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Abstract

We generalize results on common fixed points in ordered cone metric spaces
by weakening the respective contractive condition. Then, the notions of
quasicontraction and g-quasicontraction are introduced in the setting of ordered
cone metric spaces and respective (common) fixed point Theorems are shown.
We show that the equality holds for unitary or the eigen values are all in the
open unit disk. We also consider the defect index for a finite Blaschke product.

We study common fixed points for the self and non-self type maps in cone

metric spaces. For particular class of E-contractions, we show it necessary for

the existence of rational dilation that the corresponding fundamental operators

satisfy certain conditions. Then we construct an [E-contraction from that

particular class which fails to satisfy the certain condition. We produce a

concrete functional model for pure E-isometries and a class of E-contractions

analogous to the pure isometries in one variable.



-

AadAl

Ualgy daliiall 4y il 4y ial) clpladll b Agidal) 40N LAY o il Uess

Ll ai g- ilaSiY) dpdy (ALY Andd aalial) Uadagl . paidal) (ALY dajpd dila)
A Aeaidall Asidal) AN ALA cline dakiial) dgagdal) Aygal) clpladl huas b
Loy gsidal) Bassl) Gaf b Lalsy LM il o Lsalgh Y (gia Lgledall of gl
g anls) Ja¥ Asidall AL LGl Uuys | giial duidh cpd Ja¥ QAN Jda Uyse
Uadagly E-clalesiy daldd) Alladl Ja¥ Ayl 4 el cleladl) 4 I3 g SIA
sl Al .5Spe Jag i (ghad ALY Apalul) Clisal) Gun el 2aall) agag JaY Wehpgpa
A zigadll WA L ashall Japdl) giadl JEE Al Aaldd) Alla) sda e E-hlesiy)
E-diluall cilysluda ) dlilaall F-clilai] dliley diayd) E-Adlaal) clygadia Ja¥ 2aaall

Laalgl) stal) b



The Contents

subject page

Dedication

Acknowledgements 1

Abstract 11
Abstract (Arabic) AV
The contents V

Chapter 1

Ordered Contractions and Quasicontractions in Ordered Cone Metric Space

Section (1.1) Common Fixed points of weakly Increasing mappings 1
Section (1.2) Fixed points of Quasicontractions on Ordered Cone Metric Space 12
Chapter 2

Power of a Contraction

Section (2.1) Power of Contraction 22

Section (2.2) Norm-one Index and Contractive Functions of a contraction

32

Chapter 3

Type Map in Cone Metric Space




Section (3.1) Cone Metric Space and Self-Mappings 37
Section (3.2) The Non-self Maps 47
Chapter 4
Rational Dilation on the Tetrablock
Section(4.1) Function Model for Pure € —Isometrie 57
Section(4.2) Necessary Condition for the Existence of Dilation with a Counter 66
Example
List of Symbols 79

References

80




Chapterl
Ordered Contractions and Quasi Contraction in Ordered

Cone Metric Space

In such a way known results on quasicontractions and g-quasicontraction in
metric spaces and cone metric spaces are extended to the setting of ordered cone
metric spaces. Examples show that there are cases when new results can be
applied, while old ones cannot.

Section (1.1): Common Fixed Points of Weakly Increasing Mappings

Ordered normed spaces and cones have applications in applied mathematics,
for instance, in using Newton's approximation method and in optimization
theory. Numerous generalizations of the Banach contraction principle in the
setting of metric spaces were given by many authors. Abstract (cone) metric

spaces were studied by Huang and Zhang.

The existence of fixed points in partially ordered sets was investigated, e.g.,
by Ran and Reurings, and then by Nieto and Lopez. The following two versions

of the fixed point theorem were proved, among others in this chapter.

Theorem (1.1.1)[1]. Let (X, £) be a partially ordered set and let d be a metric
on X such that (X, d) is a complete metric space, let f: X — X be a
nondecreasing map with respect to =. Suppose that the following condition
hold:
(i) thereexist k € (0,1)such that d(fx, fy) < kd(x,y) forall x,y €
X withy C x;

(ii) there exist x, € X such that x, E fx,;
(iii) f is continuous,or
(iv) if anondecreasing sequence {x,} converges to x £ X,then x,, E

x for all n.

Then f has a fixed poin x* € X



Fixed point results in ordered cone metric spaces were obtained by Altun
and Durmaz, as well as by Altun Damnjanovi¢ and Djori€.
Theorem (1.1.2)[1]. Let (X, E) be a partially ordered set and let d be a cone
metric on X (defined over a normal cone P with the normal constant k) such that
(X, d) is a complete cone metric space. Let f: X — X be a continuous and
nondecreasing map with respect to C.

Suppose that the following condition hold:

(i) there exist k € (0,1)such that d(fx, fy) < kd(x,y) forall x,y €
X withy C x;

(ii) there exist x, € X such thatx, = fx,.
Then f has a fixed point x* € X.

In some generalizations of the previous Theorem were proved, including the
case when the underlying cone P is not normal. Also, some common fixed point
Theorems were obtained. We state the following theorem which is an "ordered"

variant of a result of Abbas and Rhoades.

Theorem (1.1.3)[1]. let (X, E) be a partially ordered set and let d be a cone
metric on X (defined over a cone P with intP # ¢) such that (X, d) is a
complete cone metric a space. Let f,g: X — X be self-maps such that (f,g) is a
weakly increasing pair with respect to =. Suppose that the following conditions
hold:
(i) thereexesta,fB,y = 0suchthata + 2B +2y <1and
d(fx,9y) < ad(x,y) + Bld(x, fx) + d(y, gy)] + y[d(x,9y) +
d(y, fx)] (1.1)
For all comparable x,y € X;
(ii) f orgiscontinuous,or
(iii) if anondecreasing sequnce {x,,} convereges to x € X, then x,,

x for all n.



Then f and g have a common fixed point x* € X.

Note that a pair (f, g) of self- maps on a partially ordered set (X, E) is said
to be weakly increasing if fx = gfx and gx C fgx for all x € X.There are
examples when neither of such mappings f, g is nondecreasing w.r.t. C. In
particular, the pair(f,iy) (ix- the identity function) is weakly increasing if
and only if x © fx for each x € X.

We show by the following simple example that a mapping on an ordered
cone metric space can be an "ordered" contraction, while it is not a contraction
in the classical sense.

Example (1.1.4)[1]. Let X = {1,24},c={(1,1),(2,2),(44), A D}, E =
R2, P ={(a,b):a,b =0}, d(x,y) = (Jx —y|,2]x — y|), and let f:X -
X fl=1/f2=2f4=1

The mapping f is a (Banach-type) contraction in the ordered cone metric
space (X,E,d),i.e,

d(fx,fy) < Ad(x,y),y E x, (1.2)

for some A € [0,1). indeed, we have only to check validity of (1.2) for y =
1,x = 4. Butitisequivalentto |[f4 — f1] < 1|4 —1],i.e.,[1 - 2| < 1|4 —
1] which is satisfied if (and only if) 2 € |5, 1).

On the other hand, f is not a contraction in the (non-ordered) cone metric

space (X, d). indeed, for x = 2,y = 1 we have that
If2-fll<A2-1llel<i-le1>1

It also means that f is not a contraction in the metric space (X, d,) where d,

is the usual metric d,(x,y) = |x — y| on R. We need the following

definitions and results. Let E be a real Banach space. A subset P of E is a cone

if:

(i) P is closed, nonempty and P # {0};

(ii)a,b € R,a,b =0, and x,y € P imply ax + by € P;



(iii) P n (—P) = {0}.
Given a cone P c E, we define the partial ordering < with respect to P by
x < yifand only if y — x € P.We write x < y to indicate that x < y but x #
y,while x « y stands for y — x € int P (the interior of P).
A cone P c E is called normal if there is a number K > 0 such that for all

X,y €P,

0 < x < y implies [lx|| < K|lyl (1.3)
Or, equivalently, if x, <y, < z, and

lim, S0 X, = im0 2, = x IMply lim,, o v, = x (1.4)

The least positive number K satisfying (1.3) is called the normal constant of P.
it is clear that k > 1. Most of ordered Banach spaces used in applications posses
a cone with the normal constant K = 1, and if this is the case, proofs of the
corresponding results are much alike as in the metric setting. If kK > 1, this is not
the case.
Example(1.1.5)[1]. Let E = {ck[0,1] with ||x|| = ||x||., +
||x'||oo and P = {x € E: x(t) = 0 fort € [0,1]} .This cone isn't normal.

Consider,for example x,,(t) = %,yn(t) = nl Then 0 < x, < ¥, and

lim,,_,e ¥, =0, but
|2 | = Max,epo,1] |%| + maxte[0,1]|tn_1| = %"' 1>1;
Hence (x,,) does not converge to zero. It follows by (1.2) that P is a non normal
cone.
Definition (1.1.6)[1] Let X be a nonempty set and, P a cone in a Banach space
E. suppose that a mapping d: X x X — E satisfies:
(i) 0<d(x,y)forallx,y € Xandd(x,y) =0ifandonlyifx = y;
(i) d(x,y) =d(y,x)forall x,y € X;
(iii) d(x,y) <d(x,z) +d(z,y) forallx,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.



The concept of a cone metric space is more general then that of a metric space,

because each metric space is a cone metric space where E =R and P =

[0, +0).

The following remark will be useful in the sequel.

Remark (1.1.7)[1].

(i) ifu<vand v K w,thenu K w.

(i) ifO <u K cforeachc €int P,thenu = 0.

(i) ifa < b+ cforeachc € int P thena < b.

(iv) if0O<x <y,and0 < a,then0 < ax < ay.

(V) if0<x, <y,foralln e N,and lim,_4, x, = x,lim,_ o, y, =
y,then0<x < y.

(vi) if 0<d(x,,x) <b, and b, — O,then d(x,,x) < ¢ where x,,x are,

respectively, a sequence and a given point in X.

(vii) if E is a real Banach space with a cone P and if a < Aa where a €P and

O<A<1thena =0.

(viii) if ceintP,0<a, and a, — O, then there exists n, such that for all

n > ny we have a,, < c.

In the rest of the chapter (X, E, d)will always be an ordered cone metric
space, i.e., £ will be a partial order on the set X, and d will be a cone metric on
X with always the underlying cone P such that int P # ¢ (such a cone will be
called solid). Normality of the cone is not assumed.

Theorem (1.1.8)[1]. Let (X, =, d) be an ordered complete cone metric space.
Let (f,g) be a weakly increasing pair of self-maps on X with respect to C.
Suppose that the following conditions hold:
(i) there exist p,q,r,s,t = 0 satisfing p+qg+r+s+t<landq =

ror s = t,such that

d(fx,9y) < pd(x,y) + qd(x, fx) + rd(y,gy) + sd(x,gy) + td(y, fx)



for all comparable x,y € X; (1.5)
(i) f orgiscontinuous, or
(iii) 1f a non decreasing sequence {x,} converges to x € X,then x,, &

x foralln € N,
then f and g have a common fixed point x* € X.
Proof: Letx, € X be arbitrary and define a sequence {x,} by x,,+1 =
fxon and x5, 42 = 0x25,41 fOr all n € N,. Using that the pair of mappings (f,9)
Is weakly increasing, it can be easily shown that the sequence {x,} is
nondecreasing w.r.tc, i.e., xo, E x4 -* E x, E x,,1 £ ---. In particular,
X,n and x,,,,, are comparable, so we can apply relation (1.5) to obtain

d(Xon41, Xon+2) = d(fXon, 9Xon11)

< pd(xap, X2n41) + qd(Xop, Xon41) + 1d(Xopn 41, Xon42) + 5A(Xop, Xon42)

+td(Xon4+1) Xo2n+1)
< pd(xan, Xon41) + qd (Xap, Xon41) + 1d (Xon41, Xon42) + S[A(X2n, X2n41)

+d(Xzn4+1, X2n42)]

It follows that

(A —r—5)d(X2n11, X2n42) =< (p + q + s)d(xzp, X2n41),

. p+q+s
1.e. <
e, d(xXan41,X2n+2) < 1~ )

d(Xopn, Xon41)- (1.6)

In a similar way one obtains that

pt+q+t p+q+s

d(X2n42, Xon43) < 1-(q+0)  1-(r+s) d(X2n, Xan+1). (1.7)

Now, from (1.6) and (1.7), by induction, we obtain that

p+q+s

d(Xon41, Xon42) < 1-(rts) d(xX2n, X2n+1)



ptqts ptr+s
< .
—1-(+s) 1-(qg+1)

d(xZn—L xZn)

ptqts ptr+s ptq+ts
< . .
—1—-(r+s) 1-(g+t) 1—(r+5s)

d(xZn—Z’ x2n—1)

p+q+s <p+r+t p+q+s)nd( )
< o <Z b ) )
S22 T (+s) U—(q+0) 1-(r+s) Vo
And
p+r+t
d(xXzn42 X2n+3) < -0 d(xXzn+1, X2n+2)
p+r+t  p+g+s 1
== (1—(q+t) ' 1—(r+s)) d (o, 7).
Let
_ ptq+s _ pHT+t
T 1-(r+s) ' T 1-(q+t)

Inthe case g =,

p+q+s p+r+t _ p+q+s  ptr+t

AB =175 1m0 1o@en 1oee —11=1
Andifs =t
+qg+s +r+s
ap=F"1 p <1-1=1,

T1-(G+s) 1-(g+0)
Now, for n < m we have
d(Xz2n+1, X2m+1) < d(Xopt1, Xone2) + o+ d(X2n, X2m41)

< (A mz_l(AB)i + i (AB)i> Ao, 1)

i=n+1

A(AB)™ (AB)"*!

i 1—AB + 1—AB d(inxl)
A(AB)™
=(@+B) 1_AB d(xg, x1).

Similarly, we obtain



(aB)"

d(xzn, Xome1) < (1 + A) 1_AB d(xg,x1),
At xom) < (L+A) 22 d(x,x,)
And
A(AB)™

d(X2n+1 X2m) = (1+B) 1-4B '

Hence, forn <m
A(AB)" AB)™
(i, %) < max {(1+ B) 22425 (1+ 4) 2221 d(xg, xy)

= And(x9, %),
where 1,, = 0,as n — oo,

Now, using (viii) and (i) of Remark (1.1.7) and only the assumption that
the underlying cone is solid, we conclude that {x,} is a Cauchy sequence. Since
the space (X, d) is complete, there exists x* € X such that x,, - x*(n —» ).

Suppose that, for example, f is a continuous mapping, then we have that
fx, = fx*, which (taking n even) implies that fx* = x*. Now, since x* C

x*, taking x = y = x* in relation (1.1.8), we obtain that

d(fx*,gx*) < pd(x*,x*) + qd(x*, fx*) + rd(x*,gx*) + sd(x*, gx*) +
td(x", fx"),
l.e., since fx* = x*, d(x*,gx*) < (r +s)d(x*, gx*).
Since r + s < 1, using Remark (1.1.7) (vii), it follows that gx* = x™*, and x™ is
a common fixed point of fand g.

The proof is similar when g is a continuous mapping. Consider now the
case when condition (iii) is satisfied. For the sequence {x,} we have x,, - x* €
X(n - «)and x, E x* (n € N). By the construction, fx,, -» x* and gx,, -
x*(n — o). Let us prove that x* is a common fixed point of f and g. Putting
x = x"and y = x,, in (1.5) (since they are comparable) we get
d(fx*,9x,) < pd(x", x,) + qd(x", fx7) + rd(xy, 9x,) + sd(x”, 9x,) +
td(x,,, fx*). For the first and fourth term on the right-hand side we have



d(x,,x*) « cand d(x*,gx,) < c (for c € int P arbitrary and n > n,). For

the second term, d(x*, fx*) < d(x*, x,) + d(x,, 9x;,) + d(gx,, fx*) (again

the first term on the right can be neglected), and for the fifth term

d(x,, fx*) < d(x,, 9x,)+ d(gx,, fx*). It follows that
(L—q—-t)d(fx*,gx,) < (q+7r+t)d(x, 9x,).

But, x,, —» x*and gx,, » x* implies that d(x,,gx,) < ¢, which means that

also d(fx*,gx,) < c,i.e.gx,, — fx*.itfollows that fx* = x* and, ina

symmetric way (using that x* & x*),gx* = x*.

Example (1.1.9)[1].

LetX ={1,23},=£={(11),(22),(33),(23),(31),21D}and d: X x X —

Cz[0,1] be defined by d(x, y)(t) = 0 for all x = y and

d(1,2)(t) = d(2,1)(t) = 6et,d(1,3)(t) = d(31)(t) = 37—Oet ,
d(2.3)(t) = d(32)(t) = e®. Further, let fx = 1,x € X,and g1 =

g3 = 1,92 = 3. We have that d(f3,92)(t) = d(1,3)(¢t) = %et. But, the right-
hand side of (1) for x = 3,y = 2 has the form

ad(3,2) + B[d(3, f3) + d(2,92)] +y[d(3,92) +d(2,f3)]
=« E t+ﬁ(30 t+24 t)+y(0+6€t) _24_“ t+54ﬁet+6yet’
Which is less than 7et for arbitrary «, 8, y satisfying the condition a + 28 +
24 54 30 24 54 42
2y < 1. Indeed, —a +7,8 + 6y < 7fo|lows from 0 +5,8 toy<a+
2 + 2y < 1. Hence, the conditions of Theorem (1.1.3) are not fulfilled and this
Theorem cannot be used to conclude that f and g have a common fixed point.

On the other hand, takingp =q=r=s=0,t = g all the conditions of

Theorem (1.1.8) are fulfilled. Indeed, Since f1 =gl = f3 =93 = 1, we have
only to check that



df3,92)(t) <0-d(3.2)(t) +0-d(3,f3)(t) +0-d(2,92)(t) +0-
d(3,92)(t) + 2 d(2, f3)(t),

Which is equivalent to

30 ¢

et <2d(2,£3)(t) =2 d(21)(t) =

30
. Bet =7-et.

N|no

Thus, we can apply Theorem (1.1.8) and conclude that the mappings f and g
have a (unique) common fixed point u = 1.

The next example shows that the conditionp +q +r + s+t < 1 alone is
not sufficient to obtain the conclusion of Theorem (1.1.8). We shall stay in the
setting of metric spaces-it would be easy to adapt it to the setting of ordered
cone metric spaces.

Example (1.1.10)[1]. Let X = {x, y,u, v}, whrer x = (0,0,0),y =
(40,0),u = (2,2,0),v = (2,-2,1), and let d be the Euclidean metric in R3.

Consider the mappings
(X y u v (X 'y u v
f_(uvvu)’ g_(y xyx)'
By a careful computation it is easy to obtain that
d(fa,gb) <>max{d(a,b),d(a fa),d(b,gb),d(a,gb),d(b, fa)}, (1.8)

forall a,b € X. We shall that f and g satisfy the following contractive
condition: there exist p,q,7,s,t 2 0withp+qg+r+s+t<landq #
r,s # t such that
d(fa,gb) < pd(a,b) + qd(a, fa) +rd(b,gb) + sd(a,gb) +
td(b, fa) (1.9
holds true for all a,b € X. Obviously, f and g do not have a common fixed

point. Taking (1.8) into account, we have to consider, the following cases:



(i) d(fa,gb) <- d(a b). Then (1.9) holds for g —% =t=0andgq =
S = -
9
(ii) d(fa,gb) <>d(a fa).Then (19) holdsforg == p=r=t=
Oands = -
5
(iii) d(fa,gb) <- d(b gb). Then (1.9) holds for r —% p=q=t =
Oands = -
5
(iv) d(fa,gb) <= d(a gb).Then (1.9) holds for s —% p=r=t=
Oandq = —.

(v) d(fa,gb) <>d(b, fa). Then (19) holdsfort ==,p = r=s =

Oandq=

Corollary (1.1.11)[1]. Let (X, £, d) be an ordered cone metric space. Let
f:X — X be aself- map such that x = fx for all x € X. Suppose that the
following conditions hold:
(i) Thereexistp,q,r,s,t = 0satisfyingp+qg+r+s+t<landq=

rors = t,such that

d(f™x, f"y) < pd(x,y) +qd(x, f"x) +rd(y, f"y)

+sd(x, fy) + td(y, f™x)

for all m,n € Nym < nand all comparable x,y € X;
(if) f iscontinuous.
Then f has a fixed point x* € X.
Proof: Follows from Theorem (1.1.8) by putting f™ = f, f™ = g.Taking

m = n = 1in the previous corollary, one obtains



Corollary (1.1.12)[1]. Let (X, £, d) be an ordered complete cone metric

space. Let f: X — X Dbe a self-map such that x = fx, for all x € X. suppose that

the following condition hold:

(i) There exist p,q,7,s,t = 0suchthatp+qg+r+s+t <1and

d(fx,fy) < pd(x,y) + qd(x, fx) + rd(y,y) + sd(x, fy) +

td(y, fx) (1.10)

for all comparable x,y € X;
(i) f is continuous.
Then f has a fixed point x* € X.
Note that here (when just one function f is considered) there was no need

for additional assumptions on coefficients p, q, 7, s, t.

Section (1.2): Fixed Points of Quasicontractions on Ordered Cone

Metric Space

The notion of aquasicontractions in a metric space was first used by Ciri¢ and
Das and Naik. Cone metric version of this notion was considered by Ili¢ and
Rakocevi¢, as well as Kadelburg, Radenovi¢ and RakoCevi¢ and Pathak and
Shahzad. Generalized g-quasicontractions in cone metric spaces were
investigated. We shall introduce here the notion of an ordered g-quasi
contraction in an ordered cone metric space and prove the respective common

fixed point Theorem.

Let (f,g) be a pair of self-maps on an ordered cone metric space(X, E
,d) such that f(X) c g(X). Let the mapping f be g-nondicreasing, i.e., let for
each x,y € X,gx £ gy implies fx T fy. Suppose also that there is a point
Xo € X such that gx, = fx,. Then it is possible to construct a so called Jungck
sequence in the following way: starting with given x,, choose x; € X such that

fxo, = gx;(which is possible since fX c gX). Now it is gX, = gx; which



implies that fx, = fx,.Then there exists x, € X such that fx; = gx,, and again
fxo E fxq implies that gx; = gx, and fx; E fx,. Continuing this procedure,
we obtain:

fX0EfX1 Efx B E fxy, E fxn E -
and

0x1 E0x; E - E0Xpy1 EQXpyp E o
Definition (1.2.1)[1]. The mapping f is called an ordered g-quasicontraction
If there exists A € [0, 1/2) such that for each x,y € X satisfing gy £ gx, there
exists

d(gx,gy),d(gx, fx),d(gy, fy),
d(gx, fy).d(gy. fx) } (1.11)

such that d(fx, fy) < A - u holds.

ue€ M(J;’g(x,y) = {

Theorem (1.2.2)[1] Let (f,g) be a pair of self-maps on a complete ordered
cone metric space (X, E, d) such that £(X) < g(X) and such that there is a point
Xo € X With gxy £ fx,. Suppose that

(i)  fis an ordered g-quasicontraction;

(i) g(X)isclosedinX;

(iii) f is g-nondecreasing;

(iv) if{g(x,,)} c X, is a nondecreasing sequence, converging to some gz,

then g(x,) E gz and gz C ggz.

Then fand g have a coincidence point, i.e., there exists z € X such that
fz = gz. If, further, f and g are weakly compatible, then they a common fixed
point. Recall that the mappings f and g are said to be weakly compatible if, for
each x € X, fx = gx implies fgx = gfx.

Proof: Starting with given x, construct the Jungck sequence fx,_; =

gx,, of the pair (f, g), with the initial pointx,. We shall prove that it is a Cauchy

sequence in X. Let us prove first that



d(fxp, fxns1) < =13 d(fxn 1 f%n) (1.12)
Forall n = 1. Indeed, since gx,, = gx,, ,we can apply condition (i) to obtain

d(fxn, fXns1) < AUy, (1.13)
Where
u. € {d(gxn’ gxn+1), d(gxn’ fxn)’ d(gxn+1’ fxn+1), d(gxn’ fxn+1),}
" d(9xn+1, fXn)

={d(fxn—1,fxn), A(fxp, fXn 1), A(fXn_1, fXn41), O}
There are four possible cases:

A

() d(fxn, fxni1) < Ad(Fxp-q, foxn) <7 d(fxn 1 fxy) since A < —;

(i) d(fxp, fXne1) < Ad(Fxp, fXne1); it follows that d(fx, fxp41) =0
hence,(1.12) holds true;
(ii)) d(fxn foxne1) 2 Ad(fxp_q, fxne1) L Ad(fap_q, fxn) +
Ad(fx,, fx,4+1); hence, (1.12) holds true;
(iv) d(fx,, fxni1) <A-0=0andsod(fx,, fx,.1) = 0 and again

(1.12) holds. Put h = 1% Then it follows from (1.12) that

d(fxn, fxne1) L hd(fxp_q, fxn) < - <A™ (fxo, fX1),

For all n > 1. Now we have for all n,m € N,n > m that
d(fxn, fxm) < d(fxn, fxn-1) + d(fxn_q, foxn_2) + -+ d(fXmi1, foxm)
< (A" H+ A2 4 e+ R (f X, fx1)
5£d(fx0,fx1) - 0asm - o,
According to Remark (1.1.7)(i) and (viii), {fx,},i.e.,{gx,} is a Cauchy
sequence and, since X is complete and gX is closed, there exists z € X such that
gx, 20z ie,fx,—>0z asn— o,

We will prove that fz = gz.



Since gx,, & gz ( condition (iv)) putting x = x,,,y = z in (1.10), we get

d(fxn, f7) <2~y (1.14)
Where uy, € {d(gxn,92). d(@xn. fn). (92, £2), d(92. fx,), 4@z, f2)}.
observe that d(gz, fz) < d(gz, fx,) + d(fx,, fz) and
d(9z, fz) < d(g9z, fx,) + d(fx,, fz). Now let 0 « c be given. In all of the
possible five cases there exists n, € N such that (using (14)) one obtains that
d(fx,, fz) < c:
() d(fxn, f2) <A~ d(gxn,92) < 25 =
(i) d(fxn f2) 2 A~ d(gxn, frn) K A5 =
(i) d(fx, fz) < 1-d(gz, fz) < Ad(gz, fx,) + Ad(fx,, fz); it follows

that d(fx,, fz) < <5 d(gz fx,) < 1'1/1(1 ;)C c;

(iv) d(fxn fz) <4 d(gz,fxn) KAz =

V) d(fx, fz) <A d(gxn,fz) < Ad(9xy, fx,) + Ad(fxp, f2); it

/1(1/1)c
1-2 A

follows that d(fx,,, fz) < <= d(gxn,fxn) K —

It follows that fx,, — fz (n — o0). The uniqueness of limit in a cone metric
space implies that fz = gz = t, Thus, in the terminology, z is a coincidence
point of the pair (f,g),and ¢ is a point of coincidence. Suppose now that
f and g are weakly compatible. By the assumption (iv), gz £ ggz and hence we
obtainthat fgz =gfz = ffz = ggz.

Suppose that it is not fz = ffz. Then, the contractibility condition (10) for
x =z,y = fz implies that d(fx, fy) = d(fz, ffz) < Au, where
u €{d(9z,9f2),d(9z,fz),d(9f z, ff2),d(9f z, fz), d(9z, f fz)}
={d(fz,ff2),0,d(ffz ffz),d(ffz fz),d(fz ffz)}
={0,d(fz ffz)},
So we have only two possibilities:

() d(fz,ffz)<A1-0=0=>d(fz,ffz)=0= fz=ffz;



(i) d(fz ffz) < 2d(fz ffz) = (by Remark (1.1.7)) d(fz,ffz) =0,
I.e.,fz = ffz. Inother words, fz = gz is a common fixed point of the
mappings f and g. Taking g = iy (the identity function) in Theorem (1.2.2) we

obtain a result for ordered quasicontractions in ordered cone metric spaces.
Corollary (1.2.5)[1]. Let f be a self- map on a complete ordered cone metric
space (X, C, d) such that there is a point x, € X with x, € X. With x, T fx,.

Suppose that

(i) f is an ordered quasicontraction, i.e., there exists A € [0, 1/2) such that

for eachx, y € X satisfying y £ x, there exists

u € {d(x,y),d(x,fx),d(y, fy), d(y, fx)}, (1.15)

such that d(fx, fy) < A1-u holds;
(i)  f is nondecreasing;
(i) if{x,} © X is anondecreasing sequence, converging to some z, then

X, E Z.

Then f has a fixed point in X.
Remark (1.2.6)[1]. If, in the Definition (1.2.1) of an ordered g-
quasicontractions, we use the set {d(gx,gy), d(gx, fx), d(gy, fy)}, instead

of M(’;’g(x,y), then it can be proved in a similar way that Theorem (1.2.2) holds
even with 1 € [0,1). If we further reduce this set to {d(gx, fx), d(gy, fy)}, then
an ordered version of the known Bianchini's result is obtained.

Finally, if we take a singleton {d(gx, gy)}, we obtain an ordered version of a
result of Jungck which is a direct generalization of the Banach's principle.

In the sequel, we shall modify condition of ordered g-quasicontraction by

considering, together with M(’;’g(x, y), the following sets:

d(gx, fy) + d(gy,fx)}
5 ,

M} (x,y) = {d(gx,gy),d(gx,fx),d(gy,fy),



MI8(x,y) = { d(gx. 07). d(gx, fx) ; d(gy.fy) d(gx.fy) ; d(gy,fx)}l

In the setting of cone metric spaces, they were used, for example (where non-
self-mappings were considered) and (when considering strict contractive
conditions). We shall prove here two related results in the setting of ordered
cone metric spaces.
Theorem (1.2.7)[1]. Let(f, g) be a pair of self- maps on a complete ordered
cone metric space (X, E, d)such that f(X) c g(X) and such that there is a pair
Xo € X with gx, = fx,. suppose that
(i) There exists A € [0,1) such that for each x, y € X satisfing gy E gx,

there exist u € M/ ®(x, y), such that d(fx, fy) < A -u hold.
(i) g(X) isclosed in X;
(iii) f is g-nondecreasing;
(iv) if {g(x,)} c X is a nondecreasing sequence, converging to some gz,

then gx,, © gz,and gz C ggz.

Then f and g have a coincidence point. Moreover, if f and g are weakly
compatible, then they have a common fixed point.
Proof: Starting from the given x,, construct the Jungch sequence as in the
proof of Theorem (1.2.2)

fXo Efx1 Efxa B E fxn E fxpe E -

0x1 E0x; E - EOXpy1 E QX4 E 0
First we prove that

d(fxn, fxn+1) 2 Ad(fxp—q, fx,) forn=1 (1.16)
Since gx,, © gxp, 41, itS

d(fxn, fxns1) <A1,
Where



d n n d n , n
u e {d(gxn,gxnﬂ),d(fxn,gxn),d(fxnﬂ,gxnﬂ)’ (fxn.gx _,_1)-; (f Xp41.8X )}

= {A(Fxnor, Fn), A(F s, fotn ), Szl iesd)

2
Now we have to consider the following three cases:
(i) fu=d(fx,_q, fx,,) then cleary (1.16) hold.
(ii) fu = d(fx,, fx,+,) then according to Remark (1.1.7)(vii)
d(fx,, fx,+1) = 0, and (1.16) is immediate.

A(fxp_1.fXns1)
2
d(fxp_1,fXn+1)

2

. Now

(iii) Finally, suppose u =

A 1
A(fxn, fxns1) <4 = 5d(fxn-1 fxn) + 5 (fxn, f2nsa).

Hence d(fx,, fxn+1) < Ad(fx,_1, fx,), and we have proved (1.16).
Now, we have
d(fxn, [Xn+1) X %A (fxo, f21).
We shall show that { f,,} is a Cauchy sequence. For m,n € N,n > 0 we have
d(fxn, fxm) 2 d(fxn, foxn-1) + d(fxn_y, fxn_2) + -+ d(fxmes, fxXm),
and we obtain

A(fxn, fxm) < (AVH+ 2772+ -+ M) d(fx0, f%0)

5%d(fx0,fx1) - 0asm — oo,
From Remark (1.1.7)(viii) it follow that for O « ¢ and m sufficiently large,
AL =D d(fxg, fx1) < c;thenalso d(fx,, fx,) < c.hence, { f,,} isa
Cauchy sequence.

Since f(X) < g(X),g(X) is closed, and X is complete, there exists u € g(X)
such that g(x,,) — u as n — oo. Consequently, we can find z € X such that
0z = u.

Let us show that fz = u. For this we have (because of gx,, = gz)

d(fz,u) <d(fz fx,) +d(fx,u) <A -u, +d(fx, u),
Where



u € {d(Qxn, 02), d(f xn, gxn), d(fz,0z), WL EnELAZEDY
Let O < c be given. Since gx,, — gz, in each of the following cases there
exists n such that for n > n, we have d(fz,u) < c.
(@) d(fz,u) < A d(gx,,92) +d(fx,u) K 1 - i + g =c.
(i) d(fz,u) < 1 d(fx,,9x,) +d(fx,,u) <A-d(fx,u) +21-
d(u,9x,) + d(fx, u) = (A+1) - d(fx,,u) +1-d(u,9x,) <
1+1)-

c c
+1-—=c
2(A+1) 21

(iii) d(fz,u) < A d(fz,u) +d(fx,,w),i.e.,d(fz,u) < - (1- A)c

1-1

= C.

(lV) d(fZ, u) i 1. d(fxn:gz)2+d(fz,gz) + d(fxn, U,) i ld(f)zcn,gz) +

~d(fz,92) + d(fxyu)i.e., d(fz,u) < (A +2)d(fx,,u) <

C —
(A+2) ¢

1+2)

Using Remark (1.1.7)(ii) we conclude that d(fz,u) = 0,i.e., fz = u.
Hence, we have proved that f and g have a coincidence point z € X and a point
of coincidence u € X such that u = f(z) = g(z). if they are weakly compatible,
then Qgz=gfz=fgz=ffz
We shall prove that fz = gz is a common fixed point of the mapping f and g.
using gz = ggz (condition (iv)), we obtain from condition (i) that

d(fz, ffz) <1-u,
Where

u € {d(92,9f2). d(f2,92), d(ffz of 7), “LHEL2 D)

2

= {a(z ffz)0, LSO = 0, a(fz, ff2)}

2

Hence, be Remark (1.1.7) d(fz, ffz) = 0,i.e., fz = ffz. Similarly,gz = ggz

and the Theorem is proved.



Theorem (1.2.8)[1].Let (f,g) be a pair of self-maps on a complete ordered
cone metric space (X, E, d) such that f(X) c g(X) and such that there is a point
Xo € X with gx, = fx,. suppose that
(i) There exist 2 € [0,1) such that for each x, y € X satisfying gy E gx,
there exist u € MJ8(x, y), Such that d(fx, fy) < A - u holds.
(i) g(X) isclosed in X;
(iii) f is g-nondecreasing;
(iv) if {g(x,)} c X is a nondecrasing sequence, converging to some gz,
then gx,, E gz and gz C ggz.
Then f and g have a coincidence point.
Moreover, if fand g are weakly compatible, then they have a common fixed
point. The proof is similar, and so is omitted.
Note that conditions (i) of Theorem (1.2.2),(1.2.7) and (1.2.8) are incomparable

in the cone metric settings (to the contrary with the situation in metric settings),
since for a,b € P,if a and b are incomparable, then also %b Is incomparable,

both with a and with b.

Remark (1.2.9)[1]. Putting E = R, P = [0, +c0) in Theorem (1.2.7) and
(1.2.8), one obtains the respective common fixed point Theorem in ordered
metric spaces (we could not find explicit formulations for some of these
assertions in literature). For example, taking u = d(gx, gy),g = iy, a result of
Abbas and Jungck is obtained; then, taking E = R, P = [0, +) the respect

result in the setting of ordered metric spaces follows. If we take

u= %(d(gx, fx)+d(gy, fy)),d = iy, we obtain an ordered cone metric
version of Kannaan's Theorem (State that for any fixed k there exists alanguage
L in Y, , which is not in size (n*) (this is different statement than Y, & p /
poly , which is currently open and state that there exists asingle language that is

not in size(n®)for any k).it is asimple Circuitlower bound).[5] ; ordered metric



version of this theorem follows immediately. The same applies for the known
Zamfiresu's result.

We conclude with an example showing that our Theorem (1.2.2),(1.2.7) and
(1.2.8) are proper extensions of the respective results from the setting of cone
metric space. Namily, we shall construct an example of a mapping which is an
ordered g-quasicontraction (where from the existence of common fixed point of
f and g follows), while it is not a g-quasicontraction in cone metric sence.
Similar conclusion then applies for relationship between contractive conditions
in ordered metric spaces and simple metric spaces.

Example (1.2.10)[1]. Let X = [0, +c0) and let order relation = be defined
by x Ey o {(x = y)or (x,y € [0,1] with x < y)}.

Let E = Cx[0,1] with ||x|| = ||x|le + lIx|lcc and P = {x € E: x(t) =

0 on [0,1] (this cone is not normal). Define d: X x X —» E by d(x,y) =

|x — vl where ¢:[0,1] - R such that ¢(t) = e'. it is easy to see that d is a

cone metric on X. consider the mappings

X

" 0<x<1, x, 0<x<1,
X = X =33

/ 4x—175, x> 1; : {Zx’ x> 1.
Then, for y C x we have that

d(fx, fy)(6) = Ifx = fyle' =Flx = yle* < Alx—yle’, vee[0l] &
1
1€ [Z’ 1),
While for x,y > 1
d(fx, fy)(®) = Ifx = fyle' = 4lx —yle* < 27lx —yle’, Vee[01] &
AE E, +oo),
3
And, checking all other conditions, one concludes that f is an ordered g-
guasicontraction, while it is not a g-quasicontraction in a (non-ordered) cone

metric sense. Obviously, f(0) = g(0) = 0.

Similar conclusions apply to conditions of Theorems (1.2.7) and (1.2.8).



Chapter 2

Powers of a Contraction

Let A be a contraction on a Hilbert space H. The defect index d, of A is by
definition, the dimension of the closure of the range of 1 — A*A .We show that
(i) d4yn < nd, for all n> 0, (ii)if, in addition, A™ converges to 0 im the strong
operator topology and d, = 1, then d4,» = n for all finite n, 0 < n < dimH ,
and (iii) dy = d 4+ implies dyn = dn- for all n > 0. The norm-one index K, of A
is defined as sup {n = 0: ]| A™ l= 1}. When dim H = m < oo, a lower bound for

K, was obtained before: K, > (m/d,) — 1
Section (2.1). Powers of Contraction

Let H be a complex Hilbert space with inner product (:,-) and the associated

norm ||-]|, and let A be a contraction (||A|| = sup{||Ax||:x € H,||x|| = 1} < 1)

on H. the defect index of A is, by definition, ran(/ — A*A) of 1 — A*A. ltisa
measure of how far A is from the isometries, and plays a prominent role in the
Sz.-Nagy-Foias Theory of canonical model for contractions.

In this chapter, we are concerned with the defect indices of powers of a
contraction. We show that, for a contraction A, d4» Is at most nd, forany n >
0. they are in general not equal. The equality does hold in certain cases. For
example, if A™ converges to 0 in the strong operator topology and d, = 1, then
d,n = n for all finite n,0 < n < dim H. The equality (for some n's) also arises
in another situation, namely, in relation to the norm- one index. Recall that the
norm-one index K, of a contraction A is defined as sup{n = 0: ||A™|| = 1}. it
was proven that if A acts on an m-dimensional space, then K, = (m/d,) — 1.
Here we complement this result by characterizing all the m-dimensional A with
K, = (m/d,) — 1; this is case if and only if either A is unitary or the

eigenvalues of A are all in the open unit disc D(= {z € C: |z| < 1}), d, divides



mand dsn = nd, foralln,1 < n < m/d,. we consider contractive analytic
functions of a contraction, instead of just its powers. Among other things, we
show that if f is a Blaschke product with n zeros, then ds4) = dgn.

We start with some basic properties for the defect indices of powers of a
contraction. These include a "triangle inequality™ and their increasingness.
Lemma (2.1.1): Let A = BC, where B and C are contractions. Then d, <
dy < dg + d.. if Band C commute, then we also have dg < d,.

Proof :Since
| —A"A=1—-C'B'BC=>21—-C"C =0,
Where we used C*B*BC < CC* because B*B < 1, we obtain ran(I — A*A) 2

ran(I — C*C) andthusd, = d.. If B and C commute, then A = CB and,
Therefore, dg < d, follows from above.
On the other hand, since
|—A*A=1-C*B'BC=({U-C*C)+C*(I — B*B)C,
We have
ran(I — A*A) € ran(I — C*C) +ranC*(I — B*B)C.
Thus
dy < dc+rank C*(I — B*B)C
<d;+rank (I — B*'B)C
<d;+dp,

Completing the proof.

For any contraction A, let H, = ran(I — A™*A™) forn > 0and H,, =
Vi-oHy. In the following, we will frequently use the fact that, for a contraction
A, xisinker (I — A*A) if and only if [|Ax]|| = ||x].

Note that dgz < d, may not hold without the commutativity of B and C, For
example, if A =1,B = S5*and C = S, where S denotes the (simple) unilateral
shift, thenA = BC,d, = 0and dg = 1.

Theorem (2.1.2)[2]. Let A be a contraction on H.



(i) The inequality d m+n» < d m + dn holds for any m,n > 0. in particular,
dan < ndyn forn = 0.

(ii) The sequence {d n ;=0 is increasing in n, Moreover, if dyn = dyn,q <
oo for somen,0 < n < dim H, then d ;x = dyn for all k = n.

The proof depends on the following more general lemma.

Proof :(i) and the increasingness of the dAn,S in (ii) follow immediately from
lemma (2.1.1). To prove the remaining part of (ii), we check that H,, =
V. rog A H, for n = 1. Indeed, if x = (I — A™A™)y for some y in H, then
x = YRZ5 AR (1 — A*A)A¥y, which shows that x is in V}Z5 A**H,. For the
converse containment, note that A maps ker(I — A¥*1*A**1) to ker(I — A%*A¥)
isometrically for each k > 0. Indeed, if x is in the former, then

lxll = [[a*+ x| < [lAx]l < [Ix]l.

Hence we have the equalities throughout and, in particular, ||A*(4x)|| = [lAx||
and ||Ax|| = ||x||. The former implies that Ax € ker(I — A**A¥). Together with
the latter, this proves our assertion. Therefore, A* maps Hyto Hy,, for k = 0.
by iteration, we have that A** maps H,to H,,,, for all k > 1. Arguing as above,
we also obtain ker(I — A¥*1*A%*1) ¢ ker(I — A**A*) H, © H,., fork > 0.
Therefore, A®* maps H,to H,, for all k,0 < k < n — 1. This proves
V-1 A*¥H, c H, and hence our assertion on their equality.

If dyn = dyn+1 < oo for some n,then H,, = Hj,,.hence
Hppp = VLA H, = V}_ A% H, v (A™1*H,)
S Hpy1 V(A"Hpy1) = Hyyy V (A™Hy)
S Hyp1V Hpyq = Hyyg € Hyyo.
Therefore, we have equalities throughout. This implies that d,,;1 = d; 4.

Repeating this argument gives us d « = d» for all k = n.

Note that, in Theorem (2.1.2)(i), dym+n < dm + d4n may happen even for

for m = n = 1. For example, if



A=[0 0 O

0 0O
Thendy =2and dyz =3, Thusdyz < dy + dy.

The following corollary is an easy consequence of Theorem (2.1.2)(ii).

001]

Corollary (2.1.3)[2]. if A is a contraction with A™ isometric (resp., unitary),
then A itself is isometric (resp., unitary). The next Theorem says that the
equalities d4n = ndy,n = 0, do hold for certain contractions A.

Theorem (2.1.4)[2]. If A is a contraction on H with A™ converging to 0 in
the strong operator topology and d4, = 1, then d » = nfor all finiten,0 < n <
dim H.

Proof: Under our assumption that d, = 1, we have d,» < n foralln > 0 by
Theorem (2.1.2)(i). Assume that d4no < ng for some finite ny, 1 <n, <

dim H. since d,n increases in n, the pigeonhole principle(states that if n items
are put into m containers, with n>m, then at least one container must contain
more than one items)[6]. and Theorem (2.1.2)(ii) yield that dno-1 = dyno =

dsn < ny < oo for all n = n,. hence

ker(I — A™*A™) = ran(I — A™0*4™)L = ran(l — A™*A")t =
ker(I — A™A™) for all n = n,. Let K denote this common subspace. For
x in K, we have ||A™x|| = ||x|| for all n = n,. On the other hand, the
assumption that A™ — 0 in the strong operator topology vyields that ||[A™x]|| —

0 as n — oo. From these, we conclude that x = 0 and hence K = {0}. This is the

same as ker(I — A™*A™) = {0} or ran(I — A™*A™) = H. Thusdim H =
dano < ng. which is a contradiction. Therefore, we must have d,» = n for all
finite n,0 < n < dim H. Let A a contraction on H. Since A* maps

H, to H,,, for n = 0 as shown in the proof of Theorem (2.1.2)(ii), we have
A*H, € H. .Hence

Az[‘g 3]onH=HooeaH;.



Note that, for any x in HE =n5_, ker(I — A™A™), we have A*Ax = x, which
implies that ||[Vx]|| = ||Ax]|| = ||x]|. Thus V is isometric on H:. Recall that a
contraction is completely nonunitary (c.n.u.) if it has no nontrivial reducing
subspace on which it is unitary. A can be uniquely decomposed as

A{®U on K®K*, where A4is c.n.u. on K and U is unitary on K+ =

Ny—o (ker(I — A™A™) nker(I — A™A™)). Thus the above decomposition can

be further refined as

A 0 O
A=|B, s, o0
O 0 U
Where S,,, denotes the unilateral shift with multiplicity m(0 < m < ),
AI

A= [ 0 ] Is c.n.u., and V = §,,,@® U corresponds to the Wold
Bi Sm

decomposition of V.
Corollary (2.1.5)[2]. If A is a contraction on a finite-dimensional space
withd, = 1, then

{n if 0 <n < ny,
Ny if n>n,,

dm =

Where ny = dim H,,.
Proof: On a finite-dimensional space, the above representation of A becomes
A=A@®Von H= H,®HE with V unitary. It is easily seen that A’ has no
eigenvalue of modulus one. Hence A™ converges to 0 in norm. Our assertion on
dn then follows from Theorems (2.1.4) and (2.1.2)(ii).
The next theorem characterizes those contractions A for which d,» =n for
finitely many n’s or for all n > 0. it generalizes Corollary (2.1.5).

Recall that an operator A on an n-dimensional space is said to be of class
S, if A is a contraction, its eigenvalues are all inDand d4 = 1. The n-by-n

Jordan block



0 1

1
0

Is one example, Such operators and their infinite-dimensional analogues
S(¢) (¢ an inner function) are first studied by Sarason. They play the role of
the building blocks of the Jordan model for C, contractions.

Theorem (2.1.6)[2]. Let A be a contraction on H.

(i) Let n, be a nonnegative integer. Then

dn = {n if 0<n<n,,
Ny if n>n,
If and only if Py A|H, the compression of A to H, is of class S, . In this
case, dim H,, = n,.
(i) dyn =nforalln,0 <n<oo,if and only if dy =1 and dimH,, =
Proof: (i) let

A= A' ]onH H,@® HL,

Where V is isometric, First assume that the dn's are as asserted. We need to
show that A" = Py _A|H is of class S, .Our assumption on dyn implies

H,, = Hy, is of dimension n,. Moreover, for any n = 0, we have
. _ Aln* Al‘n
[ —A™A" = | — V"*”

_ [1 — A™A™ — B*B, —BiV"

—V"*B, 0
_ [1 — A™A™ — B*B. o]
0 ol

Where the last equality holds because I — A™A™ > 0. Hence

n= dsm =rank ( — A™A™ — B;B,) < rank (I — A™A™) = dm
For 1 <n < ny If ny < dyn, forsomen,,1 < n,; < ny, then the pigeonhole
principle and Theorem (2.1.2)(ii) yield dyn = dgno < ng for all that dme-1 =

d,mo. and the fact that A’ has no eigenvalue of modulus one, we conclude that



I — A™~1*4™~1 s one-to-one and hence dyme = ny, contradicting our
assumption. Hence d,m» =nforalln,1 <n < n,. implies that A" is of class
S, this proves one direction. For the converse, we derive as above to obtain
[—AYA"=(1—-A™A™—-B;B,)®00onH = H,, ® Hy and

n ifl<n<ng

dyn < dy :{ .
A N if n>n,

(1.1)

Assume that dyn. <n; forsomen,,1 <n; <n, then the pigeonhole
principle and Theorem (2.1.2)(ii) yields din = dyno < ny forall n = ny. This
implies that H, = H,_ foralln =n,. Therefore, H, = H,, has dimension
strictly less than n,, which contradicts the fact that dim H,, = dymo, = ny.
Hence we have dsn = nforall ny,1 <n < ny. If n>ng, then dyn = dyne =
ny by Theorem (2.1.2)(ii) and what we have just proven. This, together with
(1.1), yields, dsn = n, forn > n,,.

(if) Since dim H,, = d4n for all n, the necessity is obvious. Conversely,
assume that d4y =1 and dim H,, = . Then ds» < ndy, =n by Theorem
(2.1.2)(i). If dyn: < nq for some n,; = 2, then an argument analogous to the one
for the second half of (i) yields that H,, = H,,_is of dimension less than n;.
This contradicts our assumption. Hence we must have d,» = n for all n.

We now proceed to consider contractions A with d, = d 4+ and start with the
following lemma giving conditions of the equality of d, and d,- for an arbitrary
operator A. Note that, in this case, the definition of the defect index still makes
sense.

Lemma (2.1.7)[2]. Let A be an operator on H.
(i) If dimker A =dimker A*,thend, = d,. In particular, if A acts on a
finite-dimensional space, then d, = d .
(ii) If d4 is finite, then the following conditions are equivalent:
1°. d, = dy;
29, dimkerA = dim ker A*;



3% A*A and AA* are unitarily equivalent;

4% Ais the sum of a unitary opereter and a finite-rank operator.

Proof: (i) if dimkerA = dim ker A%, then A = U(A*A)'? for some unitary
operatorU. Hence A*A = U(A*A)U™ is unitarily equivalent to A*A. Then the
same istrue for I — A*"Aand [ — AA*. Thus d, = d,-.

(i) It was proven that if A*"A = A;® 0 (resp., AA*= A,®0) on H =
ranA*® ker A (resp.,H = ranA*@® kerA*), then A; and A, are unitarily
equivalent. If d, = d4 < oo, then

rank (I — A;) + dimkerA = rank (I — A*A) = rank (I — AA*)

=rank (I — 4,) +dim ker 4*
And hence dimker A = dim ker A*. This proves that 1° implies 2° If 29 hold,
then the unitary equivalence of A; and A, implies the same for A*A and AA",
that is, 2° implies 3°. Now assume that 3° holds. Since ker A*A = ker A and
ker AA* = ker A*, the unitary equivalent of A*A and AA® implies that
dimkerA = dim ker A*. Hence d, = d, by (i), that is, 1° holds. Finally, the
equivalence of 1%and 4°was proven.

Note that, in the preceding lemma, d, = d, = co does not imply
dim ker A = dim ker A*in general, For example, if

A=diag (1,1/2,1/3,---)@® S, where S is the (simple) unilateral shift,
thend, = d,- = oo, dimker A =0and dim ker A* =1.
Theorem (2.1.8)[2]. LetA be a contraction with d4 = dy < . Then
dim H,, < oo if and only if the completely nonunitary part of A acts on a finite-
dimentional space.

Proof: Assume that dim H,, < oo and let

A 0 O
A = B Sm O ion H = HOO®K1®K2i
O 0 U

Where S,,, denotes the unilateral shift with multiplicity m,0 < m < oo, and U is



unitary. We need to show that S,,, does not appear in this representation of A or,

equivalently, m = 0. We first prove that m, is finite. Indeed, since

I—A'A" —A'B* 0
I—AA*=| —BA™ [-BB*-S,S: 0,
0 0 0

We have
m =rank (I — S,,S,,) <rank (I — BB* - S,,S;;,) + rank BB*
< rank (I — AA*) + rank BB*
<dy+ dimH, < oo

As asserted. Now to show that m = O, consider S,,, as

Then Bisofthe foom[B" 0 0 --]".LetA= [ ‘g, % ] Since A acts on

a finite-dimensional space, we have d; = dz by Lemma (2.1.7)(i). Then
ds =rank (I — A*A)
—A'A™ —A'B* ]

—BA™ I—BB*-S,5S

"“A' — B"B’ o]
0 I,
=m+rank (I —A"A' — B"*B’)
=m-+rank (I — A”A" — BB")
I —A"A"— BB* 0 O]

= rank [1

=dz = dz = rank [I_A

= m + rank 0 00

0 0 O
=m+rank (I —A*A) =m + d,.

We infer from the assumption d, = ds+ < cothenm = 0. Thus A = A'@ U,
where A’ is the c.n.u. part of A acting on the finite-dimensional space H,,.

The converse is trivial. The next two results are valid for any operators.



Proposition (2.1.9)[2]. If A is an operator with d, = d-, then dyn =
dyn-foralln > 1.

Proof: If d, = dy- < oo then A = U + E, where U is unitary and F has finite
rank, by Lemma (2.1.7)(ii). For any n = 1, we have A™ = U™ + F, where E, is
some finite-rank operator. By Lemma (2.1.7)(ii) again, this implies that

dan = dyn-. On the other hand, if dy = dy- = oo, then dyn = dyn- = oo, for
any n = 1 by Theorem (2.1.1)(ii). This completes the proof.

Two operators A on H and B on K are said to be quasi-similar if there
operators X: H — K and Y: K — H which are one and have dense range such
that XA = BX and YB = AY. We conclude this section with the following result
on quasi-similar operators.

Proposition (2.1.10)[2]. Let A and B be quasi-similar operators. If
dy =dy» < oo, thend, = dp-.
Proof. Our assumption of d, = ds+ < oo implies, by Lemma (2.1.7)(ii), that
dimkerA = dim ker A*. The quasi-similarity of A and B then yields
dimker B = dim ker A = dimker A* = dim ker B*

Then dg = dg- by lemma (2.1.7)(i).

Note that the preceding proposition is false if d, = d« = oo.
Example (2.1.11)[2]. Let {a,}5*-, be a sequence of distinct complex
numbers in D with },,(1 — |a,|) < «. Let A = diag (a,,a,, - )®S,where S

denotes the (simple) unilateral shift. Let @ be the Blaschke product with zeros

a, zZ—a
Qn. ¢(Z) = H%j:la_:llll—a‘:z’ z € D,

And let B = S(¢p) @ S, where S(¢) denotes the compression of the shift
S@)f =P(2f(2)), f€H*© ¢pH?,

P being the (orthogonal) projection from H? onto H? © ¢H?2. It is known that

diag (a,,) is itself a C, contraction which is quasi-similar to S(¢). Thus A is

quasi-similarto B. Butd, = dy+ = co,dg =land dg- =2



Section (2.2): Norm-one Index and Contractive Functions of a
Contraction

As defined the norm-one index of a contraction A on H is K, =
sup(n = 0: ||A™|| = 1}. This number is to measure how far the powers of 4
remain to have norm one. It is easily seen that (i) 0 < K4 < o, (ii) K4 = 0 if
and only if ||A|| < 1, and (iii) K4, = oo if and only if a(4) N 0D # @. The main
result say that if dimH = m < o, then(iv)O < K, <m—10rK, = cor
(v) K, = m — lifandonly if A is of class S,,,, and (vi) K, = (m/d,) — 1.
The purpose of this chapter is to determine when the equality holds in (vi).
Theorem (2.2.1)[2]. Let A be a contraction on an m-dimensional space.
Then K, = (m/d,) — 1 if and only if one of the following holds:
(i) A is unitary,
(ii) 0(4) € D, d4 dividesm,and dyn = nd, foralln,1 <n <

m/d,.

Proof: Assume that K, = (m/d,) — 1. If 6(4) Nn 0D = @, then (m/d ) —
1 = oo, which implies that d4 = 0 or A is unitary. Hence we may assume that
(A) € D.Then K, < oo. From K, = (m/d,) — 1, we have(d4|m). By the
pigeonhole principle and theorem (2.1.2)(ii), there is a smallest integer [, 1 <
| < m, suchthatd, = d,i+1.since A has no unitary part, this is equivalent to
I — A™A! being one-to-one or ||A'|| < 1. As L is the smallest such integer, we
obtain K, = 1 — 1. From K, = (m/d,) — 1, we have m/d4 = 1. Note that
dan < ndy for1 < n < [byTheorem (2.1.2)(i). If dgno < nyd, for some
Ny, 1 <ny < [, then

dAl < dAnO + dAl—no < nodA + (l - no)dA == ldA =m



Again by Theorem (2.1.2)(i). This contradicts the fact that I — A"* A is one-to-
one. Hence we must have dyn < nd, for 1 < n < m/d,. This prove (ii).
Conversely, if (i) holds, that is, if A is unitary, then K, = coand d, = 0.
hence K, = (m/d,) — 1.
Now assume that (ii) holds. If [ = m/d,, then our assumptions imply that
1<dy<dy <- <du=m. Hencel— A*A"is one-to-one, but I —
A AT isnot. Thus ||AY| < Land ||| = 1. This yields K, =1 — 1 =
(m/d,) — 1 as required.
On an m-dimensional space, other than unitary operators, S,,,-operators and
strict contractions (operators with norm strictly less than one), which
correspond to d4, = 0,1 and m, respectively, there are other contractions A

satisfying K, = (m/d,) — 1. For example, if A = J;@® --- @ J; where [ divides,
m/l

then K4, =1—1= (m/d,) — 1. The same is true for the more general

B =A,® - ® A, where A; is an S;-operator. Another generalization of the a
m/1

contraction A is

0 a,
0

am-1
0

Where |a;| < 1forj = kl,1 < k < (m/l) — 1,and |a;| = 1 for all other j's. In
this case, it is easily seen that d. equals m minus number of j's for which
|a;j| = 1 and hence d. = m/!. On the other hand, K, equals the maximum
number of consecutive j's whith |a;| = 1, and thus K, = I — 1. Therefore,
K, = (m/d,) — 1 holds.

In this chapter, we consider the defect indices of contractive functions of a

contraction, instead of just its powers. The first one is Blaschke products:



z—a]-

f(2) =11}

o1 z € D, where |q;| < 1forall j,
a2
Theorem (2.2.2)[2]. If A is a contraction on H and f is a Blaschke product

with n zeros (counting multiplicity), then d¢4y = d4n.

Proof . Let f be as above and let £;(z) = (z — a;)/(1 — @A), z € D, for each
j.LetX = H}’:l(l —a;jA), K, = ker(I — A™A™), and K, = ker(I —
f(A)*f(A)). We first show that XK; € K,. indeed, if x isin K, then ||[A™x|| =
llx||. Applying once (with ¢, there as f; and the remaining ¢;'s given by
¢;(2) = z) yields ||If, (A)A™ (I — @ A)x|l = |(I — @ A)x|l. We then apply
repeatedly to obtain ||f;(4) --- f,,(A)Xx]|| = || Xx||. This means that Xx is in K.

Hence we have XK; € K, as asserted. Since X is invertible, if
X1 *

x=1, " ]:H = K,®Ki - H = K,®K;,
then X, has dense range. Thus X,: K3~ — Ki is one-to-one. Therefore,

deay = dim Ky < dim Kj* = dgn
In a similar fashion, if Y = H}?zl(l + cT]A), then successive applications of also
yield YK, € K;. We can then infer as above that dyn < d(,). This proves their
equality.

For more general functions, we use the Sz.-Nagy-Foias functional calculus

for contractions. For any absolutely continuous contraction A (this means that A
has no nontrivial reducing subspace on which A is a singular unitary operator)
and any function f in H* with ||f]l. < 1, the operator f(4) can be defined and
IS again a contraction. Not that every function in H* can be factored as the
product of an inner and an outer function, and every inner function is the
product of a Blaschke product and a singular inner function.
Note that if f is as above, then f(A4) = [T}-,(A — a;I)(I —@A) tisalsoa

contraction .



Theorem (2.2.3)[2]. Let A be an absolutely continuous contraction on
H and f be a function in H* with [|f]| < 1.
(i) If f has an infinite Blaschke product factor, then ds(4y = sup{d»:n >

0}.
(i) If £ is a (nonconstant) inner function, then ds(4y < sup{ds»:n = 0}. In
particular, if £ is an inner function with an infinite Blaschke product factor, then
drcay = sup{dyn:n = 0}.
Proof: (i) Foreachn > 1, let f = £,9,,, where f,, is a finite Blaschke product
with n zeros and g,, is in H*. Then f(4) = f,,(4)g,,(4). Theorem (2.2.2) and
Lemma (2.1.1) imply that dyn = df (4) < df(ayforalln = 1. thus ds4y =
sup{d,n:n = 0}.

(ii) We may assume that n, = sup{d,n:n = 0} < co. This means that

dimH,, = n, is finite. Let

A 0 0
A=|[B S, 0]onH=H,®K K,
0 0 U

Where S,,, is the unilateral shift with multiplicity m,0 < m < oo, and U is

unitary. Then

f@a) 0 0
f(A) — C f(Sm) 0
0 0 f)

Note that f(S,,) is itself a unilateral shift, say, §;(0 < [ < ) and f(U) is

unitary because f is inner. Hence

1 —f(A)f(A)—-C*C —C*S, O
I-f(A)f(A) = —S;C 0 4
! 0 0O O

1 —fA)f(A)-Cc*c 0 0O

- 0 0 4

0 0 0

Since I — f(A)*f(A) = 0, Therefore,



deay = rank (I — f(A')"f(A") = C*C) <rank (I — f(A")" f(4"))
= df(A’) S nO.
This completes the proof.

Note that Theorem (2.2.3)(i) is in general false if fis a finite Blaschke
product. For example, if A = [8 (1)] and f(z) = z then dg4y =d, =1, but

sup{d n:n = 0} = 2. Theorem (2.2.3)(ii) is also false for general f in H®
with ||f|l < 1. As an example, let A be the (simple) unilateral shift. Then
sup{d n:n = 0} = 0. On the other hand, f(A) is an analytic Toeplitz operator
with symbol f, which is an isometry if and only if f is inner. Thus ds4) =0
can happen only when f is inner. The next corollary generalizes Proposition
(2.1.9).

Corollary (2.2.4)[2]. if A is an absolutely continuous contraction and f is
either a finite Blaschke product or an inner function with an infinite Blaschke

product factor, then d4) = df(a)*.

Proof: since f(4)* = f(4*), where f(z) = f(z) for z € D, the assertion
follows easily from Theorems (2.2.2) and (2.2.3).



Chapter 3

Type Maps in Cone Metric Space

Results are related to the cases when g is f quasi contraction in a sense of
Das and Naik, and the cone need not be normal. These results generalize several
well known comparable results.

Section (3.1): Cone Metric Space and Self-mappings

In 1922, Banach proved the following famous fixed point theorem. Let (X, d)
be a complete metric space. Let g be a contractive mapping on X, that is, there
exists A € [0,1) satisfying

d(gx,gy) < A-d(x, ). (1.1)
for all x, y € X, then there exists a unique fixed point x, € X of g. This
Theorem, called the Banach contraction principle, is a forceful tool in nonlinear
analysis. This principle has many applications an is extended by several authors.

The study of common fixed points of mappings satisfying certain contractive
conditions has many applications and has been at the center of various research

activity. For the convenience of the reader, let us recall the following results.
Theorem (3.1.1)[3]. LetX be a complete metric space. Let f be a
continuous self-map on X and g be any self-map on X that commutes with f.
Further let f, g satisfy

9(X) c f(X) (1.2)
and there exists a constant A € (0,1) such that for evry x,y € X
d(gx,gx) < A-d(fx, fy). (1.3)

then f and g have a unique common fixed point.

If f and g satisfy (1.2) and x, € X, let us define x; € X such that g(x,) =
f(x,). Having defined x,, € X, let x,,,; € X be such that g(x,,) = f(x,+,). Set
yn = 9(x,,),n =0,1,2,.... This procedure was essentially introduced by

Jungch, and is Picard iteration procedure when f = I is the identity map on X.



Theorem (3.1.2)[3]. Let X be a complete metric space. Let f be a
continuous self-map on X and g be any self-map on X that commutes with f.
Further let f, g satisfy (1.2) and there exists a constant

A € (0,1) such that forevry x,y € X

d(gx,gx) < A-M(x,y), (1.4)
Where
M(x.y) = max {d(fx,fy), d(fx,glﬁgc,j(gj;ﬁ; 9y). d(fy.9y), } (L5)

Then f and g have a unique common fixed point.

Let us mention that if f = Iy is identity map on X, and g satisfies (1.5),
than g is called quasi contraction.Ciri¢ introduced and studied quasicontraction
as one of the most general contractive type map. The well known Ciri¢’s result
Is that quasicontraction g possesses a unique fixed point.

There exist a lot fixed- point theorems for self-mappings defined on closed
subset of Banach space. However, for applications (numerical analysis,
optimization, etc.) it is important to consider functions that are not self-
mappings. And it is natural to search for sufficient conditions which would
guarantee the existence of fixed points for such mappings. The study of fixed
point Theorems for non-self mappings in metrically convex spaces was initiated
by Assad and Kirk which proved productive as metrically convex spaces offer a
natural setting for proving such results. In recent years this technique has been
exploited by many authors and by now there exists considerable literature on

this topic. To mention a few, and let us recall the next result.

Theorem (3.1.3)[3]. let X be a Banach space, C a nonempty closed subset of
X, and aC the boundary of C. Let T: C — X be a nonself mapping such that for
some constant A € (0,1) and for every x,y € C

d(Tx,Ty) <



A-

max{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)} (1.6)
Suppose that
T(dC) c C (1.7)

then T has a unique fixed point in C.

Let us remark that to extend the known fixed point theorem for self quasi
contraction T: C — C to corresponding non self mapping T: C —» X, C #+ X, was
open more than 20 yr.

Definition (3.1.4)[3]. Let X be a linear space. Suppose that the mapping
|-]]: X — E satisfies:

() ||x|| > Oforall x € X,and ||x|| = Oifand only if x = O;

(ii) |[Ax|| = |Alllx]|| forall x € X, 1 € C;

(iii) llx + yll < [[x[[ + |lyll forallx,y € X.

Then ||-]] is called a cone norm on X and (X, ||-||) is called a cone normed space.

Each cone normed space X is a cone metric space with cone metric in X
defined by means of the formula

dlx,y) =llx—yll, x,y €X. (1.8)
Definition (3.1.5)[3]. Let (X, d) be a cone metric space, x € X and {X,,},,1
as a sequence in X. Then
(i) {X,,},,1 converge to x whenever for every ¢ € E with 0 « c there is a

natural number N such that d(x,,x) < c forall n > N. we denote

this by lim,,_,, x,, = x or x,, — x.

(i) {X,},>1 Is a Cauchy sequence if for every c in E with 0 < c, there is

a natural number N such that d(x,,, x,,) < c foralln,m > N.

(iii) (X,d) Is a complete cone metric space if every Cauchy sequence is
convergent.
(iv) let f: X - X and x, € X. Function f is continuous at x, if any

sequence x, — x, We have f(x,) — f(xy).



Example (3.1.6)[3]. Let X = R,E = R™and P = {(xy, -, x,) € R": x; =
0}. it is easy to see that d: X x X — E defined by d(x,y) = (|x — y|, k{|x —

Y|: s kn-1lx — y|) is a cone metric on X, where k; > Oforall i €
{1,---,n—1}.

Example (3.1.7)[3]. Let E =1}, P = {{x,,}>1 € E: x,, = O;for all n}, (X, p)

be a metric space and d: X x X — E defined by d(x,y) = {M} 1.Then
nz

o
(X, d) is a cone metric space.
Example (3.1.8)[3]. Let E = Cg([0,1]) with norm ||£1l = lIf lleo + IIf ]l co-
the cone P = {f € E: f = 0} is a non-normal cone.

We need the following lemma in the sequel.
Lemma (3.1.9)[3]. Let (X, d) be a cone metric space. Then, the following
statements hold.
(M Ifu<vandv K w,thenu K w.
(i) Ifu <K vandv < w,thenu K w.
(i) fu K vand v K w,thenu K w.
(iv) If 0O< u < c,foreach c € int P thenu = 0.
(v) Let x € X, {x,},,>1 and {b,.},,>1 two sequences in X,0 < cand 0

< d(x,,x) < b, foralln = 1.if b, — 0, then there exists a natural

number N such that d(x,,,x) < cforalln > N.
Definition (3.1.10)[3]. Let (X, d) be a cone metric space, and let g, f: X —
X, then g is called f-quasi contraction if for some
constant A € (0,1) and for every x, y € X, there exists

u € C(f;x,y) ={d(fx, fy), d(fx,gx), d(fx,9y), d(fy,9y), d(fy, 9x)},
such that

d(gx,gy) <1-u. (1.9)

since, in the case of the cone metric spaces, the set C(f; x,y) need not even

have the sup in ordered Banach space E, then, we use "€". It clear that " €" can



be used in metric spaces, while"< " cannot be used, in general, in cone metric
spaces.

Theorem (3.1.11)[3]. Let (X, d) be a cone metric space, and P a normal
cone. letg, f: X — X, f commutes with g, f or g is continuous, and satisfy (1.2)
and (1.9). Let {y,,} be the sequence defined by procedure introduced by Jungck.
Sequence {y,,} is a Cauchy and lim,,{y,,} = y € X.then f and g have a
common unique fixed point u in X. In the case when f is continuous, then

u =gy = fy;if g is continuous, then u = y.

In this chapter we study common fixed points for the self and non-self (g, f)
type maps in cone metric spaces. Our main results are related to the cases when
g is f quasi contraction in a sense of Das and Naik, and cone need not be
normal. These results generalize several well known comparable results in the
literature. In this chapter we study quasi contraction type self mappings on cone
metric spaces. The intention is to prove previous results in the frame of cone
metric spaces in which the cone need not be normal. We begin with the
following result.

Theorem (3.1.12)[3]. Let (X, d) be a complete cone metric space. Let f a
continuous self-map on X and g be any self-map on X that commutes withf.
Further let f and g satisfy

9X = X (1.10)
and there exists a constant A € (0,1/2) such that for every x,y € X, there
exists

u(x,y) € C(f,x,y) =

{d(fx, fy) d(fx,9x),d(fx,9y),d(fy, 9y), d(fy, gx)}

Such that

d(gx,gy) < Au(x,y). (1.11)
Then f and g have the unique common fixed point.

Note that the corresponding result in the case when f =iy and 1 € (0,1).



Proof: Let us remark that the condition (1.10) implies that starting with an
arbitrary x, € X, we can construct a sequence {y,} of points in X such that

Yn = 0x, = fxp41, foralln = 0. we shall prove that {y,} is a Cauchy

sequence. First, we show that

p)
d(yn’yn+1) i Ed(yn—l’yn) (1-12)
forall n > 1. indeed,
d(Wn, Yn+1) = A(QYVn, 9Yn+1) < AUy, (1.13)

where

w € {d(fxn’fxn+1)’ d(f 2, 9%2), d(fXn i1, 9%n41), A(f Xn, 9%n41) ,}
" d(fxn+1’ gxn)

={dWn-1.Yn) dWVn-1,Yn) AW, Yn+1), dWn—1, Yn+1), Any y0) }

={d(Vn-1, ), A, Yn+1), d(Vn-1,¥n+1), 0}
From (1.13) it follows four cases:

: A
() d(yn’yn+1) = Ad(yn—l’yn) = md(yn—l’yn)-
(i) dOy, Y1) < AdO, Yna1) And so d(yy,, Yn+1) = 0. In this case, (1.12)

: : A
follow immediately, becauseld < Py

(1i1) d(n Yn+1) 2 Ad -1, Yn+1) 2 Ad Y1, ¥n) + Ad (Y, Yns1)- It
follows that (12) holds.
(iv) dOyy, Yn+1) <A-0=0and so d(y,, ¥,+1) = 0. Hence, (1.12) holds.

Thus by putting h = 1%1 d(Vns Yns1) < hd(yn_1,yn). now, by using (1.12)
we have

AW, Yn+1) < hdWn_1,¥n) < - < A d (Yo, y1).

Forall n = 1. Now, n > m we have
d(yn’ym) =< d(yn’yn—l) + d(yn—l’yn—z) + et d(ym+1’ym)
< (R"H+ R+ e+ RM)d (g, y1)

ilhfn;d(}’o,yl) - @ asm — oo.



By Lemma (3.1.10) (v) and (i), {y,} is a Cauchy sequence. Therefore, there
exists z € X such that
Yn = 0%y = fXn41 = Z.
Now we show that fz = gz = z. In this way, note that
d(fz,9z) < d(fz,9fxn) + d(9f xn, 92),
forall n > 1. Also we have d(gfx,,9z) < Au,, foralln = 1, where
un € {d(f?xp, f2), d(f x5, 9f %), d(f2,92), d(f %, 92), d(fz,9f x) }.

Let 0 < c. Since gfx, = fox,, = fzand f2x, —> fz choose a natural number
A)c

n, such that for all n > n, we have d(fz,gfx,) « ! and d(f?x,, fz) <

(1-2)c
2

() d(fz,92) < d(fz,9fxn) + Ad(f 2xy, f2) < -+ ,15 =c
(i) d(fz,92) < d(fz,9fx,) + Ad(f *x,,9f x,)
< d(fz,9fx,) + A(d(f2xp, f2) + d(fz,9f X))
= (1 +2)d(fz,9fx,) + Ad(f?x,, fz)

« @+ A)""+/1(1 A)C<§<<c

(i) d(fz,92) < d(fz,9fx,) + Ad(fz gz).
Hence, d(fz,9z) < —d(fz,0f ) € —

. Thus, we obtain the following cases:

(1-2)c
2

(iv) d(fz9z) < d(fz 9fx,) + Ad(f*x,,92) < d(fz,9fx,) +

Lc

Md(f2xy,, f2z) + d(fz,92)).
Hence,
d(fz,9z) < _d(fZ 9f xp) + —d(fzxn, 9z) € — (¢ 2'1)6 +
A Q- _
1-4 24
() d(fz,9z) < d(fz,9fx,) + 2d(fz, fgx,) = (1 + D)d(fz,gf x,)
«Q+NT <t



Therefore, d(fz,9z) < ¢ forall 0 « ¢. By Lemma (3.1.10)(iv), d(fz,g9z) =0
and so fz = gz. Thus,
d(fz,z) < d(9z,gx,) + d(gx,, z) < d(gx,, z) + Av,,
Where
vn € {d(fxn, f2), d(fxn, 9%,), d(f2,92), d(fxp, 92), d(fZ, 9xp)}
={d(fxn, f2), d(fxn, 9x,), 0, d(fz, gxn)}.

Let O < ¢ be given. Choose a natural number n, such that for all n > n, we

(1;)6 and d(gx,, z) < 1=

2

Again, we have the following cases:

() d(fz,z) <d(@x,, z) +Ad(fx,, fz) <d(gx,, z) + 2d(fx,, fz) +
Ad(z, fz).

Hence,

d(f2,2) < 750, 2) + 125 d(fxn f2) <

have d(fx,,z) <

1 (1-A)c A (1-A)c
+ =cC
-1 2 1-1 21

(i) d(fz,z) < d(gx,,z) + Ad(fx,,9x,) < d(gx,,z) + Ad(fx,, fz) +
Ad(z,9x,) = (1 + Dd(z,9x,,) + 2d(fxp, f2)

(1—/1)C+/1(1—/1)C=2—/12—/1

21 2

(iii) d(fz,z) <d(gx,,z) +21-0 = d(gx,,z) < c.

(iv) d(fz z) <d(gx,,z)+21d(fz,gx,) < d(gx,,z) + Ad(fz,z) +
Ad(z,9x,).

Hence,

< (1+2)

c Kc.

1+A 1+A  (1-A)c
d(fZ,Z) < -1 d(gxn,z) K -1 +

LKc

Therefore, d(fz,z) < ¢ for all 0« c¢. By Lemma (3.1.9).(iv) fz=gz =12z is a
common fixed point for f and g. Uniqueness follows easily from (1.11).
From Theorem (3.1.12), as corollaries, among other things, we recover and

generalize the results of Huang and Zhang, and Rezapour and Hamlbarani. As



consequences, we also obtain cone metric versions, Finally, in the next
corollary, we extend the well known Jungck result (Theorem (3.1.1)).
Corollary (3.1.13)[3]. Let (X, d) be a complete cone metric space. Let f a
continuous self-map on X and g be any self-map on X that commutes with f.
Further let f and g satisfy gX < fX and that for some constant A € (0,1) and
every x,y € X,
d(gx,gy) < 4-d(fx, fy).

Then f and g have the uniqgue common fixed point. Now, we prove a result
analogue to Theorem (3.1.2) in the frame of cone metric space when the cone
need not be normal, i.e., cone version of Das and Naik.
Theorem (3.1.14)[3]. Let (X, d) be a complete cone metric space. Let f2 a
continuous self-map on X and g be any self-map on X that commutes with f.
Further let f and g satisfy

9f X c f2X (1.14)
and there exists a constant A € (0,1/2) such that for every x,y € X, there
exists

u(x,y) ={d(fx, fy),d(fx,9x),d(fy,gy), d(fx,gy), d(fy, gx)}
Such that

d(gx,gy) < Au(x,y). (1.15)
Then f and g have the unique common fixed point.
Proof: By (1.14) starting with an arbitrary x, € fX, we can construct a
sequence {x,,} of points in fX such that y, = gx,, = fx,+1,n =0 (asin
Theorem (1.12). NowW fy,+1 = fO0xXn41 = 9f Xpe1 = 9V, = Zzp,n = 1. Asin the
Theorem (1.13). We prove that {z,,} is a Cauchy sequence and hence
convergent to some z € X. Further, we shall show that f?z = gfz. Since
liMysoo fym = 1iMye fOX, = liMyy 00 9f Xy

= lim,_s 9y, = lim,,_,,, z, = z, it follows that



lim, Lo f 32, = lim, Lo f30x, = lim,_ 9f3x, = 2z,
Because f2 is continuous. Now, we obtain

d(f?z,9fz) < d(f?z, f3gx,) + d(f39x,, 9fz) < d(f?z f3gx,) + A - uy,
Where

° {d(f4xn,f22) L d(f*xn,0f3xy), d(f?z,9f 2), d(f4xn,9fz)}
" d(f?z,9f *xp)

Let 0 «< c be given. Since f3gx,, - f?zand f*x,, —» f?z, choose a natural

number n, such that for all n > n, we have d(f?z, f3gx,) K —= a4 '1) and

d(f*x,,,9f3x,) « LA ) . Again, we have the following cases:
(i) d(f%z9fz) < d(fzz,f 0x,) + Ad(f*x,, f%z) < 5 + /15 = c.
(i) d(f?z,9fz) < d(f?z f3gxn) + Ad(f*x,,9f xy)

<d(f?z f39x,) + Ad(f*xp, f?2) + Ad(f?z,9f>x,)

= (L+ Dd(f22 f39x,) + 2d(f *xp, 22)
c(1 A) (1 A)c

K @+2)
(i) d(f?z9fz) < d(f?zf> gxn) +Ad(f ?2,9f2).
Hence,
d(f?z,0f2) < ——d(f?z,f3gr,) « 22 =
(iv) d(f?z,0fz) < d(f?z f3gx,) + Ad(f %0, 0f2) < d(f?z,f39x,) +
Ad(f*xp, f22) + d(f?z,9f2).

Hence,

d(f?2,02) < 75d(F22, f20x,) + 75 d(f ¥, £72)

+ A

1 c(1—/1)+ A (1-c _
1-1 2 1-1 24

(v) d(f%z,9fz) <d(f?z f39x,) + 2d(f?z,9f 3x,) < §+ ,1% = c.
Therefore, d(f?z,9fz) < c forall 0 « c. By Lemma (3.1.9).(iv), f?z =
gfz and so gfz is a common fixed point for f and g. Indeed, putting in (1.15)

3G




x =0fzy = fzwegetg(gfz) = gfz. Because f%z = gfz, ie., f(fz) =
9(fz), we have f(gfz) = 9f*z = 9(gfz) = 9f z
Section (3.2): The Non-Self Maps

In this chapter we consider quasi contraction and f-quasi contractions as
non-self mappings in the frame of cone metric spaces in which the cone need

not be normal.

Definition (3.2.1)[3]. Let (X, d) be a cone metric space, C a nonempty

3LE) and for all
2

closed subset of X, and g, f: C — X. If for some A € (O,

x,y € C there exists

u(x,y) € {d(fx, fy),d(gx, fx),d(gy, fy) d(gx, fy), d(@y, fx)},
Such that

d(9x,gy) < dulx,y), (1.16)
Then g is called f-quasicontractive mapping from C into X.
Theorem (3.2.2)[3]. Let (X, d) be a complete cone metric space, C a
nonempty closed subset of X such that for each x € C and y & C there exists a
point z € dC such that

d(x,z) +d(z,y) =d(x,y). (117)

Suppose that g, f: C — X are such that g is f-quasicontractive mapping of C
into X and
(i) ac c fc,gC n C c fc,
(ii) fxeaC > gx € C,
(iii) fCisclosedin X.
Then, there exists a coincidence point z in C. Moreover, if (g, f) isa
coincidentally commuting, then z is the unique common fixed point of f and g.
Proof: First of all, we construct two sequence:{x,} in C and the sequence

{y.}in fC c X in the following way.



Let x € dC be arbitrary. There exists a point x, € C such that x = fx, as
dC c fC.Since fx, € dC thengx, € C, we conclude that gx, € C ngC c
fC.Letx; € C besuchthat y; = fx; =gx, € C. Let y, = gx;. Suppose
y, € C N gC c fC,which implies that there exists a point x, € C such that
vy, = fx,. Suppose y, & C. Then there exists a point p € dC such that

d(fx1,p) +d(p,y2) = d(fxq,y2).
Since p € dC c fC, there exists a point x, € C such that p = fx,, so that the
equation above takes the form
d(fxy, fxp) +d(fxz,y,) = d(fxy1, ).
Put y; = gx,. In this way, repeating the following arguments, one obtains two
sequences:{ x,,} € C and { y,,} € gC < X such that:
(i) Yn+1 = 0x,,forn =012, ...;
(i) ify,eC,theny, = fx, = 0x,_1;
(iii) ify, € C,then fx, € C and
d(fxn-1.yn) + d(Fxn, yn) = d(f2Xp-1,n).
Put
S={fxi e{fx}:fxi =y} Q={fxi e{fx.}: fxi # yi}
Obviously, two consecutive terms cannot lie in Q. Now we wish to estimate
d(fxn, fxn+1)-

Note that the estimate of d(fx,,, fx,,+1) inthis cone version. In the case of
convex metric space it can be used that, for each x, y,u € X and each 1 € [0,1],
itis Ad(u,x) + (1 — Dd(u,y) < max {d(u,x),d(u,y)}. In cone spaces the
maximum of the set {d (u, x), d (u, y)} need not exist. Therefore, besides (1.17)
we have to use here the relation "€ " and to consider several cases. In cone
metric spaces as well as in metric spaces the key step is the Assad-Kirk's
induction.

If d(fx,, fx,+1) = 0for some n, then it is easy to show that
d(fxp, fxne1) =O0forall k > 1.



Suppose that d(fx,,, fx,+1) > 0 for all n. From the above construction we
conclude that there are three possibilities:
Case 1°. If fx,, € Sand fx,,, € S, then according to (i), (ii) and (1.16) we
have:
d(fxn, fXn+1) = A Yn1) = d(Qxn-1, 92,) < Auy,
Where

{d(fxn 1 fxn), d(@xn_1, fXn_1), d(@xy, fx,), d(Qx,— 1,fxn)}
d(gxn’fxn 1)

={d(fxn_1, fxn), A(fxp, f2x011), 0, d(fXrs1, fX0_1)}-
Clearly, there are infinite many n such that at least one of the following cases
holds:

() d(fxn fxne1) 2 Ad(fxn-q, fxn).
(i) d(fxp, fxn41) 2 Ad(fxpeq, fxn) and so d(fxp, f2n41) = 0. But we
suppose that d(fx,,, fx,.+,) > 0 for each n.
(i) d(fx,, fXn+1) < A-0=0andso d(fx,, fx,+1) = 0. But we
suppose that d(fx,,, fx,,+1) > O for each n.
(V) d(fx,, fxpe1) < Ad(fxpi1, fXn-1) < Ad(fxn_q, fxn) Ad(fxn, fXne1)
and so d(fxy, fXn41) 51 = d(fxn_q, fxn).
From (i), (ii), (iii) and (iv) it follows that
d(faty, fner) < max {2, ==L d(frn s, fy)

= d(fxn 1. fxn), (118)

Case 2°. Let fx,, €S, fx,+1 € Q. Theny, = fx,,, Yn+1 & C, fx,4+1 € OC such
that

dWVns1 fXne1) + A(fxpi1, fxn) = dYpgr, fxn)-
Note then from this and (1.18), we get



d(fxn+1’fxn) = d(yn’fxn+1) = d(yn’yn+1) - d(yn+1’fxn+1) <
d(Vn, Yn+1) (1.19)
That is, according to (i) and (1.17) (v, Yn+1) = d(9x,—1,9%,) < Au,, where

w. € {d(fxn—l’fxn)’ d(gxn—l’fxn—l)’ d(gxn’fxn)’ d(gxn—l’fxn)’}
" d(9xp, fxn-1)

={d(fxn_1,fxn), d(@xp, fxn) = AV, Yn+1), 0,d(Qxp, fxn_1)}.
Again, we obtain the following four cases:
V) dO Yn+1) 2 Ad(fxn-q, fx0);
(Vi) dOn, Yns1) < Ad (Y, Yn+1) and so d(y,, yn+1) = O, contradicting the
assumption that d(fx,,, fx,,+1) > O for each n.
(vii) d(Vp, Vne1) <A-0=0andso d(y,, yn+1) = 0, that is
d(fx,, fx,+1) = 0, contradicting the assumption that d(fx,,, f x,+1) >
O for each n.
(Viii) d(Vn, Yn+1) 2 AdWns1, fxn-1) 2 Ad O, Yner) + Ad(fxn_y, fx) and

S0 O Yne1) < 75 AF X1, f2n).
From (1.19), (v), (vi), (vii) and (viii) we have
d(fxn, foxni1) < pd(fxn-q1, f25),
2

Where u = max {/1%1} P (1.20)

Case 3° Let fx, € Q,fx,4,1 €ES. Theny,,; =09x, = fx,41 € C,y, & C and
fx, € dC, such that
d(Yn-1,f2) + d(fxn, ¥n) = d(Yn-1, ¥n)-
From this we get
d(fxn, fxn+1) = A(fxn, Yne1) < d(Fxn, yn) + AV Yne1)
= d(Wn-1,n) — A(fxp_1, fxn) + A, Yns1)- (1.21)
we shall estimate d(y,,—1, ) and d(yy,, Yn41). SINCE Yy = fx,_1, by

using 29, one can

dn-1,9n) < 75 A Xn—z, 1), (1.22)



Further,

d(yn’yn+1) — d(gxn—l’gxn) =< Auy, (1.23)
Where

w € {d(fxn—l’fxn)’ d(9xp—1, fxn—1), d(Qxn, fXp), d(gxn—l’fxn)’}
" d(gxn fxn- 1)

{d(fxn 1 fxn) dVno1, Yn), A(f X, fXng1), A fxn, )}
d(fxn_1, fXn+1)

Because
d(fxn—l’fxn+1) < d(fx,_1,fx,) +d(fxn, fXni1)
And d(yn-1.yn) X5 d(fxn 2, f%n_1), We have

d(Vn, Yn+1) < Aun, (1.24)
Where

. e {d(fxn_l, Fa) 13 4 Xz, fn1), A X, X 41). A ),}.
" d(fxn_1. fxn) + d(fxpn, fXns1)

By substituting (1.22) and (1.24) in (1.21) we get

d(fxn, fxne1) < < d(fxn 2 [Xn—1) —d(fxn_q, fxn) + Ay, (1.25)

Hence, we get the followmg cases

() d(fxn, fXns1) < == A Xnos, fons) = d(Fay_y, fX0) +
AA(f Xy, fn) =~ d(F g, frno1) — (1 = DA(fxnoy, f2y)
< A0 fXn 1),

(i) (2, frnsr) < == A(fAnog, fong) = d(Fopoy, fn) +

_d(fxn 2 [ Xn 1)<Md(fxn 2 fxn_ 1).



(iii) d(fxn fxn+1) < d(fxn 20 f X 1) d(fxn 1) fxn) +

Ad(f xu, f X 41).
Hence,

d(f o, fnir) < %d(fxn—z fn-1).
(V) d(fn, fns1) < 750 Xn2 1) = Ao, ) +
HAGnen) — s f 1)
< L d(fruz fotn-) + 2 A(F X, fnos)

A+12
—1+_/1d(fxn 20 [ Xn_1).

V) d(fxp, fane1) < < d(fxn 2 fxno1) — d(fxp_q, fx,) +

Ad(fxp—1, fox) + ld(fxn,fxnﬂ)-
Hence,

d(fxn fxn+1) e (- /1)2 d(fxn 2 fXn— 1) — d(fxn 1) fxn)

d(fxn_z fxn_1).

= (1—/1)2

From (i), (i), (iii), (iv) and (v) we have

d(fxn, fXns1) S ud(fxn_z, fXn_1),
Where,

—max{'l 422 2 }_ A
K= 1-2'1-2 ' (1-02) ~ (-2

Thus, in all cases 1° — 3°
d(fxp, fXn1) < hwy,

Where w,, € {d(fx,,_5, fxn_1), d(fx,,, fxn4+1)} and
A2 } 2
1-1" -2} T (-2

h=max{

) 3-5 A
Since, 0 <A <—-, (1_/1)2—h<1.




Following the procedure of Assad and Kirk, it can easily be shown by

induction that, forn > 1,

n-1

d(fXn, fXns1) S B2 Wy, (1.26)
Where w, € {d(fxo, fx1), d(fxq, fx3)}.

By the triangle inequality, for n > m we have:
d(fxn’fxm) =< d(fxn’fxn—l) + d(fxn—l’fxn—z) +oee+ d(fxm+1’fxm)

n-1 n-2 m-—1 /hm_l

i(h7+h7+“'+hT)W2§1_—\m

By Lemma (3.1.9). (v) and (i), { fx,} is a Cauchy sequence.

w, - 0, asm — oo,

Since fx, € C N fCand C N fC is complete, there is some pointz € C N
fC such that fx,, - z. letwin C be such that fw = z. by the construction of
{fx,}, there is a subsequence { fx,x} such that fx, .y = Ynk) = 9Xnr)-1
and so gx, )1 — z. But, we have

d(gw, z) < d(gw, gxn@y-1) + d(9Xn(y-1,2)
=< d(gxn(k)—l’z) + Aun (k)
Where

A(fXng)-1 . fW), A(9%n -1, f Xn()-1), d(gw, fW)}
d(9%n(k)-1. fW), d(@W, fXn(i)-1)
Let 0 < c be given. Since gx, ()1 = z = fw and fx, (-1 = z = fw, choose

un(k) € {

a natural number kq such that for all & > ko we have d(Qxngey-1,2) < = 'DC

(1 A)c

and d(fxny-1,2) < . Thus, we get the following cases:

428 o
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(i) d(gw,z) < d(gxn(k)_l, z) + Ad(fxney-1, fw) < (1_2/1)6

(i) d(gw, z) < d(9xn@)-1,2) + 2d(9%n)-1, [ Xn(i)—-1)
< d(9x(0)-1,2) + 2 d(9xn)-1,2) + 2d(Z, [ X ()-1)

= (1 + Dd(9xn)-1,2) + 2d (2, X )-1)



« @+ )& A)C /1(1;;)‘: «c
(iii)) d(gw, z) < d(gxn(k)_l,z) + Ad(gw, fw).
Hence
1 (1 Ac & c

d(gw,z) < a /Dd(gxn(k) 1,7) <

(iv) d(gw,z) < d(9xn@)-1,2) + ﬂd(gxn(k)—l,fw)

= (1 + Dd(grno-1,2) < (1 + 1) ”"’

LKc

(v)  d(gw,z) < d(9xn@y-1,2) + Ad (W, fXp(0)-1)

< d(9xn@-1,2) + Ad(gw, z) + 2d(z, fxp()-1)-
Hence,

1 (1 Ac
2

d(gw,z) < —d(gxn(k) 1,2) d(fxn(k) 1,2) K= +

L(l—/l)c_
1-1 24

Therefore, d(gw, z) < ¢ forall 0 « ¢. By Lemma (3.1.9). (iv), d(gw,z) =0

and so gw = z = fw which show that w is a point of coincidence for g and f.
Suppose now that g and f are coincidentally commuting. Then
z=gw=fw>0z=0fw=fogw = fz.
Then again from (1.16), d(gz, z) = d(gz, gw) < Au, where
u € {d(fz fw),d(9z, fw),d(gw, fw),d(9z, fw), d(gw, fz)}
={d(9z,2),d(9z,2),d(z,2),d(9z z),d(z,92)} = {0, d(9z 2)}.
Hence, we get d(gz,z) < 2-0 =0and d(gz, z) < Ad(gz, z), from which it
follows that d(gz,z) = 0, that is z is a common fixed point of g and f.
Uniqueness of the common fixed point follows easily from (1.16).Setting
f = Iy, the identity mapping of X in Theorem (3.2.2), we obtain the following
result:
Corollary (3.2.3)[3]. Let (X, d) be a complete cone metric space, C a

nonempty closed subset of X such that for each x € C and y & C there exists a
point z € aC such that d(x,z) +d(z,y) =d(x,y).



Suppose that g: C — X, such that for some 1 € (0,3%@) and for all x,y € C,

there exists u(x,y) € {d(x,y),d(x,gx), d(y,9y), d(x,9y), d(y,9x)},

So that d(gx,gy) < Au(x,y).

Also, suppose that g has additional property that for each x € dC,gx € C, then g
has a unique fixed point. Setting E = R, P = [0, +), ||-]| = || in the
Corollary (3.2.3).

Theorem (3.2.4)[3]. Let (M, d) be a complete convex metric space with

convex structure W which is continuous on the third variable, C be a nonempty
closed subset of M and T: C — M be a nonself mapping satisfying the
contractive type condition (ast), that is: there exists g € (0,1) such that for
every x,y € C
d(Tx,Ty) < q-max {d(x,y),d(x,Tx),d(y, Ty),d(y, Tx)}. (1.27)

If T has the additional property T(9C) < C then T has a unique fixed point in C.

We present now two examples showing that Theorem (3.2.2) is a proper
extension of the known results. In both examples, the conditions of Theorem
(3.2.2) are fulfilled, but in the first one (because of non-normality of the cone)
the main theorems cannot be applied. This shows that Theorem (3.2.2) is more
general, i.e., the main Theorems can be obtained as its special cases (for
3—5

0 <2< (0,22)taking |I-ll = || E = R,and P = [0, +oo[

Example (3.2.5)[3]. ((The case of a non-normal cone)). Let X = R, C =
[01] E = Cg[0,1],P ={p € E: p(t) = 0,t € [0,1]}. The mapping d: X x X —
E is defined in the following way: d(x, y) = ||x — y|le, which ¢ € P is a fixed
function, e.g., @(t) = 2%,

Take functions gx = ax, fx = bx,0 < a <1 < b,so that % <A< 3%@ which

map the set C = [0,1] into R. We have that (X, d) is a complete cone metric

space with a non-normal cone having the nonempty interior. For example, one



easily checks the condition (1.17) that for x € [0,1],y ¢ [0,1] the following
holds
d(x,1) +d(L,y) =d(x,y) & |1 —x|o + |y — L]¢

=ly—-xlpe@-x)p+ @ -Do=>G-x)e.

The mappings g and f are weakly compatible, i.e., they commute in their fixed

point x = 0. All the conditions of Theorem (3.2.2) are fulfilled, and so the non-

self mappings g and f have a unique common fixed point x = 0.

Example (3.2.6)[3]. ((The case of a normal cone)). Let X = [0, +oo[, C =

[01] c X,E =R% P ={(x,y) € R?>:x > 0,y > 0}. the mapping d: X x X -

E is defined in the following way: d(x,y) = (||x — yl|, allx — y||, @ = 0.Take

%ﬁwhich

the function gx = ax, fx = bx,0 < a < 1 < b,so that % <A<
map the set ¢ = [0,1] intoR. We have that (X, d) is a complete cone metric
space with a normal cone having the normal coefficient K = 1, whose interior is
obviously nonempty. All the conditions of Theorem (3.2.2) are fulfilled. We
check again the condition (1.17), i.e., that for x € € = [0,1],y ¢ C = [0,1] the
following holds

d(x,1) +d(1,y) =d(x,y) @ (|11 — x|, |l — x| + (ly — 1], a|1 = y])

=(y—xlaly-1De=Q-x)+F -1 =@ —=x)

And

all — x|+ aly — 1] = aly — x).
The mappings g and f are weakly compatible, i.e., they commute in their fixed
point x = 0. All the conditions of Theorem (3.2.2) are again fulfilled. The point

x = 0 is the unique common fixed point for non-self mappings g and f.



Chapter 4

Rational Dilation on the Tetrablock

We show by a counter example the failure of rational dilation on the
tetrablock , a polynomially convex and non-convex domain in €3, defined as

E = {(x1,x,,x3) € C3:1 — zx; — wx, + zwx3 # O when ever |z| < 1, |w|

<1}
A commuting triple of operators (T, T,, T5) for which the closed tetrablock E
is a spectral set, is called an [E —contraction. For an E —contraction(Ty, T5, T5),
the two operator equations Ty — T; T3 = Dr, X1 D, and T, — Ty T3 =
Dy, X,Dy, Dy, = (I — T5T5)*?, have unique solutions 4,, A, on Dy, = RanDr,
and they are called the fundamental operators of (Ty,T,, T5).
Section (4.1): Functional Model for Pure g-isometries
Let X be a compact subset of C" and let R(X) denote the algebra of all

rational functions on X, that is, all quotients p/q of polynomials p, g for which

q has no zeros in X. The norm of an element f in R(X) is defined as

Iflle, X =sup {If(E)I: & € X}.

Also for each k > 1, let R, (X) denote the algebra of all % x K matrices over
R(X). Obviously each element in R, (X) is a K x K matrix of rational
functions F = (f; ;) and we can define a norm on R, (X) in the canonical way
IFIl =sup {IF(I: € € X},
There by making R, (X) into a non-commutative normed algebra. Let T =
(Ty,--+,T,,) be an n-tuple of commuting operators on a Hilbert space . X is
said to be a spectral set for T if the Taylor joint spectrum o (T) of T is a subset
of X and
IF DI < Ifllox for every f € R(X). (1.1)

Hence f(T) can be interpreted as p(Z)q(Z)_lwhen f =p/q. Moreover, X is



said to be a complete spectral set if ||[F(T)|| < IIF|l = for every F in®R; (X),
k=12,---

Let A(T) be the algebra of continuous complex-valued functions on X
which separates the points of X. A boundary for A(X) is a closed subset F of X
such that every function in A (X) attains its maximum modulus on F. It follows
from the theory of uniform algebras that if bX is the intersection of all the
boundaries of X then bX is a boundary for A(X). This smallest boundary bX is
called the Silov boundary relative to the algebra A (X).

A commuting n-tuple of operators T that has X as a spectral set, is said to
have a rational dilation or normal bX-dilation if there exists a Hilbert space ¥,
an isometry V: H — X and an n-tuple of commuting normal operators N =
(N, -+, N,,) on X with a(N) S bX such that

f() =V*f(T)V, for every f € R, (X). (1.2)

One of the important discoveries in operator theory is S, -Nagy's unitary
dilation for a contraction, which opened a new horizon by announcing the
success of rational dilation on the closed unit disk of C. Since then one of the
main aims of operator theory has been to determine the success or failure of
rational dilation on the closure of a bounded domain in C". It is evident from the
definitions that if X is a complete spectral set of T then X is a spectral set for T.
A celebrated theorem of Arveson states that T has a normal bX-dilation if and
only if X is a complete spectral set of T. Therefore, the success or failure of
rational dilation is equivalent to asking whether the fact that X is spectral set for
T automatically turns X into a complete spectral set of T. History witnessed an
affirmative answer to this question given by Alger when X is an annulus and by
Ando when X = D2. Agler, Harland and Raphael have produced an example of
a triply connected domain in C where the answer is negative. Dritschel and

M*Cullough also gave a negative answer to that question when X is an arbitrary



triply connected domain. Parrot showed by a counter example that rational
dilation fails on the closed tridisc D3. Also recently we have success of rational
dilation on the closed symmetrized bidisc I', where T is defined as

I'={(z, +25,2,2,): |z, < 1,]z,| = 1}. (1.3)

In this chapter, we show that rational dilation fails when X is the closure of
the tetrablock E( A triple (A,B,P) of commuting bounded operators on a Hilbert
space s called atetrablock contraction if E is a spectral set for (A,B,P) i.e. the
Taylor joint spectrum of (A,B,P) is contained in E and ||f (4, B, P)|| <
If |z = SUp {If Cx1, x5, x3)| : X1, %2, x3 € E} for any polynomial f in three
variables)[7]. a polynomial convex, non-convex and inhomogeneaous domain in
C3, defined a

E = {(x;,x,,x3) € C3:1 — zx; — wx, + zwx3 # 0 whernever |z,| <
1,|wl <1}
This domain has been a center of attraction in past one decade to a number of
mathematicians because of its relevance to u-synthesis and H “control theory.
To get clear with the geometric location of the domain.
Theorem (4.1.1)[4]. A point (x;,x,,x3) € C3isinE ifand only if |x3] <1
and there exist 8,8, € Csuchthat |B;] + |B,] < L and x; = f; + fox3, X, =
Bz + Box3.

It is evident from the above result that the tetrablock lives inside the tridisc
D3. The distinguished boundary (which is same the Silov boundary) of the
teterablock to be the set

bE = {(x1, %5, %3) € C’:xy = X3, |x,| < 1, |x3| =11}
= {(xy,x,,%x3) €EE, |x3] = 1}.
In Bhattacharyya introduced the study of commuting operator triples that

have E as a spectral set. There such a triple was called a tetrablock contraction.



As a notation is always convenient, we shall such a triple an [E-contraction. So
we are to led the following definition:

Definition (4.1.2)[4]. A triple of commuting operators (T;,T,,T5) on a
Hilbert space 7 for which E is a spectral set is called an E-contraction.

Since the tetrablock lives inside the tridisk, an [E-contraction consists of
commuting contractions. Evidently (Ty,T,,T53) is an [E-contraction when
(T;,T,, T3) is an [E-contraction. We briefly recall from the literature the special
classes of an [E-contraction which are analogous to uniteries, isometries and co-
iIsometries in one variable operator theory.

Definition (4.1.3)[4]. Let Ty, T,, T5 be commuting operators on a Hilbert
space H. We say that (Ty, T,, T3) is
(i) an E-unitary if T, T,, T5 are normal operators and the joint spectrum
o1 (T, T, T3) is contained in E ;
(i) an [E-isometry if there exists a Hilbert space K containing H and an
E-unitary (T4, T,, T5) on X such that & is a common invariant
subspace of Ty, T,, T and that T; = T‘i|}[ fori =1.23;
(i) an E-co-isometry if (T, T,, T3) is an E-isometry.
Moreover, an E-isometry (T;, T, T3) is said to be pure isometry, i.e., if T3 -
0 strongly as n — oo. It clear that a rational dilation of an E-contraction
(T;,T,, T3) is nothing but an E-unitary dilation of (Ty, T,, T3), that is, an E-
unitary N = (N,, N,, N3) that dilates T by satisfying (1.2). Similarly an E-
isometry dilation of T = (Ty, T,, T3) is an E-isometry V = (V,V,, V3) that
satisfies (1.2) an explicit E-isometric dilation was constructed for a particular
class of [E-contraction and that dilation involves two unique operators A4, A,
from L(Dr,) which are the unique solutions of the operator equations

Tl - T2*T3 = DT3X1DT3’ T2 - T1*T3 = DT3X2DT3



Respectively, Here Dy, = (I — T3"‘T3)zl and Dy, = RanDy, and L(), fora
Hilbert space H, always denotes the algebra of bounded operators on . For
their pivotal role in the dilation, A;and A, were called the fundamental
operators of (Ty, T,, T3). In this chapter, we produce a set of necessary
conditions for the existence of rational dilation for a class of [E-contraction.
Indeed, in Proposition (4.2.5), we show that if (T, T,, T5) is an [E-contraction on
H,®H, for some Hilbert space H;, satisfying
(i) Ker(Dr,)=3;®{0} and Dy, = {0}®7;
(ii) Ts(Dr,)={0}and Ts;Ker(Dr,) S D,
And if A, A, are the fundamental operators (T, T,, T5), then for the existence
of an E-isometric dilation of (T, T,, T3) it is necessary that

[A;,A,] = 0and [A47, A,] = [43, A,]. (1.4)

Here [S,, S,]1 = $;5, — S, S, for any two operators S;, S,. we construct an
example of an E-contraction that satisfies the hypotheses of Proposition (4.2.5)
but fails to satisfy (1.4). This concludes the failure of rational dilation on the
tetrablock. The proof of Proposition (4.2.5) depends heavily upon a functional
model for pure [E-isometries which provide in Theorem (4.1.8). There is an
Wold type decomposition for an E-isometry that splits an E-isometry into two
parts of which one is an [E-unitary and the other is a pure [E-isometry . Again
Theorem (4.1.4) describes the structure of an E-unitary. Therefore, a concrete
model for pure [E-isometries gives a complete vision of an E-isometry. In
Theorem (4.1.8), we show that a pure E-isometry (T3, T;, T3) can be modeled as

a commuting triple of Toeplitz operators (Ta: 44,7, Tay+4,2: T;) On the vectorial
Hardy space H Z(DT;), where A, and A, are the fundamental operators of the [E-
co-isometry (7, , T, ,T5"). The converse is also true, that is, every such triple of

commuting contractions (T4, g5, Tg*+a2, Tz) On a vectorial Hardy space is a

pure E-isometry. We begin with a Lemma that simplifies the definition of E-



contraction
Lemma (4.1.3)[4]. A commuting triple of bounded operators (Ty, T, T5) is
an E-contraction if and only if || f(Ty, T2, T3) |l < |If |l 5 for any holomorphic
polynomial f in three variables.
This actually follows from the fact that E is polynomially convex. The
following theorem gives a set of characterization for E-unitaries.
Theorem (4.1.4)[4]. Let N = (N;, N,, N3) be a commuting triple of bounded
operators. Then the following are equivalent.
()  Nisan E-unitary.
(if) N5 is a unitary, N, is a contraction and N; = N, Ns,
(i) N3 is a unitary and N is a E-contraction.
Here is a structure Theorem for the E-isometries.
Theorem (4.1.5)[4]. Let V = (V;, V5, V5) be a commuting triple of bounded
operators. Then the following are equivalent.
(i) V isan E-isometry.
(i) V isan E-contraction and V5 is an isometry.
(iif) V5 is an isometry, V, is a contraction and V; = V; V5.
(iv) (Wold decomposition) H has a decomposition H = H;BH, into reducing
subspace of V;, V,, V3 such that (Vy s, Valar,, Vsl |) is an E-unitary and
(Vilse, Valse,, Valse,|) is a pure E-isometry. Let us recall that the numerical
radius of an operator T on a Hilbert space H is defined by
w(T) = sup{(Tx, x): |lx|l 3 = 1}.

It is well known that

r(T) < o(T) < Tl and Z|IT|| < o(T) < IT]], (1.5)
Where r(T) is the spectral radius of T. We state a basic Lemma on numerical

radius and give a proof because of lack of an appropriate reference. We shall

use this Lemma in sequel.



Lemma (4.1.6)[4]. The numerical radius of an operator T is not greater than
one if and only if RefST < I for all complex numbers £ of modulus 1.
Proof: Let w(T) < 1. For a unit vector h and a complex number B of unit
modulus, we have

([21 — (BT + BT*)h,h) = 2 — (BT + BT*)h,h) = 2 — (BTh, h) —
(BT*h,h) = 0,
Since w(T) < 1. Therefore, BT + BT* < 2I and hence RefT < I.

Again by hypothesis, (RefTh, h) < 1, for a unit vector h and for all g of
modulus. Note that (ReSTh, h) = ReB{h, h). Write (Th, h) = e'*~|(Th, h)| for
some real number ¢,,, and then choose 8 = e~*r, Then we get |[(Th, h)| < 1.
Theorem (4.1.7)[4]. Let (T, T,, T5) be an E-contraction. Then there are two
unique operators A, A, in L(Dr,) such that

Ty — T;Ts = Dy, A, D, and T, — T;T5 = Dy A D (1.6)
Moreover, w(A; + zA,) < 1forallz € D.
These two unique operators A4, A, are called the fundamental operators of

(Ty,T,,T3). The following Theorem gives a concrete model for pure E-

iIsometries in terms of Toeplitz operators on vectorial Hardy space.
Theorem (4.1.8)[4]. Let (T,, T, T5) be a commuting triple of operators on a
Hilbert space 3¢. If (Ty, T,, T5) is a pure E-isometry then there is a unitary
operator U: H — HZ(DT;) such that

T,=U'T,U, T,=UT,U and T5=UT,U,
Where @ (z) = A] + Ayz, P(z) = A5+ Az, ze Dand Ay, A, are the
fundamental operators of (T, ", T, , T; ) satisfying
(i) [A1,A,] = 0and [A4],4;] = [43,4,]
(i) |41 + A2z||op < 1.



Conversely, if A;and A, are two boundary operators on a Hilbert space E
satisfying the above two conditions, then (Ta: 14,7, Tas+4,2 Tz) ON H2(E) isa
pure [E-isometry.

Proof: suppose that (7, T,, T5) is a pure E-isometry. Then T; is a pure
iIsometry and it can be identified with the Toeplitz operator T, on H 2(DT;).
Therefore, there is a unitary U from # onto HZ(DT;) such that 75 = U*T,U.
since for i = 1,2, T; is a commutant of T, there are two multipliers ¢,y in
H*(L(D4,)) suchthat Ty = U'T,U and T, = U*TyU.

Claim. If (V;,V,,V3) on a Hilbert space 7{; is an E-isometry then V,, = V;*Vs.
Proof of claim. Let (V;,V,, V) be the restriction of an E-isometry (N;, N,, N3)
to the common invariant subspace Hj;.. By part-(ii) of Theorem (4.1.4),

N; = N, N5 and hence N, = N;"N; by an application of Fugled's theorem, which
states that if a normal operator N commutes with a bounded operator T then it
commutes with T* too. Taking restriction to the common invariant subspace
Hiwe get V, = V;'V5. We apply this claim and part-(iii) of Theorem (4.1.5) to
the E-isometry (T, Ty, T7). So T, = Ty, Tz and Ty, = T, T and by these two
relations we have tha ¢(z) = G,+G,z and Y (z) = G, + Gz for some
G{,G, €L (DT;). Setting A; = G4 and A, = G, and by the commutativity of
¢(z) and Y (z) we obtain [A;,4,] = 0and [47, A;] = [43, A,].

We now compute the fundamental operators of the [E-co-isometry

(T;’§+A2z’ T;’§+A1z’ TZ*)

Clearly I — T,T; is the projection onto the space D:. Now
T;§+A22 B T;3+A1ZT; = TA1+A§Z - TAZ+A1ZTZ - TA1
= (I = T,T))A,(I = T,T,).

Similarly



Tpovaz = Tat v,z Ts = (U = T,T)A(I = T,Ty).
Therefore, A, A, are the fundamental operators of (Ty: .4, Ty: 14, T7) and
|A; + Azl p < 1.

For the converse, we first prove that the triple of multiplication operators
Mgz 14,2 Mps1a,,M;) ON L*(E) is an E-unitary when A,, A, satisfy the given
conditions. It is evident that M = 4., M4 +4,,M,) is a commuting triple of
normal operators when [A,, A,] = 0 and [A4],A,] = [43, Az). Also My: 1y, =
M 45 44,,M, and M, on L?(E) is unitary. Therefore, by part-(ii) of Theorem
(4.1.4) (M 4z 44,7 Mas +4,,M,) becomes an E-unitary if we prove that
1Mz 02| < 2
We have that w(A4, + zA,) < 1 for every z € T, which is same as saying that
w(z;A; + z,A4,) < 1 for all complex numbers z;, z, of unit modulus. Thus by
Lemma (4.1.6)

(2141 + 2345) + (2141 + 2,45)" < 21,
That is

(2141 + 2,43) + (24, + 2,A3)" < 21.

Therefore, z,(A5 + zA,) + z,(A5 + zA,)* < 21 for all z, z, € T. this is same
as saying that

Re z,(A5 + zA;) < 1forall z, z, € T.
Therefore, by Lemma (4.1.6) again w(A5 + zA,) < 1for any z € T. Since
M g3 424, is @ normal operator we have that ||M s 424, || = ©(Maz+24,) and thus
| Mg 124, || < 1. Therefore, (Ma: 14,2 Mas 44,2 M;) on L?(E) is an E-unitary
and hence (T4 44,2 Taz+a,2: ), being the restriction (Mpx 1 4,, Mas 14,7, M)
to the common invariant subspace H?(E), is an E-isometry. Also T, on H2(E)
is a pure isometry. Thus we conclude that (Tp: 14,7 Taz +4,2 T7) 1S @ pure E-

isometry.



Section (4.2): Necessary Condition for the Existence of Dilation

with a Counter Example

Show the definitions of the E-isometric and E-unitary dilations of an E-
contraction. In fact they can be defined in a simpler way by involving
polynomials only. This is because the polynomials are dense in the rational
functions.
Definition (4.2.1)[4]. Let (T}, T,, T5) be a E-contraction on . A commuting
tuple (Q4, Q,, V) on X is said to be an E-isometric dilation of (Ty, T, T5) if
H < K, (Q,0Q,,V) isan E-isometry and

Py(Q1 1, Q; 2, V™|, = T/ T, T, For all non-negative integers
my, my, M.
Here Py: K — H is the orthogonal projection of X onto . Moreover, the
dilation is called minimal if X = span{Q; *,Q; 2, V™h: h € I and m;,m,,n €
NU{0}}.
Definition (4.2.2)[4]. A commuting tuple (R, R,, U) on X is said to be an
E-unitary dilation of (T, T,, T3) if H € K, (R4, R,, U) is an E-unitary and
Py (Ry"Ry?U™)|,. = T/ T, *T;"™, for all non-negative integers

mq, my, M.
Moreover, the dilation is called minimal if & = span{R; *R;2U™: h € # and
my, my,n € z}. Here R = R, " fori =12and U™ = U*"™ whenm; and n
are negative integers.
Proposition (4.2.3)[4]. If a E-contraction (T, T, T3) defined on A has a E-
isometric dilation, then it has a minimal E-isometric dilation.
Proof: Let (Q,Q,,V) on K 2 H be a E-isometric dilation of (T, T,, T5). Let
K, be space defined as

Ko = span{Q;*Q; 2V™h: h € 3 and m;, m,,n € NU{0}}.



Cleary ¥, is invariant under Qf“, ;”Zand V™, for any non-negative integer
m4, m,, n. Therefore if we denote the restrictions of Q;, Q, and V to the
common invariant subspace X, by Q,4, Q,, and V; respectively, we get Ql"fk =
Q" k, Q152k = Q.J"%k, and V{*k = V™k, for any k € K. Hence
Ko = Span{Q,1' Q1,2V{*h: h € H and my, m,, n € NU{0}}.
Therefore, for any non-negative integer m,, m,and n we have
Py (Q12Q152V) = Py (Q71Q,2V™)h forallh € .
Now (Q,1, Q,,,V;) is an [E-contraction by being the restriction of an E-
contraction (Q,, Q, , V) to a common invariant subspace ¥,. Also V;, being the
restriction of an isometry to an invariant subspace, is also an isometry.
Therefore by Theorem (4.1.5)-part (ii), (Q11, Q,,,V;) is an E-isometry. Hence
(Q11,0Q55,V;) is a minimal E-isometry dilation of (T;, T, T3).
Proposition (4.2.4)[4]. Let (Q,, Q. ,V) on K be an E-isometric dilation of
an E-contraction (T, T,, T3) on 7. If (Q4, Q,,V) is minimal, then (Q7, Q3,V*)
is an [E-co-iosmetric extension of (T, T, T3).
Proof: We first prove that T; Py = P;:Qq, ToPy = P3Q, and T3Py = Py V.
Clearly
K =span{Q;"*Q,?V™h: h € 3 and m;, m,,n € NU{0}}.
Now for h € H we have that
Ty Py (Q Q) 2V h) = Ty (T T, 2 TRR) = T T, 2 T h
= Py (Q7" 1 Q)V™h) = P (@ Q7 V™h).

Thus we have that T; P;; = P3Q, and similarly we can prove that T, P, =
P;Q, and T3Py = P V. Also for h € H and k € K we have that

(Trh, k) = (P T{h, k) = Ty h, Pyck) = (h, T1Pyck) = (h, Py Q1k) = (Q1h, k).
Hence T; = Q7|4 and similarly T, = Q|4 and T3 = V*|4. Therefore,

(Q1,@5,V*) is an E-co-iosmetric extension of (T, T, T3).



Proposition (4.2.5)[4]. Let 7, be a Hilbert space and let (T, T,, T3) be an
[E-contraction on H = H; @ H; with fundamental operators A4, A,. let
(i) Ker(DT3) = H,; & {0} and Dr, = {0} & H;;
(i) T3(Dr,) = {0} and TsKer(Dr, ) S Dr,.
If (T{, T;,T3) has an E-isometric dilation then

(1°) 4,4, = A, A4,

(29) A% A, — AL A% = ABA, — A, A5,
Proof: Let (Q4,Q,,V) on a Hilbert space K be a minimal E-isometric dilation
of (T}, T;, T3) (such a minimal E-isometric dilation exist by Proposition (4.2.3))
so that (Q7, Q5, V™) is an E-co-iometric extension of (T;, T,, T3) by Proposition
(4.2.4). Since (Q1,Q,,V) on X is an E-isometry, by part-(iv) of Theorem
(4.1.5), K has decomposition KX = K; @ ¥, into reducing subspace ¥, K, of
Q1,Q2,V such that (Q1lx,, Q2lx,, Vlx,) = (@11, @12, Uy) is an E-unitary and
(Q1ls,: Q2lx,: Vlx,) = (@21, @22, V1) is a pure E-isometry. Since (Q21, @22, V1)
on X, is a pure E-isometry, by Theorem (4.1.8), &, can be identified with
H?(E), where E = Dy: and Q1, @22, V; can be identified with T, Ty, T,
respectively on H2(E), where ¢(z) = A+ Bz and y(z) = B* + A*z,z € .
Here A*, B are the fundamental operators of Q;,, Q5,,V;". Again H?(E) can be
identified with 1*(E) and T,, T, T, on H?(E) can be identified with the
multiplication operators M, My,, M, on I12(E) respectively. So without loss of
generality we can assume that K, = [2(E) and Q,; = M, Q22 = My, and
V, = M, on I2(E).
The block matrices of M,,, M,, M, are given by

A 0 0 - B* 0 0 - 0 0 0 -
B A 0 - A" B* 0 - I 00 -
My=|o B a | My=|lo 4 5 -fandM,=|o 1 o



From now onward we shall consider  as a subspace of ¥ and T;,T,, T3 on H
as the restrictions of Q7, Q5, V™ respectively to H..

Claim1. Dy, S E @ {0} ® {0} ® - € I*(E) .

Proof of claim. Let h = hy @ h, € Dy, & H, where h; € X, and h, =

(co, 1,5, -+ )T € I12(E). Here (cy, 1, ¢, -+ )T denotes the transpose of the
vector (co, ¢4, ¢z, -+ ). Since T3(Dr, ) = {0}, we have that

Tsh =V* h=V* (hy @ hy) = Ufhy @ M;h, = Uih; @ (c1,¢5,-+)" =0
Which implies that h;, = 0 and ¢; = ¢, = --- = 0. This completes the proof of
claiml. Claim 2. Ker(Dr,) < {0} ® E @ {0} @ {0} @ -+ < I*(E).

Proof of claim. For h = hy @ h, € Ker(Dy,) < 3, where h; € X and

h, = (co,¢1,¢5, )T € I2(E), we have that

D h = (I —T5"Ts)h = Py (I — VV*)h = Py (hy @ hy — hy © M,M}h,) =0
Which implies that P(hy @ h,) = P;(hy @ M,M;h,). Therefore, h, @
(co,cq,++ )T = Pyr(hy D (0, cq, ¢y, +++)T) which further implies that ||h, @
(0,¢q,¢2, )l = |lhy D (co, €1, €2, )Tl Thus ¢o = 0.

Again T;Ker(Dr, ) € Dr,. Therefore, for hy @ (0, ¢y, ¢z, -+ )" € Ker(Dr,),
we have that T5(h; @ (0,cq,¢p,--)T) = Uthy @ M;(0,¢q, ¢y, )T = Ufhy D
(c1,¢z,++)" € D,

Thenbyclaim 1, h;y =0and ¢, = c3 = --- = 0. Hence claim 2 is established.
Now since # = Dy, @ Ker(Dr, ), we can conclude that /f S E @ E @
{0} @ {0} @ -+ < I2(E) = XK. Therefore (M, My, M;) on [(E) is an E-co-
iIsometric extension of (T4, T,, T3).We now compute the fundamental operators

of (M, My, My).

A* B* 0 1 [B* 0 O 01 0

\ ._lo a4 B | a0 B~ o0 0 0 I
M: — M, M: = —

A 0 0 O

O 0 4 - 0 A" B~



A* B* 0 0 B* 0
_|lo a4 B (o a4 B
0

Similarly
B 0 O
\ «+_|0 0 0
M}, — MyM; =
L S T B0
Also Dy: =1—M,M;
I 0 O
_|lo o0 o
0O 0 O

Therefore, Dy; = E @ {0} @{0}--and Dyj. = Dy; =Iq0n E P
{0} {0} .

If we set
A 0 O B 0 O
L e N
Then | -

M, — MyM; = Dy:A1Dy: and Mg, — MyMy; = Dy:A,D .



Therefore, A;, A, are the fundamental operators of (M, My,, My).
Let us denote (M,,, My, M;) by (Ry, R,, W). Therefore,
R, — R3W = Dy, A,Dy, (1.8)
R, — RiW = Dy, A,A,Dy, . (1.9)
Claim 3. 4;Dyp,,, € Dr, and A; Dylp, €Dy, fori=12
Proof of claim. Clearly Dy, = Dy;» = I; on Dy,. Let hg = (co, ¢1,¢2,+++)" € Dy,
Then A; Dyyhy = (A%¢0,0,0, )T = Mjho = Ryhg. Since Ry |y = Sy, Ryhg €
H. Therefore (A*cy,0,0,---)" € Dy, and AlleDT3 € Dr,. Similarly we can
prove that AZDW|DT3 € Dr,.
We compute the adjoint of T5. Let (cy, cq, ¢, -+ )Tand (dy, d4, 0, --- )T be two
arbitrary elements in 3 where (cg, ¢4, ¢2,+++)", (do,d;,0,+--)" € Dy, and
(co €1,¢2,-)", (do,d4,0,-+-)" € Ker(Dr,). Now
(T3 (co, €1, €2, =), (do,dy,0,+:)" ) = ((co, €1, €2, )", T3 (dg, dy,0,-+-)" )

= ((CO’ C1,Cp e )T’ w (do’ dy,0, - )T )
= ((CO’CLCZ"")T’(do,dl,o,“')T)

= (co. do)e

= ((0, CO’O, ...)T’ (do’dl’o,“')T ).

Therefore,
T3 (co, €1, €2, )1 =1(0,¢0,0,-)",
Now hy = (0,¢o,0,---)" € Dy, implies that T3 hy = (0, ¢,,0,--)" € 3 and
My,(0,¢9,0,--)" = Ry(0,¢0,0,-)" = (Acy, 00, +-)" € H. In particular,
(Aco,0,0,---)" € Dy,. Therefore A, Dyhy = (Acy, 00, )7 € Dr,
and AZ*leDT3 C Dr,. Similarly we can prove that AZ*leDT3 C Dr,. Hence

claim 3 is proved.



Claim 4. A;Dy|p,, = A; and Ai*|DT =Affori =122

3

Proof of claim. It is obvious that Dy, < Dy, = E @ {0} ©{0}---. Now since
W\ = T; and Dy, is projection onto Dy, we have that Dy, |;r = D&/ |3 =
D& | Dr, = D%, . Therefore, D7, is a projection onto Dr, and D7, = Dr,. From
(1.8) we have that

Py:(Ry = RsW)l3c = Py (DwA1Dy)| (1.10)
Since (R4, R,, W) is an E-co-isometric extension of (Ty, T,, T3), the LES of
(1.10) is equal to T, — T, T5 Againsince A4, A, are the fundamental opereators
of (T, T,, T3), we have that

Ty — T;T3 = Dr, A, Dy, A, € L(Dr,). (1.11)

It is clear that T; — T, T is O on the ortho-complement of Dy, that is on

Ker(Dr,). Therefore

Ty —T;T3 = (R, — R;W)lDT3 — PDT3 (DWAlDW) b (1.12)

T3

Again since DW|DT3 = Dr, =I5 on Dr,, the RES of (12) is equal to

(DwA,Dy)|_ and hence
Dr,
Ty —T;Ts = (R — R;W)lDT3 = (DWAlDW)|DT3 = DT3A1DT3- (1.13)
The last identity follows from the fact (claim 3) that 4;Dy,)| € Dr,. By the
T3
uniqueness of A; we get that Al|D = Aj;. Also since D, is invariant under Al*
T3
by claim 3, we have that Al*|D = Aj . Similarly we can prove that 4,| =
T3 T3
A, and A,"| = Aj3. Thus the proof to claim 4 is complete.
T3

Now since (M, My,, M) on 12(E) is an E-isometry, M, and M,, compute,
that is



A 0O B> 0 0 =7 [B* 0 O A 0O
B A 0 -|la0 B~ 0o |_|a* B 0o ||B 4 0
0 B A 0 B A

0O A" B* - 0O A" B~

Which implies that

AB” 0 0o - B*A 0 0
BB* + AA* AP’ 0 |=| AA*+BB* AB’ 0 .
BA* BB* + AA® AB* - A*B AA*+ BB* B*4 -

Comparing both sides we obtain

() A'B=B*A

(i) AA*—A*A = BB* — B"B.

Therefore from (1.7) we have that

(i) A4, = A,A,

(iA, A, — 4,4, =4, 4, — 4,4, .

Taking restriction of the above two operator identities to the subspace Dy, we
get

(i) A14; = AzA,

(ii) ALA, — AAL = ASA, — A, A5,

The proof is now complete.

Let 7, = 12(E) @ 2(E).E = C* and let 7 = H, @ H,. Let T, = |0 °],

0 J
_[0 O _[0 O _[F O _
Tl_[o O]’ andT3—[Y O]on}[lela}[l,where]—[o O]andY—

> gJon#t = 2(B) ® 1*(B). Here v = M, and I = 1, on 1(E) and

F on I?(E) is defined as
F:1?(E) = I*(F)
(COi Cli C2i ot )T - (COi Cli C2i ot )Ti

where we choose F; on E to be a non-normal contraction such that F;" = 0. For

example we can choose F; = (8 g) for some n > 0. Clearly F? = 0 and

F*F # FF*.Since FV =0, JY = 0 and thus the product of any two of T;,T,, T3



is equal to 0. Now we unfold the operators T, T,, T3 and write their block
matrices with respect to the decomposition #; = [2(E) @ I1?(E) @ I>(E) &
1?(E):

00 00 00 00 00 00
oo o0 ol.. oo 0o oo 0 o
hi=lo o F of2 |0 0 0 o™= |o0 v o o

00 00O 00 00 I 0 0 O

We shall prove later that (T, T, T3) is an E-contraction and let us assume it for

now. Here
I 0 0 o O 0O O o]0 0 O o
. O I O o O 0O V* ollO O O o
2 — 7 _ — _
Pr,=1-T:T3=1g o | ol 7o 0o o ollo v 0o o
O 0 o Il o o o Oftr o 0o O
O 0 0 o
{0 0 0 of_
“lo o 1 o ~P=
0O 0 0 I

Clearly D, = {0} @ {0} ® I*(F) @ I*(E) = {0} ® #; and Ker(Dr,) =
12(E) @ I?(E) @ {0} @ {0} = H, @ {0}. also for a vector
Ho = (ho, h1,0,0)" € Ker(Dr,) and for a vector X; = (0,0, hy, h3)" € Dr,

00 00
00 O

L% =g v o ofChohu00)" = (00 Vhy,ho)" € Dr,.
1 0 0 O

And

00 00
00 O

=0 v o 8(O,O,hz,hg)T=(O,O,O,O)T.
I 0o 0 O

Thus (Ty, T,, T3) satisfies all the conditions of Proposition (4.2.5). We now

compute the fundamental operators A,, A, of (T, T,, Ts).



0 0 O 0]
. O 0 O
T, —T3T3 =T, = 00 F 8=DT3A1DT3
0 0 0 Ol
0 0 O Q] O 0 0 o
10 0 O OA O 0 0 o
1o o I ol"'10 O I o
0 0 0 [l 0O 0 0 I

By the uniqueness of A; we conclude that 4, =06 [g 8] on Dr,. Again

T{T; = 0as X"V = 0 and therefore T, — T;T5 = 0. This show that the

fundamental operator A,, for which T, — T{T; = D, A, D7, holds, has to be
equal to 0. Clearly
ATA, — AXA, =0®[F*F6FF* Oo] £ 0as F*F # FF*
But A4, — A5A, = 0. This violets the conclusion of Proposition (4.2.5) and it
Is guaranteed that the [E-contraction (Ty, T, T3 ) does not have an E-isometric
dilation, (Ty,T,,T3) does not have an E-unitary dilation.
Now we prove that (Ty, T,, T3) is an E-contraction. By Lemma (4.1.3), It
suffices to show that ||p(Ty, T3, T3)Il < lIplle g, for any polynomial.
p(x1, x5, x3) In the co-ordinates of E. Let
p(x1, %2, X3) = ag + Xisg apx; + q (e, x5, X3),
where q is a polynomial containing only terms of second or higher degree. Now

aopl

0
p(Ty, T, T3) = agl+a Ty + a3Ts = [a3y aol + alJ]

Since Y and ] are contractions, it is obvious that

|a0| 0 )”
< b = |laJ||.
” <|a3| lag + b llazJl

[aol 0 ]
a3Y aol +a1J



We first show that

( |, O) when b is
lai| + laz] laol

|aol 0 ] Hz
las| laol+ b

lag] 0 ] H<‘
las| lagl + b
€ : R,
very small. Let (6) be a unit vector in C~ such that
‘ lagl] 0 ](6) H
las| lagl + b 6
It suffices to show that

laol 0 ] € H>‘
lai| + las| laol (6) B

[laol 0 ](E) |
lasz| lagl +b 6
We have
2

[laol 0 ](E)

las| lagl +b 6
= laol?|e]* + [lasle + (la| + b)5][|a3|6_+ (laol + b)(ﬂ
= (lao|?+las|®)el® + (laol + b)?|51? + lag|(lag| + b)(ed + 5¢€)

= lag|? + laz|?|e]* + (b* + 2|ag|b)|6]* + lagas|(e6 + 6€) + laz|b(eb +
8€), Since e + |6]?> = 1. (1.14)
Also

laol 0 ](6) :
laz| lag| +b 6

= |aol?lel? + [(lai| + lasl)e + |aol81[(las] + as])€ + |agl8]

= laol? + (lay| + lasD?le]? + laol(las | + las]) (€8 + 5€)

= laol?® + las|?lel? + (lay*+2layas]) le]? + lagas|(ed + 5€) +

laga, (€8 + 5¢€) (1.15)

Now <|a°| 0 ) attains its norm (g) So without loss of generality we
las| laol +b

can assume that e85 + &€ is a positive (non-negative) real number because



otherwise altering the sign of one of € or § we can have €8 + §€ to be positive
lao| 0
las] laol +

Therefore, e§ + §€ is positive (non-nagative). It is evident from (1.14) and

(non-negative) which increases the norm of < ) a contradiction.

(1.15) that we can choose b so small that (b? + 2]a,|b)|5|? and |as|b(ed +
§€) become lesser than (Jay|? + 2]a;asl) le|? and |agaz|(e8 + &§€)
respectively. Such a choice of b is possible because we can choose 7 in the

definition of J to be very small positive number. As a consequence we get

(et et 1) O [ 2 (et )0
la;| + las|  aol las| lagl +b)\0

<|a0| 0 ) <‘< |aol o)‘
lasl lagl+b) || = || \lail + las] laol

A classical result of Caratheodory and Fejer states that

G )
by by

Where the infimum is taken over all polynomials r(z) in one variable which

Therefore,

“p(TL TZ’ T3)” <

inf|lby + b1z +7(2)|le0p =

contain only terms of degree two or higher. For an elegant proof to this result,
where the result is derived as a consequence of the classical commutant lifting

theorem of Sz.- Nagy and Foias. Using this fact we have

< laol O)
lai| + laz] laol

=inf |[laol + (las]l + lazD)z + r(2) o5

<inf|[lagl + lag|xy + las|xs + 11 (xq, X2, %3) oo A (1.16)

lp(Ty, T2, T3)| <

< inf|llaol + laz|+laslx; + |azlxs + r1(x1, %2, %3) |0 (1.17)
=inf |[[apl + lailx; + lazlx, + lazlxs + 1y (xq, X2, X3) [0 A

< |lag + a;x1 + axx; + azxz + q(x1,x2,x3) |0 (1.18)



< |lag + a;x1 + axx; + azxz + q(x1, %2, %3) |l E

- ||P(x1,x2,x3)||oo,ﬁ-

Here A = {(x,1,x) : x € D} € E (by choosing 8; = 0,5; =1 in Theorem
(1.16) and r(z) and r; (x4, x5, x3) range over polynomials of degree two or
higher. The inequality (1.16) was obtained by putting x; = x; = zandx, =1
which makes the set of polynomials |ay| + |aq|x; + |azlxs + 1r1(2;, 25, 23), @
subset of the set of polynomials |a,y| + (Ja,| + |as|)z + r(z). The infimum
taken over a subset is always bigger than or equal to the taken over the set itself.
We obtained the inequality (1.17) by applying a similar argument because we
can extract the polynomial |a,|xZ from the set r;(x;, x5, x3) and |a,|x3 = |a,|
when x, = 1. the equality (1.18) was obtained by choosing r; (x;, x5, x3) in
particular to be equal to

(ag = laol + az — laz|)x5 + (ag — la;Dx1x, + (az — lagDxyxs +

q(xq, 3, x3).
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