
 

96 
 

CHAPTER FIVE 
DYNAMIC MODEL OF THE 

INDUCTION MOTOR 
5.1 Space Vectors of Motor Variables:  

Space vectors of three-phase variables, such as the voltage, current, or flux, are 

very convenient for the analysis and control of induction motors. Voltage space 

vectors of the voltage source inverter have already been formally introduced in Section 

3.7. Here, the physical background of the concept of space vectors is illustrated 

[13][4]. 

Space vectors of stator MMFs in a two-pole motor have been shown in Chapter 

2 in Figures 2.7 through 2.10. The vector of total stator MMF, ℱS, is a vectorial sum of 

phase MMFs, ℱas, ℱbs, and ℱcs, that is[13],  

ℱs = ℱas + ℱbs + ℱcs = ℱas + ℱbs ݁௝
మ
యഏ

 + ℱcs ݁௝
ర
యഏ

      (5.1) 

where ℱas, ℱbs, and ℱcs, denote magnitudes of ℱas, ℱbs, and  ℱcs, respectively. In the 

stationary set of stator coordinates, dq, the vector of stator MMF can be expressed as a 

complex variable,   ℱs = ℱds + jℱqs=  ℱs݁௝ഇೄ , as depicted in Figure 5.1. Because: 

݁௝
మ
యഏ

=  −
1
2

+  ݆ 
√3
2

                                             (5.2) 

and  

݁௝
ర
యഏ

=  −
1
2

 −  ݆ 
√3
2

 ,                                              (5.3) 

then, Eq. (5.1) can be rewritten as : 

ℱs = ℱds + jℱqs = ℱas – ଵ
ଶ
 ℱbs - 

ଵ
ଶ
 ℱcs + ݆(√ଷ

ଶ
 ℱbs - 

√ଷ
ଶ

 ℱcs),     (6.4) 
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FIGURE 5.1 Space vector of stator MMF. 

 

which explains the abc→dq transformation described by Eq. (3.12). For the stator 

MMFs,  
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and 
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Transformation equations (5.5) and (5.6) apply to all three-phase variables of 

the induction motor (generally, of any three-phase system), which add up to zero.  

Stator MMFs are true (physical) vectors, because their direction and polarity in 

the real space of the motor can easily be ascertained. Because an MMF is a product of 

the current in a coil and the number of turns of the coil, the stator current vector, is can 

be obtained by dividing ℱs by the number of turns in a phase of the stator winding. 

This is tantamount to applying the abc→dq transformation to currents, ias, ibs, and ics in 

individual phase windings of the stator. The stator voltage vector, vs, is obtained using 

the same transformation to stator phase voltages, vas, vbs, and vcs. It can be argued to 

which extent is and vs are true vectors, but from the viewpoint of analysis and control 

of induction motors this issue is irrelevant.  

It must be mentioned that the abc→dq and dq→abc transformation matrices in 

Eqs. (5.5) and (6.6) are not the only ones encountered in the literature. As seen in 

Figure 2.6, when the stator phase MMFs are balanced, the magnitude. ℱs, of the space 

vector, ℱs, of the stator MMF is 1.5 times higher than the magnitude (peak value), ℱas  

of phase MMFs. This coefficient applies to all other space vectors. In some 

publications, the abc→dq transformation matrix in Eq. (5.5) appears multiplied by 2/3, 

and the dq→abc transformation matrix in Eq. (5.6), by 3/2. Then, the vector magnitude 

equals the peak value of the corresponding phase quantities. On the other hand, if the 

product of magnitudes, Vs, and Is, of stator voltage and current vectors, vs and is, is to 

equal the apparent power supplied to the stator, the matrices in Eqs. (5.5) and (5.6) 

should be multiplied by ඥ(2/3) and ඥ(3/2), respectively.  

In practical ASDs, the voltage feedback, if needed, is usually obtained from a 

voltage sensor, which, placed at the dc input to the inverter, measures the dc-link 

voltage, vi. The line-to-line and line-to-neutral stator voltages are determined on the 

basis of current values, a, b, and c, of switching variables of the inverter using Eqs. 

(3.4) and (3.9). Depending on whether the phase windings of the stator are connected 

in delta or wye, the stator voltages vas, vbs, and vcs constitute the respective line-to-line 
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or. line-toneu.al voltages. Specifically in a delta-connected stator, vas =  vAB,  vbs = vBC, 

and vcs= vCA, while in a wye-connected one, vas = vAN, vbs = vBN, and vcs= vCN.  

The current feedback is typically provided by two current sensors in the output 

lines of the inverter. The sensors measure currents iA and iC, and if the stator is 

Connected in wye, its phase currents are easily determined as ias = iA, ibs = – iA – iC, 

and ics = iC. Because of the symmetry of all three phases of the motor and symmetry of 

control of all phases of the inverter, the phase stator currents in a delta-connected 

motor can be assumed to add up to zero. Consequently, they can be found as ias = (2iA 

+ iC)/3, ibs = (–iA – 2iC)/3, and ics = (–iA + iC)/3.Voltages and currents in the wye- and 

delta-connected stators are shown in Figure 5.2.  

In addition to the already-mentioned space vectors of the stator voltage, vs, and 

current, is, four other three-phase variables of the induction motor will be expressed as 

space vectors. These are the rotor current vector, ir’ and three flux-linkage vectors, 

commonly, albeit imprecisely, called flux vectors: stator flux vector, λs, air-gap flux 

vector, λm, and rotor flux vector, λr . The air-gap flux is smaller than the stator flux by 

only the small amount of leakage flux in the stator and, similarly, the rotor flux is only 

sight1y reduced with respect to the air-gap flux, due to flux leakage in the rotor.  
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FIGURE 5.2 Stator currents and voltages: (a) wye-connected stator, (b) delta 
connected stator. 

 

5.2 Dynamic Equations of The Induction 
Motor:  

The dynamic T-model of the induction motor in the stator reference frame, with 

motor variables expressed in the vector form, is shown in Figure 5.3. Symbol  p  (not 

to be confused with the number of pole pairs, pp denotes the differentiation operator, 

d/dt, while LIs, LIr, and Lm are the stator and rotor leakage inductances and the 

magnetizing inductance, respectively (LIs = XIs/ω, Lrs = Xrs/ω, Lm = Xm/ω). The sum 

of the stator leakage inductance and magnetizing inductance is called the stator 

inductance and denoted by Ls. Analogously, the rotor inductance, Lr, is defined as the 

sum of the rotor leakage inductance and magnetizing inductance. Thus, Ls = LIs + Lm, 

and Lr = LIr + Lm (Ls = Xs/ω, Lr = Xr/ω).  
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The motor equation in the d-q reference frame can be obtained  in the form of [4] : 

vୱ_αβ = vୱ_ୢ୯e୨θ౩ 

iୱ_αβ  = iୱ_ୢ୯e୨θ౩                                               (5.7) 

   λୱ_αβ = λୱ_ୢ୯e୨θ౩ 

The substitution of equations (5.7) into the below voltage equation of induction motor 
: 

  v(t) = Ri(t) + ୢ
ୢ୲

λ(t)                                      (5.8) 

Results in the following equations : 

                                                       vୱୢ = Rୱiୱୢ +  ୢ
ୢ୲

λୱୢ −  ωୱλୱ୯ 

    vୱ୯ = Rୱiୱ୯ + ୢ
ୢ୲

λୱ୯ + ωୱλୱୢ                            (5.9) 

The same method can be applied to obtain the rotor voltage equations: 

                    v୰ୢ = R୰i୰ୢ +  ୢ
ୢ୲

λ୰ୢ − ωୱ୪λ୰୯ 

v୰୯ = R୰i୰୯ + ୢ
ୢ୲

λ୰୯ + ωୱ୪λ୰ୢ                       (5.10) 

Hence,  

                                                              λୱୢ =  Lୱiୱୢ +  L୫i୰ୢ                                                         

                                                              λୱ୯ =  Lୱiୱ୯ + L୫i୰୯                                                        

                                                               λ୰ୢ =  L୰i୰ୢ + L୫iୱୢ                                                        

                                                               λ୰୯ =  L୰i୰୯ +  L୫iୱ୯                              (5.11) 

The mathematical model of the induction motor in term of d-q reference can be 
obtained by substituting equations (5.11) into (5.9)-(5.10) : 

൦

vୱୢ 
vୱ୯
v୰ୢ
v୰୯

൪ = ൦

Rୱ + pLୱ −ωୱLୱ pL୫
−ωୱLୱ Rୱ + pLୱ −ωୱL୫

pL୫ −ωୱ୪L୫ R୰ + pL୰
−ωୱ୪L୫         pL୫       −ωୱ୪L୰

   

−ωୱL୫
pL୫

−ωୱ୪L୰
R୰ + pL୰

൪

⎣
⎢
⎢
⎡
iୱୢ
iୱ୯
i୰ୢ
i୰୯⎦

⎥
⎥
⎤
            (5.12)  
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FIGURE 5.3 Dynamic T-model of the induction motor. 

In the squirrel-cage motor, the corresponding components, vdr and vqr. of the rotor 

voltage vector, vr are both zero because the rotor windings are shorted.  

The stator and rotor fluxes are related to the stator and rotor current, as: 

 

൤ࣅ௦
௥ࣅ

൨ =  ൤ ௦ܮ ௠ܮ
௠ܮ ௥ܮ

൨ ൤࢏௦
௥࢏

൨                                       (5.13) 

The stator flux can also be obtained from the stator voltage and current as  

 
௦ࣅ݀

ݐ݀
= ௦࢜  − ܴ௦࢏௦                                                           (5.14) 

 

or  

 

௦ࣅ = න(࢜௦ −  ܴ௦࢏௦)݀ݐ + ௦(0)ࣅ 
௧

଴

                               (5.15) 

 

while the rotor flux in the squirrel-cage motor satisfies the equation  
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௥ࣅ݀

ݐ݀
=  ݆߱଴ࣅ௥ − ܴ௥࢏௥                                                (5.16) 

Finally, the developed torque can be expressed in several forms, such as  

 

ெࢀ =
2
3

௦ࣅ௦࢏}݉ܫ௣݌
∗} =

2
3

ୱୢߣ௣൫݅௤௦݌ − ݅ௗ௦ߣ௤௦൯,             (5.17) 

 

ெࢀ =
2
3

௣݌
௠ܮ

௥ܮ
௥ࣅ௦࢏}݉ܫ

∗} =
2
3

௣݌
௠ܮ

௥ܮ
൫݅௤௦ୢߣ୰ − ݅ௗ௦ߣ௤௥൯,   (5.18) 

 

or  

ெܶ =
2
3

௦݅௥݅}݉ܫ௠ܮ௣݌
∗} =

2
3

௠൫݅௤௦݅ௗ௥ܮ௣݌ − ݅ௗ௦݅௤௥൯,     (5.19) 

 

where the star denotes a conjugate vector.  

The rather abstract term Im(isࣅ௦
∗) in Eq. (5.17) and the analogous terms in Eqs. (5.18) 

and (5.19) represent a vector product of the involved space vectors. For instance,  

௦ࣅ௦݅)݉ܫ
∗) =  ݅௦ߣ௦sin[∠(݅௦ ,  ௦)].                                         (5.20)ࣅ

Eq. (5.20) implies that the torque developed in an induction motor is 

proportional to the product of magnitudes of space vectors of two selected motor 

variables (two currents, or a current and a flux) and the sine of angle between these 

two vectors. It can be seen that all the torque equations are nonlinear, as each of them 

includes a difference of products of two motor variables. 

 

 

5.3 Revolving Reference  Frame: 
In the steady state, space vectors of motor variables revolve in the stator 

reference frame with the angular velocity, ω, imposed by the supply source (inverter). 

It must be stressed that this velocity does not depend on the number of poles of stator, 

which indicates the somewhat abstract quality of the vectors (the speed of the actual 
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stator MMF, a “real” space vector, equals ω/pp). Under transient operating conditions, 

instantaneous speeds of the space vectors vary, and they are not necessarily the same 

for all vectors, but the vectors keep revolving nevertheless. Consequently, their d and q 

components are ac variables, which are less convenient to analyze and utilize in a 

control system than the dc signals commonly used in control theory. Therefore, in 

addition to the static, abc → dq and dq → abc, transformations, the dynamic, dq → 

DQ and DQ → dq, transformations from the stator reference frame to a revolving 

frame and vice versa are often employed. Usually, the revolving reference frame is so 

selected that it moves in synchronism with a selected space vector [13].  

The revolving reference frame, DQ, rotating with the frequency ωe (the 

subscript. “e” comes from the commonly used term “excitation frame”), is shown in 

Figure 5.4 with the stator reference frame in the background. The stator voltage vector, 

vs, revolves in the stator frame with the angular velocity of ω, remaining stationary in 

the revolving frame if ωe = ω. Consequently, the vDS and vQS components of that 

vector in the latter frame are dc signals, constant in the steady state and varying in 

transient states. Considering the same stator voltage vector, its dq → DQ 

transformation is given by [13]: 

 

ቂ
஽ௌݒ
ொௌݒ

ቃ =  ൤ (ݐ௘߱) ݏ݋ܿ (ݐ௘߱) ݊݅ݏ
− (ݐ௘߱)݊݅ݏ ൨ ቂ(ݐ௘߱) ݏ݋ܿ

ௗ௦ݒ
௤௦ݒ

ቃ                   (5.21) 
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FIGURE 5.4 Space vector of stator voltage in the stationary and revolving reference 
frames. 

 

and the inverse, DQ → dq, transformation by : 

 

ቂ
ௗ௦ݒ
௤௦ݒ

ቃ = ൤ ܿݏ݋ (߱௘ݐ) (ݐ௘߱) ݊݅ݏ−
(ݐ௘߱) ݊݅ݏ (ݐ௘߱) ݏ݋ܿ ൨ ቂ

஽ௌݒ
ொௌݒ

ቃ                         (5.22) 

 

To indicate the reference frame of a space vector, appropriate superscripts are 

used. For instance the stator Voltage vector in the stator reference frame can be 

expressed as  

 

௦࢜
௦ = ௗ௦ݒ  + ௤௦ݒ݆  = ௦݁௝௵ೞݒ                                           (5.23) 

 

and the same vector in the revolving frame as : 
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௦࢜
௘ = ஽ௌݒ  ொௌݒ݆ + =  ௦݁(௵௦ି ௵௘) ,                                  (5.24)ݒ 

 

where Θe. denotes the angle between the frames. Angles Θs and Θe are given by  

 

௦߆ =  න ݐ݀߱ ௦(0)߆ +
௧

଴
                                    (5.25) 

and  

 

௘߆ =  න ߱௘݀ݐ ௘(0)߆ +
௧

଴
                                          (5.26) 

Motor equations in a reference frame revolving with the angular velocity of ωe 

can be obtained from those in the stator frame by replacing the differentiation operator 

p with p + j߱e. In particular,  

 
௦ࣅ݀

௘

ݐ݀
= ௦ݒ 

௘ −  ܴ௦݅௦
ୣ −  ݆߱௘ࣅ௦

௘                                 (5.27) 

 

and  

 
௥ࣅ݀

௘

ݐ݀
=  − ܴ௥݅௥

௘ −  ݆(߱௘ −  ߱଴)ࣅ௥
௘                          (5.28) 

 

Equations that do not involve differentiation or integration, such as the torque 

equations, are the same in both frames.  

5.4 Field Orientation:  
5.4.1Torque Production and Control In The DC Motor:  

The concept of field orientation, proposed by Hasse in 1969 and Blaschke in 

1972[13],constitutes, arguably, the most important paradigm in the theory and practice 

of control of induction motors. In essence, the objective of field orientation is to make 
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the induction motor emulate the separately excited dc machine as a source of 

adjustable torque. Therefore, we will first review fundamentals of torque production 

and control in the dc motor.  

A simplified representation of the dc motor is shown in Figure 5.5. The pair of 

magnetic poles, N and S, represents the magnetic circuit of stator, that is, the field part 

of the machine. Therefore, the space Vector, ࣅf, of flux (flux linkage) generated by the 

field winding, is stationary and aligned with the d axis of the stator. Thanks to the 

action of commutator (not shown) and properly positioned brushes, the distribution of 

armature current in the rotor winding is such that the space vector, ia, of this current is 

always aligned with the q axis, even though the rotor is revolving [13].  

 Practical dc motors are equipped with auxiliary windings designated to 

neutralize the so-called armature reaction that is, weakening of the main magnetic field 

by the MMF produced by the armature current. Then, the developed torque, TM, is 

proportional to the vector product of ia and λf, that is, to the sine of angle between 

these vectors. As seen in Figure 5.5, this is always a right angle, which ensures the 

highest torque-per ampere ratio. Thus, the torque is produced under optimal 

conditions, the minimum possible armature current causing minimum losses in the 

motor and supply system.  

In the separately excited dc machine, the field current, if, producing λf and the 

armature current, ia, flow in separate windings therefore, they can be controlled 

independently. Usually, particularly under high-load operating conditions the flux is 

kept constant at the rated level within the speed range of zero to the rated value. Field 

weakening, that is, flux reduction in inverse proportion to the speed, is used at speeds 

higher than rated. With low loads, the motor efficiency can be improved by reducing 

the flux to such a trade-off value that the resultant decrease in core losses offsets the 

simultaneous increase in copper losses.  
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FIGURE 5.5 Simplified representation of the dc motor. 

 

 In drives that most of the time run well under the full load, such efficiency 

optimization schemes can bring significant energy savings.  

Presented considerations explain why the separately excited dc motors were for 

many decades the favorite actuator in motion control systems. The dc motor not only 

generates the torque under the optimal condition of orthogonality of the flux and 

current vectors, but it also allows fully independent (“decoupled”) control of the 

torque and the magnetic field. The torque equation, to be used as a reference for the 

field-oriented induction motor, can be written as  

௠ࢀ =  ௔,                                                  (5.29)࢏௙ࣅ்݇ 

where kT is a constant dependent on the construction and size of the motor.  

 

5.4.2 Principles of Field Orientation:  
All three torque equations, (5.17) through (5.19), of the induction motor in the 

stator reference frame include the difference-of-products terms. Notice that if, for 

example, in Eq. (5.18), λqr were made to equal zero, the resultant formula would be 
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similar to that, (5.29), for the dc motor. Unfortunately, this is not possible, because λqr 

constitutes the quadrature component of the revolving vector, λr, of rotor flux. Thus, 

λqr = 0 is possible only if λr = 0, which is absurd.  

However, if torque equations in a revolving frame are considered, the 

manipulation described above becomes feasible. If  

ெࢀ =
2
3

௣݌
௠ܮ

௥ܮ
൫݅ொௌߣ஽ோ − ݅஽ௌߣொோ൯                                     (5.30) 

 

and λQR = 0, then  

 

ெࢀ =  ஽ோ݅ொௌ,                                                             (5.31)ߣ்݇

 

where kT = 2ppLm/(3Lr),and the induction motor, as desired, emulates the dc machine. 

The described condition is realized by aligning the D axis of the revolving reference 

frame with the rotor flux vector, ࣅr, as illustrated in Figure 5.6. Similar results can be 

obtained aligning the D axis with another flux vector, that is, the stator or air-gap flux 

vector. For instance, the stator field orientation, according to Eq. (5.17), yields  

 

ெࢀ =  ஽ௌ݅ொௌ                                                              (5.32)ߣ்′݇

Where:  k'T = 2pp/3 
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FIGURE 5.6: Alignment of the revolving reference frame with the rotor flux vector. 
 

Principles of field orientation along a selected flux vector, λf (λr, λs, or λm), can be 

summarized as follows:  

1. Given the reference values, ࢀெ
∗  and ߣ௙

∗ , of the developed torque and selected 

flux, find the corresponding reference components, ݅஽ௌ
∗  and ݅ொௌ

∗ , of the stator 

current vector in the revolving reference frame. 

2. Determine the angular position, Θf, of the flux vector in question, to be used in 

the DQ → dq conversion from ݅஽ௌ
∗   to ݅ௗ௦

∗  and from ݅ொௌ
∗  to ݅௤௦

∗  

3. Given the reference components, ݅ௗ௦
∗  and ݅௤௦

∗ , of the stator vector in the stator 

reference frame, use the dq → abc transformation to obtain reference stator 

currents, ݅௔௦
∗ , ݅௕௦

∗  and ݅௖௦
∗ , for a current- controlled inverter feeding the motor.  

Based on the dynamic equations of the induction motor, a block diagram of the 

field-oriented motor in a revolving reference frame aligned with the rotor flux vector is 

shown in Figure 5.7. According to the theory of linear dynamic systems, the integrator 

block with negative feedback can be replaced with a first-order block, as shown in 

Figure 5.8. It can be seen that the torque in a field-oriented motor reacts instantly to 
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changes in the iQS component of the stator current, while the reaction of rotor flux to 

changes in the other component, iDS, is inertial. 

 

FIG U RE 5.7 Block diagram of the field-oriented motor in a revolving reference 
frame aligned with the rotor flux vector. 

 

FIGURE 4.8: Reduced block diagram of the field-oriented motor in a revolving 
reference frame aligned with the rotor flux vector. 

 

Because ωe = ω and ωe – ω0 = ωr, then the real part of Eq. (5.28) may be 

written as : 

݅஽ோ =
1

ܴ௥
൬߱௥ߣொோ −  

஽ோߣ݀

ݐ݀
൰.                                      (5.33) 
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Under the field orientation condition, ߣQR = 0 and, with ߣDR = const, dߣDR/dt = 

0, too. Hence, iDR= 0 and ݅௥
௘= iQR which, because ࣅ௥

௘ = ߣDR, indicates orthogonality of 

the rotor current and flux vectors. This is the condition of optimal torque production, 

that is, the maximum torque per ampere ratio, typical for the dc motor. Thus, the field 

orientation makes operating characteristics of the induction motor similar to those of 

that machine. 

5.4.3 Direct Field Orientation:  

Knowledge of the instantaneous position (angle) of the flux vector, with which 

the revolving reference frame is aligned, constitutes the necessary requirement for 

proper field orientation. Usually, the magnitude of the flux vector in question is 

identified as well, for comparison with the reference value in a closed-loop control 

scheme. Identification of the flux vector can be based on direct measurements or 

estimation from other measured variables. Such an approach is specific for schemes 

with the so-called direct field orientation (DFO), which will be explained for the rotor 

flux vector, λr, as the orienting vector.  

Only the air-gap flux can be measured directly. A simple scheme for estimation 

of the rotor flux vector, based on measurements of the airgap flux and stator currents, 

is depicted in Figure 5.9. Two Hall sensors of magnetic field are placed in the motor 

gap, measuring the direct and quadrature components, λdm and λqm, of the air-gap flux 

vector, λm. Stator currents are measured too. The rotor flux vector, in the rectangular or 

polar form, is calculated as 

 

௥ࣅ =  
௥ܮ

௠ܮ
௠ࣅ −  ூ௦݅௦                                     (5.34)ܮ 

 

As an alternative to the fragile Hall sensors, flux sensing coils or taps on the 

stator winding can be installed in the motor. Voltages induced in the coils or the 

winding are integrated to provide λdm and λqm.  
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FIGURE 5.9 Estimation of the rotor flux vector based on direct measurements of the 
air-gap flux. 

 

Sensors of the air-gap flux are inconvenient, and they spoil the ruggedness of 

the induction motor. Therefore, in practice, the rotor flux vector (or another flux vector 

used for the field orientation) is usually computed from the stator voltage and current. 

In particular, the stator flux vector, λs, can be estimated using Eq. (5.15) which, in 

turn, allows calculation of the air-gap flux vector, λm, as  

 

λm = λs - LIsis                (5.35) 

and estimation of the rotor flux vector, λr, from Eq. (5.34).  

For best performance, the torque and flux in induction motors with direct field 

orientation are closed-loop controlled. The torque, which is difficult to measure 

directly, can be calculated using an appropriate equation, such as (5.18). A block 

diagram of the ASD with direct rotor flux orientation using air-gap flux sensors is 

shown in Figure 5.10. Proportional-Derivative (PD) controllers used in loops of the 

flux and torque control generate reference components, is ݅஽ௌ
∗  and ݅ொௌ

∗ , of the stator 

current vector in the revolving reference frame. The DQ → dq dynamic transformation 

block converts the ݅஽ௌ
∗  and ݅ொௌ

∗  dc signals into ݅ௗ௦
∗  and ݅௤௦

∗  ac signals representing 
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reference components of the stator current vector in the stator reference frame. 

Operation of the dynamic transformation block is synchronized by the angle signal, θr, 

from the flux calculator. The ݅ௗ௦
∗  and ݅௤௦

∗  signals are applied to the dq → abc static 

transformation block to produce reference currents, ݅௔௦
∗ , ݅௕௦

∗  and ݅௖௦
∗ , for individual 

phases of the current controlled inverter. 

 

FIGURE 5.10: Block diagram of the ASD with direct rotor flux orientation. 

 

5.4.4 Indirect Field Orientation:  

In an alternative approach to direct flux orientation, the indirect field orientation 

(IFO), the angular position, θr, of the rotor flux vector is determined indirectly as 

 

θ௥ = න ߱௥
ݐ݀∗ + ௣θெ݌

௧

଴
                                           (5.36) 

 

where ߱௥
∗ denotes the rotor frequency required for field orientation and θM is 

the angular displacement of the rotor, measured by a shaft position sensor, typically a 

digital encoder. The required rotor frequency can be computed directly from motor 

equations under the field orientation condition. With ߣ௥
௘= λDR, :  
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݅௥
௘ =

1
௥ܮ

஽ோߣ) − ௠݅௦ܮ
௘),                                               (5.37) 

 

which, when substituted in Eq. (5.28), yields 

஽ோ[1ߣ + ߬௥(݌ + ݆߱௥)] = ௠݅௦ܮ
௘,                           (5.38) 

 

where τr denotes the rotor time constant, Lr/Rr. Splitting Eq. (5.38) into the real and 

imaginary parts gives 

  

஽ோ(1ߣ + (௥߬݌ =  ௠݅஽ௌ                                            (5.39)ܮ

and  

߱௥߬௥ߣ஽ோ =  ௠݅ொௌ                                                     (5.40)ܮ

 

Replacing ߱௥ with ߱௥
∗, λDR with ߣ௥

∗ , and iQS with ݅ொௌ
∗  in the last equation, and solving 

for ߱௥
∗, yields 

 

߱௥
∗ =

௠ܮ

߬௥
  

݅ொௌ
∗

௥ߣ
∗  ,                                                       (5.41) 

Indeed, from Eq. (5.39), in the steady state of the motor (p = 0),  

 

௥ߣ
∗ = ஽ோߣ

∗ = ௠݅஽ௌܮ
∗  ,                                                 (5.42) 

 

which, when substituted in Eq. (5.41), gives:  

 

߱௥
∗ =

1
߬௥

 
݅ொௌ

∗

݅஽ௌ
∗ ,                                                            (5.43) 

Variables ݅஽ௌ
∗  and ݅ொௌ

∗  represent the required flux-producing and torque-

producing components of the stator current vector, ݅ௌ
∗.  

The reference current ݅஽ௌ
∗  corresponding to a given reference flux, ߣ௥

∗ , can be found 

from Eq. (5.39) as : 
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݅஽ௌ
∗ =

߬௥݌ + 1
௠ܮ

௥ߣ
∗ =

1
௠ܮ

൬߬௥
௥ߣ݀

∗

ݐ݀
+ ௥ߣ

∗ ൰ ,          (5.44) 

 

while the other reference current, ݅ொௌ
∗ , for a given reference torque, ࢀெ

∗ ,can be obtained 

from the torque equation (5.31) of a field-oriented motor as : 

 

݅ொௌ
∗ =

1
்݇

    
ெࢀ

∗

௥ߣ
∗  .                                                      (5.45) 

 

A drive system with indirect rotor flux orientation is shown in Figure 5.11. In 

accordance with Eq. (5.36), the angle, Θr, of the rotor flux vector used in the DQ → dq 

transformation is determined as  

Θr = Θ* + Θo,                                                (5.46) 

 

FIGURE 5.11 Block diagram of the ASD with indirect rotor flux orientation. 

where Θ* denotes the time integral of the reference rotor frequency, ߱௥
∗, and Θo = 

ppΘM is the angular displacement of the rotor in an equivalent two-pole motor.  

 

5.5 Summary of  The Chapter:  
Three-phase variables in the induction motor can be represented by space 

vectors in the Cartesian coordinate set, dq, affixed to stator (stator reference frame). 

Space vectors of the stator voltage and current and magnetic fluxes (flux linkages) are 
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commonly employed in the analysis and control of induction motor ASDs. The space 

vectors are obtained by an invertible, static, abc → dq, transformation of phase 

variables. The vector notation is used in dynamic equations of the motor.  

Space vectors in the stator reference frame are revolving, so that their d and q 

components are ac signals. A dynamic, dq → DQ, transformation allows conversion of 

those signals to the dc form. The dq → DQ transformation introduces a revolving 

frame of reference, in which, in the steady state, space vectors appear as stationary. 

The revolving frame is usually synchronized with a space vector of certain motor 

variable. Dynamic equations of the induction motor can easily be adapted to a 

revolving reference frame by substituting p + jωe for p. 

Field orientation, consisting in the alignment of a revolving reference frame 

with a space vector of selected flux, allows the induction motor to emulate the 

separately excited dc machine. In this machine, the magnetic field and developed 

torque can be controlled independently. In addition, the torque is produced under the 

optimal condition of orthogonality of the flux and current vectors, resulting in the 

maximum possible torque-per-ampere ratio. 

In ASDs with direct field orientation along the rotor flux vector, ૃr, this vector 

is determined from direct measurements or estimations of the air-gap flux. The indirect 

field orientation is based on calculation of the angular position, Θr, of λr as a sum of an 

integral, Θ*, of the rotor frequency,ω୰
∗, required for the field orientation and the rotor 

angular displacement, Θo, of the equivalent two-pole motor.  


