CHAPTER 1

Weighted Composition Operators on Hardy space with
Complex Symmetric

We obtain several examples for non normal complex symmetric
operators. In addition, we give spectral properties of complex symmetric
weighted composition operators.We examine eigenvalues and eigenvectors
of such operators and find some conditions for which a complex symmetric
weighted composition operator is Hilbert-Schmidt. Finally, we consider
cyclicity, hypercyclicity and the single-valued extension property for
complex symmetric weighted composition operators.

Section(1.1) Properties of y &o:

In this section, we provide some characterizations of y and ¢ when a
weighted composition operator W, , is complex symmetric. We give an
equivalent condition for weighted composition operators to be complex
symmetric with a special conjugation. As some applications, we obtain
several examples for non normal complex symmetric operators.

Let L(H) be the algebra of all bounded linear operators on a separable
complex Hilbert space H. If T € L(H), we write p(T), o(T), ow(T), ox(T),
and o4(T) for the resolvent set, the spectrum, the surjective spectrum, the In
this section, we provide some characterizations of y and ¢ when a weighted
composition operator W,,, is complex symmetric. We give an equivalent
condition for weighted composition operators to be complex symmetric with
a special conjugation. As some applications, we obtain several examples for
non normal complex symmetric operators.

point spectrum, and the approximate point spectrum of T, respectively, while
r(T) denotes the spectral radius of T.

A conjugation on H is an anti linear operator C: H — H which satisfies (Cx,
Cy) = (y, x) for all x, y € H and C? = I. For any conjugation C, there is an
orthonormal basis {e, };; = 0 for H such that C, = e, for all n. An operator
T €L(H) is said to be complex symmetric if there exists a conjugation C on
H such that T = CT*C. In this case, we say that T is complex symmetric with
conjugation C. This concept is due to the fact that T is a complex symmetric
operator if and only if it is unitarily equivalent to a symmetric matrix with
complex entries, regarded as an operator acting on an 1%-space of the



appropriate dimension. The class of complex symmetric operators is
unexpectedly large. This class includes all normal operators, Hankel
operators, compressed Toeplitz operators, and the Volterra integration
operator.We also remark that there is no difference between p-
hyponormality and normality in this class. For 0 < p < 1, an operator T €
L(H) is said to be p-hyponormal if (T*T)? = (TT*)P. In particular, if p =1,
then T is called hyponormal. If T € L(H) is complex symmetric, then it turns
out that T is p-hyponormal if and only if it is normal .

Let D denote the open unit disk in the complex plane C. The space H*(D)
consists of all the analytic functions on D having power series representation
with square summable complex coefficients. The space H*(D) consists of
all the functions that are analytic and bounded on D. If ¢ is an analytic
mapping from D into itself, the composition operator C,on H?(D) is defined
by C,f =f° ¢ forall f € H? (D) It is a well-known fact that the composition
operator C, is bounded on H (D) by Little wood subordlnatlon theorem.
Moreover, the composition operator C, defined on H (D) is normal if and
only if ¢(z) = yz where |y| < 1. Hence we observe that C,, is complex
symmetric whenever |y| < 1. Moreover, if ¢ is an automorphism of D given

by ¢(z) = f%;z for some a € D, then (¢ ° ¢)(z) =z and 50 C2= Cy. = I. Thus
C,is complex symmetric .

For an analytic function y on D and an analytic self map ¢ of D, the operator
W,.,: H*(D) — H*(D) given by

Wyof=y.(f > 0)

is called a weighted comp05|t|on operator. If y is bounded on D, then W, , is
cIearIy bounded on H*(D). For y € H (D), the multiplication operator on
H?(D) is given by M yf=vyf forall f eH ?(D). Remark that W, , Ccan be written
by W, ,= M,C, if y € H*(D). In particular, C.C. Cowen and E. Ko have
characterlzed self -adjoint weighted composition operators on H*(D). Beyond
that, there are many examples for complex symmetric weighted composition
operators on H*(D) which are not normal .

Recently, S.R. Garcia and C. Hammond provided properties of complex
symmetric weighted composition operator on weighted Hardy spaces. In
particular, they gave explicit forms of complex symmetric weighted
composition operators with a specific conjugation on weighted Hardy
spaces.



We study complex symmetric weighted composition operators on the Hardy
space. We provide some characterizations of y and ¢ when a weighted
composition operator W, , is complex symmetric. We investigate which
combinations of weights v and maps of the open unit disk ¢ give rise to
complex symmetric weighted composition operators with a special
conjugation. As some applications, we obtain several examples for non
normal complex symmetric operators. In addition, we give spectral
properties of complex symmetric weighted composition operators. We
examine eigenvalues and eigenvectors of such operators and find some
conditions for which a complex symmetric weighted composition operator is
Hilbert-Schmidt. Finally, we consider cyclicity, hypercyclicity, and the
single-valued extension property for complex symmetric weighted
composition operators.

In this section, we recall basic definitions needed for our program. Let oD
denote the unit circle. Consider the Hilbert space

H%(D):=T. 6D — C : f(e") = ¥%_, a, e™Pwith ¥_la, |? e® <o

endowed with the norm |[f||., = (Zilolanl?)*. It is obvious that the
Hardy space H(D) is isometrically isomorphic to H2(D) by the isomorphism
sending f(z) = Y% ,a,z" € H*D) to f(e) = ¥=_,a, e™®e H?(D). Every
function f € H?(D) satisfies that lim,—1— f(re®) = f(e") for almost every 6.
When a function ¢ € H*(D) satisfies that |@(e™)| = 1 for almost every 6, we
say that ¢ is an inner function. A function F € H?(D) is said to be outer if F
is a cyclic vector for the unilateral shift M, i.e., V52,

{M}F} = H(D).
For each B € D, the function Kg(z) =

kernel for H3(D) at P, has the property that(f, Kg)= f(B) for every f € H*(D)
and p € D.
Moreover, it is well known that the linear span of the reproducing kernels

{Ks: p € D} is dense in H?(D). C.C. Cowen gave an adjoint formula of a
composition operator whose symbol is a linear fractional selfmap of D. If

(z) = ﬂ is a linear fractional selfmap of D, then Ci,= MyC;M;, where g(2)

az+c

s ( ) = = and h(z) = cz + d. It follows that o is a self map of D

and g € H” (D). Notlce that W, ,Ks= W(B)K,@ when W, is bounded on
H%(D) and B € D ; in fact, for any p € D and f € H*(D)



(f, Wy, oK) = (. (F 0 ©), Kp)= w(BY@(B)= (f, T(BYK o g))-
In particular,C,Kg= Ko@) because C,= Wi,

For any self map ¢ of D and each positive integer n, we write ¢; := ¢ and
On+1 = @° @p, Which is called the iterate of ¢ for n. When ¢ is any analytic
selfmap of D, we call a € D a fixed point of ¢ if lim,_,;— @(ra) = a. It is
well known that for an analytic function ¢: D — D, if ¢ is neither the
identity map nor an elliptic automorphism of D, then there is a point a of
D so that the iterates of ¢ converges uniformly to a on compact subsets of
D. Moreover, a is the unique fixed point of ¢ in D for which |¢p(a)| < 1.
We say that the unique fixed point a is the Denjoy—Wolff point of ¢ (is a
theorm in complex analysis and dynamical systems concerning fixed
points and iterations of holomophic mappings of the unit disc in the
complex numbers into itself see [5] ).

Let ¢ be an automorphism of D. Then ¢ is of the form

a,+b

b, +a

for all z € D, where aand b in C with [a]>~ |bf* = 1.When b# 0, it is easy to
calculate that

¢(z) =

iim@a) +./|b]2 — (Im(a))2
b

are the fixed points of ¢. If | Im(a)| = |b|, then ¢ is called parabolic, and we
say that ¢ is hyperbolic if | Im(a)| <|b|. Remark that ¢ is parabolic if and only
if it has one fixed point lying on 0D, while ¢ is hyperbolic if and only if it
has two fixed points lying on oD. If | Im(a)| >|b|, then ¢ is said to be elliptic.
We note that ¢ is elliptic if and only if one of its fixed points is inside D and
another is outside D. In this sense, this type also includes the case when b =
0, i.e., when 0 and o are the fixed points of ¢.

For an operator T € L(H), a vector x € H is said to be cyclic if the linear
span of the orbit O(x, T) := {Tny}—, is norm dense in H. If there is a cyclic
vector x for T, then we say that T is a cyclic operator. If the orbit O(x, T) is
normdense in H for some x € H, i.e., O(x,T) = H, then T is called
hypercyclic operator and x is called a hypercyclic vector. It is obvious that
every hypercyclic operator is cyclic operator. An operator T € L(H) is said
to have the single-valued extension property at z, if for every neighborhood
G of zy and any H-valued analytic function f on G such that (T — z)f(z) =0
on G, we have f(z) =0 on G.



Lemma (1.1.1)[1]: Let ¢ be a nonconstant analytic self map of D and let
v € H*(D). If W,, is a complex symmetric operator with conjugation C,
then the following hold:

(i) Either yw =0 or y never vanishes on D.
(i) If y is not identically zero, then ¢ is univalent and

_ WMCKu(A) £
= ¢ forany A € D.
V= koo y
Proof: Note that
Wy, Kp= W(B) Ky(p) (1)

for any B € D.

(i) Assume that v is not identically zero on D and y(B) = 0 for some B in D.
Then it suffices to assume that w(z) # 0 for all z in a deleted
neighborhood of B. By Eq. (1), Wy, ,Ks = U(B)Ky@) = 0. Since W, ,C =
CWy, pand C is an isometry, it follows that

IWy o CK|=[We 0Kgll= 0.

and so W,,,CKg(z) =0 forallze€ D. That is, y(z)(CKg)(e(z)) =0 forall z €
D, which gives that (CKg)(¢(z)) = 0 for all z in a deleted neighborhood of f.
This implies that CKz = 0 on D by the identity theorem, but it is a
contradiction. Thus y does not vanish on D.

(i1) Suppose that ¢ is not univalent. Then there exist two distinct points z;
and z, in D so that ¢(z1) = @(z2). Since v is not identically zero, it follows
from the assertion (i) that w(z;) # 0 and w(z) # 0. Set f = —2 — X2z

. . 5 W(z1) W(z2)
Then f is a nonzero vector in H*(D) and
WlIJ,(Pf - @Ww,(PKZl_ @WQJ,(PKZZ_ KQD(Zl )_K(p(Zz) - 0

From(1). The identity W, ,C = CW;, ,, implies that ||Wy, , Cf|| = Wy, ,f = 0.

So we have y(z)(Cf)(¢p(z)) = 0 for all z € D. Since y does not vanish on D

by (i) and ¢ is a non constant analytic map, it follows that Cf = 0 on D.

Since C? = I, we get the contradiction f= 0 on D. Hence ¢ is univalent.

Let X € D be given. Then it follows from Eqg. (1) that
Y(2)CKypy = C (WA Kop) = CWy oKa =Wy o CKy = y.((CKy) © ).




We note that (CK,) ° ¢ does not vanish on D. Thus we obtain that
_ WA)CKpmy
— (CKpog

Recall that an operator X € L(H) is said to be a quasiaffinity if it has trivial

kernel and dense range. It is well known that ker (Wy, ,) is not trivial in

general. But the next result shows that ker (W) is trivial if W, is
complex symmetric.

for any A € D.

Proposition (1.1.2)[1]: Let ¢ be a non constant analytic self map of D
and let y € H*(D) be not identically zero on D. If W,, is complex
symmetric, then the following statements hold.

M W, , IS a quasiaffinity.
(i) If @ is inner, then it is an automorphism of D.

Proof: (i) If f € ker(W,,), then y(z)f(p(z)) = 0 on D. Since vy is not
identically zero, it follows that y never vanishes on D, and so we get that
f(p(z)) = 0 on D. Since ¢(D) is open, we have f(z) = 0 on D by the identity
theorem. Thus ker (W,,) = {0}. Suppose that W, , is complex symmetric
with conjugation C. If f € ker (W, ,,), then it holds that Wy, , Cf= CW;, ,f =
0. Since ker (W) = {0}, we obtain that f = 0, which means ker (W, ,,) =
{0}. Hence W, , is a quasiaffinity.

(i) By Lemma (1.1.1), ¢ is univalent. Since a univalent inner function
should be an automorphism of D, we complete our proof.

Next we investigate which combinations of weights y and maps of the disk
¢ give rise to complex symmetric weighted composition operators with the
special conjugation J where (J f)(z) = f(Z). With the fixed conjugation J, the
complex symmetry significantly restricts the possible symbols for the
weighted composition operators. These symbols are different from those
symbols obtained from the self-adjointness. The following theorem provides
many examples for complex symmetric weighted composition operators.

Theorem(1.1.3)[1]: Let ¢ be an analytic selfmap of D and let y € H*(D)
be not identically zero. If the weighted composition operator W, is
complex symmetric with conjugation J where (J f)(z) = f(2)., then

a,z

W(Z) = 1—-agz and (P(Z) g 1—-2apz

Where ag = ¢(0), a; = ¢_(0), and b = y(0).



Conversely, letage D. If ¢(z) = ag + - maps the unit disk into itself and

y(z) = La then the weighted composmon operator W, , is complex
symmetric with conjugation J .

Proof: From Eq. (1), we obtain that

{(W¢ @Kw(@) = Wy o Kz (2)) = ¥(2)Kg (¢(2)) and 2
(Wye) Kw(2) = b(W)(Kpw)) (@) = (W) Kgw (2)
for all z,w € D. If W, , is complex symmetric with conjugation J , then
V(2)Kw(0(2))= y(W)Kgw(2) 3)
forall z,w € D. If we put w =0 in Eq. (3), then
v(@ = vOKemy@ = T2 4)

for all z €D. Since vy is not identically zero on D, y (0) # 0. Hence it follows
from Egs. (3) and (4) that

Ko@) (DKa (0(2))= Kooy(W)Komy (2)
for all z,w € D. This implies that

(1-9(0)2)(1 - wo(2))= (1 — (O)W)(1 — 9(w)z)
for all z,weD. By taking the derivative with respect to z, we have

—0(0) (1 — wo(2))* (1 — ¢(0)2)(~Wp((2))=(1 — o (0)W) (—(W))
for all z,w € D. Putting z = 0, we get that

_ pOW  _ aw
p(W) = 9(0) +— oow -0 T

where ap = ¢(0) and a; = ci)(O).

|s a self-map of D and y(z) = L then we

Conversely, if ¢(z) =ag +
can obtain from direct computatlons that

V(2)Kw(9(2)) =

for all zw € D. Hence, implies that W, , is complex symmetric with
conjugation J.

1
(1 —agw) — z[(a;— a3 )w + a,]

= y(W)Kgw(2)

The following corollary explains how to construct complex symmetric
operators by using unitary equivalence.
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Corollary (1.1.4)[1]: Letage D. If ¢(z) =ap +

maps the unit disk into

itself and y(z) = L then Wy, & is complex symmetrlc where §(z) = age”

aq b .
+ —22___an z——.frnflxrlnmr.
o002 adw() mpppeT or any fixed real number 6

Proof: We know from Theorem (1.1.3) that Wj; 5;is complex symmetric with
conjugation J. In addition, since §i(z) = w(e z) and §(z) = " (e z), we
obtain that W5 5= Ug W, ,Up Where Uy is the unitary operator defined by
(Uof)(2) = f(e®2). Setting Jq: =UgJ Uy, we get that Jyis a conjugation and

JoWG, o= UgdWy o JUg= UgW 3§, U= W2

as pointed out . Hence Wy, 5; is complex symmetric with conjugation Jy.
Corollary (1.1.5)[1]: Let ¢ be a non constant analytic self map of D and let
v € H”be not identically zero on D. If ¢ has a fixed point A € D with Im())

= 0 and W, is complex symmetric with conjugation J , then Cg is a
complex symmetric operator with conjugation (Wynm)*J (Wymm) Where @=

bye @° by, yy=—=, and b,(z) =

IIK I

Proof: Set W—” o

b,(A) = 0, it follows that qu,A IS a unitary operator. Put T:=
(Wy, b,)*(Wy0)(Wy, b,)- Then T is complex symmetric with conjugation
(W, b,) I Wy, b, )- It is well known from that Cy, = Mng My where g(z) =

(1-2X2) " and h(z) = 1 - Az. Since MjMy,, = (M, Mn)*= —I we have

2 and by(z) = — Slnce b, is an automorphism of D and

T= CE)\M;LAMWC‘PMWXC‘DA
= MngAM;MjJ M,CoMy, Cp,

= T MaCo, MyCoMy;, Gy,

= ”K;\”Mqu’IObAMqIAO(POb;\CbAO(pobA.

Thus T = W5, 5; where @ = bye ¢° b and = ™ ”g (v ° by (v @° by). Since

¢ IS non constant, @ is also non constant and @(0) = 0. Therefore, we see
that



~ _ W(0)(Wy;, ba)*] (Wy;, ba)Ko
((Wy, b)*] (Wys, ba)Ko) 0@

()

2i Im(l)
-2

From Lemma (1.1.1) Since by(A) = =0, we get that

. PA(A
(Wi D253 (W, 02)Ko = W pad (W) = 7 ||W¢7\b7\K’\ ||1<( ||) Ko,

which implies with (5) that {y = {s(0) on D, and so T = {(0)Cy;. Since v as
well as g and v, cannot vanish on D from Lemma (1.1.1), it follows that

/(0)£0. Hence, we conclude that Cy= TT is complex symmetric with
€y

conjugation (W%, b;\)*J (Wys,, b).

Let w(z) = ag + - map D into itself where a;# 0, and let y(z) = —
0

where b# 0. Then WWp iIs a complex symmetric weighted composmon
operator with conjugation J by Theorem (1.1.3) If ¢ has a fixed point L € D
with Im(A) = 0, by Corollary (1.1.5) we can get a complex symmetric
composition operator Cz with conjugation (Wys,» D) *J (W, , ba) where @ =

and by (z) =5 In fact, from direct computations we

K
0 0 b W i

have
o A—e(ba(2)
P2 = S

—(A2P—ap(A +A) + a3—a;)z
(::107\2 (1+a3— a;)A+ag)z + (@3—ay)|A2—ag(A + A+1

(6)

for z € D. From Eg. (6) we obtain a complex symmetric composition
operator which is not hyponormal.

1

Example(1.1.6)[1]: If ¢(z) = +Z(i_e_, ap = —ﬁ?al =,

and b = E)’ then we know that ¢ IS an analytlc self map of D from Thus,

W, is complex symmetric with conjugation J by Theorem (1.1.3) In
addition, ¢ has a fixed point A = v2—1 € D with Im(A) = 0. Under the same
notations as in Corollary (1.1.5), we get from Eq. (6) that Cg is complex
symmetric with conjugation (W, , by)*J (Wy,,,b,), where

and v(z) =

_ (5-42)z
() (44 2V2)z+ (1 + 2V2)




It is evident that Cg; is not normal. Indeed, it is not hyponormal by rewriting

4462 114+6+/2
\Fandv:— 7‘F.

~ _ z —
®(2) =— where u

As an application for Theorem (1.1.3), we find an equivalent condition for a
complex symmetric weighted composition operator with conjugation J to be
normal.

Corollary (1.1.7)[1]: Let ¢ be an analytic self map of D and let v € H(D)
be not identically zero on D. Suppose that W, ,is a complex symmetric
operator with conjugation J. Then W, , is normal if and only if (¢ (0)) is
real. In particular, if ¢(0) and y(0) are nonzero real numbers, then W, , is
normal if and only if it is self-adjoint.

Proof: Since W,,, is complex symmetric with conjugation J , it follows
from Theorem (1.1.3) that

_ _ aqZ
v(2) T1-ayz and ¢(z) = a + 1-ayz
where ag = ¢(0), a; = ¢(0), and b = y(0). For any z,w € D, we have
@ ¥ (0)
z 1 - 3,z
W oWy oK (2) = WG g ———— =W .
(NGRS VRO RN V91 _ wolz Y _ a,Z
°@ T 1-w(a0 + 255)
= bW, !
T1- aoww$v¢K%—iTj+3vmv(Z)
b q — Ag°W + a; W
= K = 7
1— aov—vq’ ( 1—aw cp(—a"‘i‘faig;alw)(z) 0
The result obtained by expanding (7) is that
bF (®)

[(—ao—ag(a;— a§ )W+ 1 - [ao|?] - [(Jay— a3|>~ |ag )W+ (a5 +ao(@1—3p°))]z

for any z,w € D. On the other hand, it holds for any z,w € D that
Ww,(pwqj(p Kw(Z) = Wy, o (W) Kow)(2)

— Y(w)
= M,Cy( )
_ U(w)Y(z)
1-eW) @z ©)
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By expanding (9), we get that

[b[?
[(~30—a0(@1~ap° D)W+ 1~ [a|?] = [(la1~ a3|*~ lao|)W+ (a + A (a1~ a5 )]z

(10)

for any z,w € D. Since v is not identically zero on D, we have b = y(0)+ 0.
Hence it follows from (8) and (10) that W, ,is normal if and only if a, +
ap+ap(a;— ag

1 - Jal?
normal if and only if ¢(¢(0)) is real. In particular, assume that ¢(0) and
y(0) are real. If W, is normal, then ag(1+a,; — a3 ) is real, or equivalently,
al is real. Therefore W, , is self-adjoint.

a,(a; — a3 ) is real. Since o(¢@(0)) = , We conclude that W, is
0 V.0

As some applications of Corollary (1.1.7), we can find many examples
which are complex symmetric weighted composition operators but not
normal.

Example(1.1.8)[1]: Let y(z) = —2—and ¢(2) = 1_2 =14+ 2 Then y

l—lZ 2 1—-2z

2 2 2

€ H”(D) and ¢ is an analytic selfmap of D. By Theorem (1.1.3), we have
W,,, is complex symmetric with conjugation J. But W,,, is not normal from

Corollary (1.1.7), since ¢(¢(0)) = % IS not real.

N

Example (1.1.9)[1]: Let w(z2) = - ) and

1.
1 (3+—lZ
8 8
3

V3
0(2) = _atel V31, —(3_12+3_zl>z.
1—(§+§ i>z 8 8 1—(§+§ i>z
Then w € H*(D) and ¢ is analytic. In addition, we know that ¢ maps D into
itself by Lemma (1.2.8). Thus, Theorem (1.1.3) implies that W, , is complex

symmetric with conjugation J . However, ¢(¢(0)) = 135(\/§ + 1) is not real

and so W,,, is not normal from Corollary (1.1.7) In the following corollary,
we explain that every complex symmetric composition operators with
conjugation J must be normal.

Corollary(1.1.10)[1]: Let ¢ be an analytic selfmap of D. Then C, is a
complex symmetric operator with conjugation J if and only if C, is normal.

Proof: Suppose that C, is complex symmetric with conjugation J. Since
C,= W,, where y= 1, we can set ¢(z) = az where |a] < 1 from Theorem
(1.1.3) Thus C, is normal.

11



On the other hand, if C,is normal, then ¢(z) = az where |a|] < 1. Therefore
we have

1
(ColKa)(2) = Kz(e(2)) = 1—aaz
1
U CoKa((2) = Koy(2) = T

forall z € D, and so C, is complex symmetric with conjugation J .

Lemma (1.1.11)[1]: Let ¢ be an analytic selfmap of D and let y € H*(D)
be not identically zero on D. Suppose that W, , is a complex symmetric
operator with conjugation J . If ¢(0) = 0, then v is constant, ¢(z) = ¢(0)z,
and C, is complex symmetric with conjugation J .

Proof: The proof follows from Theorem (1.1.3).

Theorem (1.1.12)[1]: Let ¢ be an analytic selfmap of D and let y €
H® (D) be not identically zero on D. Suppose that W, , is a complex
symmetric operator with conjugation J. If C, is p-hyponormal, then W, is
normal.

Proof: If C, is p-hyponormal, then C, is normaloid (i.e., r(C,) = C,). By
some applications, we obtain that c =0 or |c| = 1 and ¢(c) < 1, where c is the
Denjoy—Wolff point of ¢. Assume that |c| = 1 and ¢(c) < 1. o(C,) includes
an open annulus of eigenvalues. If C, is p-hyponormal, then

ker(C, — 1) cker(Cy— 4)

for any A € C. Hence ker(C, — 1) is a reducing subspace for C,. Therefore,
each of these eigenvalues corresponds to a reducing subspace of H*(D). But
since H?(D) is separable, it is a contradiction. Thus ¢ = 0. Since ¢ is a fixed
point of @, we have @(0) = 0. Hence Lemma (1.1.11) implies that y is a
constant function and ¢(z) = ¢(0)z on D, and so W,,, is normal.

The converse of Theorem (1.1.12) does not hold. Indeed, in the first part of
Example (1.1.8), W,,, is normal, but C, is not p-hyponormal since ¢(0) # 0
(see the proof of Theorem 1.1.12).

Section (1.2) Spectral Theory and Cyclicity with Hypercyclicity
and Extension Property:

In this section, we give spectral properties of complex symmetric
weighted composition operators. In particular, we examine eigenvectors and
eigenvalues of a complex symmetric weighted composition operator and
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consider some conditions for which a complex symmetric weighted
composition operator is Hilbert—Schmidt. First, we provide some invariant
subspaces of a complex symmetric weighted composition operator. For a
positive integer j and a € D, the jth derivative evaluation kernel for H*(D) at

a, denoted by K | is the function in H3(D) such that (f, KJ)= £ 0)(a) for all
f € HA(D).

Proposition (1.2.1)[1]: Let W,,, be a complex symmetric operator with
conjugation C where ¢ is an analytic selfmap of D and y is in H(D). Then
the following statements hold.

() The set {CK,: [a| <1} is linearly independent.
(i) For a € D, the set {CKa[’]: j=0,1, 2 3, - - =} is linearly

independent, where K‘,EO] denotes the reproducing kernel K.
(iii) If m is a positive integer and ¢ has a fixed point a € D, then the span

of {CK,, CK‘,EI] , oo ,CKa[m] } is an invariant subspace of W, ,.

Proof: (i) Suppose that a;, a,, = = = , a, are distinct points in D. If there
exist complex numbers ¢y, Cz, = * = ,Cn such that YL, ¢;CKy; = 0, then
er;l(TJCKaj: 0.Forj=1,2, = = = ,n,define

fi(z) =[lica(z — a;)

i#j
Then we obtain that
0 =(fj, Xk=1CkKax) = cifi(a).

Since fj (a;) #0, we havecj=0forj=1,2, = = * ,n.
(i) Let mg,my, = = = m, be arbitrary distinct nonnegative integers. Assume
thatco, ¢, * = = ,C, are complex numbers such that Z;-;OCJ-CKLW]:O. Then
we haveZ};O(T,CKLm’]: 0. Setting gj(z) = mij'(z —a)"forj=0,1,2, -+ - -,
n, we obtain that

! [mJ] [mj]

0=(g;y. _ GkIh=Shocug™ @=¢

forj=0,1,2, = = = ,n.
(iii) For any f € H*(D) and each positive integer n, it holds that
(WG KI) = (W, o f, K

13



= W@ T (0@ _

- Z o (@fD(@) + P(a)p@) ™ (a)
i=0

=i @Y+ B@e@TTOKL) (11)
i=0

where each q; is a function consisting of products of derivatives of y and .
Thereforewe have

ml _N" T il L Ty kel
Wy Ka =E . o, (@K + Y@@ K, (12)
1=
Since W, , is complex symmetric with conjugation C, we get that

[n] _ 147+ [i]
WllchpKa ‘WwycpKa

nt i [n]
=)@kl + pla@pa ek

i=

Moreover W, ,CKa = CWy; KE] = y(a)K,. Thus we conclude that for any
positive integer m, span {CK.,, KE] ,o CKgm]} IS an invariant
subspace of W, .

Corollary (1.2.2)[1]: Let W,,, be a complex symmetric operator with
conjugation C where ¢ is an analytic selfmap of D and y € H*(D). If ¢ has a
fixed point a € D and My, := span{CK,, CKE] Lo CKgm] } for a
positive integer m, then

6(Wy,9) = 6(Wy¢|Mm) U o(B)

where B = (I = P)W,, o(l — P)|M rt and P denotes the orthogonal projection of
H?(D) onto M,

Proof: Since Mm is finite dimensional, it is a closed subspace of H*(D).
Hence H*(D) = M’“EBMrTq' Since Mm is an invariant subspace for W, , we
can write

A
W, :(W‘I’"gwﬂl B)on Mm@MrJ]:]
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where B = (I = P)W,o(I = P)[M, + and P denotes the orthogonal projection
of HZ(D) onto Mm. Since Mm is finite dimensional, we obtain that o(W,,,) =
o(Wy0lM;,) U o(B).

In the following theorem, we find the eigenvalues of a complex symmetric
weighted composition operator W,,, when ¢ has the Denjoy—Wolff point
inside the unit circle.

Theorem (1.2.3)[1]: Let W,, be a complex symmetric operator with
conjugation C where ¢ is an analytic selfmap of D and y € H*(D). If ¢ has
the Denjoy-Wolff point a € D, then op(W,,) ={W(2)®(@);:j=0,1,2, -

.}_

Proof: The inclusion op(Wyo)2{W(@)p(@);:j=0,1,2, = - -} holds .
Indeed, we know from the proof of Proposition (1.2.1) that

Wy oKa = Wi o Ko = W()K,

n-1
W, K = Z o (@)K + y(a)p@)ck™
i=0
for each positive integer n, and span{CKE] 1=0,1,2, - == ,j}is

invariant for W, ,. Then it follows that the matrix of W, , restricted to
span{CKE] :1=0,1,2, = = = ]} is representable as the upper triangular

matrix with the diagonal values y(a)@(a)j.Since the dimension of span{CKE]
1=0,1,2, = = = ,j} is finite, we conclude that y(a)@(a)j is an eigenvalue
of W,, with an eigenvector in span{CKE] 1 =0,1,2, - -+ ]}
Conversely, let A €a;, (W, ). Then there exists a nonzero element f € H?(D)
such that W,, ,f = Af, i.e.,

W(2)f((2))= M(z) for z€ D (13)

Since @(a) = a, we have y(a)f(a) = Af(a). If f has no zero at a, then A = y(a).
Suppose that f has a zero at a of order j for some positive integer j.
Differentiating Eq. (13), we obtain from Eq. (11) that

MO8 =Y " a(@fP(@) + v@e@)'fO(a)
=y (@) f9(a)

15



where each a; is a function consisting of products of derivatives of y and ¢.
Since f®(a) #0, it follows that A=y (a)§ (a) f©

Now we deal with complex symmetric weighted composition operators with
a special conjugation. The following proposition gives an explicit form of an
eigenvector for such an operator.

Proposition (1.2.4)[1]: Let ¢ be an analytic selfmap of D and let y €
H”(D) be not identically zero on D where @(0) # 0, ¢(0) £0, and ¢(L) = A for
some A in D. If W,,, is complex symmetric with conjugation J where (J )(2)
=f(Z), then

o0 = (22

1-Az \1-2Az

is an eigenvector of W, ,(which is not necessarily orthogonal) with respect

to the eigenvalue y (W)@ (L) £@ for each nonnegative integer j.

Proof: At first, note that g;€ H™(D) for each nonnegative integer j. We

know from Theorem (1.1.3) that y(z) = and ¢(z) = a, + —=where ag
1-agz 1-agz

= @(0) #0, a; = @(0) # 0, and b = y(0). Since ¢(A) = A for some A in D, we
get that

(1—apM)A=(a; — a3) L+ ag (14)
Hence we have
A—ag=X\(a, — a3 + ag)) (15)

Since ag#0, A should be nonzero. If a; — a3 + ayA = 0, then A = ag, and so
a; = 0, which is a contradiction. Thus a, — a3 + ayA # 0. Since ¢(z) — ap =

oo it follows that

ag
A
A-a = 0() -2 = s (16)
From Egs. (15) and (16), we get that
1 _A- —

=R = a - + (17)
Therefore Eq. (17) implies that
, _ a; _ a; 1 __a;—a3+ap)
¢ = (1—aph)? (1—aox) (1—aox) T 1-ag) (18)

From Eq. (14) we have

16



1 — 7\([)(2): 1- }\(611_ a(z))Z+ao — (1— 8.07\)— (an— a(z))\+a0)z

1-ayz 1-agz
(L -a) - (1 —aMaz_ (1 —a) - 12)
B 1 — a,z B 1 — a,z (19)
It follows from Eq. (19) that
A—o0@ (1 -a2)R - o@®)
1 -2 (1A - a)l - 12)
_ (1 — aoz)()\ — dy — 131;02 ) _ (}\ — ao) — Z(a1 — a(z) + aO)L)
B (1 — a)(1 — A2) B (1 — a)(1 — A2)

Using Egs. (15) and (18), we get that

A - @) _ Ma, — @ + a)) — z(a; — & + agh)

1 -2 1 - a1 - A2)
_f(a; —af +ad\/A—z\ | A-z
_< (1 — ah) )(1—)1)_“’0‘)1-71

Thus it holds that
(Wy09)(2) = w(2)gj(o(2))

_ w(0) ( A- @) )j
(1 -292)(1 - 29(2) \1 - A9 (2)

¥(0) oy A=z
T (-a2)(1-12) (‘P *) E)

= (152 60v)

1 — apA
for z € D and each nonnegative integer j. Hence we complete our proof.

1 (7\—2

1-2z\1- Az ) = (WMe))g; (@)

Next we give a lower bound and an upper bound for the spectral radius of a
complex symmetric weighted composition operator with conjugation J .

Lemma (1.2.5)[1]: Let ¢ be an analytic selfmap of D and let y € H*(D)
be non constant. Suppose that W, , is a complex symmetric operator with
conjugation J where (Jf)(z) = f(2).If (¢ (0))is real, then the following
properties hold:

M) Il = ZE2 and0 < [p(O)] < 1.

17



(ii) [$(0)W((0)) W (pn_1(0))] < ”Wn ” < 2|lylls
NEErROE = el = e (0

integer n, where @ denotes the identical function on D.

for each positive

Proof: (i) Note that
Wy [ = [MyL[| = Il and
O
1 - le(O)I?
By Corollary (1.1.7), Wy, is normal and it gives that

Il = X2
Vi-le(0)]2

Since ¢ is an analytic selfmap of D, it ensures that |p(0)| < 1. If ¢(0) = 0,
then Theorem (1.1.3) implies that y(z) = y(0) on D, which is a contradiction.

Thus we have |@(0)| > 0. There fore ||y|| = % and 0 |¢(0)] < 1.
o

Wi 2l = [0 OK, O =

(i) It follows that

IWS.oll = IWay-(pop)- (woen—1).0nll < ||Mw-(wocp)-l-l-(wgcﬂn—l)llccpn
1+ |,(0)) 204"
< |lwa L <

1= le,OF  [1-lo,@)F

Since W, , is normal by Corollary (1.1.7), so is Wy, ,. This implies that

Wy 1| = || Wi -poe)-- oo, Ko |

= [WOY(9©0) - ¥ (0,1 O)| | Ko, |
_ (WO (0(0)- ¥(@n-1(0))]
V1-1ea (O

[W(0)W((0))- W (pn_1(0))|

Hence we obtain that
V1-1en(0)?
integer n. So we complete the proof.

< |lws,|| for each positive

Theorem (1.2.6)[1]: Let ¢ be an analytic selfmap of D and let y € H”(D)
be non constant.

Suppose that W,,, is a complex symmetric operator with conjugation J
where (J 1) (2) = 1(2), (@ (0)) is real, and a is the Denjoy—Wolff point of ¢.

(i)  Ifa€eD,then [y(@)]< r(W,,) < llwllo.

18



(i) IfaedD, then @(a) zly(a)| < 1(Wyy) < @(a) zl[p]|o.
Proof: By Lemma (1.2.5) we have

1 1
n 1 n
(W) ¥(e(0)) w(cpnf(o))l < e [ <—2 1loo

(1 - lon()[2)ZR (1~ lon(@)[2)2n
for each positive integer n where o denotes the identical function on D. Let
e > 0 be given, and put x, = log|y(pn(0))| for each nonnegative integer n.
Since y(z) ZI_L%Z with age D from Theorem (1.1.3), y never vanishes on D.
In addition, lim,_, X, = log |w(a)| and thus we can choose a positive integer
N such that |x, — log |y(a)| <§ whenever n > N. Moreover, there is a real

number M > 0 with |x, — log |y(a)|| < M for each nonnegative integer n.
Hence it holds for all n > N that

1
o { |40 (6(0)) ¥ (01 O)") = 1o @
1N—1 1N—1
<= x-logl (@i + 3 > x-log| W@
2,
MN  (n—N)e MN e
< + < + =
n 2n n 2

If we select a positive integer N such that N > max{@,N}, then for all n
> N we obtain that

MN €
Y@l <T + §< £

1
o0 [P (0(0) (0,1 @) ) = g

Therefore we have lim,_,.log (|¢(O)¢(cp(0)) P (@n_1(0))
which gives that

5) - logly(a))

1

limy, oo [ W)U (@(0) - U(@n-1 (D))" == [Y(a)l (20)
On the other hand, since it holds for all n that
1 1 —1
< |[cll" < .

(1 = [pn(0)[2)2 (L — lpn(0)[2)z

it ensures that
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1
1
(1~ 1o, (@)™

Hence we obtain from (20) and (21) that r(C,)[y(a)] < r(W,,,) < r(C)IIY|l .
and so the proof follows from Theorem (1.1.9).

Remark(1.2.7)[1]: In Theorem (1.2.6) w and ¢ have the following form:
W(z) = -

[(Cy) = liMp e (21)

aIZ
1-

_ba -and o) =ay + (22)

bl _ _1p©)
1-lagl 1-Ie)]’

from Theorem (1.1.3) Since |[Y]le = we obtain from

Theorem (1.2.6) that

(] O]
(qu) — o (0)| (W¢<p)< (Cq))w (23)

Where a is the Denjoy—Wolff point of ¢. For example, let w and ¢
be defined as in (22).Take 0 <ay, < landa; = (1 —ay)?. Since 2|a, +
ay(a; —ad)| = 4(ag—a3) = 1—|a, —a3|?, it follows from Lemma
(1.2.8) that ¢ is a selfmap of D. Moreover, the only fixed point of ¢ is 1 by a
simple computation with formula (28), and so (1) is the Denjoy—Wolff point
of ¢.

. _ [y ()l . .
Sincer(Wy, ) = 1(Cy) ) from inequality (23) and
r(C,) = ¢(1)7 = 1wehave r(W,,) = r(C,) -
v) = ¢ v 1-¢(0)
If [|Tx|| = [IT|l|lx]|.holds for some non-zero x € H, then T € L(H) is said to

attain its norm on x. Remark that T attains its norm on x if and only if T*Tx=
IT]12x Moreover, if T is complex symmetric with conjugation C, then it is
easy to show that T attains its norm on x if and only if T* attains its norm on
Cx. Next we consider the case of a weighted composition operator that

attains its norm on the normalized reproducing kernel k,,:=

Sw
IKwl

Proposition (1.2.8)[1]: Let ¢ be an analytic selfmap of D and let y €
H*(D) be not identically zero on D. Suppose that W, , is complex symmetric
with conjugation J where (Jf)(z) = f(Z)If W,, attains its norm on kw for
some w € D, then the following statements hold.

. [ (0l L
) Wy o = ’
() Ve T 1P J1-we(@(0))

(i) If W, , is normal and ¢(0) # 0, then w is real and 0 < w ¢ (¢(0)) <1.
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Proof: (i) Since W, ,is complex symmetric with conjugation J , it follows
from Theorem(1.1.3) that ¥ (z) = ®_and 9(z) = ay + 2

= 9(0), a; = ¢(0), and b = y(0). Since W, , attains its norm on k,, we have

where a,

”Wlpv(l’llz = (”WIPKPHZKW’KO) = (le,q)v W‘l[},(pKW’KO> = (W1;,<va1p,<pKw)(o) (24)
From Eq. (8) in Corollary (1.1.7) with z = 0 and (24), we get the following;
|b|?

2
Wyoll” =
Y. __ — 2

[—ao — ag(a; — a§)]w+ 1 — |ao|
|b|? 1

- 2

1- IaOIZ 1- W( ao+1af|(:01|2a0) )

MO 1

T 11O 1-We(e0)
(i) If W,,, is normal, then @(¢(0)) is real by Corollary (1.1.7) Thus we
) v.¢
obtain from Lemma (1.2.5) that
WO ”W ” —__ v | 1
Vi-Te@P = 12l ™ Aje@F  V1-wee©)

which implies that 0 < W (¢(0)) <1. In particular, W ¢(¢(0)) is real, and
SO is W.

In Theorem (1.1.3) we assume that the function ¢ maps the disk into itself.
We next consider which combinations of a 0 and al provide a mapping of
the disk into itself.

Lemma (1.2.9)[1]: Let ¢(z) = ag + ——. Then ¢ maps the open unit disk

1-ayz

into itself if and only if |ao| <1 and 2Jag + ag(as— a2 )| < 1 — |a;— a3f%, i.e.,
(@)l < il

P8I = STl -
In particular, when a; = a3 # 0, ¢ maps the open unit disk into itself if and
only if |ag| < % and when a;— a3 = 1, ¢ maps the open unit disk into itself if
and only if a is either real or purely imaginary.
Proof: If ag = 0, then o(z) = a;z. Hence it is clear that ¢ is a selfmap of D if

and only if |a;| < 1. If a; = 0, then ¢(z) = a0, and so ¢ is a selfmap of D if and
only if |ag|<1. In addition, the inequality 2|a;+ay(a;— a2 )|< 1-|a;—a2[* holds.
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Thus we may assume that ap# 0 and a;+ 0. Note that |p(z)|<1 for each z €D
if and only if

la, + (a; — a2) z|°<|1 - ap zf

Which is equivalent to

(ao+ (ar-a3) 2) (a0 + (2 — @3)<(1-a02z) (1 — a,2)
For all z € D. This means that

(I(a; — al*—laol*)lzf + 2Re{ag(a; — a§)+ a0)z }+ faol*~ 1 <0.

If aptag(a; — a2 ) = 0, then o(z) = ?%is a selfmap of D and 2|a,
0+790

+3;(a; — a3) |= 0 =1-Ja; — a3". Hence we may assume that ao + ag(a; —

a%) # 0. Choose 0 € R so that [a*+ y(a; — a3 )]e” > 0. Set A = [a +

ay(a; — a2 )]e®=|ao + ay(a; — a2 )| and define

1—a3)z+age”®

B(2) = e p(e"z ) = B I
Then it is trivial that (D) < D if and only if ¢(D) < D.
Claim. ®(D) c D if and only if |ag| < 1 and

13(0)] <1 for all { € D (25)

Suppose that (D) c D and let {eoD. Then Jag| = |®(0)| < 1. In addition,
since there is a sequence {z,} < D such that lim,_.z, = {, we get that

13O =limp|P(z4)I< 1.

Conversely, assume that |ao| < 1 and |@(Q)| < 1 for all { €6D. Since |ag| < 1
and al#0, it follows that @ is nonconstant and analytic on D. Hence it holds
for any z € D that

1P (2)| < max ¢plP (D] =max ¢caplP (I 1,

and so|@(z)|< 1 by the open mapping theorem, which completes the proof
of our claim.

From the above claim, it suffices to show that inequality (25) holds if and
only if 2Ja; +ag(a; — a2)| <1 — |a; — a%f. By a simple calculation, we
obtain the following condition equivalent to inequality (25):

2 Re {[ao+ d(a; — a3)]e" ¢} +la; — agf —1<0 (26)
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for all { €0D. Since A = [ap+ a(a; — a2 )] € > 0, we can replace (26) by
the following inequality:

a;

Re(0) < %;agﬁ for any { €0D (27)

_ _ a2 12
If 2ag+ 3g(a; — a2)|< 1-]a; — a2 [, then %2 1. Thus inequality

|al—a(2)|

_ 2
(27) is clearly true. Otherwise, we have ! < 1, and so (27) does not

_ .22
hold for { € 6D with %<Re(§) < 1. So we complete our proof.

a,z

Lemma (1.2.10)[1]: Let ¢(z) = ap + ——

a; are nonzero complex numbers. If a;, — a3 — 1 = 2ya, for some real number
vy where |y| > 1, then ¢ has two fixed points inside and outside the unit circle
oD. Moreover, if a; — a3= +2ao, then ¢ has one fixed point lying on oD. In
both cases, we have r(C,) = 1.

be a selfmap of D where a, and

Proof: Note that the fixed points of ¢ are

—(a,—a3 — 1)¢\[(al—a(2) —1)%2 —4a}

230

(28)

Ifa; —a3 — 1=2yag for some real number y where |y| > 1, then

—(a;—a3 - 1)¢\[(al—a(2) —1)2 —4a?

2ag =—v*x/y2-1

are two distinct fixed points of ¢. Note that (—y +/y2 — 1)(—y —/y2 — 1)
=1.If y>1, then -y — Jy2 — 1< -1, and so -1 < -y +,/y2 - 1=

1 —
Tﬁ< 0.Ify<-1,then -y +/y2 —1>1,andso 0 < —y—,/y2 — 1=

1. Hence it follows that ¢ has two fixed points inside and outside

e
oD and r(Cy) = 1.

Suppose that a; —a3 — 1= +2a,. Ifa; —a3 — 1= 2a,, then we obtain
that

—(a;—a3 - 1)¢\[(al—a(2) —-1)? —4a3

=-1

2a,

is the Denjoy-Wolff point of ¢ and so r(C,) = ¢(—1) = 1. similarly, if

a; — a3 — 1=—2ap, then we get that 1 is the Denjoy—Wolff point of ¢ and
’ _]/2

(C=¢ ()*=1
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Theorem (1.2.11)[1]: Let ¢ be an analytic selfmap of D and let y €
H*(D) be not identically zero on D. If W, is complex symmetric with
conjugation J and

2| a0+ ag(ay —ag)| < 1-la; — a3 [
where ag = ¢(0) and a; = ¢(0), then W, , is Hilbert—Schmidt.

Proof: Since W,, is complex symmetric with conjugation J , from

Theorem (1.1.3) we can write y(z) =——— and ¢(z) = ao + —2— where a, =
1-ayz 1-agz

¢(0), a; = @(0), and b = y(0). If ag = 0, then ¢(z) = a;z and |a;| < 1, which

implies that ¢ (D)c D.

we obtain that Wy, is Hilbert—Schmidt. Now assume ag# 0. If ap +

a,(a; —a3) =0,thenja; —a3|=|- :—_0 | = 1, which gives a contradiction such
0

as 2| ap + dg(a, — af)| < 1—[a; —af [ = 0. Hence a +@g(a; — a§)# 0. Note

that ¢(6D) < D if and only if ¢(6D) c D where $z) = e ® (e 2)

_a2 -i0 .

=& 13032(;: ‘;e and the real number 0 is taken so that [ay + @y(a; — a3)]e”
—do

= | ap +@y(a; —a3)| > 0. Moreover, the inclusion @(6D) € D means that
I(a; — a3)¢ + a,e”| < |1 — ae'®¢| for all { €6D, which is equivalent to

1—la;—aj |?
2[a0 +a,(a; —af)|

Re(0) < forall( e D (29)

1—|a;—aj |?

as in the proof of Lemma (1.2.8) Since > 1, inequality (29)

2|ag +ag(a;—ag)|
holds. Thus we get that (D) c D. Since ¢ is a linear fractional selfmap of
D, it ensures that ¢(0D) is a circle contained in D, and ¢(D) is the open disk
whose boundary is ¢(6D). Hence it follows that @(D)c D. Therefore we
conclude that W,, , is Hilbert-Schmidt .

Corollary(1.2.12)[1]: Under the same hypotheses as in Theorem
(1.2.10), the following assertions hold.

(M W, , is Hilbert—-Schmidt for any n € H*(D).
(i) If @ has the Denjoy—Wolff point a in D, then we have

o(Wye) = {0, y(@)p(@):j=0,1,2, = - -}
(i) (0 € ogp(Wyg) N Ssu(Wyg).

Proof: (i) We know from the proof of Theorem (1.2.10) that ¢ (D)c D.
Therefore the proof follows .
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(if) Since W, , is compact by Theorem (1.2.10), the Fredholm alternative

theorem and Theorem (1.2.3) imply that 6(W,,,) = { 0, w(a)@(a)':j =0, 1, 2,
« o }

(iii) The proof follows from the statement (ii).

We study cyclic weighted composition operators which are complex
symmetric. The concept of cyclicity is closely related to the invariant
subspace problem. Indeed, T has a noncyclic vector if and only if it has a
ontrivial invariant subspace. Similarly, T has a non hypercyclic vector if and
only if it has a nontrivial invariant closed subset. We start our program with
the following theorem.

Theorem (1.2.13)[1]: Let ¢ be a non constant analytic selfmap of D with
¢(a) = a for some a € D, and let ye H™(D) be not identically zero. If W,,, is
complex symmetric, then the following assertions are valid.

()  If @ is not an elliptic automorphism, then both W, , and W, , are

cyclic operators.
(i) Neither W,,, nor Wy, ,is hypercyclic.

Proof: (i) Let zo€ D be an arbitrary point with z¢# a, and let g €H?(D) be
such that g LV;2o {(Wy; )" Kz, }- Then it is clear that 0 = (g, K, )
= g(z0). Furthermore, since it holds that for any positive integer n
Wiio = Wip-(woe)- (o@2)- (Wo@n—1)on
Where oy is the identical function on D, we obtain that
0=(g (Wy)"Kz)) = Wi o9, Kz,)

= Y(2o)W(9(20)) W(92(20)). .. W(Pn-1(Z0)) g(@n(20))

for any positive integer n. Since y has no zeros in D by Lemma (1.1.1), it
follows that g(¢n(z0)) = 0 for any positive integer n. Notice that the sequence
{on(20)}n=, consists of pairwise distinct points in D which converges to a.
Thus g = 0 by the identity theorem, and so we have V2o {(Wy, )" Kz, } =
H?(D). Since W,., Is complex symmetric, there is a conjugation C such that
W, ,C = CWy; o, Which implies that

Vi2o Wi o(CKz.) ) } = CVi2 o {(Wy )" Ky, 3 = CHA(D) = H(D).

Hence both W, , and W ,, are cyclic.
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(i) Suppose that W, , is a complex symmetric operator with conjugation C.
Then we have

W, (CKa) = Cij,(p Ka= C(Wch(a)) = y(a)CKa.

Since C* = | and K# 0, we have CKq# 0, and so y(a) €o,(W,,). Hence
Wy is not hypercyclic. Since W, , is complex symmetric, we conclude
that W, , is not hypercyclic.

From the following example, we observe that Theorem (1.2.12) provides
some criteria for a weighted composition operator to be complex symmetric
operators.

Example(1.2.14)[1]: Let ¢(z) = i Then it is clear that ¢ is a

nonconstant analytic selfmap of D with ¢(0) = 0 and is not an elliptic
automorphism. We know that Cgis cyclic, but C, is not cyclic. Since C, =
W, ,, we obtain from Theorem (1.2.12) that C,, is not a complex symmetric
operator.

Next we give an example for the assertion (ii) of Theorem (1.2.12).
Example(1.2.15)[1]: Let ae D. If @(z) = ao + -
into itself and y(z) = I_L%Z where a; = a3 — 1 and b = m , then W, ,
Is complex symmetric

- maps the unit disk

from Theorem (1.1.3) and v is not identically zero by our assumption. In
particular, if a, = 0, then W,,, = bCy, and so W,,, is normal. Thus it is not
hypercyclic and then Wq’j @ Is not hypercyclic .Now assume ap# 0. We note

of @ and—e D since ag is real or purely

|mag|nary from Lemma (1.2.8) Thus nelther Wy, nor Wy, , is hypercyclic
from Theorem (1.2.12) (ii).

Next we consider some relations between complex symmetry and
hypercyclicity of weighted com

position operators W,,, when ¢ has no fixed points in D.

Proposition (1.2.16)[1]: Let ¢ be a non constant univalent analytic
selfmap of D with no fixed points in D, and let y € H” be not identically
zero. If there exists an outer function € H™ such that W, ,g = Ag for some
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complex number A €0D, then W,,, is hypercyclic, but Wy, ., is not. Hence
W, , IS not complex symmetric.

Proof: Since W, ,g = Ag for some A €0D, we obtain that

Wy oMt =y = (go9) - (fop) = Mg(AC,)f
for all f € H?, ie., W,,M; = Mg(AC,). If T eker(M), then we get that
g(2)f(z) = 0 on D. Since g never vanishes on D, it ensures that f(z) = 0 on D,
and so ker(Mg) = {0}. Since g is outer, ker(Mg) = (gH?)* = (H’)* = {0}.
Since ¢ is a univalent map without fixed points in D, it follows that AC,, iS
hypercyclic. If F € H%s a hypercyclic vector for AC,, then

O(MyF Wy, ,) = M 0(F,AC,) = MgH? = H?,

Therefore W,,, is hypercyclic. On the other hand, since A € o,(W,,), We
obtain that Wy, , is not hypercyclic, and so W, , is not complex symmetric .

Finally, we consider local spectral properties of complex symmetric
weighted composition operators.

Theorem(1.2.17)[1]: Let ¢ be an analytic selfmap of D and let y €
H*(D) be not identically zero. Then W,,, has the single-valued extension
property at 0.

Proof: Suppose that G is any neighborhood of 0 and f : G — H?(D) is an
analytic function such that

(Wye = ME(R) =0
for any A € G. Then it holds that
v - Cy(f(A) = MR (30)
for any A € G. Since f(A) :fo:o%?\" on G, it suffices to show that
f(M(0) =0 onD

for all nonnegative integers n. Taking A = 0 in Eq. (30), we get that

¥(z) - Co(f(0)) (2) = w(2)f(0)((2)) = 0

for any z € D. Since y is not identically zero, there is a nonempty open
subset U of D so that y(z) # 0 for z € U, and thus f(0)(¢(z)) = 0 for z € U.
Since @(U) is a nonempty open set by the open mapping theorem, it follows
from the identity theorem that
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f(0) =0 on D.
In order to use induction, suppose that f¥)(0) = 0 on D for some nonnegative
integer k. Differentiating Eq. (30) with respect to A, we obtain that
v Co(f D)) = (k + DY) + Atk D)
for A € G. Thus the induction hypothesis implies that y(z)f*2(0)(p(z)) = 0
on D. As the above argument, we have that
£ &1(0) =0onD.
Hence W, , has the single-valued extension property at 0.

Corollary (1.2.18)[1]: Let ¢ be an analytic selfmap of D and let y €
H™(D) be not identically zero. If W, , is complex symmetric, then Wy, , has
the single-valued extension property at 0.

Proof: Let G be any neighborhood of 0 and let f : G — H?(D) be an
analytic function such that (W, , — Mf(r) = 0 for all > € G. Suppose that

W, is complex symmetric with conjugation C. Since CW; , = W, ,C, we
get that

Wy — D CFQ) = C(Wgo-NFQ) =0

for all A € G. This means that (W,,, — ©)Cf(w) = 0 for all ® € G*, where G*
:={1: 1€ G}. Fix any o€ G*. Since f is analytic atw,, then we write f(A) =
¥ (A — @y)™, for all A in some neighborhood of wyand f,e H3(D). Thus
for all ® in some neighborhood of wy,

Ci(®) = C (Z(m - w—o)nfn> = > @ - )"
n=0 n=0

which means that Cf(w) is analytic at wo. Since W, , has the single-valued
extension property at 0, it follows from Theorem (1.2.16) that Cf(w) = 0 or
all ® € G, that is, Cf(A) = 0 for all A € G. Since C* =L, it ensures that f(}) =
0 for all A € G. Hence Wy, , has the single-valued extension property at 0.

Corollary (1.2.19)[1]: Let ¢ be a non constant analytic selfmap of D and
let y € H®(D) be not identically zero. If W, , is complex symmetric, then the
following properties hold.

(i)  Either 0 €p(Wy) Or 0 € 6ap(Wy0) N osu(Wy o).
(i) 1f W, ,has closed range, then it is invertible.
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Proof: (i) Since both W, and Wy o have the single-valued extension

property at O follows that 0 & o(W,,) \ c5p(W,,) and 0 & o(W,,) \
osu( Wy,0). Hence we obtain that 0 € o(Wy) \ [0ap(Wye) N osu(Wy0)],
which completes the proof.

(if) Since W, , has closed range and ker(W,,) = {0} from Proposition
(1.1.2), we have 0 & ca5(W,, ). Thus 0 €p(W,,,) by the statement (i).

Corollary (1.2.20)[1]: Suppose that W, ,is complex symmetric where ¢
is an analytic selfmap of D and y € H*(D) is not identically zero. If S is a

k

bounded linear operator satisfying thatz (—1)k (T) Wy 0S¥ =0 for
j=0

some positive integer k, then S has the single-valued extension property at 0.

Proof: Let G be a open neighborhood of 0. If f : G — H?(D) is an analytic
function such that (S — A)f(X) = 0 for all L € G, then we note that

k
W= IO = (W= 1) 1) = ) (D) (T) Wy, oSk
=0
k

= Wip= D10 = D () Wi - 1 1 = 9T 1)

j=0

= (N Wi -0 0= 9T

k-1
=0

]
k-1

=Y () Wo- 0 2 -9 s - i =0 @

]:

for all A € G. Since Wy; , has the single-valued extension property it follows
that f(A) = 0 for all A € G. Therefore S has the single-valued extension
property at 0.
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CHAPTER 2

A Spectral Radius for Approximation Number of Composition
Operators

We show the approximation numbers of composition operators on
weighted analytic Hilbert spaces, including the hardy, Bergman and
Dirichlet cases with symbol of uniform norm .

Section (2.1) Background and Framework:

The determination of the approximation numbers of composition operators
on Hilbert spaces of analytic functions on the unit disk (Hardy space,
weighted Bergman space, Dirichlet space) is a difficult problem. Some
partial results show that no simple answer may be expected. However we
proved that these approximation numbers cannot decay faster than
geometrically: we always have a,(C,) = cr” or some constant ¢ > 0
andsome O0<r <1 . Moreover, we showed in those papers that
limy oo [an(Co]Y™ = Lif and only if [lelle = 1

The quantity Iimn_ﬂx,[an(C(p]“rl = 1 looks like a spectral radius formula
for theapproximation numbers. Recall that if T is a bounded operator on a
complex Hilbert space H, with spectrum o(T), the classical spectral radius
formula tells that for the spectral radiusr (T): = sup; ¢ s(t)l4l, one has the
formula:

r(T) = lim||T?|¥/"
n—»>oo
(the existence of the limit being part of the conclusion).

Now, if a, = a,(T) is the n-th approximation number of a bounded
operator T on a Hilbert space H, it was shown by taking a rank-one
perturbation of an n-dimensional shift, that, given 0 <o < 1, we can
have a; = ...= a,_; = 1, and a, = o. Using orthogonal blocks of such
normalized operators, one easily builds examples of compact operators T for
which the quantity [a, (T )]*’™ has no limit as n goes to infinity, and indeed
satisfies:

lim inf,e[a,(T)]Y™ = 0 ,lim sup,.e[a,(T)]V™ = 1.

We might as well use a diagonal operator with non-increasing positive

diagonal entries €, such thatlim inf,e’™ = Oand lim sup, e’ = 1.

Nevertheless, the parameters
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B(T) = liminfy_[an(T)TV", B*(T) = limsup,_e[ay(T)In (1)

Which satisfy 0 < B7(T) < B*(T) < 1 are similar to the term
lim oo I T I in the spectral radius formula. When the limit exists we will
denote it by:

B(T ) = limyscoan (T )] )

These parameters were shown to play an important role in the study of
composition operators. As said above, the following was proved in these
section.

Theorem (2.1.1)[2]: Let H be a weighted Bergman space B, (in
particular the Hardy space H?) or the Dirichlet space D and ¢: D — D
inducing a composition operator C, : H — H. Then:

() if0 <|l¢llo < 1,0nehas0 <B7(C,) < B"(Cy) < 1;
(ii) if llpll = 1, one has B(C,, )= 1.

The aim of this work is to complete this result by showing that (C,)
existsas well when [[¢|l,< 1 and to give a closed formula for this B(C,,) in
termsof a Green capacity, relying on a basic work in the above theorem.

We end the paper with some words on the HP case for 1 < p <co.We begin by
giving notations, definitions and facts which will be used throughout this
work.

Recall that if X and Y are two Banach spaces of analytic functions on the
unit disk D, and ¢: D — D is an analytic self-map of D, one says that ¢
induces a composition operator C,,: X —» Y if foe € Y for every f € X;
¢ is then called the symbol of the composition operator. One also says that ¢
is a symbol for X and Y if it induces a composition operator C,: X — Y.

For an operator T:X — Y between Banach spaces X and Y , its
approximation numbers are defined, for n > 0, as:

_ inf _
an(T) = o IT =Rl (3)

One has [Tl = ai(T)= ax(T)= * * * = ay(T) = am+1(T) =+, and
(assuming that Y has the Approximation Property), T is compact if and only
ifa,(T)—0.

n—oo

The n-th Kolmogorov number d,(T ) of T is defined:
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inf inf
d,(T)= ECY [SUpep, dist(TX,E)] = EcY [IQgTllyse (4)
dmE<n dimE<n

where Qg : Y —>gis the quotient map. One always has a, (T )> d, (T )

and,when X and Y are Hilbert spaces, one has a,(T ) =d,(T ).As usual, the
notation A < B means that there is a constant ¢ such thatA < C B.

An analytic Hilbert space H on D is a Hilbert space H C Hol(D), the analytic
functions on the unit disk D, for which the evaluations f —f(a) are
continuous on H for all a € D and therefore given by a scalar product:

f(a) =(f K,), K, € H.

Since weakly convergent sequences of H are norm-bounded, the reproducing
kernels K, are automatically norm-bounded on compact subsets of D, that is:

Ly := SUPpaj<rlIKall < o0, forall r < 1 5)
We will be slightly less general here, and adopt the framework. Let

w: [0, 1) — (0,0) be a continuous, positive, and Lebesgue-integrable
function.

We extend this function to a radial weight on D by setting w(z) = w(|z]) .
Wedenote by H,, the space of analytic functions on D such that

I3, = O + [ F@F 0@) dAR) < +o.
D

where dA stands for the normalized area measure on D. We will often omit
the subscript w and write ||. || for ||. |-
If f(z) = Ynzobnz™, a computation in polar coordinates shows that:

”f”Z = ?1o=0|bn|2wn (6)
where:
wo = landw, = 2n* [ " le(r)dr, n>1 )

Observe that there is a constant C = C(w) > 1 and, for each £> 0, ad.> Osuch
that:

5.7 < w, < Cn?, n>1 (8)
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Indeed, in one side, one hasw, < 2n? fol w(r) dr, and, on the other side,
foreach 0 <6< 1, setting s = infy<,.<5 w(r), we have cg> 0 and:
5

wy, > 2n205j r’n~ldr = c5n 82",
0

giving (8). This shows in passing that H,, is an analytic Hilbert space, and
we call it a weighted analytic Hilbert space. This framework is sufficiently
general for our purposes and includes for example the case of (weighted)
Bergman, Hardy, and Dirichlet spaces, corresponding to w(r) =
(1-r®%a>-1, that isw, =~ n'=®. The standard Bergman, Hardy,
Dirichlet spaces correspond to the respective values a = 2, 1, 0.

The following simple fact will be used. Let a €D and j > 0; the

Is a continuous linear form on H.

This holds for any analytic Hilbert space on D, and here can also be viewed
as a consequence of (8).

An analytic self-map ¢ : D — D which induces a composition operator Cy,:
H — H will be called a symbol for H=H,,. In our space H, we have a quite
easy case for deciding if some ¢ is a symbol.

Lemma (2.1.2)[2]: If |l¢]l< 1, then ¢ is a symbol if and only if ¢ € H.
Equivalently, if and only if the positive measure p = | ¢ |*w dA is finite. In
that case, we moreover have ||¢*||< C k [lg||% for every k> 1.

Proof: If ¢ is a symbol, then ¢ =C,(z) €H. Conversely, let p =
llpllo<1.We first note that, if ¢ € H, we have for any integer k > 1:

lo¥[|° = 1o + y 0@k |e@IP*P|e@)* dA) <
p?(L + K*p7?) llpll? (10)
Now, let € > 0 be such that pe®< 1. If f(z) = 3 b,zX € By, the unit ball of
H, we have by (8): |bx]| < lel/z < C.e* so that, using (10), we see that
the series Y br@X = f o ¢ converges absolutely in H, which proves that
Cis compact (and even nuclear).

The Green function g: D x D — (0,] of the unit disk D is defined as:
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1-wz

g(z,w) = log (11)

zZ—-Ww

If p is a finite positive Borel measure on D with compact support in D, its
Green potential is:

Gu(z) = [, g(z,w) du(w) (12)
and its energy integral is:
1) = [Ipwp9(zw) du(z) du(w) (13)
Of course,
I(w) = [, Gu(2) du(2) (14)
For any subset E of D, one sets:
V(E) = igf I(w) (15)

where the infimum is taken over all probability measures p supported by a
compact subset of E. Then the Green capacity'of E in D is:
Cap (E) = 1/V (E) (16)

If K € D is compact, the infimum in (15) is attained for a probability
measure po. If moreover V (K) <o (i.e. Cap (K) > 0), this measure is unique
and is called the equilibrium measure of K. One always has V (K) <o when
K has non-empty interior, since then I(A) <oo where A is the normalized
planar measure on some open disk AS K. It is clear that we have:

KcL=>VK)=V(L) = Cap(K) < Cap (L),
I.e. Cap (K) increases with K and:

Cap (E) = sup Cap (K) .
KCE K compact

We refer to and the clear presentation for the definition of the Green
capacity and its basic properties. Actually, the capacity is defined by another
way as follows.

Lemma (2.1.3)[2]: For every compact set K €D, one has:

Cap(K) = sup {llull; u positive Borel measure supported by K and G, <
1 on D}
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This is the definition of de la Vallée-Poussin. Since our main result is based
on H. Widom,s it must be specified that he also used this definition .

Let us note, though we will not use that, that we also have:
Cap (K) = inf{||u||; u positive Borel measure on D and G, = 1 onK}

= inf{||ull; upositive Borel measureonDand G, > 1¢.€.onK},

Where g.e. means: out of a set of null capacity. The equivalence between
these two definitions is shown.

An important fact for this chapter is well-known to specialists on the (Green)
capacity.

Theorem(2.1.4)[2]: For every connected Borel subset E of D whose
closure E iscontained in D, one has:

Cap (E) = Cap (E) (17)

For sake of completeness, we provide details for the reader. We begin with a
definition: a subset E of D is said to be thin at u € E if there exists a
function s which is superharmonic in a neighbourhood of u and such that

s(u) < liminf s().
veE

We denote by Ethe union of E and of points in £ at which E is not thin (it is
known that £ is the closure of E for the fine topology). Then:

Lemma (2.1.5)[2]: If E is a connected Borel subset of D whose closure
E is contained in D, one has:

E=FE.
Proof: Lemma (2.1.5) is an immediate consequence of the following result.

Theorem (2.1.6)[2]: (Beurling-Brelot) LetE SDandu €E. IfE is
thin at u, there exist circles with center u and arbitrarily small radius > 0
which do not intersect E.

Indeed, taking the previous result for granted, suppose that E is thin at u €E,
u €E, and let vo € E, with |vo— u| = d > 0. The function p: E — R defined by
p(v) = |v — u| takes the value d as well as arbitrarily small values since u €
E. By the intermediate value theorem, it takes every value in (0, d],
contradicting. This contradiction shows that E S £ , there by ending the

proof .
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Section (2.2) Main Result and the Hardy Case:
The goal of this chapter to prove the following result.

Theorem (2.2.7)[2]: Let H be a weighted analytic Hilbert space with
norm || .||. Lete: D — D be a symbol for H, with @ (D) € D. Then

rgijgo[an(6¢)]1’" =:B(Cy)
Exists and the value of this limit is:
5(%) = e~ /Caplp(D)] (18)

Note that, by Theorem (2.1.4), Cap [@¢(D)] = Cap [¢@(D)], so Theorem
(2.2.7) will follow immediately from Theorem (2.2.14) and Theorem
(2.2.17) below.

The proof is based on two results of H. Widom .Though those theorems are
in the H” setting, we will be able to transfer them to our Hilbertian setting.
Before giving this proof, we will check the result “by hand” with an explicit
example.

Before going into the proof of Theorem (2.2.7) we are going to illustrate it in
a simple situation.

Let ¢ be a symbol acting on H = H? with |l ollo<1. We know that
BT(C,) < 1, and for very special ¢ ,s we will show directly, without
appealing to Widom,s results, that (2.2.7) holds.

We have the following two facts .

Lemma (2.2.8)[2]: LetL = A(w,r) be a closed pseudo-hyperbolic disk
of pseudohyperbolicradius r. Then:

1
log(1/r)

Cap (L) = (19)
Lemma (2.2.9)[2]: Let u, v: D — D be univalent analytic maps such that
u(D) =v(D). Then, u=v-°y where €Aut (D).

Indeed , by hypothesis u = v ° y with y well-defined and holomorphic for v
is injective. Moreover, u(D) = v[y(D)] = v(D), whence y(D) = D, again
because v is injective. Finally v is injective since u is.

Theorem (2.2.10)[2]: Let ¢(2) = ::Zbe a fractional linear function
mapping D into D, i.e. :
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la]2 + |b|> + 2|ab — éd| < |c]? + |d|*> and |c| < |d|.

Then B(C,) = exp [— Capl(K)].

The example ¢(z) = z/(2z + 1) shows that one cannot omit the condition |c| <

dI.
Recall that the pseudo-hyperbolic distance on D is defined by:
, zZw €D (20)

p(Z’W) =

zZ—-WwW
1-2zZw
We denote by A(w, r) = {z € D; p(z,w) < r} the open pseudo-hyperbolic
disk of center w and radius r.

Proof : We may assume ||¢|| < 1. We first consider the Case

¢(z) = az, with [a| < 1. In that case, it is clear thatan(C,) = |a|"~", and
hence B(C,) = la] and ¢(D) = D(0,|a]) = A(O,|a]) . So that (18)
holds in view of (19).

In the general case, one might say that the conformal invariance of Cap
and S does the rest. Let us provide some details.

In general, @(D) is an euclidean disk, therefore a pseudo-hyperbolic disk
Aw, 1) :={z; p (z,w) <1} = y1[A(0, 1)], where p is the pseudo-hyperbolic
distance and wy;€AuUt (D); one has the same radius since automorphisms
preserve p. If h(z) = rz, one therefore has ¢(D) = w:[h(D)] (since A(O, r)
andthe euclidean disk D(0, r) coincide). From Lemma (2.2.9), ¢ = y1° h °
with y, € Aut (D), and so = Cy,,C,Cy,, , implying

B(Cp) = B(Ch) =1,
by the ideal property. Moreover,

Cap [¢(D)] = Cap [R(D)]

by conformal invariance. Since we know that the desired equality between
pand Cap holds for h, we get the result.

Let us numerically test the claimed value of B(C,) on the affine
exampl ¢(z) = @4,(z) = az + bwitha,b > Oanda + b < 1
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(note that C,_, andCy, .. are unitarily equivalent and have the same

approximation numbers a,, so that there is no loss of generality by assuming
a, b>0). In that case, the a,,(C,) = a, were computed exactly by Clifford
and Dabkowski .Their result is as follows. One sets:

1+a?-b?-+A

A= (a? — b2 - 1)>— 4b?and Q = — (21)
Then, one has a, = a" *Q"*?, and so:
B(Cy) = aQ (22)

The result of the theorem can be tested on that example. Indeed, we have K :
= @(D) = D(b,a), so that

1
Cap (K) = g I

Where 2> 1 is the biggest root of the quadratic polynomial
P(z) = az?— (1 + a®> - b®)z + a.

In explicit terms:

e—l/Cap(K) — 1 — 1+a%-b%- /A,
A 2a?

with:
Ay= (1 + a®? — b?)? — 4a? (24)
To get B(C,) = e € &) it remains to compare (22) and (18), using
(21)and (24), and to observe that
A=Ap=Q+a+b)(1+a—-Db)(1L—-a+b)(l—a-0>).
We are going to state widom’s results in a form suitable for us. We first
quote the following lemma.

Lemma (2.2.11)[2]: (Widom) Let K €D be compact. Then, given &>
0, there exists a cycle y, which is a finite union of disjoint Jordan curves
contained in D, and whose interior U contains K, and a rational function R
of degree < n, having no zero on and all poles on aD, such that, for n large
enough

() |R(@)| = e forz & U;
(i) |R(2)| < eSeMCw () for 7 € K.
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The first theorem of Widom in which C(K) denotes the space of complex,
continuous functions on K with the sup-norm, can now be rephrased as
follows.

Theorem (2.2.12)[2]: (Widom) Let K S D be a compact set, and &> 0.
Then, there exist a constant C, > 0 and, for every integer n large enough, a
rational function R with poles on dD and points ; € D\K such that for
every g€ H”, one has:

lg — hllcwy < Ceeme ™Ca? B g]|, (25)

where:

hw) = R@) D ciulg) w = @) with ) my < n
ISkYSmi l
and the maps g EH"w c;,(g) are linear.

Moreover, if H is a weighted analytic Hilbert space, these maps, restricted to
H”N H, extend to continuous linear forms on H.

Widom,s theorem precisely says the following. If R and y are the rational
function and cycle of Lemma (2.2.12), let {; be the zeros of R inside y.
Consider , for wE K, the function

g()
RO @G — w)

1
G(w) = R(w) lZ—mJ dd|;
y

Then, by the residues theorem,
Gw) = g(w) - R(W)Z ci(g) W — {)7 = g(w) — h(w),
i,k

and Widom,s theorem says that’IIGIIC(K) < C.e? [M(K)]™1 gl co-
The only additional remark made here is that the c; . are of the form
cix(9) = Z Ak ()
jsksm;—K

where 4; ;. are fixed scalars, so that by (9) they extend to continuous linear
forms on H.

Observe that the linear forms g + c;; (g") are also continuous on H since
cix (@) = ZjSmi—K)li,j,kg(j+1)(fi) (26)
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This observation will be useful later.

Theorem (2.2.13)[2]: (Widom) Let K be a compact subset of D and
C(K) be the space of continuous functions on K with its natural norm. Set:

on(K) = igf’ sup dist (f,E)]

fEBH®
where E runs over all (n — 1)-dimensional subspaces of C(K) and dist (f,

E)= infreellf — hllcwy - Then
S, (K) = a e ™Car(K) (27)

for some positive constant a.

Theorem (2.2.14)[2]: Let H be an analytic weighted Hilbert space with
norm ||. ||. Let

¢: D — D be a symbol for H, such that [|¢ll, = p < 1. Then:
B*(Co) = lim sup[a,(C,)]/" < e~V/Car[v()],

n—->oo

Proof: Fix &> 0such that p e® < 1.

-1

If f(2) = Zj_okak € H, let g(z):= S;f(z) = Z bz ,withl = I(n)

k=0
be an integer to be adjusted.
Lemma (2.2.15)[2]: We have:

If o9 — g o@ll < Kep'e®
Proof: For f(z) = ¥,.-, bxz"*, we have:
< ) Ibulllgtl
k=1

zbwk
k=1
1 1
< (Zlbklzwk> (Z”QDkHZW;:l) < K.p'e®,
k=1 k=1

by using Cauchy-Schwarz inequality, the fact that || f|| <1, the
inequalities(8), and a geometric progression.

”f o — go(p” =

Also, remark that we have, by the Cauchy-Schwarz inequality:

40



1 1 1

-1 -1 2 ,1-1 2 -1 2

ISl = ) eIyl < (Zlml%) (Z kzw#) < IIf (Z kzw#)
k=0 k=0 k=0 k=0

Therefore, using (8), we see that the linear map S; : H — H*, defined
byS;(f) = (S;f)’, is continuous with a norm less than (Xizhk2wit)2 <
K, e,

We now use Theorem (2.2.12), with K = ¢@(D) € D (and for n — 1 instead
of n).Set, for n> 2, large enough:

hy(w) = R(w) cir(d) w — {i)_k with m<n—1.
1 ) 2
1<k=m;

Recall that h, is analytic in D. Remark that h; depends linearly on f and
themap f —h, has a rank < n — 1. We denote by I, € Hol (D) the primitive
ofh, taking the value g[p(0)] at ¢(0):

Z

L(z) = j hy(u) du + glp(0)] .
@(0)

Next, define an operator A of rank < n on H (the continuity of A being
justified by (2.2.13) by the formula:

A(f) = Iloq) (28)

Note that, even if I;&H, we easily check on the integral representation of the
norm that I, ¢ € H since we assumed ¢ €H, i.e. that ¢ is a symbol.

Assuming for the rest of the proof that ||f]|< 1, we have the following
lemma.

Lemma (2.2.16)[2]: We have:
lg o0 — Liopll < ngf(n—l)eele—(n—l)/mp (K)

Proof: Since ¢&€ H and since h; = I] approximates g’ uniformly on K
andllg'llc = NI(Sf) Nloo < K €', we have, by Theorem (2.2.11):
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1g o9 — Logll? = j 190 — M@ (2)2w(z) dA()

IA

K2 DM I [ 1 @A)
D
< C Kfe? 22 DIM(K)2MD  (with € = llgll2),
hence the lemma, provided that we increase K.
We can now end the proof of Theorem (2.2.13).
Writing:

ICo(f) — AN = lIf o — Looll
< f o — go@ll + llg o — Liowll,

we have:

(i) If o9 — go@ll < K.p'e® by Lemma (2.2.15);
(i) lg 0@ — Looll < Kef"D[M(K)]" e by Lemma (2.2.16).
We therefore get, since a,, := a,(C,) < [|C, — 4|
a, < K.ple® + K.eflef=D[MK)]* L.

Next, since (a + b)Y™ < a'™ + bV", we infer that:

1/n 1 el e(n-1) n—1
a, " < (K)Y"(pe)™ + Klene™ n M(K) (29)

We now adjust | = Nn, where N is a fixed positive integer, and pass to the
upper limit with respect to n in (28). We get:

L:= limsup al" < [pe]" + efeNM(K).

Letting € go to 0, we get L < p" + M(K).Finally, letting N tend to infinity,
we get L < M(K) as claimed, and that ends the proof of Theorem (2.2.13).

Lemma (2.2.17)[2]: For every Hilbert space H and every compact
operator T:H—H,one has, BH denoting the unit ball of H:

d.(T) = inf |supdist (T f,T (E)) (30)

dimE<n | f€By
Proof: Indeed, if €,(T ) denotes the right hand side in (29), we clearly have
d,(T) < €,(T).Now, let:
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oo

T = ) a(T) oy

j=1
with (u;) and (v;) two orthonormal sequences, be the Schmidt decomposition
of T . Let Eq be the span of vy, . . ., vy-1. Observe that u; = T(aj‘lvj) €

T(Ey)for j <n. Now, if f € By, one has:

[oe]

> @M (f vy

j=n
< [an(DF ) [0 < lan(P;
j=n

sothat &,(T) < supysep, dist (T f,T (Ey)) < a,(T) = dn(T).

dist (T f,T (Ey))? = = D LIkl
j=n

Theorem (2.2.18)[2]: Let H be a weighted analytic Hilbert space and ¢
€ H such that ||¢||cc < 1. Then:

B(Co) = lim inf[a,(Cp)]V/" = e~ VCarlo®@)]

n—-oo

It will be convenient to work with the Kolmogorov numbers d,,(C¢) instead
of the approximation numbers a,(C¢). Recall that, for Hilbert spaces, one
hasd,,(Cp)= a,(Cp). We begin with a simple lemma, undoubtedly well
known to experts, on approximation numbers of an operator T on a Hilbert
space H.

Proof : Let0<rj<1,75— 1and ¢; : D — Dbe given by ;(z) =r; z. Set
Ki = ¢,9,(D) = ¢(r,D). Let E be a subspace of H of dimension < n. By
restriction, E can be viewed as a subspace of C(K;). By the second result of
Widom (Theorem 2.2.13), we can find f € By,

f(2) = Yks0brz®, such that:

If = hllew;y = 2a [M(K)]*,  Vh € E,

Where a> 0 is an absolute constant. If H* contractively embeds into H,
wecan continue with this f. In the general case, we have to correct f in order
to be in By, the unit ball of H. To that effect, we simply consider a partial
sum:
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-1
9(2) = ) bzt

k=0
and we note that, setting p; = supweKjlwl, one has p;<1and:

l
p.
If = gllewjy < a v (31)

lglly < C1 (32)
Where C = C(w) > 1 is the constant appearing in (8).
Indeed, we have [If — gllcxj) < Zi=i |bil pfand then (31) follows from
Cauchy-Schwarz,s inequality and the fact that Yo |bx|? < 1since f € H”,

For (32), we simply use that, by (8), the weight w satisfies w;, <
C (k + 1)%and get:

-1 -1

lgliy = k=0 Iblwe < C12 ) IbJ* < €12 < 7
k=0 k=0

We then notice that (30) gives, for every h €E:

lg — hlle,) = ||f—lh||c(1<j)— If = gl
> 2a MK ——— > a [M(K)]" (33)
(1-p7)?
if we take [ = Ajn where 4; is a large positive integer depending only on j.
Explicitly:
log [1/a (1 — pH)¥?]  log[1/M(K;)]
17T Tleg@py  log(p)

Finally, set F = g/CL. Then F €By. Since E is a vector space, (31) and (32)
imply:

1 1
IF = hlle)) =77 lg = Clhllcw) ZEQ[M(K]')]"-
But we also know that:
”F - h”C(K]-) = ”Fo Po lpj - ho§00 l'l}j“oo = Lrj”Fogo_ thDHHI

So we are left with (recall that | = A;n):
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a  M(K)"
C Lr]-Aj n

[CoF = Cohl|,, = . Vh EE

Implying by Lemma (2.2.17):
a M(Kj)" ]
CLrjAj n

an(C,) = dn(C,) 2

Now, taking n-th roots and passing to the lower limit, we get:

p=(c,) = M(k;) (34)
It remains now to let j — oo. Observe that the compact subsets K; S (D)

form an exhaustive sequence of compact subsets of ¢(D). Let then L € ¢(D)
be compact; we have L < k;y for some j,, and using (34), we get

B~(C,) =M(K;,) = M(L). Passing to the supremum on L, we get
B~(C,) = M[p(D)], and this ends the proof of Theorem (2.2.18).
As said in the Introduction, for weighted Bergman spaces (including the

Hardy space), and for the Dirichlet, that 57(c,) = 1 if [|¢|l, = 1 for every
¢ inducing a composition operator on one of those spaces.

In this section, we use Theorem (2.2.14) to generalize this result to all
composition operators C, on weighted analytic Hilbert spaces, with another,
and simpler, proof.

For that, it suffices to use the following result, which is certainly well-
known to specialists. The pseudo-hyperbolic metric p on D is defined in
(2.2.15) and we denote by diam,, the diameter for this metric.

The following proof of Theorem (2.2.19) was kindly shown to the second-
named author by E.

It make use of the following alternative definition of Green capacity, where

Co° (D) is the space of infinitely differentiable functions on D which are null
on dD, and dz = dxdy is the usual 2-dimensional Lebesgue measure.

Theorem (2.2.19)[2]: Let K be a compact and connected subset of D.
Then, for 0 <e < 1:

diam,K > 1 — ¢ = Cap (K) = clog1/¢,

For some absolute positive constant c.
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Hence, the Green capacity of K tends to « as its pseudo-hyperbolic diameter
tends to 1.

Before proving that, let us give two suggestive examples.
(i) Let K= D(0, r); then:

, 2r 1
diam, K = Py and Cap (K) =

log 1/r
One sees that r goes to 1 when diam_ K goes to 1, and hence Cap (K) tends
to infinity.
(iLet K=[0, h], with0 <h < 1. Then:
, 1r
diam, K = h and Cap (K) = T
where | and I" are the elliptic integrals:

1 1 1
I:j dt and I :j ! dt,
o V@ — t2)(1 — kZt2) o V@ — t29)(1 — k2 t2)
With k = =% and k2= 1 — k2
1+h

If0< a<b< hthenb—a+hab< h—a+ah?= h—a(l—-h?<
h, so that p(a,b) < h Therefore, in this example again, the assumption
diam, K — 1 implies successively thath — 1,k - 0, k' —= 1,1 — _/2,I'
— oo, and at last Cap (K) — oo.
This example shows that Theorem (2.2.19) is optimal since

jl dt l 1 l 1
~ g5, = Lo
0 (1 — 2)(1 — K2 t2) 1-k2 T

as h (and hence k') goes to 1.

Proof : If diam, K > 1 — ¢ and K is connected, it contains two points z;
and z, such that p(z;,z,) = 1 — e. By the invariance of the green capacity
and of p under automorphisms of the disk, we can assume that z; =0 and z,
=1 —¢. Take € <r < 1. Denote by A, the intersection of the closed disk with
center 1 and radius r with the closed unit disk. We observe that K meets the
exterior of A, at 0 and its interior at 1 — &. The connectedness of K implies
that K meets the boundary of A,.: there is b € K such that |b — 1| = r. Write
b=1+re? Takenowa=1+rewithaf =1and0<6<9<2.
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Since u(a) = 0 and u(b) > 1, we get, by the fundamental theorem of calculus,
that:

9
1 < u(b) — u(a) = f iretvu(l + ret)dt =

9
f ire®vu(l + re't) dt
o o

21

9
<r f Vu(d + re®)|dt < r f |[Vu(l + ret)| dt.
6 6
Now, Cauchy-Schwarz inequality gives:

2T
Tu(l + re")?dt =2 5—
L |Vu( re')| =52

Integrating in polar coordinates centered at 1 and remembering that u = 0
outside D, we get:

j|\7u(z)|2 dz = j |Vu(2)|? dz
D e<|z—-1|k1

1 2n
= j ’j |[Pu(l + rei’t)|2 dt] rdr
e Lo

>1 1dr_1l 1
- 2m ), ro2n 9%

In view of (32), this ends the proof of Theorem (2.2.19).
Lemma (2.2.20)[2]: For every compact subset K of D, one has:

1
Cap (K) = inf {§j||7u(z)|2 dz;u € C,’(D)andu = 1onK}
D

Proof : Though this result is often considered as “well-known®, we were
not able to find anywhere an explicit reference. Since the average reader (if
any!) of this paper will not be a specialist in Potential theory, we give a
proof here.

(i) We first prove that the capacity of the compact K is less than the right
hand side (though we only need that it is greater). We shall use
Lemma (2.1.3).

We know that for every measure p on D supported by K, one has AG, =
—2mu, where G, is seen as a distribution. Hence, for every function

u € Cy°(D) such that u > 1 on K and every positive measure p supported by
K such that G, <1 on D, one has:
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1
w(K) = jd,u < judu = - — ju(z)AGu(z) dz .
K D 21 Jp

Then, by definition of the Laplacian of a distribution, we get:

1

ulK) £ — — jAu(Z)AGH(Z) dz

2 J,

But for every real Borel measures v1 and v, with finite energy (meaning that

their positive and negative parts have finite energy), this energy is positive
and one has the Cauchy-Schwarz inequality for the Dirichlet space :

1/2 1/2
va1 dv,| < (f Gv, dv1> (f Gv, dv2> :
D D D

Applying this to the measures v; = u and v,=v = Au.dz, we get, since G, < 1:

1 1/2 1/2
W(K) <o ( | @) ) ( | @) dz )

1 1/2
= g[u(l’()]“2 (LGU (2)Au(z) dz )

1 ) 1/2
= [u(K)]? ( j Gy dv )

Now, since u € C;° (D), one has G.
va dv = 27Tf||7u(z)|2 dz .
D D
Therefore, we get:
1
u(K) S—f||7u(z)|2 dz .
2 J,

Taking the supremum on p of the left-hand side and the infimum on u of the
right-hand side, we obtain:

1
Cap (K) < inf {gf|l7u(z)|2 dz ;u € Cy (D)andu = 1onK}.
D

(i) Let &> 0.

Let K; = {z € C; dist (z,K) < 1/j}, j = 1. Each K; is compact and is
contained in D for j large enough, say j = j,. Since K =N, Kj (and the
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sequence is decreasing), one has Cap (Kj ) o Cap (K); note that though

this proposition is stated for the logarithmic capacity, the proof clearly
works also for the Green capacity). Hence, there is some j > j, such that,
for K'= K;, one has (1 + ¢) Cap (K) > Cap (K').

Let uo be an equilibrium measure of K'. One has pq (K') =1, I(4y) =V (K",
Gy, <V (K’) on D. one has G, = V (K’) on int (K’), hence on K. Let p =

Cap (K) o . Then  pu(K') = Cap (K'),I(1) = [Cap (K")*I(no) =
Cap (K'), and, since G, = Cap (K")G,, , one has also G, <1 on D and G,
=1lonK.

By a theorem of G. we can find, by regularization. since an increasing
sequence of positive infinitely differentiable functions v, on D which

f||7vn(z)|2 dz — fIVGM(Z)IZ dz .
D e Jp

Since (v,,)ny Is increasing and converges point wise to 1 on the compact set K,
Dini’s theorem tells that one has uniform convergence(Dini’s theorem says
that if a monotone sequence of continuous functions converges on a compact
space and if the limit function is also continuous, then the convergence is
uniform see [6]). Hence, we can find some v = v, such that v> (1 + €) " on
K and

f||7vn(z)|2 dz< (1 + ¢) f|vaﬂ(z)|2 dz.

Note that v =0 on dD since 0 <V < G,,, which is equal to 0 on dD.

Putting u = (1 + €)v, one has u € (;°(D), u>1on K and
f||7vn(z)|2 dz< (1 + ¢)° f|vaﬂ(z)|2 dz.
D D

But we know by G. C. Evans,s theorem that:

1
I(w) = L|VG#(Z)|2dZ.

We get hence:
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1
(1 + &) Cap (K) = Cap (K = 1) = o [ V6, dz

1
>————7D|V 2d
— 1+ &)32n Vu(z)]2 dz

Since € > 0 was arbitrary, we get:
1
Cap (K) < inf {E f |[Vu(z)|?dz ; u € Cg° (D) andu = lon K}.
D

And that ends the proof.

As in the above proof, we may assume that 0 and 1—¢ belong to K. Consider
K" = {|z| ; z €K}. Since K is connected, the same holds for K. Hence the
interval [0, 1- €] is contained in K . It follows that Cap ([0, 1- €]) < Cap
(K"). But we saw that Cap ([0, 1 — ¢]) = log (1/¢); hence Cap (K') & log
(1/¢). It remains to use that the map a: z — |z| is a contraction for the pseudo-
hyperbolic metric and hence Cap (K) < Cap (K). In fact, if v is any
probability measure supported by K, there exists a probability measure L on
K such that a(p) =v. Hence:

V(K) < L(u) = f 9(z.w) du(z) dp(w)

DxD

1
= | f log—sdu(z) du(w)

1
= ffm 08 (al ) #(2) anw)

1
= HDXD logp(z, ") dv(z) dv(w) = Ix-(v).

Taking the infimum over all v, we get V (K) <V (K).

As a corollary of Theorem (2.2.19), we get a new proof .

Theorem (2.2.21)[2]: There exists an absolute constant ¢ > 0 such that,
for any symbol ¢ on a weighted analytic space H, one has:

c
T log1/(1 — )l

diam, [p(D)] >r = B(C,) = exp

In particular:
lelle =1 = B(C,) = 1.
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Proof: The first statement is a direct consequence of Theorem (2.2.7),
modulo Theorem (2.1.4) and Theorem (2.2.19), applied to ¢ (D) and its
closure.

One cannot replace diam, [p(D)] > r by |l¢ll, > 7 in this first statement as
indicated by the following example:

_a—(2/2) _ .k
(p(Z) - 1 _ a(Z/Z) - a[ (Z)]’
Where ®,(z) = f_;;zwith a €D and h(z) = z/2 is the dilation with ratio
1/2.
Then |lglle, = |P,(0)] = [al and B(Cyp) = B(Cn) = 1/2.
However, one can do so if moreover (0) = 0 because then, clearly:
lolle = = diam, [¢(D)] > .

This is enough for the second statement since, putting a = ¢(0), we have, due
to the fact that &, is unimodular on the whole unit circle: ||®, , ¢l =

lolle = 1,(Pao¢@)(©) = Oand B(C,) = B(Co,,p)-
Here, we consider the case of composition operators on Hp for 1 <p <co.

For every a € D, we denote by e, € (HP)*the evaluation map at a, namely:

e (f) = f(a), f € HP (35)

We know that :
_ 1 1/p

lell = (=7) (36)
and the mapping equation

Coled) = ey (37)
Still holds
Throughout this section we denote by ||. ||, without any subscript, the norm

in the dual space (Hp)”*.

Let us stress that this dual norm of (HP)* is, for 1 < p < o, equivalent, but
not equal, to the norm ||. ||, of H?, and the equivalence constant tends to
infinity when p goes to 1 or to .

With this preliminaries , we are going to see that Theorem (2.2.7) remains
true.
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We begin with the following lemma, which extends Lemma (2.2.17).

Lemma (2.2.22)[2]: Let X be a Banach space, and T : X — X be a
compact operator. Let us set:

en(T) = inf |sup dist (T x,TE) (38)

dimE<n Lx€BX

Then e,(T) < 2v7 co(T).

Proof: Let £ > 0, and let F be a subspace of X of codimension < n such that
|Tiell < cn(T) + e.LetQ:X — Fbe an onto projection of norm [|Q|| <

Vn+<2vn,and let R=T (I — Q). Then E = (I — Q)X satisfies dim E <n,
If x €By, the closed unit ball of X, then:

dist (T x,TE) < |ITx — Rx|l = ITQx|l < || Tie|| Qx| < (cn(T) + &) 2Vn .
This implies ,(T) < 2vVn (¢, (T) + ¢).

The result follows since € was arbitrary.

Theorem (2.2.23)[2]: Let1<p<wand C, : H? - HP.
(i) If (D) € D, then:
B(C,) = e~ YCap[p(D)]
(i) One has:
lolle =1 = B(Cy) = 1.

Proof : (i) a) We first prove that ~(C,,) = e~/caple(D)],

- 1/p . ]
Let L, = supjqer lleall = ( ! ) for0 < r < 1. Using the same notations

1-r2

and estimations as in Theorem (2.2.18), up to the replacement of L, by L,.,
we get:

ea(T) =2 (1 — &) Ly} a [M(K)]™ .

Lemma (2.2.22) now implies:

£~—1 AN
S L IMUDT

an,(T) = c,(T) = «
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The rest of the proof is unchanged, since the presence of the factor 1/vn does
not affect the result.

b) The upper bound is even simpler since H® < HP. For example, setting
A(f)=h° @, we can replace Lemma (2.2.16) by

”go(p_ ho(p”p < ”go(p_ ho(p”oo = ”g - h”C(K)’
Where K = (D).
(i1) That follows from Theorem (2.2.20).
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CHAPTER 3

Weighted Composition Operators Between Hilbert Spaces in
the Operator Norm and Hilbert-Schmidt Norm Topologies

We will consider the operator norm topology and the Hilbert-Schmidt norm
topology respectively. These results will be involved in the investigation for
the explicit cases of the classical Hardy-Hilbert space, the weighted bergman
spaces and the Dirichlet space. Furthermore we will estimate the Hilbert-
Schmidt norms of difference of two composition operators acting from the
Dirichlet space to the Hardy and the weighted bergman spaces.

Section(3.1)Path connectedness of C,,(H,,H) and C,,Hs(H,, H):

Let H(D)be the space of analytic functions on the open unit disk D:={|z| <1}
and H” the space of bounded analytic functions on D with the supremum
norm ||-||. Let S(D) be the set of analytic self-maps of D. Denote by H a
Hilbert space of analytic functions on D with the norm ||-||;; satisfying the
following conditions:

(#1) For any a € D, the point evaluation t,: H 3 f—f(a) is a bounded linear
functional on H, and supy< ||t |lg< oo for every 0 <r <1.

#2)H*HcH and ||fgllg<Ilfllellglly forevery f e H” and g € H.
(#3) ||1]l|g=1and {z"/]|z"||: n = 0O}is an orthonormal basis in H.
(#4) For every f € Hand 0 <r <1, we have f,(z) :=f(r;) € H.

By (#3), H contains all analytic polynomials. By (#2), for f € H” we have
g =1f- g <lfllolllllg=Ifllc . Many classical Hilbert spaces of
analytic functions on D satisfy conditions (#1)—(#4).

For ¢ € S(D), we define the composition operator C,: H — H(D) by C,f =
feo forfe H. IfC,f € Hforeveryf € H, then C,: H—H is a bounded linear
operator. We denote by C(H) the space of bounded composition operators
C,: H—H with the operator norm topology. for an overview of composition
operators.

Let ¢ € S(D) and u € H. We may define the weighted composition operator
M,C,: H—H (D) by MyC,f = u -(fep) for every f € H. Ifu -(f - ¢) € H for
every f € H, then MyC,: H—H is bounded and we denote by l\/Iqu)HH its

54



operator norm. We note that M, C,=0 if and only if u = 0. Let C,,(H) be the
space of non zero bounded weighted composition operators on H with the
operator norm topology, that is,

Cw(H) = {M,Cy : M,Cy : H— Hisbounded,u # 0}.

In the study of (weighted) composition operators, one of the main subjects is
determining the set {u € H:M,C,€ C,(H)}for a given ¢ € S(D)and the other
Is determining the topological structure in C,,(H).By (#2), if C, € C,,(H)then
M, Cy€ Cyy(H)for every u € H”with u# 0. The boundedness of M, on range
of a composition operator was investigated. The boundedness and
compactness of weighted composition operators on the Hardy and Bergman
spaces have been characterized. About the topological structure, first studied
the component structure of the set of all composition operators on the
Hardy-Hilbert space H? in the topology induced by the operator norm.
Further investigated and the latter authors raised the problems on the
component structure in the topologies induced by the operator norm and the
essential operator norm and explicitly gave the conjecture that two
composition operators would lie in the same component if and only if they
have compact difference, that is, the difference of the two composition
operators is compact. This conjecture was answered in the negative by and
Bourdon provided an example of two composition operators induced by
linear fractional self-maps of D which are in the same component but do not
have compact difference. In general, it seems fairly difficult to describe all
path connected components in C,,(H). We would like to mention that C,, (H)
U{0}is a path connected set. The reason is that for M,,C, € C,(H), we have

M, CoECw(H) U{0} and
”Mtouccp —MuCol[H = Ito — t|”Mqu>||H

for every 0 < to, t <1, so M,C, and 0 are in the path connected set in C,,(H)
u{0}. By this fact, the condition 0 ¢ C,,(H) is a key to study path connected
components in C,,(H).By condition (#3), M,,C,€ C,(H)is Hilbert-Schmidt if
and only if

[00]

: lue™ ||
“MUC‘P”H,HS '_ Z Iz =

n=0
We denote by C,pys (H) the space of Hilbert-Schmidt operators
M, CyinCy, (H) with the Hilbert-Schmidt norm topology. The topology on
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Cwns(H) is stronger than the operator norm one. So a path connected set in
Cwas(H) is so in Cy,(H).
Let H;be another Hilbert space of analytic functions on D with H; ¢ H

satisfying conditions (#1), (#3) and (#4). We note that H; needs not satisfy
(#2). Furthermore we assume that

#HO)f |lg < [If ||y, for every f € Hy.

For a bounded linear operator T:H;—H, we write||T |[y, 5 its operator norm.
For M, C, € Cy,(H), we have

IMCofl, = IMuColl, 1Flli < [[MuC] NI,

for every feH;. Hence M, C,:H;—H is bounded and

IM.C < ||MyCyl|,, forevery M,C, € Cy(H) €))

(p”Hl,H (P”H

Restricting M, C, € C,, (H)on H;, we may consider that M,C, is also a
bounded linear operator from H;to H. We denote by C,,(H;, H) the space of
MyCy: Hi—H, M C, € Cy,(H), with the operator norm topology. For the
non-weighted case, we write C(H1, H). We note that

Cw(H1.H) = Cyw(H)

as sets, so if M,,C,€C,,(Hy, H), then u €H. By (1), the topology of C,(H) is
stronger than the one of C,,H,,H. Hence a path connected set in C,,(H)is so
in C,,(Hy, H).

We have that M,,C,€ C,,(H, H) is Hilbert-Schmidt if and only if

0

, _ lue™ |5
||MUC‘P||H1,H,HS T 2 ||Zn||ﬁ =7
1

n=0

We denote by Cy ys(H;,H) the space of M,C,€C,, (H;,H) which are
Hilbert-Schmidt. We consider the Hilbert-Schmidt norm topology on
Cwns(Hy, H). The topology on Cy, ys(H;, H) is stronger than the operator
norm one. So a path connected set in Cy, ys(Hy, H) is so in C,,(Hy, H). Since
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0

2 lue™llf _ 2
IMColl}, s = o IMuColl}, s DY (#5),

n=0

we have Cy, gs(H) € Cy ns(H1, H)

This chapter is organized as follows. In Section (3.2), we shall prove that if
lzle ., 9as n — oo then Cw(H1,H) is a path connected space. In Section

l1z0]l,
(3.1), we shall prove that C,, 45 (H;,H) is a path connected space. As
applications of these results, and we study the cases that H is either the
classical Hardy—Hilbert space H? or the weighted Bergman spaces L2, —1<a
<oo, on D, and Hy is either Hy or L2 or the Dirichlet space D on D. we study
the Hilbert—=Schmidt norms of differences of composition operators in C(D,
H? and C(D, I%) for —1 < a < oo. We shall show that Cys(D, L2) =
{Cy: @ € S(D)}as sets. For ¢, yeS(D), let oy =t, + (L —t)Yfor0 <t <
1. We also prove that {C,.0 <t <1} is a continuous path in Cys(D, 12)

Let H and H; be the spaces satisfying conditions given in the introduction.

Lemma (3.1.1)[3]: If ¢ €S(D)and ||¢|| <1, then C,f €H"for every f €
H and

Icotll, < NFl, sup Nzl

al<llalls,

Proof : Forf €Hand z€D, by (#1) we have so we get the assertion.

C,N@| =f (Co@)| < Ml llzy ], < I, s Il

al<llalls,

so we get the assertion.

Theorem(3.1.2)[3]: Ifllz"ly /llz"|ly, » Oas n — oo then Cy(H;, H) is
a path connected space.

Proof: Let M,C, €C,(H1, H). Since Cy,(H,,H) =C,,(H) as sets, we have u €
H and M, C,H<oo. Let 0 <r<1. For f€H, by Lemma (3.1.1) we have for ¢
€H”and

IMLCrofll,, = lluCE o re)lli
< lIforelllully by (#2)
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< NIfllsliull sup it

Hygl<r
By (#1),M,C;,€ Cy(H), so M,C;,€ Cy,(Hy, H) .
We shall show that {M,C,,:0 <r < 1}is a path connected set in C,,(Hy,
H). Fix 0 <ro<l. It is sufficient to show that|[MyCryo — MuCro||., . =
1
Oasr—ry.Letg=27_oa,z" €H;.Foreach0 <r <1, let

0@ = ) 2. (1§ — 2"
n=1
Since H; © Hand H satisfies (#4), we have gj1€ H. Hence

0 2

U a, (-

n=1

2 2 2
= [MuCogmlly < IMuColl llomll

”(Mucro(p - MuCr(p)g”: =

H

= IIMuC(pII;ZIanIZIr8—r“I2||2“||ﬁ by (#3)
n=1

2
N A .
< [MuCylly s { Il = 7 Zlanl Iz12,
- n=

I1ZX11Z,
1[I,
< My, |7 sup<| e || I3,
Then

124,
O = Ml < MGyl s (I = Pl epe

For any positive integer n, we have

n-1
sup (1 _ g2 120y e _ oz 2, osue (1L
k> 1<|r° — ) S Sl B v g S
k=1

Hence
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lim sup

r-r, ”(M“C

Iz4]
ro® MuCr(p)”HlH < “MuC(P”H f{;ﬁ ||Zk||;1

Therefore by the assumption, we get M,,C.,—M,C, , as r—tyin C,,(H;, H).
This shows that {M,,C;.,:0 <r <1} is a path connected set in C,(Hy, H). Thus
M,C, and M, C,, are in the same path connected set in C,,(H;, H).

Let M,C,, M,Cy, €C,,(H;,H) We have
I(MyCo — MyCo)flly < llu — VIIglf(O)l < llu — Vilulltolly, Iflly,
For every f €H;. Hence
I(MuCo —MyCllu, m < llu — VllullTolly, -
It is not difficult to show that there is a continuous path {u;:0 <t <1}in H
such up=u, u;=v and u;# 0 for every 0 <t <I. For 0 <ty <1, we have

||(Mut0C0 _MutCO)”HlyH < ”Uto - ut”H”T()”Hl.

Letting t —ty, we have MutCO—>MutOC0 in Cy,(H{,H). Hence M,C,and
M, Copare in the same path connected component in C,,(H;, H).. Thus by the
last paragraph, C,, (H;, H)is a path connected space.

Lemma (3.1.3)[3]: If ll¢ll-<land u € H, then M,C, € C,,(H) and is
compact.

Proof: By the first paragraph of the proof of Theorem (3.1.1) , we have
M, C, €C,, (H).

To show that M,,C,,is compact, let {f;, },be a sequence in H such that there is
a positive constant K satisfying ||f,|lz < Kfor every n. By (#1), we may
assume that f,,converges to some f € H(D) uniformly on any compact subset
of D. By the assumption, f,,°¢ —f° ¢ in H” .Hence by (#2), u(f,,° o), u(fep)
€ Hand

IMuCofns = u(f 09|, < llullyllfn00 — fopllee —» 0,n— o

Thus M, C,€ C, (H).is compact.

Corollary(3.1.4)[4]: If lIz"|lg Zllz"|l,, » Oas n — c then any
M, C,€Cy(H;, H) is compact.
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Proof: For 0 <r <1, by Lemma (3.1.2) M,,C,, € C,,(H)is compact. By (#5),
id :H;—His bounded. Hence M,C,,:H;—His compact. By the proof of
Theorem (3.1.1) we get the assertion.

Let Hand H.be the spaces satisfying conditions given in the introduction.
We note that C, ys(H;, H)eC,,(H;, H) =C,,(H) as sets and the topology on
Cw ns(Hy, H)is induced by the Hilbert-Schmidt norm.

Lemma (3.1.5)[3]:

(MM Cyr@ € H® |loll <1,u € Hiu # 0} c Cy,pus(H).

(i))Cyw us(H) © Cyy(Hy, H) .

Proof: (i) Let ¢ € H” with ||¢||,<land u € H with u # 0. We have

[00) [00)

2 llue"|IF lell% _ 2
||MuC<P||H1,H o 2 ”Zn”H = ”u”aim by (#2) - ”u”a”C”(P”oo”H’HS

n=0 n=0
SinceCy . Is rank one, so is Hilbert-Schmidt. Hence M,C,EC,, ys(H).

(i) Let M,C, €Cyus(H). Since id :H;—His bounded and M,C,|y, =
M, C,-id, we get (ii).

Theorem (3.1.6)[3]: C ns(Hy, H) is a path connected space.

Proof: Let M,C, €C,, us(Hy, H). By (#3),

[oe]
lue™lf _ 2
E A IMCoplly s < @)
n=0

We shall show that {M,C,,:0 < r <1} is a path connected set in
Cwus(Hq, H). By Lemma (3.1.5), M,,C,,€ C, us(H;, H) for every 0 <r <I.
Let us fix 0 < ry <I. We shall show that ||M,C M,C

r—ro. FOr any positive integer N, we have

— 0 as

e r(p”Hl,H,HS
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(o]

”M C — M.C ”2 _ ”u(r(l’)l - rn)(pnlllz-l
wCrop = MCrolly s = 12T
1

(o]

o e ool N llue
0 —
Iz, ERA
n=0

Take &> 0 arbitrarily. Then by (2), we may take N large enough so that

lue™lI%
n||2 <
IZ7117

n=N
Hence
N-1
lue™If
2
IMACroo = MuCrplly, 5 < &+ Z'rg IANTT
n=0 '
Letting r—ro, We have
: _ <
lim sup||M,Cy, ¢ MUCF(P”Hl,H,HS €

) d 1)

Thus we get ||M,Cy,, — MuCr(pHHLHHS
M, Co are in the same path connected component in C, ys(Hy, H).

—0 as r - r,. Hence M,C,and

Let MyCy € Cyyus(H;,H) be another operator. By the last paragraph,
M, Cy and M, C, are in the same path connected component in C,, iys(Hq, H).
Let {u:0 <t < 1}be a continuous path in H such that uy=u, u;= v and u; #
Ofor every 0 <t <1. We have

2
”I\/IutOC0 — My, = ||ue, — ut||: —»0ast - t.

H1 HHS

Hence M,Cy,and M,C,are in the same path connected component in
Cwns(Hq,H). Therefore M,C,and M, Cy are in the same path connected
component in Cy, ys(H1, H). This completes the proof.
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Section (3.2) Applications:

Let H? be the classical Hardy—Hilbert space on D. It is well known that
H?satisfies conditions (#1)—(#4). For each f€H?, it is known that there is the
radial limit f*almost everywhere on 0D with respect to the normalized
Lebesgue measure m. By Littlewood’s subordination theorem (it states that
any holomorphic univalent self-mapping of the unit disk in the complex
numbers that fixes O induces a contractive composition operator on various
function spaces of holomorphic functions on the disk see [7]), C,: H?>—Hzis
bounded for every ¢ € S(D) For a given ¢ € S(D), it is not known the
characterization of the set of u €H”such that M, C,,:H*—H? is bounded. But
it is known that C,(H?) has many path connected components .

For —1 < a <oo, the weighted Bergman space L2 on D is the space of f €
H(D) satisfying

I, = [IFI dA@) < o
D

where dA,=(o+1)(1 —|z])* dA and A stands for the normalized Lebesgue
measure on D. When a=0, L3 is the classical Bergman space. It is known that
12 satisfies conditions (#1)—(#4) and C,:L%—L%is bounded for every ¢ €
S(D). We have

|
|7 = nir2 + o) |
ke Tn+2+a)

where I'(s)stands for the usual Gamma function. Then H? S 1% and
Ifllz < Ifllyz for f € H°. Also we have that for —1 <o; < o <o,
L?xl < L(ZXZand ||f||L%(2§||f||L%(1f0r f Efol. For a given ¢ € S(D), it is not
known the characterization of the set of u €12 such that Mqu,:L%x—>L%xis
bounded. for the boundedness and compactness of weighted composition
operators on the weighted Bergman spaces. partially answered the question
of when two composition operators lie in the same component of C,,(L2).

Let D be the Dirichlet space on D. For f € H(D), we have that f €D if and
only if

t(2)|* dAu(z) < o,

Ifl13 = [f@)? + j

D
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It is known that D satisfies conditions (#1), (#3) and (#4). But D does not
satisfy condition (#2). For f= Y>_,a,z" € D, we have ||f||3 = |a|? +

® .nla,|?>. Then DS H?and ||fllyz<|Ifll, for f €D. It is also known
that there is an analytic self-map ¢ € S(D) such that C,: D—D is not
bounded. We note that ||1]|3=1 and ||z"||3=n for every n >1.

We have

12 _ 1 Dasn — oo

1z"p Vvn '
By Stirling’s formula, we have

'(n+2)

~ (n+ D1 a>o0.

n'r'(A)
Hence for —1 < a <co, we have

||Z“||i%l _ nIT2 + o 1

= ~ O asn
Iz~ nf(n+2+«)  n(n + e Do 7

and

||Z“||i%l _ N2 + o) 1

= ~ 0 asn
IZ°2, T(n+2+a)  (n+ Dire -0 7%

For —1 < oy < 0, <o, we also have

2

||Zn||LgL2 N2 + a)T(n+ 2+ o)

||Z“||iz Fn+2+a))NIT2 + o)
ag

~ (n + 1)@tV + 1)2*al=(n + 1)%"% - Qasn - o
Hence by Theorem (3.1.1), we have the following.
Corollary (3.2.1)[3]: C,(D,H?),C,(D,1%),C,(H? L%) for =1 < a < oo,
and C,, (L%, L%,), for —1 <az<a,<w are path connected spaces.
By Theorem (3.1.6), we have the following.
Corollary (3.2.2)[3]: C,, 4s(D, H?), C,, 45(D, L%), C,, ys(H? LE)for -1 < a
<o, and C,, ys(L%,, L7,), for —1 <ay<o,<coare path connected spaces.

oq!

Since {1,z"/+/n:n > 1}is an orthonormal basis of D, in the same way as in
Shapiro and Taylor we have
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[oe]

2
2 _ 2 lue™llizz 1
|||\/|uC<p||DVH2'HS = lullz + E —Y = lullfe + |u*|2Iog—1 — |(p*|2dm

n=1 oD

Hence M,C, €C,, (D, H?)is Hilbert-Schmidt if and only if

flu*l2 log ! dm <
_— (0 0]
1 - |eI?

D

Similarly,

[ee]

llug™ 2 1
IMCol’ 2 = llul, + Ly, - 2log—————— dA
Colly 2, = ull2 2 =itz + [l @Flogr——rs dA)
D

n=1

and

o

2 _ 2 nnz  _ lo (Z)lz
IMAColI 2, = T, + glw@nﬁ-—jIjTEEﬂgdAua
D

n=0

Hence m,c, €C,,(H?,L3)is Hilbert-Schmidt if and only if.

jlu (z)IZIog1 — ! dA,(2) < oo,

J o P
and wm,c, €C,(D,L3)is Hilbert-Schmidt if and only if

lu @I

dA,(2) < oo.
J L-le@P

When H=H;in Theorem (3.1.6), we have the following.

Corollary (3.2.3)[3]: If H satisfies all (#1)—-(#4), then C,, ,;s(H) is a path
connected space.

In this section, we study the Hilbert-Schmidt norms of differences of
composition operators in C(D, H%) and C(D, L2) for —1 < a <oo. We note that

C(D, H)=C(D, L%) = {C, : ¢ €S(D)}
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as sets. By the same way as in the proof of Theorem (3.1.1), C(D,H?) and
C(D, L3 )are path connected spaces with respect to the operator norm
topologies.

Lemma (3.2.4)[3]:
(i)  C, € Cys (D,H?)ifand only if

flog ~dm < oo,

(ii) Cy, € Chs(D, L2) if and only if

1
log—————— dA,(2) < oo.
J 1 - o @)

For ¢ € S(D), we write E(p) ={¢” €D :|¢ ()| =1}. In case (i) of Lemma
(3.2.4), we have m(E(¢p)) = 0, we may say that C(pECHS(D, H?2)if and only if
¢ is a non-extreme point of the closed unit ball of H*. Applying the same
way as in the proof of Theorem (3.1.6), Cys(D, H?) and Cyg (D, L2) are path
connected spaces with respect to the Hilbert—Schmidt norm topologies.

Theorem (3.2.5)[3]: Cys (D, LZ)={C,:¢ €S(D)} as sets for every

-1 < o <oo0.

Proof : We have

< 00,

| Ay (2) =
jog @= 1

Let ¢ € S(D)with ¢(0) =0. Then |¢p(z)| < |z on D and

1
log———— dA,(2) < | | dA,
le—wm| 2= f” e A=
By Lemma (3.2.4)(i), we have C,E Cys (D, L%)
Let ¢ €S(D) with @(0) # 0. Put a =¢(0)and
_9@) —a
w(z)_l—dq)(z)’ z€ D.

Then y € S(D)with y(0) =0. By the last paragraph,
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jlog% dA,(2) < «

]

o)
L 4A

J oo =gy A <
We have

o (2) 2% : z€ D.
Since

W@l + lal _ @ - [aD@ - W (@)
Lo @l =21 = el = 1+ )

we have

1 - 2

1-le@)| — Q- laD@ - Y&

Hence

2
flog |§0(Z)| dA, (2 < f log———— a = 1aD dA,(2) + flog |\|J(Z)| dA,(2) < o,

so, by Lemma(3.2.4)(ii) we have ¢(z) €Cyxs (D, L2).
By Lemma (3.2.4) and Theorem (3.2.5) , we have the following.

Corollary (3.2.6)[3]: Cys(D,H?) & Cys(D,L%) = {Cy,: @ €S(D)} for
every —1 <a < oo.

Corollary (3.2.7)[3]: For any o, y € S(D), C,—C,: D—L? is Hilbert—
Schmidt for every —1 <a < oo.

For ¢, vy €S(D), we have

o o

1
ool s = ) 310 = 97l = Yo" = 471 = ol iz,

n=1 n=1

For z, wED withz # w, let p(z, W) =[z—wl|/|1 —wz|.
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Theorem (3.2.8)[3]: For ¢, y €S(D), we have

2 _ 1
Ice- C"’”D,L%(,Hs - J 097 — p(p(2), ¥(2))? Aal2)

Proof: We have that

[oe]

2 1
ICo = Cyllyy 2,5 = Z;N‘P“ AL

n=1

- f z le@I™ + WA = P @IRD ~ $@NE |,
D n=1 n

= 1 - @@

= Jlog (1 - |<p(Z)|2)(1 _ |L|J(Z)|2)dA°‘(Z)

1
J 97— p(p(2), Y(2))? dAe(2)

Corollary (3.2.9)[3]: For ¢ , y €S(D), we have

I 1 dA,(2) <
! DT = o(e@u(@)? @

Proof: By Theorem (3.2.5),

”Ccr)”DnguHs * ”C‘IJ”D,Lg,HS =@

By Theorem (3.2.8),

2
D,L% HS

1
J T sy O = 1% Gl

2
< (IColly s+ ICullpyz s) <0

Corollary (3.2.10)[3]: For ¢,y €S(D) and 0 <t <1, let @,=¢, +(1 ~t)y €
S(D). Then {C,,:0 <t <1} is a continuous path in Cys(D, L2) connecting
Cowith Cy,.
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Proof: By Theorem (3.25), C,, € Cys(D,L%) for every 0 <t <I. It is
sufficient to show that

. 2 _
liml|Co, = Cll; 2 s = O

Since p((2), 9¢(2)) < p((2), y(2))for z €D,

1 1
log

—— <log ———— = onD
1-p(@@e)* — o9 1-p(e¥)? on
By Corollary (3.2.9),

dA,(2) < oo.

1
J T 0@ @)

Since p(@(z), ¢i(z)) —0as t —1, by the Lebesgue dominated convergence
theorem,

1
!logl — p(QD(Z),(pt(Z))z dAa(Z) -0

ast —1. By Theorem (3.2.8), we get the assertion.

Next, we shall study the structure of Cyg(D, H?). For ¢, v € S(D) with ¢#
v, we have that ¢ (e") # v (e") for almost every e” € 6D. Hence we may
define p(o ("), w (€"))for almost every e € 8D. In the same way as in the
proof of Theorem (3.2.8), we have the following.

Theorem(3.2.11)[3]: For ¢, y € S(D)with ¢ # y, we have
2

1
”C(quJ”D,HZ,HS - aj]) Iogl _ p(q)*’q}*)z dm

Proof: We have that

(o]

1
o0 = Cullynps = ) 3l = V7l

n=1
_ f 2 9" 1" + [Y[*" — @"" — Ty
= - dm
aD

n=1
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= [ (i L L | L | L)
- HL BT T YT-ew T- W*) "
11— @ *|?
= jlog — T oy dm = jlog —dm
£ @ e (L = W) 21— ple"u")

Corollary (3.2.12)[3]: For ¢, y €S(D) with C,, C,, € Cys(D, H?) and
0<t<l, let @=t, +(1 ~t)y € S(D). Then {Cy, 10 < t < 1}is a continuous
path in Cys(D, H?) connecting C, with C,,.

Proof: By the fact mentioned in the below of Lemma (3.2.4), ¢ and y are
non-extreme points of the closed wunit ball of H® .Hence
Co,ECus(D, H?) Using Theorem (3.2.11), in the same way as in the proof of
Corollary (3.2.10) we may prove the assertion.

Theorem (3.2.13)[3]: Let ¢ € S(D) satisfy C,, & Cys(D,H?*)Then

||C(p — CqJ”ZD,HZ,HS: o for every y € S(D) with y # .

Proof: Suppose that ||C(p — qu”ZDH2 Hs S ® for some y € S(D) with y # .

By Theorem (3.2.11), we have m(E(¢)) = m(E(y)) =0 and

p(e*, )2
Let n=(¢ +y)/2. We have that p(¢*, n*) < p(¢*, y*) almost everywhere on
oD. Hence

I ! dm <
f ogl — m < oo,
aD

1 1
o dm < f lo dm < co.
f 91 p(p*,m*)? 1= p(@*, Pr)?
oD [5)))
By Theorem (3.2.11) again, ||C, — Cn||2DH2 HS

point of the closed unit ball of H*, by Lemma (3.2.4) we have
C,ECys(D,H?) Then C,eCys(D, H?) This is a contradiction. Thus we get
the assertion.

< 0. Since 1is a non-extreme

2
D,H? HS

Corollary (3.2.14)[3]: Let ¢, y € S(D). If ||C, — Cy|
both C, and C,, are in Cys(D, H?).

< oo, then
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CHAPTER 4

Symbol of Universal Covering Map for Compact Composition
Operators

We consider , in particular, conditions that determine compactness of such
operators and demonstrate a link with the Poincare series of the uniformizing
fuchsian group. We show that is compact if if and only if does not not have
afinite angular derivative at any point of the unit circle, there by extending
the result for univalent and finitely multivalent.

Section (4.1) Introduction and Preliminaries:

Let D = {z € C:|z|< 1} be the unit disk in the complex plane, then the Hardy
spaceHP,1 < p < 1, is defined to be the Banach space of functions
holomorphic in D with norm

2T

P_ i 0[P
Iflp = Irl_)rqj |f(re’®)|" do <
0

The limit here is guaranteed by the fact that the integral mean is increasing
in r. The standard text for the theory of Hardy spaces is .

Given a holomorphic map ¢: D — D we define the composition operator
Co:f - fod

The study of composition operators acting on function spaces has
received much attention over the last four decades. The central theme of this
work is to understand how operator theoretic properties of composition
operators are related to geometric or analytic properties of their inducing
functions.of central importance in this area is a result, which describes the
essential norm of a composition operator in terms of the Nevanlinna
counting function of its inducing holomorphic map. The Nevanlinna
counting function is known explicitly in a number of situations, for example
for inner functions, univalent functions and finitely multivalent functions .In
this chapter we study composition operators with symbol a universal
covering map of the unit disk onto a finitely connected domain, in this case
the Nevanlinna counting function can be estimated precisely by properties of
the underlying Fuchsian group ( is a discrete subgroup of PSL(2,R) which
can be regarded as a group of isometries of the hyperbolic plane, or
conformal transformations of the unit disc, or conformal transformations of
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the upper half plane see[8]).We will provide all the preliminary definitions
in section (4.2).

We consider throughout this article domains of the form
D= DO\{pl’ ey pn} n=1 (1)

where D, is a simply connected domain contained in D and p4,...,p, are
distinct, isolated points in the interior of D,.We will study composition
operators whose symbol ¢ is the universal covering map of D onto D.

For a Fuchsian group I' we define the limit set A (I') to be the set of
accumulation

points of orbits of points in D by functions in I'. The Poincare series for I" of
order s is

pr(z.w; s) = ) exp — sdp(2,g(W)) @

geT
where dp(z, w) is the hyperbolic distance from z to w in D.

It is known that there is a critical exponent, d(I") such that the Poincare series
converges for all s <o (I') but diverges for all s >6 (I'). For finitely generated
Fuchsian groups

o (D)= dim(A (T));
the Hausdorff dimension of the limit set of T.

A simple calculation shows that if I' is elementary and generated by a
parabolic element then

5 (T)=1/2:

If T is non-elementary and contains a parabolic element then Beardon
showed in that

o (IN>1/2
and if T is finitely generated and of the second kind then
o (IN<1. (3)

Our first result links the compactness of a composition operator to the
growth of the universal covering map with respect to the Poincare series.
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Theorem (4.1.1)[4]: Let D be a domain in D defined by (1) and suppose
that ¢ is a universal covering map of D onto D.

Let I' be the Fuchsian group that uniformizes D, then C4 is compact on HP,
1<p<oo,ifand only if for each (€ dD A(T)

. pr(0,z;1) _

lim,_ el 0 4)

Note that the hypothesis implies that T is finitely generated and so (4) is well
defined by (3).

An important geometric quantity that has proved useful in describing
compactness of composition operators has been the angular derivative. A

holomorphic mapping ¢: D —D has a finite angular derivative |¢’>(()| for
¢eab if

jim inf=_12@!

Z—>Z 1 — IZI
The existence of a finite angular derivative implies a number of well
behaved mapping properties of ¢ near ¢, a good reference for this. Note

that if an angular derivative exists then, in particular,lirrglc],')(z)l = 1, where
A

< oo

the limit is non-tangential.

To appreciate the importance of this quantity it is known that, for ¢
univalent, Cy is compact if, and only if
1-1¢(2)l
11— I 7 ®).
or, equivalently, ¢ does not have a finite angular derivative at any point on
dD. For arbitrary ¢ it was shown that if C is compact then ¢ does not have
a finite angularderivative at any point on dD, however in general it is not
difficult to find counter examples to the converse. For example no inner

function induces a compact operator but there are inner functions with no
angular derivative at any point on aD .

We generalize the above result to the current setting.

In this section we will state and discuss Shapiro’s characterisation of
compact composition operators, followed by an short introduction to the
relevant theory of universal covering maps and Fuchsian groups.
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Recall the Calkin algebra for H? is the algebra B(H?)/Bo(HP) where B(H?)
is the algebra of bounded linear operators mapping HP to H?, and Bo(HP) is
the corresponding ideal of compact operators in B(HP). The essential norm
of an operator T, written ||T||. is the norm of T in the Calkin algebra. The
essential norm measures the distance, in the norm induced metric, to the
compact operators,

ITlle = keppumlIT — K1l .

provides a formula for the essential norm of Cy that describes precisely its
relationship with the inducing function ¢. In order to state Shapiro’s result
we define the Nevanlinna counting function for ¢ to be

1
Iogm w € ¢(D)
N(P(W) = z:p(z)=w

0 w € D\¢(D)

It is known and relatively easy to estimate Ny when ¢ is finitely valent.
Shapiro proved that

N
Ical; = tm sup’ o) )
OQW

In particular, Cy is compact on Hp if and only if

lim No (W) _ 0

lw|-1 log ﬁ

An inner function is a bounded holomorphic function 1, on D for which
lim|I(re'?)| = 1
r-1

For almost every 6 € [0, 2w) with respect to Lebesugue measure. It is known
that, outsidea set of 2-dimensional Lebesgue measure 0, an inner function |
satisfies

N;(w) = log

1(0) — w
1—@w‘

An example of an inner function that is relevant to the current work is the
function
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1+ Z)
1-z

That maps D conformally onto D\{0}. It is notable that the radial limit of
this function along the positive real axis is 0, whereas all other radial limits
have modulus 1. It has infinite angular derivative at 1 but has finite angular

derivative elsewhere on dD. This is the universal covering map of D onto
D\{0}.

In this chapter we examine how Shapiro’s characterisation of compact
composition operators may be interpreted when ¢ is a universal covering
map. We will cover the prerequisite details required here in order to fix
notation and relevant ideas. First recall that the hyperbolic metric, on D is
defined by

Z - exp (—

2
dp(z,w) = inf jy 1——|z|2|dzl

Where the infimum is taken over all smooth curves connecting z to w in D.
The constant 2 is required to ensure that the Gaussian curvature of the metric
is equal to -1 throughout D, it is often omitted in the literature. This metric is
so called because it induces Poincare’s disk model of hyperbolic space
where geodesics are arcs of circles orthogonal to the unit circle or radii. In
particular, we have that

1+|w]|

dp(0,w) = log == (7
Automorphisms of D are of the form
a—z
24 l-az

where |1]= 1 and a € D, and are isomorphisms in the hyperbolic metric.
They are classified as elliptic, parabolic or hyperbolic according to whether
they have a fixed point in D, a fixed point in dD, or 2 fixed points in dD
respectively. The theory of automorphisms of D are covered in detail where
many of the results concerning Fuchsian groups in this section may be
found.

A group T' of automorphisms of D may be considered a subspace of the
topological space GL,(C), I is called a Fuchsian Group if it is discrete in the
subspace topology .For any hyperbolic Riemann surface, R, there is a
Fuchsian group I'r that contains no elliptic elements such that R is
homeomorphic to D/T.
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Given a domain D c D there is a Riemann surface Rp and a covering

projection © : Rp— D. Since Rp is conformally equivalent to D by the

uniformization theorem we may find a ¢, : D — Rp so that the mapping
¢ = mo ¢p

Maps D conformally onto D:

ép .
x

¢ is the universal covering map of D and is unique up to pre-composition
with an automorphism of D. It follows from the construction above that the
inverse of ¢(w) for any w € D is the fiber over w and this is a I'-orbit, i.e. is
of the form I'(z) = {g(z) : g € T'}.

[ —— Kp
l_.
D

A fundamental domain for the action of I on D is said to be locally finite if
each compact subset of D meets only finitely many I'-images of F.F is
locally finite if and only if the mapping

0: FNr(z)»r(2)

is @ homeomorphism from of F/T" onto D/I". Here F represents the relative
closure of F in D.

The Dirichlet fundamental polygon for I' is defined for given w € D as
D(w) = ﬂ {zeD: dp(z,w) < dp(z,g(w))}.
gel' g#id
it is locally finite.
Finally for a Fuchsian group of the second kind the set of discontinuity is
() = S\,
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where C = CuU{oo}. This set is connected and the action of I' can be
extended canonically to Q(I") where it acts discontinuously.

Examples:
Figure 1: Fundamental domains forn=1andn =2

n = 1: In the case n = 1 the domain D is uniformized by an elementary

Fuchsian group of the form

I' = (o),

with o a parabolic disk automorphism. Suppose that o has fixed point 1 then
the Dirichlet domain D(0) is shown on the left in Figure 1

The two sides of F in D are equivalent in D/{p). The free side of F is
homeomorphicto dD, (note the two end points of the free side are
equivalent).

n = 2 :For the case n = 2 the domain D is conformally equivalent to the
Riemann surface D/T" where I is generated by two parabolic automorphisms,
oland 2. A fundamental set for I is illustrated on the right in Figure 1, here
we assume that the fixed points of g;and @, are { and - i. The point { can be
determined from the geometry of D, specifically the length of the closed
hyperbolic geodesic separating the points p; and p, from the boundary of Do.
This example is taken where a more detailed discussion is available.
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Section (4.2) Proof of Theorems and Concluding Remarks:

We will assume that D, N dD # @, the result (and all main results) are
trivially true ifsup;|@(¢)| < 1in which case the angular derivative cannot
exist anywhere.

Note first that the points p;,i = 1,...,n, are considered punctures in the
Riemann surface and are therefore in one-to-one correspondence with the
conjugacy class of parabolic elements in I'.

Let F be a locally finite fundamental domain for the action of I' on D. Then
F can be chosen to be a finite sided convex polygon with one free side
contained in dD, forexample we may take F to be a Dirichlet convex
fundamental polygon.

Now F/T" is homeomorphic to D/T so that we may define a branch of the
inverse of @ on a subdomain of D, y say, that maps this sub domain
univalently onto F.

Let | be the free side of Fthenas |w| - 1inD,z = { (w) tendsto I.
To see this we simply need to ensure that z does not converge to other
boundary points of F. To this end, suppose that I' is non-elementary, then |
Is contained in an interval of discontinuity of " on dD, y say. If we let A be
the hyperbolic geodesic in D with the same end points as y then A N F is
homeomorphic to the closed hyperbolic geodesic in D that separates dD,

from the points py,... ,p,. Therefore A separates | from other corners of F
and so as

W - aD{pl’ ’pn}’ z - I

One can check the case n =1 when I' is elementary directly.

Assume then that |z] > R > %for agiven R. Then forw € D

1
No W) = ;"’9 @I

Since T' is discontinuous on D there are only finitely many g €I' with
g(z) € {z: |z| < R}. Hence, using the inequality

1 1
Iog;gl—XZSZIog;; 1/2 <x <1

we have that
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NyW) <C ) (1 = g(I)?

gel’
9@
CZ 1+19G)l

=C) exp—dp(0,9()

gerlr
= Cpr(0,2;1)
Similarly Ng(w) = C,.(0,z;1).

We have shown thus far that

N, (W
jim e W)
wl=1 | 1
ITw]
If and only if
. pr(0,z;1) _
lim————==20 8
T l6@)1 ®)

Where the limit takes place in F.

To show that this implies our result note that since I' is discontinuous on
Q(I"), we have that for any closed arc) < dD\A(T) finitely many images of
F under mapping in T’ cover J and we may apply (8) to each without
difficulty using the automorphic property of pr. Therefore the limit (4) is
zero at any point in € J and, in particular at any point in dD\A(T) .

The converse, that (4) implies (8), is, of course, trivial.

In order to prove this result we will require the following quantitative
estimate of the Poincare series of index 1.

Lemma (4.2.1)[4]: If T uniformizes a domain of the form (1) then for z
€D(0) with |z|close enough to 1.

¢, exp —dp(0,z) <pr(0,z,1) < c,exp—dp(0,2)
Where c; and c; are constants depending only on I'.
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Lemma (4.2.2)[4]: T is finitely generated if and only if each {EA(T) is
either

(i) A fixed point for a parabolic element of I'; or

(i) A point of approximation — i.e. there is a sequence g,, N = 1, 2,..., of
elements of T" such that g,(0) —  non-tangentially.

Theorem (4.2.3)[4]: Suppose that D is defined by (1) and ¢ is a
universal covering of D onto D. Then Cg is compact on H?, 1 < p <oo, if
and only if

1@l _
zZ—( l—IZl

For all { aD.

It follows that the counter examples to Shapiro and Taylor’s result cannot
come from universal covering maps of finitely connected domains.

This result begins to demonstrate the link between the compactness of Cg

and the geometry of the image domain. In fact, as a consequence of the
previous theorem and properties of inner functions that we will discuss later,
we can develop this idea further.

Proof : Let {(€dD be arbitrary. If { is a parabolic fixed point, then ¢(z) —
p; for some j when z —¢, .Since |p;|< 1 it follows that ¢ has infinite angular
derivative there.

Similarly if { is a point of approximation then, with g, a suitable sequence
such that g,(0) —( as n —o0, we have that

1 (9,.(0)] = # (900N < 1

and since g,(0) converges non-tangentially, it follows from the Julia-
Caratheodory theorem(states that if U is a simply connected open subset of
the complex plane C, whose boundary is Jordan curve I" then the Riemann
map complex plane C , Whose boundary is Jordan curve I" then the Riemann
map f:U—D from U to the unit disk D extends continuously to the
boundary, giving a homeomorphism F:I'—S! from I to the unit circle S!
see [9])that the angular derivative at { IS
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o 1= 1h(ga O] . 1= 1b(geO))]
|¢(<)| - 7!!)?0 1—|z] - ,!T;, 1—|z] =@

From Lemma (4.2.2) all other points in dD are in the complement of the
limit set of T.

Suppose first that ¢ has infinite angular derivative at all points {€ dD\ A(T').
Then from Lemma (4.2.1)

im L= |$(2)|
im——————

o lim 1@ _
z-¢ pr(0,z; 1) B

z»¢ 1—|z|

The compactness of C4 now follows from Theorem (4.1.1).

Suppose, conversely, that Cy is compact. Let { €9D\ A(I') and 1cdD(0) be

the free edge of D(0). There is a h €I" such that {eh(l) and we may suppose
without loss of generality that z —{ inside

h(D(0)) = D(Rr(0)).
Then by continuity of h™, as z — ¢,
z" = h"H(z) >R =

And {*€el.
From Lemma (4.2.2) we thus have
jim inf 12O _ i 1@l 117
-0 1—|z| = Tz 1—|z¢|  1-|z|
1 1—|¢p(z* 1—|¢(z*
=1 lim infLZ*)I > clim infw =1
A@Q)| z-¢ 1—lz*] z-¢ pr(0,z*; 1)

Therefore ¢ has infinite angular derivative at each {€dD as required

Theorem (4.1.1) follows almost immediately from Theorem (4.2.3) given
certain properties of inner functions. First, for a given inner function I, a
singular point is a point n€aD such that | cannot be extended to be analytic
in a neighbourhood of n. The set of singular points of a universal cover of D
onto D\{py,...,pn} is easily seen to be the limit set of the uniformizing
Fuchsian group. In fact if n€A(I") then in each neighborhood there are
infinitely many zeros of I- a for any a # p;, i = 1,...,n and so n is singular. To
prove the contrapositive recall that I' acts discontinuously on the larger set
Q(I'). Therefore | may be extended to a holomorphic function on Q(I")by
considering the universal covering map of Q(I")onto the so-called Schottky
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double Q(T")/T. It follows that if n € A(I") then 1 is not singular. Note in this
case [ exists inthe normal sense on dD\ A(I') and is non-zero there since it is
conformal, furthermoresince 1 is inner the absolute value of (1) coincides
with the angular derivative.

Theorem (4.2.4)[4]: Suppose that D is defined by (1), ¢ is a universal
covering of D onto D, and vy is the univalent Riemann mapping of D onto
Do. Then Cy is compact on  HP,1 <p <o, if and only if Cy, is.

There are a number of geometric interpretations of the existence of an
angular derivative for univalent functions that can now be applied to D, that
will ensure compactness of C,. We will not list these here but many of these
can be found and throughout the literature on compact composition
operators.

Proof: The proof of this result follows from the properties above and the
Julia-Caratheodory theorem , we will merely sketch the details here.

First note that
l»b_lo d): D - D{Iél""’ﬁn}

For p; = ¥(p;),i = 1,.. ,n. It follows from uniqueness that | = 1o ¢
Is theuniversal covering map of D onto D\{p,,...,p,}. Clearly it is also an
inner functionso that the remarks above apply.

Suppose first that C is compact, then

Since the compact operators form a left ideal in the algebra of bounded
operators this means that Cy is compact.

To prove the converse, suppose Cy is compact. Then ¢ has infinite angular
derivative at all points of dD by Theorem (4.2.3). Suppose now that neadD is
a point at which

Y| < .

Let F be locally finite fundamental domain for the uniformizing group I' of
D\{p1, ..., Pn}.then we may find (EJF such that

imI1(r{) = n;
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Furthermore { is in the free side of F and hence, that |(r{)| < o1 and that
the limit above is non-tangential. It follows that

lim $(r¢) = limp(1(r0)) . [(r$) = ()| I ()|

for some |A] = 1. Since the right hand side above is finite we have a
contradiction and hence |¢/(n)| = .
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List of Symbols

Symbol Page
12 Hilbert space 1
H? Hardy space 2
H” Hardy space 2
Im Imaginary 4
Ker Kernal 6
Direct Sum 14
max maximum 19
Re Real 22
Sup Supremum 30
inf infimum 30
Hardy space 31
dist distance 32
dim dimension 32
Hol Holomorphic 32
cap capacity 34
Aut Atomorphic 36
diam diameter 45
Hilbert space 57
Essential norm 73
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