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Abstract  

     We generalize results on common fixed points in ordered cone metric spaces 

by weakening the respective contractive condition. Then, the notions of 

quasicontraction and g-quasicontraction are introduced in the setting of ordered 

cone metric spaces and respective (common) fixed point Theorems are shown. 

We show that the equality holds for unitary or the eigen values are all in the 

open unit disk. We also consider the defect index for a finite Blaschke product. 

We study common fixed points for the self and non-self  type maps in cone 

metric spaces. For particular class of ॱ-contractions, we show it necessary for 

the existence of rational dilation that the corresponding fundamental operators 

satisfy certain conditions. Then we construct an  ॱ-contraction from that 

particular class which fails to satisfy the certain condition. We produce a 

concrete functional model for pure ॱ-isometries and a class of E-contractions 

analogous to the pure isometries in one variable. 

 

 

  

 

  

  

  

  

  



 
 

  الخلاصة

عممنا نتائج علي النقاط الثابتة المشتركة في الفضاءات المتریة المخروطیة المنظمة بواسطة      

تم إدخالها  g-أوضحنا المفاهیم لشبه الإنكماش وشبه الإنكماش. إضعاف شرط الإنكماش المختص

تم . في ضبط الفضاءات المتریة المخروطیة المنظمة ومبرهنات النقطة الثابتة المشتركة المختصة

إیضاً . إیضاح أن المتساویة تحقق لأجل الواحدیة أو القیم الذاتیة وكلها في قرص الوحدة المفتوح

مشتركة لأجل رواسم النوع درسنا النقاط الثابتة ال. إعتبرنا دلیل الخلل لأجل ضرب بلاشیك المنتهي

وأوضحنا  ॱ-لأجل العائلة الخاصة لإنكماشات. الذاتي وغیر الذاتي في الفضاءات المتریة المخروطیة

تم بناء . ضروریتها لأجل وجود التمدد النسبي حیث المؤثرات الأساسیة المقابلة تحقق شروط مؤكدة

أدخلنا النموذج الذاتي . لشرط المؤكدمن هذه العائلة الخاصة والتي تفشل لتحقق ا ॱ- الإنكماش

 E- المماثلة إلي متساویات المسافة ܧ-البحتة وعائلة إنكماشات ॱ - المحدد لأجل متساویات المسافة

  . في المتغیر الواحد
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Chapter1   

Ordered Contractions and Quasi Contraction in Ordered 

Cone Metric Space 

    In such a way known results on quasicontractions and g-quasicontraction in 

metric spaces and cone metric spaces are extended to the setting of ordered cone 

metric spaces. Examples show that there are cases when new results can be 

applied, while old ones cannot. 

Section (1.1): Common Fixed Points of Weakly Increasing Mappings 

    Ordered normed spaces and cones have applications in applied mathematics, 

for instance, in using Newton's approximation method and in optimization 

theory. Numerous generalizations of the Banach contraction principle in the 

setting of metric spaces were given by many authors. Abstract (cone) metric 

spaces were studied by Huang and Zhang.                                                     

     The existence of fixed points in partially ordered sets was investigated, e.g., 

by Ran and Reurings, and then by Nieto and Lopez. The following two versions 

of the fixed point theorem were proved, among others in this chapter. 

Theorem (1.1.1)[1]. Let (ܺ, ⊑) be a partially ordered set and let d be a metric 

on ܺ such that (ܺ, d) is a complete metric space, let ݂:ܺ → ܺ be a 

nondecreasing map with respect to ⊑. Suppose that the following condition 

hold: 

 (i)   there exist ݇ ∈ (0,1)such that ݀(݂ݔ, (ݕ݂ ≤ ,ݔ for all (ݕ,ݔ)݀݇ ݕ ∈

                ܺ with ݕ ⊑  ;ݔ

 (ii)   there exist ݔ଴ ∈ ܺ such that ݔ଴ ⊑  ;଴ݔ݂

 (iii)  ݂ ݅s continuous, or 

 (iv)  if a nondecreasing sequence {ݔ௡} converges to ݔ ⊑ ܺ, then ݔ௡ ⊑

                                        .݊ for all ݔ            

 Then ݂ has a ϐixed poin ݔ∗ ∈ ܺ 



 
 

      Fixed point results in ordered cone metric spaces were obtained by Altun 

and Durmaz, as well as by Altun Damnjanović and Djorić. 

Theorem (1.1.2)[1]. ܮet (ܺ,⊑) be a partially ordered set and let d be a cone 

metric on ܺ (defined over a normal cone P with the normal constant k) such that 

(ܺ, ݀) is a complete cone metric space. Let ݂:ܺ → ܺ be a continuous and 

nondecreasing map with respect to ⊑.  

Suppose that the following condition hold: 

  (i)  there exist ݇ ∈ (0,1)such that ݀(݂ݕ݂,ݔ) ≤ ,ݔ)݀݇ ,ݔ for all (ݕ ݕ ∈

             ܺ with ݕ ⊑  ;ݔ

 (ii)  there exist ݔ଴ ∈ ܺ such that ݔ଴ ⊑  . ଴ݔ݂

Then ݂ has a ϐixed point ݔ∗ ∈ ܺ. 

     In some generalizations of the previous Theorem were proved, including the 

case when the underlying cone P is not normal. Also, some common fixed point 

Theorems were obtained. We state the following theorem which is an "ordered" 

variant of a result of Abbas and Rhoades.  

Theorem (1.1.3)[1]. let (ܺ,⊑) be a partially ordered set and let d be a cone 

metric on  ܺ (defined over a cone P with intܲ ≠ ߮) such that (ܺ, ݀) is a 

complete cone metric a space. Let ݂, g:ܺ → ܺ be self-maps such that (݂, g) is a 

weakly increasing pair with respect to ⊑. Suppose that the following conditions 

hold: 

 (i)   there exest ߚ,ߙ, ߛ ≥ 0 such that ߙ + ߚ2 + ߛ2 < 1 and 

,ݔ݂)݀                  gݕ) ≤ (ݕ,ݔ)݀ߙ + ,ݔ)݀]ߚ (ݔ݂ + ,ݕ)݀ gݕ)] + ,ݔ)݀]ߛ  gݕ) +

,ݕ)݀                                    (1.1)                                                                                                    [(ݔ݂

ݕ,ݔ or all comparableܨ             ∈ ܺ; 

 (ii)   ݂ or g is continuous, or 

 (iii)  if a nondecreasing sequnce {ݔ௡} convereges to ݔ ∈ ܺ, then ݔ௡ ⊑

 .݊ for all ݔ                   



 
 

        Then ݂ and g have a common ϐixed point ݔ∗ ∈ ܺ. 

       Note that a pair (݂, g) of self- maps on a partially ordered set (ܺ,⊑) is said 

to be weakly increasing if ݂ݔ ⊑ g݂ݔ and gݔ ⊑ ݂gݔ for all ݔ ∈ ܺ.There are 

examples when neither of such mappings ݂, g is nondecreasing w.r.t. ⊑. In 

particular, the pair(݂, ݅௑)  (݅௑- the identity function) is weakly increasing if 

and only if ݔ ⊑ ݔ for each ݔ݂ ∈ ܺ. 

     We show by the following simple example that a mapping on an ordered 

cone metric space can be an "ordered" contraction, while it is not a contraction 

in the classical sense. 

Example (1.1.4)[1]. Let ܺ = {1,2,4},⊑= {(1,1), (2,2), (4,4), ܧ;{(1,4) =

ℝଶ, ܲ = {(ܽ, ܾ): ܽ, ܾ ≥ 0}, (ݕ,ݔ)݀ = ݔ|) − ,|ݕ ݔ|2 − ,(|ݕ and let  ݂:ܺ →

ܺ, ݂1 = 1, ݂2 = 2,݂4 = 1. 

   The mapping ݂ is a (Banach-type) contraction in the ordered cone metric 

space (ܺ,⊑,݀), i. e., 

,ݔ݂)݀          (ݕ݂ ≤ ,(ݕ,ݔ)݀ߣ ݕ ⊑  (1.2)                                                                  ,ݔ

for some ߣ ∈ [0,1). indeed, we have only to check validity of (1.2) for ݕ =

1, ݔ = 4.  But it is equivalent to |݂4 − ݂1| ≤ 4|ߣ − 1|, i. e. , |1 − 2| ≤ 4|ߣ −

1| which is satisfied if (and only if) ߣ ∈ ቂଵ
ଷ

, 1ቁ.  

      On the other hand,  ݂ is not a contraction in the (non-ordered) cone metric 

space (ܺ, ݀). indeed, for ݔ = 2, ݕ = 1 we have that  

            |݂2 − ݂1| ≤ 2|ߣ − 1| ⇔ 1 ≤ ߣ ⋅ 1 ⇔ ߣ ≥ 1.        

It also means that ݂ is not a contraction in the metric space (ܺ, ݀ଵ) where ݀ଵ 

is the usual metric ݀ଵ(ݕ,ݔ) = ݔ| −  on ℝ.  We need the following |ݕ

definitions and results. Let E be a real Banach space. A subset P of E is a cone 

if: 

 (i) ܲ is closed, nonempty and ܲ ≠ {0}; 

 (ii) ܽ, ܾ ∈  ℝ,ܽ, ܾ ≥ 0, and ݔ, ݕ ∈ ܲ imply ܽݔ + ݕܾ ∈ ܲ; 



 
 

 (iii) ܲ ∩ (−ܲ) = {0}.                                                                                      

Given a cone P ⊂  we define the partial ordering ≺ with respect to P by ,ܧ

ݔ ≺ ݕ if and only if ݕ  − ݔ ∈ ܲ. We write ݔ ≺ ݔ to indicate that ݕ ≺ ݔ but ݕ ≠

,ݕ while ݔ ≪ ݕ stands for ݕ − ݔ ∈ int ܲ (the interior of ܲ). 

      A cone P ⊂ ܭ is called normal if there is a number ܧ > 0 such that for all 

ݕ,ݔ ∈ ܲ, 

              0 ≺ ݔ ≺ ‖ݔ‖ implies ݕ ≤  (1.3)                                                      ‖ݕ‖ܭ

Or, equivalently, if  ݔ௡ ≺ ௡ݕ ≺  ௡ andݖ

                lim௡→ஶ ௡ݔ = lim௡→ஶ ௡ݖ = imply lim௡→ஶ ݔ ௡ݕ =  (1.4)                     ݔ

The least positive number  K satisfying (1.3) is called the normal constant of P. 

it is clear that ݇ ≥ 1. Most of ordered Banach spaces used in applications posses 

a cone with the normal constant ܭ = 1, and if this is the case, proofs of the 

corresponding results are much alike as in the metric setting. If ݇ > 1, this is not 

the case. 

.[૚](૚.૚.૞)܍ܔܘܕ܉ܠ۳ Let ܧ = ℝܥ}
1 ‖ݔ‖ ℎݐ݅ݓ [0,1] = ∞‖ݔ‖ +

ฮݔ′ฮ
∞

 and ܲ = ݔ} ∈ :ܧ (ݐ)ݔ ≥ 0 for ݐ ∈ [0,1]} .This cone isn't normal. 

Consider,for example  ݔ௡(ݐ) = ௧೙

௡
, (ݐ)௡ݕ = ଵ

௡ 
. Then 0 ≺ ௡ݔ ≺  ௡ andݕ

lim௡→ஶ ௡ݕ = 0, but 

‖௡ݔ‖            = max௧∈[଴,ଵ] ቚ
௧೙

௡
ቚ + max௧∈[଴,ଵ]|ݐ௡ିଵ| = ଵ

௡
+ 1 > 1; 

Hence (ݔ௡) does not converge to zero. It follows by (1.2) that P is a non normal 

cone. 

Definition (1.1.6)[1] Let ܺ be a nonempty set and, P a cone in a Banach space 

E. suppose that a mapping ݀:ܺ × ܺ →  :satisfies  ܧ

(i)   0 ≺ ,ݔ)݀ ,ݔ for all (ݕ ݕ ∈ ܺ and ݀(ݔ, (ݕ = 0 if and only if ݔ =  ;ݕ

(ii)  ݀(ݔ, (ݕ = ,ݕ)݀ ,ݔ for all (ݔ ݕ ∈ ܺ; 

(iii)     ݀(ݔ, (ݕ ≺ ,ݔ)݀ (ݖ + ,ݖ)݀ ,ݔ for all  (ݕ ,ݕ ݖ ∈ ܺ. 

Then d is called a cone metric on ܺ and (ܺ, ݀)  is called a cone metric space.                    



 
 

The concept of a cone metric space is more general then that of a metric space, 

because each metric space is a cone metric space where ܧ = ℝ  and ܲ =

[0, +∞). 

The following remark will be useful in the sequel. 

Remark (1.1.7)[1].  
(i)  if ݑ ≺ ݒ and ݒ ≪ ,ݓ then ݑ ≪  .ݓ
(ii)  if 0 ≺ ݑ ≪ ܿ for each ܿ ∈ int ܲ, then ݑ = 0. 

(iii)  if ܽ ≺ ܾ + ܿ for each ܿ ∈ int ܲ then ܽ ≺ ܾ. 

(iv)  if 0 ≺ ݔ ≺ ,ݕ and 0 ≺ ܽ, then 0 ≺ ݔܽ ≺  .ݕܽ

 (v)  if 0 ≺ ௡ݔ ≺ ݊ ௡ for allݕ ∈  ℕ, and lim௡→ஶ ௡ݔ = ,ݔ lim௡→ஶ ௡ݕ =

,ݕ               then 0 ≺ ݔ ≺ .ݕ  

(vi)  if 0≺ ,௡ݔ)݀ (ݔ ≺ ܾ௡ and ܾ௡ → 0, then  ݀(ݔ௡, (ݔ ≪ ܿ where ݔ௡,  ,are ݔ

respectively, a sequence and a given point in ܺ. 

(vii) if E is a real Banach space with a cone P and if ܽ ≺ ܽ where ܽߣ ∈P and 

0< ߣ < 1,then ܽ = 0. 

(viii) if ܿ ∈ int ܲ, 0 ≺ ܽ௡ and ܽ௡ → 0, then there exists ݊଴ such that for all 

݊ > ݊଴ we have ܽ௡ ≪ ܿ. 

      In the rest of the chapter (ܺ,⊑, ݀)will always be an ordered cone metric 

space, i.e., ⊑ will be a partial order on the set ܺ, and d will be a cone metric on 

ܺ with always the underlying cone P such that int ܲ ≠ ߮ (such a cone will be 

called solid). Normality of the cone is not assumed. 

Theorem (1.1.8)[1]. Let (ܺ,⊑, ݀) be an ordered complete cone metric space. 

Let (݂, g) be a weakly increasing pair of self-maps on ܺ with respect to ⊑. 

Suppose that the following conditions hold: 

 (i) there exist  ݌, ,ݍ ,ݎ ,ݏ ݐ ≥ 0  satisϐing  ݌ + ݍ + ݎ + ݏ + ݐ < 1 and ݍ =

ݏ or ݎ                = ,ݐ such that  

,ݔ݂)݀         gݕ) ≺ ,ݔ)݀݌ (ݕ + ,ݔ)݀ݍ (ݔ݂ + ,ݕ)݀ݎ gݕ) + ,ݔ)݀ݏ gݕ) +    (ݔ݂,ݕ)݀ݐ



 
 

             for all comparable ݔ, ݕ ∈ ܺ;                                                             (1.5) 

(ii)    ݂ or g is continuous, or 

(iii)  If a non decreasing sequence {ݔ௡} converges to ݔ ∈ ܺ, then ݔ௡ ⊑

݊ for all ݔ               ∈ ℕ. 

then ݂ and g have a common ϐixed point ݔ∗ ∈ ܺ. 

Proof:  Let ݔ଴ ∈ ܺ be arbitrary and define a sequence {ݔ௡} by ݔଶ௡ାଵ =

ଶ௡ାଶݔ ଶ௡ andݔ݂ = gݔଶ௡ାଵ for all ݊ ∈ ℕ଴. Using that the pair of mappings (݂, g) 

is weakly increasing, it can be easily shown that the sequence {ݔ௡}  is 

nondecreasing w.r.t ⊑, i.e., ݔ଴ ⊑ ⋯ଵݔ ⊑ ௡ݔ ⊑ ௡ାଵݔ ⊑ ⋯. In particular, 

   ଶ௡ାଵ are comparable, so we can apply relation (1.5)  to obtainݔ ଶ௡  andݔ

(ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀         = ଶ௡ݔ݂)݀  (ଶ௡ାଵݔ݃,

≺ ଶ௡ݔ)݀݌ (ଶ௡ାଵݔ, + ଶ௡ݔ)݀ݍ , (ଶ௡ାଵݔ + (ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀ݎ + ଶ௡ݔ)݀ݏ , (ଶ௡ାଶݔ

+  (ଶ௡ାଵݔ,ଶ௡ାଵݔ)݀ݐ

   ≺ ଶ௡ݔ)݀݌ , (ଶ௡ାଵݔ + ଶ௡ݔ)݀ݍ (ଶ௡ାଵݔ, + ,ଶ௡ାଵݔ)݀ݎ (ଶ௡ାଶݔ + ଶ௡ݔ)݀]ݏ ,  (ଶ௡ାଵݔ

 .[(ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀+

It follows that 

           (1 − ݎ − (ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀(ݏ ≺ ݌) + ݍ + ,ଶ௡ݔ)݀(ݏ  ,(ଶ௡ାଵݔ

i.e.,   ݀(ݔଶ௡ାଵ,ݔଶ௡ାଶ) ≺ ௣ା௤ା௦
ଵି(௥ା௤)

ଶ௡ݔ)݀ ,  ଶ௡ାଵ).                                             (1.6)ݔ

In a similar way one obtains that 

,ଶ௡ାଶݔ)݀          (ଶ௡ାଷݔ ≺ ௣ା௤ା௧
ଵି(௤ା௧)

⋅ ௣ା௤ା௦
ଵି(௥ା௦)

ଶ௡ݔ)݀ ,  ଶ௡ାଵ).                             (1.7)ݔ

Now, from (1.6) and (1.7), by induction, we obtain that 

,ଶ௡ାଵݔ)݀          (ଶ௡ାଶݔ ≺ ௣ା௤ା௦
ଵି(௥ା௦)

ଶ௡ݔ)݀  (ଶ௡ାଵݔ,



 
 

                     ≺  
݌ + ݍ + ݏ

1 − ݎ) + (ݏ
⋅
݌ + ݎ + ݏ

1 − ݍ) + (ݐ
,ଶ௡ିଵݔ)݀   (ଶ௡ݔ

                      ≺
݌ + ݍ + ݏ

1 − ݎ) + (ݏ
∙
݌ + ݎ + ݏ

1 − ݍ) + (ݐ
∙
݌ + ݍ + ݏ

1 − ݎ) + (ݏ
,ଶ௡ିଶݔ)݀  (ଶ௡ିଵݔ

                      ≺  ⋯ ≺  
݌ + ݍ + ݏ

1 − ݎ) + (ݏ
   ൬

݌ + ݎ + ݐ
1 − ݍ) + (ݐ

∙
݌ + ݍ + ݏ

1 − ݎ) + (ݏ
൰
௡

,଴ݔ)݀   ,(ଵݔ

And  

(ଶ௡ାଷݔ,ଶ௡ାଶݔ)݀            ≺ ௣ା௥ା௧
ଵି(௤ା௧)

 (ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀ 

                                       ≺ ⋯ ≺  ቀ ௣ା௥ା௧
ଵି(௤ା௧)

⋅ ௣ା௤ା௦
ଵି(௥ା௦)

ቁ
௡ାଵ

,଴ݔ)݀   .(ଵݔ

Let 

ܣ              = ௣ା௤ା௦
ଵି(௥ା௦)

ܤ          ,  = ௣ା௥ା௧
ଵି(௤ା௧)

. 

In the case ݍ =  ,ݎ

ܤܣ           = ௣ା௤ା௦
ଵି(௤ା௦) ∙

௣ା௥ା௧
ଵି(௤ା௧) = ௣ା௤ା௦

ଵି(௤ା௧) ⋅
௣ା௥ା௧
ଵି(௥ା௦) < 1 ⋅ 1 = 1, 

And if ݏ =  ,ݐ

ܤܣ           =
݌ + ݍ + ݏ

1 − ݎ) + (ݏ ∙
݌ + ݎ + ݏ

1 − ݍ) + (ݐ
< 1 ∙ 1 = 1. 

Now, for ݊ < ݉ we have 

(ଶ௠ାଵݔ,ଶ௡ାଵݔ)݀            ≺ (ଶ௡ାଶݔ,ଶ௡ାଵݔ)݀ + ⋯+ ଶ௡ݔ)݀ ,  (ଶ௠ାଵݔ

                                             ≺  ൭ܣ ෍ ௜(ܤܣ) + ෍ ௜(ܤܣ)
௠

௜ୀ௡ାଵ

௠ିଵ

௜ୀଵ

൱݀(ݔ଴,  (ଵݔ

                                             ≺  
௡(ܤܣ)ܣ

1 − ܤܣ
+

௡ାଵ(ܤܣ)

1 − ܤܣ
 (ଵݔ,଴ݔ)݀ 

                                             = (1 + (ܤ
௡(ܤܣ)ܣ

1 − ܤܣ
,଴ݔ)݀   .(ଵݔ

Similarly, we obtain 



 
 

ଶ௡ݔ)݀            , (ଶ௠ାଵݔ ≺  (1 + ೙(஺஻) (ܣ

ଵି஺஻
 ,(ଵݔ,଴ݔ)݀ 

௡ݔ)݀                 , (ଶ௠ݔ   ≺  (1 + (ܣ (஺஻)೙

ଵି஺஻
,଴ݔ)݀    (ଵݔ

And 

(ଶ௠ݔ,ଶ௡ାଵݔ)݀             ≺  (1 + ஺(஺஻)೙ (ܤ

ଵି஺஻
 . 

Hence, for ݊ < ݉ 

௡ݔ)݀     , (௠ݔ ≺ max ቄ(1 + ஺(஺஻)೙ (ܤ

ଵି஺஻
, (1 + ೙(஺஻) (ܣ

ଵି஺஻
ቅ ,଴ݔ)݀     (ଵݔ

                       =      ,(ଵݔ,଴ݔ)௡݀ߣ

 where ߣ௡ → 0, as ݊ → ∞. 

        Now, using (viii) and (i) of Remark (1.1.7) and only the assumption that 

the underlying cone is solid, we conclude that {ݔ௡} is a Cauchy sequence. Since 

the space (ܺ, ݀) is complete, there exists ݔ∗ ∈ ܺ such that ݔ௡ → ݊)∗ݔ → ∞). 

       Suppose that, for example, f is a continuous mapping, then we have that 

௡ݔ݂ → ,∗ݔ݂ which (taking n even) implies that ݂ݔ∗ = .∗ݔ Now, since ݔ∗ ⊑

,∗ݔ taking ݔ = ݕ =   in relation (1.1.8), we obtain that ∗ݔ

,∗ݔ݂)݀          gݔ∗) ≺ (∗ݔ,∗ݔ)݀݌ + ,∗ݔ)݀ݍ (∗ݔ݂ + ,∗ݔ)݀ݎ gݔ∗) + ,∗ݔ)݀ݏ gݔ∗) +

 ,(∗ݔ݂,∗ݔ)݀ݐ                                

i.e., since ݂ݔ∗ = ,∗ݔ)݀  ,∗ݔ gݔ∗) ≺ ݎ) + ,∗ݔ)݀(ݏ gݔ∗). 

Since ݎ + ݏ < 1, using Remark (1.1.7) (vii), it follows that gݔ∗ =  is ∗ݔ and ,∗ݔ

a common fixed point of ݂and g. 

       The proof is similar when g is a continuous mapping. Consider now the 

case when condition (iii) is satisfied. For the sequence {ݔ௡} we have ݔ௡ → ∗ݔ ∈

ܺ(݊ → ∞) and ݔ௡ ⊑ ݊) ∗ݔ  ∈ ℕ). By the construction, ݂ݔ௡ → ௡ݔand g ∗ݔ →

݊)∗ݔ → ∞). Let us prove that ݔ∗ is a common fixed point of ݂ and g. Putting 

ݔ = ݕ and ∗ݔ =   ௡ in (1.5) (since they are comparable) we getݔ

,∗ݔ݂)݀  gݔ௡) ≺ ,∗ݔ)݀݌ (௡ݔ + ,∗ݔ)݀ݍ (∗ݔ݂ + ௡ݔ)݀ݎ , gݔ௡) + ,∗ݔ)݀ݏ gݔ௡) +

௡ݔ)݀ݐ  For the first and fourth term on the right-hand side we have .(∗ݔ݂,



 
 

,௡ݔ)݀  (∗ݔ ≪ ܿ and ݀(ݔ∗, gݔ௡) ≪ ܿ ( for ܿ ∈ int ܲ  a rbitrary and ݊ ≥ ݊଴). For 

the second term, ݀(ݔ∗, (∗ݔ݂ ≺ (௡ݔ,∗ݔ)݀  + ௡ݔ)݀  , gݔ௡) +  ݀(gݔ௡ ,  again) (∗ݔ݂

the first term on the right can be neglected), and for the fifth term        

௡ݔ)݀ (∗ݔ݂, ≺ ௡ݔ)݀ , gݔ௡)+ ݀(gݔ௡,   It follows that .(∗ݔ݂

          (1 − ݍ − ,∗ݔ݂)݀(ݐ gݔ௡) ≺ ݍ) + ݎ + ,௡ݔ)݀(ݐ gݔ௡). 

But, ݔ௡ → ௡ݔand g∗ݔ → ௡ݔ)݀ implies  that ∗ݔ , gݔ௡) ≪ ܿ, which means that 

also  ݀(݂ݔ∗, gݔ௡) ≪ ܿ, i. e. gݔ௡ → .∗ݔ݂ it follows that ݂ݔ∗ =  and, in a ∗ݔ

symmetric way (using that ݔ∗ ⊑ ,(∗ݔ gݔ∗ =  .∗ݔ

 Example (1.1.9)[1].                                                                                            
Let ܺ = {1,2,3},⊑= {(1,1), (2,2), (3,3), (2,3), (3,1), (2,1)} and ݀:ܺ × ܺ →

,ݔ)݀ ℝଵ[0,1] be deϐined byܥ (ݐ)(ݕ = 0 for all ݔ =  and ݕ

(ݐ)(1,2)݀ = (ݐ)(2,1)݀ = 6݁௧,݀(1,3)(ݐ) = (ݐ)(3,1)݀ =
30
7
݁௧ ,  

(ݐ)(2,3)݀            = (ݐ)(3,2)݀ = ଶସ
଻
݁௧. Further, let ݂ݔ = ݔ,1 ∈ ܺ, and g1 =

g3 = 1, g2 = 3. We have that ݀(݂3, g2)(ݐ) = (ݐ)(1,3)݀ = ଷ଴
଻
݁௧. But, the right-

hand side of (1) for  ݔ = ݕ,3 = 2 has the form 

(3,2)݀ߙ            + ,3)݀]ߚ ݂3) + ݀(2, g2)] + ,3)݀]ߛ g2) + ݀(2,݂3)] 

           = ଶସ ߙ
଻
݁௧ + ߚ ቀଷ଴

଻
݁௧ + ଶସ

଻
݁௧ቁ + 0)ߛ + 6݁௧) = ଶସఈ

଻
݁௧ + ହସఉ

଻
݁௧ +  ,௧݁ߛ6

Which is less than ଷ଴
଻
݁௧ for arbitrary ߚ,ߙ, ߙ satisfying the condition ߛ + ߚ2 +

ߛ2 < 1. Indeed, ଶସ
଻
ߙ + ହସ

଻
ߚ + ߛ6 < ଷ଴

଻
 follows from ଶସ

ଷ଴
ߙ + ହସ

ଷ଴
ߚ + ସଶ

ଷ଴
ߛ < ߙ +

ߚ2 + ߛ2 < 1. Hence, the conditions of Theorem (1.1.3) are not fulfilled and this 

Theorem cannot be used to conclude that ݂ and g have a common fixed point.   

On the other hand, taking ݌ = ݍ = ݎ = ݏ = 0, ݐ = ହ
଻
  all the conditions of 

Theorem (1.1.8) are fulfilled. Indeed, Since ݂1 = g1 = ݂3 = g3 = 1, we have 

only to check that 



 
 

(ݐ)(2݃,3݂݀          ≺ 0 ⋅ (ݐ)(3.2)݀ + 0 ⋅ ݀(3, (ݐ)(3݂ + 0 ⋅ (ݐ)(2݃,2)݀ + 0 ∙

          ݀(3, g2)(ݐ) + ହ
଻

 ݀(2,   ,(ݐ)(3݂

Which is equivalent to 

          ଷ଴
଻
݁௧ ≺ ହ

଻
(ݐ)(3݂,2)݀  = ହ

଻
(ݐ)(2,1)݀  = ହ

଻
⋅ 6݁௧ = ଷ଴

଻
∙ ݁௧. 

Thus, we can apply Theorem (1.1.8) and conclude that the mappings ݂ and g 

have a (unique) common fixed point ݑ = 1. 

     The next example shows that the condition ݌ + ݍ + ݎ + ݏ + ݐ < 1 alone is 

not sufficient to obtain the conclusion of Theorem (1.1.8). We shall stay in the 

setting of metric spaces-it would be easy to adapt it to the setting of ordered 

cone metric spaces. 

Example (1.1.10)[1]. Let ܺ = ,ݔ} ,ݑ,ݕ ,{ݒ whrer ݔ = (0,0,0), ݕ =

(4,0,0), ݑ = (2,2,0), ݒ = (2,−2,1), and let d be the Euclidean metric in ℝଷ. 

Consider the mappings 

            ݂ = ቀݑݔ
ݕ    
ݒ   

   ݑ    
ݒ

ݒ
ቁݑ  ,           ݃ = ቀ

 ݔ
   ݕ

     ݕ    
ݔ

     ݑ
    ݕ

ݒ
 .ቁݔ

By a careful computation it is easy to obtain that 

݀(݂ܽ, gܾ) ≤ ଷ
ସ

max{݀(ܽ, ܾ), ݀(ܽ, ݂ܽ), ݀(ܾ, gܾ),݀(ܽ, gܾ), ݀(ܾ,݂ܽ)},            (1.8) 

for all ܽ, ܾ ∈ ܺ. We shall that ݂ and g satisfy the following contractive 

condition: there exist ݌, ,ݍ ,ݎ ,ݏ ݐ ≥ 0 with ݌ + ݍ + ݎ + ݏ + ݐ < 1 and ݍ ≠

,ݎ ݏ ≠  such that ݐ

            ݀(݂ܽ, gܾ) ≤ (ܾ,ܽ)݀݌ + ,ܽ)݀ݍ ݂ܽ) + ,ܾ)݀ݎ gܾ) + ,ܽ)݀ݏ gܾ) +

 (1.9)                                                                                                        (݂ܽ,ܾ)݀ݐ       

holds true for all ܽ,ܾ ∈ ܺ. Obviously, ݂ and g do not have a common fixed 

point. Taking (1.8) into account, we have to consider, the following cases: 



 
 

(i)  ݀(݂ܽ, gܾ) ≤ ଷ
ସ
݀(ܽ, ܾ). Then (1.9) holds for ݍ = ଷ

ସ
, ݎ = ݐ = 0 and ݍ =

ݏ            = ଵ
ଽ
. 

 (ii)  ݀(݂ܽ, gܾ) ≤ ଷ
ସ
݀(ܽ, ݂ܽ). Then (1.9) holds for ݍ = ଷ

ସ
, ݌ = ݎ = ݐ =

           0 and ݏ = ଵ
ହ
. 

 (iii)  ݀(݂ܽ, gܾ) ≤ ଷ
ସ
݀(ܾ, gܾ). Then (1.9) holds for ݎ = ଷ

ସ
݌, = ݍ = =  ݐ

             0 and ݏ = ଵ
ହ
. 

 (iv)  ݀(݂ܽ, gܾ) ≤ ଷ
ସ
݀(ܽ, gܾ). Then (1.9) holds for ݏ = ଷ

ସ
, ݌ = ݎ = ݐ =

            0 and ݍ = ଵ
ହ
. 

  (v) ݀(݂ܽ, gܾ) ≤ ଷ
ସ
݀(ܾ, ݂ܽ). Then (1.9) holds for ݐ = ଷ

ସ
, ݌ = ݎ  = ݏ =

          0 and ݍ = ଵ
ହ
. 

Corollary (1.1.11)[1]. Let (ܺ,⊑, ݀) be an ordered cone metric space. Let 

݂:ܺ → ܺ be a self- map such that ݔ ⊑ ݔ for all ݔ݂ ∈ ܺ. Suppose that the 

following conditions hold: 
(i)   There exist ݌, ,ݍ ,ݎ ,ݏ ݐ ≥ 0 satisfying ݌ + ݍ + ݎ + ݏ + ݐ < 1 and ݍ =

ݏ or ݎ                  = ,ݐ such that 

              ݀(݂௠ݔ,݂௡ݕ) ≺ ,ݔ)݀݌ (ݕ + ,ݔ)݀ݍ ݂௠ݔ) +  (ݕ௡݂,ݕ)݀ݎ

,ݔ)݀ݏ+ ݂௡ݕ) + ,ݕ)݀ݐ ݂௠ݔ)  

        for all ݉, ݊ ∈ ℕ,݉ ≤ ݊ and all comparable ݔ, ݕ ∈ ܺ; 

(ii)  ݂ is continuous. 

Then ݂ has a fixed point ݔ∗ ∈ ܺ. 

Proof: Follows from Theorem (1.1.8) by putting ݂௠ ≡ ݂, ݂௡ ≡ g.Taking 

݉ = ݊ = 1 in the previous corollary, one obtains 



 
 

Corollary (1.1.12)[1]. Let (ܺ,⊑, ݀) be an ordered complete cone metric 

space. Let ݂:ܺ → ܺ  be a self-map such that ݔ ⊑ ,ݔ݂ for all ݔ ∈ ܺ. suppose that 

the following condition hold: 

 (i) There exist ݍ,݌, ,ݎ ,ݏ ݐ ≥ 0 such that ݌ + ݍ + ݎ + ݏ + ݐ < 1 and 

(ݕ݂,ݔ݂)݀           ≤ (ݕ,ݔ)݀݌ + (ݔ݂,ݔ)݀ݍ + ,ݕ)݀ݎ (ݕ + ,ݔ)݀ݏ (ݕ݂ +

 (1.10)                                                                                               (ݔ݂,ݕ)݀ݐ            

            for all comparable ݔ, ݕ ∈ ܺ; 

 (ii) ݂ is continuous. 

Then ݂ has a fixed point ݔ∗ ∈ ܺ. 

      Note that here (when just one function ݂ is considered) there was no need 

for additional assumptions on coefficients ݌, ,ݍ ,ݎ ,ݏ  .ݐ

Section (1.2): Fixed Points of Quasicontractions on Ordered Cone 

Metric Space                                                                                                       

     The notion of aquasicontractions in a metric space was first used by Cሖ irić and 

Das and Naik. Cone metric version of this notion was considered by Ilić and 

Rakocුević, as well as Kadelburg, Radenović and Rakocුević and Pathak and 

Shahzad. Generalized g-quasicontractions in cone metric spaces were 

investigated. We shall introduce here the notion of an ordered g-quasi 

contraction in an ordered cone metric space and prove the respective common 

fixed point Theorem. 

       Let (݂, g) be a pair of self-maps on an ordered cone metric space(ܺ,⊑

, ݀) such that ݂(ܺ) ⊂ g(ܺ). Let the mapping ݂ be g-nondicreasing, i.e., let for 

each ݔ, ݕ ∈ ܺ, gݔ ⊑ gݕ implies ݂ݔ ⊑  Suppose also that there is a point .ݕ݂

଴ݔ ∈ ܺ such that gݔ଴ ⊑  ଴. Then it is possible to construct a so called Jungckݔ݂

sequence in the following way: starting with given ݔ଴, choose ݔଵ ∈ ܺ such that 

଴ݔ݂ = gݔଵ(which is possible since ݂ܺ ⊂ gܺ). Now it is gx଴ ⊑ gxଵ which 



 
 

implies that ݂ݔ଴ ⊑ ଶݔ ଵ.Then there existsݔ݂ ∈ ܺ such that ݂ݔଵ = gݔଶ, and again 

଴ݔ݂ ⊑ ⊒ ଵ implies that gxଵݔ݂ gݔଶ and ݂ݔଵ ⊑  ,ଶ. Continuing this procedureݔ݂

we obtain: 

଴ݔ݂                    ⊑ ଵݔ݂ ⊑ ଶݔ݂ ⊑ ⋯ ⊑ ௡ݔ݂ ⊑ ௡ାଵݔ݂ ⊑ ⋯ 

and 

                  gݔଵ ⊑ gݔଶ ⊑ ⋯ ⊑ gݔ௡ାଵ ⊑ gݔ௡ାଶ ⊑ ⋯. 

Definition (1.2.1)[1]. The mapping ݂ is called an ordered g-quasicontraction 

if there exists ߣ ∈ [0, 1/2) such that for each ݕ,ݔ ∈ ܺ satisϐing gݕ ⊑ gݔ, there 

exists         

ݑ           ∈ ଴ܯ
௙,୥(ݕ,ݔ) = ൜

݀(gݔ, gݕ),݀(gݔ݂,ݔ),݀(gݕ݂,ݕ),
݀(gݔ, (ݔ݂,ݕg)݀,(ݕ݂ ൠ                    (1.11)             

such that ݀(݂ݕ݂,ݔ) ≺ ߣ ⋅  .holds ݑ

Theorem (1.2.2)[1] Let (݂, g) be a pair of self-maps on a complete ordered 

cone metric space (ܺ,⊑, ݀) such that ݂(ܺ) ⊂ g(ܺ) and such that there is a point 

଴ݔ ∈ ܺ with gݔ଴ ⊑  ଴. Suppose thatݔ݂

(i) ݂ is an ordered g-quasicontraction; 

(ii)  ݃(ܺ) is closed in ܺ; 

(iii) ݂ is g-nondecreasing; 

(iv)   if {g(ݔ௡)} ⊂ ܺ , is a nondecreasing sequence, converging to some gݖ,            

 then  g(ݔ௡) ⊑ gݖ and gݖ ⊑ ggݖ.  

Then ݂ and g have a coincidence point, i.e., there exists ݖ ∈ ܺ such that 

ݖ݂ = gݖ. If, further, ݂ and g are weakly compatible, then they a common fixed 

point. Recall that the mappings ݂ and g are said to be weakly compatible if, for 

each ݔ ∈ ܺ, ݔ݂ = gݔ implies ݂gݔ = g݂ݔ. 

Proof: Starting with given ݔ଴ construct the Jungck sequence ݂ݔ௡ିଵ =

gݔ௡ of the pair (݂, g), with the initial pointݔ଴. We shall prove that it is a Cauchy 

sequence in X. Let us prove first that                  



 
 

௡ݔ݂)݀                 , (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

  (1.12)                                                  (௡ݔ݂,௡ିଵݔ݂)݀

For all ݊ ≥ 1. Indeed, since gݔ௡ ⊑ gݔ௡ାଵ ,we can apply condition (i) to obtain 

௡ݔ݂)݀               (௡ାଵݔ݂, ≺ ௡ݑߣ ,                                                                      (1.13)  

Where 

௡ݑ ∈ ൜
݀(gݔ௡, gݔ௡ାଵ), ݀(gݔ௡, ,௡ାଵݔ௡),݀(gݔ݂ ,(௡ାଵݔ݂ ݀(gݔ௡ , ,(௡ାଵݔ݂

݀(gݔ௡ାଵ, (௡ݔ݂ ൠ 

,(௡ݔ݂,௡ିଵݔ݂)݀} =                ௡ݔ݂)݀ , ,௡ିଵݔ݂)݀,(௡ାଵݔ݂ ,(௡ାଵݔ݂ 0}.  

There are four possible cases: 

(i)   ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ (௡ݔ݂,௡ିଵݔ݂)݀ߣ ≺ ఒ
ଵିఒ

,௡ିଵݔ݂)݀ ߣ ௡) sinceݔ݂ ≤ ఒ
ଵିఒ

; 

(ii) ݀(݂ݔ௡, (௡ାଵݔ݂ ≺ ௡ݔ݂)݀ߣ , ,௡ݔ݂)݀ ௡ାଵ); it follows thatݔ݂ (௡ାଵݔ݂ = 0.          

hence,(1.12) holds true; 

(iii)   ݀(݂ݔ௡, (௡ାଵݔ݂ ≺ ,௡ିଵݔ݂)݀ߣ (௡ାଵݔ݂ ≺ ,௡ିଵݔ݂)݀ߣ (௡ݔ݂ +

௡ݔ݂)݀ߣ               ;௡ାଵ); hence, (1.12) holds trueݔ݂,

(iv)  ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ ߣ ⋅ 0 = 0 and so ݀(݂ݔ௡, (௡ାଵݔ݂ = 0  and again 

 (1.12) holds.    Put ℎ = ఒ
ଵିఒ

. Then it follows from (1.12) that 

௡ݔ݂)݀                       , (௡ାଵݔ݂ ≺ ℎ݀(݂ݔ௡ିଵ, (௡ݔ݂ ≺ ⋯ ≺ ℎ௡݀(݂ݔ଴,   ,(ଵݔ݂

      For all ݊ ≥ 1. Now we have for all ݊,݉ ∈ ℕ, ݊ > ݉ that  

௡ݔ݂)݀         , (௠ݔ݂ ≺ ௡ݔ݂)݀ (௡ିଵݔ݂, + (௡ିଶݔ݂,௡ିଵݔ݂)݀ + ⋯+ ,௠ାଵݔ݂)݀  (௠ݔ݂

                              ≺ (ℎ௡ିଵ + ℎ௡ିଶ + ⋯+ ℎ௠)݀(݂ݔ଴,  (ଵݔ݂

                              ≺ ௛೘

ଵି௛
,଴ݔ݂)݀ (ଵݔ݂ → ݉ ݏܽ 0 → ∞. 

According to Remark (1.1.7)(i) and (viii), {݂ݔ௡}, i. e. , {gݔ௡} is a Cauchy 

sequence and, since ܺ is complete and gܺ is closed, there exists ݖ ∈ ܺ such that                 

            gݔ௡ → gݖ    i. e. , ௡ݔ݂ → gݏܽ       ݖ ݊ → ∞. 

We will prove that ݂ݖ = gݖ.  



 
 

       Since gݔ௡ ⊑ gݖ ൫ condition (iv)൯ putting ݔ = ௡ݔ ݕ, = ,in (1.10) ݖ we get   

௡ݔ݂)݀                   (ݖ݂,  ≺ ߣ ⋅              ௡                                                                        (1.14)ݑ

Where ݑ௡ ∈ ቄ݀(gݔ௡ , gݖ), ݀(gݔ௡, ,(௡ݔ݂ ݀(gݖ, ,ݖg)݀,(ݖ݂ ,(௡ݔ݂ ݀(gݖ,  .ቅ(ݖ݂

observe that ݀(gݖ, (ݖ݂ ≺ ݀(gݖ, (௡ݔ݂ + ,௡ݔ݂)݀  and (ݖ݂

݀(gݖ, (ݖ݂ ≺ ݀(gݖ, (௡ݔ݂ + ,௡ݔ݂)݀ Now let 0 .(ݖ݂ ≪ ܿ be given. In all of the 

possible five cases there exists ݊଴ ∈ ℕ such that (using (14)) one obtains that 

,௡ݔ݂)݀ (ݖ݂ ≪ ܿ: 

(i)   ݀(݂ݔ௡, (ݖ݂ ≺ ߣ ⋅ ݀(gݔ௡ , gݖ) ≪ ߣ ௖
ఒ

= ܿ; 

(ii)   ݀(݂ݔ௡ (ݖ݂, ≺ ߣ ⋅ ݀(gݔ௡ , (௡ݔ݂ ≪ ߣ ௖
ఒ

= ܿ; 

(iii)   ݀(݂ݔ௡ , (ݖ݂ ≺ ߣ ⋅ ݀(gݖ, (ݖ݂ ≺ ,ݖg)݀ߣ (௡ݔ݂ + ௡ݔ݂)݀ߣ       it follows ;(ݖ݂,

             that ݀(݂ݔ௡ , (ݖ݂ ≺ ఒ
ଵିఒ

 ݀(gݖ, (௡ݔ݂ ≪ ఒ
ଵିఒ

(ଵିఒ)௖
ఒ

= ܿ; 

(iv)    ݀(݂ݔ௡, (ݖ݂ ≺ ߣ ⋅ ݀(gݖ, (௡ݔ݂ ≪ ߣ ௖
ఒ

= ܿ; 

(v)    ݀(݂ݔ௡, (ݖ݂ ≺ ߣ ∙ ݀(gݔ௡, (ݖ݂ ≺ ,௡ݔg)݀ߣ (௡ݔ݂ + ௡ݔ݂)݀ߣ      it ;(ݖ݂,

follows that ݀(݂ݔ௡ , (ݖ݂ ≺ ఒ
ଵିఒ

 ݀(gݔ௡ (௡ݔ݂, ≪ ఒ
ଵିఒ

(ଵିఒ)௖
ఒ

= ܿ.  

     It follows that ݂ݔ௡ → ݊) ݖ݂ → ∞). The uniqueness of limit in a cone metric 

space implies that ݂ݖ = gݖ =  is a coincidence ݖ ,Thus, in the terminology ,ݐ

point of the pair (݂, g), and ݐ is a point of coincidence. Suppose now that 

݂ and g are weakly compatible. By the assumption (iv), gݖ ⊑ ggݖ and hence we 

obtain that   ݂gݖ = g݂ݖ = ݖ݂݂ = ggݖ.  

Suppose that it is not ݂ݖ =  Then, the contractibility condition (10) for .ݖ݂݂

ݔ = ,ݖ ݕ = ,ݔ݂)݀  implies that ݖ݂ (ݕ݂ = ,ݖ݂)݀ (ݖ݂݂ ≺  where ,ݑߣ

ݑ          ∈ {݀(gݖ, g݂ݖ), ݀(gݖ݂,ݖ), ݀(g݂ݖ݂݂,ݖ),݀(g݂ݖ, ,ݖg)݀,(ݖ݂ {(ݖ݂݂

= ,(ݖ݂݂,ݖ݂)݀} ,(ݖ݂݂,ݖ݂݂)݀,0 ,(ݖ݂,ݖ݂݂)݀ {(ݖ݂݂,ݖ݂)݀          

= ,ݖ݂)݀,0}               ,{(ݖ݂݂

So we have only two possibilities: 

(i)   ݀(݂ݖ, (ݖ݂݂ ≺ ߣ ⋅ 0 = 0 ⇒ (ݖ݂݂,ݖ݂)݀ = 0 ⇒ ݖ݂ =  ;ݖ݂݂



 
 

(ii)  ݀(݂ݖ, (ݖ݂݂ ≺ (ݖ݂݂,ݖ݂)݀ߣ ⇒ ൫by Remark (1.1.7)൯ ݀(݂ݖ݂݂,ݖ) = 0,        

       i. e. , ݖ݂ = ݖ݂ ,In other words .ݖ݂݂ = gݖ is a common fixed point of the 

mappings   ݂ and g. Taking g = ݅௑ (the identity function) in Theorem (1.2.2) we 

obtain a result for ordered quasicontractions in ordered cone metric spaces. 

Corollary (1.2.5)[1]. Let ݂ be a self- map on a complete ordered cone metric 

space (ܺ,⊑,݀) such that there is a point ݔ଴ ∈ ܺ with ݔ଴ ∈ ܺ. With ݔ଴ ⊑   .଴ݔ݂

Suppose that 

(i)  ݂ is an ordered quasicontraction, i.e., there exists ߣ ∈ [0, 1 2⁄ ) such that   

            for eachݕ,ݔ ∈ ܺ satisfying ݕ ⊑                          there exists ,ݔ

ݑ                       ∈ ,(ݕ,ݔ)݀} ,(ݔ݂,ݔ)݀ ,(ݕ݂,ݕ)݀ ,ݕ)݀                     (1.15)                            ,{(ݔ݂

           such that ݀(݂ݕ݂,ݔ) ≺ ߣ ∙  ;holds ݑ

(ii)    ݂ is nondecreasing; 

(iii)   ݂݅{ ݔ௡} ⊂  ܺ is a nondecreasing sequence, converging to some ݖ, then 

௡ݔ                 ⊑    .ݖ

Then  ݂ has a fixed point in ܺ.    

Remark (1.2.6)[1]. If, in the Definition (1.2.1) of an ordered g-

quasicontractions, we use the set {݀(gݔ, gݕ), ݀(gݔ, ,(ݔ݂ ݀(gݕ,  instead ,{(ݕ݂

of ܯ଴
௙,୥(ݕ,ݔ), then it can be proved in a similar way that Theorem (1.2.2) holds 

even with ߣ ∈ [0,1). If we further reduce this set to {݀(gݔ, ,(ݔ݂ ݀(gݕ,  then ,{(ݕ݂

an ordered version of the known Bianchini's result is obtained. 

     Finally, if we take a singleton {݀(gݔ, gݕ)}, we obtain an ordered version of a 

result of Jungck which is a direct generalization of the Banach's principle. 

     In the sequel, we shall modify condition of ordered g-quasicontraction by 

considering, together with ܯ଴
௙,୥(ݕ,ݔ), the following sets: 

ଵܯ
௙,୥(ݕ,ݔ) =  ቊ݀(gݔ, gݕ), ݀(gݔ, ,(ݔ݂ ݀(gݕ, ,(ݕ݂

݀(gݕ݂,ݔ) + ݀(gݕ, (ݔ݂
2

ቋ, 



 
 

ଶܯ    
௙,୥(ݕ,ݔ) =  ቊ݀(gݔ, gݕ),

݀(gݔ, (ݔ݂ + ݀(gݕ݂,ݕ)
2

,
݀(gݔ, (ݕ݂ + ݀(gݔ݂,ݕ)

2
ቋ. 

In the setting of cone metric spaces, they were used, for example (where non-

self-mappings were considered) and (when considering strict contractive 

conditions). We shall prove here two related results in the setting of ordered 

cone metric spaces. 

Theorem (1.2.7)[1]. Let(݂, g) be a pair of self- maps on a complete ordered 

cone metric space (ܺ,⊑, ݀)such that ݂(ܺ) ⊂ g(ܺ) and such that there is a pair 

଴ݔ ∈ ܺ with gݔ଴ ⊑   ଴. suppose thatݔ݂

(i)  There exists ߣ ∈ [0,1) such that for each ݔ, ݕ ∈ ܺ satisϐing gݕ ⊑ gݔ,      

       there exist  ݑ ∈ ଵܯ
௙,୥(ݕ,ݔ), such that ݀(݂ݕ݂,ݔ) ≺ ߣ ∙  .hold ݑ

(ii) g(ܺ) is closed in ܺ; 

(iii)  ݂ is g-nondecreasing; 

(iv)  if {g(ݔ௡)} ⊂ ܺ is a nondecreasing sequence, converging to some gݖ,     

         then gݔ௡ ⊑ gݖ, and gݖ ⊑ ggݖ. 

Then ݂ and g have a coincidence point. Moreover, if ݂ and g are weakly 

compatible, then they have a common fixed point. 

Proof: Starting from the given ݔ଴, construct the Jungch sequence as in the 

proof of Theorem (1.2.2) 

଴ݔ݂              ⊑ ଵݔ݂ ⊑ ଶݔ݂ ⊑ ⋯ ⊑ ௡ݔ݂ ⊑ ௡ାଵݔ݂ ⊑ ⋯,  

             gݔଵ ⊑ gݔଶ ⊑ ⋯ ⊑ gݔ௡ାଵ ⊑ gݔ௡ାଶ ⊑ ⋯,  

First we prove that 

,௡ݔ݂)݀                (௡ାଵݔ݂ ≺ ݊ for     (௡ݔ݂,௡ିଵݔ݂)݀ߣ ≥ 1                        (1.16) 

Since gݔ௡ ⊑ gݔ௡ାଵ, it is 

௡ݔ݂)݀               (௡ାଵݔ݂, ≺ ߣ ⋅  ,ݑ

Where 



 
 

ݑ      ∈ ቄ݀(gݔ௡ , gݔ௡ାଵ),݀(݂ݔ௡ , gݔ௡), ,௡ାଵݔ݂)݀ gݔ௡ାଵ), ௗ(௙௫೙,୥௫೙శభ)ାௗ(௙௫೙శభ,୥௫೙)
ଶ

ቅ            

         = ቄ݀(݂ݔ௡ିଵ, ,(௡ݔ݂ ,௡ݔ݂)݀ ,(௡ାଵݔ݂ ௗ(௙௫೙షభ,௙௫೙శభ)
ଶ

ቅ. 

Now we have to consider the following three cases: 

(i) If ݑ =  .then cleary (1.16) hold (௡ݔ݂,௡ିଵݔ݂)݀

(݅݅)  If ݑ = ,௡ݔ݂)݀  ௡ାଵ) then according to Remark (1.1.7)(vii)ݔ݂

,௡ݔ݂)݀             (௡ାଵݔ݂ = 0, and (1.16) is immediate. 

(iii) Finally, suppose ݑ = ௗ(௙௫೙షభ,௙௫೙శభ)
ଶ

. Now  

௡ݔ݂)݀    , (௡ାଵݔ݂ ≺ ߣ
(௡ାଵݔ݂,௡ିଵݔ݂)݀

2
≺
ߣ
2
,௡ିଵݔ݂)݀ (௡ݔ݂ +

1
2

௡ݔ݂)  .(௡ାଵݔ݂,

Hence ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺     .and we have proved (1.16) ,(௡ݔ݂,௡ିଵݔ݂)݀ߣ

  Now, we have 

,௡ݔ݂)݀        (௡ାଵݔ݂ ≺ ,଴ݔ݂)௡݀ߣ    .(ଵݔ݂

We shall show that { ௡݂} is a Cauchy sequence. For ݉, ݊ ∈ ℕ, ݊ > 0 we have   

,௡ݔ݂)݀ (௠ݔ݂ ≺ ௡ݔ݂)݀ , (௡ିଵݔ݂ + ,௡ିଵݔ݂)݀ (௡ିଶݔ݂ + ⋯+ ,௠ାଵݔ݂)݀  ,(௠ݔ݂

and we obtain 

௡ݔ݂)݀         , (௠ݔ݂ ≺ ௡ିଵߣ) + ௡ିଶߣ + ⋯+ ,଴ݔ݂)݀(௠ߣ   (଴ݔ݂

                                  ≺ ఒ೘

ଵିఒ
,଴ݔ݂)݀ (ଵݔ݂ → ݉ ݏܽ 0 → ∞. 

From Remark (1.1.7)(viii) it follow that for 0 ≪ ܿ and ݉ sufficiently large, 

௠(1ߣ − ,଴ݔ݂)ଵ݀ି(ߣ (ଵݔ݂ ≪ ܿ; then also ݀(݂ݔ௡ (௠ݔ݂, ≪ ܿ. hence, { ௡݂}  is a 

Cauchy sequence. 

      Since ݂(ܺ) ⊂ g(ܺ), g(ܺ) is closed, and ܺ is complete, there exists ݑ ∈ g(ܺ) 

such that g(ݔ௡) → ݊ ݏܽ ݑ → ∞. Consequently, we can find ݖ ∈ ܺ such that 

gݖ =  .ݑ

      Let us show that ݂ݖ = ௡ݔFor this we have (because of g .ݑ ⊑ gݖ)  

,ݖ݂)݀            (ݑ ≺ (௡ݔ݂,ݖ݂)݀ + ௡ݔ݂)݀ (ݑ, ≺ ߣ ⋅ ௡ݑ + ௡ݔ݂)݀   ,(ݑ,

Where 



 
 

ݑ           ∈ ቄ݀(gݔ௡ , gݔ݂)݀,(ݖ௡ ,ݖ݂)݀,(௡ݔ݃, gݖ), ௗ(௙௫೙,୥௭)ାௗ(௙௭,୥௭)
ଶ

ቅ . 

Let 0 ≪ ܿ be given. Since gݔ௡ → gݖ, in each of the following cases there 

exists ݊଴ such that for ݊ ≥ ݊଴ we have ݀(݂ݑ,ݖ) ≪ ܿ.  

,ݖ݂)݀  (݅)   (ݑ ≺ ߣ  ⋅  ݀(gݔ௡ , gݖ) + ,௡ݔ݂)݀ (ݑ ≪ ߣ ⋅ ௖
ଶఒ

+ ௖
ଶ

= ܿ. 

 (ii)  ݀(݂ݖ, (ݑ ≺ ߣ  ⋅ ௡ݔ݂)݀  , gݔ௡) + ,௡ݔ݂)݀ (ݑ ≺ ߣ ⋅ ௡ݔ݂)݀ , (ݑ + ߣ ⋅

,ݑ)݀                    gݔ௡) + ௡ݔ݂)݀ , (ݑ = ߣ) + 1) ⋅ ௡ݔ݂)݀ , (ݑ + ߣ ⋅ ,ݑ)݀ gݔ௡) ≪

ߣ)                   + 1) ⋅ ௖
ଶ(ఒାଵ)

+ ߣ ⋅ ௖
ଶఒ

= ܿ. 

(ݑ,ݖ݂)݀  (݅݅݅) ≺ ߣ  ⋅ ,ݖ݂)݀  (ݑ + ௡ݔ݂)݀ ,(ݑ, i. e. , ,ݖ݂)݀ (ݑ ≪
1

1 − ߣ 
⋅  (1 − ܿ(ߣ 

= ܿ. 

  (iv)  ݀(݂ݑ,ݖ) ≺ ߣ  ⋅ ௗ(௙௫೙,୥௭)ାௗ(௙௭,୥௭)
ଶ

+ ௡ݔ݂)݀ , (ݑ ≺ ఒௗ(௙௫೙,୥௭)
ଶ

+

                      ଵ
ଶ
,ݖ݂)݀ gݖ) + ,௡ݔ݂)݀ ,(ݑ i. e. , (ݑ,ݖ݂)݀ ≺ ߣ) + ,௡ݔ݂)݀(2 (ݑ ≪

ߣ)                      + 2) ௖
(ఒାଶ)

= ܿ.                                                   

     Using Remark (1.1.7)(ii) we conclude that ݀(݂ݖ, (ݑ = 0, i. e. , ݖ݂ =         .ݑ

Hence, we have proved that ݂ and g have a coincidence point ݖ ∈ ܺ and a point 

of coincidence ݑ ∈ ܺ such that ݑ = (ݖ)݂ = g(ݖ). if they are weakly compatible, 

then      ggݖ = g݂ݖ = ݂gݖ =  .ݖ݂݂

We shall prove that ݂ݖ = gݖ is a common fixed point of the mapping ݂ and g. 

using gݖ ⊑ ggݖ (condition (iv)), we obtain from condition (i) that 

,ݖ݂)݀           (ݖ݂݂ ≺ ߣ ⋅  ,ݑ

Where           

ݑ          ∈ ቄ݀(gݖ, g݂ݖ݂)݀,(ݖ, gݖ), ,ݖ݂݂)݀ g݂ݖ), ௗ(௙௭,୥௙௭)ାௗ(௙௙௭,୥௭)
ଶ

ቅ                                     

              =   ቄ݀(݂ݖ, ,0,(ݖ݂݂ ௗ(௙௭,௙௙௭)ାௗ(௙௭௭,௙௭)
ଶ

ቅ = {0, ,ݖ݂)݀   .{(ݖ݂݂

Hence, be Remark (1.1.7) ݀(݂ݖ, (ݖ݂݂ = 0, i. e. , ݖ݂ = ݖSimilarly,g .ݖ݂݂ = ggݖ 

and the Theorem is proved. 



 
 

Theorem (1.2.8)[1].Let (݂, g) be a pair of self-maps on a complete ordered 

cone metric space (ܺ,⊑, ݀) such that ݂(ܺ) ⊂ g(ܺ) and such that there is a point 

଴ݔ ∈ ܺ with gݔ଴ ⊑   ଴. suppose thatݔ݂

(i) There exist ߣ ∈ [0,1) such that for each ݔ, ݕ ∈ ܺ satisfying gݕ ⊑ gݔ,  

              there exist  ݑ ∈ ଶܯ
௙,୥(ݕ,ݔ), Such that ݀(݂ݕ݂,ݔ) ≺ ߣ ⋅  .holds ݑ

(ii)  g(ܺ) is closed in X; 

(iii) ݂ is g-nondecreasing; 

(iv) if {g(ݔ௡)} ⊂ ܺ is a nondecrasing sequence, converging to some gݖ,  

             then gݔ௡ ⊑ gݖ and gݖ ⊑ ggݖ. 

Then ݂ and g have a coincidence point.                                                       

Moreover, if ݂and g are weakly compatible, then they have a common fixed 

point. The proof is similar, and so is omitted.                                                                   

Note that conditions (i) of Theorem (1.2.2),(1.2.7) and (1.2.8) are incomparable 

in the cone metric settings (to the contrary with the situation in metric settings), 

since for ܽ, ܾ ∈ ܲ, if ܽ and ܾ are incomparable, then also ௔ା௕
ଶ

 is incomparable, 

both with a and with b. 

Remark (1.2.9)[1].  Putting ܧ = ℝ, ܲ = [0, +∞) in Theorem (1.2.7) and 

(1.2.8), one obtains the respective common fixed point Theorem in ordered 

metric spaces (we could not find explicit formulations for some of these 

assertions in literature). For example, taking ݑ = ݀(gݔ, gݕ), g = ݅௑, a result of 

Abbas and Jungck is obtained; then, taking ܧ = ℝ,ܲ = [0, +∞) the respect 

result in the setting of ordered metric spaces follows. If we take                                         

ݑ = ଵ
ଶ
൫݀(gݔ, (ݔ݂ + ݀(gݕ, ,൯(ݕ݂ g = ݅௑ , we obtain an ordered cone metric 

version of Kannaan's Theorem (State that for any fixed k there exists alanguage 

L in ∑  ଶ , which is not in size (݊௞) (this is different statement than ∑  ଶ ⊈ ݌ ∕

 which is currently open and state that there exists asingle language that is , ݕ݈݋݌

not in size(݊௞)for any k).it is asimple Circuitlower bound).[5] ; ordered metric 



 
 

version of this theorem follows immediately. The same applies for the known 

Zamfiresu's result. 

       We conclude with an example showing that our Theorem (1.2.2),(1.2.7) and 

(1.2.8) are proper extensions of the respective results from the setting of cone 

metric space. Namily, we shall construct an example of a mapping which is an 

ordered g-quasicontraction (where from the existence of common fixed point of 

݂ and g follows), while it is not a g-quasicontraction in cone metric sence. 

Similar conclusion then applies for relationship between contractive conditions 

in ordered metric spaces and simple metric spaces. 

Example (1.2.10)[1]. Let ܺ = [0, +∞) and let order relation ⊑ be defined 

by ݔ ⊑ ݕ ⇔ ݔ)} = ݕ,ݔ) or(ݕ ∈ [0,1] with ݔ ≤  .{(ݕ

Let ܧ = ‖ݔ‖ ℝଵ[0,1] withܥ = ஶ‖ݔ‖ + ܲ ᇱ‖ஶ andݔ‖ = ݔ} ∈ :ܧ (ݐ)ݔ ≥

0 on [0,1] (this cone is not normal). Define ݀:ܺ × ܺ → ,ݔ)݀ by ܧ (ݕ =

ݔ| − :߮ where ߮|ݕ [0,1] → ℝ such that ߮(ݐ) = ݁௧. it is easy to see that ݀ is a 

cone metric on X. consider the mappings 

ݔ݂             = ൝
௫
ସ

,           0 ≤ ݔ ≤ 1,

ݔ4 − ଵହ
ସ

ݔ     , > 1;
     gݔ = ቊ

0    ,ݔ ≤ ݔ ≤ 1,
ଷ
ସ
ݔ         ,ݔ > 1.  

Then, for ݕ ⊑  we have that ݔ

(ݐ)(ݕ݂,ݔ݂)݀         = ݔ݂| − ௧݁|ݕ݂ = ଵ
ସ

ݔ| − ௧݁|ݕ ≤ ݔ|ߣ − ݐ ∀   ,௧݁|ݕ ∈ [0,1] ⇔

ߣ ∈ ቂ ଵ
ସ

, 1ቁ,               

While for ݕ,ݔ > 1  

(ݐ)(ݕ݂,ݔ݂)݀         = ݔ݂| − ௧݁|ݕ݂ = ݔ|4 − ௧݁|ݕ ≤ ߣ ଷ
ସ

ݔ| − ݐ ∀   ,௧݁|ݕ ∈ [0,1] ⇔

ߣ ∈ ቂ ଵ଺
ଷ

, +∞ቁ,  

 And, checking all other conditions, one concludes that ݂ is an ordered g-

quasicontraction, while it is not a g-quasicontraction in a (non-ordered) cone 

metric sense. Obviously, ݂(0) = g(0) = 0.                                                                  

      Similar conclusions apply to conditions of Theorems (1.2.7) and (1.2.8). 



 
 

Chapter 2 

Powers of a Contraction 

    Let A be a contraction on a Hilbert space H. The defect index ݀஺ of A is by 

definition, the dimension of the closure of the range of 1 −  We show that. ܣ∗ܣ

(i) ݀஺೙ ≤ ݊݀஺ for all n ≥ 0, (ii)if, in addition, ܣ௡ converges to 0 im the strong 

operator topology and ݀஺ = 1, then ݀஺೙ = ݊ for all finite n, 0 ≤ ݊ ≤  , ܪ݉݅݀

and (iii) ݀஺ = ݀஺∗  implies ݀஺೙ = ݀஺೙∗  for all n ≥ 0. The norm-one index ܭ஺ of A 

is defined as sup {݊ ≥ 0: ∥ ௡ܣ ∥= 1}. When dim H = m < ∞, a lower bound for 

஺ܭ :஺ was obtained beforeܭ ≥ (݉ ݀஺⁄ ) − 1 

Section (2.1). Powers of Contraction 

     Let H be a complex Hilbert space with inner product 〈⋅,⋅〉 and the associated 

norm ‖⋅‖, and let ܣ be a contraction (‖ܣ‖ ≡ sup{‖ݔܣ‖: ݔ ∈ ‖ݔ‖,ܪ = 1} ≤ 1) 

on H. the defect index of ܣ is, by definition, ran(ܫ − തതതതതതതതതതതതതതതതത of 1(ܣ∗ܣ −  It is a .ܣ∗ܣ

measure of how far ܣ is from the isometries, and plays a prominent role in the 

Sz.-Nagy-Foias  Theory of canonical model for contractions. 

      In this chapter, we are concerned with the defect indices of powers of a 

contraction. We show that, for a contraction A, ݀஺೙  is at most  ݊݀஺ for any ݊ ≥

0. they are in general not equal. The equality does hold in certain cases. For 

example, if ܣ௡ converges to 0 in the strong operator topology and ݀஺ = 1, then 

݀஺೙ = ݊ for all finite ݊, 0 ≤ ݊ ≤ dim ܪ. The equality (for some n's) also arises 

in another situation, namely, in relation to the norm- one index. Recall that the 

norm-one index ܭ஺ of a contraction ܣ is defined as sup{݊ ≥ 0: ‖௡ܣ‖ = 1}. it 

was proven that if ܣ acts on an m-dimensional space, then ܭ஺ ≥ (݉ ݀஺⁄ ) − 1. 

Here we complement this result by characterizing all the m-dimensional ܣ with 

஺ܭ = (݉ ݀஺⁄ ) − 1; this is case if and only if either ܣ is unitary or the 

eigenvalues of ܣ are all in the open unit disc ॰(≡ ݖ} ∈ ℂ: |ݖ| < 1}), ݀஺ divides 



 
 

m and ݀஺೙ = ݊݀஺ for all ݊, 1 ≤ ݊ ≤ ݉ ݀஺.⁄  we consider contractive analytic 

functions of a contraction, instead of just its powers. Among other things, we 

show that if ݂ is a Blaschke product with ݊ zeros, then ݀௙(஺) = ݀஺೙ . 

     We start with some basic properties for the defect indices of powers of a 

contraction. These include a "triangle inequality" and their increasingness. 

Lemma (2.1.1): Let ܣ = are contractions. Then ݀஼ ܥ and ܤ where ,ܥܤ ≤

݀஺ ≤ ݀஻ + ݀஼. if ܤ and ܥ commute, then we also have ݀஻ ≤ ݀஺ . 

Proof :Since 

ܫ                − ܣ∗ܣ = ܫ − ܥܤ∗ܤ∗ܥ ≥ ܫ − ܥ∗ܥ ≥ 0, 

Where we used ܥܤ∗ܤ∗ܥ ≤ ܤ∗ܤ because ∗ܥܥ ≤ 1, we obtain  ran(ܫ − തതതതതതതതതതതതതതതതത(ܣ∗ܣ ⊇

 ran(ܫ − തതതതതതതതതതതതതതതതത   and thus ݀஺(ܥ∗ܥ ≥ ݀஼ . If ܤ and ܥ commute, then ܣ =  ,and ܤܥ

Therefore, ݀஻ ≤ ݀஺ follows from above.                                                                         

On the other hand, since 

ܫ             − ܣ∗ܣ = 1 − ܥܤ∗ܤ∗ܥ = ܫ) − (ܥ∗ܥ + ܫ)∗ܥ −    ,ܥ(ܤ∗ܤ

We have  

           ran(ܫ − (ܣ∗ܣ ⊆ ran(ܫ − (ܥ∗ܥ + ranܫ)∗ܥ −  .ܥ(ܤ∗ܤ

Thus  

         ݀஺ ≤ ݀஼ + rank ܫ)∗ܥ −  ܥ(ܤ∗ܤ

                ≤ ݀஼ + rank (ܫ −  ܥ(ܤ∗ܤ

                ≤ ݀஼ + ݀஻, 

Completing the proof. 

     For any contraction ܣ, let ܪ௡ = ran(ܫ − ݊ ௡)തതതതതതതതതതതതതതതതതതതത forܣ∗௡ܣ ≥ 0 and ܪஶ =

⋁௡ୀ଴ஶ  ௡. In the following, we will frequently use the fact that, for a contractionܪ

ܫ) is in ker ݔ ,ܣ − ‖ݔܣ‖ if and only if (ܣ∗ܣ =  .‖ݔ‖

 Note that ݀஻ ≤ ݀஺ may not hold without the commutativity of ܤ and ܥ, For 

example, if ܣ = ܤ ,ܫ = ܵ∗ and ܥ = ܵ, where ܵ denotes the (simple) unilateral 

shift, then ܣ = ஺݀ ,ܥܤ = 0 and ݀஻ = 1. 

Theorem (2.1.2)[2]. Let A be a contraction on H. 



 
 

(i) The inequality ݀஺೘శ೙ ≤ ݀஺೘ + ݀஺೙ holds for any ݉,݊ ≥ 0. in particular, 

          ݀஺೙ ≤ ݊݀஺೙  for n ≥ 0. 

(ii) The sequence {݀஺೙}௡ୀ଴ 
ஶ  is increasing in n, Moreover, if ݀஺೙ = ݀஺೙ାଵ <

           ∞ for some ݊, 0 ≤ ݊ ≤ dim ܪ, then ݀஺ೖ = ݀஺೙  for all ݇ ≥ ݊. 

The proof depends on the following more general lemma. 

Proof :(i) and the increasingness of the ݀஺೙
ᇱ
ܵ in (ii) follow immediately from 

lemma (2.1.1). To prove the remaining part of (ii), we check that ܪ௡ =

⋁ ௞ୀ଴
௡ିଵܣ௞∗ܪଵ for ݊ ≥ 1. Indeed, if ݔ = ܫ) −  in H, then ݕ for some ݕ(௡ܣ∗௡ܣ

ݔ = ∑ ܫ)∗௞ܣ − ௡ିଵ,ݕ௞ܣ(ܣ∗ܣ
௞ୀ଴  which shows that ݔ is in ⋁ ଵ௡ିଵܪ∗௞ܣ

௞ୀ଴ . For the 

converse containment, note that ܣ maps ker(ܫ − ܫ)௞ାଵ) to kerܣ∗௞ାଵܣ −  (௞ܣ∗௞ܣ

isometrically for each ݇ ≥ 0. Indeed, if ݔ is in the former, then                      

‖ݔ‖                = ฮܣ௞ାଵݔฮ ≤ ‖ݔܣ‖ ≤  .‖ݔ‖

 Hence we have the equalities throughout and, in particular, ฮܣ௞(ݔܣ)ฮ =  ‖ݔܣ‖

and ‖ݔܣ‖ = xܣ The former implies that .‖ݔ‖ ∈ ker(ܫ −  ௞). Together withܣ∗௞ܣ

the latter, this proves our assertion. Therefore,  ܣ∗ maps ܪ௞to ܪ௞ାଵ for ݇ ≥ 0. 

by iteration, we have that  ܣ௞∗ maps ܪଵto ܪ௞ାଵ for all ݇ ≥ 1. Arguing as above, 

we also obtain ker(ܫ − (௞ାଵܣ∗௞ାଵܣ ⊆ ker(ܫ − ௞ܪ (௞ܣ∗௞ܣ ⊆ ݇ ௞ାଵ forܪ  ≥ 0. 

Therefore, ܣ௞∗ maps ܪଵto ܪ௡ for all ݇, 0 ≤ ݇ ≤ ݊ − 1. This proves 

⋁ ଵ௡ିଵܪ∗௞ܣ
௞ୀଵ  .௡ and hence our assertion on their equalityܪ ⊇

      If ݀஺೙ = ݀஺೙శభ < ∞ for some ݊, then ܪ௡ = .௞ାଵܪ  hence 

௡ାଶܪ         = ⋁௞ୀ଴௡ାଵܣ௞∗ܪଵ = ⋁௞ୀ଴௡ ଵܪ∗௞ܣ ∨   (ଵܪ∗௡ାଵܣ)

                   ⊆ ௡ାଵܪ ∨ (௡ାଵܪ∗ܣ) = ௡ାଵܪ ∨  (௡ܪ∗ܣ)

                   ⊆ ௡ାଵܪ ∨ ௡ାଵܪ  = ௡ାଵܪ ⊆   .௡ାଶܪ

Therefore, we have equalities throughout. This implies that ݀௡ାଵ = ݀௡ାଶ. 

Repeating this argument gives us ݀஺ೖ = ݀஺೙  for all ݇ ≥ ݊.  

     Note that, in Theorem (2.1.2)(i), ݀஺೘శ೙ < ݀஺೘ + ݀஺೙  may happen even for 

for ݉ = ݊ = 1. For example, if   



 
 

ܣ               = ൥
0 0 1
0 0 0
0 0 0

൩, 

Then ݀஺ = 2 and ݀஺మ = 3, Thus ݀஺మ < ݀஺ + ݀஺.  

      The following corollary is an easy consequence of Theorem (2.1.2)(ii).  

Corollary (2.1.3)[2]. if ܣ is a contraction with ܣ௡ isometric (resp., unitary), 

then ܣ itself is isometric (resp., unitary). The next Theorem says that the 

equalities ݀஺೙ = ݊݀஺, ݊ ≥ 0, do hold for certain contractions ܣ.  

Theorem (2.1.4)[2]. If ܣ is a contraction on ܪ with ܣ௡ converging to 0 in 

the strong operator topology and ݀஺ = 1, then  ݀஺೙ = ݊ for all ϐinite ݊, 0 ≤ ݊ ≤

dim ܪ. 

Proof: Under our assumption that  ݀஺ = 1, we have  ݀஺೙ ≤ ݊ for all ݊ ≥ 0 by 

Theorem (2.1.2)(i). Assume that  ݀஺೙బ < ݊଴ for some ϐinite ݊଴, 1 < ݊଴  ≤

dim ܪ. since  ݀஺೙  increases in ݊, the pigeonhole principle(states that if n items 

are put into m containers, with n>m, then at least one container must contain 

more than one items)[6].   and Theorem (2.1.2)(ii) yield that  ݀஺೙బషభ =  ݀஺೙బ =

݀஺೙ < ݊଴ < ∞ for all ݊ ≥ ݊଴. hence  

         ker(ܫ − (௡బܣ∗௡బܣ = ran(ܫ − ௡బ)തതതതതതതതതതതതതതതതതതതതതതୄܣ∗௡బܣ = ran(ܫ − ௡)തതതതതതതതതതതതതതതതതതതതୄܣ∗௡ܣ =

ker(ܫ − ݊ ௡) for allܣ∗௡ܣ ≥ ݊଴. Let K denote this common subspace. For 

‖ݔ௡ܣ‖ we have ,ܭ in ݔ = ݊ for all ‖ݔ‖ ≥ ݊଴. On the other hand, the 

assumption that ܣ௡ → 0 in the strong operator topology yields that ‖ܣ௡ݔ‖ →

0 as ݊ → ∞. From these, we conclude that ݔ = 0 and hence ܭ = {0}. This is the 

same as ker(ܫ − (௡బܣ∗௡బܣ = {0}  or ran(ܫ − ௡బ)തതതതതതതതതതതതതതതതതതതതതതܣ∗௡బܣ = Thus dim H .ܪ =

d୅౤బ < ݊଴. which is a contradiction. Therefore, we must have ݀஺೙ = ݊ for all 

finite ݊, 0 ≤ ݊ ≤ dim ܪ. Let ܣ a contraction on ܪ. Since ܣ∗ maps 

݊ ௡ାଵ  forܪ ௡ toܪ ≥ 0 as shown in the proof of Theorem (2.1.2)(ii), we have 

⊇ ஶܪ∗ܣ  ஶ . Henceܪ

ܣ           = ቂܣ
ᇱ 0
ܤ ܸ

ቃ on ܪ = ஶୄܪ ⨁ ஶܪ . 



 
 

Note that, for any ݔ in ܪஶୄ =∩௡ୀ଴ஶ ker(ܫ − ݔܣ∗ܣ ௡), we haveܣ∗௡ܣ =  which ,ݔ

implies that ‖ܸݔ‖ = ‖ݔܣ‖ = ஶୄܪ Thus ܸ is isometric on .‖ݔ‖ . Recall that a 

contraction is completely nonunitary (c.n.u.) if it has no nontrivial reducing 

subspace on which it is unitary. ܣ can be uniquely decomposed as 

ୄܭ and ܷ is unitary on ܭ ଵis c.n.u. onܣ where ,ୄܭ⨁ܭ ଵ⨁ܷ onܣ =

∩௡ୀ଴ஶ (ker(ܫ − (௡ܣ∗௡ܣ ∩ ker(ܫ −  ௡∗)). Thus the above decomposition canܣ௡ܣ

be further refined as 

ܣ               = ൥
ᇱܣ 0 0
ଵܤ ܵ௠ 0
0 0 ܷ

൩, 

Where ܵ௠ denotes the unilateral shift with multiplicity ݉(0 ≤ ݉ ≤ ∞), 

ଵܣ = ൤ܣ
ᇱ 0

ଵܤ ܵ௠
൨ is c.n.u., and ܸ = ܵ௠⨁ ܷ corresponds to the Wold 

decomposition of ܸ. 

Corollary (2.1.5)[2]. If ܣ is a contraction on a finite-dimensional space 

with ݀஺ = 1, then  

              ݀஺೙ = ൜
 ݊      ݂݅ 0 ≤ ݊ ≤ ݊଴,
݊଴           ݂݅ ݊ > ݊଴,   

Where ݊଴ = dim ܪஶ. 

Proof: On a finite-dimensional space, the above representation of ܣ becomes 

ܣ = ܪ ᇱ⨁ ܸ onܣ ஶୄܪ ⨁ ஶܪ =  with ܸ unitary. It is easily seen that ܣᇱ has no 

eigenvalue of modulus one. Hence ܣᇱ௡ converges to 0 in norm. Our assertion on 

݀஺೙  then follows from Theorems (2.1.4) and (2.1.2)(ii). 

The next theorem characterizes those contractions ܣ for which ݀஺೙ = ݊ for  

finitely many ݊′s or for all ݊ ≥ 0. it generalizes Corollary (2.1.5). 

       Recall that an operator ܣ on an n-dimensional space is said to be of class 

ܵ௡ if ܣ is a contraction, its eigenvalues are all in ॰ and ݀஺ = 1. The ݊-by-݊ 

Jordan block 



 
 

ܬ             = ൦

0

    

1

     ⋱
⋱

     
1
0

 ൪  

Is one example, Such operators and their infinite-dimensional analogues 

ܵ(߮) (߮ an inner function) are first studied by Sarason. They play the role of 

the building blocks of the Jordan model for ܥ଴ contractions. 

Theorem (2.1.6)[2]. Let ܣ be a contraction on ܪ. 

(i) Let ݊଴ be a nonnegative integer. Then 

              ݀஺೙ = ൜
 ݊      ݂݅ 0 ≤ ݊ ≤ ݊଴,
݊଴           ݂݅ ݊ > ݊଴

  

       If and only if ுܲಮܪ|ܣஶ, the compression of ܣ to ܪஶ, is of class ܵ௡బ . In this     

case, dim ܪஶ = ݊଴.  

(ii) ݀஺೙ = n for all n, 0 ≤ n < ∞, d୅ ݂݅ ݕ݈݊݋ ݀݊ܽ ݂݅ = 1 and dimHஶ = ∞. 

Proof: (i) let 

ܣ           = ቂܣ
ᇱ 0
ܤ ܸ

ቃ  on ܪ = ஶୄܪ ⨁ ஶܪ ,  

Where ܸ is isometric, First assume that the ݀஺೙  are as asserted. We need to ݏ′

show that ܣᇱ = ுܲಮܪ|ܣஶ is of class ܵ௡బ . Our assumption on  ݀஺೙  implies 

= ஶܪ ݊ ௡బ is of dimension ݊଴. Moreover, for anyܪ ≥ 0, we have  

ܫ            − ௡ܣ∗௡ܣ = ܫ − ቂܣ
ᇱ௡∗ ∗௡ܤ
0 ܸ௡∗

ቃ ൤ܣ
ᇱ௡ 0
௡ܤ ܸ௡൨ 

                                = ൤ܫ − ᇱ௡ܣ∗ᇱ௡ܣ − ௡ܤ∗௡ܤ  ௡ܤ−
∗ ܸ௡

−ܸ௡∗ܤ௡ 0 ൨ 

                                = ቂܫ − ᇱ௡ܣ∗ᇱ௡ܣ − ௡ܤ∗௡ܤ 0
0 0

ቃ, 

Where the last equality holds because ܫ − ௡ܣ∗௡ܣ ≥ 0. Hence  

        ݊ =  ݀஺೙ = rank (ܫ − ᇱ௡ܣ∗ᇱ௡ܣ − (௡ܤ∗௡ܤ ≤ rank (ܫ − (ᇱ௡ܣ∗ᇱ௡ܣ =  ݀஺ᇲ೙               

For 1 ≤ ݊ ≤ ݊଴. If ݊ଵ <  ݀஺′೙బ  for some ݊ଵ, 1 ≤ ݊ଵ ≤ ݊଴, then the pigeonhole 

principle and Theorem (2.1.2)(ii) yield  ݀஺೙ =  ݀஺೙బ < ݊଴ for all that  ݀஺ᇲ೙బషభ =

 ݀஺ᇲ೙బ . and the fact that ܣᇱ has no eigenvalue of modulus one, we conclude that 



 
 

ܫ − ᇱ௡బିଵ is one-to-one and hence  ݀஺ᇲ೙బܣ∗ᇱ௡బିଵܣ = ݊଴, contradicting our 

assumption. Hence  ݀஺ᇲ೙ = ݊ for all ݊, 1 ≤ ݊ ≤ ݊଴. implies that ܣᇱ is of class 

ܵ௡బ . this proves one direction. For the converse, we derive as above to obtain 

ܫ − ௡ܣ∗௡ܣ = ܫ) − ᇱ௡ܣ∗ᇱ௡ܣ − ܪ ௡) ⨁ 0 onܤ∗௡ܤ = ஶୄܪ ⨁ ஶܪ  and 

         ݀஺೙ ≤  ݀஺ᇲ೙ = ൜
 ݊      ݂݅ 1 ≤ ݊ ≤ ݊଴
݊଴           ݂݅ ݊ > ݊଴

                                                       (1.1)  

       Assume that ݀஺೙భ < ݊ଵ for some ݊ଵ, 1 ≤ ݊ଵ ≤ ݊଴. then the pigeonhole 

principle and Theorem (2.1.2)(ii) yields ݀஺೙ = ݀஺೙బ < ݊଴ for all ݊ ≥ ݊଴. This 

implies that ܪ௡ = ௡బܪ  for all ݊ ≥ ݊଴. Therefore, ܪஶ = ௡బܪ  has dimension 

strictly less than ݊଴, which contradicts the fact that dim ܪஶ =  ݀஺ᇲ೙బ = ݊଴. 

Hence we have ݀஺೙ = ݊ for all ݊ଵ, 1 ≤ ݊ ≤ ݊଴. If ݊ > ݊଴, then ݀஺೙ ≥ ݀஺೙బ =

݊଴ by Theorem (2.1.2)(ii) and what we have just proven. This, together with 

(1.1), yields,  ݀஺೙ = ݊଴ for ݊ > ݊଴. 

      (ii) Since dim ܪஶ ≥ ݀஺೙  for all ݊, the necessity is obvious. Conversely, 

assume that ݀஺ = 1 and dim ܪஶ = ∞. Then ݀஺೙ ≤ ݊݀஺ = ݊ by Theorem 

(2.1.2)(i). If ݀஺೙భ ≤ ݊ଵ for some ݊ଵ ≥ 2, then an argument analogous to the one 

for the second half of (i) yields that ܪஶ =  .௡భ is of dimension less than ݊ଵܪ

This contradicts our assumption. Hence we must have ݀஺೙ = ݊ for all ݊. 

      We now proceed to consider contractions ܣ with ݀஺ = ݀஺∗ and start with the 

following lemma giving conditions of the equality of ݀஺ and ݀஺∗ for an arbitrary 

operator ܣ. Note that, in this case, the definition of the defect index still makes 

sense. 

Lemma (2.1.7)[2]. Let ܣ be an operator on ܪ. 

(i) If dim ker ܣ = dim kerܣ∗, then ݀஺ = ݀஺∗ . In particular, if ܣ acts on a 

               finite-dimensional space, then ݀஺ = ݀஺∗ . 

(ii) If ݀஺ is finite, then the following conditions are equivalent: 

            1଴.  ݀஺ = ݀஺∗; 

            2଴.  dim kerܣ = dim kerܣ∗; 



 
 

         3଴.  ;are unitarily equivalent ∗ܣܣ and ܣ∗ܣ  

         4଴.   ܣ is the sum of a unitary opereter and a ϐinite-rank operator.  

Proof: (i) if dim kerܣ = dim  kerܣ∗, then ܣ =  ଵ/ଶ for some unitary(ܣ∗ܣ)ܷ

operatorܷ. Hence ܣ∗ܣ =  Then the .ܣ∗ܣ is unitarily equivalent to ∗ܷ(ܣ∗ܣ)ܷ

same is true for ܫ − ܫ  and ܣ∗ܣ − Thus ݀஺ .∗ܣܣ = ݀஺∗ . 

        (ii) It was proven that if ܣ∗ܣ ∗ܣܣ ,.ଵ⨁ 0 (respܣ = ܪ ଶ⨁ 0) onܣ = =

ranܣ∗തതതതതതതത⨁ ker ܣ (resp.,ܪ = ranܣ∗തതതതതതതത⨁ kerܣ∗), then ܣଵ and ܣଶ are unitarily 

equivalent. If ݀஺ = ݀஺∗ < ∞, then   

          rank (ܫ − (ଵܣ + dim kerܣ = rank (ܫ − (ܣ∗ܣ = rank (ܫ −  (∗ܣܣ

                                    = rank (ܫ − (ଶܣ + dim  kerܣ∗ 

And hence dim ker ܣ = dim  kerܣ∗. This proves that 1଴ implies 2଴ If 2଴.hold, 

then the unitary equivalence of ܣଵ and ܣଶ implies the same for ܣ∗ܣ  and ܣܣ∗, 

that is, 2଴ implies 3଴. Now assume that 3଴ holds. Since ker ܣ∗ܣ = kerܣ and 

kerܣܣ∗ = kerܣ∗, the unitary equivalent of ܣ∗ܣ and ܣܣ∗ implies that 

dim kerܣ = dim  kerܣ∗. Hence ݀஺ = ݀஺∗ by (i), that is, 1଴ holds. Finally, the 

equivalence of 1଴and 4଴was proven. 

       Note that, in the preceding lemma, ݀஺ = ݀஺∗ = ∞ does not imply 

dim ker ܣ = dim  kerܣ∗in general, For example, if  

ܣ       = diag (1, 1 2⁄ , 1 3⁄ ,⋯ )⨁  ܵ, where S is the (simple) unilateral shift, 

then ݀஺ = ݀஺∗ = ∞, dim ker ܣ  = 0 and dim  kerܣ∗ = 1. 

Theorem (2.1.8)[2]. Let ܣ be a contraction with ݀஺ = ݀஺∗ < ∞. Then 

dim ܪஶ < ∞ if and only if the completely nonunitary part of ܣ acts on a finite-

dimentional space. 

Proof: Assume that dim ܪஶ < ∞ and let 

ܣ               = ൥
ᇱܣ 0 0
ܤ ܵ௠ 0
0 0 ܷ

൩ , on ܪ =                                           ,ଶܭ⨁ଵܭ⨁ஶܪ

Where ܵ௠ denotes the unilateral shift with multiplicity ݉, 0 ≤ ݉ ≤ ∞, and ܷ is 



 
 

unitary. We need to show that ܵ௠ does not appear in this representation of ܣ or, 

equivalently, ݉ = 0. We first prove that ݉, is finite. Indeed, since 

ܫ             − ∗ܣܣ = ൥
ܫ − ∗ᇱܣᇱܣ ∗ܤᇱܣ− 0
∗ᇱܣܤ− ܫ − ∗ܤܤ − ܵ௠ܵ௠∗ 0

0 0 0
൩,  

We have 

݉ = rank (ܫ − ܵ௠ܵ௠∗ ) ≤ rank (ܫ − ∗ܤܤ − ܵ௠ܵ௠∗ ) +  rank ܤܤ∗ 

                                                   ≤ rank (ܫ − (∗ܣܣ +  rank ܤܤ∗ 

                                                   ≤ ݀஺∗ +  dim ܪஶ < ∞ 

As asserted. Now to show that ݉ = 0, consider ܵ௠ as  

ܬ                 = ൦

଴
ூ೘ ଴

ூ೘ ଴

     ⋱

   
   

 ⋱

൪ 

Then ܤ is of the form [ܤᇱ 0  0 ⋯]். Let ܣሚ = ൤ ܣ
ᇱ   0

ᇱܤ  0
൨. Since ܣሚ acts on 

a finite-dimensional space, we have ݀஺෨ = ݀஺෨∗  by Lemma (2.1.7)(i). Then  

             ݀஺∗ = rank (ܫ −  (ܣ∗ܣ

                    = rank ൤ܫ − ∗ᇱܣᇱܣ ∗ܤᇱܣ−
∗ᇱܣܤ− ܫ − ∗ܤܤ − ܵ௠ܵ௠∗

൨ 

                    = ݀஺෨∗ = ݀஺෨ =  rank ൤ܫ − ᇱܣ∗ᇱܣ − ᇱܤ∗ᇱܤ 0
0 ௠ܫ

൨ 

                    = ݉ + rank ( ܫ − ᇱܣ∗ᇱܣ −  (ᇱܤ∗ᇱܤ

                    = ݉ + rank ( ܫ − ᇱܣ∗ᇱܣ −  (∗ܤܤ 

                    = ݉ + rank ൥
ܫ − ᇱܣ∗ᇱܣ − ∗ܤܤ  0 0

0 0 0
0 0 0

൩ 

                    = ݉ + rank ( ܫ − (ܣ∗ܣ = ݉ + ݀஺. 

We infer from the assumption ݀஺ = ݀஺∗ < ∞ then ݉ = 0. Thus ܣ =  ,ܷ ⨁ᇱܣ

where ܣᇱ is the c.n.u. part of ܣ acting on the finite-dimensional space ܪஶ.           

       The converse is trivial. The next two results are valid for any operators. 



 
 

Proposition (2.1.9)[2]. If ܣ is an operator with ݀஺ = ݀஺∗ , then ݀஺೙ =

݀஺೙∗ for all ݊ ≥ 1. 

Proof: If ݀஺ = ݀஺∗ < ∞ then ܣ = ܷ + ௡ܨ  where ܷ is unitary and ܨ has finite 

rank, by Lemma (2.1.7)(ii). For any ݊ ≥ 1, we have ܣ௡ = ܷ௡ +  ௡ isܨ ௡ whereܨ

some finite-rank operator. By Lemma (2.1.7)(ii) again, this implies that 

݀஺೙ = ݀஺೙∗ . On the other hand, if ݀஺ = ݀஺∗ = ∞, then ݀஺೙ = ݀஺೙∗ = ∞, for 

any ݊ ≥ 1 by Theorem (2.1.1)(ii). This completes the proof. 

      Two operators ܣ on ܪ and ܤ on ܭ are said to be quasi-similar if there 

operators ܺ:ܪ → ܭ:ܻ and ܭ →  which are one and have dense range such ܪ

that ܺܣ = ܤܻ and ܺܤ =  We conclude this section with the following result .ܻܣ

on quasi-similar operators.  

Proposition (2.1.10)[2]. Let ܣ and ܤ be quasi-similar operators. If 
݀஺ = ݀஺∗ < ∞, then ݀஺ = ݀஻∗ . 

Proof. Our assumption of ݀஺ = ݀஺∗ < ∞ implies, by Lemma (2.1.7)(ii), that  

dim kerܣ = dim  kerܣ∗. The quasi-similarity of ܣ and ܤ then yields 

             dim ker ܤ = dim  kerܣ = dim ker ܣ∗ = dim  ker  ∗ܤ 

Then ݀஻ = ݀஻∗ by lemma (2.1.7)(i). 

       Note that the preceding proposition is false if  ݀஺ = ݀஺∗ = ∞. 

Example (2.1.11)[2]. Let {ܽ௡}௡ୀଵஶ  be a sequence of distinct complex 

numbers in ॰ with ∑ (1 − |ܽ௡|௡ ) < ∞. Let ܣ = diag (ܽଵ,ܽଶ,⋯ )⨁ܵ, where ܵ 

denotes the (simple) unilateral shift. Let ∅ be the Blaschke product with zeros 

ܽ௡:     ߶(ݖ) = ∏ ௔೙തതതത
|௔೙|

௭ି௔೙
ଵି௔೙തതതത௭

ݖ    , ∈ஶ
௡ୀଵ  ॰, 

And let ܤ = ܵ(߶) ⨁ ܵ, where ܵ(߶) denotes the compression of the shift 

              ܵ(߶)݂ = ܲ൫(ݖ)݂ݖ൯,    ݂ ∈ ଶܪ  ,ଶܪ߶⊖

P being the (orthogonal) projection from ܪଶ onto ܪଶ⊖߶ܪଶ. It is known that 

 diag (ܽ௡) is itself a ܥ଴ contraction which is quasi-similar to ܵ(߶). Thus ܣ is 

quasi-similar to ܤ. But ݀஺ = ݀஺∗ = ∞, ݀஻ = 1 and ݀஻∗ = 2 



 
 

Section (2.2): Norm-one Index and Contractive Functions of a 

Contraction 

       As defined the norm-one index of a contraction ܣ on ܪ is ܭ஺ ≡

sup(݊ ≥ ‖௡ܣ‖ :0 = 1}. This number is to measure how far the powers of ܣ 

remain to have norm one. It is easily seen that (i) 0 ≤ ܣܭ ≤ ∞, ܣܭ (݅݅) = 0 if 

and only if ‖ܣ‖ < 1, and (iii) ܭ஺ = ∞ if and only if (ܣ)ߪ ∩ ߲॰ ≠ ∅. The main 

result say that if dimܪ = ݉ < ∞,  then (iv) 0 ≤ ஺ܭ ≤ ݉− 1 or ܭ஺ = ∞ or 

(v) ܭ஺ = ݉− 1 if and only if ܣ is of class ܵ௠, and (vi) ܭ஺ ≥ (݉ ݀஺⁄ ) − 1. 

The purpose of this chapter is to determine when the equality holds in (vi). 

Theorem (2.2.1)[2]. Let ܣ be a contraction on an m-dimensional space. 

Then ܭ஺ = (݉ ݀஺⁄ ) − 1 if and only if one of the following holds: 

(i) ܣ is unitary, 

(ii)  (ܣ)ߪ ⊆ ॰, ݀஺ divides ݉, and ݀஺೙ = ݊݀஺ for all ݊, 1 ≤ ݊ ≤

           ݉ ݀஺⁄ . 

Proof: Assume that  ܭ஺ = (݉ ݀஺⁄ ) − 1. If (ܣ)ߪ ∩ ߲॰ ≠ ∅, then (݉ ⁄ܣ݀ ) −

1 = ∞, which implies that ݀஺ = 0 or ܣ is unitary. Hence we may assume that 

(ܣ) ⊆ ॰. Then  ܭ஺ < ∞. From ܭ஺ = (݉ ݀஺⁄ ) − 1, we have(݀ܣ|݉). By the 

pigeonhole principle and theorem (2.1.2)(ii), there is a smallest integer ݈, 1 ≤

݈ ≤ ݉, such that ݀஺೗ = ݀஺೗శభ . since ܣ has no unitary part, this is equivalent to 

ܫ − ௟ฮܣ௟ being one-to-one or ฮܣ∗௟ܣ < 1. As ݈ is the smallest such integer, we 

obtain ܭ஺ = ݈ − 1. From ܭ஺ = (݉ ݀஺⁄ ) − 1, we have ݉ ⁄ܣ݀ = ݈. Note that 

݀஺೙ ≤ ݊݀஺ ݂1 ݎ݋ ≤ ݊ ≤ ݈ by Theorem (2.1.2)(i). If ݀஺೙బ < ݊଴݀஺ for some 

݊଴, 1 ≤ ݊଴ ≤ ݈, then  

           ݀஺೗ ≤ ݀஺೙బ + ݀஺೗ష೙బ < ݊଴݀஺ + (݈ − ݊଴)݀஺ = ݈݀஺ = ݉ 



 
 

Again by Theorem (2.1.2)(i). This contradicts the fact that ܫ − -௟ is one-toܣ∗௟ܣ

one. Hence we must have ݀஺೙ < ݊݀஺ for 1 ≤ ݊ ≤ ݉ ݀஺⁄ . This prove (ii).              

      Conversely, if (i) holds, that is, if ܣ is unitary, then  ܭ஺ = ∞ and ݀஺ = 0. 

hence ܭ஺ = (݉ ݀஺⁄ ) − 1. 

Now assume that (ii) holds. If  ݈ = ݉ ݀஺⁄ , then our assumptions imply that 

1 ≤ ݀஺ < ݀஺మ < ⋯ < ݀஺೗ = ݉. Hence ܫ − ܫ  ௟ is one-to-one, butܣ∗௟ܣ −

௟ฮܣ௟ିଵ is not. Thus ฮܣ∗௟ିଵܣ < 1 and ฮܣ௟ିଵฮ = 1. This yields ܭ஺ = ݈ − 1 =

(݉ ݀஺⁄ ) − 1 as required. 

     On an m-dimensional space, other than unitary operators, ܵ௠-operators and 

strict contractions (operators with norm strictly less than one), which 

correspond to ݀஺ = 0,1 and ݉, respectively, there are other contractions ܣ 

satisfying  ܭ஺ = (݉ ݀஺⁄ ) − 1. For example, if ܣ = ௟ᇣᇧᇧᇤᇧᇧᇥܬ ⨁⋯⨁௟ܬ
௠ ௟⁄

 where ݈ divides, 

 then ܣܭ = ݈ − 1 = (݉ ⁄ܣ݀ ) − 1. The same is true for the more general 

ܤ = 1ᇣᇧᇧᇤᇧᇧᇥܣ ⨁⋯⨁1ܣ
݉ ݈⁄

, where ܣଵ is an ଵܵ-operator. Another generalization of the a 

contraction ܣ is 

ܥ             = ൦

଴ ௔భ
଴ ⋱

⋱
            

    ௔೘షభ
଴

൪,                                                                   

Where ห ௝ܽห < 1 for ݆ = ݈݇, 1 ≤ ݇ ≤ (݉ ݈) − 1, and ห ௝ܽห = 1 ⁄ for all other ݆′ݏ. In 

this case, it is easily seen that ݀௖ equals ݉ minus number of ݆′ݏ for which 

ห ௝ܽห = 1 and hence ݀௖ = ݉ ݈⁄ . On the other hand, ܭ௖ equals the maximum 

number of consecutive ݆′ݏ whith ห ௝ܽห = 1, and thus  ܭ௖ = ݈ − 1. Therefore, 

஺ܭ = (݉ ݀஺⁄ ) − 1 holds. 

      In this chapter, we consider the defect indices of contractive functions of a 

contraction, instead of just its powers. The first one is Blaschke products: 



 
 

(ݖ)݂              = ∏ ௭ି௔ೕ
ଵି௔ണതതത௭

௡
௝ୀଵ ݖ   , ∈ ॰, where ห ௝ܽห < 1 for all ݆,  

Theorem (2.2.2)[2]. If ܣ is a contraction on ܪ and ݂ is a Blaschke product 

with ݊ zeros (counting multiplicity), then ݀௙(஺) = ݀஺೙ . 

Proof . Let ݂ be as above and let ௝݂(ݖ) = ݖ) − ௝ܽ) (1 − ఫܽഥܣ), ݖ ∈ ॰,⁄  for each 

݆. Let ܺ = ∏ ൫ܫ − ௝ܽܣ൯௡
௝ୀଵ ଵܭ, = ker(ܫ − ଶܭ ௡), andܣ∗௡ܣ = ker(ܫ −

ଵܭܺ We first show that .((ܣ)݂∗(ܣ)݂ ⊆ ,ଵܭ is in ݔ ଶ. indeed, ifܭ then ‖ܣ௡ݔ‖ =

 given by ݏ′Applying once (with ߶ଵ there as ଵ݂ and the remaining ߶௝ .‖ݔ‖

߶௝(ݖ) = ‖ yields (ݖ ଵ݂(ܣ)ܣ௡ିଵ(ܫ − ܽଵതതതݔ(ܣ‖ = ܫ)‖ − ܽଵതതതݔ(ܣ‖. We then apply 

repeatedly to obtain ‖ ଵ݂(ܣ)⋯ ௡݂(ܣ)ܺݔ‖ =  .ଶܭ is in ݔܺ This means that .‖ݔܺ‖

Hence we have ܺܭଵ ⊆   ଶ as asserted. Since ܺ is invertible, ifܭ

              ܺ = ൤ 
ଵݔ ∗  
0 ଶݔ 

൨ ܪ: = ଵୄܭ⨁ଵܭ → ܪ =                                   ,ଶୄܭ⨁ଶܭ

then ܺଶ has dense range. Thus ܺଶ∗:ܭଶୄ →   ,ଵୄ is one-to-one. Thereforeܭ

             ݀௙(஺)  = dim ܭଶୄ ≤ dim ܭଵୄ = ݀஺೙  

In a similar fashion, if ܻ = ∏ ൫ܫ + ఫܽഥܣ൯,௡
௝ୀଵ  then successive applications of also 

yield ܻܭଶ ⊆ ଵ. We can then infer as above that ݀஺೙ܭ ≤  ݀௙(஺). This proves their 

equality. 

      For more general functions, we use the Sz.-Nagy-Foias functional calculus 

for contractions. For any absolutely continuous contraction ܣ (this means that ܣ 

has no nontrivial reducing subspace on which ܣ is a singular unitary operator) 

and any function ݂ ݅݊ ܪஶ with ‖݂‖ஶ ≤ 1, the operator ݂(ܣ) can be defined and 

is again a contraction. Not that every function in ܪஶ can be factored as the 

product of an inner and an outer function, and every inner function is the 

product of a Blaschke product and a singular inner function. 

Note that if ݂ is as above, then ݂(ܣ) = ∏ ൫ܣ − ௝ܽܫ൯(ܫ − ఫܽഥܣ)ିଵ௡
௝ୀଵ  is also a 

contraction . 



 
 

Theorem (2.2.3)[2]. Let ܣ be an absolutely continuous contraction on 

ஶ with ‖݂‖ஶܪ and ݂ be a function in ܪ ≤ 1. 

(i) ܫf ݂ has an infinite Blaschke product factor, then ݀௙(஺) ≥ sup{݀஺೙ :݊ ≥

           0}. 

(ii) If ݂ is a (nonconstant) inner function, then ݀௙(஺) ≤ sup{݀஺೙ :݊ ≥ 0}. In 

particular, if ݂ is an inner function with an infinite Blaschke product factor, then 

݀௙(஺) = sup{݀஺೙ :݊ ≥ 0}. 

Proof: (i) For each ݊ ≥ 1, let ݂ = ௡݂g௡, where ௡݂ is a finite Blaschke product 

with ݊ zeros and g௡ is in ܪஶ. Then ݂(ܣ) = ௡݂(ܣ)g௡(ܣ). Theorem (2.2.2) and 

Lemma (2.1.1) imply that ݀஺೙ = ݀௙೙(஺) ≤ ݀௙(஺) for all ݊ ≥ 1. thus ݀௙(஺) ≥

sup{݀஺೙ :݊ ≥ 0}. 

         (ii) We may assume that n଴ ≡ sup{݀஺೙ :݊ ≥ 0} < ∞. This means that 

dimHஶ = n଴ is finite. Let  

ܣ             = ൥
ᇱܣ 0 0
ܤ ܵ௠ 0
0 0 ܷ

൩  on ܪ = Hஶ⨁ܭଵ⨁ܭଶ, 

Where ܵ௠ is the unilateral shift with multiplicity ݉, 0 ≤ ݉ ≤ ∞, and ܷ is 

unitary. Then  

(ܣ)݂              = ቎
(ᇱܣ)݂ 0 0
ܥ ݂(ܵ௠) 0
0 0 ݂(ܷ)

቏. 

Note that ݂(ܵ௠) is itself a unilateral shift, say, ௟ܵ(0 ≤ ݈ ≤ ∞) and ݂(ܷ) is 

unitary because ݂ is inner. Hence 

ܫ               − (ܣ)݂∗(ܣ)݂ = ൥
ܫ − (ᇱܣ)݂∗(ᇱܣ)݂ − ܥ∗ܥ ∗ܥ− ௟ܵ 0

− ௟ܵ
ܥ∗ 0 0

0 0 0
൩ 

                                         = ൥
ܫ − (ᇱܣ)݂∗(ᇱܣ)݂ − ܥ∗ܥ 0 0

0 0 0
0 0 0

൩ 

Since ܫ − (ܣ)݂∗(ܣ)݂ ≥ 0, Therefore, 



 
 

                 ݀௙(஺) =  rank (ܫ − (ᇱܣ)݂∗(ᇱܣ)݂ − (ܥ∗ܥ ≤ rank (ܫ −  ((ᇱܣ)݂∗(ᇱܣ)݂

                            = ݀௙(஺ᇲ) ≤ n଴. 

This completes the proof. 

       Note that Theorem (2.2.3)(i) is in general false if ݂is a finite Blaschke 

product. For example, if A = ቂ0 1
0 0ቃ  and ݂(ݖ) = ,ݖ then ݀௙(஺) = ݀஺ = 1, but 

 sup{݀஺೙ :݊ ≥ 0} = 2. Theorem (2.2.3)(ii) is also false for general ݂ in ܪஶ 

with ‖݂‖ஶ ≤ 1. As an example, let ܣ be the (simple) unilateral shift. Then 

sup{݀஺೙ :݊ ≥ 0} = 0. On the other hand, ݂(ܣ) is an analytic Toeplitz operator 

with symbol ݂, which is an isometry if and only if ݂ is inner. Thus ݀௙(஺) = 0 

can happen only when ݂ is inner. The next corollary generalizes Proposition 

(2.1.9). 

Corollary (2.2.4)[2]. if ܣ is an absolutely continuous contraction and ݂ is 

either a finite Blaschke product or an inner function with an infinite Blaschke 

product factor, then ݀௙(஺) = ݀௙(஺)∗ . 

Proof: since ݂(ܣ)∗ = ሚ݂(ܣ∗), where ሚ݂(ݖ) = ݖ ഥതതതതതത for(ݖ)݂ ∈ ॰, the assertion 

follows easily from Theorems (2.2.2) and (2.2.3). 

 

 

 

 

 

 

 

 



 
 

Chapter 3 

Type Maps in Cone Metric Space 
     Results are related to the cases when g is ƒ quasi contraction in a sense of 

Das and Naik, and the cone need not be normal. These results generalize several 

well known comparable results. 

Section (3.1): Cone Metric Space and Self-mappings 
    In 1922, Banach proved the following famous fixed point theorem. Let (ܺ,݀) 

be a complete metric space. Let g be a contractive mapping on X, that is, there 

exists ߣ ∈ [0,1) satisfying 

               ݀(gݔ, gݕ) ≤ ߣ ⋅ ,ݔ)݀  (1.1)                                                                         .(ݕ

for all ݔ, ݕ ∈ ܺ, then there exists a unique fixed point ݔ଴ ∈ ܺ of g. This 

Theorem, called the Banach contraction principle, is a forceful tool in nonlinear 

analysis. This principle has many applications an is extended by several authors. 

     The study of common fixed points of mappings satisfying certain contractive 

conditions has many applications and has been at the center of various research 

activity. For the convenience of the reader, let us recall the following results. 

Theorem (3.1.1)[3].  Let ܺ  be a complete metric space. Let ݂ be a 

continuous self-map on ܺ and g be any self-map on ܺ that commutes with ݂. 

Further let ݂, g satisfy 

             g(ܺ) ⊂ ݂(ܺ)                                                                                        (1.2)                           

and there exists a constant ߣ ∈ (0,1) such that for evry ݔ, ݕ ∈ ܺ 

݀(gݔ, gݔ) ≤ ߣ ⋅ ,ݔ݂)݀  (1.3)                                                                                       .(ݕ݂

then ݂ and g have a unique common fixed point. 

      If ݂ and g satisfy (1.2) and ݔ଴ ∈ ܺ, let us define ݔଵ ∈ ܺ  such that g(ݔ଴) =

௡ݔ Having defined .(ଵݔ)݂ ∈ ܺ, l݁ݔ ݐ௡ାଵ ∈ ܺ be such that g(ݔ௡) =  Set .(௡ାଵݔ)݂

௡ݕ =  g(ݔ௡), ݊ = 0,1,2, …. This procedure was essentially introduced by 

Jungch, and is Picard iteration procedure when ݂ =  .ܺ ௑ is the identity map onܫ



 
 

Theorem (3.1.2)[3]. Let ܺ  be a complete metric space. Let ݂ be a 

continuous self-map on ܺ and g be any self-map on ܺ that commutes with ݂. 

Further let ݂, g satisfy (1.2) and there exists a constant 

ߣ ∈ (0,1) such that for evry ݔ, ݕ ∈ ܺ 

         ݀(gݔ, gݔ) ≤ ߣ ⋅ ,ݔ)ܯ  (1.4)                                                                                 ,(ݕ

Where  

(ݕ,ݔ)ܯ         = max ൜
,(ݕ݂,ݔ݂)݀ ,ݔ݂)݀ gݔ), ,ݔ݂)݀ gݕ), ,ݕ݂)݀ gݕ),   

,ݕ݂)݀ gݔ) ൠ .          (1.5)    

Then ݂ and g have a unique common fixed point. 

       Let us mention that if ݂ =  ,௑ is identity map on ܺ, and g satisfies (1.5)ܫ

than g is called quasi contraction.Cሖ irić introduced and studied quasicontraction 

as one of the most general contractive type map. The well known Cሖ irićᇱݏ result 

is that quasicontraction g possesses a unique fixed point.   

     There exist a lot fixed- point theorems for self-mappings defined on closed 

subset of Banach space. However, for applications (numerical analysis, 

optimization, etc.) it is important to consider functions that are not self-

mappings. And it is natural to search for sufficient conditions which would 

guarantee the existence of fixed points for such mappings. The study of fixed 

point Theorems for non-self mappings in metrically convex spaces was initiated 

by Assad and Kirk which proved productive as metrically convex spaces offer a 

natural setting for proving such results. In recent years this technique has been 

exploited by many authors and by now there exists considerable literature on 

this topic. To mention a few, and let us recall the next result. 

Theorem (3.1.3)[3].  let ܺ be a Banach space, ܥ a nonempty closed subset of 

ܺ, and ߲ܥ the boundary of ܥ. Let ܶ:ܥ → ܺ  be a nonself mapping such that for 

some constant ߣ ∈ (0,1) and for every ݔ, ݕ ∈                                ܥ

(ݕܶ,ݔܶ)݀  ≤



 
 

ߣ     ⋅

max{݀(ݔ, ,(ݕ ,(ݔܶ,ݔ)݀ ,(ݕܶ,ݕ)݀ ,(ݕܶ,ݔ)݀  (1.6)                                       {(ݔܶ,ݕ)݀

Suppose that  

( ܥ߲ )ܶ            ⊂  (1.7)                                                                                                      ܥ

then ܶ has a unique fixed point in ܥ. 

    Let us remark that to extend the known fixed point theorem for self quasi 

contraction ܶ:ܥ → ܥ:ܶ to corresponding non self mapping ܥ → ܥ,ܺ ≠ ܺ, was 

open more than 20 yr. 

Definition (3.1.4)[3]. Let ܺ be a linear space. Suppose that the mapping 

‖⋅‖:ܺ →  :satisfies ܧ

    (i) ‖ݔ‖ ≻ 0 for all ݔ ∈ ܺ, and ‖ݔ‖ = 0 if and only if ݔ = 0; 

    (ii) ‖ݔߣ‖ = ݔ for all ‖ݔ‖|ߣ| ∈ ܺ, ߣ ∈ ℂ; 

    (iii) ‖ݔ + ‖ݕ ≺ ‖ݔ‖ + ,ݔ for all  ‖ݕ‖ ݕ ∈ ܺ. 

Then ‖⋅‖ is called a cone norm on ܺ and (ܺ,‖⋅‖) is called a cone normed space. 

    Each cone normed space ܺ is a cone metric space with cone metric in ܺ 

defined by means of the formula 

,ݔ)݀             (ݕ = ݔ‖ − ,ݔ   ,‖ݕ ݕ ∈ ܺ.                                                                      (1.8) 

Definition (3.1.5)[3]. Let (ܺ, ݀) be a cone metric space, ݔ ∈ ܺ and {ܺ௡}௡ஹଵ 

as a sequence in ܺ. Then 

(i)  {ܺ௡}௡ஹଵ converge to ݔ whenever for every ܿ ∈ with 0 ܧ ≪ ܿ there is a 

           natural number ܰ such that ݀(ݔ௡ (ݔ, ≪ ܿ for all ݊ ≥ ܰ. we denote     

           this by lim௡→ஶ ௡ݔ = ௡ݔ or ݔ →  .ݔ

(ii)   {ܺ௡}௡ஹଵ Is a Cauchy sequence if for every ܿ in ܧ with 0 ≪ ܿ, there is               

             a natural number N such that ݀(ݔ௡ , (௠ݔ ≪ ܿ for all ݊,݉ ≥ ܰ. 

(iii)  (ܺ, ݀) Is a complete cone metric space if every Cauchy sequence is 

            convergent. 

 (iv)  let ݂:ܺ → ܺ and ݔ଴ ∈ ܺ. Function ݂ is continuous at ݔ଴ if any   

            sequence ݔ௡ → (௡ݔ)݂ ଴ we haveݔ →  .(଴ݔ)݂



 
 

Example (3.1.6)[3]. Let ܺ = ℝ,ܧ = ℝ௡ and ܲ = ⋯,ଵݔ)} (௡ݔ, ∈ ℝ௡: ௜ݔ ≥

0}. it is easy to see that ݀:ܺ × ܺ → ,ݔ)݀ defined by ܧ (ݕ = ݔ|) − ,|ݕ ݇ଵ|ݔ −

⋯,|ݕ , ݇௡ିଵ|ݔ − is a cone metric on ܺ, where ݇௜ (|ݕ ≥ 0 for all ݅ ∈

{1,⋯ , ݊ − 1}. 

Example (3.1.7)[3]. Let ܧ = ݈ଵ,ܲ = ௡ஹଵ{௡ݔ}} ∈ ௡ݔ :ܧ ≥ 0; for all ݊}, (ܺ,ߩ) 

be a metric space and ݀:ܺ × ܺ → (ݕ,ݔ)݀ defined by ܧ = ቄఘ(௫,௬)
ଶ೙

ቅ
௡ஹଵ

.Then 

(ܺ, ݀) is a cone metric space. 

Example (3.1.8)[3]. Let ܧ = ‖݂‖ ℝଵ([0,1]) with normܥ = ‖݂‖ஶ + ‖݂ଶ‖ஶ. 

the cone ܲ = {݂ ∈ :ܧ ݂ ≥ 0} is a non-normal cone.                                                                

        We need the following lemma in the sequel. 

Lemma (3.1.9)[3]. Let (ܺ,݀) be a cone metric space. Then, the following 

statements hold. 

(i) If ݑ ≺ ݒ and ݒ ≪ ,ݓ then ݑ ≪  .ݓ

(ii) If ݑ ≪ ݒ and ݒ ≺ ,ݓ then ݑ ≪  .ݓ

(iii) If ݑ ≪ ݒ and ݒ ≪ ,ݓ then ݑ ≪  .ݓ

(iv) If 0≺ ݑ ≪ ܿ, for each ܿ ∈ int ܲ then ݑ = 0. 

(v) Let ݔ ∈ ܺ, ,ܺ ௡ஹଵ and {ܾ௡}௡ஹଵ two sequences in{௡ݔ} 0 ≪ ܿ and 0   

           ≺ ௡ݔ)݀ (ݔ, ≺ ܾ௡ for all ݊ ≥ 1. if ܾ௡ → 0, then there exists a natural 

number N such that ݀(ݔ௡ (ݔ, ≪ ܿ for all ݊ ≥ ܰ. 

Definition (3.1.10)[3]. Let (ܺ,݀) be a cone metric space, and let g,݂:ܺ →

ܺ,  then g is called ݂-quasi contraction if for some 

constant ߣ ∈ (0,1) and for every ݔ, ݕ ∈ ܺ, there exists 

ݑ         ∈ ;݂)ܥ (ݕ,ݔ = ,(ݕ݂,ݔ݂)݀} ,ݔ݂)݀ gݔ), ,ݔ݂)݀ gݕ), ,ݕ݂)݀ gݕ݂)݀,(ݕ, gݔ)}, 

 such that  

         ݀(gݔ, gݕ) ≺ ߣ ⋅         (1.9)                                                                                              .ݑ

      since, in the case of the cone metric spaces, the set ܥ(݂;  need not even (ݕ,ݔ

have the sup in ordered Banach space ܧ, then, we use "߳". It clear that " ߳" can 



 
 

be used in metric spaces, while"≺ " cannot be used, in general, in cone metric 

spaces. 

Theorem (3.1.11)[3]. Let (ܺ,݀) be a cone metric space, and ܲ a normal 

cone. let g, ݂:ܺ → ܺ, ݂  commutes with g, ݂ or g is continuous, and satisfy (1.2) 

and (1.9). Let {ݕ௡} be the sequence defined by procedure introduced by Jungck. 

Sequence {ݕ௡} is a Cauchy and lim௡{ݕ௡} = ݕ ∈ ܺ. then ݂ and g have a 

common unique fixed point u in ܺ. In the case when ݂ is continuous, then 

ݑ = gݕ = ;ݕ݂ if g is continuous, then ݑ =  .ݕ

     In this chapter we study common fixed points for the self and non-self (g, ݂) 

type maps in cone metric spaces. Our main results are related to the cases when 

g is ݂ quasi contraction in a sense of Das and Naik, and cone need not be 

normal. These results generalize several well known comparable results in the 

literature. In this chapter we study quasi contraction type self mappings on cone 

metric spaces. The intention is to prove previous results in the frame of cone 

metric spaces in which the cone need not be normal. We begin with the 

following result. 

Theorem (3.1.12)[3]. Let (ܺ,݀) be a complete cone metric space. Let ݂ a 

continuous self-map on X and g be any self-map on ܺ that commutes with݂. 

Further let ݂ and g satisfy 

         gܺ = ݂ܺ                                                                                                    (1.10)                                                              

and there exists a constant ߣ ∈ (0, 1 2⁄ ) such that for every ݕ,ݔ ∈ ܺ, there 

exists 

,ݔ)ݑ           (ݕ ∈ ,݂)ܥ (ݕ,ݔ =

,ݔ݂)݀}                                       ,(ݕ݂ ,ݔ݂)݀ gݔ), ,ݔ݂)݀ gݕ), ,ݕ݂)݀ gݕ), ,ݕ݂)݀ gݔ)}                                

Such that  

         ݀(gݔ, gݕ) ≺ ,ݔ)ݑߣ                                                                   (1.11)                                                                           .(ݕ

Then ݂ and g have the unique common fixed point. 

Note that the corresponding result in the case when ݂ = ݅௑  and ߣ ∈ (0,1). 



 
 

Proof: Let us remark that the condition (1.10) implies that starting with an 

arbitrary ݔ଴ ∈ ܺ, we can construct a sequence {ݕ௡} of points in ܺ such that 

௡ݕ = gݔ௡ = ,௡ାଵݔ݂ for all ݊ ≥ 0. we shall prove that {ݕ௡} is a Cauchy 

sequence. First, we show that 

,௡ݕ)݀               (௡ାଵݕ ≺ ఒ
ଵିఒ

,௡ିଵݕ)݀  ௡)               (1.12)ݕ

 for all ݊ ≥ 1. indeed, 

௡ݕ)݀               (௡ାଵݕ, = ݀(gݕ௡ , gݕ௡ାଵ) ≺ ௡ݑߣ ,                                                  (1.13)  

where  

௡ݑ               ∈ ൜
௡ݔ݂)݀ ,(௡ାଵݔ݂, ௡ݔ݂)݀ , gݔ௡), ,௡ାଵݔ݂)݀ gݔ௡ାଵ),݀(݂ݔ௡ , gݔ௡ାଵ) ,

,௡ାଵݔ݂)݀ gݔ௡) ൠ                

                      = ,௡ିଵݕ)݀} ,(௡ݕ ,௡ିଵݕ)݀ ௡ݕ)݀,(௡ݕ , ,(௡ାଵݕ ,௡ିଵݕ)݀ ௡ݕ)݀,(௡ାଵݕ ,                         {(௡ݕ

                      = ,௡ିଵݕ)݀} ,(௡ݕ ௡ݕ)݀ , ,(௡ାଵݕ,௡ିଵݕ)݀,(௡ାଵݕ   .{ߠ

From (1.13) it follows four cases: 

(i) ݀(ݕ௡ , (௡ାଵݕ ≺ ,௡ିଵݕ)݀ߣ (௡ݕ ≺
ߣ

1 − ߣ
,௡ିଵݕ)݀  .(௡ݕ

(ii) ݀(ݕ௡, (௡ାଵݕ ≺ ௡ݕ)݀ߣ ௡ݕ)݀ ௡ାଵ) And soݕ, (௡ାଵݕ, = 0. In this case, (1.12) 

follow immediately, becauseߣ < ఒ
ଵିఒ

 

(iii) ݀(ݕ௡, (௡ାଵݕ ≺ (௡ାଵݕ,௡ିଵݕ)݀ߣ ≺ (௡ݕ,௡ିଵݕ)݀ߣ + ௡ݕ)݀ߣ  ௡ାଵ). Itݕ,

              follows that (12) holds. 

( iv)  ݀(ݕ௡ , (௡ାଵݕ ≺ ߣ ⋅ 0 = 0 and so ݀(ݕ௡, (௡ାଵݕ = 0. Hence, (1.12) holds.  

Thus by putting ℎ = ఒ
ଵିఒ

, ௡ݕ)݀ , (௡ାଵݕ ≺ ℎ݀(ݕ௡ିଵ,ݕ௡). now, by using  (1.12) 

we have  

௡ݕ)݀          , (௡ାଵݕ ≺ ℎ݀(ݕ௡ିଵ,ݕ௡) ≺ ⋯ ≺ ℎ௡݀(ݕ଴,                                                  ,(ଵݕ

For all ݊ ≥ 1. Now, ݊ > ݉ we have 

௡ݕ)݀            , ≻ (௠ݕ ௡ݕ)݀ (௡ିଵݕ, + ,௡ିଵݕ)݀ (௡ିଶݕ + ⋯+ ,௠ାଵݕ)݀   (௠ݕ

                            ≺ (ℎ௡ିଵ + ℎ௡ିଶ + ⋯+ ℎ௠)݀(ݕ଴,  (ଵݕ

                            ≺ ௛೘

ଵି௛
଴ݕ)݀ (ଵݕ, → ݉ as ߠ → ∞. 



 
 

By Lemma (3.1.10) (v) and (i), {ݕ௡} is a Cauchy sequence. Therefore, there 

exists  ݖ ∈ ܺ such that 

௡ݕ               = gݔ௡ = ௡ାଵݔ݂ →  .ݖ

Now we show that ݂ݖ = gݖ =  In this way, note that .ݖ

,ݖ݂)݀                gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ݀(g݂ݔ௡ , gݖ),                                               

for all ݊ ≥ 1. Also we have ݀(g݂ݔ௡ , gݖ) ≺ ݊ ௡ for allݑߣ ≥ 1, where 

௡ݑ             ∈ {݀(݂ଶݔ௡ , ,(ݖ݂ ݀(݂ଶݔ௡, g݂ݔ௡),݀(݂ݖ, gݖ), ݀(݂ଶݔ௡ , gݖ݂)݀,(ݖ, g݂ݔ௡)}.  

Let 0 ≪ ܿ. Since g݂ݔ௡ = ݂gݔ௡ → ௡ݔand ݂ଶ ݖ݂ →  choose a natural number ,ݖ݂

݊଴ such that for all ݊ ≥ ݊଴ we have ݀(݂ݖ, g݂ݔ௡) ≪ (ଵିఒ)௖
ଶ

 and ݀(݂ଶݔ௡, (ݖ݂ ≪

(ଵିఒ)௖
ଶఒ

. Thus, we obtain the following cases: 

(i)  ݀(݂ݖ, gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ,௡ݔଶ݂)݀ߣ (ݖ݂ ≪ ௖
ଶ

+ ߣ ௖
ଶఒ

= ܿ. 

(ii)  ݀(݂ݖ, gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ௡ݔଶ݂)݀ߣ , g݂ݔ௡) 

                        ≺ ,ݖ݂)݀  g݂ݔ௡) + ௡ݔ൫݀(݂ଶߣ (ݖ݂, + ,ݖ݂)݀ g݂ݔ௡)൯ 

                        = (1 + ,ݖ݂)݀(ߣ g݂ݔ௡) + ௡ݔଶ݂)݀ߣ ,  (ݖ݂

                        ≪ (1 + (ߣ (ଵିఒ)௖
ଶ

+ ߣ (ଵିఒ)௖
ଶఒ

< ௖
ଶ
≪ ܿ  

(iii)  ݀(݂ݖ, gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ,ݖ݂)݀ߣ gݖ).  

 Hence, ݀(݂ݖ, gݖ) ≺ ଵ
ଵିఒ

,ݖ݂)݀ g݂ݔ௡) ≪ ଵ
ଵିఒ

(ଵିఒ)௖
ଶ

≪ ܿ 

(iv)   ݀(݂ݖ, gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ௡ݔଶ݂)݀ߣ , gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) +

௡ݔ൫݀(݂ଶߣ           (ݖ݂, + ,ݖ݂)݀ gݖ)൯. 

  Hence, 

,ݖ݂)݀        gݖ) ≺ ଵ
ଵିఒ

,ݖ݂)݀ g݂ݔ௡) + ଵ
ଵିఒ

݀(݂ଶݔ௡ , gݖ) ≪  ଵ
ଵିఒ

(ଵିఒ)௖
ଶ

+

                                ఒ
ଵିఒ

(ଵିఒ)௖
ଶఒ

= ܿ 

(v)  ݀(݂ݖ, gݖ) ≺ ,ݖ݂)݀ g݂ݔ௡) + ,ݖ݂)݀ߣ ݂gݔ௡) = (1 + ,ݖ݂)݀(ߣ g݂ݔ௡)  

                           ≪(1 + (ߣ (ଵିఒ)௖
ଶ

< ௖
ଶ
≪ ܿ.  



 
 

Therefore, ݀(݂ݖ, gݖ) ≪ ܿ for all 0 ≪ ܿ. By Lemma (3.1.10)(iv), ݀(݂ݖ, gݖ) = 0 

and so ݂ݖ = gݖ. Thus,  

,ݖ݂)݀         (ݖ ≺ ݀(gݖ, gݔ௡) + ݀(gݔ௡, (ݖ ≺ ݀(gݔ௡ , (ݖ +  ,௡ݒߣ

Where 

௡ݒ                    ∈ ௡ݔ݂)݀} , ,(ݖ݂ ,௡ݔ݂)݀ gݔ௡),݀(݂ݖ, gݖ), ,௡ݔ݂)݀ gݖ), ,ݖ݂)݀ gݔ௡)}  

                      = ௡ݔ݂)݀} , ,(ݖ݂ ௡ݔ݂)݀ , gݔ௡), 0, ,ݖ݂)݀ gݔ௡)}. 

Let 0 ≪ ܿ be given. Choose a natural number ݊଴ such that for all ݊ ≥ ݊଴ we 

have ݀(݂ݔ௡ , (ݖ ≪ (ଵିఒ)௖
ଶఒ

 and ݀(gݔ௡ , (ݖ ≪ (ଵିఒ)௖
ଶ

.                                        

Again, we have the following cases:  

 (i)   ݀(݂ݖ, (ݖ ≺ ݀(gݔ௡ , (ݖ + ௡ݔ݂)݀ߣ (ݖ݂, ≺ ݀(gݔ௡, (ݖ + ,௡ݔ݂)݀ߣ (ݖ݂ +

,ݖ)݀ߣ               .(ݖ݂

Hence, 

,ݖ݂)݀         (ݖ ≺ ଵ
ଵିఒ

݀(gݔ௡ , (ݖ + ఒ
ଵିఒ

௡ݔ݂)݀ , (ݖ݂ ≪ ଵ
ଵିఒ

(ଵିఒ)௖
ଶ

+ ఒ
ଵିఒ

(ଵିఒ)௖
ଶఒ

= ܿ 

(ii)   ݀(݂ݖ, (ݖ ≺ ݀(gݔ௡ , (ݖ + ௡ݔ݂)݀ߣ , gݔ௡) ≺ ݀(gݔ௡ , (ݖ + ௡ݔ݂)݀ߣ (ݖ݂, +

,ݖ)݀ߣ              gݔ௡) = (1 + ,ݖ)݀(ߣ gݔ௡) + ௡ݔ݂)݀ߣ  (ݖ݂,

                     ≪ (1 + (ߣ
(1 − ܿ(ߣ

2
+ ߣ

(1 − ܿ(ߣ
ߣ2

=
2 − ଶߣ − ߣ

2
ܿ ≪ ܿ. 

 (iii)   ݀(݂ݖ, (ݖ ≺ ݀(gݔ௡ , (ݖ + ߣ ⋅ ߠ =  ݀(gݔ௡ , (ݖ ≪ ܿ. 

 (iv)   ݀(݂ݖ, (ݖ ≺ ݀(gݔ௡ , (ݖ + ,ݖ݂)݀ ߣ gݔ௡) ≺ ݀(gݔ௡ , (ݖ + ,ݖ݂)݀ߣ (ݖ +

,ݖ)݀ߣ              gݔ௡). 

Hence,  

,ݖ݂)݀           (ݖ ≺ ଵାఒ
ଵିఒ

 ݀(gݔ௡, (ݖ ≪ ଵାఒ
ଵିఒ

+ (ଵିఒ)௖
ଶ

≪ ܿ. 

Therefore, ݀(݂ݖ, (ݖ ≪ ܿ for all 0≪ ܿ. By Lemma (3.1.9).(iv) ݂ݖ = gݖ =  is a ݖ

common fixed point for ݂ and g. Uniqueness follows easily from (1.11). 

       From Theorem (3.1.12), as corollaries, among other things, we recover and 

generalize the results of Huang and Zhang, and Rezapour and HamIbarani. As 



 
 

consequences, we also obtain cone metric versions, Finally, in the next 

corollary, we extend the well known Jungck result (Theorem (3.1.1)). 

Corollary (3.1.13)[3]. Let (ܺ, ݀) be a complete cone metric space. Let ݂ a 

continuous self-map on ܺ and g be any self-map on ܺ that commutes with ݂. 

Further let ݂ and g satisfy gܺ ⊂ ݂ܺ and that for some constant ߣ ∈ (0,1) and 

every ݔ, ݕ ∈ ܺ,  

               ݀(gݔ, gݕ) ≺ ߣ ⋅ ,ݔ݂)݀   .(ݕ݂

Then ݂ and g have the unique common fixed point.  Now, we prove a result 

analogue to Theorem (3.1.2) in the frame of cone metric space when the cone 

need not be normal, i.e., cone version of Das and Naik. 

Theorem (3.1.14)[3]. Let (ܺ, ݀) be a complete cone metric space. Let ݂ଶ a 

continuous self-map on ܺ and g be any self-map on ܺ that commutes with ݂. 

Further let ݂ and g satisfy  

             g݂ܺ ⊂ ݂ଶܺ                                                                                          (1.14) 

and there exists a constant ߣ ∈ (0, 1 2⁄ ) such that  for every ݔ, ݕ ∈ ܺ, there 

exists  

,ݔ)ݑ             (ݕ = ,ݔ݂)݀} ,(ݕ݂ ,ݔ݂)݀ gݕ݂)݀,(ݔ, gݕ), ,ݔ݂)݀ gݕ), ,ݕ݂)݀ gݔ)},                       

Such that 

            ݀(gݔ, gݕ) ≺ ,ݔ)ݑߣ  (1.15)                                                                       .(ݕ

Then ݂ and g  have the unique common fixed point. 

Proof: By (1.14) starting with an arbitrary ݔ଴ ∈ ݂ܺ, we can construct a 

sequence {ݔ௡} of points in ݂ܺ such that ݕ௡ = gݔ௡ = ݊,௡ାଵݔ݂ ≥ 0 (as in 

Theorem (1.12). Now ݂ݕ௡ାଵ = ݂gݔ௡ାଵ = g݂ݔ௡ାଵ = gݕ௡ = ݊,௡ݖ ≥ 1. As in the 

Theorem (1.13). We prove that {ݖ௡} is a Cauchy sequence and hence 

convergent to some ݖ ∈ ܺ. Further, we shall show that ݂ଶݖ = g݂ݖ. Since 

lim௡→ஶ ௡ݕ݂ = lim௡→ஶ ݂gݔ௡ = lim௡→ஶ g݂ݔ௡ 

               = lim௡→ஶ gݕ௡ = lim௡→ஶ ௡ݖ =   it follows that ,ݖ



 
 

        lim௡→ஶ ݂ସݔ௡ = lim௡→ஶ ݂ଷgݔ௡ = lim௡→ஶ g݂ଷݔ௡ = ݂ଶ                          ,ݖ

Because ݂ଶ is continuous. Now, we obtain 

       ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ݀(݂ଷgݔ௡ , g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ߣ ⋅ ௡ݑ , 

Where  

௡ݑ                        ∈ ൜
݀(݂ସݔ௡ , ݂ଶݖ), ݀(݂ସݔ௡ , g݂ଷݔ௡), ݀(݂ଶݖ, g݂ݖ), ݀(݂ସݔ௡ , g݂ݖ),

݀(݂ଶݖ, g݂ଷݔ௡) ൠ. 

Let 0 ≪ ܿ be given. Since ݂ଷgݔ௡ → ݂ଶݖ and ݂ସݔ௡ → ݂ଶݖ, choose a natural 

number ݊଴ such that for all ݊ ≥ ݊଴ we have ݀(݂ଶݖ, ݂ଷgݔ௡) ≪ ௖(ଵିఒ)
ଶ

 and  

݀(݂ସݔ௡ , g݂ଷݔ௡) ≪ (ଵିఒ)௖
ଶఒ

. Again, we have the following cases: 

(i)    ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ௡ݔସ݂)݀ߣ , ݂ଶݖ) ≪ ௖
ଶ

+ ߣ ௖
ଶఒ

= ܿ. 

(ii)   ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ௡ݔସ݂)݀ߣ  , g݂ଷݔ௡) 

                                 ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ௡ݔସ݂)݀ߣ , ݂ଶݖ) + ,ݖଶ݂)݀ߣ g݂ଷݔ௡) 

                                 = (1 + ,ݖଶ݂)݀(ߣ ݂ଷgݔ௡) + ,௡ݔସ݂)݀ߣ ݂ଶݖ)  

                             ≪ (1 + (ߣ ௖(ଵିఒ)
ଶ

+ ߣ (ଵିఒ)௖
ଶఒ

≪ ܿ. 

(iii)   ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ,ݖଶ݂)݀ߣ g݂ݖ). 

Hence, 

         ݀(݂ଶݖ, g݂ݖ) ≺ ଵ
ଵିఒ

݀(݂ଶݖ, ݂ଷgݔ௡) ≪ ଵ
ଵିఒ

௖(ଵିఒ)
ଶ

= ܿ. 

(iv)    ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ௡ݔସ݂)݀ߣ , g݂ݖ) ≺ ݀(݂ଶݖ,݂ଷgݔ௡) +

,௡ݔସ݂)݀ߣ           ݂ଶݖ) + ݀(݂ଶݖ, g݂ݖ). 

Hence,   

          ݀(݂ଶݖ, g݂ݖ) ≺ ଵ
ଵିఒ

݀(݂ଶݖ, ݂ଷgݔ௡) + ఒ
ଵିఒ

݀(݂ସݔ௡ , ݂ଶݖ) 

                              ≪ ଵ
ଵିఒ

௖(ଵିఒ)
ଶ

+ ఒ
ଵିఒ

(ଵିఒ)௖
ଶఒ

= ܿ. 

 (v)    ݀(݂ଶݖ, g݂ݖ) ≺ ݀(݂ଶݖ, ݂ଷgݔ௡) + ,ݖଶ݂)݀ߣ g݂ଷݔ௡) ≪ ௖
ଶ

+ ߣ ௖
ଶఒ

= ܿ. 

Therefore, ݀(݂ଶݖ, g݂ݖ) ≪ ܿ for all 0 ≪ ܿ. By Lemma (3.1.9).(iv), ݂ଶݖ =

g݂ݖ and so g݂ݖ is a common fixed point for ݂ and g. Indeed, putting in (1.15) 



 
 

ݔ = g݂ݖ, ݕ = (ݖg݂)we get g ݖ݂ = g݂ݖ. Because ݂ଶݖ = g݂ݖ; i.e., ݂(݂ݖ) =

g(݂ݖ), we have ݂(g݂ݖ) = g݂ଶݖ = g(g݂ݖ) = g݂ݖ. 

Section (3.2): The Non-Self Maps 

     In this chapter we consider quasi contraction and ݂-quasi contractions as 

non-self mappings in the frame of cone metric spaces in which the cone need 

not be normal.   

Definition (3.2.1)[3]. Let (ܺ, ݀) be a cone metric space, C a nonempty 

closed subset of ܺ, and g, ܥ:݂ → ܺ. If for some ߣ ∈ ቀ0, ଷି√ହ
ଶ
ቁ and for all 

ݕ,ݔ ∈   there exists ܥ

(ݕ,ݔ)ݑ              ∈ ,ݔ݂)݀ } ,ݔg)݀,(ݕ݂ ,(ݕ݂,ݕg)݀,(ݔ݂ ݀(gݔ, ,(ݕ݂ ݀(gݕ,  ,{(ݔ݂

 Such that  

             ݀(gݔ, gݕ)  (1.16)                                                                       ,(ݕ,ݔ)ݑߣ ≻

Then g is called ݂-quasicontractive mapping from ܥ into ܺ. 

Theorem (3.2.2)[3]. Let (ܺ, ݀) be a complete cone metric space, ܥ a 

nonempty closed subset of ܺ such that for each ݔ ∈ ݕ and ܥ ∉  there exists a ܥ

point ݖ ∈  such that ܥ߲

,ݔ)݀            (ݖ + (ݕ,ݖ)݀ = ,ݔ)݀  (1.17)                                                                     .(ݕ

Suppose that  g,݂:ܥ → ܺ are such that g is ݂-quasicontractive mapping of ܥ 

into ܺ and 

 (i) ߲ܥ ⊆ ,ܥ݂ gܥ ∩ ܥ ⊂  ,ܥ݂

 (ii) ݂ݔ ∈ ܥ߲ ⇒ gݔ ∈  ,ܥ

 (iii)  ݂ܥ is closed in ܺ. 

Then, there exists a coincidence point ݖ in ܥ. Moreover, if (g,݂) is a 

coincidentally commuting, then ݖ is the unique common fixed point of ݂ and g.   

Proof: First of all, we construct two sequence:{ݔ௡} in ܥ and the sequence 

ܥ݂ in {௡ݕ} ⊂ ܺ  in the following way. 



 
 

      Let ݔ ∈ ଴ݔ be arbitrary. There exists a point ܥ߲ ∈ ݔ such that ܥ =  ଴ asݔ݂

ܥ߲ ⊂ ∋ ଴ݔ݂ Since .ܥ݂ ଴ݔthen g ܥ߲ ∈ ଴ݔwe conclude that g ,ܥ ∈ ܥ ∩ gܥ ⊂

ଵݔ Let .ܥ݂ ∈ ଵݕ be such that ܥ = ଵݔ݂ = gݔ଴ ∈ ଶݕ Let .ܥ = gݔଵ. Suppose 

ଶݕ ∈ ܥ ∩ gܥ ⊂ ଶݔ which implies that there exists a point ,ܥ݂ ∈  such that ܥ

ଶݕ = ଶݕ ଶ. Supposeݔ݂ ∉ ݌ Then there exists a point .ܥ ∈   such that ܥ߲

,ଵݔ݂)݀              (݌ + (ଶݕ,݌)݀ = ,ଵݔ݂)݀  .(ଶݕ

Since ݌ ∈ ܥ߲ ⊂ ଶݔ there exists a point ,ܥ݂ ∈ ݌ such that ܥ =  ଶ, so that theݔ݂

equation above takes the form  

,ଵݔ݂)݀              (ଶݔ݂ + (ଶݕ,ଶݔ݂)݀ = ,ଵݔ݂)݀  .(ଶݕ

Put ݕଷ = gݔଶ. In this way, repeating the following arguments, one obtains two 

sequences:{ ݔ௡} ⊂ {௡ݕ } and ܥ ⊂ ܥ݃ ⊂ ܺ such that:  

(i)        ݕ௡ାଵ = gݔ௡ , for ݊ = 0,1,2, … ; 

(ii)       if  ݕ௡ ∈ ,ܥ then ݕ௡ = ௡ݔ݂ = gݔ௡ିଵ; 

(iii)  if ݕ௡ ∉ ,ܥ then ݂ݔ௡ ∈  and ܥ߲

,௡ିଵݔ݂)݀            (௡ݕ + ௡ݔ݂)݀ (௡ݕ, = ,௡ିଵݔ݂)݀                                                      .(௡ݕ

Put 

      ܵ = ௜ݔ݂} ∈ :{௡ݔ݂} ௜ݔ݂ = ܳ     ,{௜ݕ = ௜ݔ݂} ∈ ௜ݔ݂ :{௡ݔ݂} ≠  .{௜ݕ

Obviously, two consecutive terms cannot lie in ܳ. Now we wish to estimate 

,௡ݔ݂)݀  .(௡ାଵݔ݂

       Note that the estimate of ݀(݂ݔ௡,  ௡ାଵ)  in this cone version. In the case ofݔ݂

convex metric space it can be used that, for each ݔ, ,ݕ ݑ ∈ ܺ and each ߣ ∈ [0,1], 

it is (ݔ,ݑ)݀ߣ + (1 − ,ݑ)݀(ߣ (ݕ ≤ max ,(ݔ,ݑ)݀}  ,ݑ)݀  In cone spaces the .{(ݕ

maximum of the set {݀(ݑ, ,ݑ)݀,(ݔ  need not exist. Therefore, besides (1.17) {(ݕ

we have to use here the relation "∈ " and to consider several cases. In cone 

metric spaces as well as in metric spaces the key step is the Assad-Kirk's 

induction. 

      If  ݀(݂ݔ௡ , (௡ାଵݔ݂ = 0 for some ݊, then it is easy to show that 

,௡ݔ݂)݀ (௡ାଵݔ݂ = 0 for all ݇ ≥ 1. 



 
 

      Suppose that ݀(݂ݔ௡ , (௡ାଵݔ݂ ≻ 0 for all ݊.  From the above construction we 

conclude that there are three possibilities: 

Case 1଴. If ݂ݔ௡ ∈ ܵ and ݂ݔ௡ାଵ ∈ ܵ, then according to (i), (ii) and (1.16) we 

have: 

,௡ݔ݂)݀             (௡ାଵݔ݂ = ௡ݕ)݀ (௡ାଵݕ, = ݀(gݔ௡ିଵ, gݔ௡) ௡ݑߣ ≻ ,   

Where   

ݑ              ∈ ൜
,(௡ݔ݂,௡ିଵݔ݂)݀ ݀(gݔ௡ିଵ,݂ݔ௡ିଵ), ݀(gݔ௡, ,௡ିଵݔ௡),݀(gݔ݂ ,(௡ݔ݂

݀(gݔ௡, (௡ିଵݔ݂ ൠ,  

                 = ,௡ିଵݔ݂)݀ } ,(௡ݔ݂ ,௡ݔ݂)݀ ,(௡ାଵݔ݂ ,ߠ  .{(௡ିଵݔ݂,௡ାଵݔ݂)݀

Clearly, there are infinite many ݊ such that at least one of the following cases 

holds: 

(i)   ݀(݂ݔ௡, (௡ାଵݔ݂  .(௡ݔ݂,௡ିଵݔ݂)݀ߣ ≻

(ii)  ݀(݂ݔ௡ , (௡ାଵݔ݂ ,௡ାଵݔ݂)݀ߣ ≻ ௡ݔ݂)݀ ௡) and soݔ݂ (௡ାଵݔ݂, = 0. But we 

           suppose that ݀(݂ݔ௡ (௡ାଵݔ݂, ≻ 0 for each ݊. 

(iii) ݀(݂ݔ௡, (௡ାଵݔ݂ ߣ ≻ ⋅ 0 = 0 and so ݀(݂ݔ௡ , (௡ାଵݔ݂ = 0. But we 

         suppose that ݀(݂ݔ௡ , (௡ାଵݔ݂ ≻ 0 for each ݊. 

(iv)  ݀(݂ݔ௡ , (௡ାଵݔ݂ ,௡ାଵݔ݂)݀ߣ ≻ (௡ିଵݔ݂ ≺ ,௡ିଵݔ݂)݀ߣ ,௡ݔ݂)݀ ߣ  (௡ݔ݂  (௡ାଵݔ݂

and so ݀(݂ݔ௡ (௡ାଵݔ݂, ≺ ఒ
ଵିఒ

,௡ିଵݔ݂)݀   .(௡ݔ݂

From (i), (ii), (iii) and (iv) it follows that           

,௡ݔ݂)݀              (௡ାଵݔ݂ ≺ max ቄߣ, ఒ
ଵିఒ

ቅ  (௡ݔ݂,௡ିଵݔ݂)݀

                                          = ఒ
ଵିఒ

,௡ିଵݔ݂)݀   ௡).                                             (1.18)ݔ݂

Case 2଴. Let ݂ݔ௡ ∈ ܵ, ௡ାଵݔ݂ ∈ ܳ. Then ݕ௡ = ,௡ݔ݂ ௡ାଵݕ ∉ ௡ାଵݔ݂,ܥ ∈  such ܥ߲

that  

(௡ାଵݔ݂,௡ାଵݕ)݀            + (௡ݔ݂,௡ାଵݔ݂)݀ =  .(௡ݔ݂,௡ାଵݕ)݀

Note then from this and (1.18), we get 



 
 

(௡ݔ݂,௡ାଵݔ݂)݀           = ,௡ݕ)݀ (௡ାଵݔ݂ = ௡ݕ)݀  (௡ାଵݕ, − ,௡ାଵݕ)݀ (௡ାଵݔ݂ ≺

௡ݕ)݀            , ௡ାଵ)                                                                                                       (1.19)ݕ

That is, according to (i) and (1.17) (ݕ௡ , (௡ାଵݕ = ݀(gݔ௡ିଵ, gݔ௡)  ௡, whereݑߣ ≻

௡ݑ               ∈ ൜
,௡ିଵݔ݂)݀ ,(௡ݔ݂ ݀(gݔ௡ିଵ,݂ݔ௡ିଵ), ݀(gݔ௡ ,(௡ݔ݂, ݀(gݔ௡ିଵ,݂ݔ௡),

݀(gݔ௡ (௡ିଵݔ݂, ൠ 

                    = ,(௡ݔ݂,௡ିଵݔ݂)݀ } ݀(gݔ௡ , (௡ݔ݂ = ௡ݕ)݀ , ,(௡ାଵݕ ௡ݔg)݀,ߠ  .{(௡ିଵݔ݂,

Again, we obtain the following four cases: 

(v)     ݀(ݕ௡ (௡ାଵݕ,  ;(௡ݔ݂,௡ିଵݔ݂)݀ߣ ≻

(vi)   ݀(ݕ௡ , (௡ାଵݕ ௡ݕ)݀ߣ ≻ , ௡ݕ)݀ ௡ାଵ) and soݕ (௡ାଵݕ, = 0, contradicting the                            

        assumption that ݀(݂ݔ௡ , (௡ାଵݔ݂ ≻ 0 for each ݊. 

(vii)  ݀(ݕ௡, (௡ାଵݕ ߣ ≻ ⋅ 0 = 0 and so ݀(ݕ௡ , (௡ାଵݕ = 0, that is 

௡ݔ݂)݀            (௡ାଵݔ݂, = 0, contradicting the assumption that ݀(݂ݔ௡ (௡ାଵݔ݂, ≻

        0 for each ݊. 

(viii) ݀(ݕ௡ , (௡ାଵݕ ,௡ାଵݕ)݀ߣ ≻ (௡ିଵݔ݂ ,௡ݕ)݀ߣ ≻ (௡ାଵݕ + ,௡ିଵݔ݂)݀ߣ   ௡) andݔ݂

so       ݀(ݕ௡, (௡ାଵݕ ≺ ఒ
ଵିఒ

 .(௡ݔ݂,௡ିଵݔ݂)݀ 

From (1.19), (v), (vi), (vii) and (viii) we have 

,௡ݔ݂)݀             (௡ାଵݔ݂ ≺ ,௡ିଵݔ݂)݀ߤ          ,(௡ݔ݂

Where  ߤ = max ቄߣ, ఒ
ଵିఒ

ቅ ఒ
ଵିఒ

.                                                                        (1.20) 

Case 3଴. Let ݂ݔ௡ ∈ ܳ, ௡ାଵݔ݂ ∈ ܵ. Then ݕ௡ାଵ = gݔ௡ = ௡ାଵݔ݂  ∈ ,ܥ ௡ݕ ∉  and ܥ

௡ݔ݂ ∈    such that ,ܥ߲

(௡ݔ݂,௡ିଵݕ)݀            + ௡ݔ݂)݀ , (௡ݕ = ,௡ିଵݕ)݀                                    .(௡ݕ

From this we get      

௡ݔ݂)݀            (௡ାଵݔ݂, = ௡ݔ݂)݀ (௡ାଵݕ, ≺ ௡ݔ݂)݀ (௡ݕ, + ,௡ݕ)݀  (௡ାଵݕ

                                    = ,௡ିଵݕ)݀  (௡ݕ − ,௡ିଵݔ݂)݀ (௡ݔ݂ + ௡ݕ)݀    ௡ାଵ).     (1.21)ݕ,

we shall estimate ݀(ݕ௡ିଵ,ݕ௡) and ݀(ݕ௡, ௡ିଵݕ ௡ାଵ). sinceݕ =  ௡ିଵ, byݔ݂ 

using 2଴, one can  

,௡ିଵݕ)݀         (௡ݕ ≺ ఒ
ଵିఒ

 (1.22)                                                    .(௡ିଵݔ݂,௡ିଶݔ݂)݀



 
 

Further, 

,௡ݕ)݀           (௡ାଵݕ = (௡ݔ݃,௡ିଵݔ݃)݀ ௡ݑߣ ≻ ,                                                (1.23) 

Where 

௡ݑ           ∈ ൜
,௡ିଵݔg)݀,(௡ݔ݂,௡ିଵݔ݂)݀ ,(௡ିଵݔ݂ ݀(gݔ௡ , ,(௡ݔ݂ ݀(gݔ௡ିଵ, ,(௡ݔ݂

݀(gݔ௡, (௡ିଵݔ݂ ൠ 

= ൜
,௡ିଵݔ݂)݀ ,(௡ݔ݂ ,௡ିଵݕ)݀ ௡ݔ݂)݀,(௡ݕ , ,௡ݔ௡݂ݕ)݀,(௡ାଵݔ݂ ),

,௡ିଵݔ݂)݀ (௡ାଵݔ݂ ൠ. 

Because  

,௡ିଵݔ݂)݀          (௡ାଵݔ݂ ≺ (௡ݔ݂,௡ିଵݔ݂)݀ + ௡ݔ݂)݀ ,  (௡ାଵݔ݂

And  ݀(ݕ௡ିଵ, (௡ݕ ≺ ఒ
ଵିఒ

 we have ,(௡ିଵݔ݂,௡ିଶݔ݂)݀

௡ݕ)݀          , (௡ାଵݕ ௡ݑߣ ≻ ,                                                                              (1.24) 

Where 

௡ݑ           ∈ ቊ
,௡ିଵݔ݂)݀ ,(௡ݔ݂ ఒ

ଵିఒ
,௡ିଶݔ݂)݀ ௡ݔ݂)݀,(௡ିଵݔ݂ ,(௡ାଵݔ݂, ,௡ݔ௡݂ݕ)݀ ),

,௡ିଵݔ݂)݀ (௡ݔ݂ + ,௡ݔ݂)݀ (௡ାଵݔ݂
ቋ. 

By substituting (1.22) and (1.24) in (1.21) we get  

,௡ݔ݂)݀      (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

,௡ିଶݔ݂)݀ (௡ିଵݔ݂ − ,௡ିଵݔ݂)݀ (௡ݔ݂ + ௡ݑߣ .         (1.25) 

Hence, we get the following cases 

 

(i)  ݀(݂ݔ௡ (௡ାଵݔ݂, ≺ ఒ
ଵିఒ

(௡ିଵݔ݂,௡ିଶݔ݂)݀ − (௡ݔ݂,௡ିଵݔ݂)݀ +

(௡ݔ݂,௡ିଵݔ݂)݀ߣ          = ఒ
ଵିఒ

(௡ିଵݔ݂,௡ିଶݔ݂)݀ − (1 − ,௡ିଵݔ݂)݀(ߣ                                    (௡ݔ݂

         ≺  ఒ
ଵିఒ

,௡ିଶݔ݂)݀                     .(௡ିଵݔ݂

(ii)  ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

(௡ିଵݔ݂,௡ିଶݔ݂)݀ − (௡ݔ݂,௡ିଵݔ݂)݀ +

          ఒమ

ଵିఒ
(௡ିଵݔ݂,௡ିଶݔ݂)݀ ≺ ఒାఒమ

ଵିఒ
,௡ିଶݔ݂)݀  .(௡ିଵݔ݂



 
 

 

(iii)  ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

,௡ିଶݔ݂)݀ (௡ିଵݔ݂ − ,௡ିଵݔ݂)݀ (௡ݔ݂ +

௡ݔ݂)݀ߣ          ,  .(௡ାଵݔ݂

Hence, 

,௡ݔ݂)݀        (௡ାଵݔ݂ ≺ ఒ
ଵିఒమ

 .(௡ିଵݔ݂,௡ିଶݔ݂)݀

(iv) ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

(௡ିଵݔ݂,௡ିଶݔ݂)݀ − ,௡ିଵݔ݂)݀ (௡ݔ݂ +

(௡ݕ,௡ିଵݕ)݀)ߣ         −                                  (௡ݔ݂,௡ିଵݔ݂)݀

                                 ≺ ఒ
ଵିఒ

,௡ିଶݔ݂)݀ (௡ିଵݔ݂ + ఒమ

ଵିఒ
,௡ିଶݔ݂)݀   (௡ିଵݔ݂

                                = ఒାఒమ

ଵିఒ
,௡ିଶݔ݂)݀  .(௡ିଵݔ݂

(v) ݀(݂ݔ௡ , (௡ାଵݔ݂ ≺ ఒ
ଵିఒ

(௡ିଵݔ݂,௡ିଶݔ݂)݀ − (௡ݔ݂,௡ିଵݔ݂)݀ +

,௡ିଵݔ݂)݀ߣ       (௡ݔ݂ + ,௡ݔ݂)݀ߣ  .(௡ାଵݔ݂

Hence,         

௡ݔ݂)݀        (௡ାଵݔ݂, ≺ ఒ
(ଵିఒ)మ (௡ିଵݔ݂,௡ିଶݔ݂)݀ −  (௡ݔ݂,௡ିଵݔ݂)݀

                               ≺ ఒ
(ଵିఒ)మ

,௡ିଶݔ݂)݀  .(௡ିଵݔ݂

From (i), (ii), (iii), (iv) and (v) we have 

,௡ݔ݂)݀                  (௡ାଵݔ݂ ≺ ,௡ିଶݔ݂)݀ߤ  ,(௡ିଵݔ݂

Where, 

ߤ                   = max ቄ ఒ
ଵିఒ

, ఒାఒ
మ

ଵିఒ
, ఒ

(ଵିఒ)మ
ቅ = ఒ

(ଵିఒ)మ
.   

Thus, in all cases 1଴ − 3଴  

௡ݔ݂)݀                   , (௡ାଵݔ݂ ≺ ℎݓ௡ , 

Where ݓ௡ ∈ ,(௡ିଵݔ݂,௡ିଶݔ݂)݀} ,௡ݔ݂)݀  ௡ାଵ)} andݔ݂

                  ℎ = max ቄ ఒ
ଵିఒ

, ఒ
(ଵିఒ)మ

ቅ = ఒ
(ଵିఒ)మ

 . 

Since, 0 < ߣ < ଷି√ହ
ଶ

,   ఒ
(ଵିఒ)మ

= ℎ < 1.                                                                



 
 

      Following the procedure of Assad and Kirk, it can easily be shown by 

induction that, for ݊ > 1, 

,௡ݔ݂)݀               (௡ାଵݔ݂ ≺ ℎ
೙షభ
మ  ଶ,                                                               (1.26)ݓ

Where  ݓଶ ∈ ,଴ݔ݂)݀}  .{(ଶݔ݂,ଵݔ݂)݀,(ଵݔ݂

       By the triangle inequality, for ݊ > ݉ we have: 

,௡ݔ݂)݀   (௠ݔ݂ ≺ ௡ݔ݂)݀  , (௡ିଵݔ݂ + ,௡ିଵݔ݂)݀ (௡ିଶݔ݂ + ⋯+ ,௠ାଵݔ݂)݀                 (௠ݔ݂

                        ≺ ቀℎ
೙షభ
మ + ℎ

೙షమ
మ + ⋯+ ℎ

೘షభ
మ ቁݓଶ ≺

√௛೘షభ

ଵି√௛
ଶݓ → ݉ as     ,ߠ → ∞.  

By Lemma (3.1.9). (v) and (i), { ݂ݔ௡} is a Cauchy sequence. 

      Since ݂ݔ௡ ∈ ܥ ∩ ܥ and ܥ݂ ∩ ݖ is complete, there is some point ܥ݂ ∈ ܥ ∩

௡ݔ݂ such that ܥ݂ → .ݖ let ݓ in ܥ be such that ݂ݓ =  by the construction of .ݖ

௡(௞)ݔ݂  such that {௡(௞)ݔ݂ } there is a subsequence ,{௡ݔ݂} = ௡(௞)ݕ = gݔ௡(௞)ିଵ 

and so gݔ௡(௞)ିଵ →  But, we have .ݖ

               ݀(gݓ, (ݖ ≺ ݀൫gݓ, gݔ௡(௞)ିଵ൯ + ݀൫gݔ௡(௞)ିଵ,  ൯ݖ

                               ≺  ݀൫gݔ௡(௞)ିଵ, ൯ݖ +  ,௡(௞)ݑߣ

Where 

௡(௞)ݑ                      ∈ ቊ
݀൫݂ݔ௡(௞)ିଵ ,݂ݓ൯, ݀൫gݔ௡(௞)ିଵ,݂ݔ௡(௞)ିଵ൯, ݀(gݓ݂,ݓ),

݀൫gݔ௡(௞)ିଵ, ,ݓ൯,݀(gݓ݂ (௡(௞)ିଵݔ݂
ቋ. 

Let 0 ≪ ܿ be given. Since gݔ௡(௞)ିଵ → ݖ = ௡(௞)ିଵݔ݂ and ݓ݂ → ݖ =  choose ,ݓ݂

a natural number ݇଴ such that for all ݇ ≥ ݇଴ we have  ݀൫gݔ௡(௞)ିଵ, ൯ݖ ≪ (ଵିఒ)௖
ଶ

 

and ݀൫݂ݔ௡(௞)ିଵ, ൯ݖ ≪ (ଵିఒ)௖
ଶఒ

. Thus, we get the following cases:      

(i) ݀(gݓ, (ݖ ≺  ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ൯ݓ݂,௡(௞)ିଵݔ൫݂݀ߣ ≪ (ଵିఒ)௖
ଶ

+ ߣ (ଵିఒ)௖
ଶఒ

≪ ܿ. 

(ii) ݀(gݓ, (ݖ ≺  ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ,௡(௞)ିଵݔ൫g݀ߣ  ௡(௞)ିଵ൯ݔ݂

               ≺  ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ,௡(௞)ିଵݔ൫g݀ ߣ ൯ݖ + ,ݖ)݀ߣ  (௡(௞)ିଵݔ݂

               = (1 + ,௡(௞)ିଵݔ൫g݀(ߣ ൯ݖ + ,ݖ൫݀ߣ  ௡(௞)ିଵ൯ݔ݂



 
 

                      ≪ (1 + (ߣ (ଵିఒ)௖
ଶ

+ ߣ (ଵିఒ)௖
ଶఒ

≪ ܿ. 

(iii) ݀(gݓ, (ݖ ≺  ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ,ݓg)݀ߣ  .(ݓ݂

Hence, 

       ݀(gݓ, (ݖ ≺ ଵ
(ଵିఒ)݀൫gݔ௡(௞)ିଵ, ൯ݖ ≪ ଵ

ଵିఒ
(ଵିఒ)௖

ଶ
≪ ܿ. 

(iv)  ݀(gݓ, (ݖ ≺ ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ,௡(௞)ିଵݔ൫g݀ߣ  ൯ݓ݂

                           = (1 + ,௡(௞)ିଵݔ൫g݀(ߣ ൯ݖ ≪ (1 + (ߣ (ଵିఒ)௖
ଶ

≪ ܿ. 

(v)  ݀(gݓ, (ݖ ≺ ݀൫gݔ௡(௞)ିଵ, ൯ݖ +  ௡(௞)ିଵ൯ݔ݂,ݓ൫g݀ߣ

                          ≺ ݀൫gݔ௡(௞)ିଵ, ൯ݖ + ,ݓg)݀ߣ (ݖ + ,ݖ൫݀ߣ  .௡(௞)ିଵ൯ݔ݂

Hence, 

           ݀(gݓ, (ݖ ≺ (ଵିఒ)
ଶ

݀൫gݔ௡(௞)ିଵ, ൯ݖ + ఒ
ଵିఒ

݀൫݂ݔ௡(௞)ିଵ, ൯ݖ ≪ ଵ
ଵିఒ

(ଵିఒ)௖
ଶ

+

              ఒ
ଵିఒ

(ଵିఒ)௖
ଶఒ

= ܿ. 

Therefore, ݀(gݓ, (ݖ ≪ ܿ for all 0 ≪ ܿ. By Lemma (3.1.9). (iv), ݀(gݓ, (ݖ = 0 

and so gݓ = ݖ =  .݂ is a point of coincidence for g and ݓ which show that ݓ݂

       Suppose now that g and ݂ are coincidentally commuting. Then 

ݖ                = gݓ = ݓ݂ ⇒ gݖ = g݂ݓ = ݂gݓ =  .ݖ݂

Then again from (1.16), ݀(gݖ, (ݖ = ݀(gݖ, gݓ) ≺  where ,ݑߣ

ݑ ∈ ,ݖg)݀,(ݓ݂,ݖ݂)݀} ,(ݓ݂ ݀(gݓ, ,(ݓ݂ ݀(gݖ, ,(ݓ݂ ݀(gݓ,  {(ݖ݂

                  = {݀(gݖ, ,(ݖ ݀(gݖ, ,ݖ)݀,(ݖ ,(ݖ ݀(gݖ, ,(ݖ ,ݖ)݀ gݖ)} = ,ߠ} ݀(gݖ,  .{(ݖ

Hence, we get ݀(gݖ, (ݖ ≺ ߣ ⋅ 0 = 0 and ݀(gݖ, (ݖ ≺ ,ݖg)݀ߣ  from which it ,(ݖ

follows that ݀(gݖ, (ݖ = 0, that is ݖ is a common fixed point of g and ݂. 

Uniqueness of the common fixed point follows easily from (1.16).Setting 

݂ =  ௑, the identity mapping of ܺ in Theorem (3.2.2), we obtain the followingܫ

result: 

Corollary (3.2.3)[3]. Let (ܺ,݀) be a complete cone metric space, ܥ a 

nonempty closed subset of ܺ such that for each ݔ ∈ ݕ and ܥ ∉  there exists a ܥ

point ݖ ∈ ,ݔ)݀   such that ܥ߲ (ݖ + ,ݖ)݀ (ݕ = ,ݔ)݀  .(ݕ



 
 

Suppose that g:ܥ → ܺ, such that for some ߣ ∈ (0, ଷି√ହ
ଶ

) and for all ݔ, ݕ ∈  ,ܥ

there exists  ݔ)ݑ, (ݕ ∈ ,(ݕ,ݔ)݀} ,ݔ)݀ gݔ), ,ݕ)݀ gݔ)݀,(ݕ, gݕ), ,ݕ)݀ gݔ)},  

So that   ݀(gݔ, gݕ) ≺  .(ݕ,ݔ)ݑߣ

Also, suppose that g has additional property that for each ݔ ∈ ,ܥ߲ gݔ ∈  then g ,ܥ

has a unique fixed point. Setting ܧ = ℝ, ܲ = [0, +∞), ‖⋅‖ = |⋅| in the 

Corollary (3.2.3).  

Theorem (3.2.4)[3]. Let (ܯ, ݀) be a complete convex metric space with 

convex structure ܹ which is continuous on the third variable, ܥ be a nonempty 

closed subset of ܯ and ܶ:ܥ →  be a nonself mapping satisfying the ܯ

contractive type condition (ast), that is: there exists ݍ ∈ (0,1) such that for 

every ݔ, ݕ ∈  ܥ

(ݕܶ,ݔܶ)݀            ≤ ݍ ⋅ max ,(ݕ,ݔ)݀}  ,(ݔܶ,ݔ)݀  (1.27)         .{(ݔܶ,ݕ)݀,(ݕܶ,ݕ)݀

If ܶ has the additional property ܶ(߲ܥ) ⊂  .ܥ then ܶ has a unique fixed point in ܥ

     We present now two examples showing that Theorem (3.2.2) is a proper 

extension of the known results. In both examples, the conditions of Theorem 

(3.2.2) are fulfilled, but in the first one (because of non-normality of the cone) 

the main theorems cannot be applied. This shows that Theorem (3.2.2) is more 

general, i.e., the main Theorems can be obtained as its special cases (for 

0 < ߣ < ቀ0, ଷି√ହ
ଶ
ቁ taking ‖⋅‖ = ܧ,|⋅| = ℝ, and ܲ = [0, +∞[. 

Example (3.2.5)[3]. ((The case of a non-normal cone)). Let ܺ = ℝ,ܥ =

ܧ,[0,1] = ܲ,ℝଵ[0,1]ܥ = {߮ ∈ (ݐ)߮:ܧ ≥ 0, ݐ ∈ [0,1]}. The mapping ݀:ܺ × ܺ →

,ݔ)݀ :is defined in the following way ܧ (ݕ = ݔ‖ − ߮ which ,߮‖ݕ ∈ ܲ is a fixed 

function, e.g., ߮(ݐ) = 2௧. 

Take functions gݔ = ݔ݂,ݔܽ = ,ݔܾ 0 < ܽ < 1 < ܾ, so that ௔
௕
≤ ߣ < ଷି√ହ

ଶ
, which 

map the set ܥ = [0,1] into ℝ. We have that (ܺ,݀) is a complete cone metric 

space with a non-normal cone having the nonempty interior. For example, one 



 
 

easily checks the condition (1.17) that for ݔ ∈ [0,1], ݕ ∉ [0,1] the following 

holds  

,ݔ)݀           1) + ݀(1, (ݕ = (ݕ,ݔ)݀ ⟺ |1 − ߮|ݔ + ݕ| − 1|߮ 

                                             = ݕ| − ߮|ݔ ⟺ (1 − ߮(ݔ + ݕ) − 1)߮ = ݕ) −      .߮(ݔ

The mappings g and ݂ are weakly compatible, i.e., they commute in their fixed 

point ݔ = 0. All the conditions of Theorem (3.2.2) are fulfilled, and so the non-

self mappings g and ݂ have a unique common fixed point ݔ = 0. 

Example (3.2.6)[3]. ((The case of a normal cone)). Let ܺ = [0, ܥ,]∞+ =

[0,1] ⊂ ܧ,ܺ = ℝଶ,ܲ = (ݕ,ݔ)} ∈ ℝଶ: ݔ ≥ 0, ݕ ≥ 0}. the mapping ݀:ܺ × ܺ →

,ݔ)݀ :is defined in the following way ܧ (ݕ = ݔ‖) − ݔ‖ߙ,‖ݕ − ߙ,‖ݕ ≥ 0.Take 

the function gݔ = ݔ݂,ݔܽ = 0 ,ݔܾ < ܽ < 1 < ܾ, so that ௔
௕
≤ ߣ < ଷି√ହ

ଶ
 which 

map the set ܥ = [0,1] intoℝ. We have that (ܺ,݀) is a complete cone metric 

space with a normal cone having the normal coefficient ܭ = 1, whose interior is 

obviously nonempty. All the conditions of Theorem (3.2.2) are fulfilled. We 

check again the condition (1.17), i.e., that for ݔ ∈ ܥ = ݕ,[0,1] ∉ ܥ = [0,1] the 

following holds 

,ݔ)݀        1) + (ݕ,1)݀ = ,ݔ)݀ (ݕ ⟺ (|1 − 1|ߙ,|ݔ − |ݔ + ݕ|) − 1|ߙ,|1 −               (|ݕ

                    = ݕ|) − ݕ|ߙ,|ݔ − 1|) ⟺ (1 − (ݔ + ݕ) − 1) = ݕ) −  .(ݔ

And 

1|ߙ         − |ݔ + ݕ|ߙ − 1| = ݕ)ߙ −  .(ݔ

The mappings g and ݂ are weakly compatible, i.e., they commute in their fixed 

point ݔ = 0. All the conditions of Theorem (3.2.2) are again fulfilled. The point 

ݔ = 0 is the unique common fixed point for non-self mappings g and ݂.  

 

 

 



 
 

Chapter 4 

Rational Dilation on the Tetrablock 
    We show by a counter example the failure of rational dilation on the 

tetrablock , a polynomially convex and non-convex domain in ℂଷ, defined as 

ॱ = ,ଶݔ,ଵݔ)} (ଷݔ ∈ ℂଷ: 1 − ଵݔݖ − ଶݔݓ + ଷݔݓݖ ≠ |ݖ| ݎ݁ݒ݁ ℎ݁݊ݓ 0 ≤ 1, |ݓ|

≤ 1}. 

A commuting triple of operators ( ଵܶ, ଶܶ, ଷܶ) for which the closed tetrablock  ഥॱ  

is a spectral set, is called an ॱ –contraction. For an ॱ –contraction( ଵܶ, ଶܶ, ଷܶ), 

the two operator equations ଵܶ − ଶܶ
∗
ଷܶ = ܦ య் ଵܺܦ య்  and ଶܶ − ଵܶ

∗
ଷܶ =

ܦ య்ܺଶܦ య் ܦ, య் = ܫ) − ଷܶ
∗
ଷܶ)ଵ/ଶ, have unique solutions ܣଵ,ܣଶ ܦ ݊݋ య் = ܴܽ݊തതതതതതܦ య்  

and they are called the fundamental operators of  ( ଵܶ, ଶܶ, ଷܶ). 

Section (4.1): Functional Model for Pure ࢿ-isometries 
     Let ܺ be a compact subset of ℂ௡ and let ℛ(ܺ) denote the algebra of all 

rational functions on ܺ, that is, all quotients ݌ ⁄ݍ  of polynomials ݍ,݌ for which 

 has no zeros in ܺ. The norm of an element ݂ in ℛ(ܺ) is defined as ݍ

                   ‖݂‖ஶ,ܺ = sup { |݂(ߦ)|:  ߦ ∈ ܺ}. 

Also for each ݇ ≥ 1, let ℛ௞(ܺ) denote the algebra of all ࣥ × ࣥ matrices over 

ℛ(ܺ). Obviously each element in ℛ௞(ܺ) is a ࣥ × ࣥ matrix of rational 

functions ܨ = ൫ ௜݂,௝൯ and we can define a norm on ℛ௞(ܺ) in the canonical way  

‖ܨ‖                    = sup { |ߦ  :|(ߦ)ܨ ∈ ܺ},  

There by making ℛ௞(ܺ) into a non-commutative normed algebra. Let ܶ =

( ଵܶ,⋯ , ௡ܶ) be an n-tuple of commuting operators on a Hilbert space ℋ. ܺ is 

said to be a spectral set for ܶ if the Taylor joint spectrum ߪ൫ܶ൯ of  ܶ is a subset 

of ܺ and 

                  ฮ݂(ܶ)ฮ ≤ ‖݂‖ஶ,௑,݂ݕݎ݁ݒ݁ ݎ݋ ݂ ∈  ℛ(ܺ).                                    (1.1) 

Hence ݂(ܶ) can be interpreted as ݌൫ܶ൯ݍ൫ܶ൯
ିଵ

when ݂ = ݌ ⁄.ݍ  Moreover, ܺ is 



 
 

said to be a complete spectral set if ฮܨ(ܶ)ฮ ≤ ‖ܨ‖ = for every ܨ inℛ௞(ܺ), 

݇ = 1,2,⋯. 

     Let ࣛ(ܶ) be the algebra of continuous complex-valued functions on ܺ 

which separates the points of ܺ. ܣ boundary for ࣛ(ܺ) is a closed subset ܨ of ܺ 

such that every function in ࣛ(ܺ) attains its maximum modulus on ܨ. It follows 

from the theory of uniform algebras that if ܾܺ is the intersection of all the 

boundaries of ܺ then ܾܺ is a boundary for ࣛ(ܺ). This smallest boundary ܾܺ is 

called the Šilov boundary relative to the algebra ࣛ(ܺ). 

     A commuting ݊-tuple of operators ܶ that has ܺ as a spectral set, is said to 

have a rational dilation or normal ܾܺ-dilation if there exists a Hilbert space ࣥ, 

an isometry ܸ:ℋ → ࣥ and an ݊-tuple of commuting normal operators ܰ =

( ଵܰ,⋯ , ௡ܰ) on ࣥ with ߪ(ܰ) ⊆ ܾܺ such that 

                    ݂(ܶ) =ܸ∗݂(ܶ)ܸ, for every ݂ ∈ ℛ௞(ܺ).                                        (1.2)          

      One of the important discoveries in operator theory is ܵ௭.-Nagy's unitary 

dilation for a contraction, which opened a new horizon by announcing the 

success of rational dilation on the closed unit disk of ℂ. Since then one of the 

main aims of operator theory has been to determine the success or failure of 

rational dilation on the closure of a bounded domain in ℂ௡. It is evident from the 

definitions that if ܺ is a complete spectral set of ܶ then ܺ is a spectral set for ܶ. 

A celebrated theorem of Arveson states that ܶ has a normal ܾܺ-dilation if and 

only if ܺ is a complete spectral set of ܶ. Therefore, the success or failure of 

rational dilation is equivalent to asking whether the fact that ܺ is spectral set for 

ܶ  automatically turns ܺ into a complete spectral set of  ܶ. History witnessed an 

affirmative answer to this question given by Alger when ܺ is an annulus and by 

Ando when ܺ = ॰ଶതതതത. Agler, Harland and Raphael have produced an example of 

a triply connected domain in ℂ where the answer is negative. Dritschel and 

 ௖Cullough also gave a negative answer to that question when ܺ is an arbitraryܯ



 
 

triply connected domain. Parrot showed by a counter example that rational 

dilation fails on the closed tridisc ॰ଷതതതത. Also recently we have success of rational 

dilation on the closed symmetrized bidisc Γ, where Γ is defined as 

                 Γ = {(zଵ + zଶ, zଵzଶ): |zଵ| ≤ 1, |zଶ| ≤ 1}.                                     (1. 3) 

     In this chapter, we show that rational dilation fails when ܺ is the closure of 

the tetrablock ॱ( A triple (A,B,P) of commuting bounded operators on a Hilbert 

space  ℋis called atetrablock contraction if E is a spectral set for (A,B,P) i.e. the 

Taylor joint spectrum of (A,B,P) is contained in ܧത and ‖݂(ܤ,ܣ,ܲ)‖ ≤

‖݂‖ஶ,ா = sup {|݂(ݔଵ, ,ଶݔ |(ଷݔ ∶ ,ଵݔ ,ଶݔ ଷݔ ∈  ത} for any polynomial f in threeܧ

variables)[7]. a polynomial convex, non-convex and inhomogeneaous domain in 

ℂଷ, defined a        

             ॱ = ,ଵݔ)} ,ଶݔ (ଷݔ ∈ ℂଷ: 1 − ଵݔݖ − ଶݔݓ + ଷݔݓݖ ≠ 0 whernever |zଵ| ≤

1, |w| ≤ 1 }. 

This domain has been a center of attraction in past one decade to a number of 

mathematicians because of its relevance to ߤ-synthesis and ܪஶcontrol theory. 

To get clear with the geometric location of the domain. 

Theorem (4.1.1)[4].  A point (ݔଵ, ,ଶݔ (ଷݔ ∈ ℂଷ is in ഥॱ if and only if  |ݔଷ| ≤ 1 

and there exist ߚଵߚଶ ∈ ℂ such that |ߚଵ| + |ଶߚ| ≤ 1 and ݔଵ = ଵߚ + ,ଷݔଶതതതߚ ଶݔ   =

ଶߚ +   .ଷݔଶതതതߚ

     It is evident from the above result that the tetrablock lives inside the tridisc 

॰ଷ. The distinguished boundary (which is same the Šilov boundary) of the 

teterablock to be the set  

                 ܾॱ = ,ଵݔ)} (ଷݔ,ଶݔ ∈ ℂଷ: ଵݔ = ,ଷݔଶതതതݔ |ଶݔ| ≤ 1, |ଷݔ| = 1 }. 

                       = ,ଶݔ,ଵݔ)} (ଷݔ ∈ ഥॱ , |ଷݔ| = 1}. 

     In Bhattacharyya introduced the study of commuting operator triples that 

have ഥॱ as a spectral set. There such a triple was called a tetrablock contraction. 



 
 

As a notation is always convenient, we shall such a triple an ॱ-contraction. So 

we are to led the following definition: 

Definition (4.1.2)[4].  A triple of commuting operators ( ଵܶ, ଶܶ, ଷܶ) on a 

Hilbert space ℋ for which ഥॱ is a spectral set is called an ॱ-contraction. 

     Since the tetrablock lives inside the tridisk, an ॱ-contraction consists of 

commuting contractions. Evidently  ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) is an ॱ-contraction when 

( ଵܶ, ଶܶ, ଷܶ) is an ॱ-contraction. We briefly recall from the literature the special 

classes of an ॱ-contraction which are analogous to uniteries, isometries and co-

isometries in one variable operator theory. 

Definition (4.1.3)[4]. Let ଵܶ, ଶܶ, ଷܶ be commuting operators on a Hilbert 

space ℋ. We say that ( ଵܶ, ଶܶ, ଷܶ) is 

 (i)  an ॱ-unitary if ଵܶ, ଶܶ, ଷܶ are normal operators and the joint spectrum 

)்ߪ            ଵܶ, ଶܶ, ଷܶ) is contained in ഥॱ ;                                                       

 (ii)   an  ॱ-isometry if there exists a Hilbert space ࣥ containing ℋ and an 

           ॱ-unitary ൫ ෨ܶଵ, ෨ܶଶ, ෨ܶଷ൯ on ࣥ such that ℋ is a common invariant 

    subspace of ଵܶ, ଶܶ, ଷܶ and that ௜ܶ = ෨ܶ௜หℋ for ݅ = 1,2,3; 

 (iii)   an ॱ-co-isometry if ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) is an ॱ-isometry. 

Moreover, an ॱ-isometry ( ଵܶ, ଶܶ, ଷܶ) is said to be pure isometry, i.e., if  ଷܶ
∗௡ →

0 strongly as ݊ → ∞.  It clear that a rational dilation of an ॱ-contraction 

( ଵܶ, ଶܶ, ଷܶ) is nothing but an ॱ-unitary dilation of ( ଵܶ, ଶܶ, ଷܶ), that is,  an ॱ-

unitary ܰ = ( ଵܰ, ଶܰ, ଷܰ) that dilates T by satisfying (1.2). Similarly an ॱ-

isometry dilation of ܶ = ( ଵܶ, ଶܶ, ଷܶ) is an ॱ-isometry ܸ = ( ଵܸ, ଶܸ , ଷܸ) that 

satisfies (1.2) an explicit ॱ-isometric dilation was constructed for a particular 

class of ॱ-contraction and that dilation involves two unique operators ܣଵ,ܣଶ 

from ℒ(ࣞ య்) which are the unique solutions of the operator equations 

                 ଵܶ − ଶܶ
∗
ଷܶ = ܦ య் ଵܺܦ య் , ଶܶ − ଵܶ

∗
ଷܶ = ܦ య்ܺଶܦ య்  



 
 

Respectively, Here ܦ య் = ܫ) − ଷܶ
∗
ଷܶ)

భ
మ  and ܦ య் = ܴܽ݊തതതതതതܦ య் and  ℒ(ℋ), for a 

Hilbert space ℋ, always denotes the algebra of bounded operators on ℋ. For 

their pivotal role in the dilation, ܣଵand ܣଶ were called the fundamental 

operators of ( ଵܶ, ଶܶ, ଷܶ). In this chapter, we produce a set of necessary 

conditions for the existence of rational dilation for a class of ॱ-contraction. 

Indeed, in Proposition (4.2.5), we show that if ( ଵܶ, ଶܶ, ଷܶ) is an ॱ-contraction on 

ℋଵ⨁ℋଵ for some Hilbert space ℋଵ, satisfying 

 (i)   Ker൫ܦ య்൯ = ℋଵ⨁{0}  and  ܦ య் = {0}⨁ℋଵ 

 (ii)    ଷܶ൫ܦ య்൯ = {0} and  ଷܶKer൫ܦ య்൯ ⊆ ܦ య்  

And if ܣଵ,ܣଶ are the fundamental operators ( ଵܶ, ଶܶ, ଷܶ), then for the existence 

of an ॱ-isometric dilation of ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) it is necessary that  

[ଶܣ,ଵܣ]                = 0 and [ܣଵ∗ [ଵܣ, = ∗ଶܣ]   ଶ].                                             (1.4)ܣ,

Here [ ଵܵ, ܵଶ] = ଵܵܵଶ − ܵଶ ଵܵ, for any two operators ଵܵ, ܵଶ. we construct an 

example of an ॱ-contraction that satisfies the hypotheses of Proposition (4.2.5) 

but fails to satisfy (1.4). This concludes the failure of rational dilation on the 

tetrablock. The proof of Proposition (4.2.5) depends heavily upon a functional 

model for pure ॱ-isometries which provide in Theorem (4.1.8). There is an 

Wold type decomposition for an  ॱ-isometry that splits an ॱ-isometry into two 

parts of which one is an ॱ-unitary and the other is a pure ॱ-isometry . Again 

Theorem (4.1.4) describes the structure of an ॱ-unitary. Therefore, a concrete 

model for pure ॱ-isometries gives a complete vision of an ॱ-isometry. In 

Theorem (4.1.8), we show that a pure ॱ-isometry ൫ ෠ܶଵ, ෠ܶଶ, ෠ܶଷ൯ can be modeled as 

a commuting triple of Toeplitz operators ( ஺ܶభ∗ା஺మ௓, ஺ܶమ∗ା஺భ௓, ௭ܶ) on the vectorial 

Hardy space ܪଶ൫ܦ ෠்య∗൯, where ܣଵ and ܣଶ are the fundamental operators of the ॱ-

co-isometry ൫ ෠ܶଵ
∗, ෠ܶଶ

∗, ෠ܶଷ
∗൯. The converse is also true, that is, every such triple of 

commuting contractions ( ஺ܶା஻௭, ஻ܶ∗ା஺∗௓, ௭ܶ) on a vectorial Hardy space is a 

pure ॱ-isometry. We begin with a Lemma that simplifies the definition of ॱ-



 
 

contraction                                                                                                         

Lemma (4.1.3)[4]. A commuting triple of bounded operators ( ଵܶ, ଶܶ, ଷܶ) is 

an ॱ-contraction if and only if ‖݂( ଵܶ, ଶܶ, ଷܶ)‖ ≤ ‖݂‖ஶ,ாത for any holomorphic 

polynomial ݂ in three variables. 

      This actually follows from the fact that ܧത is polynomially convex. The 

following theorem gives a set of characterization for ॱ-unitaries. 

Theorem (4.1.4)[4]. Let ܰ = ( ଵܰ, ଶܰ, ଷܰ) be a commuting triple of bounded 

operators. Then the following are equivalent. 

(i) N is an ॱ-unitary. 

     (ii)  ଷܰ is a unitary, ଶܰ is a contraction and ଵܰ = ଶܰ
∗

ଷܰ, 

     (iii)  ଷܰ is a unitary and ܰ is a ॱ-contraction. 

Here is a structure Theorem for the ॱ-isometries. 

Theorem (4.1.5)[4]. Let ܸ = ( ଵܸ, ଶܸ, ଷܸ) be a commuting triple of bounded 

operators. Then the following are equivalent. 

(i)  ܸ  is an ॱ-isometry. 

(ii)   ܸ  is an  ॱ-contraction and ଷܸ is an isometry. 

(iii)  ଷܸ  is an isometry, ଶܸ is a contraction and ଵܸ = ଶܸ
∗
ଷܸ . 

(iv)  (Wold decomposition) ℋ has a decomposition ℋ = ℋଵ⨁ℋଶ into reducing 

subspace of ଵܸ, ଶܸ, ଷܸ such that ൫ ଵܸ|ℋభ , ଶܸ|ℋభ , ଷܸ|ℋభห൯ is an ॱ-unitary and 

൫ ଵܸ|ℋమ , ଶܸ|ℋమ , ଷܸ|ℋమห൯ is a pure ॱ-isometry.  Let us recall that the numerical 

radius of an operator ܶ on a Hilbert space ℋ is defined by 

                  ߱(ܶ) = sup{〈ܶݔ, ℋ ‖ݔ‖    :〈ݔ = 1}. 

It is well known that 

(ܶ)ݎ             ≤ ߱(ܶ) ≤ ‖ܶ‖ and  ଵ
ଶ
‖ܶ‖ ≤ ߱(ܶ) ≤ ‖ܶ‖,                              (1.5) 

Where ݎ(ܶ) is the spectral radius of ܶ. We state a basic Lemma on numerical 

radius and give a proof because of lack of an appropriate reference. We shall 

use this Lemma in sequel. 



 
 

Lemma (4.1.6)[4]. The numerical radius of an operator ܶ is not greater than 

one if and only if ܴ݁ܶߚ ≤  .of modulus 1 ߚ for all complex numbers ܫ

Proof: Let ߱(ܶ) ≤ 1. For a unit vector ℎ and a complex number ߚ of unit 

modulus, we have 

ܫ2]〉           − ൫ܶߚ + 〈൯ℎ,ℎ∗ܶߚ = 2 − 〈൫ܶߚ + 〈൯ℎ,ℎ∗ܶߚ = 2 − 〈ℎ,ℎܶߚ〉 −

,ℎ∗ܶߚ〉 ℎ〉 ≥ 0,                                                                                                         

Since ߱(ܶ) ≤ 1. Therefore, ܶߚ + ∗ܶߚ ≤ ܶߚܴ݁ and hence ܫ2 ≤  .ܫ

     Again by hypothesis, 〈ܴ݁ܶߚℎ, ℎ〉 ≤ 1 , for a unit vector ℎ and for all ߚ of 

modulus. Note that 〈ܴ݁ܶߚℎ, ℎ〉 = ,ℎ〉ߚܴ݁ ℎ〉. Write 〈ܶℎ, ℎ〉 = ݁௜ఝ೓|〈ܶℎ, ℎ〉| for 

some real number ߮௛ , and then choose ߚ = ݁ି௜ఝ೓. Then we get |〈ܶℎ, ℎ〉| ≤ 1. 

Theorem (4.1.7)[4]. Let ( ଵܶ, ଶܶ, ଷܶ) be an ॱ-contraction. Then there are two 

unique operators ܣଵ,ܣଶ in ℒ(ܦ య்) such that  

            ଵܶ − ଶܶ
∗
ଷܶ = ܦ య்ܣଵܦ య் and ଶܶ − ଵܶ

∗
ଷܶ = ܦ య்ܣଶܦ య் .                          (1.6) 

Moreover, ߱(ܣଵ + (ଶܣݖ ≤ 1 for all ݖ ∈ ॰.തതത 

      These two unique operators ܣଵ,ܣଶ are called the fundamental operators of 

( ଵܶ, ଶܶ, ଷܶ). The following Theorem gives a concrete model for pure ॱ-

isometries in terms of Toeplitz operators on vectorial Hardy space. 

Theorem (4.1.8)[4]. Let ൫ ෠ܶଵ, ෠ܶଶ, ෠ܶଷ൯ be a commuting triple of operators on a 

Hilbert space ℋ. If ൫ ෠ܶଵ, ෠ܶଶ, ෠ܶଷ൯ is a pure ॱ-isometry then there is a unitary 

operator ܷ:ℋ → ܦ)ଶܪ ෠்య
∗) such that  

                ෠ܶଵ = ܷ∗
ఝܷܶ,    ෠ܶଶ = ܷ∗

ఝܷܶ   and     ෠ܶଷ = ܷ∗
௭ܷܶ, 

Where ߮(ݖ) = ∗ଵܣ + (ݖ)߰   ,ݖଶܣ = ∗ଶܣ + ݖ   ,ݖଵܣ ∈ ॰ and  ܣଵ,ܣଶ are the 

fundamental operators of ൫ ෠ܶଵ
∗, ෠ܶଶ

∗, ෠ܶଷ
∗൯ satisfying 

(i)  [ܣଵ,ܣଶ] = 0 and [ܣଵ∗ [ଵܣ, = ∗ଶܣ]  [ଶܣ,

(ii)  ‖ܣଵ + ஶ,॰ഥ‖ݖଶܣ ≤ 1. 



 
 

Conversely, if ܣଵand ܣଶ are two boundary operators on a Hilbert space ܧ 

satisfying the above two conditions, then ൫ ஺ܶభ∗ା஺మ௓, ஺ܶమ∗ା஺భ௓, ௭ܶ൯ on ܪଶ(ܧ) is a 

pure ॱ-isometry.                                                                                           

Proof: suppose that ൫ ෠ܶଵ, ෠ܶଶ, ෠ܶଷ൯ is a pure ॱ-isometry. Then ෠ܶଷ is a pure 

isometry and it can be identified with the Toeplitz operator ௭ܶ on ܪଶ(ܦ ෠்య
∗). 

Therefore, there is a unitary ܷ from ℋ onto ܪଶ(ܦ ෠்య
∗) such that ෠ܶଷ = ܷ∗

௭ܷܶ. 

since for ݅ = 1,2, ෠ܶ௜ is a commutant of ෠ܶଷ, there are two multipliers ߮,߰ in 

ܦ)ஶ(ℒܪ ෠்య
∗) )  such that ෠ܶଵ = ܷ∗

ఝܷܶ and ෠ܶଶ = ܷ∗
టܷܶ. 

Claim. If ( ଵܸ, ଶܸ, ଷܸ) on a Hilbert space ℋଵ is an ॱ-isometry then ଶܸ = ଵܸ
∗
ଷܸ . 

Proof of claim. Let ( ଵܸ, ଶܸ , ଷܸ) be the restriction of an ॱ-isometry ( ଵܰ, ଶܰ, ଷܰ) 

to the common invariant subspace ℋଵ.. By part-(ii) of Theorem (4.1.4), 

ଵܰ = ଶܰ
∗

ଷܰ and hence ଶܰ = ଵܰ
∗

ଷܰ by an application of Fugled's theorem, which 

states that if a normal operator ܰ commutes with a bounded operator ܶ then it 

commutes with ܶ∗ too. Taking restriction to the common invariant subspace 

ℋଵwe get ଶܸ = ଵܸ
∗
ଷܸ. We apply this claim and part-(iii) of Theorem (4.1.5) to 

the ॱ-isometry ( ఝܶ, టܶ, ௓ܶ). So ఝܶ = టܶ
∗

௓ܶ and టܶ = ఝܶ
∗

௓ܶ and by these two 

relations we have tha  ߮(ݖ) = (ݖ)߰  and ݖଶܩ+ଵܩ = ∗ଶܩ +  for some  ݖ∗ଵܩ

ଶܩ,ଵܩ ∈ ℒ ቀܦ ෠்య
∗ቁ. Setting ܣଵ = ଶܣ ଵ∗ andܩ =  ଶ and by the commutativity ofܩ

[ଶܣ,ଵܣ]  we obtain (ݖ)߰ and (ݖ)߮ = 0 and [ܣଵ∗ [ଵܣ, = ∗ଶܣ]  .[ଶܣ,

We now compute the fundamental operators of the ॱ-co-isometry 

൫ ஺ܶభ∗ା஺మ௭
∗ , ஺ܶమ∗ା஺భ௭

∗ , ௭ܶ
∗൯.  

Clearly ܫ − ௭ܶ ௭ܶ
∗ is the projection onto the space ܦ ೥்

∗ . Now  

            ஺ܶభ∗ା஺మ௭
∗ − ஺ܶమ∗ା஺భ௭

∗
௭ܶ
∗ = ஺ܶభା஺మ∗௓ത − ஺ܶమ∗ା஺భ௭ ௓ܶത = ஺ܶభ 

           = ܫ) − ௭ܶ ௭ܶ
ܫ)ଵܣ(∗ − ௭ܶ ௭ܶ

∗). 

Similarly 



 
 

            ஺ܶమ∗ା஺భ௭
∗ − ஺ܶభ∗ା஺మ௭

∗
௭ܶ
∗ = ܫ) − ௭ܶ ௭ܶ

ܫ)ଶܣ(∗ − ௭ܶ ௭ܶ
∗). 

Therefore, ܣଵ,ܣଶ are the fundamental operators of ( ஺ܶభ∗ା஺మ௭
∗ , ஺ܶమ∗ା஺భ௭

∗ , ௭ܶ
∗) and 

ଵܣ‖ + ஶ,॰ഥ‖ݖଶܣ ≤ 1. 

      For the converse, we first prove that the triple of multiplication operators 

 ଶ satisfy the givenܣ,ଵܣ is an ॱ-unitary when (ܧ)ଶܮ on (௭ܯ஺మ∗ା஺భ௭ܯ,஺భ∗ା஺మ௭ܯ)

conditions. It is evident that ܯ஺భ∗ା஺మ௭,ܯ஺మ∗ା஺భ௭ܯ௭) is a commuting triple of 

normal operators when [ܣଵ,ܣଶ] = 0 and [ܣଵ∗ [ଵܣ, = ∗ଶܣ] ஺భ∗ା஺మ௭ܯ ଶ]. Alsoܣ, =

 is unitary. Therefore, by part-(ii) of Theorem (ܧ)ଶܮ ௭ onܯ ௭ andܯ஺మ∗ା஺భ௭ܯ

 becomes an ॱ-unitary if we prove that (௭ܯ஺మ∗ା஺భ௭ܯ,஺భ∗ା஺మ௭ܯ) (4.1.4)

ฮܯ஺మ∗ା஺భ௭ฮ ≤ 1. 

We have that ߱(ܣଵ + (ଶܣݖ ≤ 1 for every ݖ ∈ ॻ, which is same as saying that 

ଵܣଵݖ)߱ + (ଶܣଶݖ ≤ 1 for all complex numbers ݖଵ,  ଶ of unit modulus. Thus byݖ

Lemma (4.1.6) 

ଵܣଵݖ)                   + (ଶܣଶݖ + ଵܣଵݖ) + ∗(ଶܣଶݖ ≤  ,ܫ2

That is 

ଵܣଵݖ)                    + (∗ଶܣଶ̅ݖ + ଵܣଵݖ) + ∗(∗ଶܣଶ̅ݖ ≤  .ܫ2

Therefore, ݖଶ̅(ܣଶ∗ + (ଵܣݖ + ∗ଶܣ)ଶݖ + ∗(ଵܣݖ ≤ ,ݖ for all ܫ2 ଶݖ  ∈ ॻ. this is same 

as saying that 

∗ଶܣ)ଶݖ ܴ݁                  + (ଵܣݖ ≤ 1 for all ݖ, ଶݖ  ∈ ॻ. 

Therefore, by Lemma (4.1.6) again ߱(ܣଶ∗ + (ଵܣݖ ≤ 1for any ݖ ∈ ॻ. Since 

஺మ∗ା௭஺భܯ  is a normal operator we have that ฮܯ஺మ∗ା௭஺భฮ =  ߱൫ܯ஺మ∗ା௭஺భ൯ and thus 

ฮܯ஺మ∗ା௭஺భฮ ≤ 1. Therefore, (ܯ஺భ∗ା஺మ௭,ܯ஺మ∗ା஺భ௭,ܯ௭) on ܮଶ(ܧ) is an ॱ-unitary 

and hence ( ஺ܶభ∗ା஺మ௭, ஺ܶమ∗ା஺భ௭, ௭ܶ), being the restriction (ܯ஺భ∗ା஺మ௭,ܯ஺మ∗ା஺భ௭,ܯ௭) 

to the common invariant subspace ܪଶ(ܧ), is an ॱ-isometry. Also ௭ܶ on ܪଶ(ܧ)  

is a pure isometry. Thus we conclude that ( ஺ܶభ∗ା஺మ௭, ஺ܶమ∗ା஺భ௭, ௭ܶ) is a pure ॱ-

isometry. 



 
 

Section (4.2): Necessary Condition for the Existence of Dilation 

with a Counter Example 
     Show the definitions of the ॱ-isometric and ॱ-unitary dilations of an ॱ-

contraction. In fact they can be defined in a simpler way by involving 

polynomials only. This is because the polynomials are dense in the rational 

functions. 

Definition (4.2.1)[4]. Let ( ଵܶ, ଶܶ, ଷܶ) be a ॱ-contraction on ℋ. A commuting 

tuple (ܳଵ,ܳଶ,ܸ) on ࣥ is said to be an ॱ-isometric dilation of ( ଵܶ, ଶܶ, ଷܶ) if 

ℋ ⊆ ࣥ, (ܳଵ,ܳଶ,ܸ)  is an ॱ-isometry and 

           ℋܲ(ܳଵ
௠భ ,ܳଶ

௠మ ,ܸ௡)หℋ = ଵܶ
௠భ

ଶܶ
௠మ

ଷܶ
௡, For all non-negative integers 

݉ଵ,݉ଶ, ݊.  

Here ℋܲ:ࣥ → ℋ is the orthogonal projection of ࣥ onto ℋ. Moreover, the 

dilation is called minimal if ࣥ = spanതതതതതത{ܳଵ
௠భ ,ܳଶ

௠మ ,ܸ௡ℎ:  ℎ ∈ ℋ and ݉ଵ,݉ଶ, ݊ ∈

ℕ⋃{0}}. 

Definition (4.2.2)[4]. A commuting tuple (ܴଵ,ܴଶ,ܷ) on ࣥ is said to be an 

ॱ-unitary dilation of ( ଵܶ, ଶܶ, ଷܶ) if ℋ ⊆ ࣥ, (ܴଵ,ܴଶ,ܷ) is an ॱ-unitary and  

          ℋܲ(ܴଵ
௠భܴଶ

௠మܷ௡)หℋ = ଵܶ
௠భ

ଶܶ
௠మ

ଷܶ
௠೙, for all non-negative integers 

݉ଵ,݉ଶ, ݊. 

Moreover, the dilation is called minimal if ࣥ = spanതതതതതത{ܴଵ
௠భܴଶ

௠మܷ௡:  ℎ ∈ ℋ and 

݉ଵ,݉ଶ, ݊ ∈ চ}. Here ܴ௜
௠೔ = ܴ௜

∗ି௠೔ for ݅ = 1,2 and ܷ௡ = ܷ∗ି௡ when ݉௜ and ݊ 

are negative integers. 

Proposition (4.2.3)[4]. If a ॱ-contraction ( ଵܶ, ଶܶ, ଷܶ) defined on ℋ has a ॱ-

isometric dilation, then it has a minimal ॱ-isometric dilation. 

Proof: Let (ܳଵ,ܳଶ,ܸ) on ࣥ ⊇ ℋ be a ॱ-isometric dilation of ( ଵܶ, ଶܶ, ଷܶ). Let 

଴ࣥ be space defined as 

                ଴ࣥ = spanതതതതതത{ܳଵ
௠భܳଶ

௠మܸ௡ℎ:  ℎ ∈ ℋ and ݉ଵ,݉ଶ, ݊ ∈ ℕ⋃{0}}. 



 
 

Cleary ଴ࣥ is invariant under ܳଵ
௠భ ,ܳଶ

௠మand ܸ௡, for any non-negative integer 

݉ଵ,݉ଶ, ݊. Therefore if we denote the restrictions of ܳଵ,ܳଶ and ܸ to the 

common invariant subspace ଴ࣥ by ܳଵଵ,ܳଶଶ and ଵܸrespectively, we get ܳଵଵ
௠భ݇ =

ܳଵ
௠భ݇, ܳଵଶ

௠మ݇ = ܳଶ
௠మ݇, and ଵܸ

௡݇ = ܸ௡݇, for any ݇ ∈ ଴ࣥ. Hence  

                 ଴ࣥ = spanതതതതതത{ܳଵଵ
௠భܳଵଶ

௠మ
ଵܸ
௡ℎ:  ℎ ∈ ℋ and ݉ଵ,݉ଶ,݊ ∈ ℕ⋃{0}}. 

Therefore, for any non-negative integer ݉ଵ,݉ଶand ݊ we have  

                ℋܲ൫ܳଵଵ
௠భܳଵଶ

௠మ
ଵܸ
௡൯ = ℋܲ൫ܳଵ

௠భܳଶ
௠మܸ௡൯ℎ   for all ℎ ∈  ℋ. 

Now (ܳଵଵ,ܳଶଶ , ଵܸ) is an ॱ-contraction by being the restriction of an ॱ-

contraction (ܳଵ,ܳଶ ,ܸ) to a common invariant subspace ଴ࣥ. Also ଵܸ, being the 

restriction of an isometry to an invariant subspace, is also an isometry. 

Therefore by Theorem (4.1.5)-part (ii), (ܳଵଵ,ܳଶଶ , ଵܸ) is an ॱ-isometry. Hence 

(ܳଵଵ,ܳଶଶ , ଵܸ) is a minimal ॱ-isometry dilation of ( ଵܶ, ଶܶ, ଷܶ). 

Proposition (4.2.4)[4]. Let (ܳଵ,ܳଶ ,ܸ) on ࣥ be an ॱ-isometric dilation of 

an ॱ-contraction ( ଵܶ, ଶܶ, ଷܶ) on ℋ. If (ܳଵ,ܳଶ ,ܸ) is minimal, then (ܳଵ∗,ܳଶ∗,ܸ∗) 

is an ॱ-co-iosmetric extension of ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗). 

Proof: We first prove that  ଵܶ ℋܲ = ℋܲܳଵ, ଶܶ ℋܲ = ℋܲܳଶ and ଷܶ ℋܲ = ℋܸܲ. 

Clearly 

              ࣥ = spanതതതതതത{ܳଵ
௠భܳଶ

௠మܸ௡ℎ:  ℎ ∈ ℋ and ݉ଵ,݉ଶ, ݊ ∈ ℕ⋃{0}}. 

Now for ℎ ∈ ℋ we have that  

       ଵܶ ℋܲ൫ܳଵ
௠భܳଶ

௠మܸ௡ℎ൯ = ଵܶ൫ ଵܶ
௠భ

ଶܶ
௠మ

ଷܶ
௡ℎ൯ = ଵܶ

௠భାଵ
ଶܶ
௠మ

ଷܶ
௡ℎ           

                                           = ℋܲ൫ܳଵ
௠భାଵܳଶ

௠మܸ௡ℎ൯ = ℋܲ൫ܳଵ
௠భܳଶ

௠మܸ௡ℎ൯. 

Thus we have that ଵܶ ℋܲ = ℋܲܳଵ and similarly we can prove that ଶܶ ℋܲ =

ℋܲܳଶ and ଷܶ ℋܲ = ℋܸܲ. Also for ℎ ∈ ℋ and ݇ ∈ ࣥ we have that 

〈 ଵܶ
∗ℎ, ݇〉 = 〈 ℋܲ ଵܶ

∗ℎ, ݇〉 = 〈 ଵܶ
∗ℎ, ℋܲ݇〉 = 〈ℎ, ଵܶ ℋܲ݇〉 = 〈ℎ, ℋܲܳଵ݇〉 = 〈ܳଵ∗ℎ,݇〉. 

Hence ଵܶ
∗ = ܳଵ∗|ℋ and similarly ଶܶ

∗ = ܳଶ∗|ℋ and ଷܶ
∗ = ܸ∗|ℋ . Therefore, 

(ܳଵ∗,ܳଶ∗,ܸ∗) is an ॱ-co-iosmetric extension of ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗).  



 
 

Proposition (4.2.5)[4]. Let ℋଵ be a Hilbert space and let ( ଵܶ, ଶܶ, ଷܶ) be an 

ॱ-contraction on ℋ = ℋଵ ⊕ℋଵ with fundamental operators ܣଵ,ܣଶ. let 

(i) ݎ݁ܭ൫ܦ య்൯ = ℋଵ ⊕ {0} and ܦ య் = {0} ⊕ℋଵ; 

(ii)     ଷܶ(ܦ య்) = {0} and ଷܶKer൫ܦ య்൯ ⊆ ܦ య் . 

If ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) has an ॱ-isometric dilation then  

        (1଴) ܣଵܣଶ =  ,ଵܣଶܣ

        (2଴) ܣଵ∗ܣଵ − ∗ଵܣଵܣ = ଶܣ∗ଶܣ − ∗ଶܣଶܣ . 

Proof: Let (ܳଵ,ܳଶ ,ܸ) on a Hilbert space ࣥ be a minimal ॱ-isometric dilation 

of ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) (such a minimal ॱ-isometric dilation exist by Proposition (4.2.3)) 

so that (ܳଵ∗,ܳଶ∗,ܸ∗) is an ॱ-co-iometric extension of ( ଵܶ, ଶܶ, ଷܶ) by Proposition 

(4.2.4). Since (ܳଵ,ܳଶ ,ܸ) on ࣥ is an ॱ-isometry, by part-(iv) of Theorem 

(4.1.5), ࣥ has decomposition ࣥ = ଵࣥ ⊕ ଶࣥ into reducing subspace ଵࣥ, ଶࣥ of 

ܳଵ,ܳଶ ,ܸ such that (ܳଵ|ࣥభ ,ܳଶ|ࣥభ ,ܸ|ࣥభ) = (ܳଵଵ,ܳଵଶ, ଵܷ) is an ॱ-unitary and 

(ܳଵ|ࣥమ ,ܳଶ|ࣥమ ,ܸ|ࣥమ) = (ܳଶଵ,ܳଶଶ, ଵܸ) is a pure ॱ-isometry. Since (ܳଶଵ ,ܳଶଶ, ଵܸ) 

on ଶࣥ is a pure ॱ-isometry, by Theorem (4.1.8), ଶࣥ can be identified with 

ܧ where ,(ܧ)ଶܪ = ௏భ∗ and ܳଶଵܦ ,ܳଶଶ , ଵܸ can be identified with ఝܶ, టܶ, ௭ܶ 

respectively on ܪଶ(ܧ), where ߮(ݖ) = ܣ + (ݖ)߰ and ݖܤ = ∗ܤ + ,ݖ∗ܣ ݖ ∈ ॰. 

Here ܤ,∗ܣ are the fundamental operators of ܳଶଵ∗ ,ܳଶଶ∗ , ଵܸ
∗. Again  ܪଶ(ܧ) can be 

identified with ݈ଶ(ܧ)  and ఝܶ, టܶ, ௭ܶ on ܪଶ(ܧ) can be identified with the 

multiplication operators ܯఝ,ܯట,ܯ௭ ݊݋  ݈ଶ(ܧ)  respectively. So without loss of 

generality we can assume that ܭଶ = ݈ଶ(ܧ) and ܳଶଵ = ఝ,ܳଶଶܯ  ట andܯ =

ଵܸ =   .(ܧ)௭ on ݈ଶܯ

The block matrices of ܯఝ,ܯట  ௭ are given byܯ,

ఝܯ            = ቎
஺ ଴ ଴
஻ ஺ ଴
଴   ஻  ஺
⋮      ⋮        ⋮

  
⋯
⋯
⋯
⋱
቏ ,ܯట = ቎

஻∗ ଴ ଴
஺∗ ஻∗ ଴
଴   ஺∗  ஻∗
⋮      ⋮        ⋮

  
⋯
⋯
⋯
⋱
቏, and ܯ௭ = ቎

଴ ଴ ଴
ூ ଴ ଴
଴   ூ  ଴
⋮      ⋮        ⋮

  
⋯
⋯
⋯
⋱
቏. 



 
 

From now onward we shall consider ℋ as a subspace of ࣥ and ଵܶ, ଶܶ, ଷܶ on ℋ 

as the restrictions of ܳଵ∗,ܳଶ∗,ܸ∗ respectively to ℋ. 

Claim 1. ܦ య் ⊆ ܧ ⊕ {0} ⊕ {0} ⊕⋯ ⊆ ݈ଶ(ܧ) . 

Proof of claim. Let ℎ = ℎଵ⊕ℎଶ ∈ ܦ య் ⊆  ℋ, where ℎଵ ∈ ଵࣥ and ℎଶ =

(ܿ଴, ܿଵ, ܿଶ,⋯ )் ∈ ݈ଶ(ܧ). Here (ܿ଴, ܿଵ, ܿଶ,⋯ )் denotes the transpose of the 

vector (ܿ଴, ܿଵ, ܿଶ,⋯ ). Since ଷܶ൫ܦ య்൯ = {0}, we have that 

    ଷܶℎ = ܸ∗ h=ܸ∗ (ℎଵ⊕ℎଶ) = ଵܷ
∗ℎଵ ଶܯ⊕

∗ℎଶ = ଵܷ
∗ℎଵ ⊕ (ܿଵ, ܿଶ,⋯ )் = 0 

Which implies that ℎଵ = 0 ܽ݊݀ ܿଵ = ܿଶ = ⋯ = 0. This completes the proof of 

claim1. Claim 2. Ker൫ܦ య்൯ ⊆ {0} ܧ⊕ ⊕ {0} ⊕ {0} ⊕⋯ ⊆ ݈ଶ(ܧ). 

Proof of claim. For ℎ = ℎଵ ⊕ℎଶ ∈ Ker൫ܦ య்൯ ⊆ ℋ, where ℎଵ ∈ ଵࣥ and 

ℎଶ = (ܿ଴, ܿଵ, ܿଶ,⋯ )் ∈ ݈ଶ(ܧ), we have that 

ܦ య்
ଶ ℎ = ܫ) − ଷܶ

∗
ଷܶ)ℎ = ℋܲ(ܫ − ܸܸ∗)ℎ = ℋܲ(ℎଵ⊕ℎଶ − ℎଵ⊕ܯ௭ܯ௭

∗ℎଶ) = 0 

Which implies that ℋܲ(ℎଵ⊕ℎଶ) = ℋܲ(ℎଵ ௭ܯ௭ܯ⊕
∗ℎଶ). Therefore, ℎଵ⊕

(ܿ଴, ܿଵ,⋯ )் = ℋܲ(ℎଵ ⊕ (0, ܿଵ, ܿଶ,⋯ )்) which further implies that ‖ℎଵ⊕

(0, ܿଵ, ܿଶ,⋯ )்‖ ≥ ‖ℎଵ ⊕ (ܿ଴, ܿଵ, ܿଶ,⋯ )்‖. Thus ܿ଴ = 0. 

    Again ଷܶKer൫ܦ య்൯ ⊆ ܦ య் . Therefore, for ℎଵ ⊕ (0, ܿଵ, ܿଶ,⋯ )் ∈ Ker൫ܦ య்൯, 

we have that  ଷܶ(ℎଵ ⊕ (0, ܿଵ, ܿଶ,⋯ )்) = ଵܷ
∗ℎଵ ௭ܯ⊕

∗(0, ܿଵ, ܿଶ,⋯ )் = ଵܷ
∗ℎଵ ⊕

(ܿଵ, ܿଶ,⋯ )் ∈ ܦ య் . 

Then by claim 1, ℎଵ = 0 and ܿଶ = ܿଷ = ⋯ = 0. Hence claim 2 is established. 

     Now since ℋ = ܦ య் ⊕ Ker൫ܦ య்൯, we can conclude that ℋ ⊆ ܧ ⊕ ܧ ⊕

{0} ⊕ {0} ⊕⋯ ⊆ ݈ଶ(ܧ) = ଶࣥ. Therefore ൫ܯఝ
∗ టܯ,

∗ ௭ܯ,
∗൯ on ݈ଶ(ܧ) is an ॱ-co-

isometric extension of ( ଵܶ, ଶܶ, ଷܶ).We now compute the fundamental operators 

of ൫ܯఝ
∗ టܯ,

∗ ௭ܯ,
∗൯. 

ఝܯ
∗ ௭ܯటܯ−

∗ = ቎
∗ܣ ∗ܤ 0
0 ∗ܣ ∗ܤ
0 0 ∗ܣ

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏ − ቎
∗ܤ 0 0
∗ܣ ∗ܤ 0
0 ∗ܣ ∗ܤ

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏ ቎
0 ܫ 0
0 0 ܫ
0 0 0

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏ 



 
 

 

                         = ቎
∗ܣ ∗ܤ 0
0 ∗ܣ ∗ܤ
0 0 ∗ܣ

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏ − ቎
∗ܤ 0 0
∗ܣ  0 ∗ܤ
0  0 ∗ܣ

⋯
⋯
⋯

 ⋮    ⋮    ⋮   ⋱

቏ 

                         = ቎
∗ܣ 0      0
0  0      0
0   0      0

⋯
⋯
⋯

 ⋮    ⋮      ⋮ ⋱

቏ .             

 Similarly 

ఝܯ      
∗ ௭ܯటܯ−

∗ = ቎
0  0  ܤ
0  0  0
0   0  0

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏. 

Also             ܦெ೥
∗

ଶ = ܫ − ௭ܯ௭ܯ
∗ 

                            = ቎
0  0  ܫ
0  0  0
0   0  0

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏. 

     Therefore, ܦெ೥
∗ = ܧ ⊕ {0} ⊕{0}⋯ and  ܦெ೥

∗
ଶ = ெ೥ܦ

∗ = ܧ  ௗ onܫ ⊕

{0} ⊕{0}⋯ . 

 If we set 

መଵܣ                = ቎
0  0  ∗ܣ
0  0  0
0   0  0

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏ መଶܣ, = ቎
0  0  ܤ
0  0  0
0   0  0

⋯
⋯
⋯

⋮    ⋮   ⋮ ⋱

቏,                        (1.7) 

Then 

ఝܯ              
∗ ௭ܯటܯ−

∗ = ெ೥ܦ
ெ೥ܦመଵܣ∗

∗  and  ܯఝ
∗ ௭ܯటܯ−

∗ = ெ೥ܦ
ெ೥ܦመଶܣ∗

∗ .  



 
 

Therefore, ܣመଵ, ܣመଶ are the fundamental operators of (ܯఝ
∗ టܯ,

∗ ௭ܯ,
∗).                    

Let us denote ൫ܯఝ
∗ ௭ܯ,టܯ,

∗൯ by (ܴଵ,ܴଶ,ܹ). Therefore, 

             ܴଵ − ܴଶ∗ܹ =  ௐ.                                                                      (1.8)ܦመଵܣௐܦ

            ܴଶ − ܴଵ∗ܹ =  ௐ..                                                                 (1.9)ܦመଵܣመଶܣௐܦ

Claim 3. ܣመ௜ܦௐ|஽೅య ⊆ ܦ య்  and  ܣመ௜
ௐ|஽೅యܦ∗ ⊆ ܦ య் ݅ ݎ݋݂  = 1,2. 

Proof of claim. Clearly ܦௐ = ெ೥ܦ
∗ = ௐ. Let ℎ଴ܦ ௗ onܫ = (ܿ଴, ܿଵ, ܿଶ,⋯ )் ∈ ܦ య் . 

Then ܣመଵܦௐℎ଴ = ,଴ܿ∗ܣ) 0,0,⋯ )் = ఝܯ
∗ ℎ଴ = ܴଵℎ଴. Since ܴଵ|ℋ = ଵܵ,ܴଵℎ଴ ∈

ℋ. Therefore (ܣ∗ܿ଴, 0,0,⋯ )் ∈ ܦ య்  and ܣመଵܦௐ|஽೅య ⊆ ܦ య் . Similarly we can 

prove that  ܣመଶܦௐ|஽೅య ⊆ ܦ య் . 

      We compute the adjoint of ଷܶ. Let (ܿ଴, ܿଵ, ܿଶ,⋯ )்and (݀଴, ݀ଵ, 0,⋯ )் be two 

arbitrary elements in ℋ where (ܿ଴, ܿଵ, ܿଶ,⋯ )், (݀଴, ݀ଵ, 0,⋯ )் ∈ ܦ య்  and 

(ܿ଴, ܿଵ, ܿଶ,⋯ )், (݀଴,݀ଵ, 0,⋯ )் ∈ ܦ)ݎ݁ܭ య்). Now 

〈 ଷܶ
∗(ܿ଴, ܿଵ, ܿଶ,⋯ )், (݀଴, ݀ଵ, 0,⋯ )் 〉 = 〈(ܿ଴, ܿଵ, ܿଶ,⋯ )், ଷܶ (݀଴, ݀ଵ, 0,⋯ )் 〉 

                                                              = 〈(ܿ଴, ܿଵ, ܿଶ,⋯ )்,ܹ (݀଴,݀ଵ, 0,⋯ )் 〉       

                                                         = 〈(ܿ଴, ܿଵ, ܿଶ,⋯ )், (݀଴,݀ଵ, 0,⋯ )் 〉 

                                                              = 〈ܿ଴, ݀଴〉ா  

                                                              = 〈(0, ܿ଴, 0,⋯ )், (݀଴, ݀ଵ, 0,⋯ )்  〉.  

    Therefore, 

                      ଷܶ
∗(ܿ଴, ܿଵ, ܿଶ,⋯ )் = (0, ܿ଴, 0,⋯ )். 

Now ℎ଴ = (0, ܿ଴, 0,⋯ )் ∈ ܦ య் , implies that ଷܶ
∗ℎ଴ = (0, ܿ଴, 0,⋯ )் ∈ ℋ and 

టܯ
∗ (0, ܿ଴, 0,⋯ )் = ܴଶ(0, ܿ଴, 0,⋯ )் = ,଴ܿܣ) 0,0,⋯ )் ∈ ℋ. In particular, 

,଴ܿܣ) 0,0,⋯ )் ∈ ܦ య் . Therefore ܣመଵ
ௐℎ଴ܦ∗ = ,଴ܿܣ) 0,0,⋯ )் ∈ ܦ య் 

and ܣመଶ
ௐ|஽೅యܦ∗ ⊆ ܦ య் . Similarly we can prove that ܣመଶ

ௐ|஽೅యܦ∗ ⊆ ܦ య் . Hence 

claim 3 is proved. 



 
 

Claim 4. ܣመ௜ܦௐ|஽೅య = መ௜ܣ ௜ andܣ
∗ห஽೅య

= ݅ ௜∗ forܣ = 1,2. 

Proof of claim. It is obvious that ܦ య் ⊆ ௐܦ = ܧ ⊕ {0} ⊕{0}⋯. Now since 

ܹ|ℋ = ଷܶ and ܦௐ is projection onto ܦௐ, we have that ܦௐ|ℋ = ௐଶܦ |ℋ =

ௐଶܦ |஽೅య = ܦ య்
ଶ . Therefore, ܦ య்

ଶ  is a projection onto ܦ య்  and ܦ య்
ଶ = ܦ య் . From 

(1.8) we have that 

                  ℋܲ(ܴଵ − ܴଶ∗ܹ)|ℋ = ℋܲ(ܦௐܣመଵܦௐ)หℋ .                                     (1.10) 

Since (ܴଵ,ܴଶ,ܹ) is an ॱ-co-isometric extension of ( ଵܶ, ଶܶ, ଷܶ), the LES of 

(1.10) is equal to ଵܶ − ଶܶ
∗
ଷܶ. Again since ܣଵ,ܣଶ are the fundamental opereators 

of ( ଵܶ, ଶܶ, ଷܶ), we have that 

                    ଵܶ − ଶܶ
∗
ଷܶ = ܦ య்ܣଵܦ య் ଵܣ, ∈ ℒ൫ܦ య்൯.                                       (1.11)                     

 It is clear that ଵܶ − ଶܶ
∗
ଷܶ is 0 on the ortho-complement of  ܦ య் , that is on 

ܦ)ݎ݁ܭ య்). Therefore  

                   ଵܶ − ଶܶ
∗
ଷܶ = (ܴଵ − ܴଶ∗ܹ)|஽೅య = ஽ܲ೅య(ܦௐܣመଵܦௐ)ቚ

஽೅య
.             (1.12) 

Again since ܦௐ|஽೅య = ܦ య் = ܦ ௗ onܫ య் , the RES of (12) is equal to 

ห஽೅య(ௐܦመଵܣௐܦ)
 and hence 

          ଵܶ − ଶܶ
∗
ଷܶ = (ܴଵ − ܴଶ∗ܹ)|஽೅య = ห஽೅య(ௐܦመଵܣௐܦ)

= ܦ య்ܣመଵܦ య் .        (1.13) 

The last identity follows from the fact (claim 3) that ܣመଵܦௐ)ห஽೅య
⊆ ܦ య் . By the 

uniqueness of ܣଵ we get that ܣመଵห஽೅య
= ܦ ଵ. Also sinceܣ య்  is invariant under ܣመଵ

∗ 

by claim 3, we have that ܣመଵ
∗ห஽೅య

= ∗ଵܣ  . Similarly we can prove that ܣመଶห஽೅య
=

መଶܣ ଶ  andܣ
∗ห஽೅య

= ∗ଶܣ . Thus the proof to claim 4 is complete. 

    Now since (ܯఝ,ܯట,ܯ௭) ݊݋ ݈ଶ(ܧ) is an ॱ-isometry, ܯఝ and ܯట compute, 

that is 



 
 

቎
ܣ 0 0
ܤ ܣ 0
0 ܤ ܣ

⋯
⋯
⋯

⋯ ⋯ ⋯ ⋯
቏ ቎
∗ܤ 0 0
∗ܣ ∗ܤ 0
0 ∗ܣ ∗ܤ

⋯
⋯
⋯

⋯ ⋯ ⋯ ⋯
቏ = ቎

∗ܤ 0 0
∗ܣ ∗ܤ 0
0 ∗ܣ ∗ܤ

⋯
⋯
⋯

⋯ ⋯ ⋯ ⋯
቏ ቎

ܣ 0 0
ܤ ܣ 0
0 ܤ ܣ

⋯
⋯
⋯

⋯ ⋯ ⋯ ⋯
቏ 

Which implies that  

   ቎   
∗ܤܣ

∗ܤܤ + ∗ܣܣ
∗ܣܤ
⋯

  
0
∗ܤܣ

∗ܤܤ + ∗ܣܣ
⋯   

  
0
0
∗ܤܣ
⋯

  
⋯
⋯
⋯
⋯
቏ = ቎   

ܣ∗ܤ
∗ܣܣ + ∗ܤܤ

ܤ∗ܣ
⋯

  
0
∗ܤܣ

∗ܣܣ + ∗ܤܤ
⋯   

  
0
0
ܣ∗ܤ
⋯

  
⋯
⋯
⋯
⋯
቏. 

Comparing both sides we obtain  

 (i)    ܤ∗ܣ =  ܣ∗ܤ

(ii)    ܣܣ∗ − ܣ∗ܣ = ∗ܤܤ −  .B∗ܤ

Therefore from (1.7) we have that 

(i) ܣመଵܣመଶ =  መଵܣመଶܣ

(ii) ܣ෡ ଵ
መଵܣ∗ − መଵܣመଵܣ

∗ = መଶܣ
መଶܣ∗ − መଶܣመଶܣ

∗. 

Taking restriction of the above two operator identities to the subspace ܦ య்  we 

get  

 (i)   ܣଵܣଶ =  ଵܣଶܣ

 (ii)   ܣଵ∗ܣଵ − ∗ଵܣଵܣ = ଶܣ∗ଶܣ − ∗ଶܣଶܣ . 

The proof is now complete. 

      Let ℋଵ = ݈ଶ(ܧ) ⊕ ݈ଶ(ܧ),ܧ = ℂଶ  and let ℋ = ℋଵ ⊕ℋଵ. Let ଵܶ = ൤0 0
0  ,൨ܬ

ଵܶ = ቂ0 0
0 0ቃ,  and ଷܶ = ቂ0 0

ܻ 0ቃ on ℋଵ ⊕ℋଵ, where ܬ = ቂܨ 0
0 0ቃ and ܻ =

ቂ0 ܸ
ܫ 0ቃ on ℋଵ = ݈ଶ(ܧ) ⊕ ݈ଶ(ܧ). Here ܸ = ܫ ௭ andܯ =  and (ܧ)ௗ on ݈ଶܫ

 is defined as (ܧ)on ݈ଶ ܨ

:ܨ                ݈ଶ(ܧ) → ݈ଶ(ܧ)                                                                                                                     

                    (ܿ଴, ܿଵ, ܿଶ,⋯ )் → (ܿ଴, ܿଵ, ܿଶ,⋯ )், 

where we choose ܨଵ on ܧ to be a non-normal contraction such that ܨଵଶ = 0. For 

example we can choose ܨଵ = ቀ0 ߟ
0 0ቁ for some ߟ > 0. Clearly ܨଶ = 0 and 

ܨ∗ܨ ≠ ܸܨ Since .∗ܨܨ = 0, ܻܬ = 0 and thus the product of any two of ଵܶ, ଶܶ, ଷܶ 



 
 

is equal to 0. Now we unfold the operators ଵܶ, ଶܶ, ଷܶ and write their block 

matrices with respect to the decomposition ℋଵ = ݈ଶ(ܧ) ⊕ ݈ଶ(ܧ) ⊕ ݈ଶ(ܧ) ⊕

݈ଶ(ܧ): 

          ଵܶ = ൦

0
0
0

0
0
0

 
0 
0  
  ܨ

0 0   0

  
0
0
0
0

൪, ଶܶ = ൦

0
0
0

0
0
0

 
0 
0  
0  

0 0   0

  
0
0
0
0

൪ and  ଷܶ = ൦

0
0
0

0
0
ܸ

 
0 
0  
0  

ܫ 0   0

  
0
0
0
0

൪. 

We shall prove later that ( ଵܶ, ଶܶ, ଷܶ) is an ॱ-contraction and let us assume it for 

now. Here 

ܦ            య்
ଶ = ܫ − ଷܶ

∗
ଷܶ = ൦

ܫ
0
0

0
ܫ
0

 
0 
0  
  ܫ

0 0   0

  
0
0
0
ܫ

൪ − ൦

0
0
0

0
0
0

 
0 
ܸ∗  
0  

0 0   0

  
0
0
0
0

൪ ൦

0
0
0

0
0
ܸ

 
0 
0  
0  

ܫ 0   0

  
0
0
0
0

൪   

                         = ൦

0
0
0

0
0
0

 
0 
0  
  ܫ

0 0   0

  
0
0
0
ܫ

൪ = ܦ య்  

Clearly ܦ య் = {0} ⊕ {0} ⊕ ݈ଶ(ܧ) ⊕ ݈ଶ(ܧ) = {0} ⊕ℋଵ and ܦ)ݎ݁ܭ య்) =

݈ଶ(ܧ) ⊕ ݈ଶ(ܧ) ⊕ {0} ⊕ {0} = ℋଵ ⊕ {0}. also for a vector 

଴ࣥ = (ℎ଴, ℎଵ, 0,0)் ∈ ܦ)ݎ݁ܭ య்) and for a vector ଵࣥ = (0,0,ℎଶ, ℎଷ)் ∈ ܦ య் , 

               ଷܶ ଴ࣥ = ൦

0
0
0

0
0
ܸ

 
0 
0  
0  

ܫ 0   0

  
0
0
0
0

൪ (ℎ଴, ℎଵ, 0,0)் = (0,0,ܸℎଵ, ℎ଴)் ∈ ܦ య் .    

And  

                ଷܶ ଵࣥ = ൦

0
0
0

0
0
ܸ

 
0 
0  
0  

ܫ 0   0

  
0
0
0
0

൪ (0,0, ℎଶ,ℎଷ)் = (0,0,0,0)் .  

       Thus ( ଵܶ, ଶܶ, ଷܶ)  satisfies all the conditions of Proposition (4.2.5). We now 

compute the fundamental operators ܣଵ,ܣଶ of ( ଵܶ, ଶܶ, ଷܶ). 



 
 

              ଵܶ − ଷܶ
∗
ଷܶ = ଵܶ = ൦

0
0
0

0
0
0

 
0 
0  
 ܨ

0 0   0

  
0
0
0
0

൪ = ܦ  య்ܣଵܦ య்  

                                        = ൦

0
0
0

0
0
0

 
0 
0  
 ܫ

0 0   0

  
0
0
0
ܫ

൪ ଵܣ ൦

0
0
0

0
0
0

 
0 
0  
 ܫ

0 0   0

  
0
0
0
ܫ

൪. 

By the uniqueness of ܣଵ we conclude that  ܣଵ = 0 ⨁ቂܨ 0
0 0ቃ  on ܦ య் . Again 

ଵܶ
∗
ଷܶ = 0 as ܺ∗ܸ = 0 and therefore  ଶܶ − ଵܶ

∗
ଷܶ = 0. This show that the 

fundamental operator  ܣଶ, for which ଶܶ − ଵܶ
∗
ଷܶ = ܦ య்ܣଶܦ య்  holds, has to be 

equal to 0. Clearly 

ଵܣ∗ଵܣ                  − ଵܣ∗ଵܣ = 0 ⨁൤ܨ
ܨ∗ − ∗ܨܨ 0

0 0
൨ ≠ 0 as ܨ∗ܨ ≠      ∗ܨܨ

But ܣଶ∗ܣଶ − ଶܣ∗ଶܣ = 0. This violets the conclusion of Proposition (4.2.5) and it 

is guaranteed that the ॱ-contraction ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗) does not have an ॱ-isometric 

dilation, ( ଵܶ
∗, ଶܶ

∗, ଷܶ
∗)   does not have an ॱ-unitary dilation. 

     Now we prove that ( ଵܶ, ଶܶ, ଷܶ) is an ॱ-contraction. By Lemma (4.1.3), It 

suffices to show that ‖݌( ଵܶ, ଶܶ, ଷܶ)‖ ≤  .ஶ,ഥॱ, for any polynomial‖݌‖

,ଵݔ)݌   ଷ) in the co-ordinates of ॱ. Letݔ,ଶݔ

,ଵݔ)݌                 ,ଶݔ (ଷݔ = ܽ଴ + ∑ ܽ௜ݔ௜ + ,ଶݔ,ଵݔ)ݍ ଷ)ଷݔ
௜ୀଵ , 

where ݍ is a polynomial containing only terms of second or higher degree. Now  

)݌                 ଵܶ, ଶܶ, ଷܶ) = ܽ଴I+ܽଵ ଵܶ + ܽଷ ଷܶ = ൤ ܽ଴I 0
ܽଷܻ ܽ଴I + ܽଵJ

൨ 

Since ܻ ܽ݊݀ ܬ are contractions, it is obvious that 

                   ะ ൤ ܽ଴I 0
ܽଷܻ ܽ଴I + ܽଵJ

൨ ะ ≤ ฯ ൬
|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ൰ ฯ , ܾ = ‖ܽଵJ‖. 



 
 

We first show that ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨  ብ ≤ ብ൬
|ܽ଴| 0

|ܽଵ| + |ܽଷ| |ܽ଴|൰ ብ when ܾ is 

very small. Let ቀ߳ߜቁ be a unit vector in ℂଶ such that ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨ ብ =

ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨ ቀ߳ߜቁ ብ. 

It suffices to show that 

                  ብ ൤ |ܽ଴| 0
|ܽଵ| + |ܽଷ| |ܽ଴|

൨ ቀ߳ߜቁ ብ ≥ ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨ ቀ߳ߜቁ ብ. 

We have 

 ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨ ቀ߳ߜቁ ብ
ଶ

                                                                                        

= |ܽ଴|ଶ|߳|ଶ + [|ܽଷ|߳ + (|ܽ଴| + +̅߳|ଷܽ|ൣ[ߜ(ܾ (|ܽ଴| +  ൧̅ߜ(ܾ

 = (|ܽ଴|ଶ+|ܽଷ|ଶ)|߳|ଶ + (|ܽ଴| + ܾ)ଶ|ߜ|ଶ + |ܽଷ|(|ܽ଴| + ܾ)൫߳̅ߜ +                   ൯̅߳ߜ

 = |ܽ଴|ଶ + |ܽଷ|ଶ|߳|ଶ + (ܾଶ + 2|ܽ଴|ܾ)|ߜ|ଶ + |ܽ଴ܽଷ|൫߳̅ߜ + ൯̅߳ߜ + |ܽଷ|ܾ൫߳̅ߜ +

Since |߳|ଶ ,̅(߳ߜ + ଶ|ߜ| = 1.                                                                           (1.14)  

Also 

 ብ ൤|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

൨ ቀ߳ߜቁ ብ
ଶ

 

 = |ܽ଴|ଶ|߳|ଶ + [(|ܽଵ| + |ܽଷ|)߳ + |ܽ଴|ߜ][(|ܽଵ| + |ܽଷ|)߳̅+ |ܽ଴|̅ߜ] 

 = |ܽ଴|ଶ + (|ܽଵ| + |ܽଷ|)ଶ|߳|ଶ + |ܽ଴|(|ܽଵ| + |ܽଷ|)൫߳̅ߜ +  ൯̅߳ߜ

= |ܽ଴|ଶ + |ܽଷ|ଶ|߳|ଶ + (|ܽଵ|ଶ+2|ܽଵܽଷ|) |߳|ଶ + |ܽ଴ܽଷ|൫߳̅ߜ + ൯̅߳ߜ +

|ܽ଴ܽଵ|൫߳̅ߜ +    ൯̅                                                                                           (1.15)߳ߜ

Now ቆ|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

ቇ attains its norm ቀ߳ߜቁ. So without loss of generality we 

can assume that ߳̅ߜ +  is a positive (non-negative) real number because̅ ߳ߜ



 
 

otherwise altering the sign of one of ߳ or ߜ we can have ߳̅ߜ +  to be positive̅ ߳ߜ

(non-negative) which increases the norm of ቆ|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

ቇ, a contradiction. 

Therefore, ߳̅ߜ +  is positive (non-nagative). It is evident from (1.14) and ̅ ߳ߜ

(1.15) that we can choose ܾ so small that (ܾଶ + 2|ܽ଴|ܾ)|ߜ|ଶ and |ܽଷ|ܾ(߳̅ߜ +

become lesser than (|ܽଵ|ଶ ̅(߳ߜ + 2|ܽଵܽଷ|) |߳|ଶ and |ܽ଴ܽଷ|൫߳̅ߜ +  ൯̅߳ߜ

respectively. Such a choice of ܾ is possible because we can choose ߟ in the 

definition of ܬ to be very small positive number. As a consequence we get  

               ብ ቆ |ܽ଴| 0
|ܽଵ| + |ܽଷ| |ܽ଴|

ቇ ቀ߳ߜቁ ብ ≥ ብ ቆ|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

ቇ ቀ߳ߜቁ ብ.   

Therefore, 

)݌‖               ଵܶ, ଶܶ, ଷܶ)‖ ≤ ብ ቆ|ܽ଴| 0
|ܽଷ| |ܽ଴| + ܾ

ቇ ብ ≤ ብ ቆ |ܽ଴| 0
|ܽଵ| + |ܽଷ| |ܽ଴|

ቇ ብ.                              

A classical result of Caratheodory and Feȷ́er states that 

                        inf ‖ܾ଴ + ܾଵݖ + ஶ,॰ഥ‖(ݖ)ݎ = ብ ൬ܾ଴ ܾଵ
ܾଵ ܾ଴

൰ ብ, 

Where the infimum is taken over all polynomials (ݖ)ݎ in one variable which 

contain only terms of degree two or higher. For an elegant proof to this result, 

where the result is derived as a consequence of the classical commutant lifting 

theorem of Sz.- Nagy and Foias. Using this fact we have 

)݌‖  ଵܶ, ଶܶ, ଷܶ)‖ ≤ ብ ൬
|ܽ଴| 0

|ܽଵ| + |ܽଷ| |ܽ଴|൰ ብ 

                  = inf ‖|ܽ଴| + (|ܽଵ| + |ܽଷ|)ݖ + ஶ,॰ഥ‖(ݖ)ݎ  

                 ≤ inf ‖|ܽ଴| + |ܽଵ|ݔଵ + |ܽଷ|ݔଷ + ,ଵݔ)ଵݎ  ଷ)‖ஶ,ஃ                    (1.16)ݔ,ଶݔ

                 ≤ inf ‖|ܽ଴| + |ܽଶ|+|ܽଵ|ݔଵ + |ܽଷ|ݔଷ + ,ଶݔ,ଵݔ)ଵݎ  ଷ)‖ஶ,ஃ          (1.17)ݔ

                = inf ‖|ܽ଴| + |ܽଵ|ݔଵ + |ܽଶ|ݔଶ + |ܽଷ|ݔଷ + ,ଵݔ)ଵݎ     ଷ)‖ஶ,ஃݔ,ଶݔ

                ≤ ‖ܽ଴ + ܽଵݔଵ + ܽଶݔଶ + ܽଷݔଷ + ,ଶݔ,ଵݔ)ݍ  ଷ)‖ஶ,ஃ                      (1.18)ݔ



 
 

                ≤ ‖ܽ଴ + ܽଵݔଵ + ܽଶݔଶ + ܽଷݔଷ + ,ଶݔ,ଵݔ)ݍ                     ଷ)‖ஶ,ഥॱݔ

                = ,ଵݔ)݌‖  .ଷ)‖ஶ,ഥॱݔ,ଶݔ

Here Λ = ,ݔ)} 1, (ݔ ∶ ݔ ∈ ॰ഥ} ⊆ ഥॱ (by choosing ߚଵ = ଵߚ, 0 = 1  in Theorem 

(1.16) and (ݖ)ݎ and ݎଵ(ݔଵ,ݔଶ,  ଷ)  range over polynomials of degree two orݔ

higher. The inequality (1.16) was obtained by putting ݔଵ = ଷݔ = ଶݔ and ݖ = 1 

which makes the set of polynomials |ܽ଴| + |ܽଵ|ݔଵ + |ܽଷ|ݔଷ + ,ଵݖ)ଵݎ ,ଶݖ  ଷ), aݖ

subset of the set of polynomials |ܽ଴| + (|ܽଵ| + |ܽଷ|)ݖ +  The infimum .(ݖ)ݎ

taken over a subset is always bigger than or equal to the taken over the set itself.                 

We obtained the inequality (1.17) by applying a similar argument because we 

can extract the polynomial |ܽଶ|ݔଶଶ  from the set ݎଵ(ݔଵ, ,ଶݔ ଶଶݔ|ଷ) and |ܽଶݔ = |ܽଶ| 

when ݔଶ = 1. the equality (1.18) was obtained by choosing ݎଵ(ݔଵ,  ଷ)   inݔ,ଶݔ

particular to be equal to 

           (ܽ଴ − |ܽ଴| + ܽଶ − |ܽଶ|)ݔଶଶ + (ܽଵ − |ܽଵ|)ݔଵݔଶ + (ܽଷ − |ܽଷ|)ݔଶݔଷ +

,ଵݔ)ݍ  .(ଷݔ,ଶݔ
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