
ii

DEDICATION

To my parents Zainab and Alifor their infallible support.

To my dear brothers Gamal and Fath Elrahman.

To my friends for not giving up their friendship.

iii

ACKNOWLEDGMENT

 I am really thankful to my advisors Dr.Yahia Abdalla Mohammed

and Dr. Amir Abdelfattah Ahmed Eisa, for their guidance, patience, and

encouragement during this research. Who trained me to do focused,

systematic and scientific research. Their dedication towards research is

inspiring. I am very thankful to Dr. Mohammed Elhaiz, Dr. Eman

Abuelmaale, on my thesis committee and for their advice and suggestions

regarding the thesis and beyond.

 I would like to thank my family and friends for their encouragement

and for believing in me and my potential.

Moreover, I would like to thank my colleagues at The Sudan University of

Science and Technology and International University of Africa for help,

which makes my study at Rutgers enjoyable and fruitful. I am also thankful

to Computer Center–Sudan University for their assistance and support.

iv

PUPLICATION BASED ON THIS THESIS

1. Hiba. A. Nasir, Yahia. A. Mohammed, Amir. A. Eisa, "Agent-based Proxy

Cache Cleanup Model using Fuzzy Logic", proceedings of International

Conference of Computing Electrical and Electronic Engineering (ICCEEE),

Khartoum, Sudan, August 2013.

2. Hiba. A. Nasir, Yahia. A. Mohammed, Amir. A. Eisa, "A Survey of

Intelligent Web Caching", proceedings of Conference on Computing, Control,

Networking, Electronics and Embedded Systems Engineering (ICCNEEE

2015), Khartoum, Sudan, September 2015.

3. Hiba. A. Nasir, Yahia. A. Mohammed, Amir. A. Eisa, "Proxy Cache

Cleanup Improvement using an Agent- Based Model", Elsevier 2015 (on

review)

v

ABSTRACT

Web proxy caching is one of the effective solutions to avoid web

service bottleneck, reduce traffic over the Internet and improve scalability

of the web service. The core of a caching system is the caching replacement

policies. This study describes the use of intelligent agent model to improve

the performance of the proxy cache. A multi-agent system has been

developed to control the cache cleanup task on the hierarchy caches.

 Fuzzy logic is used to combine Least Frequently Used (LFU), Least

Recently Used (LRU) and Size caching replacement policies on the parent

cache side. LFU and LRU policies are used on the child caches side. Cache

cleaner Agents use fuzzy logic to make an intelligent decision and remove

the web object proactively when it has high clean up priority. Reactive

Coordination has been applied between the parent and child cleaner agents

to achieve the cleanup task in efficient way, they have a common goal to

increase hit ratio and byte hit ratio.

 Coordination agent applied the coordination rules when the web

object with medium priority is found in parent and children caches. Q-

learning algorithm has been implemented by the cleaner agent to avoid

difficult calculation when it reached a similar state and take a suitable

action.

 A reward value has been associated to each action, when Cleaner

agent takes its optimal action that leads to the goal, it has an instant high

reward. Other actions have low reward. States and actions had been

represented on a graph each node represented a "state", agent's movement

from one node to another represented the "action".

 The model has been tested using five samples of workload generated

using Webtraff simulator, these samples represented the users requests and

used cache sizes. The standard performance metrics Hit Ratio and byte hit

ratio are used to evaluate the cache performance.

 Simulation results show that when the cache size increase the new

approach PCCIA performs better than LRU,LFU and Size replacement

polices in terms of hit rate and byte hit rate.

vi

vii

TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS ii

PUPLICATION BASED ON THIS THESIS i v

ABSTRACT v

 vi المستخلص

TABLE OF CONTENTS ivii

LIST OF TABLES viii

LIST OF FIGURES ix

ABBREVIATION xiv

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 2

1.2 Web Proxy Caching Policies 2

1.3 Problem Statement 5

1.4 Research Aim 6

1.5 Research Objectives 7

1.6 Research Scope 7

1.7 Research Assumptions 7

1.8 Research Questions 8

1.9 Research Contribution 8

1.10 Thesis Organization 9

CHAPTER 2: RELATED WORK 10

2.1 Intelligent Web Caching 11

2.2 Old Intelligent Web Caching 25

2.3 Multi-Agents Coordination 31

file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893924
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893925
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893925
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893926
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893927
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893927
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893928
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893929
file:///C:/Users/fono/Desktop/PhD%20Thesis3.docx%23_Toc285893929

viii

2.4 Multi-Agents Learning 35

CHAPTER 3: MODEL ANALYSIS 40

3.1 The New Model 41

3.1.1 Model Common Properties 41
3.1.2 Model Detailed Properties 41

3.1.3 Model Description 43
3.1.4 Model Architecture 44

3.1.5 Agents' Tasks 45
3.1.6 Agents' Behaviors 46

3.1.7 Agent's Interactions 47
3.1.8 Agents' Communication 47

 Cache Cleaner Agent – Coordinator Agent Communication 48

3.2 Analysis using Agent Message Methodology 49

3.2.1 Organization view (OV) 49
3.2.2 Goal Task View (GTV) 51

3.2.3 Domain View (DV) in level 0 53
3.2.4 Domain View (DV) in level 1 55

3.2.5 Interaction View (IV) 57

CHAPTER 4: PARENT AND CHILD CLEANER AGENT COORDINATION

AND LEARNING 59

4.1 Parent and Child Cleaner Agents Coordination 60

4.1.1 Assumptions 60

4.1.2 Coordination Rules' Abbreviations 60
4.1.3 Coordination Rules 61

4.2 Q-Learning Analysis 68

4.2.1 Q-Learning Terminology 68
4.2.2 Parent's States 70

4.2.3 Child's States 74

CHAPTER 5: IMPLEMENTATION 75

5.1 Implementation using Fuzzy Logic 76

5.1.1 Fuzzification Process 77
5.1.2 Inference Rules Process 79

5.1.3 Defuzzification and Membership Function 85
5.2 Coordination Rules Implementation 89

5.2.1 Coordination Rules Simplified 89

5.2.2 Sum of Minterms 91
5.3 Q-Learning Implementation 93

ix

CHAPTER 6: TESTING AND RESULTS 99

6.1 Testing and Results 100

6.2 Performance Evaluation 102

6.3 Results Discussion 119

6.4 Simulation Results for Parent Cache 119

6.5 Simulation Results for Child 1 Cache 121

6.6 Simulation Results for Child 2 Cache 123

CHAPTER 7: 125

CONCLUSION AND RECOMMENDATIONS 125

7.1 Conclusion 126

7.2 Future Work 127

REFERENCES 130

APPENDIX 139

Result's Tables 139

x

LIST OF TABLES

Table ‎2.1: Classification of the Previous Studies Error! Bookmark not defined.

Table ‎5.1: Input Fuzzy Parameter (Size) Error! Bookmark not defined.

Table ‎5.2: Input Fuzzy Parameter (Frequency) Error! Bookmark not defined.

Table ‎5.3: Input Fuzzy Parameter (Time) Error! Bookmark not defined.

Table ‎5.4: Out Fuzzy Parameters Error! Bookmark not defined.

Table ‎5.5 : Input Fuzzy Parameter's Units Error! Bookmark not defined.

Table ‎5.6: Parent's Inference rules Error! Bookmark not defined.

Table 5.7: Child's Inference rules Error! Bookmark not defined.

Table ‎5.8: Coordination Truth Table Error! Bookmark not defined.

Table 1: Parent HR Cache Sim =1 Mb Error! Bookmark not defined.

Table 2: Table Parent BHR Cache Sim = 1 Mb Error! Bookmark not defined.

Table 3: Child 1 HR Cache Sim = 1 Mb Error! Bookmark not defined.

Table 4: Child1 BHR Cache Sim = 1 Mb Error! Bookmark not defined.

Table 5: Child 2 HR Cache Sim = 1 Mb Error! Bookmark not defined.

Table 6: Child 2 BHR Cache Sim = 1 Mb Error! Bookmark not defined.

Table 7: Parent HR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 8: Parent BHR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 9: Child 1 HR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 10: Child 1 BHR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 11: Child 2 HR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 12: Child 2 BHR Cache Sim = 6 Mb Error! Bookmark not defined.

Table 13: Parent HR Cache Sim = 500 Mb Error! Bookmark not defined.

Table 14: Parent BHR Cache Sim = 500 Mb Error! Bookmark not defined.

Table 15: Child1 HR Cache Sim = 500 Mb Error! Bookmark not defined.

Table 16: Child1 BHR Cache Sim = 500 Mb Error! Bookmark not defined.

Table 17: Child 2 HR Cache Sim = 500 Mb Error! Bookmark not defined.

Table 18: Child2 BHR Cache Sim = 500 Mb Error! Bookmark not defined.

xi

Table 19: Parent HR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 20: Parent HR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 21: Child1 HR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 22: Child1 BHR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 23: Child 2 HR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 24: Child 2 BHR Cache Sim = 800 Mb Error! Bookmark not defined.

Table 25: Parent HR Cache Sim = 1Gb Error! Bookmark not defined.

Table 26: Parent BHR Cache Sim = 1Gb Error! Bookmark not defined.

Table 27: Child 1 HR Cache Sim = 1 Gb Error! Bookmark not defined.

Table 28: Child1 BHR Cache Sim = 1Gb Error! Bookmark not defined.

Table 29: Child 2 HR Cache Sim = 1Gb Error! Bookmark not defined.

Table 30: Child 2 BHR Cache Sim = 1Gb Error! Bookmark not defined.

Table 31: Hit Ratio and Byte Hit Ratio in Best Results Error! Bookmark not defined.

Table 32: Hit Ratio and Byte Hit Ratio in Worse Results Error! Bookmark not

defined.

xii

LIST OF FIGURES

Figure ‎3.1: The Model Architecture 45

Figure ‎3.2 : Sample of Web Workload Format Used in WebTraff 46

Figure ‎3.3. Organization Diagram (Structural relationships) 50

Figure ‎3.4: Goal/Task Implication diagram 52

Figure ‎3.5:Level 0Domain Diagram 54

Figure ‎3.6: Level 1Domain Diagram 56

Figure ‎3.7: Interaction Diagram 58

Figure ‎4.1:Parent' States 72

Figure ‎4.2: Child's State 74

Figure ‎5.1: Cache cleaner fuzzy based system 76

Figure ‎5.2: Triangular membership function 86

Figure ‎5.3: Web object size membership function 86

Figure ‎5.4: Web object frequency membership function 87

Figure ‎5.5 : Web object time membership function 87

Figure ‎5.6 : cleanup priority membership function 88

Figure ‎5.7: Q-Learning Algorithm 94

Figure ‎5.8: Algorithm to utilize the Q matrix 97

Figure ‎6.1:Figure Screen Shot of Graphical User Interface (GUI) for WebTraff Tool 100

Figure ‎6.2: Sample of Web Workload Format Used in WebTraff 101

Figure ‎6.3: Parent HR (Cache Sim = 1Mb) 103

Figure ‎6.4: Parent BHR (Cache Sim = 1 Mb) 103

Figure ‎6.5: Child1 HR(Cache Sim = 1 Mb) 104

Figure ‎6.6: Child1 BHR (Cache Sim =1Mb) 104

Figure ‎6.7: Child2 HR (Cache Sim = 1 Mb) 105

Figure ‎6.8: Child 2 BHR (Cache Sim =1 Mb) 105

Figure ‎6.9: Parent HR (Cache Sim = 6 Mb) 106

xiii

Figure ‎6.10: Parent BHR (Cache Sim= 6 Mb) 106

Figure ‎6.11: Child1 HR (Cache Sim = 6 Mb) 107

Figure ‎6.12: Child1 BHR (Cache Sim = 6 Mb) 107

Figure ‎6.13: Child2 HR (Cache Sim = 6 Mb) 108

Figure ‎6.14: Child2 BHR (Cache Sim =6 Mb) 108

Figure ‎6.15: Parent HR (Cache Sim = 500 Mb) 109

Figure ‎6.16: Parent BHR (Cache BHR = 500 Mb) 109

Figure ‎6.17: Child1 HR (Cache Sim = 500 Mb) 110

Figure ‎6.18: Child1 BHR (Cache Sim =500 Mb) 110

Figure ‎6.19: Child2 HR (Cache Sim =500 Mb) 111

Figure ‎6.20: Child2 BHR (Cache Sim = 500 Mb) 111

Figure ‎6.21: Parent HR (Cache Sim = 800 Mb) 112

Figure ‎6.22: Parent BHR (Cache Sim 800 Mb) 112

Figure ‎6.23: Child HR (Cache Sim = 800 Mb) 113

Figure ‎6.24: Child1 BHR (Cache Sim = 800 Mb) 113

Figure ‎6.25: Child2 HR (Cache Sim = 800 Mb) 114

Figure ‎6.26: Child2 BHR (Cache Sim =800 Mb) 114

Figure ‎6.27: Parent HR (Cache Sim = 1 Gb) 115

Figure ‎6.28: Parent BHR (Cache Sim = 1 G) 115

Figure ‎6.29: Child1 HR (Cache Sim = 1 Gb) 116

Figure ‎6.30: Child1 BHR (Cache Sim = 1 Gb) 116

Figure ‎6.31: Child2 HR (Cache Sim= 1Gb) 117

Figure ‎6.32: Child2 BHR (Cache Sim 1 Gb) 117

‎6.33: Hit Ratio and Byte Hit Ratio in Best Results 118

‎6.34: Hit Ratio and Byte Hit Ratio in Worse Results 118

xiv

ABBREVIATION

AI Artificial Intelligence

AV Agent/Role view

BHR Byte Hit Ratio

BN Bayesian network

C1 del delete web object from child 1 cache

C1 freq web object's frequency in child 1 cache

C1 save save web object in child 1t cache

C1 time web object's request time in child 1 cache

C2 del delete web object from child 2 cache

C2 freq web object's frequency in child 2 cache

C2 save save web object in child 1 cache

C2 time web object's request time in child 2 cache

CART Classification and Regression Trees

CG Coordination Graph

CoordRL Coordinated Reinforcement-Learning

CP Cleanup Priority

DV Domain view

FL Fuzzy Logic

GB Gigabyte

GDS Greedy-Dual-Size

xv

GTV Goal/Task view

HR Hit Ratio

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IV Interaction view

LFU Least Frequently Used Algorithm

LRU Least Recently Used Algorithm

MAL Multi Agent Learning

MARS Multivariate Adaptive Regression Splines

MAS Multi-Agent Systems

MB Megabyte

MF Member Function

MMDP Multi=agent Markov Decision Process

NN Neural Networks

OV Organization view

P del delete web object from parent cache

P freq web object's frequency in parent cache

P save save web object in parent cache

P time web object's request time in parent cache

PCCIA Proxy Cache Cleanup Improvement using an Agent-based Model

RF Random Forest

RL Reinforcement Learning

RS Rough Set

SIZE SIZE Algorithm

ST Spanning Tree

xvi

TN TreeNet

UML Unified Modeling Language

URL Uniform Resource Locator

VE Variable Elimination Algorithm

WWW World Wide Web

1

CHAPTER 1: INTRODUCTION

2

1.1 Motivation

The Web has become the most important source of information for

the world; it contributes greatly to our life in many fields such as education,

entertainment, Internet banking, remote shopping and software

downloading. This has led to rapid growth in the number of Internet users,

which resulting in an explosive increase in traffic or bottleneck over the

Internet[1].

Web proxy caching is one of the effective solutions for improving

Web performance to avoid Web service bottleneck, reduce traffic over the

Internet and improve scalability of the Web system.

In Web caching, the web objects that to be visited in the future are

stored close to the user to reduce network bandwidth, user (client) perceived

lag and loads on the origin servers so as improving scalability of Web

system[2].

 Cache replacement is the core of web caching; hence, the design of

efficient cache replacement algorithms is crucial for the success of caching

mechanisms.

1.2 Web Proxy Caching Policies

There are many replacement policies to consider when designing a proxy

server. The most commonly known are still based on traditional caching

policies. These conventional policies are suitable in traditional caching like

CPU caches and virtual memory systems, but they are not efficient in Web

caching. This is because they only consider one factor in caching decisions

3

and ignore the other factors that have impact on the efficiency of the Web

proxy caching [3]. The simplest and most common cache management

approaches are:

 Least-Recently-Used (LRU) algorithm which removes the least recently

accessed objects until there is sufficient space for the new objects. LRU is

easy to implement and proficient for uniform size objects such as the

memory cache. However, it does not perform well in Web caching since it

does not consider the size or the download latency of objects.

 Least-Frequently-Used (LFU) is another common Web caching that

replaces the object with the least number of accesses. LFU keeps more

popular Web objects and evicts rarely used ones. LFU suffers from the

cache pollution in objects with the large reference accounts, which are

never replaced even if they are not re-accessed again.

 SIZE policy is one of the common Web caching policies that replace the

largest object(s) from cache when space is needed for a new object.

 Greedy-Dual-Size (GDS) policy it is extension of the SIZE policy. The

algorithm integrates several factors and assigns a key value or priority for

each Web object stored in the cache. When cache space becomes occupied

and new object is required to be stored in cache, the object with the lowest

key value is removed. When user requests an object g, GDS algorithm

assigns key value K(g) of object g as shown in Equation 1.1:

K(g) = L + C (g) / S (g) (1.1)

Where C(g) is the cost of fetching object g from the server into the cache;

S(g) is the size of object g; and L is an aging factor. L starts at 0 and is

updated to the key value of the last replaced object. The key value K(g)

of object g is updated using the new L value since the object g is

accessed again. Thus, larger key values are assigned to objects that

have been visited recently. If the cost is set to 1, it becomes GDS(1),

and when the cost is set to P=2+size/536, it becomes GDS(P). Cao and

Irani [3] proved that the GDS algorithm achieved better performance

4

compared with some traditional caching algorithms. However, the

GDS algorithm ignores the frequency of the access to web object.

 Greedy-Dual-Size-Frequency (GDSF)[3]enhanced GDS algorithm by

integrating the frequency factor into the key value K(g) as shown in

the following Equation:

K (g) = L + F (g)* C(g) /S (g) (1.2)

where F(g) is frequency of the visits of g. Initially, when g is requested by

user, F(g) is initialized to 1. If g is in the cache, its frequency is increased

by one.

In fact, few important features of Web objects that can influence the Web

proxy caching are: recency, frequency, size, cost of fetching the object, and

access latency of object. Depending on these factors, the Web proxy

policies are classified into five categories: Recency-based polices,

Frequency based polices, Size-based polices, Function-based polices and

Randomized polices.

Many Web cache replacement policies have been proposed for improving

performance of Web caching. However, it is difficult to have a policy that

performs well in all environments or for all time because the combination of

the factors that can influence the Web proxy cache is not an easy task[3].

Due to cache space limitations, an intelligent mechanism is required to

manage the web cache contents efficiently. The core of a caching system is

the cache replacement policy.

Most of the web proxy policies use one factor for making decisions about

caching. However, a combination of these factors to get wise replacement

decision is not a simple task, because one factor in a particular environment

5

may be more important in other environments. Hence, there is a need for an

effective and adaptive approach, which can effectively incorporate the

significant factors into web caching decisions.

1.3 Problem Statement

Since the space apportioned to the cache is limited and the most of the

existing traditional proxy caching policies such as Size, Greedy Dual Size

(GDS), Least Frequently Used (LFU), and Least Recently Used (LRU), are

not efficient in Proxy caching, since each policy considers one factor and

ignore the others that have effect on the efficiency of the proxy caching and

may suffer from a cache pollution problem that means that a cache contains

objects that are not frequently visited. This causes a reduction of the

effective cache size and negatively affects the performance of web proxy

caching.

Combination of the factors that can influence the cleanup task to get wise

replacement decision is not an easy task because one factor in a particular

situation or environment is more important than other environments [9].

Hence, the difficulty in determining which ideal web objects will be re-

accessed is still a big challenge faced by the existing Web caching

techniques. What Web objects should be cached and what Web objects

should be replaced to make the best use of available cache space, improve

hit rates, reduce network traffic, and alleviate loads on the original server.

Thus, there is a need to find another approach to perform and control the

cache cleanup task in an efficient way.Recent studies have shown that the

6

intelligent web caching approaches are more efficient and adaptive to web

caching environments compared to other approaches.

 Proxy cache clean up task is performed on hierarchy caches individually;

there are no coordination between parent and children agents when they

performed the cache cleaning task to decide which objects should be stored

in the caching system and which object should be removed.

The study tries to solve the cache cleanup problem focus on three key

problems:

 Proxy cache cleanup process is performed with human administrator, the

study proposed a multi-agent systems to automate this task.

 Most of the existing traditional caching policies are not efficient in Proxy

caching, they consider just one factor and ignore other factors that

influence the efficiency the web caching, the study propose the

integration of the factors to improve cache efficiency.

 Current cache cleanup task is performed in each child and parent proxy

caches individually, the study proposed a proactive coordination rulesto

coordinate this task on parent and children caches, so as to improve the

web performance in efficient way.

1.4 Research Aim

This research aims to enhance the performance of web proxy caching

through intelligent web proxy caching approaches based on intelligent

Agent model.

7

1.5 Research Objectives

In order to achieve the aim of the study, the objectives of this research are

stated as follows:

1- To develop an intelligent approach based on agent model to automate

proxy cache cleanup task in an efficient way,

2-To integrate caching polices on parent and child caches,

3- To develop a coordination mechanism between the parent and child

agent to achieve cache cleaning task in efficient way,

4- To increase Hit Rate and Byte Hit Ratio on the hierarchy proxy caches,

5- And to improve the scalability of hierarchy cache system.

1.6 Research Scope

 This work proposes an agent-based model to automate and control

the cache cleanup task. The cache cleanup task is performed proactively in

the hierarchical caching system based on the integration of the caching

polices so as to improve the proxy cache performance.

1.7 Research Assumptions

 In order to achieve the research objectives, the assumptions of the

study are stated as follows:

1- Web caching is applied on hierarchy web proxy cache.

2- Hit ratio (HR) and byte hit ratio (BHR) are used to evaluate the

performances of intelligent web proxy caching approaches since HR

and BHR are two widely used metrics for evaluating the performance of

web proxy caching policies.

8

3- WebTraff simulator [88] is modified and used for evaluating the

proposed intelligent web proxy caching approach.

4- Jade Platform [9]has exploited for developing agent based model.

1.8 Research Questions

1. How can the performance of web proxy caching be enhanced using

Intelligent Agent?

2. What are the tasks to be achieved by using agents?

3. How to build efficient intelligent agent model to improve the cache

cleanup task?

4. How to use the multi-agent systems to distribute controlling functions

such as monitoring, cleanup and coordinating tasks among multiple agents.

5. How to add the artificial intelligence techniques such as learning to

enhancing the performance of web proxy caching?

 6. How agents can coordinate the cleanup task?

7. How to evaluate the new approach compared to other works?

1.9 Research Contribution

 The major contribution of this work is to add the idea of using multi-

agent systems to automate the hierarchy caches cleanup task proactively

and in efficient way. Agents use fuzzy logic to integrate the Size, Least

Recently Used (LRU) and Lest Frequency Used (LFU) caching polices and

makes an intelligent decision about clean up priority so as to improve the

performance of the proxy cache.

More over this work added the coordination mechanism to coordinate

object replacement because it is one of the important issues in hierarchical

caching systems to decide which objects should be stored and which object

should be removed. Also Q learning algorithm has been implemented to

avoid difficult calculation when the cleaner agent reached a similar state

and take a suitable action.

9

The experimental results show that the new approach outperforms

conventional caching techniques on a large cache size in terms of hit ratio

(HR) and byte hit ratio (BHR).

1.10 Thesis Organization

This thesis contains seven chapters and is organized as follows:

Chapter 1 provides a brief introduction of the study. It covers topics on

motivations, problem statement, research aim, objectives, question, scope,

assumptions and summary of research contributions.

Chapter 2 introduces a general overview of the literature review of this

study, discusses the related work on intelligent web caching.

Chapter 3 describes in-depth the Agent Message methodology that used in

this study. The methodology is presented as diagrams that describe briefly

the different views of model analysis and design to agent's tasks, behaviors,

interactions and messages.

Chapter 4 describes in details of cache cleaner agent's coordination and

learning.

Chapter 5 describes the implementation of the new model.

Chapter 6 Simulation Results are discussed in this chapter, the new

approach has been compared with the most common and relevant web

proxy caching policies.

Finally, Chapter 7 concludes the thesis. In addition, it provides suggestions

and recommendations for future study.

10

CHAPTER 2: RELATED WORK

11

RELATED WORK

2.1 Intelligent Web Caching

Many studies have investigated the enhancement of caching

performance using artificial intelligence techniques. Some of these studies

are real systems, while others are simulations. An approach to web proxy

cache replacement, which utilizes neural networks for replacement

decisions, has been proposed in[1]. Machine learning techniques are used to

increase the performances of traditional Web proxy caching policies such as

SIZE, and Hybrid. Naive Bayes (NB) and decision tree (C4.5) are used and

integrated with traditional Web proxy caching techniques to form better

caching approaches known as NB–SIZE, and C4.5–Hybrid. The proposed

approaches are evaluated by trace-driven simulation and compared with

traditional Web proxy caching techniques. Experimental results have

revealed that the proposed NB–SIZE and C4.5–Hybrid significantly

increased Pure Hit-Ratio, Byte Hit-Ratio and to reduced the latency when

compared with SIZE and Hybrid.

 Reference [2] Presented substantial RS analysis based on Inductive

Learning methods to optimize mobile Web pre-caching performance to

probe significant attributes and generate the decision rules. RS granularity

in mobile Web pre-caching allows decision rules to be induced. These rules

are important in optimizing storage of mobile application by executing

caching strategy in specifying the most relevant condition attributes. This

approach provides guidance to the administrator in mobile Web pre-caching

to select the best parameters to be cached. Based on this analysis, the

12

administrator may reorganize the parameter of log data set in proxy caching

accordingly.

Study [3]gave solution for scalability and robustness of Distributed

web caching System and for load balancing and Metadata manageability.

The study had refined the technique using proxy server clusters with

Dynamic allocation of requests. They devised an algorithm for Distributed

Web Cache concepts with clusters of proxy server based on geographical

regions. It increases the scalability by maintaining metadata of neighbors

collectively and balances load of proxy servers dynamically to other less

congested proxy servers, so system doesn‟t get down unless all proxy

servers are fully loaded so higher robustness of system isachieved. This

algorithm also guarantees data consistency between the original server

object and the proxy cache objects using semaphore.

Reference [4] discussed an alternative way to implement an

autonomous SPY tool that is capable to self-direct, either to cache or not;

the objects in a document based on the behavior of users‟ activities (number

of object hits, script size of objects, and time to receive objects) in an

Internet based electronic services (e-services) for enhancing Web access. In

this study, an integration of Particle Swarm Optimization (PSO) and

Artificial Neural Networks (ANN) in Web caching technology is found

promising in alleviating the congestion of Internet access.

The usage of Rough Set (RS) theory for performance enhancement of

Web caching is illustrated in [5]. The RClass System framework is used as

a knowledge representation scheme for uncertainty in data for optimizing

13

the performance of proxy caching that is used to store the knowledge

discovery of user behaviors in log format. Substantial RS analysis based on

Inductive Learning methods is presented to optimize Web caching

performance to probe significant attributes and generate the decision rules,

these rules are important in optimizing users‟ storage by executing caching

strategy, in specifying the most relevant condition attributes. The proposed

framework is illustrated using trace-based experiments from Boston

University Web trace data set.

In [6] principles and some existing web caching and pre-fetching

approaches are reviewed. The conventional and intelligent web caching

techniques are investigated and discussed. Moreover, Web pre-fetching

techniques are summarized and classified with comparative limitations of

these approaches. The paper also discusses some studies that integrate both

web caching and pre-fetching together.

 Reference [7]discusses an alternative way to implement log data

detection tool. This tool is capable to self directed either to cache or not to

cache the objects in a document based on the log data. In this study, an

integration of PSO and ANN in Web caching technology is promising in

alleviating the congestion of Internet access.

Paper [8] provides an improved prediction accuracy and state space

complexity by using novel approaches that combine clustering, association

rules and Markov models. The three techniques are integrated together to

maximize their strengths. The integration model has been shownto achieve

better prediction accuracy than individual and other integrated models.

14

Reference [9] proposes splitting client-side web cache to two caches,

short-term and long-term. Initially, a web object is stored in short-term

cache, and the web objects that are visited more than the pre-specified

threshold value will be moved to long-term cache. Other objects are

removed by Least Recently Used (LRU) algorithm as short-term cache

becomes full. More significantly, when the long-term cache saturates, a

neuro-fuzzy system is employed in classifying each object stored in it into

either cacheable or un cacheable. The old un cacheable objects are

candidates for removal from the long-term cache. By implementing this

mechanism, cache pollution can be mitigated and cache space can be

utilized effectively. Experimental results have revealed that the proposed

approach can improve the performance up to 14.8% and 17.9% in terms of

hit ratio (HR) compared to LRU and Least Frequently Used (LFU). In terms

of byte hit ratio (BHR), the performance is improved up to 2.57% and

26.25%, and for latency saving ratio (LSR), the performance is improved up

to 8.3% and 18.9%, compared to LRU and LFU. Although the simulation

results have proven that work helps in improving the performance in terms

of the hit ratio (HR), the performance in terms of the byte hit ratio (BHR) is

not good enough since the cost and size of the predicted objects in the cache

replacement process were not taken into consideration. Moreover, the

training process requires long time and extra computational overhead.

 In [10], an algorithm called Pre-IPGDSF# is developed by integrating

Web caching and Web pre-fetching in Web servers. An algorithm called

Intelligent Predictive Greedy Dual Size Frequency#, IPGDSF#, is used for

caching. For pre-fetching a static pre-fetching method is used. Trace driven

15

analysis, using three different Web proxy server logs, is used to evaluate the

effects of different replacement policies on the performance of a Web proxy

server. Results indicate that, for larger cache sizes, Pre-IPGDSF#

outperforms all other algorithms in terms of both hit rate and byte hit rate.

Reference[11] proposed a hybrid technique based on combination of ANN

and Particle Swarm Optimization (PSO) for classification Web object either

to cache or not and generate rules from log data by using Rough Set

technique on proxy server (Rough Neuro-PSO).

[12] reported an integrated caching and pre-fetching technique to

reduce latency in mobile environment. The proposed model consist of

bandwidth monitoring agent to find out current bandwidth usage, a pre-

diction module to predict the number and the list of urls to be pre-fetched

and a pre-fetch module to pre-fetch the web page and store them in a pre-

fetch area. Simulation results show that the browser implemented in a

mobile environment maintains almost constant web traffic even id pre-

fetching is done and latency is reduced up to 40- 70%.

In [13] Vague improved Markov model is presented to perform the

prediction. In this work, Vague rules are suggested to perform the pruning

at different levels of Markov model. Once the prediction table is generated,

the association mining will be implemented to identify the most effective

next page. In this paper, an integrated model is suggested to improve the

prediction accuracy and effectiveness.

In[14] a technique to remove the problem of cold cache pollution is

proposed which is proved mathematically that it is better than the existing

16

LRU-Distance algorithm, the two modified LRU algorithms, LRU-Distance

and SLRU proposed, to reduce cold cache pollution. These two algorithms

are also simple to implement. But cold cache pollution is partially removed

by these two modified form of the LRU.

An Intelligent Predictive Web caching algorithm, IPGDSF was

investigated in [15],it capable of adapting its behavior based on access

statistics. This algorithm is based on the GDSF algorithm; IPGDSF has

compared with several cache replacement policies like LRU, GDSF, and

GDSF for Web proxies, using a trace-driven simulation approach. the study

show that IPGDSF outperforms all other algorithms in terms of hit rate as

well as byte hit rate.

Reference [16]Presented an Energy Efficient Intelligent Agent (IA)

controlled combined proxy pre-fetch-cache framework. The principle

objective is to satisfy most of the clients‟ requests through a local proxy

cache populated from various distributed proxies within the same or

neighboring clusters and very few requests are sent to the remote origin

server.

A replacement algorithm called ALIRS which is based on LIRS

ALIRS algorithm was proposed in [17] to solve the scalability issue in the

cache system. The authors were used parallel computing and Actor

concurrency model to hide the expensive cost of replacement operations,

which significantly improve the scalability. Experimental results show that

ALIRS has both high cache hit ratio and high scalability.

17

Reference [18] provides the most comprehensive comparison of

function based proxy cache replacement strategies. The comparisons are

based on three important metrics, hit rate, byte hit rate and removal rate.

The strategies were reported here are the instances of the parameters that

provide the best result for the corresponding strategy. LRU and GDSF

strategies are no longer “good-enough” strategies, they have demonstrated

the trade-off between byte hit-rate and hit-rate when considering an object‟s

recency, frequency and size characteristics.

A new algorithm called least Grade Replacement (LGR) is proposed

in [19]by considering recency, frequency, perfect-history and size in

replacing policy. The 2- and 4-way set associative caches were used to

determine the optimal recency coefficients. The cache size was varied from

32k to 256k in the simulation. The results showed that the new algorithm

(LGR) is better than LRU and LFU in terms of Hit Ratio (HR) and Byte Hit

Ratio (BHR).

Reference [20] proposed a SEMALRU replacement policy by

combining the semantic content and recency of web pages. It outperformed

other policies in terms of Page Hit Ratio, Byte Hit Ratio and number of

replacement as demonstrated in the text. The policy was tested in a

simulated environment with the related and unrelated set of user access

pattern. The parameters pertinent to cache replacement algorithms are

computed and the results showing the improvement in the efficiency of the

algorithm are furnished.

18

Reference[21] proposed and used the data envelopment analysis

(DEA) as a technique that can be used to enhance the trace-driven

simulation experiments that constitute the common methodology to study

the object replacement strategies in web caching. The DEA model clearly

showed that the cache size plays a crucial role in improving the

performance of all the algorithms, for all the performance metrics under

study. When the cache size increases, there is a general convergence of the

efficiency scores towards the unity.

The implementation of a caching scheme for ad hoc networks was

described in [22]. In this scheme the mobile nodes implement a local cache.

This feature allows to intercept the forwarding requests and serve the

documents requested directly using their local cache. Using the information

obtained by the documents forwarded the nodes can redirect therequests to

other nodes that are known to have the document requested. This caching

scheme has been implemented using the network simulator NS-2. The paper

describes the architecture, implementation details and customization

parameters.

Reference [23] proposed a caching scheme which utilized a multi-

level class information. A MLR (Multinomial Logistics Regression) based

classifier is constructed using the information from web logs. Simulation

results confirm that the model has good prediction capability and suggest

that the proposed approach can improve the performance of the cache

substantially.

19

A modification of the performance model of Proxy Cache Servers to

a more powerful case when the inter-arrival times and the service times are

generally distributed was proposed in [24]. The paper described the original

proxy cache server model where the arrival process is a Poisson process and

the service times are supposed to be exponentially distributed random

variables. Then they calculate the basic performance parameters of the

modified performance model using the well known Queueing Network

Analysis (QNA) approximation method. The accuracy of the new model is

validated by means of a simulation study over an extended range of test

cases.

The work [25] presented a technique to classify whether a cached

object is a One-Timers (OT) referenced only once or not. Statistical analysis

of the workload shows that as much as 76% of objects are One-Timers

(OT), Caching OT objects usually degrade the performance of all Web

cache replacement algorithms .Simulation shows that classification may

significantly enhance the performance of replacement algorithms with

respect to the HR, the BHR and the DSR.

A game between an Internet Service (access)Provider (ISP) and

content provider (CP) on a platform of end-user demand was considered in

[27].A price-convex demand-response is motivated based on the delay-

sensitive applications that are expected to be subjected to the assumed

usage-priced priority service over best-effort service. The authors

considered two-sided market with multi-class demand wherein one class

(that under consideration herein) is delay-sensitive. Both the Internet and

proposed Information Centric Network, encompassing Content Centric

20

Networking scenarios are considered. For the purposes, the first case is

basically different in the polarity of the side-payment (from ISP to CP) and,

more importantly here, in that content caching by the ISP is incented. A

price convex demand-response model is extended to account for content

caching. The corresponding Nash equilibrium are derived and studied

numerically.

Reference [28]considered ASes that maintain peering agreements

with each other for mutual benefit, and engage in content-level peering to

leverage each others‟ cache contents. The authors propose a model of the

interaction and the coordination between the caches managed by peering

ASes. They address whether stable and efficient content-level peering can

be implemented without explicit coordination between the neighboring

ASes or alternatively, whether the interaction needs to rely on explicit

announcements of content reach ability in order for the system to be stable.

They show that content-level peering leads to stable cache configurations,

both with and without coordination. If the ASes do coordinate, then

coordination that avoids simultaneous updates by peering ISPs provides

faster and more cost efficient convergence to a stable configuration.

Furthermore, if the content popularity estimates are inaccurate, content-

level peering is likely to lead to cost efficient cache allocations. They

validate the analytical results using simulations on the measured peering

topology of more than 600 ASes.

Research [29]tries to improve hit rates in proxy system by applying

data mining technique. The data set were collected from proxy servers in

the university and were investigated relationship based on several features.

21

The model was used to predict the future access websites. Association rule

technique was applied to get the relation among Date, Time, Main Group

web, Sub Group web, and Domain name for created model. The results

showed that this technique can predict web content for the next day,

moreover the future accesses of websites increased from 38.15% to 85.57%.

Reference [30] provides a framework to overcome the limitations of

the existing Anti Spam SMTP Proxy server engine by restructuring the

existing ASSP server engine. The authors dealed with spam detection as

image spam, video spam that comes as attachments and a single line

message that would direct to another URL with a trainable fuzzy classifier

to build an automatic anti spam filter. Based on the rule, evaluations were

done to predict whether the given mail is a valid or invalid and the report is

updated in the database.

Reference[31]enhance traditional Web caching polices using

supervised machine learning techniques such as a support vector machine, a

naïve Bayesian classifier (NB), a decision tree (C4.5) and Size . It trained

from Web proxy logs files to predict the object that would be revisited.HR

increased by 30.15% and BHR increased by 32.43%.

Reference [32]proposed a hybrid of web proxy caching architecture

by integrating forward and reverses proxy caching techniques to improve

the performance of computer network.

Evaluation of web pre-fetching and caching algorithms has been

studied in[33].They explain advantages and disadvantages to each

algorithm and its own application area.

22

In the Study [34] a Response Time Gain Factor is included in this

web object replacement algorithm with Size heterogeneity of a web object

for performance improvement of the response speed, it makes a qualitative

comparison between these policies and its performance object-hit ratio and

an improvement of response speed.

Reference [35]proposes a splitting browser cache to two caches,

instant cache to store the web object and durable cache to store the web

objects that are visited more than the pre-specified threshold value.

Reference [36]proposed an Intelligent Predictive Web caching

algorithm, IPGDSF, capable of adapting its behavior based on access

statistics considers future frequency in calculating the key value.

Paper [37]concerned Web server log file analysis to discover

knowledge and by applying Clustering and optimization technique to get

user interest which is helpful or useful for giving suggestion about specific

users's interest.

Reference [38] introduced advanced machine learning approaches for

Web caching to decide either to cache or not to the cache server, which

could be modeled as a classification problem. The challenges include

identifying attributes ranking and significant improvements in the

classification accuracy. Four methods are employed in this work;

Classification and Regression Trees (CART), Multivariate Adaptive

Regression Splines (MARS), Random Forest (RF) and TreeNet(TN) are

used for classification on Web caching. The experimental results reveal that

CART performed extremely well in classifying Web objects from the

23

existing log data and an excellent attribute to consider for an

accomplishment of Web cache performance enhancement. Reference[39]

Focus on a framework of a network of proxy caches. In a typical proxy

cache network implementation, such as IRCache, each node in the network

makes its own caching decisions based on the request patterns it observes.

The authors develop algorithms for implementing a network of caches

under both centralized and decentralized frameworks. The caching

implementations are compared and contrasted using numerical

computations. The results demonstrate that the performance of proxy

caching networks can be improved when nodes also consider objects held

by their neighbors.

Work[40]analyzed the confluence of the two effects through a

tractable mathematical model that enables to establish the conditions under

which pre-fetching reduces the average response time of a requested

document. The model accommodates both passive client and proxy caching

along with pre-fetching. The analysis is used to dynamically compute the

“optimal” number of documents to pre-fetch in the subsequent client‟s idle

(think) period. This optimal number is determined through a simple

numerical procedure. Closed-form expressions for this optimal number are

obtained for special yet important cases. Simulations are used to validate

analysis and study the interactions among various system parameters.

In [41] machine learning method is try for a classification problem in

Web caching that requires a decision to cache or not to cache Web objects

in a proxy cache server. The experimental results reveal that CART

performed extremely well in classifying Web objects from the existing log

24

data with a size of Web objects as a significant attribute for Web cache

performance enhancement.

In[42]Rough Set analysis based on Inductive Learning methods to

probe the significant attributes and generate the decision rules by executing

caching strategy.

In [43]the data set were collected from proxy servers. The model was

used to predict the future access websites. Association rule technique was

applied to get the relation among Date, Time, Main Group web and Sub

Group web, and Domain name for created model. The results showed that

this technique can predict web content for the next day, moreover the future

accesses of websites increased from38.15% to 85.57 %.

Reference [44]proposed a new object management policy that can be

applied in the hybrid architecture by employing the upper level proxy cache

having a reference table and employing the summary table in each proxy

cache. The proposed solution numerically outperforms the previous solution

from 72% to 94% in terms of response time.

In [45]Bayesian network (BN) learned from Web proxy logs file to

predict the classes of objects to be re-visited or not. The trained classifiers

were integrated with Web proxy caching to provide more effective proxy

caching policies. From the simulation results,-BN-GDS achieve the best in

HR.-BN-LRU and BN-DA achieved the best in BHR.

25

2.2 Old Intelligent Web Caching

Although the following studies with old date, they have been considered

because they important and it is the starting point in this research:

In [46]ANN has been used for making cache replacement decision.

An object is selected for replacement based on the rating returned by ANN

Simulation result illustrate that -HR 86.60%to 100%-BHR93.36%

to99.92%.

In [47] NNW are trained to classify cacheable objects from real

world data sets using information known to be important in web proxy

caching, such as frequency, recency and size. In simulation, the final NN

achieve HR that are 86.60% of the optimal in the worst case and 100% of

the optimal in the best case. BHR are 93.36% of the optimal in the worst

case and 99.92% of the optimal in the best case.

In [48] trace driven analysis has been used to evaluate the effects of

different replacement policies on the performance of a Web server. The

authors propose a modification of GDSF policy, GDSF#, which allows

augmenting or weakening the impact of size or frequency or both on HR

and BHR. The simulation results show that our proposed replacement

policy GDSF# gives close to perfect performance in both the important

metrics: HR and BHR.

In [49]A new architecture of cache farming with the recommender

system concept to manage users‟ requirements was proposed. This solution

helps reducing the retrieval time and also increasing the hit rate.

26

Reference [50] proposed algorithm that applied set of fuzzy control

rules to identify the pages to evict from the cache, the authors test the

performance via trace driven simulations using traces collected on various

proxy servers.

Reference [51]proposed a similarity-aware multi-cache architecture,

in which the cached web documents are organized into a number of sub-

caches according to their content similarity. A predictor is then developed

to predict the cached documents a user might access next. Once a pre-

fetching plan was formed, a set of agents are employed to work together for

pre-fetching document between proxy caches and browsing clients.

Preliminary experiments have shown that the predictor offers superior

performance when compared with some existing prediction algorithms.

Study[52] Proposed a fuzzy algorithm in which the decision

parameters are treated as fuzzy variables. A simulation is also performed

and the results are compared with Optimal, LRU, and LFU replacement

algorithms. Nine different workloads were examined and as it was shown

the fuzzy approach has better performance over the LFU and LRU

algorithms in eight of these workloads. Results say that, the fuzzy approach

is suitable for looping, probabilistic and temporal pattern of reference and it

even is better in mixed reference patterns.

The feasibility and performance of a locally distributed, self-

organizing network proxy has been investigated in [53].The main

observation made in the reference is that existing strategies for distributed

web object caching do not motivate use because they generally attempt to

27

maximize server performance and often cannot guarantee performance for

clients. This guarantee is provided in the reference by restricting the

attention to the local environment. Trace-driven simulation has been used to

evaluate the performance of the proposed scheme. Results suggest that

cache hit rate in the local environment is highly dependent on population

size and cache size. Further, the benefits of distributed caching can be

realized for small populations.

Study [54] proposed a novel cooperative proxy-and-client caching

system that combines the advantages of both proxy caching and peer-to-

peer (P2P) client communications. The authors propose a comprehensive

suite of protocols to facilitate the interactions among different network

entities. They also develop an efficient cache allocation algorithm to

minimize the aggregated transmission cost of the whole system. The

simulation results demonstrate that the proposed approach achieves

remarkably lower transmission cost. Moreover, it is much more robust than

a pure P2P system in the presence of node failures.

In work [55]A theoretical model has been introduced to analyze the

access cost of placing a set of object copies in the cache hierarchy, under

which the object placement problem is formulated as an optimization

problem. The problem is proved to be divided into sub problems, and a

dynamic programming algorithm is proposed to obtain the optimal solution.

Performance of different caching strategies is evaluated using simulations.

It is shown that the proposed algorithm outperforms other cache placement

strategies in hierarchical caching systems.

28

A dynamic and scalable caching algorithm of proxy server with a

finite storage size for multimedia objects is proposed in [56]. Caching

sequences for videos are obtained to decrease both the buffer size and the

required bandwidth and saved into metafiles in advance. Caching and

replacing algorithms for multimedia objects based on the metafiles have

been presented. Experimental results show the superior performance of the

proposed algorithm.

Reference [57] propose a new proxy-level web caching mechanism

that takes into account aggregate patterns observed in user object requests.

The integrated caching mechanism consists of a quasi-static portion that

exploits historical request patterns, as well as a dynamic portion that

handles deviations from normal usage patterns. This approach captures both

the static and the dynamic dimensions of user web requests. The

performance of the proposed mechanism is empirically tested against the

popular LRU caching policy using an actual proxy trace dataset. The results

demonstrate that the mechanism performs favorably versus LRU.

Study [58] addressed the short-term pre-fetching problem on a Web

cache environment using an algorithm (clustWeb) for clustering inter-site

Web pages. The proposed scheme efficiently integrates Web caching and

pre-fetching. According to this scheme, each time a user requests an object,

the proxy fetches all the objects which are in the same cluster with the

requested object. Specifically, the proxy traces are represented by a Web

navigational graph. Then, the clusters have been resulted by partitioning

this graph, where the number of clusters is not determined at priori but it is

dynamically estimated by the confidence and support measures. Using real

29

data, the authors show the robustness and efficiency of the proposed

method.

Study [60] proposed a novel cooperative caching scheme called

Group Caching (GC) which allows each mobile host and its 1-hop

neighbors form a group. The caching status is exchanged and maintained

periodically in a group. By using the proposed Group Caching, the caching

space in mobile hosts can be efficiently utilized and thus the redundancy of

cached data is decreased and the average access latency is reduced. The

authors evaluate the performance of the Group Caching by using NS2 and

compare it with the existing schemes such as Cache Data and Zone

Cooperative. The experimental results show that the cache hit ratio is

increased by about 3%~30% and the average latency is reduced by about

5%~25% compared with other schemes.

In [61]behavior of LRU, LFU and FIFO replacement algorithms has

been analyzed, a new Replacement Algorithm named MFMR (Most

Frequent with Maximum Reusability) is proposed for proxy server cache

Level1 (L1) which works about 16% better than existing algorithms

considered in this paper. Also a new replacement policy for storage cache

of proxy server to be Level2 (L2) which named AF_LRU (Average

Frequency, Least Recently Used) is proposed. Simulation results show that

pair of MFMR and AF-LRU is approximately 28% better than other

existing pairs of replacement algorithms considered.

Reference [62] dealt with fragment level caching of dynamically

generated web content in proxies that are closer to end users. The authors

30

proposed and evaluated a fragment caching scheme using Bloom filters. It

is the Basic Hint-Based Scheme whereby hints are sent together with each

user request. The solution makes use of Bloom filter. The analytical results

indicate that the solution is feasible, help reduce load from Web site servers

and provide important network traffic savings.

Reference [63] presented an extensive evaluation of the request

filtering in hierarchy of proxy cache. Using the proposed ADF

(Aggregation, Disaggregation and Filtering) model as well as entropy as

metric for web traffic characterization, the authors evaluate how locality of

reference changes as the streams of requests pass through a hierarchy of

caches.

In [64] An adaptive hybrid algorithm has been developed for reducing

web traffic. Intelligent agents are used for monitoring the web traffic.

Depending upon the bandwidth usage, user‟s preferences, server and

browser capabilities, intelligent agents use the best techniques to achieve

maximum traffic reduction. Web caching, compression, filtering,

optimization of HTML tags, and traffic dispersion are incorporated into this

adaptive selection. Using this new hybrid technique, latency is reduced to

20 – 60 % and cache hit ratio is increased 40 – 82 %.

31

2.3 Multi-Agents Coordination

The following papers present some studies in multi-agents coordination:

In [66] cache cooperation under a game theoretical framework was

model. The authors show how cache cooperation policy can allow the

system to converge to a Pareto optimal configuration. The work show how

cooperation impacts network caching performance and how it take

advantage of the structural properties of the underlying network.

Reference [67] proposed a learning mechanism that allows an

artificial agent to construct and exploit a representation of its surrounding

space with minimal preconceptions about its environment. This

representation is based on a data structure that encodes possibilities of

behaviors afforded by the current context. The behaviors are modeled in the

form of sequences of interactions. Over time, the agent learns to associate

sequences of interactions with the presence of certain elements of the

environment in certain locations in the agent's surrounding space. The agent

uses this emergent relation between objects and possibilities of interactions

to construct and maintain a representation of the surrounding space based

on sequences of interactions.

A statistical caching mechanism which makes use of prior knowledge

(statistical data) to predict the pattern of user movement was proposed in

[68]and then replicates/migrates the cache objects among different proxies.

The authors proposed a statistical inference based heuristic search algorithm

to accommodate dynamic mobile data access in the mobile learning

environment.

32

A guided tour of some research on the topic of agent coordination

and a historical survey about some coordination models and languages for

multi-agent systems was presented in[69].The authors show how some

coordination models have been adapted to different network infrastructures,

distinguishing between pre-WWW and WWW based coordination

architectures. They show that the advent of the new programming

paradigms of Web Services and the Semantic Web is prompting the

definition of a new family of coordination models and languages, useful to

describe multi-agent systems suitable for these new infrastructures.

Paper [70]focused exclusively on some exceptions occurring in the

sub-task level at runtime and not on exceptions concerned with handling

agents or information of alternative problem solving method.

In [71]a new testbed for multi-agent coordination algorithms was

described to builds upon the RobocupRescue platform. It testbed achieves

the goals in a number of ways, by using the RoboCupRescue platform to

generate very realistic scenarios that incorporate a high dose of dynamism

and uncertainty. using centralized or decentralized approaches depending

on the simulation settings. These problems range from logistics planning, to

sequential decision making, and resource allocation.

Reference [72]Presented four different coordination mechanisms

based on task sharing. Three of these mechanisms are communication-

based: central coordination, contract Net coordination and Brown

coordination, while the last one is zone defence coordination and is based

on conventions.

33

Reference [73]Compared the current state of the art techniques at

solving some of problems Schweppe identified, describes the agent

coordination algorithms that are used, and suggests some future research

opportunities on applying agent coordination algorithms, that have not

previously been used, to microgrids.

In [74] the authors survey a general study of coordination, including,

the nature of coordination, coordination mechanisms, coordination

approaches, relationship among coordination mechanisms and approaches,

coordination methodologies, conversationalaspects of coordination and

software architectures.

In[75] the authors studied the problem of verification (with n agents)

and computation (with two agents) of a strong Nash equilibrium (SNE). A

number of results for Nash equilibrium (NE) are known, but that concept is

inappropriate when coalitions are an issue. They showed that the instances

from the ubiquitous NE benchmark testbed, GAMUT, are not suitable for

testing SNE–finding algorithms because all the instances either admit pure

SNEs or do not admit any SNE. Then they compared different

configurations of the algorithm using a new instance generator to identify

the best one. It turns out that SNE finding takes about 100 times as long as

NE finding.

In [76] The authors proved that in a normal form n-player game with

m actions for each player, there exists an approximate Nash equilibrium

where each player randomizes uniformly among a set of O(log m + log n)

pure strategies. This result induces an N log log N algorithm for computing

34

an approximate Nash equilibrium in games where the number of actions is

polynomial in the number of player. In addition, they established an inverse

connection between the entropy of Nash equilibrium in the game, and the

time it takes to find such an approximate Nash equilibrium using the

random sampling algorithm.

35

2.4 Multi-Agents Learning

The following papers present some studies in multi-agents Learning:

In [77] a hierarchical method to learn equilibrium strategy in

continuous games was developed. Hierarchy has been used to break the

continuous domain of strategies into discrete sets of hierarchical strategies.

The algorithm is proved to converge to Nash-Equilibrium in a specific class

of games with dominant strategies. Then, it is applied to some other games

and the convergence in shown. This approach is common in RL algorithms

that they are applied to problem where no proof of convergence exits. The

results showed that the algorithm may converge when the conditions of

convergence are not satisfied, or may learn to oscillate in vicinity of the

equilibrium.

Reference [78] concerned with a two-player nonzero-sum differential

game in the case when players are informed about the current position. The

authors considered the game in control with guide strategies. The

construction of universal strategies is given both for the case of continuous

and discontinuous value functions. The existence of a discontinuous value

function is established. The continuous value function does not exist in the

general case. In addition, they show the example of smooth value function

not being a solution of the system of Hamilton Jacobi equation.

Reference [79] presented an algorithm for hierarchical Nash-Cournot

learning in electricity markets. Using this method the bidding agents in an

electricity market were able to get to the Nash-Cournot equilibrium faster

and with the maximum profit gains. The market simulation results showed

36

that the presented algorithm was fast and convergent to the Nash

equilibrium because of its hierarchical structure. In constructing this

algorithm, aspects from both game theory and reinforcement learning were

used. In each step of learning, a simple bimatrix game was constructed. The

agents learned the equilibrium in that game, and then by means of

hierarchy, they were able to find the accurate equilibrium in their

continuous infinite domain of bidding.

The simulation studies showed that the algorithm was capable of

learning even during system contingencies and different demand profiles. It

was shown that line congestion could cause market power for some players

and consequently raise the market clearing price (MCP) over its competitive

level. Also it was discussed how demand side management programs and

price sensible loads could control this market power and reduce the market

prices.

In [80] cache placement strategies and their performance in

cooperative hierarchical caching environments have been studied. A

theoretical model has introduced to analyze the access cost of placing a set

of object copies in the routing path. Using this model, the object placement

problem can be formulated as an optimization problem. It is proved that the

problem can be divided into sub problems, thus optimal solutions can be

obtained by using dynamic programming. It is further proved that if some

nodes are known to be in the optimal solution, the calculation cost of the

dynamic programming algorithms can be reduced. A heuristic greedy

algorithm is also presented for efficient implementation. Performance of

these strategies is evaluated using simulations under both synthetic

37

workload traces and real workload traces. It is shown that both the optimal

and the heuristic strategies perform well in cooperative hierarchical caching

systems

An adaptive Q-Learning-based HTTP Adaptive Streaming (HAS)

client is proposed in [81]. In contrast to existing heuristics, the proposed

HAS client dynamically learns the optimal behavior corresponding to the

current network environment. Considering multiple aspects of video

quality, a tunable reward function has been constructed, giving the

opportunity to focus on different aspects of the Quality of Experience, the

quality as perceived by the end-user. The proposed HAS client has been

thoroughly evaluated using a network-based simulator, investigating

multiple reward conjurations and Reinforcement Learning specific settings.

The evaluations show that the proposed client can outperform standard

HAS in the evaluated networking environments.

Paper [82] studies repeated interactions between an agent and an

opponent that changes its strategy over time (it is non-stationary). The

authors proposed a frame-work for fast learning changing non-stationary

strategies. The agent uses decision trees to learn the most up to date

opponent's strategy. Then, its learned model is continuously re-evaluated to

assess strategy switches. The method detects such strategy switches by

measuring tree similarities. Aside from its fast learning process, decision

trees can provide an easy interpretation of the opponent model. They

evaluated the proposed approach in the iterated prisoner's dilemma,

outperforming state of the art algorithms in predictive accuracy when facing

non-stationary strategies.

38

A new algorithm called Probably Optimistic Transition (POT) was

introduced in paper[83], with which an agent can be greedier than with

existing algorithms and perform well with a very wide range of parameter

values. POT derived by letting the agent utilize not only Bayesian optimal

reasoning but also the information of potentially true MDP, an agent with

POT adaptively changes the degree of optimism as it learns where a true

MDP potentially lies. With a larger than optimal parameter value, the

existing algorithms usually maintain too much optimism and over explore.

With a smaller than optimal parameter value, the existing algorithms are not

optimistic enough and become stuck into a sub-optimal state. With POT,

they solved this issue by letting an agent have adaptive degrees of

optimism. To do so, they relaxed the requirement placed by optimism in the

face of uncertainty principle.

Reference [84] introduced a new algorithm called Coco-Q, that is

convergent and produces interesting solutions to challenging stochastic

games when utility is transferable and binding agreements are possible. The

authors show that coco values can also be defined for stochastic games and

can be learned using a simple variant of Q-learning that is provably

convergent. They provide a set of examples showing how the strategies

learned by the Coco-Q algorithm relate to those learned by existing multi-

agent Q-learning algorithms.

Reference [85]proposed new convergent Q-learning algorithms that

combine elements of policy iteration and classical Q-learning/value

iteration. The main difference from the standard policy iteration approach is

in the policy evaluation phase: instead of solving a linear system of

39

equations, the algorithm solves an optimal stopping problem inexactly with

a finite number of value iterations.

The following table classifies the previous studies based on study's date and

topics:

 Table ‎2.1: Classification of the Previous Studies

Topic Year 2000-2004 2005- 2008 2009-2012 2013-2014 Total

Intelligent Web Caching 0 6 16 6 28

Fuzzy Logic 1 1 3 1 6

Multi-agent Coordination 3 0 4 2 9

Reinforcement Learning 0 3 1 5 9

Survey of Web Caching 0 0 3 2 5

Developing Cache
Replacement Algorithms

0 7 4 1 12

Developing Cache
Scheme

1 3 2 3 9

Proxy Cache Performance
Analysis and Evaluation

1 1 4 0 6

Others 2 0 0 0 2

Books 2 3 1 1 7

 Total 10 24 38 21

40

CHAPTER 3: MODEL ANALYSIS

41

3.1 The New Model

Caching may be performed at different levels in a computer network. This

work deals with proxy-level caching. Proxy caching is widely utilized by

computer network administrators to reduce user delays and to alleviate

Internet congestion.

3.1.1 Model Common Properties

The proposed model consists of four common properties:

1-Distributed Manner: The knowledge required to solve some problem is

not reside in a single resource or agent so that the cooperation of many

individual agent to solve the problem is needed.

2-Speed: Each agent has his own local processor and memory.

3-Efficiency: not all knowledge is needed for all tasks, agent used only part

of the knowledge required to solve the problem.

4-Reliability: Multi-agent System more reliable because there would be

multiple agents in the setup which provide some particular functionality or

service ,if an agent resource providing some functionality dies, another

agent may take over.

3.1.2 Model Detailed Properties

The properties of our model revolve around three issues:

First, providing the characteristics of intelligent agent:

 Autonomous: the agents in our model can act independently. Each

42

agent is independent with local tasks it has the capabilities of

problem-solving and decision-making. Each agent acts as a

centralized management system.

 Reactivity: the agents are able to perceive their environment, and

respond in a timely fashion to changes that occur in it in order to

satisfy their design objectives.

 Proactiveness: agents are able to exhibit goal-directed behavior by

taking the initiative in order to satisfy their design objectives.

 Social ability: agents are capable of interacting with other agents in

order to satisfy their design objectives.

Second, considering four mechanisms in dealing with multi agents system:

 Cooperation: It is the process of sharing responsibilities in satisfying

shared goal and generating dependent roles in joint activities.

 Coordination: It is the process of management of agents' activities so

that they coordinate their deeds with each other in order to share

resources, meets their own interests.

 Independence: every agent in our model is able to work concurrently

and relatively independently, it has its own goal to increase hit ratio and

byte hit ratio but it is also capable of coordinating with other agents in

order to achieve a common goal.

 Agents Communication: Agents communicate among themselves by

message passing, an agent can be permanently ready to receive

messages from other agents and, at the same time, it can carry out its

own computational tasks.

Agent Communication Language (ACL) is a standard language for agent

communications, the most popular ACL's: FIPA "foundation for intelligent

physical agent" has been used.

Third, the proposed model must contain some level of intelligence so we

add artificial intelligence techniques such as:

 Reasoning: The ultimate goal of fuzzy logic is to provide foundations

43

for approximate reasoning with imprecise propositions, using fuzzy set

theory as the principal tool. When it is applied to rule-based expert

systems, there are two basic issues to be concerned with: first, the use of

linguistic variables in the representation of experts‟ knowledge or rules,

and second, the deduction of conclusions from observations and rules in

a knowledge base. A fuzzy logic based system model is a knowledge

based system comprising of rules

 Learning: learning provides an excellent method for optimizing the

agent's action in such an environment. Reinforcement learning (RL) is a

generic name given to a family of techniques in which an agent tries to

learn a task by directly interacting with the environment. Multi-agent

reinforcement learning in which many agents are simultaneously

learning by interacting with the environment and with each other.

There are two popular learning algorithms for single-agent systems, value

iteration and Q-learning, they can be extended to the multi-agent case. We

use to implement the second one in this work.

3.1.3 Model Description

The new multi agent model consists of the following agents:

 Monitoring Agents: The monitoring agent is capable of accessing

"access log file" which is created by the proxy server and read data.

 Cache Cleaner Agents: The main task of the cache cleaner agent is to

clean the main proxy server's cache proactively according to the web

object size, frequency and time.

 Coordinator Agents: Its main task is to coordinate between cache

cleaner agents.

 Fuzzy logic has been used to model data that read from access log

file. Fuzzy base scheme considers for fuzzification three input

parameters the web object size (S), The web object Frequency (F),

44

and the time (T).The output parameter is the cache clean up priority

(CP),which helps in making decision to clean the proxy cache.

3.1.4 Model Architecture

The model architecture shown in Figure 3.1, this architecture consists of

three modules:

1-The Monitoring Module: contains the monitoring agent. It is a reactive

agent that monitors the proxy cache. This agent works by using a fast

response behavior. It provides information that allows the other agents to

take a decision.

2- The Cleanup Module: contains the parent and child cache cleaner agents.

Their task is to clean up the parent and child caches simultaneously

according to web object sizes, frequencies, and times.

3- Coordination Module: contains the coordinator agent. Its main task is to

coordinate between cache cleaner agents.

45

Figure ‎3.1: The Model Architecture

3.1.5 Agents' Tasks

 The monitoring agent reads and stores web workload which is

generated by the Webtraff simulator in a local database. Figure 3.2

shows a sample of the Web workload generated by Webtraff. The

monitoring agent then converts the input data to linguistic values

using fuzzification. Finally, the monitoring agent communicates with

the cache cleaner agent and gives it the requested data.

 Monitoring Module Cleanup Module

Parent Monitoring Agent

Child Monitoring Agent _

Parent Cache

Child Cache

Parent Workload

Child Workload
_

Coordinating Module

Coordinator Agent

Parent Cleaner Agent

Child Monitoring Agent Child Workload Child Cleaner Agent Child Cache

Child Cleaner Agent
_

46

Figure ‎3.2 : Sample of Web Workload Format Used in WebTraff

 The main task of the parent cache cleaner agent is to clean the

main proxy cache proactively according to the web object size,

frequency, and time that are requested from the parent monitoring

agent. On the other hand, the child cache cleaner agent cleans the sub

proxy cache depending on the Web object‟s frequency and recency of

use.

 The main task of the coordinator agent is to receive

information about the web objects from parent and child cache

cleaner agent, take a suitable decision and send acknowledgments to

them.

3.1.6 Agents' Behaviors

Cache cleaner agent periodically requests the three parameters values from

the monitoring agent. This can be achieved by using a Ticker Behavior.

That is, on each tick, add a new request. On the other hand, the monitoring

agent waits for cache cleaner agents‟ requests. Monitoring agent executes a

cyclic behavior to serve the requests. Finally, it executes a one-shot

behavior updating its local database.

47

3.1.7 Agent's Interactions

Multi-agent system contains a number of agents which interact through

communication, they are able to act in an environment. We need a model of

the environment in which these agents will act.

3.1.8 Agents' Communication

Since child and parent cache agent has a partial view of the caching system

they cannot observe the global state of a dynamic environment, and

therefore they must communicate with each other to share the information

needed for deciding which action to take. Communication decision becomes

an important part of agent decision problem. An agent cannot observe

directly the local state of other agent, the agent has to perform

communication action just after the previous action finishes and before the

next action is chosen.

 Monitoring Agent - Cache Cleaner Agent Communication

 Monitoring agent continuously waits for the cache cleaner agent

request's.

 Cache cleaner agent receives the requested data.

 Cache cleaner agent applies rules.

 Cache cleaner agent finds the web object cleanup priority and deletes

it.

 Cache Cleaner agent sends delete notify message to the monitoring

agent and terminates.

 The Monitoring Agent begins to read a new data from the cache.

 The Monitoring Agent updates its local database.

48

 Cache Cleaner Agent – Coordinator Agent Communication

 Cache cleaner agent sends the information of the web object with the

medium priority to coordinator agent.

 Coordinator agent applies coordinator rules and sent

acknowledgment to the cleaner agent.

49

3.2 Analysis using Agent Message Methodology

3.2.1 Organization view (OV)

 This shows Concrete Entities (Agents, Organizations, Roles,

Resources) in the system and its environment and coarse-grained

relationships between them (aggregation, power, and acquaintance

relationships), it gives an overall view of the system, its environment, and

its global functionality. the structure and the behaviour of entities such as

Organization.

Figure 3.3 describes structural relationships in the organization view, which

is considered a cache cleaner organization consists of:

 Parent Monitoring Agent

 Child Monitoring Agent1

 Child Monitoring Agent2

 Parent Cleaner Agent

 Child Cleaner Agent1

 Child Cleaner Agent2

 Coordinator Agent

50

Figure ‎3.3. Organization Diagram (Structural relationships)

‎

class System

Child Monitoring

Agent2

Cache Cleanup

Organization

Parent Cleaner

Agent

Child Monitoring

Agent1
Child Cleaner

Agent1

Parent Monitoring

Agent
Coordinator

Agent

Child Cleaner

Agent2

1

1

1

1

1

1

1

1

1

1

1 1

51

3.2.2 Goal Task View (GTV)

 This shows Goals, Tasks, Situations and the dependencies among

them. Goals and Tasks both have attributes of type Situation, so that they

can be linked by logical dependencies to form graphs that show e.g.

decomposition of high-level Goals into sub-goals, and how Tasks can be

performed to achieve Goals.

Goal/task decomposition approaches are based on functional

decomposition, it gives an overall view of the system roles, goals and tasks

are systematically analyzed in order to determine the resolution conditions,

problem-solving methods, decomposition and failure treatment.

Figurer 3.4 shows cache cleanup task decomposes to three sub tasks:

 Cache Monitoring task.

 Cache cleanup task.

 Coordination task.

Each sub task decomposes also to its sub tasks.

52

Figure ‎3.4: Goal/Task Implication diagram

‎

act System

Cache Cleanup

Improv ement

 Cache Monitoring
Cache Cleanup

Web Workload

Reading
 Log data

Analysis
Data Sending

Data

Request
remov able

Polices

Implementation

 Qlearing

Implementation
Fuzzy logic

Implementation

Coordination

 Coordination

Rules

Implementation

web object

information

receiv eing

aknowlekment

sending

53

3.2.3 Domain View (DV) in level 0

Domain view shows the domain specific concepts and relations that

are relevant for the system under development. The domain view can be

represented by means of typical UML class diagrams where classes

represent domain specific concepts and named association represents

domain specific relations

Figure 3.5 describes domain view in level 0 in three modules:

 Monitoring Module: contains the monitoring agents

 Cleanup Module: contains the cache cleaner agents

 Coordination Module: contains the coordinator agents.

There is a aggregation relation in each module between the super

class and their sub classes.

54

Figure ‎3.5: Level 0 Domain Diagram

‎

class Domain Objects

Moitoring Module

Monitoring Agent

Parent Monitoring

Agent

Child Montoring

Agent1

Cleanup Module

Child Monitoring

Agent2

Parent Cache

Cleaner Agent

Child Cache

Cleaner Agent1

Child Cache

Cleaner Agent2

Coordination Module

Coordinator Agent

Cache Cleaner

Agent

1

1

1 11 1

1

1
1

55

3.2.4 Domain View (DV) in level 1

Figure 3.6 shows the three modules in details in level 1, class's attributes

and actions has been added.

There are three inner classes:

 Fuzziication Class: it is inner class in the monitoring Agent class to

perform the fuzzy logic phases.

 Request Performer Class: it is inner class in the cache cleaner agent

class to requested data from the monitoring agent class.

Performer Class: it is inner class in the coordinator agent class to perform

the coordination between parent and child cleaner agents

56

Figure ‎3.6: Level 1Domain Diagram

_ class Domain Objects

Moitoring Module

Monitoring Agent
- F_Z: Fuzzification
- ID_List: List
- Size_List: List
- Time_List: List
+ read_cache() : void
+ read_workload() : void
+ setup() : void
+ take_down() : void

Parent Monitoring Agent
+ read_P_Cache() : void
+ read_P_Workload() : void

Child Montoring Agent1
+ read_C1Cache() : void
+ read_C1Workload() : void

Cleanup Module

Child Monitoring Agent2
+ read_C2Cache() : void
+ read_C2Workload() : void

Cache Cleaner Agent
- Frequency: String
- R_P: Request_Performer
- Size: String
- Time: String
+ setup() : void
+ take_down() : void

Parent Cache
Cleaner Agent

Child Cache
Cleaner Agent1

Child Cache
Cleaner Agent2

 Coordination Module

Coordinator Agent
- Id: int
- Local_name: String
- P: Performer
+ on_tick()() : void
+ setup()() : void
+ take_down()() : void

Fuzzification
- Id_List: List
- Size_List: List
- Time_List: List
+ action() : void
+ freq(List) : List
+ get_liguistic_frequency() : String
+ get_liguistic_size() : String
+ get_liguistic_time() : String
+ max(List) : int
+ min(List) : int
+ save_in_LDB() : void

Request_Performer
- CP_List: List
- Current_Action: String
- Current_State: String
- Gama: int
- Initial_State: List
- Itration: int
- mt: Message Template
- Q: List
- R: List
- States: List
- Web_Objects: List
+ action() : void
+ chooseAction() : void
+ cleanup() : void
+ done() : void
+ episode() : void
+ getRandomAction() : void

+ initialize() : void
+ learning() : void
+ maximum() : void
+ reward() : void

Performer
- aknow1: Acl Message
- aknow2: Acl Message
- aknow3: Acl Message
- child1_freqs: List
- child1_replay: List
- child1_times: List
- child2_freq: List
- child2_replay: int
- child2_times: List
- parent_freqs: List
- parent_replay: List
- parent_times: List
+ action() : void

1

1

1 1 1
1 1

1

1

1

1

1

57

3.2.5 Interaction View (IV)

This view highlights which, why and when agents need to communicate

leaving all the details about how the communication takes place to the

design process.

Figure 3.7 shows interactions among agents, the information

supplied/achieved by each participant, the events that trigger the interaction,

other relevant effects of the interaction can also be considered.

58

Figure ‎3.7: Interaction Diagram

59

CHAPTER 4: PARENT AND CHILD CLEANER

AGENT COORDINATION AND

LEARNING

60

4.1 Parent and Child Cleaner Agents Coordination

Coordination is needed between parent and child cleaner agents to achieve

the cleanup task in efficient way.

 After implementing fuzzy logic, the web object with the high priority has

been removed from the cache. Central Reactive coordinator agent has been

added to achieve the cleanup task in efficient way. It applies a coordination

Rules.

4.1.1 Assumptions

To apply the Coordination Rules we assume that:

Parent and child agents have a common goal to increase HR,BHR.

 Web object with medium priority is found in parent and child caches.

 Web object has the same size in parent and child cache.

 Web object's frequency and request time factors have been

considered.

 Parent and child agents have two possible actions can perform,

 D (“delete”) or S (“save”) Ac = {D, S}

4.1.2 Coordination Rules' Abbreviations

The following Abbreviations has been used to develop the coordination

rules:

 P freq: web object's frequency in parent cache

 C1 freq: web object's frequency in child 1 cache

 C2 freq: web object's frequency in child 2 cache

 P time: web object's request time in parent cache

 C1 time: web object's request time in child 1 cache

 C2 time: web object's request time in child 2 cache

 P del: delete web object from parent cache

 C1 del: delete web object from child 1 cache

 C2 del: delete web object from child 2 cache

 P save: save web object in parent cache

 C1 save: save web object in child 1t cache

 C2 save: save web object in child 1 cache

61

4.1.3 Coordination Rules

In the coordination rules six input parameters has been considered:

 P freq

 C1 freq

 C2 freq

 P time

 C1 time

 C2 time

Each input parameter has two values (low or high), so we have = 64

rules.

And two possible actions can perform, D (delete or save), so we have six

actions:

 P del

 C1 del

 C2 del

 P save

 C1 save

 C2 save

If the input parameters have the same values, the factor Time has been

considered and compared, the old web object will be removed.

Rule 1: if P freq = low and C1 freq =low and C2 freq =low and P

time =low C1 time= low and C2 time =low if (C1time >C2 time) then

P del ,C1 save, C2 del

Rule 2: if P freq =low and C1 freq =low and C2 freq =low and P

time =low C1 time=low and C2 time =high then P del ,C1 de, C2 save

Rule 3: if P freq =low and C1 freq = low and C2 freq =low and P

time = low C1 time=high and C2 time = low then P del ,C1 save, C2

del

Rule 4: if P freq =low and C1 freq =low and C2 freq =low and P

time = low C1 time= high and C2 time = high if (C1time >C2 time)

then P del ,C1 save, C2 del

62

Rule 5: if P freq =low and C1 freq =low and C2 freq =low and P

time =high C1 time= low and C2 time = low then P save ,C1 del, C2

del

Rule 6: if P freq =low and C1 freq =low and C2 freq =low and P

time =high C1 time=low and C2 time = high if (P time >C2 time) then

P save ,C1 del, C2 del

Rule 7: if P freq =low and C1 freq =low and C2 freq =low and P

time =high C1 time=high and C2 time = low if (P time >C1 time) then

P save ,C1 del, C2 del

Rule 8: if P freq =low and C1 freq =low and C2 freq =low and P

time =high C1 time=high and C2 time = high if (C1time >C2 time)

then P del ,C1 save, C2 del

Rule 9: if P freq = low and C1 freq =low and C2 freq =high and P

time =low C1 time= low and C2 time =low then P del ,C1 del, C2 save

Rule 10: if P freq =low and C1 freq =low and C2 freq =high and P

time =low C1 time=low and C2 time =high then P del ,C1 de, C2 save

Rule 11: if P freq =low and C1 freq =low and C2 freq =high and P

time = low C1 time=high and C2 time =low if (C1time >C2 time) then

P del ,C1 save, C2 del

Rule 12: if P freq =low and C1 freq =low and C2 freq =high and P

time = low C1 time= high and C2 time = high then P del ,C1 del, C2

save

Rule 13: if P freq =low and C1 freq =low and C2 freq =high and P

time =high C1 time= low and C2 time = low if (P time >C2 time) then

P save ,C1 del, C2 del

Rule 14: if P freq =low and C1 freq =low and C2 freq =high and P

time =high C1 time = low and C2 time = high then P del ,C1 del, C2

save

63

Rule 15: if P freq =low and C1 freq =low and C2 freq =high and P

time =high C1 time=high and C2 time = low if (P time >C1 time) then

P save ,C1 del, C2 del

Rule 16: if P freq =low and C1 freq =low and C2 freq =high and P

time =high C1 time=high and C2 time = high ‎then P del,C1 del, C2 save

Rule 17: if P freq = low and C1 freq = high and C2 freq =low and P

time =low C1 time= low and C2 time =low then P del, C1save, C2 del

Rule 18: if P freq =low and C1 freq =high and C2 freq =low and P time

=low C1 time=low and C2 time =high if (C1 time >C2 time) then P del,

C1 save, C2 del

Rule 19: if P freq =low and C1 freq =high and C2 freq =low and P

time = low C1 time = high and C2 time = low then P del, C1 save, C2

del

Rule 20: if P freq =low and C1 freq =high and C2 freq =low and P

time = low C1 time= high and C2 time = high then P del,C1 save, C2

del

Rule 21: if P freq =low and C1 freq =high and C2 freq =low and P

time =high C1 time= low and C2 time = low if (P time >C1 time) then P

save, C1 del, C2 del

Rule 22: if P freq =low and C1 freq = high and C2 freq =low and P

time =high C1 time=low and C2 time = high if (P time >C2 time) then P

save,C1 del, C2 del

Rule 23: if P freq =low and C1 freq =high and C2 freq =low and P

time =high C1 time=high and C2 time = low then P del, C1 save, C2 del

Rule 24: if P freq =low and C1 freq =high and C2 freq =low and

P time =high C1 time=high and C2 time = high then P del ,C1 save,

C2 del

64

Rule 25: if P freq =low and C1 freq =high and C2 freq =high and P

time =low C1 time= low and C2 time =low if (C1time >C2 time) then

P del ,C1 save, C2 del

Rule 26: if P freq =low and C1 freq =high and C2 freq =high and

P time =low C1 time=low and C2 time =high then P del,C1 de, C2 save

Rule 27: if P freq =low and C1 freq =high and C2 freq =high and P

time = low C1 time=high and C2 time = low then P del ,C1 save, C2

del

Rule 28: if P freq =low and C1 freq =high and C2 freq =high and P

time = low C1 time= high and C2 time = high if (C1time >C2 time)

then P del ,C1 save, C2 del else P del ,C1 del, C2 save

Rule 29: if P freq =low and C1 freq =high and C2 freq =high and P

time =high C1 time= low and C2 time = low if (C1time >C2 time) then

P del ,C1 save, C2 del

Rule 30: if P freq =low and C1 freq =high and C2 freq =high and P

time =high C1 time=low and C2 time = high then P del ,C1 del, C2

save

Rule 31: if P freq =low and C1 freq =high and C2 freq =high and P time

=high C1 time=high and C2 time = low then P del,C1 save, C2 del

Rule 32: if P freq =low and C1 freq =high and C2 freq =high and P time

=high C1 time=high and C2 time = high if (C1time >C2 time) then P

del ,C1 save, C2 del

Rule 33: if P freq = high and C1 freq =low and C2 freq =low and P

time =low C1 time= low and C2 time =low then P save ,C1 del, C2 del

Rule 34:if P freq =high and C1 freq =low and C2 freq =low and P time

=low C1 time=low and C2 time =high if (P time >C2 time) then P save

,C1 del, C2 del else P del ,C1 del, C2 save

65

Rule 35: if P freq =high and C1 freq =low and C2 freq =low and P

time = low C1 time=high and C2 time = low if (P time >C1 time) then

P save ,C1 del, C2 del

Rule 36: if P freq =high and C1 freq =low and C2 freq =low and P time

= low C1 time= high and C2 time = high if (C1time >C2 time) then P

del ,C1 save, C2 del

Rule 37: if P freq =high and C1 freq =low and C2 freq =low and P

time =high C1 time= low and C2 time = low then P save ,C1 del, C2

del

Rule 38: if P freq =high and C1 freq =low and C2 freq =low and P time

=high C1 time=low and C2 time = high then P save ,C1 del, C2 del

Rule 39: if P freq =high and C1 freq =low and C2 freq =low and P time

=high C1 time=high and C2 time = low then P save ,C1 del, C2 del

Rule 40: if P freq =high and C1 freq =low and C2 freq =low and P time

=high C1 time=high and C2 time = high then P save,C1 del, C2 del

Rule 41: if P freq =high and C1 freq =low and C2 freq =high and P

time =low C1 time= low and C2 time =low if (P time >C2 time) then P

save ,C1 del, C2 del

Rule 42: if P freq =high and C1 freq =low and C2 freq =high and P

time =low C1 time=low and C2 time =high then P del ,C1 de, C2 save

Rule 43: if P freq =high and C1 freq =low and C2 freq =high and

P time = low C1 time=high and C2 time = low if (P time >C2 time)

then P save ,C1 del, C2 del else

Rule 44: if P freq =high and C1 freq =low and C2 freq =high and

P time = low C1 time= high and C2 time = high then P del ,C1 del, C2

save

Rule 45: if P freq =high and C1 freq =low and C2 freq =high and

P time =high C1 time= low and C2 time = low then P save ,C1 del, C2

del

66

Rule 46: if P freq =high and C1 freq =low and C2 freq =high and

P time =high C1 time=low and C2 time = high if (P time >C2 time)

then P save ,C1 del, C2 del

Rule 47: if P freq =high and C1 freq =low and C2 freq =high and

P time =high C1 time=high and C2 time = low then P save ,C1 del,

C2 del

Rule 48: if P freq =high and C1 freq =low and C2 freq =high and

P time =high C1 time=high and C2 time = high if (P time >C2

time) then P save ,C1 del, C2 del

Rule 49: if P freq = high and C1 freq =high and C2 freq =low and

P time =low C1 time= low and C2 time =low if (P time >C1 time)

then P save ,C1 del, C2 del

Rule 50: if P freq =high and C1 freq =high and C2 freq =low and

P time =low C1 time=low and C2 time =high if (P time >C1 time)

then P save ,C1 del, C2 del

Rule 51: if P freq =high and C1 freq =high and C2 freq =low and

P time = low C1 time=high and C2 time = low then P del ,C1 save, C2

del

Rule 52: if P freq =high and C1 freq =high and C2 freq =low and

P time = low C1 time= high and C2 time = high then P del ,C1 save, C2

del

Rule 53: if P freq =high and C1 freq =high and C2 freq =low and

P time =high C1 time= low and C2 time = low then P save ,C1 del, C2

del

Rule 54: if P freq =high and C1 freq =high and C2 freq =low and

P time =high C1 time=low and C2 time = high then P save,C1 del, C2

del

Rule 55: if P freq =high and C1 freq =high and C2 freq =low and

P time =high C1 time=high and C2 time = low if (P time >C1 time)

then P save ,C1 del, C2 del

67

Rule 56: if P freq =high and C1 freq =high and C2 freq =low and

P time =high C1 time=high and C2 time = high if (P time >C1

time) then P save ,C1 del, C2 del

Rule 57: if P freq = high and C1 freq =high and C2 freq =high and

P time =low C1 time= low and C2 time =low if (C1time >C2 time)

then P del ,C1 save, C2 del

Rule 58: if P freq =high and C1 freq =high and C2 freq =high and

P time =low C1 time=low and C2 time =high then P del ,C1 de, C2

save

Rule 59: if P freq =high and C1 freq =high and C2 freq =high and

P time = low C1 time=high and C2 time = low then P del ,C1 save, C2

del

Rule 60: if P freq =high and C1 freq =high and C2 freq =high and

P time = low C1 time= high and C2 time = high if (C1time >C2 time)

then P del ,C1 save, C2 del

Rule 61: if P freq =high and C1 freq =high and C2 freq =high and

P time =high C1 time= low and C2 time = low if (C1time >C2 time)

then P del ,C1 save, C2 del

Rule 62: if P freq =high and C1 freq =high and C2 freq =high and

P time =high C1 time=low and C2 time = high if (P time >C2 time)

then P save ,C1 del, C2 del

Rule 63: if P freq =high and C1 freq =high and C2 freq =high and

P time =high C1 time=high and C2 time = low if (P time >C1 time)

then P save ,C1 del, C2 del

Rule 64: if P freq =high and C1 freq =high and C2 freq =high and

P time =high C1 time=high and C2 time = high if (C1time >C2

time) then P del ,C1 save, C2 del

68

4.2 Q-Learning Analysis

Q-Learning is a Reinforcement Learning method for solving sequential

decision problems, where the utility of actions depends on a sequence of

decisions and there exists uncertainty about the dynamics of the

environment.

When the cache cleaner agent pass throw the similar state, it can

directly takes its optimal action that lead immediately to the goal. The goal

of the training is to find the sequential order of actions which maximizes the

sum of the future reinforcements, thus leading to the shortest path from start

to finish.

4.2.1 Q-Learning Terminology

The terminology in Q-Learning includes the terms "state" and

"action". We'll call each node a "state", and the agent's movement from one

node to another will be an "action", a "state" is depicted as a node, while

"action" is represented by the arrows. We'll associate a reward value to each

node (i.e. link between nodes). The nodes that lead immediately to the goal

which have high caching priority have an instant reward of 100.Others have

zero reward. Each arrow contains an instant reward value.

In the proposed model a dynamic cache environment has been

consider when observed the behavior of parent and child caches. Parameters

and its values were represented in a graph, each rule (state) as a node.

Actions in this setting correspond to the decision of whether to delete or

save the web object.

69

Figure 4.2.2 explains parent cache cleaner agent's states, three parameters

have been considered:

-Web object's size (Size).

-Request time (Time).

-Web Object's frequency (Frequency).

Each parameter has one of three values (high, medium, low) .So we have

 =27 states that represent as 27 nodes.

Parent agent has two actions delete or save the web object. Actions

represented in figure 4.2.2 as arrows, a reward value has been associated to

each node. The nodes that lead immediately to the goal which have high

caching priority have an instant reward of 100.Others have zero reward.

70

4.2.2 Parent's States

0
Size= high

Frequency =high

Time= low

0
Size= high

Frequency=medium

Time= high

 0
Size= high

Frequency=medium

Time= medium

 10 0
Size= high

Frequency =high

Time= high

 10 0
Size= high

Frequency =high

Time= medium

0
Size= high

Frequency =low

Time= high

0
Size= high

Frequency=medium

Time=low

0
Size= high

Frequency =low

Time= low

0
Size= high

Frequency =low

Time= medium

71

 10 0
Size= medium

Frequency =high

Time= low

0
Size= medium

Frequency=medium

Time= high

 10 0
Size= medium

Frequency=medium

Time= medium

0
Size= medium

Frequency =high

Time= high

0
Size= medium

Frequency =high

Time= medium

 10 0
Size= medium

Frequency =low

Time= high

 10 0
Size= medium

Frequency=medium

Time= low

 10 0
Size= medium

Frequency =low

Time= low

 10 0
Size= medium

Frequency =low

Time= medium

72

Figure ‎4.1:Parent' States

0
Size= low

Frequency =high

Time=low

0
Size= low

Frequency=medium

Time= high

0
Size= low

Frequency=medium

Time= medium

 10 0
Size= low

Frequency =high

Time= high

0
Size= low

Frequency =high

Time= medium

 10 0
Size= low

Frequency = low

Time= high

 100
Size= low

Frequency=medium

Time= low

 10 0
Size= low

Frequency =low

Time= low

 10 0
Size= low

Frequency =low

Time= medium

73

Figure 4.2.3 shows child cleaner agent's states, two parameters have been

considered:

-Request time (Time).

-Web Object's frequency (Frequency).

Each parameter has one of three values (high, medium, low) .So we have

 =9 states that represent as 9 nodes.

Child agent has two actions delete or save the web object. Actions

represented in figure 4.2.3 as arrows, a reward value has been associated to

each node. The nodes that lead immediately to the goal which have high

caching priority have an instant reward of 100.Others have zero reward.

74

4.2.3 Child's States

Figure ‎4.2: Child's State

0
Frequency =high

Time= low

0
Frequency=medium

Time= high

 0
Frequency=medium

Time= medium

 10 0
Frequency =high

Time= high

 10 0
Frequency =high

Time= medium

 0
Frequency =low

Time= high

 0
Frequency=medium

Time= low

 0
Frequency =low

Time= low

 0
Frequency =low

Time= medium

75

CHAPTER 5: IMPLEMENTATION

76

MODEL IMPLEMENTATION

The proposed model has been implemented using JADE tool. At the

beginning the monitoring, cache cleaner and coordinator agents‟ behaviors

have been determined. In the second phase fuzzy logic has been used to

model data that generated by WebTraff simulator. It generates two files

webworkload.dat that represents the user request and the cachesim.dat that

dispatches into parent and child caches. In the third phase the agents

communication through messages to interact with each others.

5.1 Implementation using Fuzzy Logic

This section describes in detail how fuzzy logic can be utilized in cache

performance enhancement. To design an adaptive fuzzy based system we

consider three input variables web object size, frequency, and the time. We

compute the output variable called the cache cleanup priority as shown in

figure 5.1.

Figure ‎5.1: Cache cleaner fuzzy based system

Fuzzification Inference Rules Defuzzification

Size

Time

Freq

Rule Base

Cleanup

Priority

77

5.1.1 Fuzzification Process

In the fuzzification step the Monitoring Agent reads the three input

parameters from cache and workload files and converts the input parameters

to linguistic values such as "high", "medium" or "low". The output

parameter (CP) also has three linguistic terms "high", " medium" or "low",

the cleaner agent delete the web object with high clean up priority.

Five samples of web proxy workload have been generated with

different cache size using WebTraff simulator.

Maximum value and minimum value to parameters size, time and frequency

have been calculated to each generated sampleanddivided to three ranges

high, medium and low.

 Tables 5.1, 5.2 and 5.3 explain the input fuzzy parameters and table

5.4 explains output fuzzy parameter to first sample (sampe1). Table 5.5

explains input fuzzy parameter's units.

78

Table‎5.1: Input Fuzzy Parameter (Size)

Web Object Size (S) Fuzzy Values

0 – 50000 Low

50000 – 100000 Medium

100000 – 150000 High

Table ‎5.2: Input Fuzzy Parameter (Frequency)

Web Object Frequency (F) Fuzzy Values

0 – 3 Low

3 – 7 Medium

7 – 10 High

Table ‎5.3: Input Fuzzy Parameter (Time)

Web Object request Time (T) Fuzzy Values

0 – 70000 Low

70000 – 140000 Medium

140000 – 210000 High

Table ‎5.4: Out Fuzzy Parameters

79

cleanup Priority(CP) Fuzzy values

0.0 - 0.3 Low

0.3 - 0.7 Medium

0.7 - 1.0 High

Table ‎5.5 : Input Fuzzy Parameter's Units

Input Fuzzy Parameters Unit

Web object Size(S) Byte

Web object Frequency(F) Integer number

Time(T) Second

5.1.2 Inference Rules Process

 Mamdani-style[50] was used to perform the fuzzy inference process.

 Parent Cache Cleaner Agent's Rules

We use three input variables:

o Web object Size

o Web object Frequency

o Request Time

and one output variable:

o Cleanup_Priority.

 Each input parameter has one of three values (high, medium or low) .So

we have = 27 rules.

80

Rule 1: If Size = high and Frequency = high and Time = high

then Cleanup_Priority =high

Rule 2: If Size = high and Frequency = high and Time = medium

then Cleanup_Priority =high

Rule 3: If Size = high and Frequency = high and Time = low then

Cleanup_Priority =medium

Rule 4: If Size = high and Frequency = medium and Time = high

then Cleanup_Priority =low

Rule 5: If Size = high and Frequency = medium and Time = medium

then Cleanup_Priority =low

Rule 6: If Size = high and Frequency = medium and Time = low then

Cleanup_Priority =medium

Rule 7: If Size = high and Frequency = low and Time = high

then Cleanup_Priority = low

Rule 8: If Size = high and Frequency = low and Time = medium

then Cleanup_Priority = low

Rule 9: If Size = high and Frequency = low and Time = low then

Cleanup_Priority =medium

Rule 10: If Size = medium and Frequency = high and Time = high

then Cleanup_Priority =low

81

Rule 11: If Size = medium and Frequency = high and Time = medium

then Cleanup_Priority =low

Rule 12: If Size = medium and Frequency = high and Time = low

then Cleanup_Priority =high

Rule 13: If Size = medium and Frequency = medium and Time = high

then Cleanup_Priority =medium

Rule 14: If Size=medium and Frequency = medium and Time= medium

then Cleanup_Priority =high

Rule 15: If Size = medium and Frequency = medium and Time = low

then Cleanup_Priority =medium

Rule 16: If Size = medium and Frequency = low and Time = high then

Cleanup_Priority =high

Rule 17: If Size = medium and Frequency = low and Time = medium

then Cleanup_Priority =high

Rule 18: If Size = medium and Frequency = low and Time = low then

Cleanup_Priority =high

Rule 19: If Size = low and Frequency = high and Time = high then

Cleanup_Priority =high

Rule 20: If Size = low and Frequency = high and Time = medium then

Cleanup_Priority =high

Rule 21: If Size = low and Frequency = high and Time =low

82

then Cleanup_Priority =medium

Rule 22: If Size = low and Frequency = medium and Time = high then

Cleanup_Priority =low

Rule 23: If Size = low and Frequency = medium and Time = medium

then Cleanup_Priority =low

Rule 24: If Size = low and Frequency = medium and Time = low then

Cleanup_Priority =low

Rule 25: If Size = lowand Frequency = low and Time = high then

Cleanup_Priority =medium

Rule 26: If Size = low and Frequency = low and Time = medium then

CP_Linguistic=low

Rule 27: If Size = low and Frequency =low and Time = low then

CP_Linguistic=low

The pervious rules have been summarized in table 5.6

83

Table ‎5.6: Parent's Inference rules

Cleanup_Prority Time Frequency Size #

High High high high 1

High Mediu

m

high high 2

Medium low high high 3

Low high medium high 4

Low mediu

m

medium high 5

Medium low medium high 6

Low high low high 7

Low mediu

m

low high 8

Medium low low high 9

Low high high medium 10

Low mediu

m

high medium 11

High low high medium 12

Medium high medium medium 13

High mediu

m

medium medium 14

Medium low medium medium 15

High high low medium 16

High mediu

m

low medium 17

High low low medium 18

High high high low 19

High mediu

m

high low 20

Medium low high low 21

Low high medium low 22

Low mediu

m

medium low 23

Low low medium low 24

Medium high low low 25

Low mediu

m

low low 26

Low

low low low 27

84

 Child Cache Cleaner Agent's Rules

We use two input variables

 Web object Frequency

 Request Time

and one output variable:

 Cleanup_Priority.

 Each input parameter has one of three values (high, medium or low) .So

we have = 9 rules.

Rule1: If Frequency = high and Time = high then

Cleanup_Priority=high

Rule2: If Frequency = high and Time = medium then

Cleanup_Priority = high

Rule3: If Frequency = high and Time = low then Cleanup_Priority

= medium

Rule4: If Frequency = medium and Time=high then

Cleanup_Priority = low

Rule5: If Frequency = medium and Time = medium then

Cleanup_Priority = high

Rule 6: If Frequency = medium and Time = low then

Cleanup_Priority =medium

Rule 7: If Frequency = low and Time = high then Cleanup_Priority

= high

85

Rule 8: If Frequency = low and Time = medium then

Cleanup_Priority =low

Rule 9: If Frequency = low and Time = low then Cleanup_Priority =

high

The pervious rules have been summarized in table 5.7

Table 5.7: Child's Inference rules

5.1.3 Defuzzification and Membership Function

Three membership functions are defined that showed the scale of the web

object size, frequency and time: low, medium and high. The output cleanup

priority membership function has also defined to show the scale of the web

object's cleanup priority.

Triangular membership function has been used that specified by three

parameters {a, b, c} as shown in equation 5.1 and figure 5.2:

Cleanup_Prority Time Frequency #

high high high 1

high medium high 2

medium low high 3

low high medium 4

high medium medium 5

medium low medium 6

high high low 7

low medium low 8

 high low low 9

86

 ()

{

‎

Figure ‎5.2: Triangular membership function

Figures 5.3, 5.4 and 5.5 explain web object size, frequency and time

membership functions and figure 5.6 explains the cleanup priority

membership function to the first generated sample (sampe1).

Figure ‎5.3: Web object size membership function

a b c

1

0

87

Figure ‎5.4: Web object frequency membership function

Figure ‎5.5 : Web object time membership function

88

Figure ‎5.6 : cleanup priority membership function

89

5.2 Coordination Rules Implementation

5.2.1 Coordination Rules Simplified

To simplify previous coordination rules that are mentioned in Chapter Four,

we rewrite them as a truth table as shown in table 5.8, to apply the

Coordination truth table we assume that:

 We have two values low and high, we represent low value with 0 and

high value with 1.

 When the parent frequency (P_Freq) equal 0 that means the web object

in the parent cache with low frequency.

 When the parent frequency (P_Freq) equal 1 that means the web object

in the parent cache with high frequency.

 When the child 1 frequency (C1_Freq) equal 0 that means the web

object in the child 1 cache with low frequency.

 When the child 1 frequency (C1_Freq) equal 1 that means the web

object in the child 1 cache with high frequency.

 When the child 2 frequency (C2_Freq) equal 0 that means the web

object in the child 2 cache with low frequency.

 When the child 2 frequency (C2_Freq) equal 1 that means the web

object in the child 2 cache with high frequency.

 When the parent time (P_time) equal 0 that means the web object in the

parent cache is old object.

 When the parent time (P_time) equal 1 that means the web object in the

parent cache is a new object.

 When the child 1 time (C1_Time) equal 0 that means the web object in

the child 1 cache is old object.

 When the child 1 time (C1_Time) equal 1 that means the web object in

the child 1 cache is a new.

 When the child 2 time (C2_Time) equal 0 that means the web object in

the child 2 cache is old object.

 When the child 2 time (C2_Time) equal 1 that means the web object in

the child 2 cache is a new.

 When (P_save) equal 1 that means the web object kept in the parent

cache.

90

 When (P_save) equal 0 that means the web object deleted from the

parent cache.

 When (C1_save) equal 1 that means the web object kept in child 1

cache.

 When (C1_save) equal 0 that means the web object deleted from child 1

cache.

 When (C2_save) equal 1 that means the web object kept in child 2

cache.

 When (C2_save) equal 0 that means the web object deleted from child 2

cache.

Table ‎5.7: Coordination Truth Table

C2_

save

C1_

save

P_

save

C2_Time C1_Time P_Time C2_Freq C1 _Freq P _Freq #

0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 2

0 1 0 1 1 0 0 0 0 3

0 0 1 0 0 1 0 0 0 4

0 0

1

1 1 0 1 0 0 0 5

0

1

0 1 0 1 1 0 0 0 6

0 1 0 1 1 1 0 0 0 7

1 0 0 0 0 0 1 0 0 8

1 0 0 1 0 0 1 0 0 9

0 1 0 0 1 0 1 0 0 10

1 0 0 1 1 0 1 0 0 11

0 0 1 0 0 1 1 0 0 12

1 0 0 1 0 1 1 0 0 13

0 0 1 0 1 1 1 0 0 14

1 0 0 1 1 1 1 0 0 15

0 1 0 0 0 0 0 1 0 16

0 1 0 1 0 0 0 1 0 17

0 1 0 0 1 0 0 1 0 18

0 1 0 1 1 0 0 1 0 19

0 0 1 0 0 1 0 1 0 20

0 0 1 1 0 1 0 1 0 21

0 1 0 0 1 1 0 1 0 22

0 1 0 1 1 1 0 1 0 23

0 1 0 0 0 0 1 1 0 24

1 0 0 1 0 0 1 1 0 25

0 1

1

0 0 1 0 1 1 0 26

0 1 0 1 1 0 1 1 0 27

0 1 0 0 0 1 1 1 0 28

1 0 0 1 0 1 1 1 0 29

0 1 0 0 1 1 1 1 0 30

0 1 0 1 1 1 1 1 0 31

91

To simplify truth table we use the sum of min term format:

5.2.2 Sum of Minterms

P_save =

m4+m5+m6+m12+m14+m20+m21+m32+m33+m34+m36+m37+m38+m3

9+m40+m42+m44+m45+m46+m47+m48+m49+m52+m53+m54+m55+m6

1+m62

0 0 1 0 0 0 0 0 1 32

0 0 1 1 0 0 0 0 1 33

0 0 1 0 1 0 0 0 1 34

0 1 0 1 1 0 0 0 1 35

0 0 1 0 0 1 0 0 1 36

0 0 1 1 0 1 0 0 1 37

0 0 1 0 1 1 0 0 1 38

0 0 1 1 1 1 0 0 1 39

0

1

0 1 0 0 0 1 0 1 40

1 0 0 1 0 0 1 0 1 41

0 0 1 0 1 0 1 0 1 42

1 0 0 1 1 0 1 0 1 43

0 0 1 0 0 1 1 0 1 44

0 0 1 1 0 1 1 0 1 45

0 0 1 0 1 1 1 0 1 46

0

1

0 1 1 1 1 1 0 1 47

0 0 1 0 0 0 0 1 1 48

0 0 1 1 0 0 0 1 1 49

0 1 0 0 1 0 0 1 1 50

0 1 0 1 1 0 0 1 1 51

0 0 1 0 0 1 0 1 1 52

0 0 1 1 0 1 0 1 1 53

0 0 1 0 1 1 0 1 1 54

0 0 1 1 1 1 0 1 1 55

0 1 0 0 0 0 1 1 1 56

1 0 0 1 0 0 1 1 1 57

0 1 0 0 1 0 1 1 1 58

0 1 0 1 1 0 1 1 1 59

0 1 0 0 0 1 1 1 1 60

0 0 1 1 0 1 1 1 1 61

0

0 1 0 1 1 1 1 1 62

0 1 0 1 1 1 1 1 1 63

92

C1_save =

m0+m2+m3+m7+m10+m16+m17+m18+m19+m22+m23+m24+m26+m27

+m28+m30+m31+m35+m50+m51+m56+m58+m59+m60+m63

C2_save = m1+m8+m9+m11+m13+m15+m25+m29+m41+m43+m57

P_save =

∑m(4,5,6,12,14,20,21,32,33,34,36,37,38,39,40,42,44,45,46,47,48,49,52,53,5

4,55,61,62)

C1_save =

∑m(0,2,3,7,10,16,17,18,19,22,23,24,26,27,28,30,31,35,50,51,56,58,59,60,6

3)

C2_save = ∑m(1,8,9,11,13,15,25,29,41,43,57)

93

5.3 Q-Learning Implementation

Cache cleaner agent repeatedly interacts with the environment and tries to

estimate the optimal Q*(s, α). In particular, the agent starts with random

estimates Q (s,α) for each state action pair, and then begins exploring the

environment. During exploration it receives tuples in the form (s, R, α, s`)

where s is the current state, R is the current reward, α is an action taken in

state s, and s` is the resulting state after executing α. From each tuple, the

agent updates its action value estimates as shown in equation 5.1:

Q(s, α):= (1- λ) Q(s, α) + λ[R + γ max Q(s`, α`)] ‎5.1

Where λ (0,1) is a learning rate that controls convergence.

The cache cleaner agent will explore from state to state until it reaches the

goal. We'll call each exploration an episode. Each episode consists of the

agent moving from the initial state to the goal state. Each time the agent

arrives at the goal state, the program goes to the next episode.

The Q-Learning algorithm goes as follows:

94

1. Set the gamma parameter, and environment rewards in matrix R.

2. Initialize matrix Q to zero.

3. For each episode:

Select a random initial state.

Do while the goal state hasn't been reached.

Select one among all possible actions for the current state.

Using this possible action, consider going to the next state.

Get maximum Q value for this next state based on all possible actions.

Compute:

Q(state, action)=R(state, action)+gamma * Max[Q(next state, all actions)]

Set the next state as the current state.

End Do

End For

Figure ‎5.7: Q-Learning Algorithm

The Q-Learning algorithm shown in figure 5.7 is used by the cache cleaner

agent to learn from experience. The input is the R matrix and the output is

Q matrix. Each episode is equivalent to one training session. In each

training session, the cleaner agent explores the environment (represented by

matrix R), receives the reward (if any) until it reaches the goal state. The

purpose of the training is to enhance the 'brain' of cache cleaner agent,

95

represented by matrix Q. More training results in a more optimized matrix

Q. In this case, if the matrix Q has been enhanced, the cache cleaner agent

will find the fastest route to the goal state. The Gamma parameter has a

range of 0 to 1 (0 <= Gamma > 1). If Gamma is closer to zero, the agent

will tend to consider only immediate rewards. If Gamma is closer to one,

the agent will consider future rewards with greater weight, willing to delay

the reward.

To understand how the Q-learning algorithm works, we'll go through a few

episodes step by step.

 We'll start by setting the value of the learning parameter Gamma =

0.8.

 Initialize matrix Q as a zero matrix.

 Initialize matrix R with the rewards values

R Matrix: We associate a reward value to each action, when the cache

cleaner agent takes its optimal action that leads to the goal, it has an instant

reward of 100. Other actions have zero reward.

The rows of matrix R represent the states of the agent, and the columns

represent the possible actions.

We assume the number of states to be 27 states

96

 The agent read the first line on the cache that represents the first web

object so the initial state will be the situation parameters of this object. The

first row (state 0) of matrix R represents the first web object's situation

parameter. There are two possible actions for the current state 0: to delete

the web object or save it. By random selection, the agent selects to delete

the web object.

 To use the matrix Q, the cache cleaner agent simply traces the sequence

of states, from the initial state to goal state. The algorithm finds the

actions with the highest reward values recorded in matrix Q for current

state is shown as follows:

State Action

 0 0 100

 1 0 100

 2 0 100

 3 0 100

 4 0 100

 5 0 100

 6 0 100

 7 0 100

 8 0 100

 9 0 100

 10 0 100

 11 0 100

 12 0 100

 13 0 100

 14 0 100

 15 0 100

 16 0 100

 17 0 100

 18 0 100

 19 0 100

 20 0 100

 21 0 100

 22 0 100

97

1. Set current state = initial state.

2. From current state, find the action with the highest Q value.

3. Set current state = next state.

4. Repeat Steps 2 and 3 until current state = goal state.

Figure ‎5.8: Algorithm to utilize the Q matrix

The algorithm shown in figure 5.8 will return the sequence of states from

the initial state to the goal state.

The cleaner agent starts out knowing nothing, the matrix Q is initialized to

zero.

 The transition rule of Q learning is a very simple formula:

Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all

actions)]

According to this formula, a value assigned to a specific element of matrix

Q, is equal to the sum of the corresponding value in matrix R and the

learning parameter Gamma, multiplied by the maximum value of Q for all

possible actions in the next state.

Q(0, 1) = R(0, 1) + 0.8 * Max[Q(1, 0), Q(1, 1)] = 100 + 0.8 * 0 = 100

Since matrix Q is still initialized to zero, Q(1, 0), Q(1, 1), are all zero. The

result of this computation for Q(0, 1) is 100 because of the instant reward

98

from R(1, 0).The next state 1, now becomes the current state. Cache cleaner

agent's brain now contains an updated matrix Q.

Now the agent was in state 1. Also there are two possible actions for the

current state 1: delete the web object or save it. By random selection, it

selects to save the web object.

Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all

actions)]

Q(1, 0) = R(1, 0) + 0.8 * Max[Q(0, 0), Q(0, 1)] = 0 + 0.8 * 0 = 0

The result of this computation for Q(1, 0) is 0.

We repeat the inner loop of the Q learning algorithm because state 1 is not

the goal state.

The next state, 2, now becomes the current state and so on until the agent

reach the goal state.

99

CHAPTER 6: TESTING AND RESULTS

100

6.1 Testing and Results

We use WebTraff simulator to generate Web proxy workloads and different

cache size. The following figure explains the simulator interface.

Figure ‎6.1:Figure Screen Shot of Graphical User Interface (GUI) for

WebTraff Tool

101

 And the following figure explains sample of workload which generated by

the simulator.

Time-Stamp Doc-Id Size

0.01831 1 2885

0.17150 1 2885

1.37429 1 2885

4.24071 0 4241

5.54242 1 2885

7.12107 1 2885

7.61197 1 2885

8.13901 3 4245

8.14961 0 4241

8.38060 0 4241

9.10558 4 1624

9.50900 2 16782

10.12284 0 4241

10.31290 0 4241

Figure ‎6.2: Sample of Web Workload Format Used in WebTraff

 We test the model using five samples ofWeb proxy workloads and

different cache size start from 1 to 32768 k.

 1 M byte

 6 M byte

 500 M byte

 800 M byte

 1 G byte

102

6.2 Performance Evaluation

The standard performance metrics Hit Ratio (HR) and Byte Hit Ratio (BHR)

are used to evaluate the performance of the proposed model. These can be

calculated as follows:

∑

 ‎6.1

∑

∑

 ‎6.2

When n: total Number of requests

∂i: 1 if the request i is in the cache

∂i: 0 otherwise

bi: size in bytes

The new improvement mode's results (PCCIA) compare with traditional

LRU, LFU and Size removable policies in terms of byte hit rate and hit rate.

Results have been shown in appendix.

The following figures give a comparison of PCCIA with traditional LRU,

LFU and Size removable policies in terms of byte hit rate and hit rate.

The x coordinator represents cache size and y coordinator represents the

terms Hit ratio and byte hit ratio.

103

Figure ‎6.3: Parent HR (Cache Sim = 1Mb)

 Figure ‎6.4: Parent BHR (Cache Sim = 1 Mb)

Parent_HR (Cache Sim =1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Parent_BHR (Cache Sim 1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

104

Figure ‎6.5: Child1 HR(Cache Sim = 1 Mb)

Figure ‎6.6: Child1 BHR (Cache Sim =1Mb)

Child1_HR (Cache Sim =1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child1_BHR (Cache Sim 1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

105

Figure ‎6.7: Child2 HR (Cache Sim = 1 Mb)

Figure ‎6.8: Child 2 BHR (Cache Sim =1 Mb)

Child2_HR (Cache Sim 1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child2_BHR (Cache Sim 1Mb)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

106

Figure ‎6.9: Parent HR (Cache Sim = 6 Mb)

Figure ‎6.10: Parent BHR (Cache Sim= 6 Mb)

Parent_HR (Cache Sim =6 Mb)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Parent_BHR (Cache Sim =6 Mb)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

107

Figure ‎6.11: Child1 HR (Cache Sim = 6 Mb)

Figure ‎6.12: Child1 BHR (Cache Sim = 6 Mb)

Child1_HR (Cache Sim = 6 Mb)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child1_BHR (Cache Sim =6 Mb)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

108

Figure ‎6.13: Child2 HR (Cache Sim = 6 Mb)

Figure ‎6.14: Child2 BHR (Cache Sim =6 Mb)

Child2_HR (Cache Sim =6 Mb)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child2_BHR (Cache Sim =6 Mb)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

109

Figure ‎6.15: Parent HR (Cache Sim = 500 Mb)

Figure ‎6.16: Parent BHR (Cache BHR = 500 Mb)

Parent_HR (Cache Sim = 500 M byte)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Parent_BHR (Cache Sim = 500 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

110

Figure ‎6.17: Child1 HR (Cache Sim = 500 Mb)

Figure ‎6.18: Child1 BHR (Cache Sim =500 Mb)

Child1_HR (Cache Sim =500 M byte)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child1_BHR (Cache Sim =500 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

111

Figure ‎6.19: Child2 HR (Cache Sim =500 Mb)

Figure ‎6.20: Child2 BHR (Cache Sim = 500 Mb)

Child2_HR (Cache Sim = 500 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child2_BHR(Cach Sim = 500 M byte)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

112

Figure ‎6.21: Parent HR (Cache Sim = 800 Mb)

Figure ‎6.22: Parent BHR (Cache Sim 800 Mb)

Parent_HR (cache Sim 800 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Parent_BHR (Cache Sim 800 M byte)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

113

Figure ‎6.23: Child HR (Cache Sim = 800 Mb)

Figure ‎6.24: Child1 BHR (Cache Sim = 800 Mb)

Child1_HR (Cache Sim = 800 M byte)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child1_BHR (Cache Sim = 800 M byte)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

114

Figure ‎6.25: Child2 HR (Cache Sim = 800 Mb)

Figure ‎6.26: Child2 BHR (Cache Sim =800 Mb)

Child2_HR (Cache Sim = 800 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child 2 _ BHR (Cache Sim = 800 M byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

BHR

PCCIA

LRU

LFU

SIZE

115

Figure ‎6.27: Parent HR (Cache Sim = 1 Gb)

Figure ‎6.28: Parent BHR (Cache Sim = 1 G)

Parent_HR (Cache Sim =1 G byte)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Parent_BHR (Cache Sim =1 G byte)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

116

Figure ‎6.29: Child1 HR (Cache Sim = 1 Gb)

Figure ‎6.30: Child1 BHR (Cache Sim = 1 Gb)

Child1_HR (Cache Sim =1 G byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child1_BHR (Cache Sim =1 G byte)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

117

Figure ‎6.31: Child2 HR (Cache Sim= 1Gb)

Figure ‎6.32: Child2 BHR (Cache Sim 1 Gb)

Child2_HR (Cache Sim 1 G byte)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

H
R

PCCIA

LRU

LFU

SIZE

Child2_BHR (Cache Sim 1 G byte)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Size

B
H

R

PCCIA

LRU

LFU

SIZE

118

‎6.33: Hit Ratio and Byte Hit Ratio in Best Results

‎6.34: Hit Ratio and Byte Hit Ratio in Worse Results

Hit Ratio and Byte Hit Ratio in Best Results

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5
Cache Size

Parent Hit

Ratio

Parent

Byte Hit

Ratio
Child1 Hit

Ratio

Child1

Byte Hit

Ratio
Child2 Hit

Ratio

Child2

Byte Hit

Ratio

Hit Ratio and Byte Hit Ratio in Worse Results

0

10

20

30

40

50

60

70

80

1 2 3 4 5
Cache Size

Parent Hit

Ratio

Parent

Byte Hit

Ratio
Child1 Hit

Ratio

Child1 Byte

Hit Ratio

Child2 Hit

Ratio

Child2 Byte

Hit Ratio

119

6.3 Results Discussion

The simulation results are illustrated that the cache size plays a crucial role

in improving the performance of the web cache. When the cache size

increases, the new approach PCCIA has better performance over the LRU,

LFU and Size traditional replacement polices in terms of hit rate and byte

hit rate.

We can conclude some remarks from the simulation results as follows:

6.4 Simulation Results for Parent Cache

 Figures 6.9, 6.15, 6.21, 6.27 and 6.33 give a comparison of PCCIA with

LRU, LFU and Size algorithms in parent cache in term of hit rate.

 From Figure 6.9, in case of hit rate, for a cache size of 14 MB, there

is a performance gain 6.66 (from66.67% to %73.33) over LRU.

 From Figure 6.15, in case of hit rate, for a cache size of 15 MB, there

is a performance gain of 6.77% (from 33.33% to 40 %) over LFU and

5.33% (from 34.67% to 40 %) over Size.

 From Figure 6.21, in case of hit rate, for a cache size of 9 MB, there

is a performance gain of 4.70% (from 17.65 % to 22.35 %) over

LRU, 5.88% (from 16.47 % to 22.35 %) over LFU and 4.70% (from

17.65% to 22.35 %) over Size.

 From Figure 6.27, in case of hit rate, for a cache size of 1 MB, there

is a performance gain of 14.50 % (from 10.14 % to 24.64 %) over

LRU, 16.57 % (from 8.7 % to 24.64 %) over LFU and 14.50 % (from

10.14 % to 24.64 %) over Size.

120

 From Figure 6.33, in case of hit rate, for a cache size of 7 MB, there

is a performance gain of 3.7 % (from 12.31 % to 15.38%) over LRU,

4.67 % (from 10.77% to 15.38 %) over LFU and 3.7% (from 12.31 %

to 15.38 %) over Size.

Figures 6.10, 6.16, 6.22, 6.28 and 6.34 give a comparison of PCCIA with

LRU, LFU and Size algorithms in parent cache in term of byte hit rate

 From Figure 6.10 In case of byte hit rate, for a cache size of 14 MB,

there is a performance gain of 14.49 % (from 58.51 % to 73%) over

LRU, 1.71 % (from 71.29 % to 73 %) over LFU and 10.48 % (from

62.52% to 73%) over Size.

 From Figure 6.16 In case of byte hit rate, for a cache size of 13 MB,

there is a performance gain of 1.07 % (from 47.42% to 48.49 %) over

LFU and 11.75 % (from 36.74% to 48.49 %) over Size.

 From Figure 6.22 In case of byte hit rate, for a cache size of 1MB,

there is a performance gain of 7.99 % (from 14.66 % to 22.65%) over

LRU, 11.13 % (from 11.52 % to 22.65%) over LFU and 6.39% (from

16.26% to 22.65%) over Size.

 From Figure 6.28 In case of byte hit rate, for a cache size of 1MB,

there is a performance gain of 10.17 % (from 14.4% to 24.57%) over

LRU, 17.05 % (from 7.52% to 24.57%) over LFU and 8.63 % (from

15.94% to 24.57%) over Size.

 From Figure 6.34 In case of byte hit rate, for a cache size of 16 MB,

there is a performance gain of 13.50 % (from 18.95 % to32.45 %)

over LRU, 14.78 % (from 17.67 % to 32.45%) over LFU and 22.49

% (from 9.96% to 32.45%) over Size.

121

6.5 Simulation Results for Child 1 Cache

 Figures 6.11, 6.17, 6.23, 6.29 and 6.35 give a comparison of PCCIA with

LRU, LFU and Size algorithms in child1 cache in term of hit rate.

 From Figure 6.11 In case of hit rate, for a cache size of 15 MB, there

is a equality in performance PCCIA and LFU 73.33%.

 From Figure 6.17 In case of hit rate, for a cache size of 15 MB, there

is a equality in performance PCCIA with LFU and Size 44.21 % and

(from 44.21% to 53.68 %) under LRU

 From Figure 6.23 In case of hit rate, for a cache size of 15 MB, there

is a performance gain of 1.27 % (from 13.92% to 15.19 %) over LFU

and Size.

 From Figure 6.29 In case of hit rate, for a cache size of 15 MB, there

is a equality in performance PCCIA and LFU 18.99

 From Figure 6.35 In case of hit rate, for a cache size of 16 MB, there

is a performance gain to LRU and Size of 1.41 % (from 26.76 % to

28.17%) over PCCIA, PCCIA similar to LFU 26.76 %.

Figures 6.12, 6.18, 6.24, 6.30 and 6.36 give a comparison of PCCIA with

LRU, LFU and Size algorithms in child 1 cache in term of byte hit rate.

 From Figure 6.12 In case of byte hit rate, for a cache size of 15 MB,

there is a equality in performance PCCIA with LFU 77.18.

 From Figure 6.18 In case of byte hit rate, for a cache size of 15 MB,

there is a performance gain 16.91(from 39.58% to 56.49 %) over

LRU, 14.48 % (from 42.1% to 56.49 %) over LFU and Size.

 From Figure 6.24 In case of byte hit rate, for a cache size of 15 MB,

there is a performance gain of 0.04 % (from 28.32 % to 28.36%) over

LRU, 0.38 % (from 27.98 % to 28.36 %) over LFU and4.61% (from

23.75 % to 28.36 %) over Size.

 From Figure 6.30 In case of byte hit rate, for a cache size of 16 MB,

there is a performance gain 0.86%(from 24.59 % to 25.45%) over

LFU and 4.73 % (from 20.72 % to 25.45 %) over Size.

122

 From Figure 6.36 In case of byte hit rate, for a cache size of 16 MB,

there is a performance gain of 1.94 % (from 24.54 % to 26.48 %)

over LRU, 2.46 % (from 24.02 % to 26.48 %) over LFU and 0.79 %

(from 25.69 % to 26.48 %) over Size.

123

6.6 Simulation Results for Child 2 Cache

 Figures 6.13, 6.19, 6.25, 6.31 and 6.37 give a comparison of PCCIA with

LRU, LFU and Size algorithms in child 2 cache in term of hit rate.

 From Figure 6.13 In case of hit rate, for a cache size of 15 MB, there

is a performance gain of 6.70 % (from 62.5 % to 68.75 %) over LRU.

 From Figure 6.19 In case of hit rate, for a cache size of 16 MB,

there is a equality in performance PCCIA with LFU 48.76 %

 From Figure 6.25 In case of hit rate, for a cache size of 16 MB, there

is a performance gain of 3.04 % (from 11.51% to % 14.55) over

LRU, 6.67 % (from 7.88 % to 14.55%) over LFU and 1.61 % (from

12.94 % to 14.55 %) over Size.

 From Figure 6.31 In case of hit rate, for a cache size of 16 MB,

there is a equality in performance PCCIA with LFU 25.23

 From Figure 6.37 In case of hit rate, for a cache size of 16 MB, there

is a performance gain of 17.76 % (from 14.95 % to 32.71%) over

LRU, 18.69 % (from 14.02% to 32.71%) over LFU and 18.69 %

(from 14.02 % to 32.71 %) over Size.

 Figures 6.14, 6.20, 6.26, 6.32, 6.38 give a comparison of PCCIA with LRU,

LFU and Size algorithms in child 2 cache in term of byte hit rate.

 From Figure 6.14 In case of byte hit rate, for a cache size of 15 MB,

there is a performance gain of 3.92 % (from 55.69 % to 59.61 %)

over LRU.

 From Figure 6.20 In case of byte hit rate, for a cache size of 14 MB,

there is a performance gain of 0.64% (from 55.38 % to % 56.02) over

LRU, 0.04 % (from 55.98 % to 56.02 %) over LFU

 From Figure 6.26 In case of byte hit rate, for a cache size of 16 MB,

there is a performance gain of 9.22 % (from 19.2 % to 28.42 %) over

LRU, 10.53 % (from 17.89 % to 28.42 %) over LFU and 13.73 %

(from 14.69 % to 28.42 %) over Size.

124

 From Figure 6.32 In case of byte hit rate, for a cache size of 10 MB,

there is a performance gain of 0.3 % (from 19.83 %to 19.86 %) over

LRU, 0.13 % (from 19.73 % to 19.86 %) over LFU.

 From Figure 6.32 In case of byte hit rate, for a cache size of 13 MB,

there is a performance gain of 31.99 % (from 4.14 % to 36.13 %)

over LRU, 35.28% (from 1.08 % to 36.13%) over LFU and 32.8 %

(from 4.5 % to 36.13 %) over Size.

125

CHAPTER 7:

CONCLUSION AND RECOMMENDATIONS

126

7.1 Conclusion

We conclude that intelligent agent, can be used to monitor the proxy cache

and control the cleanup task.

Cache cleaner agent can remove the web object proactively when it has high

clean up priority.

Fuzzy logic can be used to combine LRU, LFU and Size replacement

polices to optimize proxy cache performance.

Simulation results show that the new approach PCCIA performs better than

LRU, LFU and Size replacement polices in terms of hit rate and byte hit rate

when the cache size increase. Simulation results achieved a hit ratio of

73.33 % in the best result and 7.25% in the worst result, and a byte hit ratio

of 73.00% in the best result and 5.12% in the worst result on the parent

cache side. Results for the child1 cache side are a hit ratio of 73.33% in the

best result and 0% in the worst result, and a byte hit ratio of 77.18 % in the

best result and 0% in the worst result. Results for the child2 cache side are a

hit ratio of 80.00 % in the best result and 0% in the worst result, and a byte

hit ratio of 73.05% in the best result and 0% in the worst result.

Reactive Coordination has been applied between the parent and child

cleaner agents to achieve the cleanup task in efficient way.

Q_learning algorithm has been implemented to avoid difficult calculation

when it reached a similar state and take a suitable action.

127

7.2 Future Work

 In the future, other simulator can be used to generate cache size large

than 1 G byte.

 This method ignored latency time (download time of objects) in taken

the replacement decision.

 Moreover, Inference rules and coordination rules can be simplified to

help the cleaner agent to take a quick decision

128

REFERENCES

1. V.R.R. P. N. Vijaya Kumar, “ Novel Web Proxy Cache Replacement

Algorithms using Machine Learning Techniques for Performance

Enhancement,” INTERNATIONAL JOURNAL OF ENGINEERING

SCIENCES & RESEARCH TECHNOLOGY, 2014.

2. S.M.S. Sarina Sulaiman, Ajith Abraham2 and Shahida Sulaiman, “

Rough Set Granularity in Mobile Web Pre-Caching”, 2009.

3. G.K. RAJEEV TIWARI, LALIT GARG, “ Robust Distributed Web

caching: A Dynamic clustering Approach,” vol. 3 No.2, 2011.

4. S.M.S. Sarina Sulaiman, Fadni Forkan, Ajith Abraham,

“Autonomous SPY©: Intelligent web proxy caching detection using

neurocomputing and particle swarm optimization” ACM, 2009, pp. 6.

5. S.M.S. Sarina Sulaiman, Ajith braham, “Rough Web Caching,” 2009.

6. S.M.S. Waleed Ali , and Abdul Samad Ismail, “A Survey of Web

Caching and Prefetching ” Book A Survey of Web Caching and Prefetching

Series A Survey of Web Caching and Prefetching 3, ed., Editor eds., 2011,

pp. 25.

7. S.M.S. Sarina Sulaiman, Fadni Forkan, Ajith Abraham and Azmi

Kamis, “ Intelligent Web Caching for E-learning Log Data,” 2009.

8. J.L. F. Khalil, H. Wang, “An Integrated Model for Next Page Access

Prediction”, 2009.

129

9. S.M.S.m. Waleed Ali prowalid, “Integration of Least Recently Used

Algorithm and Neuro-Fuzzy System into Client-side Web Caching

” International Journal of Computer Science and Security (IJCSS), vol. 3,

no. 1, 2009, pp. 15.

10. R.C.P. J. B. PATIL, B. V. PAWAR, “Integrating Intelligent

Predictive Caching and Static Prefetching in Web Proxy Servers

” International Journal on Computer Science and Engineering (IJCSE),

vol. 3, 2011, pp. 8.

11. S.M.S. Sarina Sulaiman, Ajith Abraham, “Rough Neuro-PSO Web

Caching and XML Prefetching for Accessing Facebook from Mobile

Environment”, 2009.

12. J.S.Greshma, “Latency Reduction in mobile environment,” Elsevier,

2012.

13. P.B.a.S. Raheja, “A Vague Improved Markov Model Approach for

Web Page Prediction”,International Journal of Computer Science &

Engineering Survey (IJCSES), vol. .5, No.2, 2014.

14. J.K.G. JITENDRA SINGH KUSHWAH, BRIJESH PATEL#3,

“Review LRU Algorithm to Implement Proxy Server with Caching

Policies,” International Journal of Engineering Science and Technology

(IJEST), vol. 3 No.10, 2011.

15. B.V.P. J. B. Patil1, R. C. Patel “Improving Performance on WWW

using Intelligent Predictive Caching for Web Proxy Servers ” IJCSI

130

International Journal of Computer Science Issues, vol. 8, no. 1, January

2011.

16. A.J. Sirshendu Sekhar Ghosh, “Energy Efficient Proxy Prefetch-

Cache Framework in Clustered Architecture,” IJCTA Int.J.Computer

Technology & Applications, vol. 5 (2),669-677, 2014.

17. Y.H. Yongrui Xu “ A High Scalability and High Cache Hit Ratio

Replacement Algorithm,” Book A High Scalability and High Cache Hit

Ratio Replacement Algorithm, Series A High Scalability and High Cache

Hit Ratio Replacement Algorithm, ed., Editor ed.^eds., 2011, pp.

18. H.E.a.S. Romano, “Comparison of Function Based Web Proxy Cache

Replacement Strategies,” IEEE, 2009.

19. B.H. Naizheng, Chen, “A Least Grade Page Replacement Algorithm

for Web Cache Optimization,” Knowledge Discovery and Data Mining,

2008. WKDD 2008. First International Workshop on, pp. 469-472.

20. D.N.A.G. K. Geetha, Monikandan S, “SEMALRU: An

Implementation of modified web cache replacement algorithm,” IEEE,

2009.

21. E.M. Georgios Kastaniotis, Vasileios Dimitsas, Christos Douligeris ,

Dimitris K. Despotis, “Web Proxy Caching Object Replacement: Frontier

Analysis to Discover the „Good-Enough‟ Algorithms,” IEEE, 2008.

22. E.C. F.J. Gonzalez-Canete, A. Trivino-Cabrer, “An Application

Level Caching Scheme Implementation For MANETS Using NS-2,”

International Conference Applied Computing, 2009.

131

23. G.P. Sajeev, and M.P. Sebastian, “A scheme for adaptive web

caching based on multi level object classification,” Intelligent and

Advanced Systems (ICIAS), 2010 International Conference on, pp. 1-6.

24. T. Berczes, “Approximation approach to performance evaluation of

Proxy Cache Server systems,” 2009.

25. S.M. Abid, and H. Youssef, “Impact of One-Timer/N-Timer Object

Classification on the Performance of Web Cache Replacement Algorithms,”

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010

IEEE/WIC/ACM International Conference on, pp. 208-211.

27. F.K.G.K.T.M.P.a.S. Fdida, “The effect of caching on a model of

content and access provider revenues in information-centric

networks ,” 2013.

28. V.P.a.G. Dan, “Content-peering Dynamics of Autonomous Caches in

a Content-centric Network,” IEEE, 2013.

29. P. Jomsri, “Improving the Performance of Proxy Server by Using

Data Mining Technique”, 2013.

30. S.S.a.V.S. Vijayan R, “A Fuzzy based Anti Spam SMTP Proxy

Server Engine with Performance Tuning” IJARCS, 2010.

31. S.S. Waleed Ali, Norbahiah Ahmad, “Performance Improvement of

Least-Recently-Used Policy in Web Proxy Cache Replacement Using

Supervised Machine Learning,” Int. J. Advance, vol. 6, 2014.

132

32. N.e.-K.H.A.R. Mohamed, “A Proposed Model for Web Proxy

Caching Techniques to Improve Computer Networks Performance ” I.J.

Information Technology and Computer Science,, 2013

33. A.P.a.S. Sharma, “Reviewof Web Pre-Fetching and Caching

Algorithms ” International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), vol. No. 3, no. No. 1, 2014.

34. D.R. CH, “Study of The Web Caching Algorithms for Performance

Improvement of The Response Speed,” Indian Journal of Computer Science

and Engineering, vol. 3 No. 2, 2012.

35. N.G. K Muralidhar, “Improving the Performance of Browsers Using

Fuzzy Logic,” International Journal of Engineering Research and

Development, vol. 3, no. 1, 2012.

36. R.C.P. J. B. PATIL, B. V. PAWAR, “Integrating Intelligent

Predictive Caching and Static Prefetching in Web Proxy Servers

” International Journal on Computer Science and Engineering (IJCSE),

vol. 3, 2011, pp. 8.

37. A.K. Aparna N. Gupta, “A Review: Study of Various Clustering

Techniques in Web Usage Mining,” International Journal of Advanced

Research in Computer and Communication Engineering vol. 3, no. 3, 2014.

38. S.M.S.a.A.A. Sarina Sulaiman, “Intelligent Web Caching Using

Adaptive Regression Trees, Splines, Random Forests and Tree Net,” 2009.

133

39. C. Kumar, “Performance evaluation for implementations of a

network of proxy caches”, 2009.

40. M.K.a.P.N. Abdullah Balamash, “Performance Analysis of a Client-

Side Caching/Prefetching System for Web Traffic.”

41. S.M.S. Sarina Sulaiman, Ajith Abrahamy, Shahida Sulaiman,

“Intelligent Web Caching Using Machine Learning Methods ”, 2011.

42. S.M.S. Sarina Sulaiman, Ajith braham, “Rough Web Caching,” 2009.

43. P. Jomsri, “Improving the Performance of Proxy Server by Using

Data Mining Technique,” World Academy of Science, Engineering and

Technology, 2013.

44. M.K. Jinsuk Baek, Paul S. Fisher, and Elva J. Jones, “AWeb Object

Management Policy for Cooperative Hybrid Caching Architecture” IEEE,

2009.

45. S.M.S.a.A.S.I. Waleed Ali, “Intelligent Bayesian Network-Based

Approaches for Web Proxy Caching,” 2011.

46. H.E. Jake Cobb, “Web proxy cache replacement scheme based on

back-propagation neural network,” ScienceDirect, vol. 81, no. 9, 2008, pp.

20.

47. H.E. Jake Cobb, “Traing and Simulation of NeuralNet Works for

Web Proxy Cache Replacement,” 2006.

48. B.V.P. J. B. Patil, “Trace driven simulation of GDSF\# and existing

caching algorithms for web proxy servers,” Book Trace driven simulation of

134

GDSF\# and existing caching algorithms for web proxy servers, Series

Trace driven simulation of GDSF\# and existing caching algorithms for web

proxy servers, ed., Editor ed.^eds., World Scientific and Engineering

Academy and Society (WSEAS), 2007, pp.

49. P.B. S. HIRANPONGSIN, “NTELLIGENT CACHE FARMING

ARCHITECTURE WITH THE RECOMMENDER SYSTEM,” 2008.

50. G.V. Maria Cala Calzarossa, “A Fuzzy Algoritm for Web Caching,”

2003.

51. J.X.a.J. Wang, “A Similarity-Aware Multiagent-BasedWeb Content

Management Scheme,” Springer, 2006.

52. M.H. Mojtaba Sabeghi1, Yaghmaee,Ferdowsi, “Using Fuzzy Logic

to Improve Cache Replacement Decisions” IJCSNS International Journal of

Computer Science and Network Security, vol. 6, 2006, pp. 7.

53. M. Piatek, “Distributed Web Proxy Caching in a Local Network

Environment,” 2004.

54. J.L.a.J.C.S.L. Alan T.S, “COPACC: A Cooperative Proxy-Client

Caching System for On-Demand Media Streaming ”, 2005.

55. E.C. Wenzhong Li, Yilin Wang, Daoxu Chen, and Sanglu Lu,

“Cache Placement Optimization in Hierarchical Networks: Analysis and

Performance Evaluation,” 2006.

135

56. O. Hyung Rai, and S. Hwangjun, “[A Novel Dynamic and Scalable

Caching Algorithm of Proxy Server for Multimedia Objects,” J. VLSI

Signal Process. Syst., vol. 46, no. 2-3, 2007, pp. 103-112.

57. C.K.a.J.B. Norris, “A new approach for a proxy-level web caching

mechanism,” Elsevier, 2008.

58. A.V. George Pallis , Jaroslav Pokorny “A clustering-based

prefetching scheme on a Web cache environment,” Elsevier, 2008.

60. Y.W.T.a.Y.K. Chang, “A Novel Cooperative Caching Scheme for

Wireless Ad Hoc Networks: GroupCaching”, 2007.

61. S.T. Richa Gupta, “Pair of Replacement Algorithms MFMR and

AFLRU on L1 and L2 Cache for Proxy Server,” IEEE, 2005.

62. B.L. Xiang Zhan Yu, “Anew Approach to fragment Level Caching of

Dynamically Generatted Web Content in Forward Proxies ” International

Conference on Machine Learning and Cybernetics, pp. 6.

63. F.B. Fernando Duarte, Virgilio Almeida, Jussara Almeida, “Locality

of Refrence in an Hierarrchy of Web Caches,” 2006.

64. , “Improving Performance of World Wide Web by Adaptive Web

Traffic Reduction,” 2006.

66. S.B.a.J.K. Liang Wang, “Cooperation Policies for Efficient In-

Network Caching ” ACM, 2013.

67. O.G. Simon Gay, “InteractionBased Space Representation for

EnvironmentAgnostic Agents,” 2013.

136

68. J.Z. Qing Li, and Xinzhong Zhu, “Mobile Learning Support with

Statistical Inference-Based Cache Management,” Springer, 2008.

69. L.B.a.P. Ciancarini, “A Perspective on Multiagent Coordination

Models,” Springer, 2003.

70. D.A.W. P. Sengottuvelan, Dr. A. Shanmugam, “An Approach for

CMA Coordination behavior in Teamwork of Multi-Agent System,”

International Journal of Recent Trends in Engineering, vol. 1.No 1, 2009.

71. S.D.R.a.C. Skinner, “Designing a Multi-Agent Coordination

Competition,” 2009.

72. B.C.-d. Patrick Beaumont, “Multiagent Coordination Techniques for

Complex Environments,” 2004.

73. S.J.O. Miller, “Multi-Agent Based Techniques for Coordinating the

Distribution of Electricity in a Micro-Grid Environment”, 2010.

74. D.-y.L. Li Jiang, “A Survey of Multi-agent Coordination,” 2001.

75. M.R. Nicola Gatti, Tuomas Sandholm and Carnegie Mellon, “On the

Verification and Computation of Strong Nash Equilibrium”, 2010.

76. R.P. Yakov Babichenko∗, “Approximate Nash Equilibria via

Sampling,” July 19, 2013.

77. A.R.-K. Mostafa Sahraei-Ardakani, Majid Nili-Ahmadabadi,

“Hierarchical Nash-Q Learning in Continuous Games” IEEE, 2008.

137

78. Y. Averboukh, “Universal Nash Equilibrium Strategies for

Differential Games”, June 2013.

79. A.R.-K. M. Sahraee Ardakani, M. Nili Ahmadabadi, “Hierarchical

Nash-Cournot Q-Learning in Electricity Markets” The International

Federation of Automatic Control, July 6-11, 2008.

80. b. Wenzhong Li a, Edward Chan b, Guofu Feng c, Daoxu Chen a,

Sanglu Lu a, “Analysis and performance study for coordinated hierarchical

cache placement strategies,” Elsevier, 2010.

81. S.L. Maxim Claeys, Jeroen Famaey, Tingyao Wu, Werner Van

Leekwijck and Filip De Turck, “Design of a Q-Learning-based Client

Quality Selection Algorithm for HTTP Adaptive Video Streaming,” 2013.

82. E.M.d.C.a.L.E.S. Pablo Hernandez-Leal, Learning against non-

stationary opponents,” 2013.

83. M.A.-L. Kenji Kawaguchi, “A Greedy Approximation of Bayesian

Reinforcement Learning with Probably Optimistic Transition Model,”

2013.

84. E.M.H. Eric Sodomka, Michael L. Littman, Amy Greenwald, “Coco-

Q: Learning in Stochastic Games with Side Payments” International

Conference on Machine Learning, vol. 28, 2013.

85. H.Y. Dimitri P. Bertsekas, “Q-Learning and Enhanced Policy

Iteration in Discounted Dynamic Programming,” MATHEMATICS OF

OPERATIONS RESEARCH, vol. 37, No. 1, 2012, pp. 66–94.

138

86. D.N.S. P. Singhala, B. Patel, “Temperature Control using Fuzzy

Logic,” International Journal of Instrumentation and Control Systems

(IJICS), vol. .4, No.1, January 2014.

87. L. A.Zadeh, “Towardextendedfuzzylogic-Afirststep,” 2009.

88. N.M.C. Williamson, “WebTraff: A GUI for Web Proxy Cache

Workload Modeling and Analysis,” 2003.

89. W.C. Giovanni Caire, Francisco Garijo, Jorge Gomez, Juan

Pavon,Francisco Leal, Paulo Chainho, Paul Kearney, Jamie Stark, Richard

Evans, and Philippe Massonet, “Agent Oriented Analysis Using

Message/UML,” Springer, 2002.

90. W.C. Giovanni Caire, Francisco Garijo, The Message Methodology.

91. M.i. Wooldridge, “An Introduction to MultiAgent Systems.”

92. M. Mihaylov, “Decentralized Coordination in Multi-Agent Systems

”, July, 2012.

93. J.R. Kok, “Coordination and Learning in Cooperative Multiagent

Systems,” 2006.

94. C.P. Morgan, Algorithms for Reinforcement Learning, 2013.

95. N.V. Reinoud Elhorst, Anytime algorithms for multi-agent decision

making, 2004.

96. G.C. Fabio Bellifemine, Tiziana Trucco, Jade Administrator's Guide

2005.

139

97. “http://www.squid-cache.org/.”

98. M. Negnevitsky, Artificial Intelligence A Guide to Intelligent Systems

2005.

http://www.squid-cache.org/

140

APPENDIX
Result's Tables:

Table 1: Parent HR Cache Sim =1 Mb

Cache Size (k) PCCIA LRU LFU Size

1 60 60 70 70

2 66.67 66.67 66.67 66.67

4 66.67 58.33 75 66.67

8 72.73 72.73 72.73 72.73

16 58.33 50 66.67 66.67

32 63.64 63.64 72.73 72.73

64 66.67 60 73.33 73.33

128 50 50 62.5 62.5

256 42.86 42.86 57.14 57.14

512 71.43 71.43 78.57 78.57

1024 50 50 62.5 62.5

2048 25 25 25 25

4096 42.86 42.86 57.14 57.14

8192 73.33 66.67 80 73.33

16384 50 50 62.5 62.5

32768 61.54 61.54 69.23 76.92

141

Table 2: Table Parent BHR Cache Sim = 1 Mb

Cache Size (k) PCCIA LRU LFU Size

1 59.8 69.12 54.23 76.4

2 62.65 54.76 51.56 74.41

4 69.31 51.39 66.75 55.01

8 67.23 80 58.66 79.5

16 65.72 44.44 62.42 51.62

32 62.32 72.31 57.67 78.82

64 70.46 54.36 68.34 61.02

128 53.61 59.87 45.36 69.4

256 48.36 53.17 37.35 61.96

512 66.59 81.42 63.29 82.49

1024 53.61 65.97 45.36 69.4

2048 42.56 37.3 15.07 32.65

4096 48.36 53.17 37.35 61.96

8192 73 58.51 71.29 62.52

16384 53.61 59.87 45.36 69.4

32768 61.71 72.84 57.18 80.33

142

Table 3: Child 1 HR Cache Sim = 1 Mb

Cache Size (k) PCCIA LRU LFU Size

1 60 70 60 70

2 73.33 73.33 73.33 73.33

4 50 62.5 50 62.5

8 60 70 60 70

16 69.23 76.92 69.23 76.92

32 20 40 20 40

64 50 62.5 50 62.5

128 50 62.5 62.5 62.5

256 66.67 75 66.67 75

512 60 70 70 70

1024 71.43 78.57 71.43 78.57

2048 71.43 78.57 71.43 78.57

4096 66.67 75 75 75

8192 66.67 75 66.67 75

16384 73.33 80 73.33 80

32768 42.86 57.14 42.86 57.14

143

Table 4: Child1 BHR Cache Sim = 1 Mb

Cache Size

(k)

PCCIA LRU LFU Size

1 63.63 75.51 64.96 75.51

2 76.62 76.62 77.18 76.62

4 54.57 67.88 54.57 67.88

8 63.63 74.54 63.63 74.54

16 73.18 81.94 73.91 81.94

32 24.61 44.89 24.61 44.89

64 52.31 66.2 52.31 66.2

128 56.62 70.79 67.72 70.79

256 69.74 79.63 70.67 79.63

512 66.19 77.24 74.6 77.24

1024 75.34 83.39 75.96 83.39

2048 75.96 83.81 76.55 83.81

4096 72.31 80.25 77.86 80.25

8192 72.31 80.8 72.31 80.8

16384 77.18 84.26 77.18 84.26

32768 49.47 64.08 49.47 64.08

144

Table 5: Child 2 HR Cache Sim = 1 Mb

Cache Size (k) PCCIA LRU LFU Size

1 78.95 78.95 84.21 84.21

2 66.67 66.67 73.33 80

4 78.95 73.68 78.95 84.21

8 72.22 72.22 77.78 77.78

16 71.43 71.43 78.57 85.71

32 73.91 73.91 78.26 82.61

64 75 75 81.25 87.5

128 78.26 78.26 82.61 82.61

256 80 80 85 80

512 66.67 66.67 73.33 80

1024 76.47 76.47 82.35 76.47

2048 76.19 76.19 80.95 80.95

4096 80 75 80 80

8192 66.67 66.67 75 83.33

16384 68.75 62.5 68.75 75

32768 78.95 78.95 84.21 84.21

145

Table 6: Child 2 BHR Cache Sim = 1 Mb

Cache Size (k) PCCIA LRU LFU Size

1 72.53 71.53 75.49 71.87

2 56.29 57.14 62.52 84.26

4 68.86 65.67 68.86 85.14

8 67.21 67.21 70.25 65.13

16 59.32 61.28 65.45 87.12

32 66.66 66.66 69.61 84.54

64 63.12 63.77 68.68 88.83

128 72.23 71.37 74.81 71.63

256 73.4 73.74 77.41 69.82

512 56.12 56.12 60.2 79.99

1024 69.32 69.77 73.94 64.46

2048 71.58 72.87 75.62 71.9

4096 73.05 70.29 73.05 68.92

8192 53.81 52.58 58.79 84.33

16384 59.61 55.69 59.61 78.28

32768 67.9 68.39 72.74 84.87

146

Table 7: Parent HR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 42.5 45 43.75 43.75

2 39.39 45.45 33.33 34.85

4 47.44 48.72 38.46 37.18

8 45.35 48.84 37.21 37.21

16 45.35 47.67 41.86 41.86

32 45.95 51.35 37.84 37.84

64 42.17 50.6 38.55 37.35

128 46.74 51.09 45.65 45.65

256 43.37 46.99 37.35 36.14

512 36.14 40.96 34.94 34.94

1024 44.74 47.37 39.47 39.47

2048 46.88 50 44.79 43.75

4096 47.67 53.49 44.19 44.19

8192 40.26 44.16 40.26 40.26

16384 40 45.33 33.33 34.67

32768 40.23 49.43 35.63 35.63

147

Table 8: Parent BHR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 65.92 68.5 47.13 32.21

2 23.22 35.9 27.45 40.29

4 55.64 57.77 55.04 45.22

8 46.02 51.13 44.7 32.14

16 50.44 53.88 37.91 48.38

32 47.13 52.19 30.66 41.49

64 61.32 70.55 45.45 31.81

128 53.72 63.63 51.43 41.04

256 41.54 44.62 46.53 33.4

512 42.48 45.96 43.32 28.55

1024 68.34 70.5 48.62 35.83

2048 63.45 70.24 68.76 64.96

4096 48.49 53.92 47.42 36.74

8192 45.56 51.83 46.63 33.45

16384 38.67 49.96 30.44 41.21

32768 35.83 44.1 32.95 42.43

148

Table 9: Child 1 HR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 34.29 40 35.71 35.71

2 42.17 43.37 40.96 40.96

4 39.29 44.05 40.48 40.48

8 43.9 52.44 45.12 45.12

16 44.71 48.24 45.88 45.88

32 43.68 51.72 43.68 43.68

64 42.05 48.86 42.05 42.05

128 43.48 44.57 42.39 42.39

256 31.88 49.28 33.33 33.33

512 41.86 45.35 44.19 44.19

1024 43.18 47.73 44.32 44.32

2048 43.33 52.22 45.56 45.56

4096 41.57 48.31 43.82 43.82

8192 37.97 44.3 37.97 37.97

16384 44.21 53.68 44.21 44.21

32768 32.86 45.71 34.29 34.29

149

Table 10: Child 1 BHR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 49.35 40.72 39.54 39.54

2 50.91 18.03 29.1 29.1

4 51.19 21.24 31.5 31.5

8 46.29 41.44 46.77 46.77

16 45.71 31.46 43.54 43.54

32 46.32 35.38 35.84 35.84

64 57.51 32.68 42.91 42.91

128 51.94 23.26 32.87 32.87

256 50.28 26.94 27.31 27.31

512 43.88 37.22 44.05 44.05

1024 52.01 24.11 34 34

2048 45.54 28.45 45.46 45.46

4096 39.71 31.38 39.13 39.13

8192 35.34 25.46 28.66 28.66

16384 56.49 39.58 42.1 42.1

32768 48.06 35.89 21.06 21.06

150

Table 11: Child 2 HR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 55.47 58.59 56.25 56.25

2 50.39 56.59 51.16 51.16

4 44.83 51.72 44.83 45.69

8 42.73 51.82 41.82 42.73

16 44.86 52.34 44.86 44.86

32 45.3 54.7 44.44 45.3

64 44.86 55.14 44.86 45.79

128 37.23 51.06 38.3 38.3

256 47.62 51.59 47.62 48.41

512 45.87 60.55 45.87 46.79

1024 47.37 55.26 46.49 47.37

2048 36.96 46.74 36.96 36.96

4096 41.75 49.51 41.75 42.72

8192 51.64 57.38 51.64 52.46

16384 42.59 51.85 42.59 43.52

32768 48.76 55.37 48.76 49.59

151

Table 12: Child 2 BHR Cache Sim = 6 Mb

Cache Size (k) PCCIA LRU LFU Size

1 55.81 40.31 55.98 61.68

2 60.67 64.96 60.96 64.74

4 39.03 55.98 38.98 43.12

8 49.22 51.1 48.89 53.1

16 56.16 56.61 55.05 58.92

32 48.93 56.73 48.78 52.81

64 38.56 44.83 38.46 42.73

128 41.88 55.26 42.02 46.19

256 51.11 55.46 51.03 55.02

512 52.58 57.05 52.52 56.88

1024 45.34 49.64 45.08 49.43

2048 36.2 45.79 35.92 41.34

4096 45.91 56.44 52.28 56.59

8192 56.02 55.38 55.98 60.25

16384 45.66 54.1 46.34 50.66

32768 46.85 56.8 47.57 51.83

152

Table 13: Parent HR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 15.94 11.59 10.14 11.59

2 7.55 0 0 0

4 14.93 14.93 13.43 14.93

8 10.26 15.38 14.1 15.38

16 9.72 12.5 11.11 12.5

32 19.44 15.28 13.89 15.28

64 9.23 9.23 7.69 9.23

128 8.7 8.7 8.7 8.7

256 22.35 17.65 16.47 17.65

512 8.45 11.27 9.86 11.27

1024 15.49 18.31 16.9 18.31

2048 9.52 9.52 9.52 9.52

4096 14.67 17.33 16 17.33

8192 8.86 15.19 15.19 15.19

16384 8.97 16.67 15.38 16.67

32768 14.52 16.13 14.52 16.13

153

Table 14: Parent BHR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 22.65 14.66 11.52 16.26

2 5.71 0 0 0

4 19.14 17.16 14.06 19.07

8 13.62 8.74 5.6 9.63

16 13.22 19.52 16.93 21.36

32 15.54 17.83 14.99 19.65

64 10.24 9.68 6.45 10.71

128 5.61 9.59 9.91 10.67

256 27.35 22.95 20.71 24.87

512 9.69 9.71 6.31 10.81

1024 21.31 22.78 20.13 25.07

2048 7.42 7.49 7.74 8.35

4096 15.46 17.18 14.52 18.8

8192 11.28 15.87 16.35 17.48

16384 5.91 15.31 12.38 16.89

32768 14.55 11.51 7.88 12.94

154

Table 15: Child1 HR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 1.59 3.17 3.17 3.17

2 7.35 8.82 8.82 8.82

4 8.45 8.45 8.45 7.04

8 13.89 15.28 15.28 15.28

16 4.48 4.48 4.48 4.48

32 12.5 12.5 12.5 11.25

64 8.22 9.59 9.59 9.59

128 15.38 15.38 14.1 14.1

256 13.16 14.47 14.47 14.47

512 0 0 0 0

1024 12 13.33 13.33 12

2048 12 13.33 12 12

4096 5.8 7.25 7.25 7.25

8192 15.48 16.67 16.67 16.67

16384 15.19 15.19 13.92 13.92

32768 15.49 16.9 15.49 16.9

155

Table 16: Child1 BHR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 2.37 3.2 3.21 3.52

2 10.93 12.22 12.24 13.26

4 14.61 14.52 14.54 6.82

8 23.59 25.06 25.1 26.95

16 11.52 11.31 11.33 12.26

32 23.13 22.62 22.65 17.4

64 10.05 11.99 12.01 12.99

128 27.18 27.17 26.78 21.99

256 16 16.95 16.98 18.26

512 0 0 0 0

1024 18.05 18.72 18.75 12.1

2048 21.27 26.69 26.29 21.27

4096 4.46 6.51 6.52 7.09

8192 21.03 22.83 22.87 24.41

16384 28.36 28.32 27.98 23.75

32768 16.22 17.85 17.35 19.37

156

Table 17: Child 2 HR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 25 12.04 12.04 11.11

2 20.17 17.65 16.81 16.81

4 19.61 10.78 9.8 9.8

8 18.89 1.11 1.11 1.11

16 17.82 7.92 7.92 7.92

32 12.5 0 0 0

64 18.63 8.82 7.84 8.82

128 19.35 3.23 2.15 3.23

256 11.39 0 0 0

512 22.94 12.84 11.93 12.84

1024 17.02 4.26 3.19 3.19

2048 19.61 6.86 6.86 6.86

4096 17.71 5.21 4.17 5.21

8192 20.78 0 0 0

16384 15.66 0 0 0

32768 20.56 16.82 15.89 15.89

157

Table 18: Child2 BHR Cache Sim = 500 Mb

Cache Size (k) PCCIA LRU LFU Size

1 33.11 15.57 15.53 10.96

2 26.01 22.33 21.14 18.39

4 25.05 14.93 13.59 10.15

8 21.83 0.69 0.69 0.73

16 23.69 6.08 6.06 6.33

32 15.74 0 0 0

64 20.14 5.82 4.35 6.06

128 23.09 5.15 3.66 5.38

256 15.34 0 0 0

512 24 14.63 13.31 15.17

1024 17.67 9.03 7.59 3.56

2048 20.48 12.19 12.16 12.66

4096 23.75 8.76 7.31 9.12

8192 23.34 0 0 0

16384 18.26 0 0 0

32768 28.42 19.2 17.89 14.69

158

Table 19: Parent HR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 24.64 10.14 8.7 10.14

2 7.55 0 0 0

4 17.91 8.96 7.46 8.96

8 16.67 10.26 10.26 10.26

16 16.67 9.72 8.33 9.72

32 15.28 13.89 12.5 13.89

64 16.92 7.69 6.15 7.69

128 13.04 7.25 7.25 7.25

256 23.53 17.65 16.47 17.65

512 15.49 12.68 11.27 12.68

1024 14.08 8.45 7.04 8.45

2048 12.7 3.17 3.17 3.17

4096 18.67 14.67 13.33 14.67

8192 15.19 15.19 13.92 15.19

16384 19.23 12.82 11.54 12.82

32768 16.13 8.06 6.45 8.06

159

Table 20: Parent HR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 24.57 14.4 7.52 15.94

2 5.14 0 0 0

4 28.05 19.75 13.58 21.71

8 15.16 10.06 10.55 11.09

16 20.61 20.99 15.39 22.89

32 29.92 26.4 20.97 28.83

64 25.36 12.36 5.09 13.73

128 14.96 7.54 7.93 8.35

256 36.02 28.48 23.81 30.75

512 19.23 18.81 12.5 20.71

1024 10.55 10.78 3.5 11.97

2048 15.2 6.02 6.35 6.71

4096 26.72 27.35 22.21 29.73

8192 14.24 14.31 7.93 15.72

16384 22.29 17.57 11.76 19.18

32768 12.05 14.8 7.73 16.43

160

Table 21: Child1 HR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 4.76 4.76 3.17 4.76

2 11.76 11.76 11.76 10.29

4 9.86 9.86 8.45 9.86

8 16.67 18.06 16.67 16.67

16 8.96 10.45 8.96 8.96

32 17.5 17.5 16.25 17.5

64 10.96 10.96 10.96 9.59

128 12.82 12.82 11.54 11.54

256 11.84 13.16 11.84 13.16

512 3.33 5 5 3.33

1024 16 17.33 17.33 16

2048 16 17.33 17.33 17.33

4096 5.8 7.25 7.25 7.25

8192 20.24 21.43 20.24 20.24

16384 18.99 20.25 18.99 20.25

32768 18.31 19.72 18.31 18.31

161

Table 22: Child1 BHR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 5.75 5.73 3.99 6.17

2 19.34 19.29 19.49 13.49

4 11.07 10.93 9.39 11.7

8 28.25 28.62 27.53 24.09

16 13.77 17.18 15.78 11.08

32 17.98 17.6 16.32 18.68

64 17.57 17.62 17.78 11.99

128 16.82 16.84 15.58 11.39

256 9.74 10.17 8.76 10.83

512 10.83 11.49 11.62 4.32

1024 24.01 24.63 24.85 19.78

2048 15.53 15.98 16.14 17.02

4096 3.01 5.25 5.31 5.62

8192 32.52 33.9 33 30.28

16384 18.78 19.23 17.88 20.48

32768 25.45 25.79 24.59 20.72

162

Table 23: Child 2 HR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 18.52 19.44 18.52 19.44

2 21.01 21.01 20.17 21.01

4 15.69 16.67 15.69 16.67

8 6.67 6.67 6.67 6.67

16 11.88 12.87 12.87 12.87

32 7.95 9.09 9.09 9.09

64 18.63 18.63 18.63 18.63

128 10.75 11.83 10.75 11.83

256 0 0 0 0

512 15.6 15.6 15.6 15.6

1024 10.64 11.7 10.64 11.7

2048 14.71 14.71 14.71 14.71

4096 12.5 13.54 13.54 13.54

8192 0 0 0 0

16384 2.41 3.61 3.61 3.61

32768 25.23 26.17 25.23 26.17

163

Table 24: Child 2 BHR Cache Sim = 800 Mb

Cache Size (k) PCCIA LRU LFU Size

1 20.39 21.03 20.53 21.84

2 19.65 19.82 19.33 20.55

4 14.71 15.81 15.29 16.47

8 7.35 7.38 7.33 7.73

16 6.47 8.41 8.35 8.8

32 8.73 9.04 8.98 9.5

64 18.24 18.37 18.27 19.16

128 10.47 10.76 10.22 11.26

256 0 0 0 0

512 19.86 19.83 19.73 20.61

1024 8.8 11.78 11.21 12.34

2048 18.32 18.44 18.35 19.2

4096 12.05 14.9 14.81 15.59

8192 0 0 0 0

16384 6.2 6.59 6.55 6.92

32768 25.88 26.64 26.08 27.74

164

Table 25: Parent HR Cache Sim = 1Gb

Cache Size (k) PCCIA LRU LFU Size

1 15.94 13.04 11.59 13.04

2 9.43 1.89 1.89 1.89

4 16.42 13.43 11.94 11.94

8 14.1 20.51 20.51 20.51

16 15.28 18.06 18.06 16.67

32 18.06 19.44 19.44 18.06

64 15.38 12.31 10.77 12.31

128 7.25 13.04 13.04 13.04

256 12.94 17.65 16.47 17.65

512 14.08 14.08 12.68 14.08

1024 9.86 14.08 12.68 14.08

2048 11.11 9.52 9.52 9.52

4096 10.67 20 20 18.67

8192 16.46 16.46 16.46 15.19

16384 15.38 16.67 16.67 15.38

32768 17.74 16.13 14.52 14.52

165

Table 26: Parent BHR Cache Sim = 1Gb

Cache Size (k) PCCIA LRU LFU Size

1 11.76 5.82 5.41 5.96

2 14.69 0.73 0.68 0.76

4 19.76 16.72 15.73 8.98

8 14.67 11.04 10.55 11.26

16 17.16 15.24 14.44 7.47

32 15.23 20.67 19.48 12.22

64 26.73 10.38 9.61 10.67

128 5.12 8.22 7.8 8.41

256 17.37 14.62 13.88 14.91

512 18.35 5.93 5.46 6.08

1024 13.06 10.21 9.52 10.47

2048 11.21 3.63 3.38 3.74

4096 10.28 19.91 19.03 13.56

8192 21.39 21.33 20.23 13.82

16384 17.6 16.68 15.95 10.33

32768 32.45 18.95 17.67 9.96

166

Table 27: Child 1 HR Cache Sim = 1 Gb

Cache Size (k) PCCIA LRU LFU Size

1 11.11 14.29 12.7 14.29

2 13.24 14.71 13.24 14.71

4 12.68 14.08 12.68 14.08

8 15.28 18.06 16.67 18.06

16 8.96 11.94 10.45 11.94

32 18.75 18.75 18.75 18.75

64 12.33 13.7 12.33 13.7

128 15.38 17.95 16.67 17.95

256 17.11 19.74 18.42 19.74

512 3.33 5 3.33 5

1024 16 17.33 16 17.33

2048 16 18.67 17.33 18.67

4096 11.59 11.59 11.59 11.59

8192 20.24 21.43 20.24 21.43

16384 18.99 21.52 20.25 21.52

32768 26.76 28.17 26.76 28.17

167

Table 28: Child1 BHR Cache Sim = 1Gb

Cache Size (k) PCCIA LRU LFU Size

1 10.2 10.89 10.32 11.42

2 10.88 11.41 10.95 11.85

4 11.49 11.91 11.35 12.5

8 17.65 18.26 17.75 19.07

16 9.27 9.87 9.39 10.27

32 17.49 17.28 17.3 17.96

64 12.15 12.36 11.93 12.82

128 16.15 16.88 16.43 17.55

256 15.05 15.69 15.18 16.39

512 5.53 1.28 0.68 1.35

1024 14.16 14.15 13.67 14.74

2048 5.6 6.31 5.76 6.61

4096 6.73 6.56 6.57 6.89

8192 16.36 16.36 15.96 16.94

16384 22.74 23.35 22.88 24.32

32768 26.48 24.54 24.02 25.69

168

Table 29: Child 2 HR Cache Sim = 1Gb

Cache Size (k) PCCIA LRU LFU Size

1 28.7 11.11 11.11 11.11

2 31.93 15.13 14.29 15.13

4 21.57 7.84 7.84 6.86

8 25.56 0 0 0

16 20.79 4.95 4.95 4.95

32 20.45 0 0 0

64 25.49 7.84 7.84 7.84

128 23.66 1.08 1.08 1.08

256 21.52 0 0 0

512 28.44 10.09 9.17 9.17

1024 22.34 3.19 3.19 3.19

2048 23.53 7.84 6.86 6.86

4096 29.17 4.17 3.12 4.17

8192 23.38 0 0 0

16384 22.89 0 0 0

32768 32.71 14.95 14.02 14.02

169

Table 30: Child 2 BHR Cache Sim = 1Gb

Cache Size (k) PCCIA LRU LFU Size

1 30.99 12.15 12.35 13.06

2 36.72 11.99 9.5 12.85

4 23.75 9.72 9.88 1.57

8 32.85 0 0 0

16 29.9 2.08 2.12 2.26

32 19.3 0 0 0

64 26.07 6.82 6.94 7.36

128 20.55 0.37 0.37 0.4

256 28.11 0 0 0

512 29.83 16.54 14.2 9.63

1024 20.2 1.09 1.11 1.19

2048 27.69 14.39 11.89 6.97

4096 36.13 4.14 1.08 4.5

8192 27.8 0 0 0

16384 33.92 0 0 0

32768 23.46 19.69 17.37 12.93

170

Table 31: Hit Ratio and Byte Hit Ratio in Best Results

Cache

Size

Parent Cache Child1 Cache Child2 Cache

Hit

Ratio

Byte Hit

Ratio

Hit

Ratio

Byte Hit

Ratio

Hit

Ratio

Byte Hit

Ratio

1 Mb 73.33 73 73.33 77.18 80.00 73.05

6 Mb 47.67 68.34 44.71 57.51 55.47 60.67

500 Mb 22.35 27.35 15.49 28.36 25.00 33.11

800 Mb 24.64 36.02 20.24 32.52 25.23 25.88

1 Gb 18.06 32.45 26.76 26.48 32.71 36.72

Table 32: Hit Ratio and Byte Hit Ratio in Worse Results

Cache

Size

Parent Cache Child1 Cache Child2 Cache

Hit

Ratio

Byte Hit

Ratio

Hit

Ratio

Byte Hit

Ratio

Hit

Ratio

Byte Hit

Ratio

1 Mb 25.00 48.36 42.86 24.61 66.67 56.12

6 Mb 36.14 23.22 31.88 35.34 36.96 36.20

500 Mb 7.55 5.61 0.00 0.00 11.39 15.34

800 Mb 7.55 5.14 3.33 3.01 0.00 0.00

1 Gb 7.25 5.12 3.33 5.60 20.15 19.30

