform  generator.  

This chapter consisted of the main parts of our work, the first, is an 

experimental part, which include the configurations of regime under an 

optoelectronic feedback to getting the chaos, the second part is to apply 

noise  

to study the coherency of the chaotic laser system and also  drive that 

chaotic 

system by periodic signal and noise signal to study the stochastic resonance 

phenomenon. 
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3.5 Coherence Resonance 

We have a system which is operating in a homoclinic chaos regime where 

the output intensity consists of a chaotic sequence of spikes, and so CR 

refers to coherent motion stimulated by noise on the intrinsic dynamics of 

the system without the presence of an external periodic forcing (Wu,  Zhu,  

and Luo, 2009). We demonstrate the effect of noise in our system to 

investigate the role of external noise; a Gaussian noise generator is inserted 

into the feedback loop. Experimentally the noise  which produced by a 

AWG430 200 MS/s Arbitrary Waveform Generator from Tektronix, added 

to the bias  current of the laser; the noise has Gaussian shape, bandwidth 

ranging from 20 Hz to 200 KHz and it’s amplitude is a controllable 

parameter, as shown in figure 3.8.  

Here, noise was added to the driving current of the laser, giving rise to a 

pulsed behavior in the laser output, in the form of the well known low-

frequency fluctuations (LFF).The regularity of the dropout series initially 

increases with increasing noise level, and peaked for an optimal amount of 

noise.  

 

 

 

 

 

 

 

 

Figure 3.9: Experimental Setup of Coherency 
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2.6 Stochastic Resonance 

In certain systems, noise may optimize the signal transfer, that is, adding a 

given amount of noise to the input can maximize the SNR at the output. 

This phenomenon is called stochastic resonance and it is one of the most 

exciting topics in current noise research. SR means that the output SNR is a 

maximum as a function of input noise intensity (Jung, and Hanggi, l989, 

Locher, 2000). So SNR has the following definition. 

SNR= P (ωο) ∕ SN(ωο)                            (3.1)                                                       

P(ωo) is the input signal power and SN(ωo) is the PSD of the noise at 

frequency ωo. The experimental setup of stochastic resonance (SR) 

illustrated in the following figure.  

 

 

 

 

 

 

 

 

Figure 3.10: Experimental Setup of Stochastic Resonance Procedures 

3.7 Dynamical model 

The structure of semiconductor lasers (SL) is based on the p-n junction and 

the laser oscillation is realized by the emission of light due to carrier 

recombination between the conduction and valence bands, namely, inter-

band optical transitions. This band structure of actual lasers is not modeled 

by a simple two-level system ,but it becomes possible to use this 

approximation if we know that the intra-band relaxation within the medium 
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of the SL is fast enough of the order of 10
-13

s compared with the carrier 

recombination rate of 10
-9

s (Ohtsubo, 2013). The SL is classified into class 

B and therefore, the polarization term is adiabatically eliminated and the 

effect is simply replaced by the linear relation between the field and the 

polarization. 

The population inversion for SLs is replaced by the carrier density N 

produced by electron-hole recombination. The photon number (which is 

equivalent to the absolute square of the field amplitude) and the carrier 

density are frequently used as the variables of the rate equations for SLs. 

However, for the general descriptions of the dynamics in SLs, we must 

employ the complex amplitude of the field (the amplitude and the phase of 

the field) instead of the photon number. 

The dynamics of the photon density S and carrier density N is described by 

the usual single mode SL rate equations appropriately modified in order to 

include the ac-coupled optoelectronic feedback (Al-Naimee, et al. 2009, 

Al-Naimee, et al. 2010, and Ciszak, et al.  2011). 
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 where I is the high-pass-filtered feedback current (before the nonlinear 

amplifier), fF (I) ≡ AI/(1 + s'I) is the feedback amplifier function, A is the 

amplifier gain and s' is a saturation coefficient, Io is the bias current, e the  
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electron charge, V is the active layer volume, g is the differential gain, Nt is 

the carrier density at transparency, γo and γc are the photon damping and 

population relaxation rate, respectively, γf is the cutoff frequency of the 

high-pass-filter and k is a coefficient proportional to the photo-detector 

responsivity.  

Compared with optical feedback, optoelectronic feedback is reliable and 

robust because the system is insensitive to optical phase variations. For this 

reason the phase dynamics of the optical field can be eliminated. A detailed 

physical model of the system should include also a series of low-pass 

frequency filters arising from the limited bandwidth of the photodiode, the 

electrical connections to the laser, parasite capacitances, and other 

undesirable electronic effects. 
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CHAPTER FOUR 

Results, Discussion and Conclusions 

4.1 Introduction 

 This chapter includes the experimental results and discussion, which 

related to investigation of the evidence of the spiking generation in 

semiconductor laser specific (laser diode) with a closed loop ac-coupled 

optoelectronic feedback. The effects of feedback strength and the bias 

current on  the chaotic behavior of semiconductor laser as control 

parameters, have been demonstrated by means of the time series, FFT, 

attractor and in focus the bifurcation scheme due to the providing a 

complete description of the system behavior under the influence of a 

certain parameter.    

Also in this chapter we concentrated our investigation on the experimental 

results that displayed the stochastic coherence (SC) or coherence resonance 

(CR) and stochastic resonance (CR) phenomena in the excitable nonlinear 

semiconductor lasers  systems when they triggered by white noise in the 

absence or in the presence of the externally perturbations (signals) 

respectively.  

The analysis and Origin version 8.0 Software are used to analyze the time 

series generated in the chaos regime. The analysis concerns the study of the 

attractors and the Fast Fourier transformations (FFT) of the output 

spectrum. 
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4.2 The Experimental Results 

4.2.1 Optoelectronic chaotic dynamics 

 The motivation behind the study the chaos characteristic of our 

framework, recognize the parameters that make our framework a chaotic 

framework, then will stay unchanged when the study of the impacts of 

noise and modulation signal to achieve the presence of nonlinear 

framework as a key component for the investigation of (SR) and (CR) 

phenomena.  

4.2.1.1 The influences of variable Bias current on the chaos state  

When the optoelectronic feedback loop that illustrated in figure (2.7-a) in 

chapter two was closed, an output voltage proportional to laser power is 

observed with the screen of the digital oscilloscope and it could be 

recorded. 

By increasing gradually the intensities of the bias current δο to varied 

values, while keeping the feedback strength ε = 0, we see time series 

transition from a line at δο= (0 mA) to sinusoidal oscillations then periodic 

oscillations and finally to a chaotic state. 

In the following section we will shows some chaotic waveforms within 

this Sequence and plot them. In Fig.4.1, when the bias current of 

(4.1mA).the time series shows a stable distinguished optical power 

which has a semi-sine motions as in Fig.4.1 (a). 

The corresponding attractor by using an embedding technique showed in 

Fig.4.1 (b). And the corresponding FFT, represented through Fig.4.1(c), 

one main frequency is appeared with high amplitude.  
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Figure 4.1: (a) Experimental time series of system at δο = 4.1mA, (b) the     

corresponding attractor,(c)the corresponding FFT. 

By increasing the bias current to 5.8mA, show cases no general periodicity, 

where expansive intensity heartbeats are isolated by sporadic time intervals 

in which the framework shows small amplitude chaotic motions. 

Figure 4.2 displayed that case where Fig.4.2 (a), 4.2(b) and 4.2(c) represent 

the time series which appear the beginning of branching in the output 

power spectrum, the corresponding attractor and the FFT respectively.    
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Figure 4.2: (a) Experimental time series of system at δο = 5.8mA, (b) the 

corresponding attractor, (c) the corresponding FFT. 

When increasing the value of bias current to 8.2mA the irregularity of the 

power output laser intensity is increasing and we noticed more branching in 

the system dynamical sequence, as it exhibited in Fig.4.3   
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Figure 4.3: (a) Experimental time series of system at δο = 8.2mA, (b) the 

corresponding attractor, (c) the corresponding FFT. 

As the δο  is more increased  the dynamical behavior of the nonlinear will 

be chaotic, Fig. 4.4 shows that a chaotic state is developed at bias current  

above the previous values, and the different peaks is increased by the effect 

of the feedback current. We notice that the corresponding FFT shows the 

increasing of different frequencies of this state, the system turned to 

chaotic. The results showed that, when the intensity of bias current δο 

increases, the stability in the chaotic regime decreases, so the δο is the one 

of the important 
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parameters to generate chaos in nonlinear dynamical laser systems by 

optoelectronic feedback (see Fig 4.4). 
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Figure 4.4: (a) Experimental time series of system when δο =9mA   (b) the    

corresponding attractor, (c) the corresponding FFT. 

The way to the chaos process in nonlinear laser systems is manifested 

(illustrated) clearly with a bifurcation diagram; we plot the bifurcation 

diagram of the peak-to-peak laser output intensity with the bias current as a 

control parameter as it showed in Fig: 4.5 below. From the figure one notes 

that the dynamical behavior of the regime is fully ruled by the bias current 

and it’s transmitted progressively from a stable state to chaos state due to 

the intensity of the bias current δο, where the feedback strength ε must be 

fixed at a constant value.        
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Figure 4.5: Bifurcation diagrams (maxima of photon densities vs bias current as a 

control parameter.) 

The interpretation of the bifurcation diagram is as follows. For a given bias 

current, the absence of points in the diagram indicates a stable equilibrium. 

A few numbers of points for a given bias current corresponds to a periodic 

limit-cycle. Finally, a more number of points correspond to quasi 

periodicity or chaos. 

4.2.1.2 The Influences of Variable Feedback Strength on the Chaos 

state 

When we fixed the dc-bias laser current in constant value of 8.mA, and 

changing the feedback strength ε, a similar dynamical sequence as in 

previous section can be obtained as long as bias current is kept constant and 

the amplifier gain is changed. Here we used the voltage amplification 

factor Av as feedback strength to study the effect of the negative 

optoelectronic feedback for our system with higher nonlinear gain 

reduction factor.    

The observed intensity spectra with the increase of the feedback strength 

(the values of the amplification) are being shown in following figures of 

the time series, corresponding FFT and attractor. 
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Initially we have started with feedback strength value  = 0, in this case the 

system will be at steady state and the corresponding attractor is the fixed 

point, that means there is no nonlinear dynamic could be seen. 

When the feedback is ε = 0.78, the transition from steady state to semi-sine 

oscillations with slight difference in amplitudes are appeared on the output 

optical laser power as shown in figure 4.6(a).  

 

 

  

 

   

 

 

 

 

 

 

Figure 4.6 (a) the time series when ε =0.78, (b) the corresponding FFT (c) the 

corresponding attractor.   

FFT diagram shows very limited frequencies with one high amplitude peak 

as in figure 4.6(c). The corresponding attractor of this state is a limit cycle 

as in figure 4.6(b). 

Increasing value of strength to ε = 0.82, the less periodic (quasi-periodic) 

state will be shown as in figure 4.7(a), while figure 4.7(c) represents the 
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corresponding FFT of this state. It is clear that the peaks with various 

intensities are very limited. The attractor shows this condition as well, 

figure 4.7(b). It is a qusi- limit cycle attractor. 

 

 

 

 

 

 

 

 

 

 

 

                        

 

 

 

 

Figure 4.7 (a) the time series when ε =0.82, (b) the corresponding FFT (c) the 

corresponding attractor. 

In figure 4.8(a) the time series shows chaotic attain state and small 

branches in the oscillators of the output power spectrum when the feedback 

strength is (ε = 0.94). In figure 4.8(c) the corresponding FFT shows this 

state has high density peaks with difference amplitudes. The corresponding 

attractor of the state show more irregularity as in figure 4.8(b). 
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Figure 4.8(a) the time series when ε =0.94, (c) the corresponding FFT, (b) the 

corresponding phase space (attractor). 

  

We notice the figure 4.9(a) displayed the chaotic state as a result to the 

increasing of feedback strength to (ε=1.32) which is more irregularity than 

in figure 4.8(a). In corresponding FFT of this state we see much density 

peaks of varied frequency instead of exponential decay as in figure re 

4.8(c) the corresponding attractor of this state shown in figure 4.9(b). 
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Figure 4.9(a) the time series when ε =1.32, (b) the corresponding FFT, (c) the 

corresponding attractor. 

The observed intensity spectra with the increase of the feedback strength 

(the values of the amplification) were being the definitive guide to say that 

the feedback strength is one of the most important parameters for 

generating chaotic situation in laser nonlinear systems via optoelectronic 

feedback, we notice that when the feedback strength increases the regime 

tumbles toward the unstable (chaotic) state wherever the bias current δο, is 

always constant. 
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4.2.1.3 Effect of Modulation on the Chaotic System 

In the previous section the chaotic behavior in laser nonlinear dynamical 

systems was obtained by changing the value of the bias current while the 

value of the feedback strength (gain amplification)   was being fixed, and 

vice- versa which indicated that the optoelectronic feedback is very 

important route to chaos. But in this section we would investigated the 

effect of the frequency modulation on the chaotic system, for that purposes 

we plotted the maxima recordings of the power of laser as a function of the 

frequency at a fixed value of amplitude modulation at 50mV. This 

frequency control diagram demonstrates to the response of chaotic system 

versus frequency of the sinusoidal signal as shows by the Bifurcation 

diagram in the figure 4.10 below  

 

 

 

 

 

 

 

 

 
 Figure 4.10: Experimental bifurcation diagram of the laser intensity as a function 

of the frequency modulation. 
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4.2.2  The Influences of Noise on the Chaotic System Behavior 

4.2.2.1 Coherence Resonance Phenomenon 

In this part of the work we aimed to demonstrate the effect of noise in our 

chaotic system, by investigating the role of external noise. When a 

Gaussian noise generator is inserted into the feedback loop, and starting 

driving the white noise of intensity from D equals 1mV (rms) to about 24m 

V(rms), here we can  determine the behavior of our system due to additive 

noise to the bias current of the laser . When noise was added to the driving 

current of the laser, giving rise to a pulsed behavior in the laser output, in 

the form of the well known (LFF).The regularity of the dropout series 

initially increases with increasing noise level, and peaked for an optimal 

amount of noise as we notice later. 

 By applying a signal noise of intensity D = 5.5mV, on the regime of 

spiking chaos, (chaotic regime) corresponding to the optoelectronic 

feedback, the time series and its attractor of the dynamic system can 

represents by figure 4.11. 

 When the parameter D (noise intensity) is increased to D = 9.5mV the 

spikes become more frequent, fig.4.12, and at D = 12.5mV the behavior 

becomes almost periodic, fig.4.13. Further increase of noise level to D 

=24.5mV leads to irregular output signal, fig.4.14. 

 So the noise shows the surprising ability to increase level of periodicity in 

the output of the SL system. We can note clearly the influence of noise on 

the system behavior via the time series and attractor where there is an 

increasing of the number of spike with increasing the noise intensity and 

the orbit is closed to the saddle point in the attractor.  
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Figure 4.11: (a) Experimental time series of the semiconductor laser with feedback, 

(b) the corresponding Trajectory at noise of D = 12.5mV. 

The spikes in time series in this figure displayed deferent amplitudes; and 

the phase trajectory which built by an embedding technique with 

appropriate delays, consists of a large regular loop plus a chaotic tangle 

around the saddle focus S.  When the parameter D (noise intensity) is 

increased to D = 9.5mV the spikes become more frequent, and the phase 

trajectory consist of a large regular loop plus, small periodic around the 

saddle focus, fig.4.12.  

 

 

 

 

 

 

 

 

Figure 4.12: (a) Experimental time series of the semiconductor laser with feedback, 

(b) the corresponding Trajectory at noise of D = 9.5mV. 
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By increasing noise intensity to, D = 12.5mV the behavior becomes almost 

periodic, and the phase trajectory consist of a large regular loop.fig.4.13.  

 So the noise shows the surprising ability to increase level of periodicity in 

the output of the SL system. We can note clearly the influence of noise on 

the system behavior via the time series and attractor where there is an 

increasing of the number of spike with increasing the noise intensity and 

the orbit is closed to the saddle point in the attractor. 

 

Figure 4.13: (a) Experimental time series of the semiconductor laser with feedback, 

(b) the corresponding Trajectory at noise of D = 12.5mV. 

Further increase of noise level to D =24.5mV leads to irregular output 

signals, and the phase trajectory consist of a large regular loop plus small 

periodics around the saddle focus, fig.4.14. 
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Figure 4.14: (a) Experimental time series of the semiconductor laser with feedback, 

(b) the corresponding Trajectory at noise of D = 12.5mV. 

We can give a full description of the response of our regime with arbitrary 

white noise intensity by the bifurcation diagram which plotted in figure 

4.15.  

The points A, B and C are indicated to the figures 4.11, 4.13 and 4.14 

respectively. 

 

Figure 4.15 Experimental bifurcation diagrams as a function of noise intensity.  
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In chapter two we defined the activation time t (a) and the excursion time t (e) 

and interspike time-intervals (ISI), by using those definitions we measured 

the coefficient of variation R, which is given as the ratio of the standard 

deviation of interspike time-intervals from the corresponding mean value, 

to the mean value and plot as a function of noise intensity, Fig.4.16, at 

optimal noise intensity R has a minimum value. The occurrence of a 

minimum in the coefficient of variation (the standard deviation of the 

distribution of interspike intervals (ISI) normalized by its mean) for noise 

levels in between these extremes is considered as a key indication for 

coherence resonance. Also we plot the relation between the SNR and the 

intensity of noise, Fig.4.17, which is much related with the Fig.4.16; here 

SNR has a maximum at optimal noise intensity. 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: The coefficient of variation R as a function of noise intensity. 

   We can investigate the summary of the experimental results as follows: 

the small amount of noise produces infrequent dropouts, which become 

more numerous and regular as the noise amplitude increases. For large 

noise strengths the pulses become increasingly irregular, both in separation 
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and in amplitude. Hence, optimal amplitude of the external noise exists for 

which the coherence of the pulsed output of the laser is optimal. 

  From these results, we conclude that there exists optimal amplitude of 

external noise for which the output laser is almost periodic. It is apparent 

from Fig.4.13 that increasing of the noise level affects not only the duration 

of the pulses but also their amplitudes. This result confirms the idea that the 

irregularity of the pulse amplitude increases with noise. Thus, we predict 

that a semiconductor laser with a source of noise can display coherence 

resonance and it may be applied in network communications where the 

enhancement of regular pulses is required. The pulses could be obtained as 

a result of the interaction of the SL with the noise source. 

  

 Table (4.1): The Experimental values of noise intensity and NSR in the CR effect 

respectively. 

Noise Intensity(mV)    (X) NSR   ( y) 

0 0 

2.5 0 

5 0 

7.5 0 

8 100 

10 700 

12.5 920 

15 730 

16 410 

22 200 

25 100 
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Figure 4.17: SNR as a function of noise intensity shows the coherence resonance at 

optimal noise intensity. 

 

 

4.2.2.2 Stochastic Resonance Phenomenon 

 

The noise in this experimental setup can enhance the response of the laser 

chaotic regime to a weak external periodic driving (signal), in a sort of 

stochastic resonant effect or phenomenon. 

In this work we applied a weak sinusoidal signal of 200 KHz frequency to 

the feedback loop with a noise signal as it showed in Fig.4.18, which 

amplitude was systematically increased.  
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Figure 4.18: sinusoidal signal was modulated to the feedback loop with a noise 

signal 

 

. For the different noise intensities, we observed different power spectra 

pattern with a sharp peak at the modulation period for certain noise levels 

Fig.4.19. Note in this figure the influence of the noise intensity as follows: 

at noise intensity (D = 0), the sinusoidal signal is fully hidden from the 

power spectrum, in fact; this is the importance of the chaos to encrypt data 

in optical communications, where data disappear when modulated in a 

chaos carrier. When the noise intensity was increased the sinusoidal signal 

is began to appear in the power spectrum as a sharp peak, Fig.4.19 (b), and 

continue to increase in amplitude with increasing the intensity of the noise, 

Fig.4.19(c) until reaches to the maximum at an optimal value of the 

intensity of noise, at this point the stochastic resonance phenomenon was 

achieved, Fig.4.19(c). The word resonance in the term stochastic resonance 

was originally used because the signature feature of SR is that a plot of a 
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performance measure such as output SNR against input noise intensity. 

When further increase of the intensity of the noise, the peak of the 

sinusoidal signal is drops and disappear again, Fig.4.19 (d). 

The SNR of the peak for increasing values of noise amplitude is presented 

in Fig.4.20. We can observe how the SNR had a maximum for intermediate 

values of noise, which is reflected in the power spectrum as a well defined 

peak at the modulation frequency. This maximum is the typical signature of 

SR.  
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Figure4.19: The increasing of the signal power spectrum as a function of the values 

of noise intensity. 
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From the figure 4.19, we note that the maximum signal-to-noise ratio is 

obtained for intermediate values of noise intensity (c), decreasing for 

higher noise intensities (d). 

 Table (4.2): The Experimental values of noise intensity and NSR in SR effect 

respectively. 

Noise Intensity(mV) (X) SNR (Y) 

0 -23 

4 -24.5 

10 -17 

11 -15 

15 -12.5 

17.5 -16 

22 -20 

22.5 -23 

25 -25 
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Figure 4.20: Experimental results for the signal to noise ratio as a function of 

the noise value.  
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4.3 Conclusion 

In conclusion, we have experimentally studied the generation of chaos 

dynamics using semiconductor laser (LD), by means of optoelectronic 

feedback.  

The analysis of the chaotic generation is presented, showing the generation 

of the mixed spectrum in the time series and the attractor. 

 The dependence of the injected current on the feedback fraction is 

observed. 

Coherence resonance (CR) and stochastic resonance (SR) phenomena 

occurs due to noise bridging different configurations of bistable or 

multistable systems. 

CR refers to coherence motion stimulated by optimal noise (perturbation) 

on the intrinsic dynamics of the system without the presence of the external 

periodic forcing (signal). 

SR happens when the signal-to-noise ratio (SNR) of a dynamical nonlinear   

chaotic laser diode regime increases, for intermediate value of the noise 

intensity (D). 
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4.4 Suggestion for Future work 

To duce more complexity of the chaotic carrier, there are some suggested 

works which are:- 

1. Studying full synchronization between two chaotic oscillators in 

unidirectional and bidirectional configurations.  

2.  Two optical feedback, branches could be injected in nonlinear 

dynamical system, like MZM; the first branch could be injected to the 

RF input of the MZM, while the second branch could be injected to the 

laser system. This configuration may offer high dynamical spiking rates.  

3. Multi loop OEO, using  fiber length to OEO, cavity to reduce the 

limitation of the electrical band pass filter, which removes unwanted 

side modes from the signal, the an increasing of the fiber length, the 

spacing between the cavity modes decreases and by using high quality 

electrical band filter, this could lead some non- oscillating side modes.  
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