

### بسم الله الرحمن الرحيم Sudan University Of Science & Technology



#### College Of Science

Department Of Scientific Laboratories - Chemistry-

A Project submitted for the degree of B.SC (Honor) in Scientific Laboratories -Chemistry-

Determination of Ascorbic acid Concentration in Adansonia digitata L and Psidium guajava Leaves

Done by:-

Esra Khalil

Noura Abdelslaam

Wafaa Mohmmed Alhassan

Supervisor:-

T. Amira Anwar

# بسم الله الرحمن الرحيم



### قال تعالى:-

{ وهو الذي أنزل من السماء ماء فأخرجنا به نبات كل شيء فأخرجنا منه خضرا تخرج منه حبا متراكبا ومن النخل من طلعها قنوان دانية وجنات من أعناب والزيتون والرمان مشتبها و غير متشابه أنظرو ا إلى ثمره إذا أثمر وينعه إن في ذلكم لآيات لقوم يؤمنون } صدق الله العظيم

سورة الانعام الآية (99)



A beacon of science and master of creation

prophet Mohammed "peace be upon him "

To the fountain from which does not tired of giving

My dear mother

To those who sought to comfort and contentment blessed

My dear father

Who was to help me on my way

My brothers and sisters

To those who taught us letters of gold , who drafters of thoughts beacon illuminate our path

Our honored teachers

Special thanks to our teacher

Amira Anwar



We would like to give a very special thanks to the following people

Eglal Hashim Ahmed

Suha Khalil Abdalrhman

This research has proven to be a very challenging and we could not have accomplished this research without the help and support of friends and families.

### Abstract

This research about determinate the concentration of Ascorbic acid in guava leaves and baobab(new&old)by two methods ,the first method is titration the samples against iodine solution(0.005M) using starch as indicator and the results was (0.736mg/100g) in guava leaves, (4.76mg/100g) in baobab "new" and (2.95mg/100g) in baobab "old". The second method by High Performance Liquid Chromatography and the result was (3.23mg/100g) in guava leaves,(17.04mg/100g) in baobab "new" and(12.28mg/100g) in baobab "old". Then we compare this results with the standard concentration of Ascorbic acid in guava leaves and baobab (373mg/100g).

## الملخص

هذا البحث يتضمن تقدير تركيز حمض الأسكوربيك في ورق الجوافه والتبلدي (جديد & قديم) بواسطة طريقتين, الأولى بمعايرة العينات ضد محلول اليود(0.005M) في وجود دليل النشاء والنتائج هي (0.73mg/100g) في ورق الجوافه و(0.73mg/100g) في التبلدي "جديد" و (0.95mg/100g) في التبلدي "قديم". الطريقة الأخرى كروماتوغرافيا السائل ذو الضغط العالي والنتائج هي (0.23mg/100g) في ورق الجوافة و (0.23mg/100g) في التبلدي "جديد" و (0.23mg/100g) في التبلدي "قديم". ثم تمت مقارنة النتائج مع التراكيز القياسية لحمض الأسكوربيك في ورق الجوافة وفي التبلدي وهو (0.23mg/100g).

| Content                                 | page |
|-----------------------------------------|------|
| Inference                               | I.   |
| Dedication                              | II.  |
| Acknowledgements                        | III. |
| Abstract                                | IV.  |
| الملخص                                  | V.   |
| Chapter one                             | 1-33 |
| Introduction                            | 2-16 |
| 1-1 Ascorbic acid                       | 2    |
| 1-1-1 Definition                        | 2    |
| 1-1-2 Structural formula                | 2    |
| 1-1-3 Names                             | 3    |
| 1-1-4 Properties                        | 3    |
| 1-1-4-1 Computed properties             | 3    |
| 1-1-4-2 Physical properties             | 4    |
| 1-1-4-3 Biological function             | 6    |
| 1-1-5 General uses                      | 7    |
| 1-1-6 Daily needs                       | 9    |
| 1-1-7 Content in food                   | 10   |
| 1-1-8 The effect of low and high amount | 11   |
| 1-1-9 Synthesis pathway                 | 11   |
| 1-1-9-1Biosynthesis                     | 11   |
| 1-1-9-2 Chemical synthesis              | 15   |
| 1-1-10 Method of determination          | 16   |
| 1-2 The baobab                          | 17   |
| 1-2-1 Definition                        | 17   |
| 1-2-2 Phytochemistry                    | 18   |
| 1-2-3 Baobab fruit                      | 18   |

| 1-2-4 Vitamins in baobab fruit                    | 19    |
|---------------------------------------------------|-------|
| 1-2-5 The seeds                                   | 19    |
| 1-2-6 Uses in traditional medicine                | 23    |
| 1-3 Guava leaves                                  | 26    |
| 1-3-1Definition and botany                        | 26    |
| 1-3-2 History                                     | 27    |
| 1-3-3Chemistry                                    | 28    |
| 1-3-4 Uses and pharmacology                       | 28    |
| 1-3-4-1 Diarrhea                                  | 28    |
| 1-3-4-2 Diabetes                                  | 29    |
| 1-3-4-3 Dysmenorrhea                              | 30    |
| 1-3-4-4 Cancer                                    | 30    |
| 1-3-5 Toxicology                                  | 30    |
| 1-4 High performance liquid chromatography        | 32    |
| 1-4-1 Definition                                  | 32    |
| 1-4-2 The liquid chromatography                   | 33    |
| Chapter two                                       | 34-39 |
| Experiment                                        | 34    |
| 2-1 Chemicals                                     | 35    |
| 2-2Apparatus                                      | 35    |
| 2-3 Instruments                                   | 36    |
| 2-4 Theory                                        | 36    |
| 2-5 Method                                        | 36    |
| 2-5-1 Determination of ascorbic acid by titration | 36    |
| 2-5-2 Determination of ascorbic acid by HPLC      | 38    |
| Chapter three                                     | 40-52 |
| 3-1 Results                                       | 41    |
| 3-2 Calculation                                   | 46    |

| 3-3 Discussion | 52 |
|----------------|----|
| Reference      | 53 |

### Figures

| Figure                                          | page |
|-------------------------------------------------|------|
| 1-1 Scheme of a biological function of ascorbic |      |
| acid (GSH – reduced glutathione, GSSG –         | 7    |
| oxidized glutathione)                           |      |
| 1-2 Biosynthetic Pathway of L-ascorbic acid in  |      |
| animals.                                        | 12   |
| 1-3 Biosynthetic Pathway of L-Ascorbic acid in  |      |
| plants                                          | 14   |
| 1-4 Baobab fruit                                | 19   |
| 1-5 Baobab seeds                                | 20   |
| 1-6 Guava leaves                                | 27   |
| 1-7 HPLC instrument                             | 32   |
| 1-8 The sample path                             | 33   |

#### Tables

| Table                                          | Page |
|------------------------------------------------|------|
| 1-1 Biosynthetic pathway of L-ascorbic acid in |      |
| animals.                                       | 12   |
| 2-1 Biosynthetic pathway of L-ascorbic acid in |      |
| plants                                         | 14   |
| 3-1 Amino acid composition of baobab seeds     | 21   |