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CHAPTER 1 

Weighted Composition Operators on Hardy space with 
Complex Symmetric 

            We obtain several examples for non normal complex symmetric 
operators. In addition, we give spectral properties of complex symmetric 
weighted composition operators.We examine eigenvalues and eigenvectors 
of such operators and find some conditions for which a complex symmetric 
weighted composition operator is Hilbert-Schmidt. Finally, we consider 
cyclicity, hypercyclicity and the single-valued extension property for 
complex symmetric weighted composition operators.    

Section(1.1) Properties of ψ &φ: 
 In this section, we provide some characterizations of ψ and φ when a 
weighted composition operator Wψ,φ is complex symmetric. We give an 
equivalent condition for weighted composition operators to be complex 
symmetric with a special conjugation. As some applications, we obtain 
several examples for non normal complex symmetric operators. 

Let L(H) be the algebra of all bounded linear operators on a separable 
complex Hilbert space H. If T ∈ L(H), we write ρ(T), σ(T), σsu(T), σp(T), 
and σap(T) for the resolvent set, the spectrum, the surjective spectrum, the In 
this section, we provide some characterizations of ψ and φ when a weighted 
composition operator Wψ,φ is complex symmetric. We give an equivalent 
condition for weighted composition operators to be complex symmetric with 
a special conjugation. As some applications, we obtain several examples for 
non normal complex symmetric operators. 

point spectrum, and the approximate point spectrum of T, respectively, while 
r(T) denotes the spectral radius of T. 

A conjugation on H is an anti linear operator C: H → H which satisfies (Cx, 
Cy) = (y, x) for all x, y ∈ H and C2 = I. For any conjugation C, there is an 
orthonormal basis {݁௡}௡

ஶ = 0 for H such that ܥ௘೙ =  ݁௡  for all n. An operator 
T ∈L(H) is said to be complex symmetric if there exists a conjugation C on 
H such that T = Cܶ∗C. In this case, we say that T is complex symmetric with 
conjugation C. This concept is due to the fact that T is a complex symmetric 
operator if and only if it is unitarily equivalent to a symmetric matrix with 
complex entries, regarded as an operator acting on an Ɩ2-space of the 
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appropriate dimension. The class of complex symmetric operators is 
unexpectedly large. This class includes all normal operators, Hankel 
operators, compressed Toeplitz operators, and the Volterra integration 
operator.We also remark that there is no difference between p-
hyponormality and normality in this class. For 0 < p ≤ 1, an operator T ∈ 
L(H) is said to be p-hyponormal if (ܶ∗ܶ)௣  ≥  (ܶܶ∗)௣. In particular, if p = 1, 
then T is called hyponormal. If T ∈ L(H) is complex symmetric, then it turns 
out that T is p-hyponormal if and only if it is normal .  

Let D denote the open unit disk in the complex plane C. The space H2(D) 
consists of all the analytic functions on D having power series representation 
with square summable complex coefficients. The space ܪஶ(D) consists of 
all the functions that are analytic and bounded on D. If φ is an analytic 
mapping from D into itself, the composition operator Cφ on ܪଶ(D) is defined 
by Cφf = f ◦ φ for all f ∈ ܪଶ (D). It is a well-known fact that the composition 
operator Cφ is bounded on H2(D) by Little wood subordination theorem. 
Moreover, the composition operator Cφ defined on H2(D) is normal if and 
only if φ(z) = γz where |γ| ≤ 1. Hence we observe that Cγz is complex 
symmetric whenever |γ| ≤ 1. Moreover, if φ is an automorphism of D given 
by φ(z) = ୟି୸

ଵିୟത୸
 for some a ∈ D, then (φ ◦ φ)(z) = z and so C஦

ଶ = Cφ◦φ = I. Thus 
Cφ is complex  symmetric . 

For an analytic function ψ on D and an analytic self map φ of D, the operator 
Wψ,φ: H2(D) → H2(D) given by  

Wψ,φf= ψ.(f ◦ φ) 

is called a weighted composition operator. If ψ is bounded on D, then Wψ,φ is 
clearly bounded on H2(D). For ψ ∈ H∞(D), the multiplication operator on 
H2(D) is given by Mψf = ψf for all f ∈H2(D). Remark that Wψ,φ can be written 
by Wψ,φ= MψCφ if ψ ∈ H∞(D). In particular, C.C. Cowen and E. Ko have 
characterized self-adjoint weighted composition operators on H2(D). Beyond 
that, there are many examples for complex symmetric weighted composition 
operators on H2(D) which are not normal . 

Recently, S.R. Garcia and C. Hammond provided properties of complex 
symmetric weighted composition operator on weighted Hardy spaces. In 
particular, they gave explicit forms of complex symmetric weighted 
composition operators with a specific conjugation on weighted Hardy 
spaces. 
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We study complex symmetric weighted composition operators on the Hardy 
space. We provide some characterizations of ψ and φ when a weighted 
composition operator Wψ,φ is complex symmetric. We investigate which 
combinations of weights ψ and maps of the open unit disk φ give rise to 
complex symmetric weighted composition operators with a special 
conjugation. As some applications, we obtain several examples for non 
normal complex symmetric operators. In addition, we give spectral 
properties of complex symmetric weighted composition operators. We 
examine eigenvalues and eigenvectors of such operators and find some 
conditions for which a complex symmetric weighted composition operator is 
Hilbert–Schmidt. Finally, we consider cyclicity, hypercyclicity, and the 
single-valued extension property for complex symmetric weighted 
composition operators. 

In this section, we recall basic definitions needed for our program. Let ∂D 
denote the unit circle. Consider the Hilbert space 

H෩2(D):= fሚ: ∂D → C : fሚ(eiθ) = ∑ a୬
ஶ
୬ୀ଴ e୧୬஘with ∑ |a୬|ଶஶ

୬ୀ଴ e୧୬஘ <∞ 

endowed with the norm ฮfሚฮୌ෩మ = ( ∑ |a୬|ଶஶ
୬ୀ଴  )½ . It is obvious that the 

Hardy space H2(D) is isometrically isomorphic to H෩ ଶ(D) by the isomorphism 
sending f(z) = ∑ a୬

ஶ
୬ୀ଴ z୬ ∈ H2(D) to fሚ(eiθ) = ∑ a୬

ஶ
୬ୀ଴ e୧୬஘∈ H෩ ଶ(D). Every 

function f ∈ H2(D) satisfies that limr→1− f(reiθ) = fሚ(eiθ) for almost every θ. 
When a function φ ∈ H2(D) satisfies that |φ෥(eiθ)| = 1 for almost every θ, we 
say that φ is an inner function. A function F ∈ H2(D) is said to be outer if F 
is a cyclic vector for the unilateral shift Mz, i.e., V୬ୀ଴

ஶ  

{M୸
୬F} = H2(D). 

For each β ∈ D, the function Kβ(z) = ଵ
ଵିஒഥ୸ 

 ∈ H2(D), called the reproducing 
kernel for H2(D) at β, has the property that〈f, Kஒ〉= f(β) for every f ∈ H2(D) 
and β ∈ D. 

Moreover, it is well known that the linear span of the reproducing kernels 
{Kβ : β ∈ D} is dense in H2(D).  C.C. Cowen gave an adjoint formula of a 
composition operator whose symbol is a linear fractional selfmap of D. If 
φ(z) = ୟ୸ାୠ

ୡ୸ାୢ
 is a linear fractional selfmap of D, then C஦

∗ = MgCσM୦
∗  where g(z) 

= ଵ
ିୠഥ୸ାഥୢ, σ(z) = ୟത୸ାୡത

ିୠഥ୸ାഥୢ, and h(z) = cz + d. It follows  that σ is a self map of  D 
and g ∈ H∞(D). Notice that Wந,஦

∗ Kβ= ψ(β)തതതതതതതKφ(β) when Wψ,φ is bounded on 
H2(D) and β ∈ D ; in fact, for any β ∈ D and f ∈ H2(D) 
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〈f, Wந,஦
∗ Kஒ〉 = 〈ψ. (f o φ), Kஒ〉= ψ(β)f(φ(β))= 〈f,  ψ(β)തതതതതതതK஦(ஒ)

 〉. 

In particular,C஦
∗ Kஒ= Kφ(β) because Cφ= W1,φ. 

For any self   map φ of D and each positive integer n, we write φ1 := φ and 
φn+1 := φ◦ φn, which is called the iterate of φ for n. When φ is any analytic 
selfmap of D, we call a ∈ Dഥ a fixed point of φ if limr→1− φ(ra) = a. It is 
well known that for an analytic function φ: D → D, if φ is neither the 
identity map nor an elliptic automorphism of D, then there is a point a of 
Dഥ so that the iterates of φ converges uniformly to a on compact subsets of 
D. Moreover, a is the unique fixed point of φ in Dഥ for which |φ́(a)| ≤ 1. 
We say that the unique fixed point a is the Denjoy–Wolff point of φ ( is a 
theorm in complex analysis and dynamical systems concerning fixed 
points and iterations of holomophic mappings of the unit disc in the 
complex numbers into itself see [5] ). 

Let φ be an automorphism of D. Then φ is of the form 

φ(z) = ୟ౰ ା ୠഥ

ୠ౰ ା ୟത
 

for all z ∈ D, where a and b in C with |a|2− |b|2 = 1.When b≠ 0, it is easy to 
calculate that 

i Im(a)  ± ඥ |b|ଶ −  (Im(a))ଶ

b
 

are the fixed points of φ. If | Im(a)| = |b|, then φ is called parabolic, and we 
say that φ is hyperbolic if | Im(a)| <|b|. Remark that φ is parabolic if and only 
if it has one fixed point lying on ∂D, while φ is hyperbolic if and only if it 
has two fixed points lying on ∂D. If | Im(a)| >|b|, then φ is said to be elliptic. 
We note that φ is elliptic if and only if one of its fixed points is inside D and 
another is outside D. In this sense, this type also includes the case when b = 
0, i.e., when 0 and ∞ are the fixed points of φ. 

For an operator T ∈ L(H), a vector x ∈ H is said to be cyclic if the linear 
span of the orbit O(x, T) := {Tn୶}୬ୀ଴

ஶ  is norm dense in H. If there is a cyclic 
vector x for T, then we say that T is a cyclic operator. If the orbit O(x, T) is 
normdense in H for some x ∈ H, i.e., O(x, T)തതതതതതതതത  = H, then T is called 
hypercyclic operator and x is called a hypercyclic vector. It is obvious that 
every hypercyclic operator is cyclic operator. An operator T ∈ L(H) is said 
to have the single-valued extension property at z0 if for every neighborhood 
G of z0 and any H-valued analytic function f on G such that (T − z)f(z) ≡ 0 
on G, we have f(z) ≡ 0 on G. 
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Lemma (1.1.1)[1]: Let φ be a nonconstant analytic self map of  D and let 
ψ ∈ H∞(D). If Wψ,φ is a complex symmetric operator with conjugation C, 
then the following hold:  

(i) Either ψ ≡ 0 or ψ never vanishes on D. 

(ii) If ψ is not identically zero, then φ is univalent and 

ψ = ந(஛)େ୏ಞ(஛)
(େ୏ಓ) ୭ ஦

 for any λ ∈ D. 

Proof:  Note that 

Wந,஦
∗ Kβ= ψ(β)തതതതതതതKφ(β)                                                 (1) 

for  any β ∈ D. 

(i) Assume that ψ is not identically zero on D and ψ(β) = 0 for some β in D. 
Then it suffices to assume that ψ(z) ≠ 0 for all z in a deleted 
neighborhood of β. By Eq. (1), Wந,஦

∗ Kβ = ψ(β)തതതതതതതKφ(β) = 0. Since Wந,஦
 C = 

CWந,஦
∗ and C is an isometry, it follows that  

ฮWந,஦ CKஒฮ=ฮWந,஦
∗ Kஒฮ= 0, 

and so Wψ,φ CKβ(z) = 0 for all z ∈ D. That is, ψ(z)(CKβ)(φ(z)) = 0 for all z ∈ 
D, which gives that (CKβ)(φ(z)) = 0 for all z in a deleted neighborhood of β. 
This implies that CKβ ≡ 0 on D by the identity theorem, but it is a 
contradiction. Thus ψ does not vanish on D. 

(ii)  Suppose that φ is not univalent. Then there exist two distinct points z1 
and z2 in D so that φ(z1) = φ(z2). Since ψ is not identically zero, it follows 
from the assertion (i) that ψ(z1) ≠ 0 and ψ(z2) ≠ 0. Set f = ୏୸భ

ந(୸భ)
 − ୏୸మ

ந(୸మ)
. 

Then f is a nonzero vector in H2(D) and 

Wந,஦ 
∗ f = ଵ

ந(୸భ)തതതതതതതത Wந,஦
∗ K୸ଵ– ଵ

ந(୸మ)തതതതതതതത Wந,஦
∗ K୸మ=  K߮(zଵ )−K߮(ݖଶ) = 0 

From(1). The identity Wψ,φC = CWந,஦ 
∗ implies that ฮWந,஦ Cfฮ = Wந,஦

∗ f = 0. 
So we have ψ(z)(Cf)(φ(z)) = 0 for all z ∈ D. Since ψ does not vanish on D 
by (i) and φ is a non constant analytic map, it follows that Cf ≡ 0 on D. 
Since C2 = I, we get the contradiction f ≡ 0 on D. Hence φ is univalent. 

Let λ ∈ D be given. Then it follows from Eq. (1) that  

ψ(λ)CKφ(λ) = C (ψ(λ)തതതതതതKφ(λ)) = CWந,஦
∗ K஛=Wந,஦CK஛  = ψ.((CKλ) ◦ φ). 
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We note that (CKλ) ◦ φ does not vanish on D. Thus we obtain that                 
ψ = 

ψ(λ)CKφ(λ)
(CKλ)oφ

 for any λ ∈ D. 

Recall that an operator X ∈ L(H) is said to be a quasiaffinity if it has trivial 
kernel and dense range. It is well known that ker (Wந,஦

∗ ) is not trivial in 
general. But the next result shows that ker ( Wந,஦

∗ ) is trivial if Wψ,φ is 
complex symmetric. 

Proposition (1.1.2)[1]: Let φ be a non constant analytic self map of D 
and let ψ ∈ H∞(D) be not identically zero on D. If Wψ,φ is complex 
symmetric, then the following statements hold. 

(i)  Wψ,φ is a quasiaffinity. 
(ii)  If φ is inner, then it is an automorphism of D. 

Proof: (i) If f ∈ ker(Wψ,φ), then ψ(z)f(φ(z)) ≡ 0 on D. Since ψ is not 
identically zero, it follows  that ψ never vanishes on D, and so we get that 
f(φ(z)) ≡ 0 on D. Since φ(D) is open, we have f(z) ≡ 0 on D by the identity 
theorem. Thus ker (Wψ,φ) = {0}. Suppose that Wψ,φ is complex symmetric 
with conjugation C. If f ∈ ker (Wந,஦

∗ ), then it holds that Wந,஦ Cf= CWந,஦
∗ f = 

0. Since ker (Wψ,φ) = {0}, we obtain that f = 0, which means ker (Wந,஦
∗ ) = 

{0}. Hence Wψ,φ is a quasiaffinity. 

(ii) By Lemma (1.1.1), φ is univalent. Since a univalent inner function 
should be an automorphism  of  D , we complete our proof. 

Next we investigate which combinations of weights ψ and maps of the disk 
φ give rise to complex symmetric weighted composition operators with the 
special conjugation J where (J f)(z) = f(zത)തതതതത. With the fixed conjugation J, the 
complex symmetry significantly restricts the possible symbols for the 
weighted composition operators. These symbols are different from those 
symbols obtained from the self-adjointness. The following theorem provides 
many examples for complex symmetric weighted composition operators. 

Theorem(1.1.3)[1]: Let φ be an analytic selfmap of D and let ψ ∈ H∞(D) 
be not identically zero. If the weighted composition operator Wψ,φ is 
complex symmetric with conjugation J where (J f)(z) = f(zത)തതതതത., then 

ψ(z) = ୠ
ଵ ି ୟబ୸

 and φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

 

Where a0 = φ(0), a1 = φ́_(0), and b = ψ(0). 
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Conversely, let a0 ∈ D. If φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

 maps the unit disk into itself and 

ψ(z) = ୠ
ଵ ି ୟబ୸

, then the weighted composition operator Wψ,φ is complex 
symmetric with conjugation J . 

Proof:  From Eq. (1), we obtain that 

ቊ
(Wந,஦J )K୵(z)  =  Wந,஦ (K୵ഥ (z))  =  ψ(z)K୵ഥ  (φ(z)) and
( JWந,஦

∗ ) K୵(z)  =  ψ(w)(JK஦(୵))(z)  =  ψ(w) K஦୵തതതതത (z)                   (2) 

for all z,w ∈ D. If Wψ,φ is complex symmetric with conjugation J , then 

ψ(z)K୵ഥ (φ(z))= ψ(w)K஦୵തതതതത(z)                                                                  (3) 

for all z,w ∈ D. If we put w = 0 in Eq. (3), then 

ψ(z) = ψ(0)K஦(଴)തതതതതതത(z) = ந(଴)
ଵ ି ஦(଴)୸

                                                               (4) 

for all z ∈D. Since ψ is not identically zero on D, ψ (0) ≠ 0. Hence it follows 
from Eqs. (3) and (4) that 

K஦(଴)തതതതതതത(z)K୵ഥ (φ(z))= K஦(଴)തതതതതതത(w)K஦(୵)തതതതതതതത(z) 

for all z,w ∈ D. This implies that 

(1 − φ(0)z)(1 − wφ(z))= (1 − φ(0)w)(1 − φ(w)z) 

for all z,w∈D. By taking the derivative with respect to z, we have 

−φ(0) (1 − wφ(z))+ (1 − φ(0)z)(−wφ́((z))=(1 − φ(0)w)(−φ(w)) 

for all z,w ∈ D. Putting z = 0, we get that 

φ(w) = φ(0) + ஦́(଴)୵
ଵ ି ஦(଴)୵

 = a0 + ୟభ୵ 
ଵ ି ୟబ୵

 

where a0 = φ(0) and a1 = φ́(0). 

Conversely, if φ(z) =a0 + ୟభ୸
ଵ ି ୟబ୸

is a self-map of D and ψ(z) = ୠ
ଵ ି ୟబ୸

, then we 
can obtain from direct computations that 

ψ(z)K୵ഥ (φ(z)) = ଵ
(ଵ ି ୟబ୵) ି ୸[(ୟభି ୟబ

మ )୵ ା ୟబ]
  = ψ(w)K஦୵തതതതത(z) 

for all z,w ∈ D. Hence, implies that Wψ,φ  is complex symmetric with 
conjugation J. 

The following corollary explains how to construct complex symmetric 
operators by using unitary equivalence.  



8 
 

Corollary (1.1.4)[1]: Let a0 ∈ D. If φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸ 

maps the unit disk into 

itself and ψ(z) = ୠ
ଵ ି ୟబ୸

, then Wந෩ ,஦෥  is complex symmetric where φ෥(z) = a0eiθ 

+ ୟభ୸
ଵ ି ୟబୣ౟ಐ ୸

 and ψ(z) = ୠ
ଵ ି ୟబୣష౟ಐ ୸

 for any fixed real number θ. 

Proof: We know from Theorem (1.1.3) that Wந෩ ,஦෥ is complex symmetric with 
conjugation J. In addition, since ψ෩(z) = ψ(e−iθz) and φ෥(z) = eiθ φ(e−iθz), we 
obtain that Wந෩ ,஦෥ = U஘

∗ Wψ,φUθ where Uθ is the unitary operator defined by 
(Uθf)(z) = f(eiθz). Setting Jθ: =U஘

∗ J Uθ, we get that Jθ is a conjugation and 

JθWந෩ ,஦෥ Jθ= U஘
∗ JWψ,φJUθ= U஘

∗W ந,஦
∗ Uθ= Wந෩ ,஦෥

∗  

as pointed out . Hence Wந෩ ,஦෥  is complex symmetric with conjugation Jθ. 

Corollary (1.1.5)[1]: Let φ be a non constant analytic self map of D and let 
ψ ∈ H∞ be not identically zero on D. If φ has a fixed point λ ∈ D with Im(λ) 
= 0 and Wψ,φ is complex symmetric with conjugation J , then C஦෥  is a 
complex symmetric operator with conjugation (Wψλ,bλ)∗J (Wψλ,bλ) where φ෥= 
bλ◦ φ◦ bλ, ψλ=

୏ಓ
‖୏ಓ‖

 , and bλ(z) = ஛ି୸
ଵି஛ഥ୸

. 

Proof: Set ψλ=
୏ಓ

‖୏ಓ‖ and bλ(z) = ஛ି୸
ଵି஛ഥ୸

. Since bλ is an automorphism  of  D and 
bλ(λ) = 0, it follows that Wநಓ,ୠಓ is a unitary operator. Put T:= 
(Wநಓ,ୠಓ)∗(Wψ,φ)(Wநಓ,ୠಓ ). Then T is complex symmetric with conjugation 
(Wநಓ,ୠಓ)∗J(Wநಓ,ୠಓ ). It is well known from that Cୠಓ

∗ = MgCୠಓ
 M୦

∗ where g(z) = 
(1 − λ෨z)−1 and h(z) = 1 − λ෨z. Since M୦

∗ Mநಓ
∗ = (MநಓMh)∗= ଵ

‖୏ಓ‖I, we have  

T = Cୠಓ
∗ Mநಓ

∗ MψCφMψλCୠಓ 

= MgCୠಓM୦
∗Mநಓ

∗ MψCφMநಓCୠಓ 

= ଵ
‖୏ಓ‖MgCୠಓMψCφMநಓCୠಓ 

= ଵ
‖୏ಓ‖MgMந୭ୠಓMநಓ୭஦୭ୠಓCୠಓ୭஦୭ୠಓ. 

Thus T = Wந෩ ,஦෥  where φ ෥ = bλ◦ φ◦ bλ and ψ෩= ଵ
‖୏ಓ‖g∙(ψ ◦ bλ) (ψλ◦ φ◦ bλ). Since 

φ is non constant, φ෥  is also non constant and φ෥(0) = 0. Therefore, we see 
that 
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ψ෩  = 
ந෩ (଴)(୛ಠಓ,ୠಓ)∗୎ (୛ಠಓ,ୠಓ)୏బ

((୛ಠಓ ,ୠಓ)∗୎ (୛ಠಓ,ୠಓ)୏బ) ୭஦෥
                                                        (5) 

From Lemma (1.1.1) Since bλ(λത) = ଶ୧ ୍୫(஛)
ଵି஛ഥଶ 

 = 0 , we get that 

(Wநಓ , b஛)∗J (Wநಓ , b஛)K0 = Wந஛,ୠ஛
∗ J (ψλ) = ଵ

‖୏ಓ‖ Wந஛,ୠ஛
∗ K஛ഥ=ந஛(஛ഥ)തതതതതതതതത

‖୏ಓ‖ K0, 

which implies with (5) that ψ ෩ ≡ ψ෩(0) on D, and so T = ψ෩(0)Cந෩ . Since ψ as 
well as g and ψλ cannot vanish on D from Lemma (1.1.1), it follows that 
ψ෩ (0)≠0. Hence, we conclude that Cந෩ = ଵ

େಠ෩ (଴)
T is complex symmetric with 

conjugation (Wநಓ , b஛)∗J (Wநಓ , b஛). 

Let ψ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

 map D into itself where a1≠ 0, and let ψ(z) = ୠ
ଵ ି ୟబ୸

 
where b≠ 0. Then Wψ,φ is a complex symmetric weighted composition 
operator with conjugation J by Theorem (1.1.3) If φ has a fixed point λ ∈ D 
with Im(λ) = 0, by Corollary (1.1.5) we can get a complex symmetric 
composition operator ܥఝ෥  with conjugation (Wநಓ , b஛)∗J (Wநಓ , b஛) where φ ෥ = 
bλ◦ φ◦ bλ, ψλ= ୏ಓ

‖୏ಓ‖, and bλ(z) = ஛ି୸
ଵି஛ഥ୸

. In fact, from direct computations we 
have 

φ෥(z) = ஛ି஦(ୠಓ(୸))
ଵି஛ഥ஦(ୠಓ(୸))

 

= ି(|஛|మି ୟబ(஛ ା ஛ഥ) ା ୟబ
మି ୟభ)୸

(ୟబ஛ഥమି (ଵ ାୟబ
మି ୟభ)஛ഥା ୟబ)୸ ା (ୟబ

మି ୟభ)|஛|మି ୟబ(஛ ା ஛ഥ) ା ଵ 
                              (6) 

for z ∈ D. From Eq. (6) we obtain a complex symmetric composition 
operator which is not hyponormal. 

Example(1.1.6)[1]: If φ(z) = ିଵ
ଶ √ଶା୸

 and ψ(z) = ଶ
ଶ √ଶା୸

(i.e., a0 = − ଵ
ଶ √ଶ

,a1 = ଵ
଼
, 

and b = ଵ
ଶ
 ), then we know that φ is an analytic self map of D from Thus, 

Wψ,φ is complex symmetric with conjugation J  by Theorem (1.1.3) In 
addition, φ has a fixed point λ = √2− 1 ∈ D with Im(λ) = 0. Under the same 
notations as in Corollary (1.1.5), we get from Eq. (6) that C஦෥  is complex 
symmetric with conjugation (Wநಓ , b஛)∗J (Wநಓ , b஛), where  

φ(z) = (ହ – ସ √ଶ)୸
(ିସ ା ଶ √ଶ)୸ ା (ିଵ ା ଶ√ଶ)
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It is evident that C஦෥  is not normal. Indeed, it is not hyponormal by rewriting 

φ෥(z) = ୸
୳୸ା୴

 where u = ସା଺√ଶ
଻

  and v = −ଵଵା଺ √ଶ
଻

. 

As an application for Theorem (1.1.3), we find an equivalent condition for a 
complex symmetric weighted composition operator with conjugation J to be 
normal. 

Corollary (1.1.7)[1]: Let φ be an analytic self map of D and let ψ ∈ H∞(D) 
be not identically zero on D. Suppose that Wψ,φis a complex symmetric 
operator with conjugation J. Then Wψ,φ is normal if and only if φ(φ(0)തതതതതത) is 
real. In particular, if φ(0) and ψ(0) are nonzero real numbers, then Wψ,φ is 
normal if and only if it is self-adjoint. 

Proof: Since Wψ,φ is complex symmetric with conjugation J , it follows 
from Theorem (1.1.3) that 

ψ(z) = ୠ
ଵ ି ୟబ୸

 and φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

 

where a0 = φ(0), a1 = φ́(0), and b = ψ(0). For any z,w ∈ D, we have 

Wந,஦
∗ Wந,஦

 K୵(z) = Wந,஦
∗ ψ(z)

1 – wഥφ(z) = Wந,஦
∗

ψ(0)
1 −  a଴z

1 – wഥ ቀa0 + aଵz
1 – a଴zቁ

= bWந,஦
∗ 1

1 −  a଴wഥ − [ a଴ −  a଴
ଶ w തതത + aଵ ୵ഥ ]z

=
b

1 −  a଴wഥ
Wந,஦

∗ Kୟబതതതିୟబതതതమ୵ାୟభതതത୵
ଵିୟబതതത୵

(z)

=
b

1 −  a଴wഥ
ψ ቆ

a଴തതത − a଴തതതଶw + aଵഥ w
1 − a଴തതതw

ቇ K
஦൬ୟబതതതିୟబ

మ୵ାୟభതതത୵
ଵିୟబതതത୵ ൰

(z)          (7)  

  The result obtained by expanding (7) is that 
|ୠ|మ

[(ିୟబିୟబതതത(ୟభି ୟబ
మ ))wഥ ା ଵ ି |ୟబ|మ] ି [(|ୟభି ୟబ

మ|మି |ୟబ|మ)wഥ ା (ୟబതതത  ା ୟబ(ୟభതതതି ୟబതതതమ))]୸
  (8) 

for any z,w ∈ D. On the other hand, it holds for any z,w ∈ D that 

Wψ,φWந,஦
∗ Kw(z) = Wψ,φψ(w)തതതതതതതKφ(w)(z) 

= MψCφ( ந(୵)തതതതതതതത

ଵ ି ஦(୵)തതതതതതതത୸
) 

= ந(୵)തതതതതതതത ந(୸)
ଵ ି ஦(୵)തതതതതതതത ஦ ୸

                 (9) 
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By expanding (9), we get that 
|ୠ|మ

[(ିୟబതതതିୟబ(ୟభതതതି ୟబതതതమ ))୵ഥ ା ଵ ି |ୟబ|మ] ି [(|ୟభି ୟబ
మ|మି |ୟబ|మ)୵ഥ ା (ୟబ ା ୟబതതത(ୟభି ୟబ

మ  ))]୸
    (10) 

for any z,w ∈ D. Since ψ is not identically zero on D, we have b = ψ(0)≠ 0. 
Hence it follows from (8) and (10) that Wψ,φis normal if and only if a଴ +
a଴തതത(aଵ − a଴

ଶ ) is real. Since φ(φ(0)തതതതതത) =ୟబାୟబതതത(ୟభି ୟబ
మ

ଵ ି |ୟబ|మ  , we conclude that Wψ,φ is 
normal if and only if φ(φ(0)തതതതതത) is real. In particular, assume that φ(0) and 
ψ(0) are real. If Wψ,φ is normal, then a0(1+aଵ − a଴

ଶ ) is real, or equivalently, 
a1 is real. Therefore Wψ,φ is self-adjoint. 

As some applications of Corollary (1.1.7), we can find many examples 
which are complex symmetric weighted composition operators but not 
normal. 

Example(1.1.8)[1]: Let ψ(z) = 
భ
మ

ଵି భమ ௭
and φ(z) = 

೔
మ

ଵି ೔
మ ௭

= ௜
ଶ
 + 

ିభ
ర௭

ଵି ೔
మ ௭

. Then ψ 

∈ H∞(D) and φ is an analytic selfmap of D. By Theorem (1.1.3), we have 
Wψ,φ is complex symmetric with conjugation J. But Wψ,φ is not normal from 
Corollary (1.1.7), since φ(߮(0)തതതതതത) = ଶ௜

ହ
 is not real.  

Example (1.1.9)[1]: Let ψ(z) = 
భ
ర

ଵି൬√య
ఴ ାభ

ఴ ௜൰௭
and  

φ(z) = 
√య
ఴ ା భఴ ௜

ଵି൬√య
ఴ ାభ

ఴ ௜൰௭
=√ଷ

଼
+ ଵ

଼
 ݅+

൬ భ
యమା √య

యమ ௜൰௭

ଵି൬√య
ఴ ାభ

ఴ ௜൰௭
. 

Then ψ ∈ H∞(D) and φ is analytic. In addition, we know that φ maps D into 
itself by Lemma (1.2.8). Thus, Theorem (1.1.3) implies that Wψ,φ is complex 
symmetric with conjugation J . However, φ(߮(0)തതതതതത) = ଶ

ଵହ
(√3 + i) is not real 

and so Wψ,φ is not normal from Corollary (1.1.7) In the following corollary, 
we explain that every complex symmetric composition operators with 
conjugation J must be normal. 

Corollary(1.1.10)[1]: Let φ be an analytic selfmap of D. Then Cφ is a 
complex symmetric operator with conjugation J if and only if Cφ is normal. 

Proof: Suppose that Cφ is complex symmetric with conjugation J. Since 
Cφ= Wψ,φ where ψ≡ 1, we can set φ(z) = az where |a| ≤ 1 from Theorem 
(1.1.3) Thus Cφ is normal. 
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On the other hand, if Cφ is normal, then φ(z) = az where |a| ≤ 1. Therefore 
we have 

൞
൫ܥఝܭܬఈ൯(ݖ) = ఈഥܭ  ൫߮(ݖ)൯ =

1
1 − ݖܽߙ

ఝܥ ܬ) 
∗ (ݖ))ఈܭ  = (ݖ)ఝ(ఈ)തതതതതതതܭ   =  

1
1 − ݖܽߙ

 

for all z ∈ D, and so Cφ is complex symmetric with conjugation J .  

Lemma (1.1.11)[1]: Let φ be an analytic selfmap of D and let ψ ∈ H∞(D) 
be not identically zero on D. Suppose that Wψ,φ is a complex symmetric 
operator with conjugation J . If φ(0) = 0, then ψ is constant, φ(z) = φ́(0)z, 
and Cφ is complex symmetric with conjugation J . 

Proof:  The proof follows from Theorem (1.1.3).  

Theorem (1.1.12)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
ஶܪ (D) be not identically zero on D. Suppose that Wψ,φ is a complex 
symmetric operator with conjugation J. If Cφ is p-hyponormal, then Wψ,φ is 
normal. 

Proof: If Cφ is p-hyponormal, then Cφ is normaloid (i.e., r(Cφ) = Cφ). By 
some applications, we obtain that c = 0 or |c| = 1 and ߮́(c) < 1, where c is the 
Denjoy–Wolff point of φ. Assume that |c| = 1 and ߮́(c) < 1. σ(Cφ) includes 
an open annulus of eigenvalues. If Cφ is p-hyponormal, then  

ker(Cφ − λ) ⊂ker(ܥ஦
∗  (ߣ̅ −

for any λ ∈ C. Hence ker(Cφ − λ) is a reducing subspace for Cφ. Therefore, 
each of these eigenvalues corresponds to a reducing subspace of H2(D). But 
since H2(D) is separable, it is a contradiction. Thus c = 0. Since c is a fixed 
point of φ, we have φ(0) = 0. Hence Lemma (1.1.11) implies that ψ is a 
constant function and φ(z) = ߮́(0)z on D, and so Wψ,φ is normal. 

The converse of Theorem (1.1.12) does not hold. Indeed, in the first part of 
Example (1.1.8), Wψ,φ is normal, but Cφ is not p-hyponormal since φ(0) ≠ 0 
(see the proof of Theorem 1.1.12).   

Section (1.2) Spectral Theory and Cyclicity with Hypercyclicity 
and Extension Property: 
      In this section, we give spectral properties of complex symmetric 
weighted composition operators. In particular, we examine eigenvectors and 
eigenvalues of a complex symmetric weighted composition operator and 
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consider some conditions for which a complex symmetric weighted 
composition operator is Hilbert–Schmidt. First, we provide some invariant 
subspaces of a complex symmetric weighted composition operator. For a 
positive integer j and a ∈ D, the jth derivative evaluation kernel for H2(D) at 
a, denoted by ܭୟ

[୨] , is the function in H2(D) such that 〈f, ୟܭ
[୨]〉= ݂(୨)(a) for all 

f ∈ H2(D). 

Proposition (1.2.1)[1]:  Let Wψ,φ be a complex symmetric operator with 
conjugation C where φ is an analytic selfmap of D and ψ is in H∞(D). Then 
the following statements hold. 

(i)  The set {CKa : |a| < 1} is linearly independent. 
(ii)   For a ∈ D, the set {C ୟܭ

[୨] : j = 0, 1, 2, 3, ・・・} is linearly 
independent, where ܭୟ

[଴] denotes the reproducing kernel Ka. 
(iii) If m is a positive integer and φ has a fixed point a ∈ D, then the span 

of {CKa, Cܭୟ
[ଵ] , ・・・ , Cܭୟ

[୫] } is an invariant subspace of  Wψ,φ. 

Proof: (i) Suppose that a1, a2, ・・・ , an are distinct points in D. If there 
exist complex numbers c1, c2, ・・・ ,cn such that ∑ c୨CKୟ୨

୬
୨ୀଵ  = 0, then 

∑ cఫഥCKୟ୨
୬
୨ୀଵ = 0. For j =1, 2, ・・・ , n, define 

fj(z) =∏ ݖ) − ܽ௜)୬
୧ୀଵ
௜ஷ௝

 

Then we obtain that 

0 =〈 ௝݂ , ∑ c௞ഥ K௔௞
୬
୩ୀଵ 〉 = cjfj(aj). 

Since fj (aj) ≠ 0, we have cj = 0 for j = 1, 2, ・・・ , n. 

(ii) Let m0,m1, ・・・,mn be arbitrary distinct nonnegative integers. Assume 
thatc0, c1, ・・・ ,cn are complex numbers such that ∑ c௝CK௔

[௠௝]୬
௝ୀ଴ =0. Then 

we have∑ cఫഥCK௔
[௠௝]୬

௝ୀ଴ = 0. Setting gj(z) = ଵ
୫୨!

(z − a)mj for j = 0, 1, 2, ・・・ , 
n, we obtain that 

0 = 〈݃௝ , ෍ c௞ഥ K௔
[௠௝]୬

୩ୀ଴
〉=∑ c௞݃௝

[௠௝]୬
୩ୀ଴  (a) = cj 

for j = 0, 1, 2, ・・・ , n. 

(iii) For any f ∈ H2(D) and each positive integer n, it holds that 

〈f, Wந,஦
∗ Kୟ

[୬]〉 =  〈Wந,஦f, Kୟ
[୬]〉 
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= ௗ೙

ௗ௭೙  [ψ(z) f (φ(z))ቚ
୸ୀୟ

 

  = ෍ α୧(a)f (୧)(a) +  ψ(a)φ́(a)୬f (୬)(a)
୬ିଵ

୧ୀ଴

 

= 〈݂ , ෍ αన(a)തതതതതതതKୟ
[୧] + ψ(a)φ́(a)୬f (୬)തതതതതതതതതതതതതതതതതതKୟ

[୬]୬ିଵ

୧ୀ଴
〉                                  (11) 

where each α୧ is a function consisting of products of derivatives of ψ and φ. 
Thereforewe have 

நܹ,஦ 
∗ Kୟ

[୬] =෍ αన(a)തതതതതതതKୟ
[୧] +  ψ(a)φ́(a)୬തതതതതതതതതതതതതത Kୟ

[୬]୬ିଵ

୧ୀ଴
                        (12) 

Since Wψ,φ is complex symmetric with conjugation C, we get that 

நܹ,஦Kୟ
[୬] = நܹ,஦ 

∗ Kୟ
[୧] 

=෍ α୧(a)ܥKୟ
[୧] +  ψ(a)φ́(a)୬ܥKୟ

[୬]୬ିଵ

୧ୀ଴
 

Moreover Wψ,φCKa = C நܹ,஦ 
∗ Kୟ

[୧] = ψ(a)Ka. Thus we conclude that for any 
positive integer m, span {CKa, Kୟ

[ଵ]  , ・・・ Kୟܥ , 
[୫]  } is an invariant 

subspace of  Wψ,φ. 

Corollary (1.2.2)[1]: Let Wψ,φ be a complex symmetric operator with 
conjugation C where φ is an analytic selfmap of D and ψ ∈ H∞(D). If φ has a 
fixed point a ∈ D and Mm := span{CKa, ܥKୟ

[ଵ] , ・・・ Kୟܥ , 
[୫]  } for a 

positive integer m, then 

σ(Wψ,φ) = σ(Wψ,φ|Mm) ∪ σ(B) 

where B = (I − P)Wψ,φ(I − P)|ܯ ⊥
m and P denotes the orthogonal projection of 

H2(D) onto Mm. 

Proof: Since Mm is finite dimensional, it is a closed subspace of H2(D). 
Hence H2(D) = Mm⊕ܯ ⊥

m. Since Mm is an invariant subspace for Wψ,φ we 
can write 

Wψ,φ =ቀ୛ந,஦|ெ೘
଴

ܣ
ܯ⊕ቁon Mmܤ ⊥

m 
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where B = (I − P)Wψ,φ(I − P)|ܯ
ܯ

⊥
m

 and P denotes the orthogonal projection 

of H2(D) onto Mm. Since Mm is finite dimensional, we obtain that σ(Wψ,φ) = 
σ(Wψ,φ|ܯ௠) ∪ σ(B).  

In the following theorem, we find the eigenvalues of a complex symmetric 
weighted composition operator Wψ,φ when φ has the Denjoy–Wolff point 
inside the unit circle. 

Theorem (1.2.3)[1]: Let Wψ,φ be a complex symmetric operator with 
conjugation C where φ is an analytic selfmap of D and ψ ∈ H∞(D). If φ has 
the Denjoy–Wolff point a ∈ D, then σp(Wψ,φ) = {ψ(a) ത߮(a)୨ : j = 0, 1, 2, ・
・・}. 

Proof: The inclusion σp(Wψ,φ)⊃{ψ(a) ത߮(a)୨ : j = 0, 1, 2, ・・・} holds . 
Indeed, we know from the proof of Proposition (1.2.1) that 

 

൞
நܹ,஦Kୟ =  நܹ,஦ 

∗ Kୟ =  ψ(a)K௔

நܹ,஦ 
∗ Kୟ

[୬] =  ෍ α௜(ܽ)ܥKୟ
[୧] +  ψ(a)φ́(a)୬CKୟ

[୬]
୬ିଵ

୧ୀ଴

 

for each positive integer n, and span{ܥKୟ
[୧]  : i = 0, 1, 2, ・・・ , j} is 

invariant for Wψ,φ. Then it follows that the matrix of Wψ,φ restricted to 
span{ܥKୟ

[୧] : i = 0, 1, 2, ・・・ , j} is representable as the upper triangular 
matrix with the diagonal values ψ(a)φ́(a)j.Since the dimension of span{ܥKୟ

[୧] 
: i = 0, 1, 2, ・・・ , j} is finite, we conclude that ψ(a)φ́(a)j is an eigenvalue 
of Wψ,φ with an eigenvector in span{ Kୟܥ

[୧]  : i = 0, 1, 2, ・・・  , j}. 
Conversely, let λ ∈ߪ௣ (Wψ,φ). Then there exists a nonzero element f ∈ H2(D) 
such that Wψ,φf = λf, i.e., 

ψ(z)f(φ(z))= λf(z) for z∈ D                                         (13) 

Since φ(a) = a, we have ψ(a)f(a) = λf(a). If f has no zero at a, then λ = ψ(a). 
Suppose that f has a zero at a of order j for some positive integer j. 
Differentiating Eq. (13), we obtain from Eq. (11) that 

λf(j)(a) =෌ α௜(ܽ)݂(௜)(ܽ) +  ψ(a)φ́(a)୧݂(௜)(ܽ)୧ିଵ
୧ୀ଴  

= ψ (a)φ́(a)j ݂(௜)(a) 
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where each αi is a function consisting of products of derivatives of ψ and φ. 
Since  ݂(௜)(a) ≠ 0, it follows that λ = ψ (a)φ́ (a)j ݂(௜) 

Now we deal with complex symmetric weighted composition operators with 
a special conjugation. The following proposition gives an explicit form of an 
eigenvector for such an operator. 

Proposition (1.2.4)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
H∞(D) be not identically zero on D where φ(0) ≠ 0, φ́(0) ≠0, and φ(λ) = λ for 
some λ in D. If Wψ,φ is complex symmetric with conjugation J where (J f)(z) 
=f(zത)തതതതത, then 

gj(z) := ଵ
ଵ – ஛୸ 

ቀ ஛ – ୸
ଵ – ஛୸ 

ቁ
୨
 

is an eigenvector of Wψ,φ(which is not necessarily orthogonal) with respect 
to the eigenvalue  ψ (λ)φ́ (λ)j ݂(௜) for each nonnegative integer j. 

Proof:  At first, note that ݃௝∈ H∞(D) for each nonnegative integer j. We 
know from Theorem (1.1.3) that ψ(z) = ୠ

ଵିୟబ୸
 and φ(z) = a଴ + ୟభ୸

ଵିୟబ୸
where a0 

= φ(0) ≠ 0, a1 = φ́(0) ≠ 0, and b = ψ(0). Since φ(λ) = λ for some λ in D, we 
get that 

(1 − a0λ)λ = (ܽଵ −  a଴
ଶ) λ + a0                                    (14) 

Hence we have 

λ − a0 = λ (ܽଵ −  a଴
ଶ +  a଴λ)                                            (15) 

Since a0≠0, λ should be nonzero. If ܽଵ −  a଴
ଶ +  a଴λ = 0, then λ = a0, and  so 

a1 = 0, which is a contradiction. Thus   ܽଵ −  a଴
ଶ +  a଴λ ≠ 0. Since φ(z) − a0 = 

ୟభ୸
ଵିୟబ୸

 , it follows that 

               λ −  a଴  =  φ(λ)  −  a଴  =  ୟభ஛
ଵିୟబ஛

                    (16) 

From  Eqs. (15) and (16), we get that 
ୟభ

ଵିୟబ஛
= ஛ ି ୟబ

஛
   =  aଵ  −  a଴

ଶ  + a଴λ                            (17) 

Therefore Eq. (17) implies that 

φ́(λ)  =  ୟభ

(ଵିୟబ஛)మ  =  ቀ ୟభ

ଵିୟబ஛
ቁ ቀ ଵ

ଵିୟబ஛
ቁ  =  ௔భି ୟబ

మା ୟబ஛
ଵିୟబ஛

                  (18) 

From Eq. (14) we have 
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1 −  λφ(z) =  1 –  λ
(ܽଵ −  a଴

ଶ) z + a଴

1 − a଴z
=

(1 – a଴λ) −  (ܽଵ஛ −  a଴
ଶλ + a଴ ) z 

1 − a଴z
 

=
(1 −  a଴λ) −  (1 −  a଴λ)λz

1 −  a଴z
=

(1 −  a଴λ)(1 −  λz)
1 −  a଴z 

         (19) 

It follows from Eq. (19) that 
λ −  φ(z)

1 − λ φ(z) =  
  (1 −  a଴z)(λ −  φ(z))

(1 −  a଴λ)(1 −  λz)
 

=
(1 −  a଴z)(λ −  a଴  −  aଵz

1 − a଴z  ) 

(1 −  a଴λ)(1 −  λz) 
=

(λ −  a଴)  −  z(aଵ  −  a଴
ଶ  +  a଴λ)

(1 −  a଴λ)(1 −  λz)
 

Using Eqs. (15) and (18), we get that 

λ −  φ(z)
1 − λ φ(z) =  

λ(aଵ  −  a଴
ଶ  +  a଴λ) −  z(aଵ  −  a଴

ଶ  +  a଴λ)
(1 −  a଴λ)(1 −  λz)  

= ቆ
aଵ  −  a଴

ଶ  +  a଴λ
(1 −  a଴λ) ቇ ൬

λ −  z
1 −  λz

൰ =  φ́ (λ) 
λ –  z

1 –  λz
 

Thus it holds that 

(Wψ,φgj)(z) = ψ(z)gj(φ(z)) 

= ந(଴) 
(ଵ ି ୟబ୸)൫ଵ ି ஛஦(୸)൯

ቀ ஛ ି ஦(୸)
ଵ ି ஛஦(୸) 

ቁ
୨
 

= ந(଴)
൫ଵ – ୟబ୸൯൫ଵ – ஛୸൯

ቀφ́ (λ) ஛ – ୸
ଵ – ஛୸ 

ቁ
୨
 

= ቆ
ψ(0)

1 −  a଴λ
φ́(λ)௜ቇ

1
1 –  λz

൬
λ –  z

1 –  λz 
൰

௜

= ൫ψ(λ)φ́(λ)୨൯g୨(z) 

for z ∈ D and each nonnegative integer j. Hence we complete our proof. 

Next we give a lower bound and an upper bound for the spectral radius of a 
complex symmetric weighted composition operator with conjugation J . 

Lemma (1.2.5)[1]: Let φ be an analytic selfmap of D and let ψ ∈ H∞(D) 
be non constant. Suppose that Wψ,φ is a complex symmetric operator with  
conjugation J where (J f)(z)  =  f(zത)തതതതത. If φ(φ(0))തതതതതതതതതis real, then the following  
properties hold:  

(i)  ‖ψ‖  =  |ந(଴)|
ඥଵି|஦(଴)|మ    and 0 <  |߮(0)|  <  1.  
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(ii)   |ந(଴)ந(஦(଴))···ந(஦౤షభ(଴))| 
ඥଵି|஦౤(଴)|మ ≤ ฮWந,஦

୬ ฮ ≤  ଶ‖ந‖ಮ
౤

ඥଵି|஦౤(଴)|మfor each positive 

integer n, where φ0 denotes the identical function on D. 

Proof:  (i) Note that 

൞
ฮWந,஦1 ฮ =  ฮMந1 ฮ =  ‖ψ‖   and 

ฮWந,஦
∗  1ฮ =  ฮψ(0)തതതതതതതK஦(0)ฮ  =  

|ψ(0)|

ඥ1 −  |φ(0)|ଶ

 

By Corollary (1.1.7), Wψ,φ is normal and it gives that 

‖߰‖ =  |ψ(0)|
ඥ1 − |φ(0)|2  . 

Since φ is an analytic selfmap of D, it ensures that |φ(0)| < 1. If φ(0) = 0, 
then Theorem (1.1.3) implies that ψ(z) ≡ ψ(0) on D, which is a contradiction. 
Thus we have |φ(0)| > 0. There fore  ‖߰‖ =  

|ψ(0)|
ඥ1 − |φ(0)|2  and 0  |φ(0)| < 1. 

(ii) It  follows  that  
ฮWந,஦

୬ ฮ =  ฮWψ·(ψ݋φ)···(ψ݋φn−1),φnฮ ≤  ฮMψ·(ψ݋φ)···(ψ݋φn−1)ฮCφn   

≤  ฮψ∞
n ฮ

1 +  |φn(0)|

ට1 −  |φn(0)|2
  ≤  

2ฮψ∞
n ฮ

ට1 −  |φn(0)|2
 

Since Wψ,φ is normal by Corollary (1.1.7), so is Wந,஦
୬ . This implies that 

ฮWந,஦1 ฮ = ቛWψ·(ψ݋φ)···(ψ݋φn−1),φn
∗  0ቛܭ

=  ቚψ(0)ψ൫φ(0)൯ ··· ψ ቀφn−1(0)ቁቚ ቛܭφn(0)ቛ 

= หந(଴)ந൫஦(଴)൯···ந൫஦౤షభ(଴)൯ห
ඥଵ ି |஦౤(଴)|మ  

Hence we obtain that หந(଴)ந൫஦(଴)൯···ந൫஦౤షభ(଴)൯ห
ඥଵ ି |஦౤(଴)|మ ≤  ฮWψ,φ

n ฮ  for each positive 

integer n. So we complete the proof.  

Theorem (1.2.6)[1]: Let φ be an analytic selfmap of D and let ψ ∈ H∞(D) 
be non constant. 

Suppose that Wψ,φ is a complex symmetric operator with conjugation J 
where (J f)(z) = f(zത)തതതതത, φ(φ(0)തതതതതതതത) is real, and a is the Denjoy–Wolff point of φ. 

(i)  If a ∈ D, then |ψ(a)| ≤  r(Wψ,φ) ≤ ‖߰‖∞. 
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(ii)  If a ∈∂D, then ߮́(ܽ)ିభ
మ|ψ(a)| ≤ r(Wψ,φ) ≤ ߮́(ܽ)ିభ

మ‖߰‖∞.  

Proof:  By Lemma (1.2.5) we have 

หந(଴)ந൫஦(଴)൯···ந൫஦౤షభ(଴)൯ห
భ
೙

(ଵ ି |஦౤(଴)|మ)
భ

మ೙
  ≤ ฮWந,஦

୬ ฮ
భ
೙  ≤ ଶ

భ
೙‖ట‖ಮ

(ଵ ି |஦౤(଴)|మ)
భ

మ೙
 

for each positive integer n where φ0 denotes the identical function on D. Let 
ε > 0 be given, and put xn = log|ψ(φn(0))| for each nonnegative integer n. 
Since ψ(z) = ୠ

ଵିୟబ୸
 with a0∈ D from Theorem (1.1.3), ψ never vanishes on ܦഥ. 

In addition, ݈݅݉୬→ஶx୬ = log |ψ(a)| and thus we can choose a positive integer 
N such that |xn − log |ψ(a)|| <க

ଶ
 whenever n > N. Moreover, there is a real 

number M > 0 with |xn − log |ψ(a)|| ≤ M for each nonnegative integer n. 
Hence it holds for all n > N that  

อlog ൭ቚψ൫0൯ψ ቀφ൫0൯ቁ ··· ψ ቀφn−1൫0൯ቁቚ
1
݊൱ −  logอ ψ(a)‖

≤ 1
n ෍ หxj – logห ψ(a)‖

ܰ−1

݆=0
  + 1݊ ෍ หxj – logห ψ(a)‖

ܰ−1

݆=ܰ

≤  MN
n  + (n −  N)ε

2n < MN
n  + ε

2  

 If we select a positive integer ሖܰ  such that ܰ ሖ > max{ଶ୑୒
க

,N}, then for  all n 
> ሖܰ  we obtain that  

อlog ൭ቚψ൫0൯ψ ቀφ൫0൯ቁ ··· ψ ቀφn−1൫0൯ቁቚ
1
݊൱ −  logอ ψ(a)‖ < MN

ሖܰ  + ε
2 <  ߝ 

Therefore we have limn→∞log ൭ቚψ൫0൯ψ ቀφ൫0൯ቁ ··· ψ ቀφn−1൫0൯ቁቚ
1
݊൱ = log|ψ(a)|, 

which gives that  

lim୬→ஶหψ(0)ψ൫φ(0)൯ ··· ψ൫φ୬ିଵ(0)൯ห
భ
೙ = =  |߰(ܽ)|                      (20) 

On the other hand, since it holds for all n that 

1

(1 −  |φ୬(0)|ଶ)
ଵ

ଶ௡
  ≤   ฮC஦

୬ ฮ
ଵ
୬ ≤

2  1
n

(1 −  |φ୬(0)|ଶ)
ଵ

ଶ௡
 

 it ensures that 
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r(Cφ) = lim୬→ஶ
1

൫1 − |φn(0)|2൯
1

2݊
                                                   (21) 

Hence we obtain from (20) and (21) that r(Cφ)|ψ(a)| ≤ r(Wψ,φ) ≤ r(Cφ)‖߰‖ஶ, 
and so the proof follows from Theorem (1.1.9).  

Remark(1.2.7)[1]: In Theorem (1.2.6)  ψ and φ have the following form:  

(ݖ)߰                          = ௕
ଵ ି ௔బ௭

and ߮(ݖ) = ܽ଴  + ௔భ௭
ଵ ି ௔బ௭

               (22) 

from Theorem (1.1.3) Since ‖߰‖ஶ = |௕|
ଵ ି |௔బ| = |ట(଴)|

ଵ ି |ఝ(଴)| , we obtain from 
Theorem (1.2.6) that 

ఝ൯ܥ൫ݎ                      
|߰(0)|

1 −  |߮(0)| ≤ ൫ݎ  టܹ,ఝ൯ ≤ ఝ൯ܥ൫ݎ 
|߰(0)|

1 −  |߮(0)|    (23) 

             Where a is the Denjoy–Wolff point of φ. For example, let ψ and φ 
be defined as in (22).Take 0 < ܽ଴ < 1 and ܽଵ =  (1 − ܽ଴)ଶ. Since 2|ܽ଴ +
ܽ଴തതത(ܽଵ − ܽ଴

ଶ)|  =  4(ܽ଴ − ܽ଴
ଶ )  =  1 − |ܽଵ − ܽ଴

ଶ|ଶ  , it follows from Lemma 
(1.2.8) that φ is a selfmap of D. Moreover, the only fixed point of φ is 1 by a 
simple computation with formula (28), and so (1) is the Denjoy–Wolff point 
of φ. 

 Sinceݎ( టܹ,ఝ)  = |ట(଴)| (ఝܥ)ݎ 
ଵ ି ఝ(଴) from inequality (23) and 

(ఝܥ)ݎ  =  ߮́(1)
షభ
మ = 1 we have ݎ( టܹ,ఝ)  = |ట(଴)| (ఝܥ)ݎ 

ଵ ି ఝ(଴) 

If ‖ܶݔ‖ =  holds for some non-zero x ∈ H, then T ∈ L(H) is said to.‖ݔ‖‖ܶ‖ 
attain its norm on x. Remark that T attains its norm on x if and only if ܶ∗Tx= 
‖ܶ‖ଶx Moreover, if T is complex symmetric with conjugation C, then it is 
easy to show that T attains its norm on x if and only if T* attains its norm on 
Cx. Next we consider the case of a weighted composition operator that 
attains its norm on the normalized reproducing kernel   ݇௪: = ௞ೢ

‖௄௪‖
. 

Proposition (1.2.8)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
H∞(D) be not identically zero on D. Suppose that Wψ,φ is complex symmetric 
with conjugation J where (J f)(z) = f(z ̅ )If Wψ,φ attains its norm on kw for 
some w ∈ D, then the following statements hold. 

(i)  టܹ,ఝ =  |ట(଴)|
ඥଵି|ఝ(଴)|మ ・

ଵ
ඥଵି௪ഥ ఝ(ఝ(଴)തതതതതതത)

 

(ii)  If Wψ,φ is normal and φ(0) ≠ 0, then w is real and 0 ≤ w ߮(߮(0)തതതതതത) <1. 
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Proof: (i) Since Wψ,φis complex symmetric with conjugation J , it follows 
from Theorem(1.1.3) that ߰(ݖ) = ௕

ଵ ି ௔బ௭
and ߮(ݖ) = ܽ଴  + ௔భ௭

ଵ ି ௔బ௭
where ܽ଴ 

= φ(0), ܽଵ =  ߮́(0), and b = ψ(0). Since Wψ,φ attains its norm on kw, we have  

ฮ టܹ,ఝฮ
ଶ

=  〈ฮ టܹ,ఝฮ
ଶ
௪ܭ , 〈଴ܭ  =  〈 టܹ,ఝ

∗ , టܹ,ఝܭ௪ , 〈଴ܭ = ( టܹ,ఝ
∗ , టܹ,ఝܭ௪)(0)      (24) 

From Eq. (8) in Corollary (1.1.7) with z = 0 and (24), we get the following; 

ฮ టܹ,ఝฮ
ଶ

=  
|ܾ|2

[−ܽ0 −  ܽ0തതതത(ܽ1 −  ܽ0
ഥݓ[(2 +  1 −  |ܽ0|2 

= |ୠ|మ

ଵ ି |ୟబ|మ∙ ଵ

ଵ ି ୵ഥ ( 
౗బశ౗బതതതത(౗భషೌబ

మ)
భష|౗బ|మ

  )
 

= |ந(଴)|మ

ଵ ି |஦(଴)|మ ∙ ଵ
ଵ ି ୵ തതത஦(஦(଴)തതതതതതതത)

 

(ii) If Wψ,φ is normal, then φ(φ(0)തതതതതതതത) is real by Corollary (1.1.7) Thus we 
obtain from Lemma (1.2.5) that 

|ந(଴)
ඥଵ ି |஦(଴)|మ ≤ ฮWந,஦ฮ = |ந(଴)

ඥଵ ି |஦(଴)|మ・
ଵ

ඥଵ ି ୵ തതത஦(஦(଴)തതതതതതതത)
 

which implies that 0 ≤ wഥφ(φ(0)തതതതതതതത) <1. In particular, w തതതφ(φ(0)തതതതതതതത) is real, and 
so is w.  

In Theorem (1.1.3) we assume that the function φ maps the disk into itself. 
We next consider which combinations of a 0 and a1 provide a mapping of 
the disk into itself. 

Lemma (1.2.9)[1]: Let φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

. Then φ maps the open unit disk 
into itself if and only if |a0| <1 and 2|a0 + a0(a1− a଴

ଶ )| ≤ 1 − |a1− a଴
ଶ|2, i.e., 

|φ(a଴തതത)| ≤ ଵିหୟభିୟబ
మหమ

 ଶ(ଵି|ୟబ|మ)
 . 

In particular, when a1 = a଴
ଶ ≠ 0, φ maps the open unit disk into itself if and 

only if  |a0| ≤ ଵ
ଶ
, and when a1− a଴

ଶ = ±1, φ maps the open unit disk into itself if 
and only if a0 is either real or purely imaginary. 

Proof: If a0 = 0, then φ(z) = a1z. Hence it is clear that φ is a selfmap of D if 
and only if |a1| ≤ 1. If a1 = 0, then φ(z) = a0, and so φ is a selfmap of D if and 
only if |a0|<1. In addition, the inequality 2|a0+a଴തതത(a1− a଴

ଶ )|≤ 1−|a1−a଴
ଶ|2 holds. 
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Thus we may assume that a0 ≠ 0 and a1± 0. Note that |φ(z)|<1 for each z ∈D 
if and only if 

|a଴ + (aଵ −  a଴
ଶ  ) z|2 <|1 − a0 z|2 

Which is equivalent to  

(a0+ (a1− a଴
ଶ ) z ) (a଴ + (aଵ −  a଴

ଶ  )തതതതതതതതതതതതതതതതതതതതതത< (1 − a0 z) (1 −  a଴ zതതതതത) 

For  all z ∈ D. This means that  

(|(aଵ −  a଴
ଶ| 2 −|a଴|ଶ)|z|2 + 2Re{a଴തതത(aଵ −  a଴

ଶ)+ a0)z }+ |a0|2− 1 <0. 

If a0+a଴തതത(aଵ −  a଴
ଶ  ) = 0, then φ(z) = ୟబ

ୟబതതത
ୟబതതതି୸

ଵିୟబ୸
is a selfmap of D and 2|a଴ 

+a଴തതത(aଵ −  a଴
ଶ) |= 0 =1−|aଵ −  a଴

ଶ|2. Hence we may assume that a0 + a଴തതത(aଵ −
a଴

ଶ  ) ≠ 0. Choose θ ∈ R so that [a0+ a଴തതത(aଵ − a଴
ଶ  )]eiθ > 0. Set A = [a0 + 

a଴തതത(aଵ − a଴
ଶ )]eiθ= | a0 + a଴തതത(aଵ − a଴

ଶ )| and define  

φ෥(z) = e –iθφ(eiθz ) = (ୟభ ି ୟబ
మ )୸ ା ୟబୣష౟ಐ

ଵ ି ୟబୣ౟ಐ୸
. 

Then it is trivial that φ(D) ⊂ D if and only if  φ෥(D) ⊂ D. 

Claim. φ෥(D) ⊂ D if and only if |a0| < 1 and 

|φ෥(ζ)| ≤ 1 for all ζ ∈ ∂D                                                               (25) 

Suppose that φ෥(D) ⊂ D and let ζ∈∂D. Then |a0| = |φ෥(0)| < 1. In addition, 
since there is a sequence {zn} ⊂ D such that limn→∞zn = ζ, we get that 

|φ෥(ζ)| =lim୬→ஶ|φ෥(z୬)|≤ 1. 

Conversely, assume that |a0| < 1 and |φ෥(ζ)| ≤ 1 for all ζ ∈∂D. Since |a0| < 1 
and a1≠0, it follows that φ෥  is nonconstant and analytic on Dഥ. Hence it holds 
for any z ∈ D that 

|φ෥(z)| ≤ max ஖∈ୈഥ|φ෥(ζ)| =max ஖∈பୈ|φ෥(ζ)|≤ 1, 

and so|φ෥(z)|< 1 by the open mapping theorem, which completes the proof 
of our claim. 

From the above claim, it suffices to show that inequality (25) holds if and 
only if 2|a0 + a଴തതത(aଵ  −  a଴

ଶ  )| ≤ 1 − |aଵ  −  a଴
ଶ|2. By a simple calculation, we 

obtain the following condition equivalent to inequality (25): 

2 Re {[a0+ a଴തതത(aଵ  −  a଴
ଶ )]eiθ ζ}  + |aଵ  −  a଴

ଶ|2 − 1 ≤ 0                                (26) 
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for all ζ ∈∂D. Since A = [a0+ a଴തതത(aଵ  −  a଴
ଶ )] eiθ > 0, we can replace (26) by 

the following inequality: 

Re(ζ) ≤ ଵ ି |ୟభ ି ୟబ
మ  |మ

ଶ୅
 for any ζ ∈∂D                                                            (27) 

If 2|a0+  a଴തതത(aଵ − a଴
ଶ)| ≤ 1−|aଵ  −  a଴

ଶ |2, then ଵ ି |ୟభ ି ୟబ
మ |మ

ଶ୅
 ≥ 1. Thus   inequality 

(27) is clearly true. Otherwise, we have ଵ ି |ୟభ ି ୟబ
మ |మ

ଶ୅
< 1, and so (27) does not 

hold for ζ ∈ ∂D with ଵ ି |ୟభ ି ୟబ
మ |మ

ଶ୅
<Re(ζ) ≤ 1. So we complete our proof.  

Lemma (1.2.10)[1]: Let φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

be a selfmap of D where a0 and 
a1 are nonzero complex numbers. If aଵ − a଴

ଶ − 1 = 2γa0 for some real number 
γ where |γ| > 1, then φ has two fixed points inside and outside the unit circle 
∂D. Moreover, if aଵ − a଴

ଶ= ±2a0, then φ has one fixed point lying on ∂D. In 
both cases, we have r(Cφ) = 1. 

Proof:  Note that the fixed points of φ are  

ି(ୟభିୟబ
మ ି ଵ)ஷට(ୟభିୟబ

మ ି ଵ)మ  ି ସୟబ
మ

ଶୟబ
                                                               (28) 

If aଵ − a଴
ଶ  −  1 = 2γa0 for some real number γ where |γ| > 1, then  

ି(ୟభିୟబ
మ  ି ଵ)ஷට(ୟభିୟబ

మ ି ଵ)మ ି ସୟబ
మ

ଶୟబ
 = −γ ±ඥ γ2 −  1 

are two distinct fixed points of φ. Note that (−γ + ඥ γ2 −  1)(−γ − ඥ γ2 −  1) 
= 1. If γ > 1, then −γ − ඥ γ2 −  1< −1, and so −1 < −γ + ඥ γ2 −  1  = 

ଵ
ିஓି√ γ2 − 1

< 0. If γ < −1, then −γ +ඥ γ2 −  1> 1, and so 0 < −γ − ඥ γ2 −  1 = 
ଵ

ିஓ ା√ γ2 − 1
< 1. Hence it follows that φ has two fixed points inside and outside 

∂D and r(Cφ) = 1 . 

 Suppose that  aଵ − a଴
ଶ  −  1 = ±2a0. If aଵ − a଴

ଶ  −  1 = 2a0, then we obtain 
that  

ି(ୟభିୟబ
మ ି ଵ)ஷට(ୟభିୟబ

మ ି ଵ)మ  ି ସୟబ
మ

ଶୟబ
 = −1 

is the Denjoy–Wolff point of φ and so r(Cφ) = φ́(−1)−½ = 1. similarly, if 
 aଵ − a଴

ଶ  −  1 = −2a0, then we get that 1 is the Denjoy–Wolff point of φ and 
r(Cφ) = φ́ (1)−½ = 1.  
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Theorem (1.2.11)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
H∞(D) be not identically zero on D. If Wψ,φ is complex symmetric with 
conjugation J and  

2| a0 + a଴തതത(aଵ − a଴
ଶ)| ˂ 1 − |aଵ − a଴

ଶ |2 

where a0 = φ(0) and a1 = φ́(0), then Wψ,φ is Hilbert–Schmidt. 

Proof: Since Wψ,φ is complex symmetric with conjugation J , from 
Theorem (1.1.3) we can write ψ(z) = ୠ

ଵିୟబ୸
 and φ(z) = a0 + ୟభ୸

ଵ ି ୟబ୸
 where a0 = 

φ(0), a1 = φ́(0), and b = ψ(0). If a0 = 0, then φ(z) = a1z and |a1| < 1, which 
implies that ߮(ܦ)തതതതതതത⊂ D. 

we obtain that Wψ,φ is Hilbert–Schmidt. Now assume a0≠ 0. If a0 + 
a଴തതത(aଵ − a଴

ଶ) = 0, then |aଵ − a଴
ଶ| = |− ୟబ

ୟబതതത
 | = 1, which gives a contradiction such 

as 2| a0 + a଴തതത(aଵ − a଴
ଶ)| < 1 − |aଵ − a଴

ଶ |2 = 0. Hence a0 + a଴തതത(aଵ − a଴
ଶ)≠ 0. Note 

that φ(∂D) ⊂ D if and only if ෤߮ (∂D) ⊂ D where ෤߮ z) = ݁ି୧஘ φ( ݁ ୧஘ z) 

=(ୟభିୟబ
మ)୸ା ୟబୣ–౟ಐ

ଵିୟబୣ౟ಐ ୸
  and the real number θ is taken so that [a0 + a଴തതത(aଵ − a଴

ଶ)]eiθ 

= | a0 + a଴തതത(aଵ − a଴
ଶ)| > 0. Moreover, the inclusion ෤߮(∂D) ⊂ D means that 

|(aଵ − a଴
ଶ)ζ + a଴e–୧஘| < |1 − a଴e୧஘ζ| for all ζ ∈∂D, which is equivalent to  

Re(ζ) < ଵ ି |ୟభିୟబ
మ |మ

ଶ|ୟ଴ ା ୟబതതത(ୟభିୟబ
మ)|

 for all ζ ∈  D                                                  (29) 

as in the proof of Lemma (1.2.8) Since ଵ ି |ୟభିୟబ
మ  |మ

ଶ|ୟబ ା ୟబതതത(ୟభିୟబ
మ)|

> 1,   inequality (29) 
holds. Thus we get that φ(∂D) ⊂ D. Since φ is a linear  fractional  selfmap of 
D, it ensures that φ(∂D) is a circle contained in D, and φ(D) is the open disk 
whose boundary is φ(∂D). Hence it follows that ߮(ܦ)തതതതതതത⊂ D. Therefore we 
conclude that Wψ,φ is Hilbert–Schmidt .  

Corollary(1.2.12)[1]: Under the same hypotheses as in Theorem 
(1.2.10), the following assertions hold.  

(i)  Wη,φ is Hilbert–Schmidt for any η ∈ H∞(D). 
(ii) If φ has the Denjoy–Wolff point a in D, then we have 

σ(Wψ,φ) = { 0, ψ(a)߮́(a)j : j = 0, 1, 2, ・・・} 

(iii)  (0 ∈ σ௔௣(Wψ,φ) ∩ σsu(Wψ,φ). 

Proof: (i) We know from the proof of Theorem (1.2.10) that ߮(ܦ)തതതതതതത⊂ D. 
Therefore the proof   follows . 
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(ii) Since Wψ,φ is compact by Theorem (1.2.10), the Fredholm alternative 
theorem and Theorem (1.2.3) imply that σ(Wψ,φ) = { 0, ψ(a)߮́(a)j : j = 0, 1, 2, 
・・・ } 

(iii) The proof follows from the statement (ii).  

We study cyclic weighted composition operators which are complex 
symmetric. The concept of cyclicity is closely related to the invariant 
subspace problem. Indeed, T has a noncyclic vector if and only if it has a  
ontrivial invariant subspace. Similarly, T has a non hypercyclic vector if and 
only if it has a nontrivial invariant closed subset. We start our program with 
the following theorem. 

Theorem (1.2.13)[1]: Let φ be a non constant analytic selfmap of D with 
φ(a) = a for some a ∈ D, and let ψ∈ H∞(D) be not identically zero. If Wψ,φ is 
complex symmetric, then the following assertions are valid. 

(i)  If φ is not an elliptic automorphism, then both Wψ,φ and நܹ,஦
∗  are 

cyclic operators. 
(ii)  Neither Wψ,φ nor நܹ,஦

∗ is hypercyclic. 

Proof: (i) Let z0∈ D be an arbitrary point with z0≠ a, and let g ∈H2(D)  be 
such that g ⊥ ୬ܸୀ଴

ஶ  {( நܹ,஦
∗ )௡ܭ୸బ }. Then it is clear that 0 = 〈g, ୸బܭ

〉 

 = g(z0). Furthermore, since it holds that for any positive integer  n  

நܹ,஦
௡  = நܹ·(ந୭஦)·(ந୭஦మ)···(ந୭஦౤షభ),஦౤ 

Where φ0 is the identical function on D, we obtain that 

0 = 〈 g, ( Wந,஦ 
∗ )௡ܭ୸బ

〉  = 〈Wந,஦ 
௡ ݃, ୸బܭ

〉 

= ψ(z0)ψ(φ(z0)) ψ(φ2(z0))… ψ(φn−1(z0)) g(φn(z0)) 

for any positive integer n. Since ψ has no zeros in D by Lemma (1.1.1), it 
follows that g(φn(z0)) = 0 for any positive integer n. Notice that the sequence 
{߮௡(ݖ଴)}୬ୀ଴

ஶ  consists of pairwise distinct points in D which converges to a. 
Thus g ≡ 0 by the identity theorem, and so we have  ୬ܸୀ଴

ஶ  {( நܹ,஦
∗ )௡ܭ୸బ  } = 

H2(D). Since Wψ,φ is complex symmetric, there is a conjugation  C such that 
Wψ,φC = C நܹ,஦

∗ , which implies that  

୬ܸୀ଴
ஶ  { நܹ,஦

௡ ୸బܭܥ) ) ) } = C ୬ܸୀ଴
ஶ  {( நܹ,஦

∗ )௡ܭ୸బ  } = CH2(D) = H2(D). 

Hence both Wψ,φ and நܹ,஦
∗  are cyclic.  
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(ii) Suppose that Wψ,φ is a complex symmetric operator with conjugation C. 
Then we have 

Wψ,φ(CKa) = C நܹ,஦
∗ Ka = C(߰(ܽ)തതതതതതതܭ஦(ୟ)) = ψ(a)CKa. 

Since C2 = I and Ka≠ 0, we have CKa≠ 0, and so ψ(a) ∈σp(Wψ,φ). Hence 
நܹ,஦
∗  is not hypercyclic. Since Wψ,φ is complex symmetric, we conclude  

that Wψ,φ is not hypercyclic. 

From the following example, we observe that Theorem (1.2.12) provides 
some criteria for a weighted composition operator to be complex symmetric 
operators. 

Example(1.2.14)[1]: Let φ(z) = ୸
ଶି୸

 . Then it is clear that φ is a 
nonconstant analytic selfmap of D with φ(0) = 0 and is not an elliptic 
automorphism. We know that ܥ஦

∗ is cyclic, but Cφ is not cyclic. Since Cφ = 
W1,φ, we obtain from Theorem (1.2.12) that Cφ is not a complex symmetric 
operator. 

Next we give an example for the assertion (ii) of Theorem (1.2.12). 

Example(1.2.15)[1]: Let a0∈ D. If φ(z) = a0 + ୟభ୸
ଵ ି ୟబ୸

 maps the unit disk 

into  itself and ψ(z) = ୠ
ଵ ି ୟబ୸

 where a1 = ܽ଴
ଶ − 1 and b =  ඥ1 −  ܽ଴

ଶ , then Wψ,φ 
is complex symmetric 

from Theorem (1.1.3) and ψ is not identically zero by our assumption. In 
particular, if ܽ଴ = 0, then Wψ,φ = bCa1z and so Wψ,φ is normal. Thus it is not 
hypercyclic and then நܹ,஦

∗  is not hypercyclic .Now assume a0 ≠ 0. We note 
that ଵ±௕ 

ୟబ
  are the fixed points of φ and ଵି௕

ୟబ
 ∈ D since a0 is real or purely 

imaginary from Lemma (1.2.8) Thus neither Wψ,φ nor நܹ,஦
∗  is hypercyclic 

from Theorem (1.2.12) (ii). 

Next we consider some relations between complex symmetry and 
hypercyclicity of weighted com 

position operators Wψ,φ when φ has no fixed points in D. 

 
Proposition (1.2.16)[1]: Let φ be a non constant univalent analytic 
selfmap of D with no fixed points in D, and let ψ ∈ H∞ be not identically 
zero. If there exists an outer function ∈ H∞ such that Wψ,φg = λg for some 
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complex number λ ∈∂D, then Wψ,φ is hypercyclic, but நܹ,஦
∗  is not. Hence 

Wψ,φ is not complex symmetric. 

Proof:  Since Wψ,φg = λg for some λ ∈∂D, we obtain that  

Wψ,φMgf = ψ・(g◦φ)・(f◦φ) = Mg(λCφ)f 

for all f ∈ H2, i.e., Wψ,φMg = Mg(λCφ). If f ∈ker(Mg), then we get that 
g(z)f(z) ≡ 0 on D. Since g never vanishes on D, it ensures that f(z) ≡ 0 on D, 
and so ker(Mg) = {0}. Since g is outer, ker(ܯ୥

∗) = (gH2)⊥ = (H2)⊥ = {0}. 
Since φ is a univalent map without fixed points in D, it follows that λCφ is 
hypercyclic. If F ∈ H2is a hypercyclic vector for λCφ, then 

,ܨ௚ܯ)ܱ టܹ,ఝ)തതതതതതതതതതതതതതതതതത = ,ܨ)௚ܱܯ ఝ)തതതതതതതതതതതതതതതതതܥߣ = ଶതതതതതതതതܪ௚ܯ =  Hଶ.      

Therefore Wψ,φ is hypercyclic. On the other hand, since λ ∈ σp(Wψ,φ), we 
obtain that நܹ,஦

∗  is not hypercyclic, and so Wψ,φ is not complex symmetric . 

Finally, we consider local spectral properties of complex symmetric 
weighted composition operators. 

Theorem(1.2.17)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
H∞(D) be not identically zero. Then Wψ,φ has the single-valued extension 
property at 0. 

Proof:  Suppose that G is any neighborhood of 0 and f : G → H2(D) is an 
analytic function such that 

(Wψ,φ − λ)f(λ) = 0 

for any λ ∈ G. Then it holds that 

                                     ψ ∙ Cφ(f(λ)) = λf(λ)                                        (30) 

for any λ ∈ G. Since f(λ) =∑ ୤(౤)(଴)
୬!

λ௡ஶ
୬ୀ଴   on G, it suffices to show  that 

f (୬)(0) ≡0 onD 

for all nonnegative integers n. Taking λ = 0 in Eq. (30), we get that 

ψ(z) ∙ Cφ(f(0)) (z) = ψ(z)f(0)(φ(z)) = 0 

for any z ∈ D. Since ψ is not identically zero, there is a nonempty open 
subset U of D so that ψ(z) ≠ 0 for z ∈ U, and thus f(0)(φ(z)) = 0 for z ∈ U. 
Since φ(U) is a nonempty open set by the open mapping theorem, it follows 
from the identity theorem that 
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f(0) ≡0 on D. 

In order to use induction, suppose that f(k)(0) ≡ 0 on D for some nonnegative 
integer k. Differentiating Eq. (30) with respect to λ, we obtain that  

ψ∙Cφ(f(k+1)(λ)) = (k + 1)f(k)(λ) + λf(k+1)(λ) 

for λ ∈ G. Thus the induction hypothesis implies that ψ(z)f(k+1)(0)(φ(z)) ≡ 0 
on D. As the above argument, we have that 

f (k+1)(0) ≡0onD. 

Hence Wψ,φ has the single-valued extension property at 0.  

Corollary (1.2.18)[1]: Let φ be an analytic selfmap of D and let ψ ∈ 
H∞(D) be not identically zero. If Wψ,φ is complex symmetric, then நܹ,஦

∗  has 
the single-valued extension property at 0. 

Proof: Let G be any neighborhood of 0 and let f : G → H2(D) be an 
analytic function such that ( நܹ,஦

∗  − λ)f(λ) = 0 for all λ ∈ G. Suppose that 
Wψ,φ is complex symmetric with conjugation C. Since C நܹ,஦

∗  = Wψ,φC, we 
get that 

(Wந,஦ −  λത) Cf (λ)  =  C ( நܹ,஦
∗  –  λ) f (λ)  =  0 

for all λ ∈ G. This means that (Wψ,φ − ω)Cf( ഥ߱) = 0 for all ω ∈ G∗, where G∗ 
 = Fix any ω0∈ G∗. Since f is analytic at߱଴തതതത, then we write f(λ) .{λ ∈ G : ߣ̅} =:
∑ (λ − ω଴തതതത)௡ஶ

୬ୀ଴ fn for all λ in some neighborhood  of ω଴തതതതand fn∈ H2(D). Thus 
for all ω in some neighborhood of ω0, 

Cf(ωഥ)  =  C ൭෍(ωഥ  −  ω଴തതതത)୬f୬

ஶ

୬ୀ଴

൱   =  ෍(ωഥ  −  ω଴തതതത)୬ Cf୬

ஶ

୬ୀ଴

, 

which means that Cf(ωഥ)  is analytic at ω0. Since Wψ,φ has the single-valued 
extension property at 0, it follows from Theorem (1.2.16) that Cf(ωഥ)  = 0 or 
all ω ∈ G∗, that is, Cf(λ) = 0 for all λ ∈ G. Since C2 = I, it ensures that f(λ) = 
0 for all λ ∈ G. Hence நܹ,஦

∗  has the single-valued extension property at 0.  

Corollary (1.2.19)[1]: Let φ be a non constant analytic selfmap of D and 
let ψ ∈ H∞(D) be not identically zero. If Wψ,φ is complex symmetric, then the 
following properties hold. 

(i)  Either 0 ∈ρ(Wψ,φ) or 0 ∈ σap(Wψ,φ) ∩ σsu(Wψ,φ). 
(ii)  If Wψ,φ has closed range, then it is invertible. 
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Proof: (i) Since both Wψ,φ and  நܹ,஦
∗  have the single-valued extension 

property at 0 follows that 0 ∉ σ(Wψ,φ) \ σap(Wψ,φ) and 0 ∉ σ(Wψ,φ) \ 
σsu(Wψ,φ). Hence we obtain that 0 ∉ σ(Wψ,φ) \ [σap(Wψ,φ) ∩ σsu(Wψ,φ)], 
which completes the proof.  

(ii) Since Wψ,φ has closed range and ker(Wψ,φ) = {0} from Proposition 
(1.1.2), we have 0 ∉ σap(Wψ,φ). Thus 0 ∈ρ(Wψ,φ) by the statement (i).  

Corollary (1.2.20)[1]: Suppose that Wψ,φ is complex symmetric where φ 
is an analytic selfmap of D and ψ ∈ H∞(D) is not identically zero. If S is a 

bounded linear operator satisfying that ෍ (−1)୩ି୨ ൬k
j ൰ நܹ,஦

∗ S୩ି୨ = 0
୩

୨ୀ଴
 for 

some positive integer k, then S has the single-valued extension property at 0. 

Proof: Let G be a open neighborhood of 0. If f : G → ܪଶ(D) is an analytic 
function such that (S − λ)f(λ) = 0 for all λ ∈ G, then we note that  

( நܹ,஦
∗  –  λ)k f(λ) = ൫( நܹ,஦

∗  –  λ ൯k f(λ) − ෍(−1)୩ି୨ ൬k
j ൰ நܹ,஦

∗ S୩ି୨
୩

୨ୀ଴

 

=  ( நܹ,஦
∗  –  λ)k f(λ) −  ෍ ൬k

j ൰ ൫ நܹ,஦
∗ −  λ൯

௝
 (

୩

୨ୀ଴

λ −  S)k−j f(λ)  

=  − ෍ ൬k
j ൰ ൫ நܹ,஦

∗ −  λ൯
௝
 (

୩ିଵ

୨ୀ଴

λ −  S)k−j f(λ)

= ෍ ൬k
j ൰ ൫ நܹ,஦

∗ −  λ൯
௝
 (

୩ିଵ

୨ୀ଴

λ −  S)k−j−1(S −  λ)f(λ) =  0          (31)   

 

for all λ ∈ G. Since நܹ,஦
∗  has the single-valued extension property it follows 

that f(λ) = 0 for all λ ∈ G. Therefore S has the single-valued extension 
property at 0.  
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CHAPTER 2 
A Spectral Radius for Approximation Number of Composition 

Operators 
           We show the approximation numbers of composition operators on 
weighted analytic Hilbert spaces, including the hardy, Bergman and 
Dirichlet cases with symbol of uniform norm .  

Section (2.1) Background and Framework: 
The determination of the approximation numbers of composition operators 
on Hilbert spaces of analytic functions on the unit disk (Hardy space, 
weighted Bergman space, Dirichlet space) is a difficult problem. Some 
partial results show that no simple answer may be expected. However we 
proved that these approximation numbers cannot decay faster than 
geometrically: we always have a୬(C஦)  ≥  c r୬ or some constant c > 0 
andsome 0 < ݎ < 1 . Moreover, we showed in those papers that 
lim୬→ஶ[a୬(C஦]ଵ/୬  =  1if and only if ‖φ‖ஶ =  1. 

The quantity lim୬→ஶ[a୬(C஦]ଵ/୬  =  1 looks like a spectral radius formula 
for theapproximation numbers. Recall that if T is a bounded operator on a 
complex Hilbert space H, with spectrum σ(T), the classical spectral radius 
formula tells that for the spectral radiusr (T): =  supఒ ∈ ஢(୘)|ߣ|, one has the 
formula: 

r(T )  =  lim
୬→ஶ

‖T୬‖ଵ/୬ 

(the  existence of the limit being part of the conclusion). 

Now, if a୬  =  a୬(T ) is the n-th approximation number of a bounded 
operator T on a Hilbert space H, it was shown by taking a rank-one 
perturbation of an n-dimensional shift, that, given 0 < ߪ <  1 , we can 
have  aଵ  = …= a୬ିଵ  = 1, and a୬  = σ. Using orthogonal blocks of such 
normalized operators, one easily builds examples of compact operators T for 
which the quantity [a୬(T )]ଵ/୬ has no limit as n goes to infinity, and indeed 
satisfies: 

lim inf୬→ஶ[a୬(T )]ଵ/୬  =  0 , lim sup୬→ஶ[a୬(T )]ଵ/୬ =  1 . 

We might as well use a diagonal operator with non-increasing positive 
diagonal entries ɛn such that lim inf୬ ɛ௡

ଵ/୬  =  0 and lim sup୬ ɛ௡
ଵ/୬  =  1 . 

Nevertheless, the parameters 
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βି(T ) =  lim inf୬→ஶ[a୬(T )]ଵ/୬ ,  βା(T ) = lim sup୬→ஶ[a୬(T )]
భ
౤                               (1) 

Which satisfy  0 ≤  β−(T )  ≤   β+(T )  ≤  1 are similar to the term 
lim୬→ஶ‖T୬‖ଵ/୬in the spectral radius formula. When the limit exists we will 
denote it by: 

                β(T ) = lim୬→ஶ[a୬(T )]
భ
౤                                                                                                 (2) 

These parameters were shown to play an important role in the study of 
composition operators. As said above, the following was proved in these 
section. 

Theorem (2.1.1)[2]: Let H be a weighted Bergman space Bα (in 
particular the Hardy space H2) or the Dirichlet space D and φ: D → D 
inducing a composition operator C஦ : H → H. Then: 

(i) if 0 < ‖߮‖ஶ <  1, one has 0 < β−(C஦)  ≤   β+(C஦)  <  1; 

(ii) if ‖߮‖ஶ= 1, one has β൫Cφ൯= 1. 

The aim of this work is to complete this result by showing that β൫Cφ൯ 
existsas well when ‖߮‖ஶ< 1 and to give a closed formula for this β൫Cφ൯ in 
termsof a Green capacity, relying on a basic work in the above theorem. 

We end the paper with some words on the Hp case for 1 ≤ p <∞.We begin by 
giving notations, definitions and facts which will be used throughout this 
work. 

Recall that if X and Y are two Banach spaces of analytic functions on the 
unit disk D, and φ: D → D is an analytic self-map of D, one says that φ 
induces a composition operator C஦: X →  Y  if  f ݋φ ∈  Y   for every f ∈ X; 
φ is then called the symbol of the composition operator. One also says that φ 
is a symbol for X and Y if it induces a composition operator C஦: X →  Y . 

For an operator T:X → Y between Banach spaces X and Y , its 
approximation numbers are defined, for n ≥ 0, as: 

                                 a୬(T )  =  inf
rank R < ݊

‖T −  R‖                                          (3) 

One has ‖T ‖ =  a1(T ) ≥  a2(T ) ≥  ・・・ ≥  an(T ) ≥  an+1(T ) ≥ ⋯ , and 
(assuming that Y has the Approximation Property), T is compact if and only 
if a୬(T )

n→∞
ሱ⎯⎯ሮ 0 . 

The n-th Kolmogorov number dn(T ) of T is defined: 
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d୬(T ) =
inf

E ⊆ Y
dimE < ݊

ൣsup୶∈୆౔  dist (T x, E)൧  =  
inf

E ⊆ Y
dimE < ݊

‖Q୉T‖ଢ଼/୉                        (૝)   

where  Q୉ ∶  Y → ଢ଼
୉

is the quotient map. One always has a୬ (T )≥ d୬ (T ) 
and,when X and Y are Hilbert spaces, one has a୬(T ) = d୬(T ).As usual, the 
notation A ≲ B means that there is a constant c such thatA ≤ C B. 

An analytic Hilbert space H on D is a Hilbert space H ⊂ Hol(D), the analytic 
functions on the unit disk D, for which the evaluations f ↦f(a) are 
continuous on H for all a ∈ D and therefore given by a scalar product: 

f(a)  = 〈 f, Kୟ〉,    Kୟ ∈  H. 

Since weakly convergent sequences of H are norm-bounded, the reproducing 
kernels Kୟ are automatically norm-bounded on compact subsets of D, that is: 

                  L୰ ∶= sup|ୟ|ஸ୰‖Kୟ‖ < ∞,   for all   r <  1                     (5) 

We will be slightly less general here, and adopt the framework. Let 

ω : [0, 1) → (0,∞) be a continuous, positive, and Lebesgue-integrable 
function. 

We extend this function to a radial weight on D by setting ω(z) = ω(|z|) . 
Wedenote by Hன the space of analytic functions on D such that 

‖f‖ன
ଶ  ∶=  |f(0)|ଶ  + න |f′(z)|ଶ ω(z) dA(z)  <  +∞

ୈ

 ,  

where ɖA stands for the normalized area measure on D. We will often omit 
the subscript ω and write ‖. ‖ for  ‖. ‖ன.  

If f(z)  = ∑ b୬z୬ஶ
୬ୀ଴ , a computation in polar coordinates shows that: 

                                ‖f‖ଶ =  ∑ |b୬|ଶω௡
ஶ
୬ୀ଴                                        (6) 

where: 

ω଴ = 1 andω௡ =  2nଶ ∫ rଶ୬ିଵω(r) dr ,         n ≥  1ଵ
଴                        (7) 

Observe that there is a constant C = C(ω) ≥ 1 and, for each ɛ> 0, aߜɛ> 0such 
that: 

ɛeିɛ୬ߜ           ≤  w୬ ≤  C nଶ ,            n ≥  1                                      (8) 



33 
 

Indeed, in one side, one hasw୬ ≤  2nଶ ∫ ω(r) dr ଵ
଴ , and, on the other side, 

foreach 0 <δ< 1, setting cஔ =  inf଴ஸ୰ஸஔ ω(r), we have cஔ> 0 and: 

w୬ ≥  2nଶcஔ න rଶ୬ିଵ dr 
ஔ

଴
=  cஔ n δଶ୬, 

giving (8). This shows in passing that  Hன is an analytic Hilbert space, and 
we call it a weighted analytic Hilbert space. This framework is sufficiently 
general for our purposes and includes for example the case of (weighted) 
Bergman, Hardy, and Dirichlet spaces, corresponding to ω(r) =
(1 − rଶ)ఈ , α > −1 , that is w୬ ≈  nଵି஑ . The standard Bergman, Hardy, 
Dirichlet spaces correspond to the respective values α = 2, 1, 0. 

The following simple fact will be used. Let a ∈ D and j ≥ 0; the 

f ↦
is a continuous linear form on H. 

This holds for any analytic Hilbert space on D, and here can also be viewed 
as a consequence of (8). 

An analytic self-map φ : D → D which induces a composition operator C஦: 
H → H will be called a symbol for H = Hఠ. In our space H, we have a quite 
easy case for deciding if some φ is a symbol. 

Lemma (2.1.2)[2]: If ‖߮‖ஶ< 1, then ߮ is a symbol if and only if ߮∈ H. 
Equivalently, if and only if the positive measure μ = | ߮ |ଶ߱ dA is finite. In 
that case, we moreover have ฮ߮௞ฮ≤ C k ‖߮‖ஶ

௞ for every k ≥ 1. 

Proof: If φ is a symbol, then  φ = C஦(z)  ∈ H . Conversely, let ߩ  = 
‖߮‖ஶ<1.We first note that, if φ∈ H, we have for any integer k ≥ 1: 

      ฮ߮௞ฮଶ =  |φ(0)|ଶ୩  + ∫  ω(z)kଶหφ(z)|ଶ(୩ିଵ)หφ́(z)|ଶ
ୈ   dA(z) ≤

 ρଶ୩(1 +  kଶρିଶ) ‖߮‖ଶ                                                (10) 

Now, let ɛ > 0 be such that ρeɛ< 1. If  f(z)  = ∑ b୩z୩ ∈ Bୌ, the unit ball of 
H, we have by (8): |b୩|  ≤  w୩

ିଵ/ଶ ≤  Cɛe୩ɛ, so that, using (10), we see that 
the series ∑ b୩φ୩ =  converges absolutely in H, which proves that ߮ ݋ ݂
C஦is compact (and even nuclear).  

The Green function g: D × D → (0,∞] of the unit disk D is defined as: 



34 
 

,ݖ)݃                                        (ݓ  = ቚଵ –௪ഥ ݃݋݈  ௭  
௭ ି ௪

ቚ                            (11) 

If μ is a finite positive Borel measure on D with compact support in D, its 
Green potential is: 

(ݖ)ఓܩ                          =  ∫ ,ݖ)݃ ஽(ݓ)ߤ݀ (ݓ                                     (12) 

and  its energy integral is: 

(ߤ)ܫ                    =   ∬ ,ݖ)݃ ஽×஽(ݓ)ߤ݀ (ݖ)ߤ݀ (ݓ                             (13) 

Of course, 

(ߤ)ܫ                 =  ∫ ஽(ݖ)ߤ݀ (ݖ)ఓܩ                                                   (14) 

For any subset E of D, one sets: 

(ܧ)ܸ               =  inf
ఓ

 (15)                                                              (ߤ)ܫ  

where  the  infimum  is taken over all probability measures μ supported by a 

compact  subset  of  E. Then the Green capacity1of E in D is: 

(ܧ) ݌ܽܥ                   =  (16)                                                     (ܧ) ܸ/1 

If K ⊆ D is compact, the infimum in (15) is attained for a probability 
measure μ0. If moreover V (K) <∞ (i.e. Cap (K) > 0), this measure is unique 
and is called the equilibrium measure of K. One always has V (K) <∞ when 
K has non-empty interior, since then I(λ) <∞ where λ is the normalized 
planar measure on some open disk ∆⊆ K. It is clear that we have: 

⊇ ܭ ⇒ ܮ  (ܭ) ܸ   ≥ (ܮ) ܸ   ⇒ (ܭ) ݌ܽܥ   ≤  , (ܮ) ݌ܽܥ 

i.e. Cap (K) increases with K and: 

(ܧ) ݌ܽܥ  =  sup
௄⊆ா,௄ ௖௢௠௣௔௖௧

 . (ܭ) ݌ܽܥ  

We refer to and the clear presentation for the definition of the Green 
capacity and its basic properties. Actually, the capacity is defined by another 
way as follows. 

Lemma (2.1.3)[2]: For every compact set K ⊆ D, one has: 

     Cap(K) = ;‖ߤ‖} ݌ݑݏ  ఓܩ ݀݊ܽ ܭ ݕܾ ݀݁ݐݎ݋݌݌ݑݏ ݁ݎݑݏܽ݁݉ ݈݁ݎ݋ܤ ݁ݒ݅ݐ݅ݏ݋݌ ߤ  ≤
 {ܦ ݊݋ 1 
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This is the definition of de la Vallée-Poussin. Since our main result is based 
on H. Widom,s it must be specified that he also used this definition . 

Let us note, though we will not use that, that we also have: 
Cap (K) = inf{‖μ‖;  μ positive Borel measure on D and Gஜ ≥  1 on K} 

             = inf{‖μ‖;  μ positive Borel measure on D and Gμ ≥  1 q. e. on K}, 

Where q.e. means: out of a set of null capacity. The equivalence between 
these two definitions is shown. 

An important fact for this chapter is well-known to specialists on the (Green) 
capacity.  

Theorem(2.1.4)[2]: For every connected Borel subset E of D whose 
closure ܧത iscontained in D, one has: 

(ܧ) ݌ܽܥ                                        =  (17)                                    (തܧ) ݌ܽܥ 

For sake of completeness, we provide details for the reader. We begin with a 
definition: a subset E of D is said to be thin at u ∈ ܧത  if there exists a 
function s which is superharmonic in a neighbourhood of u and such that 

(ݑ)ݏ  <  ݈݅݉ ݂݅݊
௩→௨
௩∈ா

 . (ݒ)ݏ   

We denote by ܧ෨the union of E and of points in ܧത at which E is not thin (it is 
known that ܧ෨  is the closure of E for the fine topology). Then: 

Lemma (2.1.5)[2]: If  E is a connected Borel subset of D whose closure 
 :ത is contained in D, one hasܧ

 . തܧ =෨ܧ

Proof: Lemma (2.1.5) is an immediate consequence of the following result. 

Theorem (2.1.6)[2]: (Beurling-Brelot) Let E ⊆ D and u ∈ ܧത. If E is 
thin at u, there exist circles with center u and arbitrarily small radius > 0 
which do not intersect E. 

Indeed, taking the previous result for granted, suppose that E is thin at u ∈ܧത, 
u ∉E, and let v0∈ E, with |v0− u| = d > 0. The function ρ: E → R defined by 
ρ(v) = |v − u| takes the value d as well as arbitrarily small values since u ∈ 
തܧ . By the intermediate value theorem, it takes every value in (0, d], 
contradicting. This contradiction shows that ܧത⊆ ܧ෨  , there by ending the 
proof . 
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Section (2.2) Main Result and the Hardy Case: 
The  goal of  this chapter  to  prove  the  following  result. 

Theorem (2.2.7)[2]: Let H be a weighted analytic Hilbert space with 
norm ‖ . ‖. Letφ: D → D be a symbol for H, with  φ(D)തതതതതതത ⊆  D. Then 

lim
௡→ஶ

[ܽ௡(ܥఝ)]ଵ/௡   =  (ఝܥ)ߚ :

Exists and the value of this limit is: 

(ఝܥ)ߚ                     =  ݁ିଵ/஼௔௣ [ఝ(஽)]                                                 (18) 

Note that, by Theorem (2.1.4), Cap [φ(D)] = Cap [φ(D)തതതതതതത ], so Theorem 
(2.2.7) will follow immediately from Theorem (2.2.14) and Theorem 
(2.2.17) below. 

The proof is based on two results of H. Widom .Though those theorems are 
in the H∞ setting, we will be able to transfer them to our Hilbertian setting. 
Before giving this proof, we will check the result “by hand” with an explicit 
example. 

Before going into the proof of Theorem (2.2.7) we are going to illustrate it in 
a simple situation. 

Let φ be a symbol acting on H = H2 with ‖ ߮‖∞ < 1 . We know that 
(ఝܥ)ାߚ <  1 , and for very special ߮ ,s we will show directly, without 
appealing to Widom,s results, that (2.2.7) holds. 

We have the following two  facts . 

Lemma (2.2.8)[2]: Let L =  ∆ത(w, r) be a closed pseudo-hyperbolic disk 
of pseudohyperbolicradius r. Then: 

(ܮ) ݌ܽܥ                              = ଵ
௟௢௚(ଵ/௥)

                                        (19) 

Lemma (2.2.9)[2]: Let u, v: D → D be univalent analytic maps such that 
u(D) = v(D). Then, u = v ◦ ψ  where ∈ Aut (D). 

Indeed , by hypothesis u = v ◦ ψ with ψ  well-defined and holomorphic for v 
is injective. Moreover, u(D) = v[ψ(D)] = v(D), whence ψ(D) = D, again 
because v is injective. Finally ψ is injective since u is.  

Theorem (2.2.10)[2]: Let ߮(z)  = ୟ୸ାୠ
ୡ୸ାୢ

be a fractional linear function 
mapping D into D, i.e. : 
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|ܽ|ଶ  +  |ܾ|ଶ  +  2 | തܾܽ −  ܿ̅݀| ≤  |ܿ|ଶ  + |݀|ଶ     ܽ݊݀     |ܿ|  ≤  |݀|. 

Then  ߚ(ܥఝ)  = ቂ– ଵ ݌ݔ݁ 
஼௔௣ (௄)

ቃ. 

The example φ(z) = z/(2z + 1) shows that one cannot omit the condition |c| ≤ 
|d|. 

Recall that the pseudo-hyperbolic distance on D is defined by: 

,ݖ)ߩ                (ݓ = ௭ ି ௪
ଵ ି ௭̅௪

,ݖ        ,  ∋ ݓ  (20)                                      ܦ 

We denote by ∆(w, r) = {z ∈ D; ρ(z,w) < r} the open pseudo-hyperbolic 
disk of center w and radius r. 

 

 

Proof : We may assume ‖φ‖ஶ < 1. We first consider the Case 

 φ(z) = az, with |a| < 1. In that case, it is clear that an(ܥఝ)  =  |a|୬ିଵ, and 
hence ߚ(ܥఝ)  = തതതതതതത(ܦ)߮ ݀݊ܽ |ܽ|   = ,ഥ(0ܦ  |ܽ|)  =  ∆ത(0, |ܽ|) . So that (18) 
holds in view of (19). 

In the general case, one might say that the conformal invariance of Cap 
and ߚ does the rest. Let us provide some details. 

In general, φ(D) is an euclidean disk, therefore a pseudo-hyperbolic disk 

∆(w, r) := {z ; ρ (z,w) < r} =  ψ1[∆(0, r)], where ρ is the pseudo-hyperbolic 

distance and  ψ1∈Aut (D); one has the same radius since automorphisms 
preserve ρ. If h(z) = rz, one therefore has φ(D) =  ψ1[h(D)] (since ∆ത(0, r) 
andthe euclidean disk ܦഥ(0, r) coincide). From Lemma (2.2.9), φ = ψ1◦ h ◦ ψ2 

with ψ2∈ Aut (D), and so =  టభ , implyingܥ௛ܥటమܥ 

(ఝܥ)ߚ  = (௛ܥ)ߚ   =  , ݎ 

by the ideal property. Moreover, 

[(ܦ)߮] ݌ܽܥ  =  [(ܦ)ℎ] ݌ܽܥ 

by conformal invariance. Since we know that the desired equality between 
  .and Cap holds for h, we get the resultߚ

         Let us numerically test the claimed value of ߚ(ܥఝ)  on the affine 
exampl ߮(ݖ)  =  ߮௔,௕(ݖ)  = + ݖܽ  ,ܽ ℎݐ݅ݓ ܾ  ܾ >  0 ܽ݊݀ ܽ +  ܾ <  1  
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(note that Cఝೌ,್ and Cఝ|ೌ|,|್|  are unitarily equivalent and have the same 
approximation numbers an, so that there is no loss of generality by assuming 
a, b > 0). In that case, the ܽ௡(ܥఝ)  =  ܽ௡ were computed exactly by Clifford 
and  Dabkowski .Their result is as follows. One sets: 

∆=  (ܽଶ −  ܾଶ −  1)ଶ −  4ܾଶ ܽ݊݀ ܳ =  ଵ ା ௔మି ௕మି √∆
ଶ௔మ                                (21) 

Then, one has an = an−1Qn−1/2, and so: 

(ఝܥ)ߚ                                   =  ܽܳ                                                            (22) 

The result of the theorem can be tested on that example. Indeed, we have ܭ ∶
= തതതതതതത(ܦ)߮   = ,ܾ)ഥܦ  ܽ), so that  

(ܭ) ݌ܽܥ  =  ଵ
௟௢௚ ఒ

, 

Where λ> 1 is the biggest root of the quadratic polynomial 

(ݖ)ܲ  = ଶݖܽ  −  (1 +  ܽଶ −  ܾଶ)ݖ +  ܽ . 

In explicit terms: 

݁ିଵ/஼௔௣ (௄)  =  ଵ
ఒ

  =  ଵ ା ௔మି ௕మି ඥ∆బ

ଶ௔మ , 

with: 

                      ∆଴ =  (1 +  ܽଶ −  ܾଶ)ଶ −  4ܽଶ                                         (24) 

To get ߚ(ܥఝ)  =  ݁ିଵ/஼௔௣ (௄), it remains to compare (22) and (18), using 
(21)and (24), and to observe that 

∆ =  ∆଴=  (1 +  ܽ +  ܾ)(1 +  ܽ −  ܾ)(1 −  ܽ +  ܾ)(1 −  ܽ −  ܾ) . 

We are going to state widom’s results in a form suitable for us. We first 
quote the following   lemma . 

Lemma (2.2.11)[2]: (Widom) Let K ⊆ D be compact. Then, given ε> 
0, there exists a cycle γ, which is a finite union of disjoint Jordan curves 
contained in D, and whose interior U contains K, and a rational function R 
of degree < n, having no zero on  and all poles on ∂D, such that, for n large 
enough  

(i)   |ܴ(ݖ)|  ≥  ݁ିக௡ ݂ݖ ݎ݋ ∉ ܷ; 
(ii)  |ܴ(ݖ)|  ≤  ݁க௡݁ି௡/஼௔௣ (௄) ݂ݖ ݎ݋ ∈  .ܭ 
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The first theorem of Widom in which C(K) denotes the space of complex, 
continuous functions on K with the sup-norm, can now be rephrased as 
follows. 

Theorem (2.2.12)[2]: (Widom) Let K ⊆ D be a compact set, and ε> 0. 
Then, there exist a constant ܥఌ >  0 and, for every integer n large enough, a 
rational function R with poles on ∂D and points   ߞ௜∈ D\K such that for 
every g∈ H∞, one has: 

                ‖݃ −  ℎ‖஼(௄) ≤  ఌ݁ఌ௡݁ି௡/஼௔௣ (௄)‖݃‖ஶ                                 (25)ܥ 

where: 

ℎ(ݓ)  = (ݓ)ܴ   ෍ ܿ௜,௞(݃) (ݓ − ℎ ෍ݐ݅ݓ ௜)ି௞ߞ  ݉௜
௜

<  ݊
௜,௞

ଵஸ௞ஸ௠೔

 

and   the  maps g ∈ H∞↦ ܿ௜,௞(݃) are linear. 

Moreover, if H is a weighted analytic Hilbert space, these maps, restricted to 
H∞∩ H, extend to continuous linear forms on H. 

Widom,s theorem precisely says the following. If R and γ are the rational 
function and cycle of Lemma (2.2.12), let ߞ௜  be the zeros of R inside γ. 
Consider , for w∈ K, the function 

(ݓ)ܩ  = ቈ  (ݓ)ܴ 
1

݅ߨ2 න
(ߞ)݃

− ߞ) (ߞ)ܴ ߞ݀  (ݓ 
 

ఊ
቉ ; 

Then, by the residues  theorem, 

(ݓ)ܩ  = (ݓ)݃   − (ݓ)ܴ  ෍ ܿ௜,௞(݃) (ݓ − ௜)ି௞ߞ 

௜,௞

= (ݓ)݃   −  ℎ(ݓ), 

and Widom,s theorem says that ‖ܩ‖஼(௄) ≤  .௡‖݃‖ஶ[(ܭ)ܯ] ఌ݁ଶ ఌ௡ܥ 

The only additional remark made here is that the ܿ௜,௞ are of the form 

ܿ௜,௞(݃)  =  ෍ ௜ߣ ,௝,௞݃(௝)(ߞ௜)  
௝ஸ௞ஸ௠೔ି௄

 

where  ߣ௜,௝,௞  are fixed scalars, so that by (9) they extend to continuous linear 
forms on H. 

Observe that the linear forms g ↦ ܿ௜,௞ (g′) are also continuous on H since 

                                ܿ௜,௞ (g′)   =  ∑ ௝ஸ௠೔ି௄  (௜ߞ)௜,௝,௞݃(௝ାଵ)ߣ                      (26) 
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This observation will be useful later. 

Theorem (2.2.13)[2]: (Widom) Let K be a compact subset of D and 
C(K) be the space of continuous functions on K with its natural norm. Set: 

(ܭ)௡ߜ  =  inf
ா

ቈ ݌ݑݏ
௙∈஻ுಮ

,݂) ݐݏ݅݀  ቉(ܧ

where E runs over all (n − 1)-dimensional subspaces of C(K) and dist (f, 
E)= ݅݊ ௛݂∈ா‖݂ −  ℎ‖஼(௄) . Then 

(ܭ)௡ߜ                                  ≥  ௡/஼௔௣ (௄)                                             (27)ି݁ ߙ 

for some positive constant ߙ. 

 

Theorem (2.2.14)[2]: Let H be an analytic weighted Hilbert space with 
norm ‖. ‖. Let 

φ: D → D be a symbol for H, such that ‖߮‖ஶ =  ρ <  1. Then: 

(߮ܥ)ାߚ ∶=  lim ݌ݑݏ
௡→ஶ

[ܽ௡(ܥఝ)]ଵ/௡ ≤  ݁ିଵ/஼௔௣ [ఝ(஽)തതതതതതത]. 

Proof:  Fix  ε> 0 such that ߩ ݁ఌ <  1. 

If ݂(ݖ) = ෍ ܾ௞ݖ௞
ஶ

௞ୀ଴
∈ ,ܪ  :(ݖ)݃ ݐ݈݁ =  ܵ௟݂(ݖ) =  ෍ ܾ௞ݖ௞

௟ିଵ

௞ୀ଴
 , = ݈ ℎݐ݅ݓ  ݈(݊) 

be an integer to be adjusted. 

Lemma (2.2.15)[2]: We have: 

‖݂ ₒ߮ −  ݃ ₒ߮‖  ≤ ఌܭ   .௟݁ఌ௟ߩ

Proof:  For f(z) = ∑ ܾ௞ݖ௞
௞ୀ଴ , we have: 

‖݂ ₒ߮ −  ݃ ₒ߮‖ = ะ෍ ܾ݇߮݇

ஶ

௞ୀ௟

ะ ≤ ෍|ܾ݇|‖߮݇‖
ஶ

௞ୀ௟

≤  ൭෍|ܾ݇|2݇ݓ

ஶ

௞ୀ௟

൱

ଵ
ଶ

൭෍‖߮݇‖2݇ݓ
−1

ஶ

௞ୀ௟

൱

ଵ
ଶ

≤ ఌܭ   ,௟݁ఌ௟ߩ

     by using Cauchy-Schwarz inequality, the fact that ‖݂‖ ≤ 1, the 
inequalities(8), and a geometric progression.  

Also, remark that we have, by the Cauchy-Schwarz inequality: 
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‖( ௟݂ܵ)′‖ஶ ≤ ෍ ݇ |ܾ௞|
௟ିଵ

௞ୀ଴

 ≤  ൭෍|ܾ݇|2݇ݓ

௟ିଵ

௞ୀ଴

൱

ଵ
ଶ

൭෍ ݇ݓ2݇
−1

௟ିଵ

௞ୀ଴

൱

ଵ
ଶ

≤  ‖݂‖ ൭෍ ݇ݓ2݇
−1

௟ିଵ

௞ୀ଴

൱

ଵ
ଶ

 

Therefore, using (8), we see that the linear map ௟ܵ
ᇱ ∶ → ܪ  ,ஶܪ   defined 

by ܵ௟
ᇱ(݂)  =  (ܵ௟݂)′,  is continuous with a norm less than ൫∑ ݇ݓ2݇

−1௟ିଵ
௞ୀ଴ ൯

భ
మ ≤

 .݈ߝ݁ ߝܭ

We now use Theorem (2.2.12), with ܭ = തതതതതതത(ܦ)߮  ⊆  and for n − 1 instead) ܦ 
of n).Set, for n ≥ 2, large enough: 

ℎଵ(ݓ)  = ෍ (ݓ)ܴ  ܿ௜,௞(݃́) (ݓ − ℎ ෍ݐ݅ݓ ௜)ି௞ߞ  ݉௜
௜

<  ݊
௜,௞

ଵஸ௞ஸ௠೔

−  1 . 

Recall that ℎଵ  is analytic in D. Remark that ℎଵ  depends linearly on f and 
themap f ↦ℎଵ has a rank < n − 1. We denote by I1∈ Hol (D) the primitive 
ofℎଵ taking the value g[φ(0)] at φ(0): 

(ݖ)ଵܫ  =  න ℎଵ(ݑ) ݀ݑ +  ݃[߮(0)]
௭

ఝ(଴)
  . 

Next, define an operator A of rank < n on H (the continuity of A being 
justified by (2.2.13) by the formula: 

(݂)ܣ                       =  ଵₒ߮                                                               (28)ܫ 

Note that, even if ܫଵ∉H, we easily check on the integral representation of the 
norm that ܫଵ◦ φ∈ H since we assumed φ∈ H, i.e. that φ is a symbol. 

Assuming for the rest of the proof that ‖݂‖≤ 1, we have the following 
lemma. 

Lemma (2.2.16)[2]:  We have: 

‖݃ ₒ߮ − ‖ଵₒ߮ܫ   ≤  .ఌ݁ఌ(௡ିଵ)݁ఌ௟݁ି(௡ିଵ)/஼௔௣ (௄)ܭ 

Proof: Since φ∈ H and since ℎଵ  = ଵܫ 
ᇱ  approximates g′ uniformly on K 

and‖݃′‖ஶ =  ‖( ௟݂ܵ)′ ‖ஶ ≤  :ఌ݁௟, we have, by Theorem (2.2.11)ܭ 
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‖݃ ₒ߮ − ଵₒ߮‖ଶܫ   =  න [(ݖ)߮]′݃|  −  ℎଵ[߮(ݖ)]|ଶ|߮′(ݖ)|ଶ⍵(ݖ) ݀(ݖ)ܣ
஽

≤ ఌܭ 
ଶ݁ଶఌ(௡ିଵ)[(ܭ)ܯ]ଶ(௡ିଵ)‖݃ᇱ‖ஶ

ଶ න |߮ᇱ(ݖ)|ଶ⍵(ݖ)݀(ݖ)ܣ
஽

≤ ଶܭ ܥ 
ఌ݁ଶఌ௟݁ଶఌ(௡ିଵ)[(ܭ)ܯ]ଶ(௡ିଵ) , = ܥ ℎݐ݅ݓ) ‖߮‖⍵

ଶ ), 
hence  the  lemma, provided that we increase ܭఌ . 

We can now end the proof of Theorem (2.2.13). 

Writing: 

(݂)߮ܥ‖  − ‖(݂)ܣ  =  ‖݂ ₒ߮ − ‖ଵₒ߮ܫ 
≤  ‖݂ ₒ߮ −  ݃ ₒ߮‖ +  ‖݃ ₒ߮ −  ,‖ଵₒ߮ܫ 

we have: 

(i) ‖݂ ₒ߮ −  ݃ ₒ߮‖   ≤  ;(2.2.15) ܽ݉݉݁ܮ ݕܾ ௟݁ఌ௟ߩఌܭ 
(ii) ‖݃ ₒ߮ − ‖ଵₒ߮ܫ   ≤  .(2.2.16) ܽ݉݉݁ܮ ݕܾ ௡ିଵ݁ఌ௟[(ܭ)ܯ]ఌ݁ఌ(௡ିଵ)ܭ 

We therefore get, since ܽ௡ ∶=  ܽ௡(ܥఝ)  ≤  ฮܥఝ −  :ฮܣ 

ܽ௡ ≤ ௟݁ఌ௟ߩఌܭ   +  .௡ିଵ[(ܭ)ܯ]ఌ݁ఌ௟݁ఌ(௡ିଵ)ܭ 

Next,  since  (ܽ +  ܾ)ଵ/௡ ≤  ܽଵ/௡  +  ܾଵ/௡, we infer that: 

ܽ௡
ଵ/௡ ≤ + ௟/௡(ఌ݁ ߩ)ଵ/௡(ఌܭ)  ఌܭ 

ଵ
௡݁

ఌ௟
௡ ݁

ఌ(௡ିଵ)
௡ (ܭ)ܯ

௡ିଵ
௡                  (29) 

We now adjust l = Nn, where N is a fixed positive integer, and pass to the 
upper limit with respect to n in (28). We get: 

ܮ ∶= ௡ܽ ݌ݑݏ ݈݉݅ 
ଵ/௡ ≤ ே[ఌ݁ ߩ]   +  ݁ఌ݁ఌே(ܭ)ܯ. 

Letting ε go to 0, we get ܮ ≤ ேߩ +  ,Finally, letting N tend to infinity.(ܭ)ܯ 
we get L ≤ M(K) as claimed, and that ends the proof of Theorem (2.2.13).  

Lemma (2.2.17)[2]: For every Hilbert space H and every compact 
operator T:H→H,one has, BH denoting the unit ball of  H: 

 

݀௡(ܶ ) =  ݂݅݊
ௗ௜௠ாழ௡

ቈ ݌ݑݏ
௙∈஻ಹ

,݂ ൫ܶ ݐݏ݅݀ ൯቉(ܧ) ܶ                                      (30) 

Proof: Indeed, if εn(T ) denotes the right hand side in (29), we clearly have 

݀௡(ܶ )  ≤ .( ܶ)௡ߝ  ,ݓ݋ܰ  :ݐ݈݁
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݂ܶ =  ෍ ௝ܽ(ܶ ) 〈݂, ௝ݑ〈௝ݒ

ஶ

௝ୀଵ

 , 

with  (uj) and (vj) two orthonormal sequences, be the Schmidt decomposition 
of T . Let E0 be the span of v1, . . . , vn−1. Observe that ݑ௝ = ܶ( ௝ܽ

ିଵݒ௝) ∈
 :for j < n. Now, if f ∈ BH, one has(଴ܧ)ܶ

,݂ ܶ) ݐݏ݅݀ ଶ((଴ܧ) ܶ = ቯ෍ ௝ܽ(ܶ) 〈݂, ௝ݑ〈௝ݒ

ஶ

௝ୀ௡

ቯ

ଶ

= ෍ൣ ௝ܽ(ܶ)൧
ଶ

ห〈݂, ௝〉หݒ
ଶ

ஶ

௝ୀ௡

≤  [ܽ௡(ܶ)]ଶ ෍ห〈݂, ௝〉หݒ
ଶ

ஶ

௝ୀ௡

≤  [ܽ௡(ܶ)]ଶ; 

so that ߝ௡(ܶ)  ≤ ௙∈஻ಹ݌ݑݏ  ,݂ ܶ) ݐݏ݅݀  ((0ܧ) ܶ  ≤  ܽ݊(ܶ)  =  ݀௡(ܶ ) .  

Theorem (2.2.18)[2]: Let H be a weighted analytic Hilbert space and φ 
∈ H such that ‖߮‖∞ < 1. Then: 

(߮ܥ)ିߚ ∶=  lim ݂݅݊
௡→ஶ

[ܽ௡(߮ܥ)]ଵ/௡ ≥  ݁ିଵ/஼௔௣ [ఝ(஽)]  . 

It will be convenient to work with the Kolmogorov numbers ݀௡(߮ܥ) instead 
of the approximation numbers  ܽ௡(߮ܥ). Recall that, for Hilbert spaces, one 
has݀௡(߮ܥ)= ܽ௡(߮ܥ). We begin with a simple lemma, undoubtedly well 
known to experts, on approximation numbers of an operator T on a Hilbert 
space H. 

 

Proof : Let 0 <ݎ௝< 1, ݎ௝→ 1 and  ߰௝  : D → D be given by   ߰௝(z) = ݎ௝ z. Set 
௝ܭ  =  ߮ ₒ ߰ఫ(ܦ)തതതതതതതതതതതതത  =  തതതതതതതതത. Let E be a subspace of H of dimension < n. By(ܦఫݎ)߮ 
restriction, E can be viewed as a subspace of C(ܭ௝). By the second result of 
Widom (Theorem 2.2.13), we can find ݂ ∈ ுಮܤ  , 

f(z)  = ∑ ܾ௞ݖ௞
௞ஹ଴ , such that: 

‖݂ −  ℎ‖஼(௞ೕ) ≥ , ௡[(௝ܭ)ܯ] ߙ2  ∀ℎ ∈  , ܧ 

Where  0 <ߙ is an absolute constant. If ܪஶcontractively embeds into H, 
wecan continue with this f. In the general case, we have to correct f in order 
to be in  ܤு , the unit ball of H. To that effect, we simply consider a partial 
sum: 
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(ݖ)݃  = ෍ ܾ௞ݖ௞
௟ିଵ

௞ஹ଴

 

and we note that, setting ߩ௝ =  sup୵∈୏ౠ|w|,  one has ߩ௝< 1 and: 

                                ‖݂ −  ݃‖஼(௄௝) ≤
ఘೕ

೗

(ଵ ିఘೕ
మ)భ/మ                                      (31) 

                                     ‖݃‖ு ≤  (32)                                                               ݈ ܥ 

Where  C = C(⍵) ≥ 1 is the constant appearing in (8). 

Indeed, we have ‖݂ −  ݃‖஼(௄௝) ≤  ∑ |ܾ௞| ߩ௝
௞ஶ

௞ୀ௟ and then (31) follows from 
Cauchy-Schwarz,s inequality and the fact that ∑ |ܾ௞|ଶ ≤  1௞ஹ଴ since f ∈ H∞. 
For (32), we simply use that, by (8), the weight w satisfies ݓ௞ ≤
+ ݇) ܥ   1)ଶand get: 

‖݃‖ு
ଶ  = ݇ = 0 ෍ |ܾ௞|ଶݓ௞ ≤ ଶ݈ ܥ  ෍ |ܾ௞|ଶ

௟ିଵ

௞ୀ଴

≤ ଶ݈ ܥ  ≤ ଶ݈ଶܥ 
௟ିଵ

௞ୀ଴

. 

We then notice that (30) gives, for every h ∈ E: 

‖݃ −  ℎ‖஼(௄ೕ) ≥  ‖݂ −  ℎ‖஼(௄ೕ) −  ‖݂ −  ݃‖஼(௄ೕ)

≥ ௡[(௝ܭ)ܯ] ߙ2  −
௝ߩ

௟

൫1 – ௝ߩ
ଶ൯

ଵ
ଶ

≥  ௡                        (33)[(௝ܭ)ܯ] ߙ 

if we take ݈ = ௝ܣ ௝݊ whereܣ   is a large positive integer depending only on j. 
Explicitly: 

௝ܣ >
− 1) ߙ/1ൣ ݃݋݈ ௝ߩ 

ଶ)ଵ/ଶ൧
(௝ߩ/1)݃݋݈

 +
[(௝ܭ)ܯ/1]݃݋݈

(௝ߩ/1)݃݋݈
・ 

Finally, set F = g/CL. Then  F ∈ BH. Since E is a vector space, (31) and (32) 
imply: 

− ܨ‖  ℎ‖஼(௄ೕ)  =
1

݈ ܥ
 ‖݃ − ℎ‖஼(௄ೕ) ݈ ܥ   ≥

1
݈ ܥ

 .௡[(௝ܭ)ܯ] ߙ

But we also know that: 

− ܨ‖  ℎ‖஼(௄ೕ)  =  ฮܨₒ ߮ₒ  ߰௝  −  ℎ ₒ ߮ₒ ߰௝ฮ
ஶ

 ≤ ௥ೕܮ 
߮ ₒܨ‖ −  ℎ ₒ ߮‖ு , 

So  we are left with (recall that l = ܣ௝n): 



45 
 

ฮܥఝܨ − ఝℎฮܥ 
ு

≥
ߙ

௝ܣ௥ೕܮ ܥ

௡(௝ܭ)ܯ

݊
, ∀ℎ ∈  ,ܧ 

Implying   by  Lemma  (2.2.17): 

ܽ௡(߮ܥ)  =  ݀௡(߮ܥ)  ≥
ߙ

݆ݎܮ ܥ
݆ܣ

(݆ܭ)ܯ
݊

݊
・ 

 Now, taking n-th roots and passing to the lower limit, we get: 

൯߮ܥ൫ିߚ ≥  ൯                                                (34)݆ܭ൫ܯ 

It remains now to let j → ∞. Observe that the compact subsets ܭ௝ ⊆  (ܦ)߮ 
form an exhaustive sequence of compact subsets of φ(D). Let then L ⊆ φ(D) 
be compact; we have L ⊆ ܭ௝0  for some ݆଴ , and using (34), we get 
(߮ܥ)ିߚ ≥ (௢݆ܭ)ܯ ≥ (ܮ)ܯ . Passing to the supremum on L, we get 
(߮ܥ)ିߚ  ≥   .and this ends the proof of Theorem (2.2.18) ,[(ܦ)߮]ܯ 

As said in the Introduction, for weighted Bergman spaces (including the 
Hardy space), and for the Dirichlet, that 1 = (߮ܥ)ିߚ if ‖߮‖ஶ =  1 for every 
φ inducing a composition operator on one of those spaces. 

In this section, we use Theorem (2.2.14) to generalize this result to all 
composition operators ܥఝ on weighted analytic Hilbert spaces, with another, 
and simpler, proof. 

For that, it suffices to use the following result, which is certainly well-
known to specialists. The pseudo-hyperbolic metric ߩ on D is defined in 
(2.2.15) and we denote by diamఘ the diameter for this metric. 

The following proof of Theorem (2.2.19) was kindly shown to the second-
named author by E. 

It make use of the following alternative definition of Green capacity, where 

଴ܥ
ஶ(ܦ) is the space of infinitely differentiable functions on D which are null 

on ∂D, and dz = dxdy is the usual 2-dimensional Lebesgue measure. 

Theorem (2.2.19)[2]: Let K be a compact and connected subset of D. 
Then, for 0 < ε < 1: 

diamఘK >  1 −  ε ⇒  Cap (K)  ≥  c log 1/ε , 

For  some  absolute positive constant c. 
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Hence, the Green capacity of K tends to ∞ as its pseudo-hyperbolic diameter 
tends to 1. 

Before proving that, let us give two suggestive examples. 

(i) Let K = D(0, r); then: 
 ݀݅ܽ݉ఘ ܭ =  ଶ௥

ଵ ା ௥మ (ܭ) ݌ܽܥ      ݀݊ܽ        =  ଵ
௟௢௚ ଵ/௥

  ・ 

One sees that r goes to 1 when diam_ K goes to 1, and hence Cap (K) tends 
to infinity. 

(ii) Let K = [0, h], with 0 < h < 1. Then: 

݀݅ܽ݉ఘ ܭ =  ℎ      ܽ݊݀          (ܭ) ݌ܽܥ  =
1
ߨ

′ܫ
ܫ

, 

where  I and I′ are the elliptic integrals: 

= ܫ  න
1

ඥ(1 − − ଶ)(1ݐ   ݇ଶ (ଶݐ 

ଵ

଴
= ′ܫ   ݀݊ܽ    ݐ݀   න

1
ඥ(1 − − ଶ)(1ݐ   ݇ଶ ݐଶ)

ଵ

଴
 , ݐ݀ 

With  ݇ =  ଵି௛
ଵା௛

     ܽ݊݀     ݇′ଶ =  1 −  ݇ଶ. 

0 ݂ܫ ≤  ܽ < ܾ ≤  ℎ, ܾ ℎ݁݊ݐ − ܽ + ℎܾܽ ≤  ℎ − ܽ + ܽℎଶ =  ℎ − ܽ(1 − ℎଶ ≤
ℎ, so that  ρ(a, b)  ≤  h  Therefore, in this example again, the assumption 
݀݅ܽ݉ఘ 1 →− ܭ implies successively that h → 1, k → 0, k′ → 1, I → _/2, I′ 
→ ∞, and at last  Cap (K) → ∞. 

This example shows that Theorem (2.2.19) is optimal since 

 න
ݐ݀

ඥ(1 − − 1)(2ݐ  (2ݐ 2݇ 

1

0
 ≈ ݃݋݈ 

1
1 −  ݇′2 

≈ ݃݋݈ 
1

1 −  ℎ
 

as  h (and hence k′) goes to 1. 

Proof : If ݀݅ܽ݉ఘ 1 < ܭ − ε and K is connected, it contains two points ݖଵ 
and ݖଶ such that  ρ(ݖଵ, (ଶݖ  =  1 −  ε. By the invariance of the green capacity 
and of ρ under automorphisms of the disk, we can assume that ݖଵ = 0 and ݖଶ 
= 1 − ε. Take  ε < r < 1. Denote by ∆௥ the intersection of the closed disk with 
center 1 and radius r with the closed unit disk. We observe that K meets the 
exterior of ∆௥ at 0 and its interior at 1 − ε. The connectedness of K implies 
that K meets the boundary of ∆௥: there is b ∈ K such that |b − 1| = r.  Write   
ܾ =  1 +  ._ϑ ≤ 2 ≥ ߠ ≥ ௜ఏ with |a| = 1 and 0݁ݎ + ௜ఏ. Take now a = 1݁ݎ 
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Since u(a) = 0 and u(b) ≥ 1, we get, by the fundamental theorem of calculus, 
that: 

1 ≤ (ܾ)ݑ   − (ܽ)ݑ   =  න + 1)ݑߘ௜௧݁ݎ݅  ݐ݀ (௜௧݁ݎ 
ణ

ఏ
 = ቤන + 1)ݑߘ௜௧݁ݎ݅  ݐ݀ (௜௧݁ݎ 

ణ

ఏ
ቤ

≤ න ݎ  + 1)ݑߘ| ݐ݀ |(௜௧݁ݎ 
ణ

ఏ
  ≤ න ݎ  + 1)ݑߘ| ݐ݀ |(௜௧݁ݎ 

ଶగ

ఏ
. 

Now, Cauchy-Schwarz inequality gives: 

න + 1)ݑߘ| ݐ݀ ௜௧)|ଶ݁ݎ  ≥
1

2πr2 
ଶగ

ఏ
 

Integrating in polar coordinates centered at 1 and remembering that u = 0 
outside D, we get: 

න ݖ݀ ଶ|(ݖ)ݑߘ|
 

஽
 ≥  න ݖ݀ ଶ|(ݖ)ݑߘ|

 

ఌழ|௭ିଵ|ழଵ
 

=  න ቈන + 1)ݑߘ|  ݐ݀ 2|(ݐ݅݁ݎ 
ߨ2

ߠ
቉

ଵ

ఌ
ݎ݀ݎ

≥
1

ߨ2
 න

ݎ݀
ݎ

=
1

ߨ2
݃݋݈

1
ߝ
・

ଵ

ఌ
  

In view of (32), this ends the proof of Theorem (2.2.19). 

 Lemma (2.2.20)[2]: For every compact subset K of  D, one has: 

(ܭ) ݌ܽܥ  =  ݂݅݊  ቊ
1

ߨ2
 න ; ݖ݀ ଶ|(ݖ)ݑߘ| ∋ ݑ  ଴ܥ 

ஶ(ܦ) ܽ݊݀ ݑ ≥ ܭ ݊݋ 1 
 

஽
 ቋ 

Proof : Though this result is often considered as “well-known“, we were 
not able to find anywhere an explicit reference. Since the average reader (if 
any!) of this paper will not be a specialist in Potential theory, we give a 
proof here. 

(i) We first prove that the capacity of the compact K is less than the right 
hand side (though we only need that it is greater). We shall use 
Lemma (2.1.3).  

We know that for every measure μ on D supported by K, one has   ∆ܩఓ =
ߤߨ2−  , where ܩఓ  is seen as a distribution. Hence, for every function 
ݑ ∈ ଴ܥ

ஶ(ܦ) such that u ≥ 1 on K and every positive measure μ supported by 
K such that ܩఓ ≤ 1 on D, one has: 
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(ܭ)ߤ  =  න ߤ݀
 

௄
≤ න ߤ݀ݑ

 

஽
=  −  

1
ߨ2

 න ݖ݀ (ݖ)ఓܩ∆(ݖ)ݑ
 

஽
  . 

Then, by definition of the Laplacian  of a distribution, we get: 

(ܭ)ߤ  ≤  −  
1

ߨ2
 න ݖ݀ (ݖ)ఓܩ∆(ݖ)ݑ∆

 

஽
 

But for every real Borel measures υ1 and υ2 with finite energy (meaning that 
their positive and negative parts have finite energy), this energy is positive 
and one has the Cauchy-Schwarz inequality for the Dirichlet  space : 

ቤන ଵ ݀߭ଶ߭ܩ

 

஽
ቤ ≤  ቆන ଵ ݀߭ଵ߭ܩ

 

஽
ቇ

ଵ/ଶ

ቆන ଶ ݀߭ଶ߭ܩ

 

஽
ቇ

ଵ/ଶ

. 

Applying this to the measures ߭ଵ = μ and ߭ଶ= υ = ∆u.dz, we get, since ܩఓ≤ 1: 

(ܭ)ߤ  ≤
1

ߨ2
ቆන  (ݖ)ߤ݀(ݖ)ఓܩ

 

஽
ቇ

ଵ/ଶ

ቆන  ݖ݀ (ݖ)ݑ∆(ݖ)జܩ
 

஽
ቇ

ଵ/ଶ

≤
1

ߨ2
ଵ/ଶ[(ܭ)ߤ]  ቆන  ݖ݀ (ݖ)ݑ∆(ݖ)జܩ

 

஽
ቇ

ଵ/ଶ

=
1

ߨ2
ଵ/ଶ[(ܭ)ߤ] ቆන  ߭݀ జܩ

 

஽
ቇ

ଵ/ଶ

 

Now, since ݑ ∈ ଴ܥ 
ஶ (ܦ), one has G. 

න  ߭݀ జܩ
 

஽
 = න ߨ2   ݖ݀ ଶ|(ݖ)ݑߘ|

 

஽
  . 

Therefore, we get: 

(ܭ)ߤ  ≤
1

ߨ2
 න  ݖ݀ ଶ|(ݖ)ݑߘ|

 

஽
 . 

Taking the supremum on μ of the left-hand side and the infimum on u of the 
right-hand side, we obtain: 

(ܭ) ݌ܽܥ  ≤  ݂݅݊  ቊ
1

ߨ2
 න  ݖ݀ ଶ|(ݖ)ݑߘ|

 

஽
; ∋ ݑ  ଴ܥ 

ஶ (ܦ) ܽ݊݀ ݑ ≥  .ቋܭ ݊݋ 1 

(ii) Let ε> 0. 

Let  ܭ௝ = ∋ ݖ}  ;ܥ  ,ݖ) ݐݏ݅݀  (ܭ  ≤  1/݆}, ݆ ≥ 1. Each ܭ௝  is compact and is 
contained in D for j large enough, say   ݆ ≥ ݆଴. Since ܭ = ∩௝ஹ௝బ  and the) ݆ܭ 
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sequence is decreasing), one has Cܽ( ݆ܭ) ݌
௝→ஶ
ሱ⎯ሮ Cap (K); note that though 

this proposition is stated for the logarithmic capacity, the proof clearly 
works also for the Green capacity). Hence, there is some ݆ ≥ ݆଴  such that, 
for K′ =  ܭ௝, one has (1 + ε) Cap (K) ≥ Cap (K′). 

Let ߤ଴ be an equilibrium measure of K′. One has ߤ଴ (K′) = 1, I(ߤ଴) = V (K′), 
Gఓబ ≤ V (K′) on D. one has Gఓబ = V (K′) on int (K′), hence on K. Let μ = 
Cap (K′) ߤ଴ . Then   (′ܭ)ߤ  = ,(′ܭ) ݌ܽܥ  (ߤ)ܫ  = (଴ߤ)ܫଶ[(′ܭ) ݌ܽܥ]   =
ఓܩ and, since ,(′ܭ) ݌ܽܥ   =  ఓܩ ఓ ≤ 1 on D andܩ Gఓబ , one has also(′ܭ) ݌ܽܥ 
= 1 on K. 

By a theorem of G. we can find, by regularization. since an increasing 
sequence of positive infinitely differentiable functions ݒ௡  on D which 
converges pointwise to ܩఓ  and such that: 

න ݖ݀ ଶ|(ݖ)௡ݒߘ|
 

஽
 

௡→ஶ
ሱ⎯ሮ   න ݖ݀ ଶ|(ݖ)ఓܩߘ|

 

஽
 . 

Since (ݒ௡)n is increasing and converges point wise to 1 on the compact set K, 
Dini’s theorem tells that one has uniform convergence(Dini’s theorem says 
that if a monotone sequence of continuous functions converges on a compact 
space and if the limit function is also continuous, then the convergence is 
uniform see [6]). Hence, we can find some v = ݒ௡ such that v ≥ (1 + ε)−1 on 
K and 

න ݖ݀ ଶ|(ݖ)௡ݒߘ|
 

஽
≤  (1 + න (ߝ  ݖ݀ ଶ|(ݖ)ఓܩߘ|

 

஽
. 

Note that v = 0 on ∂D since 0 ≤ v ≤ ܩఓ, which is equal to 0 on ∂D. 

Putting u = (1 + ε)v, one has u ∈ ܥ଴
ஶ(D), u ≥ 1 on K and 

න ݖ݀ ଶ|(ݖ)௡ݒߘ|
 

஽
≤  (1 + 3(ߝ   න ݖ݀ ଶ|(ݖ)ఓܩߘ|

 

஽
. 

But we know by G. C. Evans,s theorem that: 

(ߤ)ܫ  =
1

ߨ2
 න ݖ݀ 2|(ݖ)ߤܩߘ|

 

ܦ
 . 

We get hence: 
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(1 + (ܭ) ݌ܽܥ (ߝ   ≥ (′ܭ) ݌ܽܥ   = (ߤ)ܫ   =
1

ߨ2
 න ݖ݀ ଶ|(ݖ)ఓܩߘ|

 

஽
 

≥
1

(1 + ଷ(ߝ 
1

ߨ2
 ݖ݀ 2|(ݖ)ݑߘ| ܦܼ 

Since ε > 0 was arbitrary, we get: 

(ܭ) ݌ܽܥ  ≤  ݂݅݊  ቊ
1

ߨ2
 න  ݖ݀ ଶ|(ݖ)ݑߘ|

 

஽
; ∋ ݑ  ଴ܥ 

ஶ (ܦ) ܽ݊݀ ݑ ≥  .ቋܭ ݊݋ 1 

And that ends the proof. 

As in the above proof, we may assume that 0 and 1−ε belong to K. Consider 
K* = {|z| ; z ∈ K}. Since K is connected, the same holds for K*. Hence the 
interval [0, 1− ε] is contained in K*. It follows that Cap ([0, 1− ε]) ≤ Cap 
(K*). But we saw that Cap ([0, 1 − ε]) ≈ log (1/ε); hence Cap (K*) & log 
(1/ε). It remains to use that the map α: z ↦ |z| is a contraction for the pseudo-
hyperbolic metric and hence Cap (K*) ≤ Cap (K). In fact, if υ is any 
probability measure supported by K*, there exists a probability measure μ on 
K such that α(μ) = υ. Hence: 

(ܭ) ܸ  ≤ (ߤ)௄ܫ   =  ඵ ,ݖ)݃ (ݓ)ߤ݀ (ݖ)ߤ݀ (ݓ
 

஽×஽
 

=  ඵ ݃݋݈
1

,ݖ)ߩ (ݓ
(ݓ)ߤ݀ (ݖ)ߤ݀

 

஽×஽

≤  ඵ ݃݋݈
1

,|ݖ|)ߩ (|ݓ|
(ݓ)ߤ݀ (ݖ)ߤ݀

 

஽×஽

=  ඵ ݃݋݈
1

,ݖ)ߩ (ݓ
(ݓ)߭݀ (ݖ)߭݀  = (߭)∗௄ܫ 

 

஽×஽
. 

Taking the infimum over all υ, we get V (K) ≤ V (K*).  

As a corollary of Theorem (2.2.19), we get a new  proof . 

Theorem (2.2.21)[2]: There exists an absolute constant c > 0 such that, 
for any symbol φ on a weighted analytic space H, one has: 

݀݅ܽ݉ఘ [߮(ܦ)] > ݎ ⇒ (ఝܥ)ߚ   ≥ −൤  ݌ݔ݁ 
ܿ

− 1)/1 ݃݋݈ (ݎ 
൨ _. 

In particular: 
‖߮‖ஶ  =  1 ⇒ (ఝܥ)ߚ    =  1 . 
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Proof: The first statement is a direct consequence of Theorem (2.2.7), 
modulo Theorem (2.1.4) and Theorem (2.2.19), applied to φ (D) and its 
closure. 

One cannot replace ݀݅ܽ݉ఘ [߮(ܦ)] > by ‖߮‖ஶ ݎ >  in this first statement as  ݎ 
indicated by the following example: 

(ݖ)߮  =
ܽ − (2/ݖ) 

1 − (2/ݖ)ܽ 
=  , [(ݖ)ℎ]௔ߔ 

Where  Φୟ(z)  =  ୟି୸
ଵିୟത୸

 with a ∈ D and h(z) = z/2 is the dilation with ratio 
1/2. 

Then ‖߮‖ஶ  ≥ |Φa(0)| = |a| and  ߚ(ܥఝ)  = (௛ܥ)ߚ   =  1/2. 

However, one can do so if moreover   φ(0) = 0 because then, clearly: 
‖߮‖ஶ > ݎ  ⇒  ݀݅ܽ݉ఘ [߮(ܦ)] >  . ݎ

This is enough for the second statement since, putting a = φ(0), we have, due 
to the fact that Φୟ  is unimodular on the whole unit circle: ‖Φୟ ₒ ߮‖ஶ =
 ‖߮‖∞ =  1, (Φୟ ₒ ߮)(0)  = (ఝܥ)ߚ ݀݊ܽ 0   =   .(஍౗ ₒ ఝܥ)ߚ 

Here, we consider the case of composition operators on Hp for 1 ≤ p <∞. 

For every a ∈ D, we denote by ݁௔ ∈                :the evaluation map at a, namely∗(௣ܪ)
                               ݁௔(݂) =  ݂(ܽ),    ݂ ∈  ௣                                   (35)ܪ 

We know  that : 

                           ‖݁௔‖ =   ቀ ଵ
ଵ ି |ୟ|మቁ

ଵ/୮
                                           (36) 

and  the mapping equation 

ఝܥ                               
∗ (݁௔)  =  ݁ఝ(௔)                                                 (37) 

Still holds 

Throughout this section we denote by  ‖. ‖, without any subscript, the norm 
in the dual space  (݌ܪ)∗. 

Let us stress that this dual norm of (ܪ௣)∗ is, for 1 < p < ∞, equivalent, but 
not equal, to the norm ‖. ‖௤  of H௤ , and the equivalence constant tends to 
infinity when p goes to 1 or to ∞. 

With this preliminaries , we are going to see that Theorem (2.2.7) remains 
true. 
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We begin with the following lemma, which extends Lemma (2.2.17). 

Lemma (2.2.22)[2]: Let X be a Banach space, and T : X → X be a 
compact operator. Let us set: 

(ܶ)௡ߝ =  ݂݅݊
ௗ௜௠ாழ௡

൤sup 
௫∈஻௑

,ݔ ܶ) ݐݏ݅݀  ൨                               (38)(ܧܶ

Then ߝ௡(ܶ)  ≤  2√݊ ܿ݊(ܶ). 

Proof: Let ε > 0, and let F be a subspace of X of codimension < n such that 
ฮT|୊ฮ  ≤  ܿ௡(ܶ)  +  ε. Let Q: X →  F be an onto projection of norm  ‖ܳ‖ ≤
√݊ + ≤ 2√݊ , and let R = T (I − Q). Then E = (I − Q)X satisfies dim E < n. 
If x ∈ BX, the closed unit  ball  of  X, then: 

,ݔ ܶ) ݐݏ݅݀ (ܧܶ  ≤ ݔܶ‖  − ‖ݔܴ = ‖ݔܳܶ‖   ≤  ฮT|୊ฮ ‖ܳݔ‖  ≤  (ܿ௡(ܶ )  +  .  ݊√2 (ߝ 

This implies ߝ௡(ܶ)  ≤  2√݊ (ܿ௡(ܶ)  +  .(ߝ 

The result follows since ε was arbitrary. 

 

Theorem (2.2.23)[2]: Let 1 ≤ p < ∞ and ܥఝ ∶ ௣ܪ →  .௣ܪ 

(i) If ߮(ܦ)തതതതതതത  ⊆  :then ,ܦ 

(ఝܥ)ߚ  =  ݁ିଵ/஼௔௣ [ఝ(஽)] . 

     (ii) One has: 

‖߮‖ஶ =  1 ⇒ (߮ܥ)ߚ   =  1 . 

 

Proof :   (i) a) We first prove that ିߚ(ܥఝ)  ≥  ݁ିଵ/஼௔௣ [ఝ(஽)]. 

Let ܮ෨௥ = ௔|ஸ௥|݌ݑݏ   ‖݁௔‖ =  ቀ ଵ
ଵି୰మቁ

ଵ/୮
, for 0 < > ݎ   1 . Using the same notations 

and estimations as in Theorem (2.2.18), up to the replacement of ܮ௥ by ܮ෨௥, 
we get: 

(ܶ)௡ߝ  ≥  (1 − ෨௥ೕܮ (ߝ 
ିଵ ߙ [ܯ(ܭ௝)]௡ . 

Lemma (2.2.22) now implies: 

ܽ௡(ܶ) ≥ ܿ௡(ܶ) ≥ ߙ
1 − ߝ 
2√݊

෨௥ೕܮ
ିଵ [(݆ܭ)ܯ]௡ . 
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The rest of the proof is unchanged, since the presence of the factor 1/√n does 
not affect the result. 

b) The upper bound is even simpler since  ܪஶ ⊆  ௣. For example, settingܪ
A(f) = h ◦ φ , we can replace Lemma (2.2.16) by 

‖݃ ₒ ߮ −  ℎ ₒ ߮‖௣ ≤  ‖݃ ₒ ߮ −  ℎ ₒ ߮‖ஶ  =  ‖݃ −  ℎ‖஼(௄) , 

Where  ܭ =  .തതതതതതത(ܦ)߮ 

(ii)  That follows from Theorem (2.2.20).                                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

  

CHAPTER 3 
Weighted Composition Operators Between Hilbert Spaces in 
the Operator Norm and Hilbert-Schmidt Norm Topologies 

We will consider the operator norm topology and the Hilbert-Schmidt norm 
topology  respectively. These results will be involved in the investigation for 
the explicit cases of the classical Hardy-Hilbert space, the weighted bergman 
spaces and the Dirichlet space. Furthermore we will estimate the Hilbert-
Schmidt norms of difference of two composition operators acting from the 
Dirichlet space to the Hardy and the weighted bergman spaces. 

Section(3.1)Path connectedness of ۱۶)ܟ૚, ۶) and ۱۶)܁۶ܟ૚, ۶): 
Let H(D)be the space of analytic functions on the open unit disk D:={|z| <1} 
and H∞ the space of bounded analytic functions on D with the supremum 
norm ‖·‖ஶ. Let S(D) be the set of analytic self-maps of D. Denote by H a  
Hilbert space of analytic functions on D with the norm ‖·‖ୌ satisfying the 
following conditions: 

(#1) For any α ∈ D, the point evaluation τα: H ∋ f→f(α) is a bounded linear 
functional on H, and sup|α|≤r‖߬ఈ‖ୌ< ∞ for every 0 < r < 1. 

(#2) H∞∙ H ⊂ H  and  ‖݂݃‖ୌ≤‖݂‖ஶ‖݃‖ୌ  for every f ∈ H∞  and g ∈ H. 

(#3) ‖1‖ୌ=1and {z୬/‖z୬‖ୌ: n ≥ 0}is an orthonormal basis in H. 

(#4) For every f ∈ Hand 0 ≤ r ≤1, we have fr(z) :=f(ݎ௭) ∈ H. 

By (#3),  H contains all analytic polynomials. By (#2), for f ∈ H∞ we have 
‖݂‖ு = ‖f · 1‖ு ≤ ‖݂‖ஶ‖1‖ୌ = ‖݂‖ஶ . Many classical Hilbert spaces of 
analytic  functions on D satisfy conditions (#1)–(#4). 

For φ ∈ S(D), we define the composition operator Cφ: H → H(D) by Cφf = 
f◦φ for f ∈ H. If Cφ f ∈ H for every f ∈ H, then Cφ: H→H is a bounded linear 
operator. We denote by C(H) the space of bounded composition operators 
Cφ: H→H with the operator norm topology. for an overview of composition 
operators. 

Let φ ∈ S(D) and u ∈ H. We may define the weighted composition operator 
MuCφ: H→H (D) by MuCφf = u ·(f◦φ) for every f ∈ H. If u ·(f ◦ φ) ∈ H for 
every f ∈ H, then MuCφ: H→H is bounded and we denote byฮM୳C஦ฮ

ୌ
 its 
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operator norm. We note that M୳C஦=0 if and only if u = 0. Let C୵(H) be the 
space of non zero bounded weighted composition operators on H with the 
operator norm topology, that is, 

C୵(H)  =  {M୳C஦ ∶  M୳C஦ ∶ H → H is bounded, u ≠  0}. 

In the study of (weighted) composition operators, one of the main subjects is 
determining the set {u ∈ H:M୳C஦∈ C୵(H)}for a given φ ∈ S(D)and the other 
is determining the topological structure in C୵(H).By (#2), if Cφ ∈ C୵(H)then 
M୳C஦∈ C୵(H)for every u ∈ H∞ with u ≠ 0. The boundedness of  Mu on range 
of a composition operator was investigated. The boundedness and 
compactness of weighted composition operators on the Hardy and Bergman 
spaces have been characterized. About the topological structure, first studied 
the component structure of the set of all composition operators on the 
Hardy–Hilbert space H2 in the topology induced by the operator norm. 
Further investigated and the latter authors raised the problems on the 
component structure in the topologies induced by the operator norm and the 
essential operator norm and explicitly gave the conjecture that two 
composition operators would lie in the same component if and only if they 
have compact difference, that is, the difference of the two composition 
operators is compact. This conjecture was answered in the negative by and 
Bourdon provided an example of two composition operators induced by 
linear fractional self-maps of D which are in the same component but do not 
have compact difference. In general, it seems fairly difficult to describe all 
path connected components in C୵(H). We would like to mention that C୵(H) 
∪{0}is a path connected set. The reason is that for M୳C஦∈ C୵(H), we have 
M୲୳C஦∈C୵(H) ∪{0} and  

ฮM୲బ୳Cφ − M୲୳C஦ฮH =  |t଴ −  t|ฮM୳Cφฮ
ୌ

 

for every 0 ≤ t0, t ≤1, so M୳Cφ and 0 are in the path connected set in C୵(H) 
∪{0}. By this fact, the condition 0 ∉ C୵(H) is a key to study path connected 
components in C୵(H).By condition (#3), M୳Cφ∈ C୵(H)is Hilbert–Schmidt if 
and only if  

ฮM୳Cφฮ
ୌ,ୌୗ
ଶ ∶= ෎

‖uφ୬‖ୌ
ଶ

‖z୬‖ୌ
ଶ

ஶ

୬ୀ଴

<  ∞. 

We denote by C୵,ୌୗ (H) the space of Hilbert–Schmidt operators 
M୳CφinC୵(H) with the Hilbert–Schmidt norm topology. The topology on 
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C୵,ୌୗ(H) is stronger than the operator norm one. So a path connected set in 
C୵,ୌୗ(H) is so in C୵(H). 

Let H1be another Hilbert space of analytic functions on D with H1 ⊂ H 
satisfying conditions (#1), (#3) and (#4). We note that H1 needs not satisfy 
(#2). Furthermore we assume that 

(#5)‖f ‖ୌ ≤ ‖f ‖ୌభ  for every f ∈ Hଵ. 

For a bounded linear operator T:Hଵ→H, we write‖T ‖ୌభ ,ୌ its operator norm. 
For M୳Cφ ∈ C୵(H), we have  

ฮM୳Cφfฮ
ୌ

 ≤ ฮM୳Cφฮ
ୌ

‖f‖ୌ ≤ ฮM୳Cφฮ
ୌ

‖f‖ୌభ 

for every f∈H1. Hence  M୳Cφ:H1→H is bounded and  

 

ฮM୳C஦ฮ
ୌభ,ୌ

 ≤  ฮM୳C஦ฮ
ୌ

  for every  M୳Cφ  ∈  C୵(H)                  (1) 

Restricting M୳C஦ ∈ C୵ (H)on H1, we may consider that M୳C஦ is also a 
bounded linear operator from H1to H. We denote by C୵(H1, H) the space of 
M୳C஦: H1→H, M୳C஦∈ C୵(H), with the operator norm topology. For the 
non-weighted case, we write C(H1, H). We note that  

C୵(Hଵ, H)  =  C୵(H) 

as sets, so if M୳C஦∈C୵(Hଵ, H), then u ∈H. By (1), the topology of C୵(H) is 
stronger than the one of C୵Hଵ, H. Hence a path connected set in C୵(H)is so 
in C୵(Hଵ, H). 

We have that M୳C஦∈ C୵(Hଵ, H) is Hilbert–Schmidt if and only if  

ฮM୳C஦ฮ
ୌభ,ୌ,ୌୗ

ଶ ∶= ෎
‖uφ୬‖ୌ

ଶ

‖z୬‖ୌభ
ଶ

∞

୬ୀ଴

< ∞. 

We denote by C୵,ୌୗ ( Hଵ, H ) the space of M୳C஦ ∈ C୵ ( Hଵ, H ) which are 
Hilbert–Schmidt. We consider the Hilbert–Schmidt norm topology on 
C୵,ୌୗ(Hଵ, H). The topology on C୵,ୌୗ(Hଵ, H) is stronger than the operator 
norm one. So a path connected set in C୵,ୌୗ(Hଵ, H) is so in C୵(Hଵ, H). Since  
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ฮM୳C஦ฮ
ୌభ,ୌ,ୌୗ

ଶ ≤ ෎
‖uφ୬‖ୌ

ଶ

‖z୬‖ୌభ
ଶ

∞

୬ୀ଴

= ฮM୳C஦ฮ
ୌ,ୌୗ

ଶ    by (#5), 

we have C୵,ୌୗ(H) ⊂ C୵,ୌୗ(Hଵ, H)  

This chapter is organized as follows. In Section (3.2), we shall prove that if 
‖୸౤‖ౄ  
‖୸౤‖H1

→ 0 as  n → ∞ then C୵(Hଵ, H) is a path connected space. In Section 

(3.1), we shall prove that C୵,ୌୗ  ( Hଵ, H ) is a path connected space. As 
applications of these results, and we study the cases that H is either the 
classical Hardy–Hilbert space H2 or the weighted Bergman spaces  ܮ஑

ଶ , −1< α 
<∞, on D, and H1 is either H2 or  ܮ஑

ଶ  or the Dirichlet space D on D. we study 
the Hilbert–Schmidt norms of differences of composition operators in C(D, 
H2) and C(D, ܮ஑

ଶ ) for −1 < ߙ < ∞.  We shall show that Cୌୗ(D, ஑ܮ
ଶ ) =

൛C஦: φ ∈ S(D)ൟas sets. For φ, ψ∈S(D), let φ୲ = t஦ + (1 − t)ψ for 0 ≤ t ≤
1. We also prove that {C஦୲:0 ≤t ≤1} is a continuous path in Cୌୗ(D, ஑ܮ

ଶ ) 

Let H  and  H1 be the spaces satisfying conditions given in the introduction. 

Lemma (3.1.1)[3]: ∈If φ  S(D)and ‖߮‖ஶ<1, then Cφf ∈ H∞ for every f ∈ 
H and  

ฮCఝfฮ
∞

≤ ‖f‖
ୌ 

ୱ୳୮
|α|ஸ‖α‖∞

‖τα‖ୌ. 

Proof :  For f ∈ H and  z∈D, by (#1) we have so we get the assertion.  

ห(Cఝf)(z)ห = ቚf ቀCఝ(z)ቁቚ ≤ ‖f‖ୌ ฮτఝ (୸)ฮ
ୌ

≤ ‖f‖
ୌ 

ୱ୳୮
|α|ஸ‖α‖∞

‖τα‖ୌ,  

so we get the assertion. 

Theorem(3.1.2)[3]: If‖z୬‖ୌ  /‖z୬‖ୌభ  → 0 as  n → ∞  then C୵(Hଵ, H) is 
a path connected space. 

Proof: Let MuCφ∈C୵(Hଵ, H). Since C୵(Hଵ , H) =C୵(H) as sets, we have u ∈ 
H and M୳C஦H< ∈∞. Let 0 ≤r<1. For f H, by Lemma (3.1.1) we have for φ 
∈H∞ and 

ฮM୳C୰φfฮ
ୌ

= ‖u(f ݋ rφ)‖ୌ 

≤ ‖f ݋ rφ‖∞‖u‖ୌ   by (#2) 
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≤ ‖f‖ୌ‖u‖
ୌ

ୱ୳୮
|α|ஸ୰

‖τ∝‖ୌ 

By (#1),M୳C୰φ∈ C୵(H), so M୳C୰φ∈ C୵(Hଵ, H) . 

We shall show that {M୳C୰φ: 0 ≤ r ≤ 1} is a path connected set in C୵(H1, 
H). Fix 0 ≤r0≤1. It is sufficient to show that ฮM୳C୰బφ − M୳C୰φฮ

ୌభ ,ୌ
→

0 as r → r଴. Let g = ∑ a୬z୬∞
௡ୀ଴ ∈ Hଵ. For each 0 ≤ r ≤ 1, let  

g[୰](z)  = ෍ a୬

∞

௡ୀଵ

(r଴
୬  −  r୬)z୬.  

Since H1 ⊂ Hand H satisfies (#4), we have g[୰]∈ H. Hence  

ฮ(M୳C୰బφ − M୳C୰φ)gฮ
ୌ
ଶ  =   ะu ෍ a୬

∞

௡ୀଵ

(r଴
୬– r୬)φ୬ะ

ୌ

ଶ

 

=  ฮM୳Cφg[୰]ฮୌ
ଶ  ≤  ฮM୳Cφฮ

ୌ
ଶ ฮg[୰]ฮୌ

ଶ  

=  ฮM୳Cφฮ
ୌ
ଶ ෍|a୬|ଶ

∞

௡ୀଵ

|r଴
୬– r୬|ଶ‖z୬‖ୌ

ଶ      by (#3) 

≤  ฮM୳Cφฮ
ୌ  ୱ୳୮

୩ஹଵ

ଶ ቌหr଴
୩  −  r୩ห

ଶ ฮz୩ฮୌ
ଶ

‖z୩‖ୌభ
ଶ ቍ ෍|a୬|ଶ

∞

௡ୀଵ

‖z୬‖ୌభ
ଶ

≤  ฮM୳Cφฮ
ୌ  ୱ୳୮

୩ஹଵ

ଶ ൭หr଴
୩  −  r୩ห

ฮz୩ฮୌ
‖z୩‖ୌభ

൱
ଶ

‖g‖ୌభ
ଶ  .  

Then  

ฮ(M୳C୰బφ − M୳C୰φ)ฮ
ୌభ,ୌ

≤ ฮM୳Cφฮ
ୌ  ୱ୳୮

୩ஹଵ
ቆหr଴

୩  −  r୩ห
ฮ୸ౡฮౄ

ฮ୸ౡฮౄభ

ቇ  

For any positive integer n, we have 

sup
k ≥ 1 ቆหr଴

୩  −  r୩ห
ଶ ቛzkቛ

H
ฮzkฮH1

ቇ ≤ ෎ ቆหr଴
୩  −  r୩ห

ଶ ቛzkቛ
H

ฮzkฮH1
ቇ

௡ିଵ

௞ୀଵ

+
sup

k ≥ 1 ቆ
ቛzkቛ

H
ฮzkฮH1

ቇ  

Hence  
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lim sup
r → r଴

ฮ(M୳C୰బφ − M୳C୰φ)ฮ
ୌభ,ୌ

≤ ฮM୳Cφฮ
ୌ  ୱ୳୮

୩ஹ୬

ฮz୩ฮୌ
‖z୩‖ୌభ

 

Therefore by the assumption, we get M୳C୰φ→M୳C୰బφ as r→r0 in C୵(Hଵ, H). 
This shows that {M୳C୰φ:0 ≤ r ≤1} is a path connected set in C୵(Hଵ, H). Thus 
M୳Cφ and M୳C଴ are in the same path connected set in  C୵(Hଵ, H). 

Let   M୳Cφ, M୴Cந ∈ C୵(Hଵ, H) We have  

‖(M୳C଴  − M୴C଴)f‖ୌ ≤  ‖u −  v‖ୌ|f(0)| ≤  ‖u −  v‖ୌ‖τ଴‖ୌభ
‖f‖ୌభ 

For every  f ∈ H1. Hence  

‖(M୳C଴  − M୴C଴)‖ୌభ,ୌ  ≤  ‖u −  v‖ୌ‖τ଴‖ୌభ .  

It is not difficult to show that there is a continuous path {ut:0 ≤t ≤1}in H 
such u0=u, u1=v  and  ut ≠ 0 for every 0 ≤ t ≤1. For 0 ≤ t0 ≤1, we have  

ቛ(M୳౪బ
C଴  − M୳೟C଴)ቛ

ୌభ,ୌ
 ≤  ฮu୲బ  −  u௧ฮ

ୌ
‖τ଴‖ୌభ  .  

Letting t →t0, we have M୳೟C଴ → M୳౪బ
C଴ in C୵(Hଵ, H) . Hence M୳C଴ and 

M୴C଴are in the same path connected component in C୵(Hଵ, H).. Thus by the 
last paragraph, C୵(Hଵ, H)is a path connected space. 

Lemma (3.1.3)[3]: If ‖߶‖ஶ <1and u ∈ H, then M୳Cφ∈ C୵(H) and is 
compact. 

Proof: By the first paragraph of the proof of Theorem (3.1.1) , we have 
M୳Cφ∈C୵(H). 

To show that M୳Cφis compact, let { ௡݂}௡be a sequence in H such that there is 
a positive constant K satisfying ‖ ௡݂‖ୌ <  for every n. By (#1), we mayܭ
assume that ௡݂converges to some f ∈ H(D) uniformly on any compact subset 
of D. By the assumption, ௡݂◦φ →f◦ φ in H∞ .Hence by (#2), u( ௡݂◦ φ), u(f◦φ) 
∈ H and  

ฮM୳Cφ ௡݂ −  u(f ݋φ)ฮ
ୌ

≤  ‖u‖ୌ‖ ௡݂oφ −  f ݋φ‖ஶ  →  0, n → ∞ 

Thus M୳Cφ∈ C୵(H).is compact. 

 

      Corollary(3.1.4)[4]: If ‖z୬‖ୌ  /‖z୬‖H1  → 0 as  n → ∞  then any 
M୳Cφ∈C୵(Hଵ, H) is compact. 
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Proof: For 0 < r <1, by Lemma (3.1.2) M୳Crφ ∈ C୵(H)is compact. By (#5), 
id :H1→His bounded. Hence  M୳Crφ :H1→His compact. By the proof of 
Theorem (3.1.1) we get the assertion.  

Let Hand H1be the spaces satisfying conditions given in the introduction. 
We note that C୵,ୌୗ(Hଵ, H)⊂C୵(Hଵ, H) =C୵(H) as sets and the topology on 
C୵,ୌୗ(Hଵ, H)is induced by the Hilbert–Schmidt norm. 

Lemma (3.1.5)[3]: 
(i){M୳Cφ: φ ∈ Hஶ, ‖φ‖ஶ < 1, ∋ ݑ ,ܪ ≠ ݑ 0}  ⊂ C୵,ୌୗ(H). 

(ii)C୵,ୌୗ(H) ⊂ C୵(Hଵ, H) . 

Proof: ∈(i) Let φ  H∞ with ‖߮‖ஶ<1and u ∈ H with u ≠ 0. We have  

 

ฮM୳Cφฮ
ୌభ,ୌ

ଶ  = ෎
‖uφn‖H

2

‖zn‖H
2

∞

n=0

≤ ‖u‖H
2 ෎

‖φ‖ஶ
2

‖zn‖H
2

∞

n=0

  by (#2)  =  ‖u‖H
2 ฮC‖φ‖ಮฮ

ୌ,ୌୗ

ଶ .  

SinceC‖φ‖ಮis rank one, so is Hilbert–Schmidt. Hence  M୳Cφ∈ C୵,ୌୗ(H). 

(ii) Let M୳Cφ ∈C୵,ୌୗ ( H ). Since id :H1→His bounded and M୳Cφ|ୌభ =
M୳Cφ·id, we get (ii).  

Theorem (3.1.6)[3]: C୵,ୌୗ(Hଵ, H) is a path connected space. 

 

Proof: Let M୳Cφ∈C୵,ୌୗ(Hଵ, H). By (#3),  

෎ ‖୳஦౤‖ౄ
మ

‖୸౤‖H1
మ

ஶ

୬ୀ଴

 = ฮMuC஦ฮH1,H ,HS
ଶ <  ∞                         (2) 

We shall show that { M୳Crφ :0 ≤ r ≤1} is a path connected set in 
C୵,ୌୗ(Hଵ, H). By Lemma (3.1.5), M୳Crφ∈ C୵,ୌୗ(Hଵ, H) for every 0 ≤ r ≤1. 
Let us fix 0 ≤ r0 ≤1. We shall show that ฮM୳Cr0φ −  M୳Crφฮ

ୌభ ,ୌ,ୌୗ
→ 0 as 

r→r0. For any positive integer N, we have  
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ฮM୳C୰బ஦ −  M୳C୰஦ฮ
ୌభ,ୌ,ୌୗ

ଶ  = ෎
‖u(r଴

୬  −  r୬)φ୬‖ୌ
ଶ

‖z୬‖ୌభ
ଶ

ஶ

୬ୀ଴

   

≤  ෎|r଴
୬  −  r୬|ଶ ‖uφ୬‖ୌ

ଶ

‖z୬‖ୌభ
ଶ

୒ିଵ

୬ୀ଴

  + ෎
‖uφ୬‖ୌ

ଶ

‖z୬‖ୌభ
ଶ

ஶ

୬ୀ଴

 

Take   ε > 0 arbitrarily. Then by (2), we may take N large enough so that  

 

෎
‖uφ୬‖ୌ

ଶ

‖z୬‖ୌభ
ଶ

ஶ

୬ୀ୒

<  ߝ 

Hence  

ฮM୳C୰బ஦ −  M୳C୰஦ฮ
ୌభ,ୌ,ୌୗ

ଶ
< ߝ  +  ෎|r଴

୬  −  r୬|ଶ ‖uφ୬‖ୌ
ଶ

‖z୬‖ୌభ
ଶ

୒ିଵ

୬ୀ଴

 

Letting r→r0, we have  

lim sup
୰→୰బ

ฮM୳C୰బ஦ −  M୳C୰஦ฮ
ୌభ,ୌ,ୌୗ
ଶ < ߝ 

 
 

Thus we get ฮM୳C୰బ஦ −  M୳C୰஦ฮ
ୌభ,ୌ,ୌୗ
ଶ →0 as r → r଴ . Hence M୳Cφ and 

M୳C0 are in the same path connected component in C୵,ୌୗ(Hଵ, H). 

Let M୴Cந  ∈ C୵,ୌୗ ( Hଵ, H ) be another operator. By the last paragraph, 
M୴Cந and M୴C0 are in the same path connected component in C୵,ୌୗ(Hଵ, H). 
Let {ut:0 ≤ t ≤ 1}be a continuous path in H such that u0=u, u1= v and ut ≠ 
0for every 0 ≤ t ≤1. We have 

ቛM୳౪బ
C଴  − M୳౪ቛୌଵ,ୌ,ୌୗ 

ଶ
= ฮu୲బ  −  u୲ฮ

ୌ 
ଶ  → 0 as t →  t଴. 

 Hence M୳C0 and M୴C0 are in the same path connected component in 
C୵,ୌୗ ( Hଵ, H ). Therefore M୳Cφ and M୴Cந are in the same path connected 
component in C୵,ୌୗ(Hଵ, H). This completes the proof.  
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Section (3.2) Applications: 
Let H2 be the classical Hardy–Hilbert space on D. It is well known that 
H2satisfies conditions (#1)–(#4). For each f∈H2, it is known that there is the 
radial limit ݂∗ almost everywhere on ∂D with respect to the normalized 
Lebesgue measure m. By Littlewood’s subordination theorem (it states that 
any holomorphic univalent self-mapping of the unit disk in the complex 
numbers that fixes 0 induces a contractive composition operator on various 
function spaces of holomorphic functions on the disk see [7]), Cφ: H2→H2is 

∈bounded for every φ  S(D) ∈For a given φ  S(D), it is not known the 
characterization of the set of u ∈H2 such that M୳C஦:H2→H2 is bounded. But 
it is known that Cw(H2) has many path connected components . 

For −1 < α <∞, the weighted Bergman space ܮ஑
ଶ  on D is the space of f ∈ 

H(D) satisfying  

‖f‖௅ಉ
మ

ଶ ∶=  න|f(z)|ଶ dA஑(z)  <  ∞,
 

ୈ

 

where dA஑=(α+1)(1 −|z|2)α dA and A stands for the normalized Lebesgue 
measure on D. When α=0, ܮ଴

ଶ is the classical Bergman space. It is known that 
݈∝

ଶ  satisfies conditions (#1)–(#4) and Cφ:ܮ஑
ଶ ஑ܮ→

ଶ ∈is bounded for every φ  
S(D). We have  

‖z୬‖௅ಉ
మ

ଶ   =
n! Γ(2 +  α)

Γ(n + 2 + α) 
  ,  

where Γ(s)stands for the usual Gamma function. Then   Hଶ ஷ⊂ ܮ஑
ଶ   and 

‖f‖௅ಉ
మ  ≤  ‖f‖ுమ  for f ∈ H2. Also we have that for −1 <α1 < α2 <∞, 

஑భܮ
ଶ  ஷ⊂ ܮ஑మ

ଶ and ‖f‖௅ಉమ
మ ≤‖f‖௅ಉభ

మ for f ∈ ܮ஑భ
ଶ ∈. For a given φ  S(D), it is not 

known the characterization of the set of u ∈ ܮ஑ 
ଶ  such that M୳Cφ:ܮ஑

ଶ ஑ܮ→
ଶ is 

bounded. for the boundedness and compactness of weighted composition 
operators on the weighted Bergman spaces. partially answered the question 
of when two composition operators lie in the same component of Cw(ܮ஑

ଶ ). 
Let D be the Dirichlet space on D. For f ∈ ∈ H(D), we have that f  D if and 
only if 

‖f‖஽
ଶ ∶= |f(z)|ଶ + නหfሖ(z)หଶ dA஑(z)  <  ∞,

 

ୈ
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It is known that D satisfies conditions (#1), (#3) and (#4). But D does not 
satisfy condition (#2). For f =  ∑ a୬z୬ஶ

୬ୀ଴ ∈ D, we have ‖f‖஽
ଶ = |a|ଶ + 

∑ n|a୬|ଶஶ
୬ୀଵ . Then  D ஷ⊂ Hଶ  and  ‖f‖ுమ ≤ ‖f‖஽   for f ∈ D. It is also known 

that there is an analytic self- ∈map φ  S(D) such that Cφ: D→D is not 
bounded. We note that ‖1‖஽

ଶ =1 and ‖z୬‖஽
ଶ =n for every n ≥1. 

We have  
‖z୬‖ுమ

‖z୬‖஽
 =  

1
√n

 → 0 as n → ∞. 

By  Stirling’s  formula, we have  
୻(୬ ା ஛)

୬!୻(஛)
  ∼  (n +  1)஛ିଵ, λ > 0. 

Hence for −1 < α <∞, we have  

‖z୬‖௅ಉ
మ

ଶ

‖z୬‖஽
ଶ =

n! Γ(2 +  α)
nΓ(n + 2 + α) 

∼  
1

݊(n +  1)ଵା஑ → 0 asn → ∞ 

and 

‖z୬‖௅ಉ
మ

ଶ

‖z୬‖ுమ
ଶ =

n! Γ(2 +  α)
Γ(n + 2 + α) 

∼  
1

(n +  1)ଵା஑ → 0 asn → ∞ 

For −1 < α1 < α2 <∞, we also have  

‖z୬‖௅ಉమ
మ

ଶ

‖z୬‖௅ಉభ
మ

ଶ =
n! Γ(2 +  αଶ) Γ(n + 2 + αଵ)
Γ(n + 2 + αଶ) n! Γ(2 +  αଵ) 

∼  (n +  1)ି(ଶା஑మିଵ)(n +  1)ଶା஑భିଵ = (n +  1)஑భି஑మ →  0 as n → ∞ 

Hence by Theorem (3.1.1), we have the  following. 

Corollary (3.2.1)[3]: Cݓ(D, Hଶ),Cݓ(D, ஑ܮ
ଶ ),Cݓ(Hଶ, ஑ܮ

ଶ ),for −1 < α < ∞, 
and Cܮ)ݓ஑భ

ଶ , ஑మܮ
ଶ ), for −1 <α1<α2<∞ are path connected spaces. 

By Theorem (3.1.6), we have the following. 

Corollary (3.2.2)[3]: Cܵܪ,ݓ(D, Hଶ), Cܵܪ,ݓ(D, ஑ܮ
ଶ ), Cܵܪ,ݓ(Hଶ, ஑ܮ

ଶ )for −1 < α 
<∞, and Cܮ)ܵܪ,ݓ஑భ

ଶ , ஑మܮ
ଶ ), for −1 <α1<α2<∞are path connected spaces. 

Since {1, z୬/√n: n ≥ 1}is an orthonormal basis of D, in the same way as in 
Shapiro and Taylor  we have  
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ฮM୳C஦ฮ
ୈ,ୌమ,ୌୗ

ଶ
 =  ‖u‖ୌమ

ଶ  + ෎
‖uφ୬‖ୌమ

ଶ

n

ஶ

୬ୀଵ

 =  ‖u‖ୌమ
ଶ +   න |u∗|ଶ log

1
1 −  |φ∗|ଶ

பୈ

dm 

Hence M୳C஦∈ Cݓ(D, Hଶ)is Hilbert–Schmidt if and only if  

න |u∗|ଶ log
1

1 −  |φ∗|ଶ
பୈ

dm <  ∞ 

Similarly,  

ฮM୳C஦ฮ
ୈ,Lα

2
,ୌୗ

ଶ
 =  ‖u‖

Lα
2

ଶ  + ා
‖uφ୬‖

Lα
2

ଶ

n

ஶ

୬ୀଵ

 = ‖u‖
Lα

2
ଶ + න |u (z)|ଶ log

1
1 −  |φ (z)|ଶ    dA஑(z)

ୈ

 

and 

ฮM୳C஦ฮ
ୈ,Lα

2,ୌୗ

ଶ
 =  ‖u‖

Lα
2

ଶ  + ෎‖uφ୬‖
Lα

2
ଶ

ஶ

୬ୀ଴

 = න
|φ (z)|ଶ

1 −  |φ (z)|ଶ    dA஑(z)
ୈ

 

 

Hence M୳C஦∈ Cݓ(H2, L஑
ଶ )is Hilbert–Schmidt if and only if.   

න |u (z)|ଶ log
1

1 −  |φ (z)|ଶ    dA஑(z) <  ∞,
ୈ

 

and   M୳C஦ ∈ Cݓ(D, L஑
ଶ )is Hilbert–Schmidt if and only if  

න
|u (z)|ଶ

1 −  |φ (z)|ଶ  dA஑(z) <  ∞.
ୈ

 

When H=H1in Theorem (3.1.6), we have the  following. 

Corollary (3.2.3)[3]: If H satisfies all (#1)–(#4), then Cܵܪ,ݓ(H) is a path 
connected space. 

In this section, we study the Hilbert–Schmidt norms of differences of 
composition operators in C(D, H2) and C(D, L஑

ଶ ) for −1 < α <∞. We note that  

C(D, H2)= C(D, L஑
ଶ ) = {Cφ ∈: φ  S(D)} 
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as sets. By the same way as in the proof of Theorem (3.1.1), C(D,H2) and 
C(D, L஑

ଶ )are path connected spaces with respect to the operator norm 
topologies. 

Lemma (3.2.4)[3]: 
(i)  C஦ ∈ Cୌୗ (D, Hଶ) if and only if  

න log
1

1 −  |φ∗|ଶ
பୈ

dm <  ∞. 

(ii) C஦ ∈ Cୌୗ(D, L஑
ଶ ) if and only if  

න log
1

1 −  |φ (z)|2
ୈ

 dAα(z) <  ∞. 

∈For φ  S(D), we write E(φ) ={eiθ ∈ ∂D :|φ* (eiθ)| =1}. In case (i) of Lemma 
(3.2.4), we have m(E(φ)) = 0, we may say that Cφ∈Cୌୗ(D, Hଶ)if and only if 
φ is a non-extreme point of the closed unit ball of H∞. Applying the same 
way as in the proof of Theorem (3.1.6), Cୌୗ(D, Hଶ) and Cୌୗ (D, L஑

ଶ ) are path 
connected spaces with respect to the Hilbert–Schmidt norm topologies. 

Theorem (3.2.5)[3]: Cୌୗ (D, L஑
ଶ )={Cφ ∈:φ S(D)} as sets for every  

−1 < α <∞. 

Proof : We have 

න log
1

1 −  |z|2
ୈ

 dAα(z) = 1

(α + 1)2 <  ∞. 

∈Let φ  S(D)with φ(0) =0. Then |φ(z)| ≤ |z| on D and  

න log
1

1 −  |φ(z)|2
ୈ

 dAα(z) ≤  න log
1

1 −  |z|2
ୈ

 dAα(z) <  ∞ 

By Lemma (3.2.4)(i), we have  Cφ∈ Cୌୗ (D, L஑
ଶ ) 

∈Let φ  S(D) with φ(0) ≠ 0. Put a =φ(0)and  

(ݖ)߰  =
(ݖ)߮  −  ܽ

1 −  തܽ߮(ݖ)
 , ݖ ∈  .ܦ 

∈Then ψ  S(D)with ψ(0) =0. By the last paragraph,  
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න log
1

1 −  |ψ(z)|2
ୈ

 dAα(z) <  ∞ 

so 

න log
1

1 −  |ψ(z)|
ୈ

 dAα(z) <  ∞ 

 

We have  

(ݖ)߮  =
ψ(ݖ) +  ܽ

1 +  തܽψ(ݖ)
 , ݖ ∈  .ܦ 

Since  

1 −   |φ(z)|  ≥  1 −  
|ψ(z)|  + |a| 
1 +  |a||ψ(z)|

 =  
(1 −  |a|)(1 −  |ψ(z)|)

1 +  |a||ψ(z)| 
 

we  have  
1

1 − |(ݖ)߮| 
  ≤  

2
(1 −  |ܽ|)(1 − (|(ݖ)߰| 

 

Hence  

න log
1

1 −  |߮(z)|
ୈ

 dAα(z)  ≤ න log
2

(1 −  |ܽ|)
ୈ

 dAα(z) + න log
1

1 −  |ψ(z)|
ୈ

 dAα(z) <  ∞ , 

so, by Lemma(3.2.4) ∈(ii) we have φ(z) Cୌୗ (D, L஑
ଶ ).  

By Lemma (3.2.4) and Theorem (3.2.5) , we have the following. 

Corollary (3.2.6)[3]:   Cୌୗ(D, Hଶ) ஷ⊂ Cୌୗ(D, L஑
ଶ ) = ൛C஦: φ ∈ S(D)ൟ for 

every −1 < α < ∞. 

Corollary (3.2.7)[3]:  ∈For any φ, ψ  S(D), Cφ−Cψ: D→L஑
ଶ  is Hilbert–

Schmidt  for every −1 < α < ∞. 

∈For φ, ψ  S(D), we have  

ฮC஦Cநฮ
ୈ,ுమ,ୌୗ
ଶ

= ෎
1
݊

ஶ

୬ୀଵ

‖φ୬  −  ψ୬‖ுమ
ଶ  ≥ ෎

1
݊

ஶ

୬ୀଵ

‖φ୬  −  ψ୬‖
Lα

2
ଶ  =  ฮC஦Cநฮ

ୈ,Lα
2,ୌୗ

ଶ
 

For z, w∈ܦഥ withz ≠ w, let ρ(z, w) =|z−w|/|1 −ݓഥz|.  
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Theorem (3.2.8)[3]: For  φ ∈, ψ  S(D), we have 

ฮC஦− Cநฮ
ୈ,୐ಉ

మ ,ୌୗ
ଶ =  න log

1
1 −  ρ(߮(z), ψ(z))ଶ

ୈ

 dA஑(z) 

Proof: We have  that  

ฮC஦ −  Cநฮ
ୈ,Lα

2,ୌୗ

ଶ
=  ෎

1
݊

ஶ

୬ୀଵ

‖φ୬  −  ψ୬‖
Lα

2
ଶ

= න ෎
|φ(z)|ଶ୬  + |ψ(z)|ଶ୬  −  φ୬(z)ψ(z)୬തതതതതതതത  −  φ(z)୬തതതതതതതതψ(z)୬

݊

ஶ

୬ୀଵ

dA஑(z)
ୈ

=  න log
ห1 − ψ(z)തതതതതതห(ݖ)߮ 

ଶ

(1 −  |߮(z)|ଶ)(1 −  |ψ(z)|ଶ)
dA஑(z)  

ୈ

=   න log
1

1 −  ρ(߮(z), ψ(z))ଶ
ୈ

 dA஑(z) 

 

Corollary  (3.2.9)[3]: For φ , ψ ∈ S(D), we have  

න log
1

1 −  ρ(߮(z), ψ(z))ଶ
ୈ

 dA஑(z) < ∞ 

Proof: By Theorem (3.2.5),  

ฮC஦ฮ
ୈ,୐ಉ

మ ,ୌୗ
+ ฮCநฮ

ୈ,୐ಉ
మ ,ୌୗ

<  ∞ 

By Theorem (3.2.8),  

න log
1

1 −  ρ(߮(z), ψ(z))ଶ
ୈ

 dA஑(z) =  ฮC஦ −  Cநฮ
ୈ,୐ಉ

మ ,ୌୗ
ଶ

≤ ቀฮC஦ฮ
ୈ,୐ಉ

మ ,ୌୗ
+  ฮCநฮ

ୈ,୐ಉ
మ ,ୌୗ

ቁ
ଶ

< ∞ 

Corollary (3.2.10)[3]: For φ, ∈ψ S(D) and 0 ≤t ≤1, let φ௧=φ௧ +(1 −t) ∈ψ  
S(D). Then {ܥ஦೟ :0 ≤ t ≤1} is a continuous path in Cୌୗ(D, L஑

ଶ ) connecting 
C஦with Cந. 
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Proof: By Theorem (3.2.5), ܥ஦೟
∈ Cୌୗ(D, L஑

ଶ ) for every 0 ≤t ≤1. It is 
sufficient to show that  

lim
୲→ଵ 

ฮܥ஦೟ −  Cφฮ
D,୐ಉ

మ ,HS

2 = 0 

Since ρ((z), φ௧(z))  ≤ ∈ρ((z), ψ(z))for z  D,  

log ଵ
ଵ ି ஡(஦,஦౪ )మ   ≤ log ଵ

ଵ ି ஡(஦,ந)మ  on D. 

By Corollary (3.2.9), 

න log
1

1 −  ρ(߮(z), ψ(z))ଶ

 

ୈ

dAα(z) <  ∞. 

Since ρ(φ(z), φt(z)) →0as t →1, by the Lebesgue dominated convergence 
theorem, 

න log
1

1 −  ρ(߮(z), φ୲(z))ଶ

 

ୈ

dAα(z) →  0   

 

as t →1. By Theorem (3.2.8), we get the assertion. 

Next, we shall study the structure of  Cୌୗ(D, Hଶ) ∈. For φ, ψ  S(D) with φ≠ 
ψ, we have that φ*(eiθ) ≠ ψ*(eiθ) for almost every eiθ ∈ ∂D. Hence we may 
define ρ(φ*(eiθ), ψ*( eiθ))for almost every eiθ ∈ ∂D. In the same way as in the 
proof of Theorem (3.2.8), we have the following. 

Theorem(3.2.11)[3]:  ∈For φ, ψ  S(D)with φ ≠ ψ, we have 

ฮC஦Cநฮ
ୈ,ுమ ,ୌୗ
ଶ =  න log

1
1 −  ρ(߮∗, ψ∗)ଶ

பୈ

dm 

Proof:  We have that 

ฮC஦ −  Cநฮ
ୈ,ுమ,ୌୗ

ଶ =  ෎
1
݊

ஶ

୬ୀଵ

‖φ୬  −  ψ୬‖ுమ
ଶ  

= න ෎
|φ∗|ଶ୬  +  |ψ∗|ଶ୬  −  φ୬ψ∗௡തതതതത  −  φ∗௡തതതതതψ∗௡

݊

ஶ

୬ୀଵ

dm 
பୈ
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=  න ቆlog
1

1 −  |φ∗|ଶ + log
1

1 −  |ψ∗|ଶ −   log
1

1 −  φ∗ψ∗തതതത −  log
1

1 −  φ∗തതതതψ∗ቇ dm  
∂D

 

=   න log
|1 −  φ∗ψ∗തതതത|ଶ

(1 −  |φ∗|ଶ)( 1 −  |ψ∗|ଶ) 
∂D

 dm =  න log 1
1 −  ρ(߮∗, ψ∗)2

∂D 

dm 

Corollary (3.2.12)[3]: ∈For φ, ψ  S(D) with Cφ, Cψ ∈ Cୌୗ(D, Hଶ) and  

0 ≤ t ≤1, let φ୲= tφ +(1 − ∈t)ψ  S(D). Then {ܥ஦౪ t:0 ≤ t ≤ 1}is a continuous 
path in Cୌୗ(D, Hଶ) connecting Cφ with Cψ. 

Proof: By the fact mentioned in the below of Lemma (3.2.4), φ and ψ are 
non-extreme points of the closed unit ball of ஶܪ .Hence 
஦౪ܥ ∈Cୌୗ(D, Hଶ) Using Theorem (3.2.11), in the same way as in the proof of 
Corollary (3.2.10) we may prove the assertion. 

 Theorem (3.2.13)[3]: Let φ ∈ S(D) satisfy C஦ ∉ Cୌୗ(D, Hଶ)Then 

ฮC஦ −  Cநฮ
ୈ,ுమ,ୌୗ
ଶ = ∞ for every   ψ ∈ S(D) with ψ ≠ φ. 

Proof: Suppose that ฮC஦ −  Cநฮ
ୈ,ுమ,ୌୗ
ଶ < ∞ for some ψ ∈ S(D) with ψ ≠ φ. 

By Theorem (3.2.11), we have m(E(φ)) = m(E(ψ)) =0 and  

න log
1

1 −  ρ(߮∗, ψ∗)ଶ
பୈ

dm < ∞. 

Let η=(φ +ψ)/2. We have that ρ(φ∗, η∗) ≤ ρ(φ∗, ψ∗) almost everywhere on 
∂D. Hence  

න log
1

1 −  ρ(߮∗, η∗)ଶ
பୈ

dm ≤ න log
1

1 −  ρ(߮∗, ψ∗)ଶ
பୈ

dm < ∞. 

By Theorem (3.2.11) again, ฮC஦ −  C஗ฮ
ୈ,ுమ,ୌୗ
ଶ < ∞. Since ηis a non-extreme 

point of the closed unit ball of H∞, by Lemma (3.2.4) we have 
C஗∈Cୌୗ(D, Hଶ) Then Cφ∈Cୌୗ(D, Hଶ) This is a contradiction. Thus we get 
the assertion.  

Corollary (3.2.14)[3]: Let φ, ψ ∈ S(D). If ฮC஦ −  Cநฮ
ୈ,ுమ,ୌୗ
ଶ < ∞, then 

both Cφ  and Cψ  are in Cୌୗ(D, Hଶ). 
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CHAPTER 4 

Symbol of Universal Covering Map for Compact Composition 
Operators 

We consider , in particular, conditions that determine compactness of such 
operators and demonstrate a link with the Poincare series of the uniformizing 
fuchsian group. We show that is compact if if and only if does not not have 
afinite angular derivative at any point of the unit circle, there by extending 
the result for univalent and finitely multivalent.  

Section (4.1) Introduction and Preliminaries: 
Let D = {z ∈ C:|1 >|ݖ} be the unit disk in the complex plane, then the Hardy 
space H୮, 1 ≤  p <  1 , is defined to be the Banach space of functions 
holomorphic in D with norm 

|f|୮
୮ =  lim

୰→ଵ
න หf(re୧஘)ห

୮
ଶ஠

଴

dθ < ∞ 

The limit here is guaranteed by the fact that the integral mean is increasing 
in r. The standard text for the theory of Hardy spaces  is . 

Given a holomorphic map ߶: D →  D we define the composition operator 

→ థ: fܥ  f o ߶ 

     The study of composition operators acting on function spaces has 
received much attention over the last four decades. The central theme of this 
work is to understand how operator theoretic properties of composition 
operators are related to geometric or analytic properties of their inducing 
functions.of central importance in this area is a result, which describes the 
essential norm of a composition operator in terms of the Nevanlinna 
counting function of its inducing holomorphic map. The Nevanlinna 
counting function is known explicitly in a number of situations, for example 
for inner functions, univalent functions and finitely multivalent functions .In 
this chapter we study composition operators with symbol a universal 
covering map of the unit disk onto a finitely connected domain, in this case 
the Nevanlinna counting function can be estimated precisely by properties of 
the underlying Fuchsian  group ( is a discrete subgroup of  PSL(2,R) which 
can be regarded as a group of isometries of the hyperbolic plane, or 
conformal transformations of the unit disc, or conformal transformations of 
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the upper half plane see[8]).We will provide all the preliminary definitions 
in section (4.2). 

We consider throughout this article domains of the form 

                 D =  D଴\{pଵ, … , p୬}       n ≥ 1                              (1) 

where D଴  is a simply connected domain contained in D and pଵ, … , p୬  are 
distinct, isolated points in the interior of  D଴ .We will study composition 
operators whose symbol ߶ is the universal covering map of D onto D. 

For a Fuchsian group Γ we define the limit set Ʌ (Γ) to be the set of 
accumulation 

points of orbits of points in D by functions in Γ. The Poincare series for Γ of 
order s is 

ρᴦ(z, w;  s) = ෍ exp − sdୈ൫z, g(w)൯
௚ఢ ୻

                                       (2) 

where  dୈ(z, w) is the hyperbolic distance from z to w in D. 

It is known that there is a critical exponent, δ(Γ) such that the Poincare series 
converges for all s < δ (Γ) but diverges for all s >δ (Γ). For finitely generated 
Fuchsian  groups 

δ (Γ)= dim(Ʌ (Γ)); 

the  Hausdorff  dimension of the limit set of  Γ. 

A simple calculation shows that if Γ is elementary and generated by a 
parabolic element then 

δ (Γ)= 1/2: 

If Γ is non-elementary and contains a parabolic element then Beardon 
showed in that 

δ (Γ)>1/2 

and  if  Γ is finitely generated and of the second kind then 

                                    δ (Γ)<1.                                    (3) 

Our first result links the compactness of a composition operator to the 
growth of the universal covering map with respect to the Poincare series. 
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Theorem (4.1.1)[4]: Let D be a domain in D defined by (1) and suppose 
that ߶ is a universal covering map of D onto D. 

Let Γ be the Fuchsian group that uniformizes D, then Cథ is compact on  ܪ௣, 
1 ≤ p < ∞, if and only if for each ζϵ ∂D Ʌ(Γ) 

                    lim୸→஖
஡ᴦ(଴,୸; ଵ)
ଵି|థ(୸)|     =  0                                                               (4) 

Note that the hypothesis implies that Γ is finitely generated and so (4) is well 
defined by (3). 

An important geometric quantity that has proved useful in describing 
compactness of composition operators has been the angular derivative. A 
holomorphic mapping   ߶: D →D has a finite angular derivative ห߶ሖ (ζ)ห for 
ζ߳∂D if 

lim inf
୸→஖

1 − |߶(z)|
1 − |z| <  ∞  . 

The existence of a finite angular derivative implies a number of well 
behaved mapping properties of ߶  near  ζ, a good reference for this. Note 
that if an angular derivative exists then, in particular,lim

୸→஖
|߶(z)| =  1, where 

the limit is non-tangential. 

To appreciate the importance of this quantity it is known that, for ߶ 
univalent, Cథ is compact if, and only if 

lim 
|୸|→ଵ

1 − |߶(z)|
1 − |z|  =  ∞                                                (5). 

or, equivalently, ߶ does not have a finite angular derivative at any point on 
߲D. For arbitrary ߶ it was shown that if Cథ is compact then ߶ does not have 
a finite angularderivative at any point on ߲D, however in general it is not 
difficult to find counter examples to the converse. For example no inner 
function induces a compact operator but there are inner functions with no 
angular derivative at any point on  ߲D . 

We  generalize  the above result to the current setting. 

In this section we will state and discuss Shapiro’s characterisation of 
compact composition operators, followed by an short introduction to the 
relevant theory of universal covering maps and Fuchsian groups. 
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Recall the Calkin algebra for ܪ௣  is the algebra B(ܪ௣)/B0(ܪ௣) where B(ܪ௣) 
is the algebra of bounded linear operators mapping ܪ௣ to ܪ௣, and B0(ܪ௣) is 
the corresponding ideal of compact operators in B(ܪ௣). The essential norm 
of an operator T, written ‖ܶ‖ୣ is the norm of T in the Calkin algebra. The 
essential norm measures the distance, in the norm induced metric, to the 
compact operators, 

‖ܶ‖ୣ  = ‖ܶ − ୏∈୆బ(ு೛)‖ܭ
୧୬୤    . 

provides a formula for the essential norm of Cథ that describes precisely its 
relationship with the inducing function ߶. In order to state Shapiro’s result 
we define the Nevanlinna counting function for ߶ to be 

Nథ(w) = ൞
෍ log

1
‖z‖      w ∈ (ܦ)߶

୸:థ(௭)ୀ௪

0                      w ∈ D\߶(ܦ)തതതതതതത
 

It is known and relatively easy to estimate Nథ when  ߶  is finitely valent. 
Shapiro proved that 

ฮCథฮ
௘
ଶ = lim sup

|୵|→ଵ

Nథ(w)

log 1
|w|

                                               (6) 

In particular, Cథ is compact on Hp if and only if 

lim 
|୵|→ଵ

Nథ(w)

log 1
|w|

= 0 

An inner function is a bounded holomorphic   function  I, on D for which 

lim
௥→ଵ

หI(re୧ఏ)ห = 1 

For almost every ߠ ∈ [0, 2π) with respect to Lebesugue measure. It is known 
that, outsidea set of 2-dimensional Lebesgue measure 0, an inner function I  
satisfies 

Nଵ(w) = log ቤ
I(0) −  w 
1 − I(0)തതതതതw

ቤ 

An example of an inner function that is relevant to the current work is the 
function 
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ݖ ↦ exp ൬−
1 +  z
1 −  z

൰ 

That  maps D conformally onto D\{0}. It is notable that the radial limit of 
this function along the positive real axis is 0, whereas all other radial limits 
have modulus 1. It has infinite angular derivative at 1 but has finite angular 
derivative elsewhere on ߲D. This is the universal covering map of D onto 
D\{0}. 

In this chapter we examine how Shapiro’s characterisation of compact 
composition operators may be interpreted when ߶  is a universal covering 
map. We will cover the prerequisite details required here in order to fix 
notation and relevant ideas. First recall that the hyperbolic metric, on D is 
defined by 

dୈ(z, w)  =  inf න
2

1 − |z|ଶ
ஓ

|dz| 

Where the infimum is taken over all smooth curves  connecting z to w in D. 
The constant 2 is required to ensure that the Gaussian curvature of the metric 
is equal to -1 throughout D, it is often omitted in the literature. This metric is 
so called because it induces Poincare’s disk model of hyperbolic space 
where geodesics are arcs of circles orthogonal to the unit circle or radii. In 
particular, we have that 

                           dୈ(0, w) = log ଵା|୵|
ଵି|୵|

                                            (7) 

Automorphisms  of  D are of the form 

ݖ ↦ ߣ
a −  z

1 − aതz 
 

where |1 =|ߣ and a ∈ D, and are isomorphisms in the hyperbolic metric. 
They are classified as elliptic, parabolic or hyperbolic according to whether 
they have a fixed point in D, a fixed point in ∂D, or 2 fixed points in ∂D 
respectively. The theory of automorphisms of D are covered in detail where 
many of the results concerning Fuchsian groups in this section may be 
found. 

A group Γ of automorphisms of D may be considered a subspace of the 
topological space GL2(C), Γ is called a Fuchsian Group if it is discrete in the 
subspace topology .For any hyperbolic Riemann surface, R, there is a 
Fuchsian group ΓR that contains no elliptic elements such that R is 
homeomorphic to D/Γ. 
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Given a domain D ⊂ D there is a Riemann surface RD and a covering 
projection π : RD →  D. Since RD is conformally equivalent to D by the 
uniformization theorem we may find a ߶෨ୈ ∶  D →  Rୈ  so that the mapping 

߶ =  ෨ୈ߶ ݋ ߨ 

Maps  D  conformally onto D: 

 

 

 

 

߶ is the universal covering map of D and is unique up to pre-composition 
with an automorphism of D. It follows from the construction above that the 
inverse of ߶(w) for any w ∈ D is the fiber over w and this is a Γ-orbit, i.e. is 
of the form Γ(z) = {g(z) : g ∈ Γ}. 

A fundamental domain for the action of Γ on D is said to be locally finite if 
each compact subset of D meets only finitely many Γ-images of F෨ . F . is 
locally finite if and only if the mapping 

ߠ ∶  F෨  ∩ (ݖ)߁ ↦  (ݖ)߁

is a homeomorphism from of F෨ /Γ onto D/Γ. Here F෨  represents the relative 
closure of F in D. 

The  Dirichlet  fundamental polygon for Γ is defined for given w ∈ D as 

D(w) = ሩ ൛z ϵ D: dୈ(z, w) < dୈ൫z, g(w)൯ൟ.
୥∈୻,୥ஷ୧ୢ

 

it  is locally finite. 

Finally  for a Fuchsian group of the second kind the set of discontinuity is 

Ω(Γ) =  C෠\Λ(Γ), 
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where  C෠ =  C ∪ {∞} . This set is connected and the action of Γ can be 
extended canonically to Ω(Γ) where it acts discontinuously. 

Examples: 
Figure 1: Fundamental domains for n = 1 and n = 2 

n = 1: In the case n = 1 the domain D is uniformized by an elementary 

Fuchsian  group of the form 

Γ =  〈߷〉, 

with  ߷ a parabolic disk automorphism. Suppose that ϱ has fixed point 1 then 
the Dirichlet  domain  D(0) is shown on the left in Figure 1 

The two sides of F in D are equivalent in D/〈߷〉 . The free side of F is 
homeomorphicto ߲ܦ଴  (note the two end points of the free side are 
equivalent). 

n = 2 :For the case n = 2 the domain D is conformally equivalent to the 
Riemann surface D/Γ where Γ is generated by two parabolic automorphisms, 
ϱ1and ϱ2. A fundamental set for Γ is illustrated on the right in Figure 1, here 
we assume that the fixed points of ϱ1and ϱ2 are ζ and - i. The point ζ can be 
determined from the geometry of D, specifically the length of the closed 
hyperbolic geodesic separating the points p1 and p2 from the boundary of D0. 
This example is taken where a more  detailed  discussion is available. 
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Section (4.2) Proof of Theorems and Concluding Remarks: 
We will assume that ∂D଴  ∩  ∂D ≠  Ø, the result (and all main results) are 
trivially true ifsup఍ |(ߞ)∅| <  1 in which case the angular derivative cannot 
exist anywhere. 

Note first that the points ݌௜ , ݅ =  1, … , ݊ , are considered punctures in the 
Riemann surface and are therefore in one-to-one correspondence with the 
conjugacy  class of parabolic elements in Γ. 

Let F be a locally finite fundamental domain for the action of Γ on D. Then 
F can be chosen to be a finite sided convex polygon with one free side 
contained in ∂D , forexample we may take F to be a Dirichlet convex 
fundamental  polygon. 

Now F෨/Γ is homeomorphic to D/Γ so that we may define a branch of the 
inverse of ∅  on a subdomain of D, ψ say, that maps this sub domain 
univalently onto F. 

         Let I be the free side of F then as |w| →  1 in D, z =  ψ (w)  tends to I. 
To see this we simply need to ensure that z does not converge to other 
boundary points of  F. To this end, suppose that Γ is non-elementary, then I 
is contained in an interval of discontinuity of Γ on  ∂D, γ say.  If we let A be 
the hyperbolic geodesic in D with the same end points as γ then ܣ ∩ F෨ is 
homeomorphic to the closed hyperbolic  geodesic in D that separates  ∂D଴  

from the points p1,… ,pn. Therefore A separates I from other corners of  F 
and so as 

w → ∂D{pଵ, … , p୬},              z →  .ܫ 
One can check the case n = 1 when Γ is elementary directly. 

Assume then that |z | >  ܴ >  ଵ
ଶ
 for a given R. Then for w ∈ D 

Nథ(w) =  ෍ log
1

|(ݖ)݃|
୥∈୻

 . 

Since Γ is discontinuous on D there are only finitely many g ∈Γ with 
g(z)  ∈  {z ∶ |ݖ|  ≤ ܴ}. Hence, using the inequality 

log 
1
x

 ≤  1 − xଶ  ≤  2 log 
1
x

 ;        1/2 < > ݔ   1 

we  have  that 
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Nథ(w) ≤ C ෍(1 = ଶ(|(ݖ)݃|

୥∈୻

 

≤ C ෍
1 − |(ݖ)݃|
1 + |(ݖ)݃|

୥∈୻

 

= C ෍ exp −݀஽(0, ((ݖ)݃
୥∈୻

 

= C஡ᴦ(0, ;ݖ 1) 

Similarly  Nథ(w) ≥ C஡ᴦ(0, ;ݖ 1). 

We have shown thus far that 

lim
|୵|→ ଵ 

Nథ(w)

log 1
|w|

 

If and only if 

lim
୸→ ଵ 

ρᴦ(0, ;ݖ 1)
1 − |(ݖ)߶| =  0                                                     (8) 

 

Where  the limit takes place in F෨. 

To show that this implies our result note that since Γ is discontinuous on 
Ω(Γ), we have that for any closed arcJ ⊂  ∂D\Λ(Γ)  finitely many images of 
F෨  under mapping in Γ cover J and we may apply (8) to each without 
difficulty using the automorphic property of ρᴦ. Therefore the limit (4) is 
zero at any point in ζ∈ J and, in particular at any point in  ∂D\Λ(Γ) . 
The converse, that (4) implies (8), is, of course, trivial. 

In order to prove this result we will require the following quantitative 
estimate of the Poincare  series of index 1. 

Lemma (4.2.1)[4]: If Γ uniformizes a domain of the form (1) then for z 
∈D(0) with |ݖ|close enough to 1. 

cଵ exp − dୈ(0, ȥ)  ≤ ρᴦ(0, ȥ, 1)  ≤  cଶ exp − dୈ(0, ȥ) 

Where  c1 and c2 are constants depending only on Γ. 
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Lemma (4.2.2)[4]: Γ is finitely generated if and only if each ζ∈Λ(Γ) is 
either 

(i) A fixed point for a parabolic element of  Γ; or   
 

(ii) A point of approximation – i.e. there is a sequence gn, n = 1, 2,…, of   
elements of Γ such that gn(0) → ζ non-tangentially.  

Theorem (4.2.3)[4]: Suppose that D is defined by (1) and ߶  is a 
universal covering of D onto D. Then Cథ is compact on ܪ௣, 1 ≤  p <∞, if 
and only if 

lim 
୸→஖

1 − |߶(z)|
1 − |z|  =  ∞  

For all ζ  ∂D. 

It follows that the counter examples to Shapiro and Taylor’s result cannot 
come   from universal covering maps of finitely connected domains. 

This result begins to demonstrate the link between the compactness of Cథ 
and the geometry of the image domain. In fact, as a consequence of the 
previous theorem and properties of inner functions that we will discuss later, 
we can develop this idea further. 

Proof :  Let ζ∈∂D be arbitrary. If ζ is a parabolic fixed point, then  ߶(z) → 
pj for some j when z →ζ, .Since ห݌௝ห< 1 it follows that ߶ has infinite angular 
derivative there. 

Similarly if ζ is a point of approximation then, with gn a suitable sequence 
such that  gn(0) →ζ as n →∞, we have that 

|߶(݃௡(0))| = |߶(݃଴(0))| <  1 

and since gn(0) converges non-tangentially, it follows from the Julia-
Caratheodory  theorem(states that if U is a simply connected open subset of 
the complex plane C, whose boundary is Jordan curve Г then the Riemann 
map complex plane C , Whose boundary is Jordan curve Г then the Riemann 
map ƒ:U→D from U to the unit disk D extends continuously to the 
boundary, giving a homeomorphism F:Г→ܵଵ  from Г to the unit circle  ܵଵ  
see [9])that the angular derivative at ζ  is 
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ห߶ሖ (ζ)ห  =  lim
௡→ஶ

1 − |߶(݃௡(0))|
1 − |ݖ|  =  lim

௡→ஶ

1 − |߶(݃଴(0))|
1 − |ݖ| =  ∞. 

From Lemma (4.2.2) all other points in ∂D are in the complement of the 
limit set of  Γ. 

Suppose first that ߶ has infinite angular derivative at all points ζ∈ ∂D\ Λ(Γ). 
Then from Lemma (4.2.1) 

lim
௭→఍

1 − |(ݖ)߶|
,ᴦ(0ߩ ;ݖ  1)

   ≥  ܿ lim
௭→఍

1 − |(ݖ)߶|
1 − |ݖ|  =  ∞: 

The compactness of ܥథ now follows from Theorem (4.1.1). 

Suppose, conversely, that ܥథ is compact. Let ζ ∈∂D\ Λ(Γ) and I⊂∂D(0) be 
the free edge of D(0). There is a h ∈Γ such that ζ∈h(I) and we may suppose 
without loss of generality that z →ζ  inside 

ℎ൫(0)ܦ൯ =  .൫ℎ(0)൯ܦ 

Then by continuity of h-1, as z → ζ, 

∗ݖ  =  ℎିଵ(ݖ)  → ℎିଵ(ߞ)  =  ∗ߞ 

And  ߞ∗∈I. 

From Lemma (4.2.2) we thus have 

lim inf
௭→఍

1 − |(ݖ)߶|
1 − |ݖ|   =  lim inf

௭∗→఍∗

1 − |(∗ݖ)߶|
1 − |∗ݖ|   .  

1 − |∗ݖ|
1 − |ݖ|  

=
1

หℎሖ ห(ߞ)
lim inf

௭∗→఍∗

1 − |(∗ݖ)߶|
1 − |∗ݖ|  ≥  ܿ lim inf

௭∗→఍∗

1 − |(∗ݖ)߶|
,ᴦ(0ߩ ;∗ݖ  1)

 =  1 

Therefore ߶ has infinite angular derivative at each ζ∈∂D as required 

Theorem (4.1.1) follows almost immediately from Theorem (4.2.3) given 
certain properties of inner functions. First, for a given inner function I, a 
singular point is a point ƞ∈∂D such that I cannot be extended to be analytic 
in a neighbourhood of ƞ. The set of singular points of a universal cover of D 
onto D\{p1,…,pn} is easily seen to be the limit set of the uniformizing 
Fuchsian group. In fact if ƞ∈Λ(Γ) then in each neighborhood there are 
infinitely many zeros of I- a for any a ≠ pi, i = 1,…,n and so ƞ is singular. To 
prove the contrapositive recall that Γ acts discontinuously on the larger set 
Ω(Γ). Therefore I may be extended to a holomorphic function on Ω(Γ)by 
considering the universal covering map of Ω(Γ)onto the so-called Schottky 
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double Ω(Γ)/Γ. It follows that if ƞ ∉ Λ(Γ) then ƞ is not singular. Note in this 
case ܫሖ exists inthe normal sense on ∂D\ Λ(Γ) and is non-zero there since it is 
conformal, furthermoresince I is inner the absolute value of ܫሖ(ƞ) coincides 
with the angular derivative. 

Theorem (4.2.4)[4]: Suppose that D is defined by (1), ߶ is a universal 
covering of D onto D, and ψ is the univalent Riemann mapping of D onto 
D0. Then Cథ is compact on   ܪ௣,1 ≤ p <∞, if and only if Cந  is. 

There are a number of geometric interpretations of the existence of an 
angular derivative for univalent functions that can now be applied to D0 that 
will ensure compactness of Cథ. We will not list these here but many of these 
can be found and throughout the literature on compact composition 
operators. 

Proof: The proof of this result follows from the properties above and the 
Julia-Caratheodory theorem , we will merely sketch the details here. 

First note that 

߰ିଵo  ߶ ∶ → ܦ  ,ଵ́݌} ܦ  … ,   { ௡́݌

For  ́݌௜ = ,(௜́݌)߰  i =  1, … , n. It follows from uniqueness that I =  ߰ିଵo  ߶ 
is theuniversal covering map of D onto D\{́݌ଵ, … ,  ௡}. Clearly it is also ań݌
inner functionso that the remarks above apply. 

Suppose first that  C  is compact, then 

థܥ                           =  ట                                                                  (9)ܥூܥ 

Since the compact operators form a left ideal in the algebra of bounded 
operators  this  means that ܥథ is compact. 

To prove the converse, suppose ܥథ is compact. Then ߶ has infinite angular 
derivative at all points of ∂D by Theorem (4.2.3). Suppose now that ƞ∈∂D is 
a point at which 

ห ሖ߰ (ƞ)ห <  ∞. 

Let F be locally finite fundamental domain for the uniformizing group Γ of 
D\{́݌ଵ, … ,  ௡},then we may find ζ∈∂F such that́݌

lim
 ௥→ଵ

(ߞݎ)ܫ   =  ƞ; 
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Furthermore ζ is in the free side of F and hence, that หܫሖ(ߞݎ)ห < ∞1 and that 
the limit above is non-tangential. It follows that 

lim
 ௥→ଵ

߶ሖ (ߞݎ) = lim
 ௥→ଵ

ሖ߰ ൫(ߞݎ)ܫ൯ . (ߞݎ)ሖܫ = ߣ  ሖ߰ (ƞ)หܫሖ(ƞ)ห 

for some |ߣ|  = 1. Since the right hand side above is finite we have a 
contradiction and hence ห ሖ߰ (ƞ)ห = ∞. 
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List of Symbols 

Page  Symbol 

1 Hilbert space ࢒૛ 

2 Hardy space ۶૛ 

2 Hardy space ࡴ∞ 

4 Imaginary Im 

6 Kernal Ker 

14 Direct Sum 

19 maximum max 

22 Real Re 

30 Supremum Sup 

30 infimum inf 

31 Hardy space 

32 distance dist 

32 dimension dim 

32 Holomorphic Hol 

34 capacity cap 

36 Atomorphic Aut 

45 diameter diam 

57 Hilbert space 

73 Essential norm 
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