
بسم الله الرحمن الرحيم

Sudan University of Science and Technology

COLLEGE OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

METHODS FOR MAPPING STATE MACHINES IN MODEL DRIVEN ARCITECTURE

طرق لتحويل آلت الحالت في العممارية البننية على النماذج
A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy of Science

by
Rihab Eltayeb Ahmed

Supervised by
Prof. Robert M Colomb

Co-Supervised by
Dr. Abdelgafar Hamid Ahmed

August 2015

4

 111

واياتها اءلسراءء سورة 17
رقم

ُتمْ مِنَ ُأوتِي َربِّي وَمَا َأمْرِ َنكَ عَنِ الرّوحِ قُلِ الرّوحُ مِنْ ُلو َأ وَيَسْ

) 85الْعِملْمِ إِلّ قَلِيلً (

َلمْ َلهُ شَِيكٌ فِي الْمُلْكِ وَ َلمْ يَكُنْ َلدًا وَ َلمْ يَتّخِذْ وَ وَقُلِ الْحَمْدُ لِلّهِ الّذِي

ًيا (ْبِّهُ تَكْبِن َلهُ وَلِيّ مِنَ الذّلِّ وَكَ)111يَكُنْ

5

DEDICATION

To

My

Family

 I'm usually not at a loss for words, but this

time I am.

6

ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without

the will and mercy of ALLAH (swt). Am indebted to the support,

encouragement and profound understanding of my lab members,

colleagues , friends and family.

I would like to express my deepest gratitude to my supervisor,

Prof. Robert M. Colomb, for his excellent guidance, caring and patience.

Continents , oceans and my humble thinking capabilities doesn't

prevent him from kindly giving hints, clues and detailed email

messages. With sincerity and high sense he apologized one time of not

being expressive enough, but really all his messages were self

explanatory and all the time satisfied my hungry mind.

I would like to thank my co-supervisor Dr. Abdelgafar Hamid

Ahmed, who let me experience the research and practical issues

beyond the textbooks, patiently listened to us in the Saturday

meetings and give his best suggestions.

Special thanks goes towards people who remain in my memory

forever, trusted me, always there cheering me up and stood by me

through the good times and bad.

7

Rihab Eltayeb Ahmed

8

Abstract

Model Driven Architecture (MDA) is an initiative of the Object

Management Group that uses models as the first class artifacts in the

software development process. MDA aims at deriving values from

models that capture the system structural and behavioral aspects. One

of the values of models is to derive an implementation from models in

an automated fashion. Automation enables rapid response to changes,

increases the efficency of software development and decreses its cost.

The derivation involves a Platform Independent Model PIM, a targeted

Platform Specific Model PSM and mapping transformation rules

between the PIM and the PSM. The PIM washes away the technical

details and focuses on the business logic of the system where as the

PSM contains the technical detailed information. The main challenge is

the transformation from PIM to PSM (different models). In practice the

transformation process from PIM to PSM might be a lot more complex

and challenging. Between the models, gaps can exist because of the

difference in the abstraction layers exhibited in the models. The gaps

may not be small enough to perform a direct transformation. Moreover

there is still difficulties when the application behavior is addressed in

MDA. In most cases, behavioral models are used for other purposes

like documentation rather than complementing the structural models

to facilitate automatic software generation. The problem is the lack of

mechanisms for mapping behavior models from an abstraction level to

another. This research study proposes a method for mapping UML

behavior models from PIM to PSM. Both the PIM and the PSM are

9

augmented with UML class model and state machine behavioral model.

A transformation framework, taxonomy and guidelines were identified

beside the suitable languages and tools based on MDA best practices

and standards. The PIM models for two application domains were built

using MDA compliant modeling tool. The PSM model for a standard

messaging oriented platform was developed and used along with the

proposed transformation framework to map the PIM models to the PSM.

The work is completed by including the PSM to code translation. The

resulted artifacts were transferred to an execution environment to run

the program. The proposed method achieved an acceptable degree of

automation of the software application development using the MDA

approach.

اءلستخلص

 هي مبنادرة مععن مجموعععة)Model Driven Architecture (MDAالعممارية البننية على النماذج

Object Management Group OMGوفيها يتم اسعتخدام النمعاذج كأسعاس ل غنع عنعه فعي

 الى استخلص اكب فائدة من النماذج الت يتم عبهععا تمثيععل كععلMDAعملية تطوير البمجيات . تهدف

 جوانب النظم الهيكلية والسلوكية. واحدة من طرق استخدام النماذج واسععتخلص الفائععدة منهععا هععو اتمتععة

 عملية تنفيذ البامج اعتماداً على النماذج. التمتة تساعد علععى السععتجابة السععيعمة للتغيععات وتزيععد مععن

ًا علعى النمعاذج كفاءة البمجيات بالضاافة الى تقليل تكلفعة تطويرهعا. تحتعوي عمليعة اتمتعة التنفيععذ بنعاء

ًا ععن على نموذج يعمكس متطلبنات النظام من وجهة نظر الستخدم ويتم فيعه نمذجعة تلعك التطلبنعات بعميعد
10

 Platform Independentاية تفاصيل تقنيععة او تنفيذيععة ويسععمى هععذا النمععوذج بععالنموذج السععتقل

Model (PIMاو في الوضاع الثالي اختياره من بي بقيععة النمععاذج الشاععابهة) يتم بناء نموذج آخر . (

 التفق على جودتها مسبنقا) يحتعوي التفاصعيل التقنيعة العت تسعمح بتنفيعذ التطبنيقعات العمينعة فعي بيئعات

Platform Specific Modelمحددة ويسمى النموذج الرتبنط PSMيتم ربععط النمععوذج السععتقل .

 مع النموذج الرتبنط عن طريق عملية تحويل يتم فيها تحديد العملقات بي النموذجي والقواعد الععت علععى

 وخاصة التحويععلMDAاساسها سيتم التحويل بينهما. تعمتب عملية التحويل احدى التحديات في مجال

 من نموذج مستقل الى نموذج مرتبنط لوجود اختلفات في تجريد النماذج من مستوى الى اخععر ممععا يخلععق

 فجوة قد ل تكون صغية بما يكفي لجراء تحويل مبناش بي النمععاذج. وعلوة علععى ذلععك ل تععزال هنععاك

 عند تناول سلوك البمجيععات والععذي يصععف وظيفععة البامععج واسععتجابتها للمععؤثرات MDAصعموبات في

 وتفاعلها مع البنيئة الحيطة بها. في معمظم الحالت ، يتم استخدام النماذج السععلوكية لغععراض أخعرى مثعل

ًل عن تكميل صورة النظام مع النماذج الت توصف هيكليته مما يمنع عملية التمتة التوثيق للبنامج بد

 الكاملة الت تنتج النظام بصورته التنفيذية الطلوبة. الشاعكلة تكمعن فعي ععدم وجعود آليعات توضاعح كيعف

 يمكن أن تتم عملية تحويل النماذج السلوكية من مستوى الى آخععر حيععث ل يوجععد توصععيف للعممليععة حععت

 . نقتح في هذا البنحث طريقة لتحويل نماذج السلوك العمدة بلغة النمذجةMDAفي الوثائق العمتمدة من

UMLوذلك من مستوى النموذج الستقل الى مستوى النموذج الرتبنط بحيث يتم تعدعيم كل النمععوذجي

 بالنماذج الهيكلية والسلوكية معماً. تم تحديد اطار للحععل وتصععنيفات لنععواع التحععويلت المكنععة بالضاععافة

ًا تحديععد اللغععات الناسععبنة والدوات الى البنادئ الت يمكن الستناد عليها في عملية التحويل. كما تععم ايضعع

11

 . لتمععام عمليععة التحويععل تععم بنععاء نمععاذج مسععتقلةMDAالت تتماش مع أفضل المارسععات والعمععايي فععي

 ونماذج مرتبنطة من مجالت برمجية مختارة بعمناية وتنفيذ خطوات عمليععة التحويععل القتحععة عليهععا. كمععا

 تمت ترجمة النماذج الى صورة تنفيذية ليسهل تنفيذ البنامج الوصف في البنداية بالنموذج الستقل فععي

 باعتمععاد النمعاذج فععي كعل عمليعات انتععاج البمجيععات . حققععت الطريقععةMDAصورة تمثل ما حععدده نهعج

. MDAالقتحة درجة مقبنولة من أتمتة عملية تطوير تطبنيقات البمجيات باستخدام نهج

12

TABLE OF CONTENTS

61

DEDICATION..5

ACKNOWLEDGEMENTS...6

ABSTRACT..7

7..اءلستخلص

LIST OF TABLES...8

LIST OF FIGURES...9

INTRODUCTION...12

Overview...12

MDA in Brief..12

Motivation ..12

Problem background...13

Research Questions..13

Objectives

...13

Main Contributions..14

Thesis Outlines...14

LITERATURE REVIEW..14

Overview...14
13

Model Driven Architecture (MDA)...15

Major MDA concepts...15

MDA Adoption and Promises...17

OMG Adopted Standards for MDA...17

 UML and Behavior Modeling ...17

UML Structure and Behavior Models Relation.................................18

Basic UML 2 Concepts...18

Traditional Support of State Machine in Software Development.....22

Automation and Model to Code Transformation................................23

Summary..24

RESEARCH METHODOLOGY...24

Overview...24

Case Study Methodology ...24

Brief Description of the Proposed Case Studies................................25

Languages and Tools Used in Case studies.......................................25

UML 2 Metamodel...25

Magic Draw...25

XMI..25

QVT...25

Eclipse Modeling Framework EMF...25

Case Studies Main Steps ..26

14

Summary..26

CASE STUDY: FINANCIAL SYSTEM SERVICES27

Overview...27

Models of the System ..27

Financial System PIM..27

Financial System PSM...29

Suggested Mapping Process...30

Class Model Mapping..30

Behavior Model Mapping..31

The promise of turning the PIM into a working program.................32

Guards Representation and Interpretation....................................32

Observations and Issues...33

Summary ...34

CASE STUDY: NEWS APPLICATION.................................35

Overview...35

Approaching the Problem...35

Models Of The System..36

News System Platform Independent Model....................................36

Messaging System Platform Specific Model....................................37

Class Model Mapping ...37

15

Behavioral Models Mapping..38

PIMClient and Client Classes...38

The NewsSender and Producer Classes..42

The NewsReceiver and Consumer Classes.....................................44

Summary..46

MODELS TO TEXT AND THE APPLICATION EXECUTION.....47

Overview...47

Possible Option 1 : Generic Mapping to prove concepts...................48

Possible Option 2 : Mapping of UML State Machine to SCXML48

Apache ActiveMQ ...49

UML, SCXML and the Apache Commons SCXML49

Transforming UML State Machine to SCXML...................................52

Suggested Algorithm to transform State machines to SCXML

Document...52

Concrete Mapping Examples ..53

 Java Code to run the state machine..55

1.Sample Run of the application...57

PROPOSED APPROACH RESULTS AND DISCUSSION.........60

Overview...60

Results Summarized...61

16

Discussion...61

Forbidden States Mapping..61

UML Constraints Mapping...62

CONCLUSION...64

Overview...64

Summary of The Results ..64

Limitations..66

Lack of Supporting Tool Set...66

Automating Code Generation...66

Lack of Standard Models...66

Manual Work...66

Future Work..66

Summary..66

17

LIST OF TABLES

18

LIST OF FIGURES

19

List of Symbols /Abbreviations

MDA Model-Driven Architecture

ERP Enterprise Resource Planning

system

OMG Object Management Group

UML Unified Modeling Language

CORBA Common Object Request Broker

EJB Enterprise Java Bean

PIM Platform Independent Model

PSM Platform Specific Model

API Application Programming

Interface

CIM Computational Independent

Model

MOF Meta Object facility

BPMN Business Process Modeling and

Notation

OWL Web Ontology Language

SQL Structured Query Language

CWM Common Warehouse Metamodel

OCL Object Constraint Language

ATM Automated Teller Machine

QVT Query View Transform

MDD Model Driven Development
20

DTD Document Type Definition

XSLT Extensible Style Sheet Language

Transformation

MOF Meta Object Facility

OO Object Oriented

XMI XML Metadata Interchange

IDE Integrated Development

Environment

EMF Eclipse Modeling Framework

EMOF Essential Meta-Object Facility

JMS Java Messaging Service

SCXML State Chart extensible Markup

Language

W3C World Wide Web Consortiums

CCXML Call Control XML

MOM Message Oriented Middleware

21

Introduction

Overview

This chapter gives a brief introduction to the concepts that will be

referenced later in the thesis. Section 1.1 first gives a brief introduction

to the Model-Driven Architecture (MDA) software development

approach. Section 1.2 of this chapter presents the reasons motivating

the research work to be done. It is followed by Section 1.3 presenting

the problems faced in this domain.

The following section, Section 1.4, explains some research questions

that will be answered through this thesis. Section 1.6 presents the

main contribution of the research work, taking account of the

objectives presented in Section 1.5. Section 1.7 presents the scope and

context in which this research work has been developed. Finally

Section 1.8 presents the outline of the whole thesis, describing each

chapter in brief.

MDA in Brief

Software development is a complex process. The information

technology market is faced by many challenges among them is the

effect of technology "platforms" change (languages, operating-

systems, interoperability solutions, architecture frameworks etc.). This

is an issue for software companies, developers and even customers.

Software companies are forced to follow technology change or be

abandoned by their customers. Customers may follow technology

change to find new and interesting things. Software developers may

fear being left behind by technological changes. The result is that

22

software market migrates to a new technology frequently, regardless

of whether the technological change is beneficial or not (Flater 2002).

Business process modeling plays an important role in software

intensive information systems. It become more vital specially when the

information systems grow in scale and complexity. Nowadays many of

the large scale and complex information systems are driven by models.

Models are representations of reality. A model of a system in MDA is a

description or specification of that system and its environment.

Business process modeling is the basis of process centric systems such

as Enterprise Resource Planning system (ERP). A software system like

an ERP is not just an artifact. Moreover The enterprise focus of such a

system made it hard to rely on conventional methods only.

Model Driven Architecture (MDA) (OMG 2014a) is a new development

method that represents a positive effort from the Object Management

Group (OMG) to overcome software development problems including

but not limited to technology change. The philosophy of MDA regarding

technology change is the separation of concerns. That is to capture the

most valuable and reusable part of the system– conceptual design- and

washing away technical details. The conceptual design of the system

then can be realized on new technologies cheaply because the process

is going only to add the “new technology” details. The same

conceptual design of the system can be realized into a technology or

another hence no more fear from technology change.

The conceptual design of the system in MDA is captured as a model

that describes the structures and/or behaviors of the intended software

application. A modeling language is used to create these models such

23

as the Unified Modeling Language (UML). As the emphasis is

increasingly shifted towards models; the role of standard models

increases. Two applications may be implemented in different

technologies but conforming to the same standard model. This will

enable them to share a common understanding of the system.

Conformance to well- designed standard models in software

development using MDA will in turn increase the chances for

interoperability. This was another part of the motivation for the MDA.

Based on the MDA document (OMG 2003), the following are the key

terms in MDA. A Model is a formal specification of the function,

structure and/or behavior of a system. A Platform represents the

technological and engineering details that are irrelevant to the

fundamental functionality of a software component. Example platforms

are Common Object Request Broker (CORBA), Enterprise Java Bean

(EJB), and Microsoft Dot Net Framework. In MDA, structures and

behaviors based on the business functions are abstracted and modeled

in a Platform Independent Model (PIM). The implementation specific

structures and behaviors are modeled in a Platform Specific Model

(PSM). The PIM is then realized into the PSM through a

transformation process to generate the software. A mapping

provides specification for transforming a PIM to a PSM in a specific

platform.

Model transformation is the process of converting a source model into

a target model according to some transformation specifications.

Transformation specifications are the rules that specify how to

transform the source to the target. A distinction can be made between

horizontal and vertical transformation. Horizontal transformation is a

24

transformation where the source and target models reside in the same

abstraction level. The aim of a horizontal transformation may be an

optimization to improve certain quality attributes of the system

(performance) or a simplification and normalization to decrease the

syntactic complexity. Vertical transformation is a transformation where

the source and target models reside at a different abstraction level.

Refinement is an example of a vertical transformation in which the

higher level, more abstract source model (e.g. design) is gradually

refined into a lower level, more concrete model (e.g. a model of a Java

program) (Mens et al. 2005).

Figure 1MDA Model Transformation

Motivation

Software development using MDA is promising. One of the promises of

MDA is the automatic generation of executables. The software

development is model centric and no longer code centric. We create a

model of the application problem and select a technology that

performs the class of tasks. Then we establish a mapping between the

model and the technology platform (middleware or API). The mapping

will enable turning the model of the application problem into a working

system automatically without (or with minimal) programming.

Raising the abstraction level of the system design into models leads to

reusability which is another gain using MDA. The model represents the

business in a technology-independent fashion. New technology means

25

just a new transformation for the same (reusable) model. So the same

system spans several platforms. Through modeling and transformation

in MDA the productivity of system developments increases, the

development time for new systems is reduced and time to market

decreases. The reason is that the whole development process is

simplified and the core asset (the model) is reusable. The system

model serves the purpose of the documentation and is the enabler of

the code generated for the system. The system documentation is

consistent with the system itself. When changes occurred they are also

applied to the models, resulting in consistent and more efficient

change management.

Behavior execution -automatically verifying models on a computer- at

PIM level is a remarkable feature to verify high level models against

the requirements and to provide conformance for implementation at

PSM and code level. One of the promises of MDA is the automatic

generation of software based on models. But the static structural

features of the modeled system are not always enough to generate a

completely full automated application unless complemented by

behavioral features of the system. One can conclude that behavior

modeling is important to support MDA goals.

Significance of the study

The study will help in bridging the gap between the design and

development phase and will support the developers in the software

development process using MDA.

Since MDA is considered a young discipline, standard models and Meta

models are not yet created for a wide range of application domains.
26

Problem background

The main idea of MDA is to make models the main driver of software

development process. To build an application in MDA, the process

starts with defining a Computational Independent Model (CIM) aka

domain model. An enterprise architect will transform the CIM into a PIM

by adding architectural information. A CIM represents the system

within the environment. To complete the build process, the

transformed PIM has to target a platform. A platform specialist will

carry out the transformation from the PIM to the PSM. The resulted PSM

is considered an implementation when it provides all needed

information, structures and behaviors that construct a system and

make it up and running.

UML is a formal modeling language that is standardized by the Object

Management Group (OMG) and is the recommended language to build

various types of models in MDA. UML provides diagrams to model

structural and behavioral aspects of a system. Structure diagrams in

UML show the static structure of the system. The class diagram is

widely used to describe static structures while other diagrams such as

object, component and deployment diagrams are also provided. A

variety of mechanisms to specify behaviors are supported in UML such

as automata (state machine), Petri-net like graphs (activity), informal

description (use case) and sequence of events (interaction) (OMG

2011). These different behavior specification mechanisms differ in their

expressive power and domain of applicability so the choice of one of

them depends on convenience and purpose.

Almost every application contains functionality and behavior besides

possessing a structure. Any behavior is the direct consequence of the

action of at least one object called the host object (OMG 2011). A

27

behavior has access to the structural features of its host object.

Behavior modeling is used to visualize, specify and construct various

dynamic aspects such as modeling a flow of control, an element

behavior, a workflow or an operation. Fund transfer between two bank

accounts is an operation example. The formal definition of the behavior

of this operation remains the same despite whether it was

implemented in different platforms by a CORBA object, an Enterprise

Java Beans, or a SOAP operation. Modeling the operation behavior is

important since modeling expresses the operation in a higher level of

abstraction that in turn allows for reusing the operation specifications

between different languages, frameworks and execution environments.

Although MDA acknowledge richer modeling, reusability, reliability and

automation of software generation, they are still far from defining a

real engineering approach to tackle the transformation process, not

even the MDA first guide published by The OMG (Richter & Conti 2004).

Some transformations can be considered heavy and challenging such

as code generation, compilation and parsing. Some can be considered

as light such as changing the internal software architecture to provide

modularity while maintaining the same software behavior. Heavy

transformations need certain set of tools and techniques. Certain

aspects of the source model has to be preserved in the transformation

to the target model. In the horizontal transformation the observable

behavior of the system is preserved while the internal structure

changes. In the vertical transformation the correctness has to be

preserved from an abstraction level to another.

28

The main challenge is the transformation from PIM to PSM (different

models).In traditional approaches, the transformation is inefficient

because of the lack of formal models. Using informal models will

prevent the formalization of transformation hence the transformation

cannot be automated. In practice the process from PIM to PSM might

be a lot more complex and challenging. Between the models, gaps can

exist because of the difference in the abstraction layers exhibited in

the models. The gaps may not be small enough to perform a direct

transformation.

The idea of MDA works for structural models(OMG 2014c), (Ahmed

2010) but there is still difficulties when behavior is addressed as

(Abdalla & Abdullah 2011) had investigated. Current practice shows

that, in most cases, behavioral models are used for other purposes like

documentation rather than complementing the structural models to

facilitate automatic software generation. The problem is the lack of

mechanisms for mapping behavior models from an abstraction level to

another, for example from PIM to PSM.

The mapping is an important part of the process of generating an

implementation. There are different types of mappings. Model type

mappings specify mappings of the instances of model types from the

source model language to the instances of target model types. Model

types can be specified using Meta -Object facility MOF (OMG 2006) or

any other language including natural languages. Another kind of

mapping is the model instance mappings. A mapping will identify

model elements in the PIM that can be transformed. Most mappings,

however, will consist of some combination of the above approaches.

What we want to do is to relate M0 instances of the PIM to the M0

29

instances of the PSM as an implementation of the application. The OMG

document (Richter & Conti 2004) doesn’t address how to relate and

transform models when developing software applications using the

MDA approach.

Several attempts such as (Aksit et al. 2009) described various

approaches to better support automatic software generation by using

behavior models but a concrete method to map the behavior models

(state machine) from PIM to PSM is still an open question and to be

answered.

Research Questions

The following research question is formulated:

• Research Question 1: How to automate software application generation using

UML behavior models in MDA approach?

It can be seen that methods for mapping the state machine behavior model between

PIM and PSM are strongly needed to facilitate the complete generation of fully

automatic software applications using MDA

These research questions are analyzed and answered in Section 1.6.

Objectives

This research aims to provide a proposed MDA based engineering

methods to map the UML behavior models. The method is aimed at

achieving an acceptable degree of automation of software

development. The general objectives are:

1. To find an engineering approach or a method for mapping state

machine behavior models from PIM to PSM.

30

2. To investigate suitable transformation languages and

metamodels that better facilitate the mapping process.

3. To evaluate the proposed approach by developing a system

automatically using MDA best practice and transferring the

generated artifacts (programs, configuration files and all the

generated classes to a suitable environment to be executed.

Main Contributions

 The main contribution of this research is the method for mapping UML state machine

behavior models from PIM to PSM. This contributes to the MDA in bridging the gap

between various design levels (PIM to PSM) and implementation (PSM to Code aka text).

Based on the method, transformation framework , guidelines, models and meta models an

MDA approach can be successfully applied to other software applications. Contributions

are summarized as follows:

1. Domain assets creation

The careful design of various models including PIM in two domains

is valuable since the MDA approach is model centric. The PIMs can

serve as a working samples for PIMs in different domains thus

contributing to the development knowledge in MDA.

The formal design of The PSM created for the ATM machine is

formed based on a standard and can be used with various

implementation platforms. An equivalent effort was done in

designing the messaging system PSM. Chapter 3 and Chapter 4

illustrate the designs in detail based on UML static and dynamic

features. Moreover the QVT transformations and the generated

codes, files and documents included in the appendix, would

increase the scale of capital equipment available to software

solution developers.
31

Considering the implementation of the system, the algorithm that

define the mapping between UML state machine meta model and

the SCXML provides a basis for translating between them. The

algorithm in Chapter 6 can be applied in different programming

languages to provide the translation in different platforms and

execution environments other than the one tried in the case study

thus providing a generic translation technique.

2. The strategic messaging system PSM could be re-used to afford

many products from the domain.

The formal and precise representation of the messaging system in

a model enables the usage of the model in other types of software

applications such as email and chat applications. This facilitates

the mapping automation and adds a value of selecting among

alternatives. The PSM is illustrated in detail in chapter 4.

3. Taxonomy and guidelines for state machine mappings

The suggested framework , guidelines , naming conventions or

the taxonomy for state machine elements and the transformation

are the heart of the proposed engineering method. In software

engineering and design science the designs and the foundations

are recognized as contributions to the knowledge in the field.

Extending the existing knowledge and applying what we already

know in a new and creative way is existed in the case studies

spaces and in the conclusions drawn from tackling them. The case

studies were deeply illustrated in Chapter 3 and 4, the result

discussed and summarized in Chapter 7.

4. State of the art tools in the MDA context was identified and used.

The MDA approach promotes the use of standardized languages,

models and toolsets. The conformance to the standard is always a

32

benefit to software development team members. In our study we

tried to follow the MDA best practices and set of languages that

support the design and coding when treating the models. UML,

QVT and EMF that conforms to and uses the UML meta models are

used in our case studies. The complete set of standards and tools

used is discussed in Chapter 3.

Thesis Outlines

The thesis is structured as follows. Chapter 1 introduces the research motivations,

background information on MDA and concepts that will be referenced throughout the

thesis. Chapter 2 describes the MDA and present the Unified Modeling Language (UML)

and the behavior modeling capabilities. The research methodology, tools, languages and

case studies description are covered in Chapter 3. In Chapter 4 and Chapter 5 the case

studies are described, observation and issues were identified. The model to code and

application execution are detailed in Chapter 6. The proposed approach results are

presented and discussed in Chapter 7. Finally, we conclude by summarizing the

contributions of the thesis, answers to the research questions and how objectives were

achieved in Chapter 8.

Literature Review

Overview

This chapter serves as an introductory, review and criticize of three

main topics in this thesis: Model Driven Architecture, Unified Modeling

Language and automation and the model to code transformation.

This chapter begins by providing an overview on Model-Driven

Architecture (MDA) as a modern software development paradigm and

how it can leverage the many concepts such abstraction, automation

33

and reusability. Section 2.2 of this chapter is to present the Unified

Modeling Language (UML) and the behavior modeling capabilities. It is

followed by Section 2.3 presenting the automation and model to code

transformation in the traditional manner and how MDA changes that.

Section 2.4 explains the relationship between UML structure and

behavior models. Section 2.5 presents the basic concepts of UML 2

class and state machine diagram elements. Section 2.6 presents the

tools and techniques that support state machine models. This chapter

is ended with Section 2.7 to summarize and provide a brief description

of the whole chapter.

Model Driven Architecture (MDA)

An organization need to make sure that its existing legacy software

system will evolve and it can easily integrate what it is building with

what is going to be built in the future. As the pace of technology

continues to speed up, the organization needs an architecture as a

base for its infrastructure. The bad news is that neither a single

platform nor a single operating system nor a single programming

language nor a single network architecture will be available to depend

upon. In the other hand with new approaches to software development,

the organization can still manage to build software systems in such

changing environment. Model Driven Architecture (MDA) is an initiative

of OMG Object Management Group that is intended to better deal with

the complexity of software system development. Figure 2 OMG Model

Driven Architecture (OMG 2015) lays out the MDA which is transparent

to operating systems, programming languages and network protocols.

34

Figure 2 OMG Model Driven Architecture (OMG 2015)

Major MDA concepts

System

A system is a collection of parts and their relationships organized to

achieve some purpose (OMG 2014a). In MDA, the term ‘system’ can

refer to a software system or it can be generalized to include anything:

software, hardware, people etc.

Model

MDA uses models as the first class artifacts in the software

development process. It aims at deriving values from models that

capture the system structural and behavioral aspects. A model in the

context of MDA is information that represent a system based on a

specific concern (OMG 2014a). The model also should include the

integrity rules applied to the system beside the meaning of terms

used. A model can represent business, domain, software, hardware and

35

environments or any other aspect of the system. A physical system

model could include representations of a hardware environment and a

performance simulation. A software system model could include UML

class diagram and screen shots of the user interface. A model of an

enterprise may include business processes, services and resources.

Models can provide a common understanding of the modeled system

between different stakeholders. They can also be analyzed and

evaluated to help in decision making. Models can simulate how the

system being modeled is going to function. Moreover, models can be

executed thus providing a design realization into a working system.

Metamodel

A metamodel is a model that set of models conforms to. It is the

common foundation for the models expressed using such metamodel.

The Meta Object facility (MOF) (OMG 2014b) is a key foundation to the

Object Management Group MDA. MOF includes a family of specification

and unifies the steps of development, integration and evolution of

models. The key modeling concepts are Classifier , Instance (class and

object) and the navigation between them. These concepts allow the

traversal of any number of layers recursively. OMG defines a four layer

architecture of model levels each of which conforms to (aka is an

instance of) the one above it. The four levels are illustrated by an

example as in Figure 2 An example of four-layer metamodel hierarchy

(OMG 2014b).

Figure 2 An example of four-layer metamodel hierarchy (OMG
2014b)

36

Metamodels also specify the schema for a repository that stores model

instances. A case tool can use the repository to create, store, browse,

render , edit etc. model elements. A transformation process can take

place where both the target and source models metamodels are

present. The transformation specification will look at the source

instances model that conforms to a source metamodel and try to

produce the target instances that conforms to the target metamodel.

More on transformation and their examples are illustrated in the next

sections.

Modeling Language

To be useful for the system stakeholders, any model need to be

expressed in a way that facilitate the communication of information

about the system and also need to be correctly interpreted by the

stakeholders and their technologies. A modeling language is used to

express the structure, terms, notations, integrity rules, syntax and

semantic of a model. OMG 's standard modeling language is the

Unified Modeling Language (UML) (O M G 2011). SQL Schema, Business

Process Modeling and Notation (BPMN), Web Ontology Language (OWL),

and XML Schema are examples of well known modeling languages.

Model driven

Describes an approach to software development whereby models are

used during the various development phases as the primary source

artifact for documenting, analyzing, designing, constructing, deploying

and maintaining a system.

37

Architecture

The architecture of a system is a specification of the parts of the

system , its connectors and the rules that define the interactions of the

parts using the connectors (Garlan & Shaw 1993). Within the context of

MDA these parts, connectors and rules are expressed via a set of

models.

In MDA an architectural process include understanding the

stakeholders requirements , understanding the system scope and

satisfying the requirements by a design of that system. MDA promotes

modeling to the architectural process and formalizes the resulting

artifacts (e.g. formal designs or models) so that developing systems or

improving them could be less expensive and less error prone.

Platform

A platform is a set of subsystems and technologies that provide a rational set of

functionality through interfaces and usage patterns. The users of a platform use it without

the concern of how functions are done. Examples of platforms include operating systems,

programming languages, databases, user interfaces, middleware solutions etc.

Platform Independence and Abstraction

Platform independence is a quality that a model may have. When a model is platform

independent then it is expressed independently of the features of that platform.

Independence is a relative indicator in terms of measuring the degree of abstraction (i.e.

where one platform is either more or less abstract compared to the other).

An important basic concept in MDA is the abstraction. Abstraction is the concept of

understanding the system in a general way and eliminating certain elements from the

defined scope. Modeling and abstraction go well together. We can design a model of a

38

system while abstracting away particular details such as those that tie the system to how

it can be implemented in a specific platform or technology. The more abstract the system

the more systems it can represent. The more specific the system the more bounded to

specific details of the technology or platform that it represents.

CIM, PIM and PSM

When a model of a system is defined in terms of a specific platform it is called a

“Platform Specific Model” (PSM). A model that is independent of such a platform is

called a “Platform Independent Model” (PIM). A Domain is defined as a bounded area of

knowledge. Domains relate to knowledge in two ways: vertically and horizontally.

Vertical domains are the business domains such as banking, accounting, etc. Horizontal

domains are specific software implementation technologies that are frequently used by

vertical domains. In MDA, a Computation Independent Model (CIM) specifies the

requirements of the system and includes the domain model which is in a level higher than

a PIM.

Implementation

An implementation is a specification that provides all the information

required to construct a system and to put it into operation.

Model Transformation

Model transformation is the process of converting one model to

another (PIM to PIM , PIM to PSM, PSM to PSM and PSM to Text). One of

the MDA capabilities is the automation of transforming the models

from abstraction level to another e.g. from a PIM (closer to business

concepts) to a PSM (closer to technology). Given an abstract concept

in one model such as a class in UML , we could transform and produce

a SQL table representation of the class in an Oracle data base system.

The transformation specifies the definition of the pattern and

39

parameters that are applied to the source element in order to produce

the target element. Note that for the same PIM we can specify different

patterns and parameters thus support different technologies.

Figure 2 MDA Pattern(OMG 2003) illustrates the MDA pattern by which a PIM is

transformed to a PSM. It is a generic pattern and there are many ways to carry out the

transformation. The empty box represents additional information that can be supplied to

the transformation according to the MDA chosen style and along with the PIM.

Figure 2 MDA Pattern(OMG 2003)

The conversion of the source model to the target model will be carried

out by standard mappings. In Figure 2 OMG Model Driven Architecture

(OMG 2015) the target platforms are represented by the thin ring

surrounding the core. Automation of the mapping is a goal, however

some hand coding may be necessary because of the immaturity and

lack of MDA tools.

One of the steps in creating an application using MDA is to produce the

application artifacts.

Figure 2 MDA- based Software Development Process Example (OMG

2003) depicts an example for full MDA process that includes the

execution environments. For example in a component based

environments, the necessary files will be generated such as interfaces,

component definitions and configuration files. The platform

independent model reflects the general model of the application. The

more complete this reflection is, the more complete the application

structural and behavioral features can be included in the specific

40

model hence the more complete application can be generated. In a

mature MDA environment, code and related files production can be

significant and even complete. Deriving code and implementation from

models is one of the uses of MDA. Automation enables rapid response

to changes, increases the efficency of software development and

decreses its cost.

Figure 2 MDA- based Software Development Process Example

(OMG 2003)

41

QVT is the standard OMG transformation language and is expressed in

section .

MDA Adoption and Promises

MDA has been advantageously implemented in small and large

organizations for different types of systems. some companies prefer to

keep their success a secret to their competition, while many have

agreed to publish their accomplishments, as can be seen on the OMG

website (OMG 2014c) as well as in various articles.

MDA is a software development method that promises to facilitate the

creation of formal models to achieve the long term flexibility in terms

of:

• Technology Proven: new implementation technologies can easily integrated and

supported by existing designs. Separation of concerns is an old engineering

principle. Dijkstra is generally credited for bringing this idea to the attention of

software community (Dijkstra 1976)

Dijkstra: “I have a small mind and can only comprehend one thing

at a time.”

Separating the business logic from technical details allows both PIM and PSM

models to change without affecting each other and provide a solution to the

software churn that burdens developers, system venders and users.

• Portability: existing designs and functionality can easily

migrated to different environments and platforms.

• Productivity and time to market: automating tedious

development tasks would free the developers and architects to

42

focus on the business logic. The resulted system development

would be faster and less error prone.

• Quality: Formality, separation of concerns, consistency and

reliability of artifacts produced all contribute to the quality of the

produced system.

• Testing and simulation: models can be validated against the

requirement and also tested against different infrastructures and

platforms. They can be used to simulate the system behavior

too.

OMG Adopted Standards for MDA

In order to enable the MDA approach, a set of technologies were

adopted by OMG. Including UML as a standard modeling language ,

Meta Object Facility (MOF) (OMG 2014b) as a repository for model

manipulations and Common Warehouse Metamodel (CWM) that enable

the interchange of warehouse and business metadata. These are the

core models of the architecture represented in Figure 2 OMG Model

Driven Architecture (OMG 2015). Each core model represents the

common features of all the platforms in its category, technically it is a

metamodel of the category.

 UML and Behavior Modeling

This section is the second one in the literature review specifically

related to modeling in UML because models are the building blocks of

MDA. The Unified Modeling Language (UML) is an OMG standard for
43

modeling systems. UML provides diagrams to model structural and

behavioral aspects of a system. Structure diagrams in UML represent

the static structure of the system. The class diagram is widely used to

describe static structures while other diagrams such as object,

component and deployment diagrams are also provided. A variety of

mechanisms to specify behaviors are supported in UML such as

automata (state machine), Petri-net like graphs (activity), informal

description (use case) and sequence of events (interaction) (OMG

2011). These different behavior specification mechanisms differ in their

expressive power and domain of applicability so the choice of one of

them depends on convenience and purpose.

Almost every application contains functionality that describes its

features. Beside that the application has behavior and possess a

structure. Behavior modeling is used to visualize, specify and construct

various dynamic aspects such as modeling a flow of control, an

element behavior, a workflow or an operation. Depositing an amount of

money into a bank account is an operation example. The formal

definition of the behavior of this operation remains the same despite

whether it was implemented in different platforms or in d9ifferent

programming languages. Modeling the operation behavior helps to

express the operation in a higher level of abstraction. The abstract

level description as a result allows for reusing the operation

specifications between different languages, frameworks and execution

environments.

Behavior execution -automatically verifying models on a computer- at

PIM level is a remarkable feature to verify high level models against

the requirements and to provide conformance for implementation at

44

PSM and code level. Considering that the promise of MDA is the

automatic generation of software based on models, the static

structural features of the modeled system are not always enough to

generate a completely full automated application unless

complemented by behavioral features of the system. One can conclude

that behavior modeling is important to support MDA goals.

Current practice shows that MDA approach works quite well (OMG

2012) but, in most cases, behavioral models are used for other

purposes like documentation rather than complementing the structural

models to facilitate automatic software generation. The problem is the

lack of mechanisms for mapping behavior models from an abstraction

level to another, for example from PIM to PSM.

There are different approaches for modeling and executing behavior in

the UML at PIM level. According to the study in (Riccobene & Scandurra

2009) they may mainly fall into the following mentioned categories. In

the first category , behavior is not included in the PIM at all, but

instead it is added as code to structural code skeletons later in the

MDA process. This, however, prevent validating the system at earlier

stages.

A notion of behavior is represented in the second category by the use

of the Object Constraint Language (OCL) (OMG 2010) to add behavioral

information (such as pre- and post-conditions) to other more structural

UML modeling elements. This representation came at its own cost

because OCL does not allow the change of a model state, though it

allows describing it. In other words OCL is side-effect free.
45

In the last category, UML behavioral diagrams such as state machines,

activity diagrams, sequence diagrams are used for behavior modeling

and representation. However the purpose of that is for documenting

the user requirements. The various mentioned diagrams are not used

as a facilitator for automatic code generation. As a consequence

behavioral models are separated from the code, which finally even

leads to dead models.

Some effort was dedicated to enhance and extend UML diagrams as in

(Kalnins et al. 2009). Their work was based on extending two UML

behavior modeling notations, the sequence diagram and the activity

diagram. The extension aims to provide more expressivity to the

activity diagram and to allow the sequence diagram to represent

behavior of multiple classes.

In our study , we are going to use UML statechart diagram to represent

the behavior of the classes represented in the case study. We do

believe that realization of the MDA vision requires that the business

logic behavior of an application be represented explicitly in the PIM.

State-machines provide the suitable basis for such representation

(Mcneile & Simons 2004).

UML Structure and Behavior Models Relation

In order to simplify the semantic considerations, we are going to give

an overview of the relation between UML classes and its behavior,

considering both the activities and states.

46

Figure 2 Simplified UML Class and Behavior Models
Relationship

Figure 2 Simplified UML Class and Behavior Models Relationship is a

diagram constructed from the BasicBehaviors, Kernel and

BehaviorStateMachines Packages of UML (OMG 2011). Class can have

zero or more owned attribute of type Property which is a

StructuralFeature. It can also be associated with zero or more owned

operations of type Operation which is a BehavioralFeature.

ownedAttribute and ownedOperation can belong to at most one Class.

The specification mechanisms used to specify the behavior of an

Operation can be a StateMachine, an Activity or any concrete sub

class of the abstract class Behavior. The behavior (eg. activity) in this

case is considered the implementation of the feature (the computation

that generates the effects) that the class is modeling by its operation.

47

A StateMachine is a Behavior that has at most one

BehavioredClassifier as its context. The BehavioredClassifier is a

Classifier. Since the Class is also a Classifier, then navigating from

the state machine using its context attribute will link the state machine

back to its class. Navigation from the Class to the associated

behavior(s) is possible using the directed association relations

ownedBehavior and classifierBehavior respectfully. In a similar

way we can navigate between the Activity and the Class to its

context class. We conclude that within a particular model instance,

UML pretty well integrates various diagrams.

The StateMachine is composed of one or more regions which in turn

composed of zero or more states. Each state may compose of three

owned elements, entry, exit and doActivity of type Behavior as an

effect of a transition related to the state region. In other words a state

has the ability to do a behavior before it transitions.

A fundamental unit of behavior is an Action that can modify the

system state in which it is executed. Behaviors provide the action

context and determine when actions to be executed and with what

parameters (property values of objects). Actions can perform calls to

operations specified in the model; the called operations may be bound

to activities, state machines or other behavior.

Basic UML 2 Concepts

Class and State Machine

48

In this part we briefly introduce UML 2 state machines that represent

the current state of the art in the long evolution of these techniques.

The intention is not to give a complete, formal discussion of UML state

machines, which the official OMG specification (OMG 2004) covers

comprehensively and with formality. Rather, the goal in is to lay a

foundation by establishing basic terminology, introducing basic

notation, clarifying semantics, and giving some examples. This section

is restricted to only a subset of those state machine features that are

arguably most fundamental. The emphasis is on the role of UML state

machines in the practical everyday programming rather than

mathematical abstractions.

For illustration purposes Figure 2 Simplified ATM Class represents a

simplified class diagram with one class - the ATM class which is

represented in an Automated Teller Machine (ATM) software system.

The ATM allows users (i.e., bank customers) to perform basic financial

transactions. The first case study in provides a concise, carefully

paced, complete analysis and design experience.

Figure 2 Simplified ATM Class

The ATM objects (instances) have both behavior and static structures

or, in other words, they do things and they know things. The ATMNo is

49

an attributes of the class representing static structures. The verifyCard

method is considered a behavior. Beside that the class has a state

machine that describe its life time and shown in Figure 2 ATM State

Machine Diagram.

UML state machine diagram is a behavior diagram that is used to

visualize, specify and construct various dynamic aspects of a designed

system through nodes (states) and edges (transitions). State machine

diagrams can also be used to specify the usage protocol of a system.

UML provide behavior state machine and protocol state machine. The

behavior state machine which we will refer to as state machine, is an

object based variant of Harel state charts (Harel 1987).

Figure 2 ATM State Machine Diagram

50

A state represents a stage in the behavior pattern of an object. During

the life time of the object, a state satisfies some condition, performs

some activity or waits for events to occur. It is possible to have initial

state and final state. When the object is created it is placed in the

initial state. The final state has no transitions going out of it.

A transition is a relation between two states, the source and target

states. A transition indicates that the object will move (transit) from

the source state and enter the target state when an event occurs, a

condition is satisfied or an action is performed. A self-transition is a

transition whose source and target states are the same.

Figure 2 ATM State Machine Diagram presents an example state

machine diagram for the ATM class. The rounded rectangles represent

states where the arrows with stick arrow head represent transitions.

The instances of ATM can be in one of the modeled states such as

Idle, verifying, or ServingCustomer states. The instance can start in

the initial state, represented by the closed circle, and can end up in the

Idle state again.

A state machine can change from one state configuration to another in

a response to an occurrence of an event. An event is the specification

of a significant occurrence. The name or description of the event that

cause the transition is written the line that corresponds to the

transition. For example, the ATM object changes from verifying state to

servingCustomer state after the bank database authenticates the user.

A transition may be associated with at most one guard which is a

constraint (condition) that controls the firing of the transition. The

51

guard condition is a boolean expression that is evaluated when the

event occurred, if the evaluation result is true ,the transition is enabled

or otherwise it is disabled. A user class which is not shown here is

authenticated by comparing the account number and PIN entered by

the user with those of the corresponding account in the database. If

the bank database indicates that the user has entered a valid account

number and correct PIN, The ATM object transitions to servingCustomer

state and changes its authenticated attributes to a value of true.

In order to model complex behaviors, sub states cab be grouped into a

composite state. The state ServingCustomer is a composite state that

is having SelectingService as a sub state. Another type of states is the

compound state which indicates that the details of the PerformService

sub-machine are shown in a separate diagram.

 Constraints

A constraint is a restriction on UML models and model elements. As

Figure 2 UML Constraints Metamodel (OMG 2011) depicts, the

constraint is associated with an element and it has at most one

specification.

52

Figure 2 UML Constraints Metamodel (OMG 2011)

Specifying constrains is enabled by the flexibility of the ValueSpecification class and the

OpaqueExpression extension as denoted in Figure 2 Elements defined in UML

Expression Package (OMG 2011). The metamodel specifies the usage of a

ValueSpecification wherever a value can be provided by a variety of technologies.

53

Simple specification values can be provided by a string literal in any language including

natural languages. More values can be provided by an OpaqueExpression that has two

attributes, one of language names [language attribute] and the other of string bodies in the

corresponding language [body attribute]. The attributes provide an ability to present

implementations in a variety of languages. If the language name is omitted, an

implementation default of The Object Constraint Language OCL is assumed. OCL is a

precise text language that provides constraint and object query expressions on MOF

model or meta-model. It is a key component in the OMG QVT specifications.

Specification of a behavior such as “name.toUpper()” can be achieved by an

OpaqueExpression in which the language value is ‘OCL’ and the body is

‘name.toUpper()’. The OCL is therefore embedded in a textual form that has no

knowledge of the classes in OCL metamodel. Users have the choice to use programming

languages API such as the OCL Java API. The benefit is to avoid the need to incur OCL

parsing costs by exploiting OCL’s ExpressionInOCL class that extends ValueSpecificaion

and delegates functionality to an OCLExpression.

Specifying Constraints in UML

Some constraints can be effectively specified using the graphical UML

features. Some types of constrains can't be represented by UML. Using

UML comments to add constraints in the form of text was previously

used but that was a source of ambiguity, informal specification and

54

none interpreted constraints. Figure 2 Account Constraint: Positive

Balance shows a comment used to express a constraint.

Figure 2 Account Constraint: Positive Balance

OCL is a language that is intended to provide a formal and

comprehensive specification of model constraints. It has a precise

syntax that enables the construction of unambiguous constraints and

can avoid the inherent difficulty of using complex mathematics too.

OCL can be applied to UML models and is used in MOF and QVT.

OCL statements are constructed in four parts:

1. a context in which the constraint is to be evaluated.

2. a property that defines some characteristics of the context

(e.g., if the context is a class, a property might be an attribute)

3. an operation (e.g., arithmetic, set-oriented) that

manipulates or qualifies a property, and

4. keywords (e.g., if, then, else, and, or, not, implies) that are

used to specify conditional expressions.

There are four types of constraints on an object that can be specified

using OCL: invariants, pre conditions , post conditions and guards.

55

Invariant

Invariants are constraints that applies to all instances of a class and

evaluates to true if a condition is met. An invariant constraint consists

of an OCL expression of type Boolean. The expression must be true for

each instance of the classifier at any moment in time. For the ATMCard

class in Figure 2 UML Constraints Metamodel (OMG 2011) the invariant

expirationDate.isAfter(today) ensures the validity of the card when

used by checking the class property expirationDate.

The syntax of an invariant is as follows:

context <class name> inv: <Boolean OCL expression>

Multiplicity constraints can be understood as simple cases of

invariants. Specifying the multiplicity in associations can constraint the

relation between the association ends instances. Each association end

is a property whose type is a class. The association between the

BankCustomer and an ATMCardas in Figure 2 ATM Card and Customer

Association Multiplicity is named customerCard . An instance of the

BankCustomer class can have one or more instances of ATMCard

(myCard) denoted by 1..* , where an instance of ATMCard can only

belong to one BankCustomer(holder).

Figure 2 ATM Card and Customer Association Multiplicity

56

Precondition

A precondition is a constraint that may be associated with an operation

of a classifier. The purpose of a precondition is to describe the

conditions that has to hold before executing the operation by an

instance. The precondition consists of an OCL expression of type

Boolean evaluated to true whenever the operation is executed. Figure

2 UML Constraints Metamodel (OMG 2011) shows the placement of a

precondition in the UML meta model.

Figure 2 An OCL ExpressionInOcl used as a pre or postcondition

Postcondition

57

As the precondition constraint, the postcondition is a constraint that

may be associated with an operation of a classifier. The purpose of a

postcondition is to describe the conditions that has to hold after

executing the operation by an instance. The precondition consists of an

OCL expression of type Boolean evaluated to true whenever the

operation stops executing. The mark "@pre" can be used to refer to

values before execution time and the variable result refers to the

returned value of the operation if any.

The OCL syntax to denote a precondition, a postcondition or a pair of

them for an operation is:

context <class name> :: <operation> (<parameters>)

pre: <Boolean OCL expression>

post: <Boolean OCL expression>

Let us assume that the withdraw operation of ATM class is as follows:

Preconditions:

1. The ATM must not be in an error state

2. it must hold some card

3.The amount to be withdrawn is positive

4. The balance covers the withdrawal amount

58

Post-conditions:

After withdraw has been executed, the right amount of money must

have been spent or some error has occurred.

The OCL statements are as follows:

context ATM::withdraw(amount : Integer)

pre: (state = #ok) and (cardId <> 0) and (amount > 0) and

(balance > amount+100)

post: (balance = balance @pre - amount) or (state = #error)

The post-condition expression makes use of the OCL operator @pre

that yields an expression's value at pre-condition time.

Guard

A guard is an expression that can be linked to an association in a state

machine. It places a restriction on the transition to the target state.

Whenever the transition is attempted, its value must evaluate to true.

The value of the guard is of Boolean type. The context of the guard is a

classifier which is the owner of the state machine.

OCL syntax is simple. It defines an OCL expression, which always has a

type. The classes defined in the class diagram can be used in OCL

expressions. These types are called model types in the OCL literature.

Typical operations for class types deal with the properties of a class

type, i.e. its attributes, operations and associations.

59

Traditional Support of State Machine in Software

Development

There are a few different techniques to implement state machines in

different programming languages such as C, C++ and Java. These can

be categorized into the following:

• native language support

• hand-coded implementation

• tabular implementation

• unintentional state machines

• State pattern

60

• use of a library

• model-based code generation

Native Language Support:

Some languages has built in support for state machines such as
Erlang(Anon n.d.). Erlang is a programming language designed at the
Ericsson Computer Science Laboratory. It contains libraries of code for
building robust fault-tolerant distributed applications.

Hand-coded Implementation

A program that contains a switch statement where the code for each
state is written and the next state is determined.

Tabular Implementation

A state transition table of entries represented as (source state,
destination state, input condition) and the table is processed in the
application. Then for each update of the state machine, the table is
used to determine the next state.

Hidden State Machines

The logic is added in a program that contains a flag that switches
between two states. The source code is considered the specification of
the state machine behavior.

State Pattern

The state pattern is a behavioral software design pattern, also known
as the objects for states pattern. This pattern is used in computer
programming to encapsulate varying behavior for the same routine
based on an object's state .It is a way for an object to change its
behavior at runtime in class instances that encapsulate the behavior in
each state, including determining which state is next.

 Use of a Library

Some programming languages provide libraries to create and
implement state machine such as the free C++ Boost libraries.

Model-based Code Generation using state charts

The state charts are drawn and the code is generated directly from
them using some tools. Example of tools are Stateflow and StateMate
that vary in their support and price. Most of the tools available in the
market can generate the static parts of a model aka classes.
In MDA approach, sets of transformations are applied to a platform

independent model (PIM) in order to derive a platform specific models.

Query View Transform (QVT) standard addresses the model to model
61

transformation (e.g., PIM to PIM, PIM to PSM and PSM to PSM). In order

to complete the process of software development using models, those

models has to be transformed to text artifacts such as code,

deployment specifications, reports, documents, etc. The MOF Model to

Text (mof2text) standard addresses how to translate a model to a text

representation using a template base approach (Object Management

Group (OMG) 2008). A Template is a text template that contains

placeholders(expressions) for data extracted from metamodels entities

through queries. For example, the following Template specification

generates a Java definition for a UML class.

 [template public classToJava (c : Class)]

class [c.name/] {

// Constructor

[c.name/]() { }

} [/template]

For a class ‘ATM’ (shown in Figure 2 ATM State Machine Diagram), the

following text will be generated:

class ATM {

// Constructor

ATM() { }

}

Automation and Model to Code Transformation

This section illustrates the third part of the literature review. One of the

challenges in software engineering industry is to determine the

software mistakes or at least to find mistakes (bugs) early during the

requirement or design phases and not after delivery. Automatic code

generation can provide a solution to the problem especially when it is

62

based on a human-built model or design as investigated in (Burke &

Sweany 2008). The authors concluded that the use of Model Driven

Development (MDD) with automatic code generation can contribute

significantly in decreasing the development costs and at the same time

increase the reliability of products. As a result software development

becomes faster, better, and cheaper.

Automation provides an increase in productivity. Generators can

produce many application artifacts in short time. Tedious and boring

parts of code can be also generated instead of hand written.

Automation can also provide architecture consistency when

programmers work within the architecture. Beside that automation lifts

the problem to a higher level thus providing an easier porting to

different languages and platforms. In contrast to the mentioned

advantages, generators themselves - programs that produce

programs- have to be written first. So there will always be hand coding

required.

A research study (Domínguez et al. 2012) provides a systematic

literature review that focuses on the code generation from state

machine specifications in the context of MDD. The state machine

specifications include UML state machines, finite state machines and

Harel statecharts (Harel 1987). These constitute the most widely used

specifications to specify the dynamic behavior of a system. The study

analyzed the elements of the state machine specification supported by

research and how they are implemented. The former analysis is

denoted by element based comparison, the latter is referred to as

pattern based comparison. Additionally the software feature that is

63

desirable in the software development is considered and denoted as

feature based comparison.

The review put it clear that the state machine specifications (UML state

machines, finite state machines and Harel statecharts) constitute the

most widely used to specify the dynamic behavior of a system.

Moreover the UML state machines are the most common form used in

automatic code generation in MDD. The results of the review show that

the techniques of automatic code generation from state machine

specifications can be classified into two groups , those based on design

patterns and those not. Design pattern specifies a general solution for

recurring design problems. Regarding the element based comparison,

the review concluded that most of the implementations focus on

elements such as simple states, events, guards, and actions in

transitions. Specific elements of state machine such as simple and

orthogonal composite states were less investigated by research. A key

finding in the review regarding the feature based comparison is that

many implementation strategies do not care about features like

maintenance, reusability, or modularity.

Another conclusion drawn from the review is that code generation from

state machine specification is one of the most challenging tasks.

Because there is a gap between the modeling languages and the

programming languages. Another reason is the dynamic nature of the

state machine. Additionally, concepts such as states and events are

not directly supported by most of the object oriented programming

languages. MDA resolves what programming languages failed to

handle by building a model of the system using modeling languages.

UML - a standard modeling language- is having the concepts of states,

64

transitions, actions, events and more. Traditionally modeling and

programming are viewed to be different. Moreover there was a gap

between the design phase and the implementation phase. The value of

using the models created in the design phase is not gained and stops

along the line in the software development process. As a result there

was a difference between a model and a program. Our interest in MDA

let us say that both the model and program are descriptions of the

software system. MDA concepts rely on platform independent and

platform specific models that can be seen as models and programs at a

first glance. At a point in the software development process , the

existing modeling artifacts are transformed to programming languages

artifacts, after which the development method can proceed. This is

only one benefit of gaining a value from models and there are more

discussed in section

(Sunitha, E. V. 2012) presents a method to convert behavioral models

to implementation code. The method concentrates on behavioral

models which includes state machines, sequence diagrams and activity

diagrams. The approach used was an MDA approach where the system

is designed as a PIM using UML and mapped to a PSM using

transformation. The implementation language targeted was Java. The

method implementation, UML Code, includes a UML modeler, model

processor, XMI generator and code generator.

In their method , the activity diagram reflects the business process

flow. Each activity is explained using sequence diagram. The states of

objects in the activity diagram is explained by state machine. The

various diagrams contents are stored in a single XML file that conforms

to a specific Document Type Definition (DTD). The DTD document

65

shows how to express UML 2.0 activity diagram in XML. The XML file is

parsed to identify behavioral objects and to transform them into Java

classes using Extensible Style Sheet Language Transformation (XSLT).

The generated code constructs were compared to similar tools output.

The approach used in the study shows that 80% of source code can be

produced automatically.

The mentioned method is parsing the files, in MDA the models are

transformed from abstraction level to another to produce target

artifacts. They also used XSLT which is a common and powerful

language for XML transformations, but not suitable for transformations

of semantically complex models due to its low level syntax. The

method does not apply the principles of MDA, hence the benefits of

MDA such as reusability and interoperability are not achieved.

Although the mentioned method is not under the ideal MDA approach,

but it assures that incorporating and using behavioral constructs is

going to pave the way strongly between system designs and the

generated code. The promise is to provide a complete code and not

only code skeletons. In a comparable way we are suggesting a method

that implements the MDA best practices and concentrates in the PIM to

PSM mapping. The method could benefit from the several available

UML modeling tools in addition to the other formal and de facto OMG

standards such as QVT (OMG 2011a) and OCL (OMG 2012). Query View

Transform (QVT) is the standard language that the OMG specified to

carry on the transformation from model to model and from model to

code. Object Constraint language (OCL) is a standard language that is

used to specify constraints on models and model elements.

66

Summary

MDA places modeling at the heart of the software development

process. Various models are used to capture various aspects of the

system in a platform independent manner. Sets of transformations

are then applied to these platform independent models (PIM) to

derive platform specific models (PSM).

Deriving code and implementation from models is one of the uses of

MDA. Automation enables rapid response to changes, increases the

efficiency of software development and decreases its cost.

UML is an OMG standard for modeling systems and it provides a

rich representation for different aspects of any under development

software system. Behavioral models in UML complement the static

models and provide the full picture of the system. Along with other

OMG standards such as MOF, QVT, OCL the automatic code

generation from models can be feasible.

UML state machine diagram is a behavior diagram that is used to

visualize, specify and construct various dynamic aspects of a

designed system through nodes (states) and edges (transitions).

Models can be constrained by adding constraints to them using OCL

which has its own limitations.

Code generation from state machine specification is one of the most

challenging tasks. Because there is a gap between the modeling

67

languages and the programming languages. Another reason is the

dynamic nature of the state machine. Additionally, concepts such as

states and events are not directly supported by most of the object

oriented programming languages.

Research Methodology

Overview

This chapter presents the research methodology applied in order to

complete this research. There are two case studies were conducted.

Those are briefly described. The tools, languages, environments which

were used are identified and described in this chapter too. The chapter

also depicts the main steps for both case studies.

Case Study Methodology

The research methodology is basically based on (Hevner et al. 2004) to

build and evaluate system techniques and methods iteratively and

incrementally based on cases. A language, model or guidelines are to be

identified in order to define the method under study. The strategy of the

research is based on case study. (Creswell 2012) define case study as

“researcher explores in depth a program, an event, an activity, a

process, or one or more individuals” (p. 15). Leedy and Ormrod (2009)

stated that , using case studies the researcher is attempting to learn

“more about a little known or poorly understood situation” (p.149).

Brief Description of the Proposed Case Studies

First we have started by a case study that examines and tests the

issues and problems when mapping Behavior models from PIM to PSM.

We had reported on that in (Ahmed et al. 2013) by giving examples

68

from real world and trying to highlight the importance of behavior in

models. We concluded that a concrete method to map the behavior

models (state machine) from PIM to PSM was still an open question.

Eventually using a case study to raise issues helped us to understand

how to tackle the problem and to improve model driven development.

The second case study provides a concrete detailed and practical way

of finding solutions to the issues raised. It describes an end to end

model driven software development that incorporates both static and

behavioral models with more focus on behavioral part. More details are

provided in next chapters.

Languages and Tools Used in Case studies

In order to carry on the various steps in the two case studies some

tools and languages were needed. The tools and languages were

chosen because they are OMG standard or they comply with OMG

standards. A modeling language , an IDE to create models that allow

also the exchange of models in a standard way, a transformation

language and an IDE that supports instances generation are specified

in the sections below.

UML 2 Metamodel

The Unified Modeling Language™ - UML - is a specification and

standard from the Object Management Group OMG's. It is used to

model application structure, behavior, and architecture, business

process and data structure. UML and Meta Object Facility (MOF) are

corner stone in MDA. After its first release versions as UML 1.x, UML

has gone through various improvements. UML arrived at version UML

2.x. specification that had four parts: UML Superstructure (OMG 2011b)

for diagrams and elements description , UML Infrastructure (O M G

69

2011) that defines the core metamodel on which the Superstructure is

based, the Object Constraint Language (OCL) (OMG 2010) for defining

constraints for model elements and UML Diagram Interchange that

defines how to exchange the diagrams.

Software system exhibits two characteristics:

• Static (structural): Logical Structure, e.g., relationship

between classes, attributes of a class, etc. UML provide the

use case and class diagram for describing system static

structures.

• Dynamic: Behavior of the system, e.g., how to respond to a

certain event, how to initiate an action, etc. This view

includes sequence diagram, activity diagram, state

machine diagram, Object diagram and collaboration

diagram.

Magic Draw

Magic Draw UML Personal Edition 16.5 SP 1 from No Magic, Inc was

used. It is a development tool that facilitates analysis and design of

Object Oriented (OO) systems and databases (Anon n.d.). Designed for

business and software analysts, programmers, and Quality Assurance

engineers. Major MDD vendors recommend using it in the world of

Model Driven Architecture. It is used to create, visualize edit and

export various UML diagrams including class, state, activity, package,

and UML metamodel for PIM and PSM.

XMI

The XML Metadata Interchange (XMI) (OMG 2014d) is a standard and a

trade mark for OMG. It is a framework for defining, interchanging,

manipulating and integrating XML data and objects. It is mainly used

as interchange format for UML tools and to integrate tools,

applications, repositories and data warehouses. XMI also defines rules

70

for schema definition and the rules for metadata generation of

document production ― how is a model mapped onto text.

Magic Draw tool has the support for XMI 2.x in many options. One

option is to store native files in XMI format. Another option is to import

from XMI and to export UML 2.x models to XMI. In the case studies the

PIM and PSM models were exported as XMI documents to integrate

them into the Eclipse Modeling Framework to further transform them.

QVT

QVT (OMG 2011a) is another standard set of languages from OMG to

Query, View and Transform models. QVT standard defines three

languages: QVT-Operational, QVT-Relation and QVT-Core. Model

transformation is a program which operates on models and contains

transformation rules with model elements to be matched and

transformed.

Figure 3 QVT Operational Context

In Figure 3 QVT Operational Context the abstract syntax of the

language is defined as MOF 2.0 metamodel. The program of the

transformations (Tab) are defined on the base of (MMa, MMb)

metamodels. Transformations are executed on instances of MMa

metamodels (Ma) in order to produce instances of MMb metamodels

(Mb).

Transformation as depicted by Figure 3 Structure of A Simple QVT

Program can consists of mapping operations that form the

transformation logic. A mapping operation maps one or more source

elements into one or more target elements. It matched the source

71

elements on the base of a type and executes operations in its body to

create target elements

Figure 3 Structure of A Simple QVT Program

 In the case studies a transformation program was written to transform

the PIM instances model into the PSM instances model.

Eclipse Modeling Framework EMF

Eclipse is an Integrated Development Environment (IDE) written in Java

programming language and can be used to develop applications (The

Eclipse Foundation n.d.). The Modeling project in Eclipse (EMF) contains

projects that focus on model-based development technologies and

provide modeling and code generation facilities. Models as an input to

EMF can be specified as UML or XMI documents then imported into the

framework. From the specified model document, EMF will generate

Java classes for the model along with adapter classes to instantiate

them. Beside that an editor is generated to manipulate model

elements. The meta model for EMF is Ecore which is a reference

implementation of the OMG's simplified version EMOF (Essential Meta-

Object Facility). An extract of a small part of the metamodel is shown in

72

Figure 3 Ecore EMF's Metamodel Sample (The Eclipse Foundation n.d.)

Applications might consider using Ecore or defining their own

metamodels based on it.

EStructuralFeature

name : String

EClass

name : String
0..*

eStructuralFeatures

0..*

0..*

eSuperTypes

0..*

EReference

containment : boolean
lowerBound : int
upperBound : int

1eReferenceType 1

0..1eOpposite 0..1

EDataType

name : String
EAttribute

1

eAttributeType

1

Figure 3 Ecore EMF's Metamodel Sample (The Eclipse
Foundation n.d.)

Case Studies Main Steps

The case studies are an attempt to develop an entire small but rich

enough application to illustrate the MDA approach. The PIM and the

PSM are developed as UML2 class’s model, with the dynamics

developed using UML2 State machine and Activity models. The

developed models are not claimed to be the best but they were

selected and modeled because they have facilities to exercise the

proposed method, familiar to the developers and readers and big

enough and not trivial.

1. Input Models

a. PIM meta model

First we analyzed and build a model with a high level of abstraction for a

software system. The PIM is augmented with structural model (Class Diagram)

and behavioral model (State machine Diagram).

b. PSM meta model

73

In this step the meta models of a chosen platform specific

model (PSM) of a software system are analyzed and modeled.

A PSM is tailored to specify the system in terms of the

implementation constructs that are available in one specific

implementation technology. The PSM is augmented with the

structural model (Class Diagram) and behavioral model

(State machine Diagram).

2. Transformation in the first case study

The relationship between the PIM and PSM constructs were investigated and

studied. A manual mapping(not by tools) was conducted to identify the

relationships among structural features. For the behavioral features the process is

carried out by creating the equivalence classes between PIM states and PSM states

for particular objects. In mathematics when an equivalence relationship exists in a

set , this denotes the natural grouping of elements related to each other. The issues

raised by conducting the first case study were discussed and reported to the

research community in (Ahmed et al. 2013).

Two stages of transformations were suggested, the first was the transformation

from the PIM to the PSM and the second stage was the translation from PSM to

code. The second stage is a rendering of the output into code and code alike

constructs as prove of concepts. The benefit of the first case study is to check the

feasibility of conducting more investigations and research on the topic. Moreover,

to gain confidence on applying a more concrete case study and use the proper

languages and tools.

3. Transformation in the second case study

The second case study provides a concrete detailed and practical

end to end model driven software development that incorporates

both static and behavioral models. The main idea is to model the

structural and behavioral features of the news system in a PIM

74

and to model the common features of a messaging system in a

generic PSM. The models were prepared as step 1 above

-defining the input- suggested. The generic messaging system

enables the news application to be implemented in more than

one platform such as Sun’s Java Messaging Service (JMS((Oracle

2013) Microsoft’s MSMQ, or IBM’s MQSeries. The PIM to PSM

transformation was conducted using OMG's QVT transformation

language. The final step is to transform a PSM to code. The

complex step is the one in which a PIM is transformed to a PSM.

The Apache Active MQ implementation of JMS is chosen as the

execution environment for the resulting software system.

Summary

The research methodology used was the case study

methodology. The case study approach facilitate the exploring

and examining of the case under the study. Moreover provides

a way to conduct a detailed solution to the issues raised while

learning about new or poorly understood situations.

The models and meta-models are developed using UML 2

specifications in an environment called Magic Draw. The

Eclipse Modeling Framework (EMF) provides a modeling and

code generation framework.

The tools for developing and executing transformations are

based on the Eclipse M2M project. This implementation is not

completely finished and contains some bugs. In addition, the

available documentation and tutorials about QVT are a bit

limited ,not always clear or as practical as could be. Because

of these limitations it can be difficult to make an optimal

transformation, however the environment is certainly suitable

to model easy to average transformations. It is very likely the

75

environment will be able to manage more complex

transformations in the near future, because it has a high

potential.

Two case studies were conducted and research publications

on initial results and issues were reported to the research

community in (Rihab Eltayeb Ahmed 2012) and (Ahmed et al.

2013)

Case Study: Financial System Services

Overview

This chapter introduces the first case study of a financial system that is

used to develop an application using MDA paradigm. The system is

taken as an attempt to develop an entire application to illustrate the

MDA approach. The PIM and the PSM are developed as UML2 classes

model, with the dynamics developed using UML2 state machine. The

76

observations and issues raised by the case study are identified and

discussed.

Models of the System

In this case study we begin by the design of an object oriented

automated teller machine (ATM) software system for a major bank. The

requirement document of the system determines what functionality the

system must include. For simplification and scope we are not going

through the details of the document rather we limit our design to the

basic financial transactions each ATM is capable of. Each user can have

one account at the bank. ATM users can view account balance,

withdraw , deposit and transfer money between accounts and more.

Financial System PIM

The UML class diagram in Figure 4 Financial Services PIM Class Model

shows the implementation classes for the financial service system at

the PIM level with default values for class attributes. It shows the

internal structure of the system with the essential details at this stage.

From a structural point of view, there is: a customer (BankCustomer

class) with a specific bank account (BankAccount) and who is a

holder of an ATM card (ATMCard class). With the ATM card the

customer can benefit from various services such as getting the

remaining balance, withdraw some amount of money, transfer fund

between accounts, buy mobile credit and prepaid electricity. These

services are concrete subclasses of the abstract (Service Class).

77

Figure 4 Financial Services PIM Class Model

LinkProvision is the provider of the service which a customer can

request. Its behavior is specified by a state machine diagram.

LinkProvision is Idle by default as indicated by the linkState attribute in

the class diagram. To put LinkProvision in the proper state to serve the

customer, a customer will demand a service by setting its own

attribute isFundingNeeded to true. That is going to set the

isFundingNeeded guard to true, hence triggering the transitions of

LinkProvision from “Idle” to “validateUser” state as in Figure 4 State

Machine Behavior Diagram of PIM LinkProvision Class.

78

Figure 4 State Machine Behavior Diagram of PIM LinkProvision
Class

A Customer is the initiator of the service he demands. The

LinkProvision is the provider for the service by which the Customer is

got served. The Customer has the state “Requesting” as in Figure 4

 BankCustomer States that upon entry will call the requestService

operation of the Customer. The behavior of the requestService

operation is specified by an activity as in Figure 4 RequestService

Operation Behavior that in turn creates a BehaviorAction call to put the

LinkProvision in the proper state to serve the Customer. This Behavior

Action call will set the isFundingNeeded guard to true, hence

transitions the LinkProvision to “validateUser” state as in Figure 4

 State Machine Behavior Diagram of PIM LinkProvision Class. Upon

entry of the “validateUser” there is a call to refreshLink operation. The

implementation of the refreshLink is provided by the ATM in the PSM

models.

79

Figure 4 BankCustomer States

Figure 4 RequestService Operation Behavior

PIM Class Model Instances

The Object diagram in UML shows possible configurations of instances

of the class diagram. Similar to the class diagram it shows the static

view of the system but this static view is a snapshot of the system at a

particular moment. The class diagram is abstract while the object

diagram is more concrete because it is more close to the actual

behavior of the system.

UML specify that a Classifier can have zero or more

InstanceSpecification that describe its instances. These instances are

considered level zero instances. The diagram in Figure 4 Extract from

80

The UML Kernel Package below is the instances diagram from UML

superstructure specification v2.4.1.(OMG 2011b).

Figure 4 Extract from The UML Kernel Package

According to the specifications in Figure 4 Extract from The UML Kernel

Package, the object diagram in Figure 4 PIM Model Instances can show

an object's classifier (e.g. ATMCard class) and instance name (e.g.

card1), as well as attributes and other structural features using slots.

Each slot corresponds to a single attribute or feature, and may include

a value for that entity. For example the accountNo attribute with the

value 9999. Figure 4 PIM Model Instances instantiates the model

presented in the class diagram in Figure 4 Financial Services PIM Class

Model.

81

Figure 4 PIM Model Instances

PIM Behavior Model Instances

A state machine is a Behavior. Behavior is an abstract class that

inherits from the concrete class Class that also inherits from Classifier

from kernel package in UML superstructure (OMG 2011b). Hence a

state machine is a Classifier and can have instance specification to

represent it an object. A state is a concrete sub class of the abstract

super class Vertex. Each implementation of a vertex can have a name

because it inherits from the class NamedElement. Since a state is not

a Classifier neither one of its super classes then a state cannot have

instances (at level zero). A state named "Idle" is a level one (meta

model M1) instance of the State meta class and cannot be represented

in an object diagram. This can be considered a limitation because the

states are not represented in most of the tools editors that represent

the exported models. Using the Eclipse Modeling Framework, and when

trying to show the XMI file contents diagrammatically, all the states

were lost. The only thing that represented was the state machine itself.

82

Another important factor was that EMF is based on Ecore which is a

simplified representation of UML.

Amendments to the state diagram model in UML or Ecore can solve the

issue. A model element that has an instance specification with an

association to the State class can be a valid solution. A solution is

presented in (Eric Cariou n.d.), they extended the UML meta model for

the state machine and provided the OCL constraints on that as shown

in Figure 4 UML Meta-model Extension for State Machine Instance

Specification (Eric Cariou n.d.).

Figure 4 UML Meta-model Extension for State Machine Instance
Specification (Eric Cariou n.d.)

83

Financial System PSM

An ATM machine model is used as a PSM for the financial system. The

detailed class model can include two parts. The first is the ATM

hardware and how that is managed, and the second is the banking part

related to achieving the financial services. The ATM class in the PSM

class model is associated with a DeviceManager class through which

it manages the composed financial devices. Financial devices have in

common attributes and operations inherited from the base class

FinancialDevice. Classes such as CardReader, Display,

CashDispenser and ReceiptPrinter are sub classes of the

FinancialDevice super class, each of which is specialized in

facilitating part of the ATM job. This part is modeled in UML and can

further be implemented for example through the J/XFS Java eXtensions

for Financial Services for the JavaTM platform. J/XFS provides a set of

standard Java interfaces in support of the input/output peripheral

devices used in the finance industry such as Cash Dispenser, Recycler

and ATM Interface (Members 2004).

In the second part of the PSM class model shown in Figure 4 PSM Class

Model of an ATM with regard to the financial services, a session

(ATMUserSession) will be started for an inserted card (Card class)

inside the ATM machine. A session is associated with a bank (Bank

class) through a connection (BankConnection class) to provide a

channel for reflecting the user selections back to the bank account

(Account class). An account is associated with one or more

transactions (Transaction class) and a transaction can affect one or

more accounts.

84

85

Figure 4 PSM Class Model of an ATM

86

The specification mechanism used to specify the behavior of the ATM

class is the state machine in Figure 4 ATM State Machine Diagram.

When the guard cardInserted is true, the ATM state will change from

"Idle" to "verifying". According to the verification result, the ATM state

would change from "verifying" to either "servingCustomer",

"retainCard" or "Failed" state. The servingCustomer state is a composite

state that has sub states to describe its behavior shown in Figure 4

 Substate Machine Behavior of performingService Composite State.

Figure 4 ATM State Machine Diagram

Figure 4 Substate Machine Behavior of performingService
Composite State

Suggested Mapping Process

The mapping between PIM model and the PSM model have to be

identified in order to generate the application. Given the PIM class

model and the PIM instances model, the mapping expressed as

transformation rules is going to generate the PSM instances.

 Table 4. PIM to PSM Class Model Mapping represents the mapping

between class models from PIM to PSM.

Table 4. PIM to PSM Class Model Mapping

PIM PSM Using
BankCustome
r

ATMUserSessi
on

PIM BankCustomer -
PIN

ATMCard Card
BankAccount Account
LinkProvision ATM
- DeviceManag

er
PSM Specific

- CardReader PSM Specific
- Display PSM Specific
- CashDispense

r
PSM Specific

- ReceiptPrinter PSM Specific
- Bank PIM ATMCard-

bankName
- BankConnecti

on
PSM Specific

WithdrawSer
vice

- PIM Specific

Behavior Model Mapping

To map the behavior models we assume that the following rules are

known:

1) PIM Idle is equivalent to PSM Idle

2) PIM isFundingNeeded is equivalent to PSM cardInserted

3) PIM valid is equivalent to PSM authenticated

4) PIM succeeded is equivalent to PSM tranSSuccess

5) PIM invalid is equivalent to PSM tooManyInvalidPins

6) PIM failed is equivalent to PSM unreadableCard

We have two state models, A as in Figure 4 State Machine Behavior

Diagram of PIM LinkProvision Class and B as in Figure 4 ATM State

Machine Diagram. Model B belongs to the PSM, so is an

implementation of Model A, which belongs to the PIM.

Assume, as in the case study, that there are fewer states in model A

than in model B, and that every state in model B corresponds to

exactly one state in model A. This means that we can divide the states

in model B into groups, indexed by the state of model A they

correspond to. If a is a state of A, then the states of B corresponding to

a form an equivalence class. Let's call that B(a).

If given an a state of A, there is one state in B(a), then call that state b,

and the PIM/PSM mapping maps a into b. If given an a state of A, there

are several states in B(a), then map a to those states if possible. The

mapping is one state to many.

Assuming that every state of A corresponds to at least one state of B.

Otherwise, the orphan state of A cannot be implemented. This could

form part of an evaluation of the suitability of a PSM for implementing

a given PIM. What happens if there are states in B that don't

correspond to some state in A? Let's call them forbidden states.

Whether this is a problem would depend on whether the transitions

mapped from A ever take a state in B to the forbidden state.

The mapping process would begin by first mapping the transitions and

constrains (guards). Then construct the concrete mapping from the PIM

state model to the PSM state model according to the above framework.

We can entail the following using rule 1:

[idle]={ idle}

The PIM idle state will transition to validateUser when isFudingNeeded

is true and idle will transition to verifying in the PSM model. Using rule

2 validateUser can be mapped to verifying forming an equivalence

class as follows:

[validateUser]={ verifying }

using rule 3:

[handleTransaction]= {servingCustomer (composite state) }

using rule 5:

[handleErrors]={ retainCard}

using rule 6:

[handleFailure]={ failed}

using PIM state model the state handleFailure transitions without a

guard to finalize state, the same is true for the path from state failed

to releaseCard in the PSM. We can entail that finalize can be mapped

to releaseCard

[finalize]={ releaseCard}

Using 4: PIM.succeeded is equivalent to PSM.tranSuccess

We can propose to map the PSM Succeeded state as follows:

[handleTransaction]= { servingCustomer, succeeded}

The problem here is that the guard condition again=No is not explicitly

mapped to any guards from the PIM. Hence the Succeeded State can

also be considered as forbidden.

Figure 4 PSM Model Instances mapped Manually - Part of the
behavior for withdraw Service

The promise of turning the PIM into a working program

Apparently the state machine depicts the flow of control an object has.

In the context of the case study what we need is the application flow of

the PIM instances hence their behavior and how that is achieved

through PSM instances.

If we concentrate on the PSM instances which are mapped manually ,

especially the guards and operation calls, we get a sequence of calls

guarded by conditions.

We are going to render the state machine of PIM and PSM as following:

• A state is rendered as a comment with state name. example //**

Idle **//

• A guard condition is rendered as “Evaluate “+ guard specification

• A do action of a state is rendered as “Call ”+ the operation if the

action is a CallOperationAction type.

Table 4. Rendering of Behavior Instances

PIM instance Behavior PSM instance Behavior
//** Idle **//

Evaluate isFundingNeeded

If true //**Active**//

Call refreshLink(s:Service):boolean

Evaluate isSucceeded

If true //** succeeded **//

Evaluate isFailed

If true //**failed **//

//** Idle **//

Evaluate cardInserted

If true //** verifying **//

 call verifycard()

Evaluate too Many invalidPINs

If true //** retainCard**//

Evaluate unReadableCard

If true //** failed**//

//** releaseCard**// call

ejectCard()

Evaluate authenticated

If true //**ServingCustomer **//

PSM instance behavior Rendering

Options

PSM instance Behavior To Java

Code
Since the transformed state

machine is a program, it is better

to represent it visually as

• Activity Diagram

If (cardInserted)

 { verifycard(); return ;}

If(tooManyInvalidPINs)

 { retainCard(); return ;}

If (unReadableCard)

{ ejectCard(); return }

The result of the rendering is what we can call a high level algorithm,

in other words a high level program specified as model elements. The

goal is to verify that the state machine mapping can generate an

application (from PIM to PSM) that can further be transformed to code

(PSM to code), yet applying the MDA concepts.

Guards Representation and Interpretation

A state machine can change from one state configuration to another in

a response to an occurrence of an event through a transition. A

transition may be associated with at most one guard which is a

constraint that controls the firing of the transition. The guard is

evaluated when the event occurred, if The evaluation result is true ,the

transition is enabled or else disabled (O M G 2011)

UML as a modeling language defined some constraints to impose

restrictions on various models and model elements. A user defined

constraint (in our case a guard) is often expressed as a text string in

some language including natural language as the two figures Figure 4

 The Elements defined in the Constraints UML Package (O M G 2011)

and Figure 4 The Element defined in the Expressions UML Package (O

M G 2011) depict. As a result the syntax and interpretation of the

constraints are out of the UML scope and they are language and tool

dependent. If a formal (machine readable) language such as OCL is

used, then tools may be able to verify some aspects of the constraints.

OCL

is

usually but not necessarily used to constrain a model.

Another

aspect of

guards is that

they should not include expressions causing side effects (OMG 2011b) .

Being side effect free means that the state of the system will never

change because of an expression even though expressions are used to

specify such a state change (when true). Specifying constraints will not

change elements as well as relationship among elements in the model.

The same restrictions applies to an OCL expression. Whenever an OCL

expression is evaluated, it simply delivers a value.

Figure 4 The Elements defined in the Constraints UML
Package (O M G 2011)

Figure 4 The Element defined in the Expressions UML
Package (O M G 2011)

As a consequence of the semantic of constraints in the standard UML

and even OCL , modelers must firstly transform the constraints into

formal language if they want the constraints to have effects at run

time. Secondly a language is needed to evaluate the formal constraint

and provide an effect which is of a considerable value to the process

we are proposing (mapping method).

Observations and Issues

1. The PSM has more states than the PIM.

2. Some PSM states such as ServingCustomer state is a composite

state aka a state of states. The same process can be applied to

map this kind of states also.

3. The given PSM platform is capable of implementing the PIM

specification because every state or transition is mapped to at

least one state or transition which indicates that the PSM state

machine is indeed a superset of the PIM state machine.

4. A decisions has to be specified for the guard conditions that are

not mapped to the PIM ones.

5. A decision is needed for the forbidden states.

6. Mapping the constraints to each other involve relating the

attributes that are constrained. For example cardInserted is a

constraint with a guard condition that checks the boolean

property "cardInserted" in the PSM Card class. "fundingNeeded" is

a property of the class BankCustomer in the PIM which is also

constrained. BankCustomer is mapped to ATMUserSession in the

class model mapping . Each ATMUserSession is associated with a

user card of Card class. So the relation between the two

constrains, the PIM one and the PSM's involves the mapping of

PIM class model to the PSM class model first.

7. The PIM doesn't express explicitly that the successful completion

of a transaction would result in a print of a receipt describing the

transaction. The PIM and PSM state machines are structurally

different, the PSM had additional states and logic. By mapping

the constraints , the states and transitions ends up in the idle

state of the PIM state machine, while it continues to print and

release the card in the PSM. In this situation we are going to map

the additional PSM states to the PIM one in order to complete the

application logic.

Summary

Some issues were raised by attempting the development of an entire

small application using the MDA approach. A service in a financial

system is taken as a case study. The PIM and the PSM are developed as

UML2 classes model, with the dynamics developed using UML2 State

machine and Activity models.

One of the issues is the guards representation and interpretation. A

state machine can change from one state configuration to another in a

response to an occurrence of an event through a transition. A transition

may be associated with at most one guard which is a constraint that

controls the firing of the transition.

The guards in the PIM state machine are specified using the

terminology of the PIM Classes model, while the guards in the PSM

state machines are specified using the terminology of the

corresponding PSM Classes models. It is therefore necessary to map

the guard expressions from PIM terminology to PSM terminology, using

the mapping of the PIM Classes model to the PSM Classes models. The

possible mapping of state guards can be carried out by examining the

participating instances attributes. Involving instances in the mapping

as well as classes is another research issue.

A second problem is that the PIM and PSM state machines may be

structurally different. In order for a PSM to implement an application

specified in the PIM, its state machine must be a superset of the PIM

state machine, otherwise the application's specification cannot be met.

A related question is to be able to test whether a given platform is

capable of implementing a PIM specification, which involves testing

whether the PSM state machine is indeed a superset of the PIM state

machine. One way to use this information is to help select from a

number of potential platforms. Another way might be in a circumstance

where only a deficient platform is available. Mapping back from the

PSM state model to the PIM might help the designers alter the

specifications to make them implementable.

Case Study: News Application

Overview

A news software application is taken as an attempt to develop an

entire small application to illustrate the MDA approach. The PIM and

the PSM are developed as UML2 classes model, with the dynamics

developed using UML2 State machine.

The main idea is to model the structural and behavioral features of the

news system in a PIM and to model the common features of a

messaging system in a generic PSM. The generic messaging system

enables the news application to be implemented in more than one

platform such as Sun’s Java Messaging Service (JMS) (Oracle 2013),

Microsoft’s MSMQ, or IBM’s MQSeries,

Deriving code and implementation from models is one of the uses of

MDA and may be fully or partially automated. Automation enables

rapid response to changes, increases the efficency of software

development and decreses its cost. As Figure 5 Detailed mapping From

PIM to PSM and to Execution Environment depicts, the Apache Active

MQ implementation of JMS is chosen as the execution environment for

the resulting software system.

Figure 5 Detailed mapping From PIM to PSM and to Execution
Environment

Approaching the Problem

In order to generate the software application we tried two different

approaches. The first approach is by writing Java code programs that

reads in the meta models files and transform them. The second is by

writing QVT rules. The first approach is considered as a guidance

because of the tools limitations we had faced when trying the second

approach.

Major Steps: Part 1 using Java Programs for transformation

PIM

1. Model the News system PIM structures and behaviors
2. Generate Java classes for PIM

a. Generate PIM instances and serialize them into XMI using EMF
b. Writing a Java program for structures read from the model exported to EMF

frame work.
PSM(s)

1. Model the generic messaging platform PSM structures and behaviors
2. Generate Java classes for PSM
3. Generate PSM instances and serialize them into XMI using EMF

a. writing a Java program for structures read from the model exported to EMF
frame work.

b. Generate the simple program (send & receive) from the behaviors read from
the original Magic Draw file. The exported version of the model in step 3
above does not include the behaviors part.

Transformation
1. Transform the PIM instances to PSM instance to generate Java classes containing

both attributes (structure) and methods (behavior) for the system
2. Transform the resulted classes to JMS native classes .
3. Transfer The main program and all the generated classes to the Apache ActiveMQ

environment to be executed

Major Steps: Part 2 using QVT for transformation

PIM to PSM, PSM to JMS API

1. Model the News system PIM and the JMS PSM structures and behaviors using

Magic Draw 16.5

2. Export the models in Eclipse Modeling Framework EMF to generate Java classes

3. Programmatically generate PIM instances and serialize them into XMI using EMF

4. Write QVT mapping rules to transform the model elements from PIM to PSM

a. QVT mapping style for structures is UML level zero to UML level zero

instances. The transformation uses the PIM , PSM and PIM instances to

generate PSM class instances.

b. QVT mapping style for behaviors is UML level one to UML level one. The

mapping is done in more than one step and finally map the state machine

diagrams to SCXML document.

5. Export the result and write a Java program to start the execution.

6. Install and configure The Apache Commons inside the Apache ActiveMQ server.

7. Transfer The main program and all the generated classes to the Apache ActiveMQ

environment to be executed.

Models Of The System

News System Platform Independent Model

Figure 5 PIM Class Model for News System shows a simple class’s

model for the news system platform independent model. The classes

identified are NewsSender that sends the message using the method

writeData. The NewsReceiver class represents a receiver side that

receive the news through the readData method. The message that is

represented by the NewsMessage class. Each NewsMessage has a

content and a status. The DataLink class represents the link

established in order to send and receive the messages. It is used for

delivering the data.

The PIMClient is an active class. Active classes and hence active

objects initiate and control their own flow of behavior, while passive

classes store data and serve other classes. Rather than being invoked

or activated by other objects, active objects can operate standalone

and define their own thread of behavior. In UML, active classes are

rendered with a thicker border. The system is represented by the

PIMClient class that controls the other classes. It generates the

message, establish the link, call the NewsSender's writeData

method for sending news, call the NewsReceiver readData method

to receive news when available and display them.

Figure 5 PIM Class Model for News System

Messaging System Platform Specific Model

The Java Message Service JMS (Oracle 2013) provides a common way

for Java programs to create, send, receive and read an enterprise

messaging system’s messages. JMS is a set of interfaces and

associated semantics that define how a JMS client accesses the

facilities of an enterprise messaging product. Among JMS objectives is

to provide portable application across products within the same

messaging domain.

The basic building blocks of a JMS application are shown in Figure 5

 JMS API Programming Model (Oracle 2013). It consists of Administered

objects: Connection factories and destinations, Connections, Sessions,

Message producers, Message consumers and Messages. Figure 5 JMS

API Programming Model (Oracle 2013) shows how all these objects fit

together in a JMS client application.

Figure 5 JMS API Programming Model (Oracle 2013)

The PSM for the messaging system aims to provide a standardized

model to send and receive messages in a vendor-neutral manner. It

formally defined many concepts and artifacts from the world of

messaging:

Client - An application modeled to create, send and receive

messages.

Producer - A client application that sends messages

Consumer - A client application that receives messages.

Message - The most fundamental concept of PSM; sent and

received by clients.

ConnectionFactory - Clients use a connection factory to create

connections.

Destination - A generic object to which messages are addressed

and sent and from which messages are received.

The two styles of messaging that include point-to-point and

publish/subscribe are supported in the PSM. Accordingly there are two

types of producers, QueueSender and TopicPublisher. Two types of

destination, Queue and Topic. Two types of consumers,

QueueReceiver and TopicPublisher.

Figure 5 PSM Class Model for a Messaging System

Class Model Mapping

Table 5. PIM to PSM mappings represents the class model mapping

between the PIM and the PSM. The PIM instances are provided as an

ecore file.The QVT transformation and mapping rules are going to

manipulate these instaces to create the PSM instances.

Table 5. PIM to PSM mappings

PIM Classes PSM Classes
NewsSender Producer(QueueSender or

TopicPublisher)
NewsReceiver Consumer(QueueReceiver,

TopicSubscriber
NewsMessage Message
DataLink Connection
PIMClient Client
- Destination(Queue or Topic)
- ConnectionFactory
- Session
- Exceptions

Table 5. Simplified XMI File of PIM Instances

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:Data="http:///NewsPIMData.ecore"

xsi:schemaLocation="http:///NewsPIMData.ecore NewsPIMData.ecore">

 <Data:NewsSender senderId="S001" name="sender1" sentData="/6"/>

 <Data:NewsReceiver receiverId="R001" name="receiver1"

receivedData="/6"/>

 <Data:PIMClient postTo="TESTQUEUE" news="Hello"/>

 <Data:DataLink Id="DL001" status="OK"/>

 <Data:NewsMessage dataId="Msg1" content="Hello" status="generated"/>

 <Data:NewsMessage dataId="Msg2" content="The second msg"

status="generated"/>

 <Data:NewsMessage dataId="Msg3" content="The third msg"

status="generated" receiver="/1" sender="/0"/></xmi:XMI>

Table 5. Example of a Transforming Program in QVT

transformation trans(source : NewsPIMData, target : NewsPSMData) {

top relation senderToProducer {

varName, identity : String;

checkonly domain source s : NewsPIMData::NewsSender {

name = varName,

senderId = identity

};

enforce domain target p : NewsPSMData::Producer {

name = varName,

Id = identity

};

}

top relation receiverToConsumer {

rName, rId : String;

checkonly domain source rcvr : NewsPIMData::NewsReceiver {

name = rName,

receiverId = rId

};

enforce domain target con : NewsPSMData::Consumer {

name = rName,

Id = rId

};

}

top relation PIMClientToPSMClient {

to,n: String;

enforce domain source c:NewsPSMData::PIMClient {

 postTo=to,

 news=n

};

enforce domain target PSMC:NewsPSMData::Client {

url=to,

news=n

};

}

top relation DataLinkToConnection {

id,st: String;

enforce domain source d:NewsPSMData::DataLink {

 Id=id,

 status=st

};

enforce domain target c:NewsPSMData::Connection {

};

}

top relation NewsMessageToMessage {

dId,con,st: String;

enforce domain source d:NewsPSMData::NewsMessage {

 dataId=dId,

 content=con,

 status=st

};

enforce domain target c:NewsPSMData::Message {

content=con

};

}

 top relation createSession{

enforce domain target s:NewsPSMData::Session {

};

}

top relation createQueue{

enforce domain target q:NewsPSMData::Queue {

};

}

top relation createConnectionFactory{

enforce domain target cf:NewsPSMData::ConnectionFactory {

};

}

}

Table 5. Generated XMI File of PSM Instances-Simplified

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:NewsPSMData="http:///NewsPSMData.ecore"

xsi:schemaLocation="http:///NewsPSMData.ecore NewsPSMData.ecore">

 <NewsPSMData:Consumer Id="R001" name="receiver1"/>

 <NewsPSMData:Producer Id="S001" name="sender1"/>

 <NewsPSMData:Client url="TESTQUEUE" news="Hello"/>

 <NewsPSMData:Connection/>

 <NewsPSMData:Message content="The third msg"/>

 <NewsPSMData:Message content="The second msg"/>

 <NewsPSMData:Message content="Hello"/>

 <NewsPSMData:ConnectionFactory/>

 <NewsPSMData:Queue/>

 <NewsPSMData:Session/>

</xmi:XMI>

Behavioral Models Mapping

PIMClient and Client Classes

The PIMClient behavior is started and placed initially in the setup

state as shown in figure 3.The setupNotOK and setupOK are

constraints on the transitions going out of the setup state. The

constraints specification expressed in OCL 2.0 syntax [transition

names are not shown]. The constraints are checking the DataLink class

to find if the status attribute is 'ok' or 'notOK'. When the setupNotOK

constraint is true, the state behavior transitions to the

handleProblems state. After that it can either transition to do the

setup again or to exit.

Figure 5 PIM Client State Diagram

When the setupOK constraint is satisfied, the PIMClient can

transition to the next state. The transition took place either to the

prepareNews state or to the receiving state when a call to

readData method is specified. In the prepareNews state and when

the news are generated, their status is set to "Generated" which leads

to the firing of the next transition to sending state. The sending state

is going to do an action that calls the writeData method in the

Sender class in order to send the newly created news message. If

there are problems in sending which is indicated by the constraint

sendingProblems evaluated to true, the state handleProblems is

going to be visited. If the sending is to be repeated, the next transition

is going to be to the prepareNews state again. When sending is

finished, the behavior will end in the final state.

After the setup, the Client PSM class behavior can transition to the

receiving state by specifying a call to readData method of the

Receiver class. The receiving can be repeated, in which case

transitioning back to the receiving state itself. When receiving is

completed the transition ended in the final state.

Figure 5 PSM Client State Diagram

Behavioral Mapping of PIMClient to Client

Setup State

PIMClient behavior starts in the initial node and transitions to the

setup state. The PSM starts in the initial node and transitions to

initialize factory. Moreover the PSM continues to transition to other

states to manage the Connection, session and Queue. Referring to

the class model mapping, we find that the DataLink class is

equivalent to the Connection class. The Session ,

connectionFactory and Queue are PSM specific and they do not

correspond to any class in the PIM. The setup process according to the

PIM means creating the DataLink class and ensuring that its status is

'ok' to proceed. On the other hand the preparation in the PSM include

preparing the ConnectionFactory to establish the connection, assign a

session for the user and registering in a queue. The PSM Connection

class is created and started but its status is not checked explicitly -

using an associated attribute or a method- but is checked internally by

raising exceptions when an error in starting or stopping the connection

occur. The same applies to the Session , connectionFactory and

Queue classes. So the transitions between the states to manage these

classes are not guarded.

we can entail that:

Setup={initialize factory, manage Connection, manage session,

register in queue}

The decision here is to create a new composite state with a new

region and add the states to it as the transformation result.

Table 5. Setup State Transformation

Name Type Equivalence

Class (PSM)

Transformation

Decision

Setup Single State to

more than one

state

={initialize

factory, manage

Connection,

manage session,

register in

queue}

Create a new

composite state

with name=Setup,

Create a new region

with

name=SetupRegion

and add to it the Reason/Justific PIMClient is -

ation initially in the

setup state, Client

PSM class is

initially

transitioned

between several

states.

equivalence class

states as sub states

Transitions - - -

Guards setupOk No equivalent Environment

internal check is

carried out using

exception

mechanism.

Actions - - -

Table 5. HandleProblems State Transformation

Name Type Equivalence Class
(PSM)

Transformation
Decision

Handle
Problems

Orphan state ={ } Ignore the orphan
state

Reason/Justifica
tion

- Handling problems
is implicitly done
through raising
exceptions when
an error occurred.

Transitions To setup and to
End

Guards setupNotOK ={ } Ignore the guard

Actions - -

The PIM specify that if problems occur in the setup process then the

application will transition to the handleProblems state. The PSM

mechanism in dealing with problems/failures or abnormal conditions is

by raising/throwing exceptions. An exception is an event that occurs

during the execution of a program that disrupts the normal flow of

control. Exceptions are represented by classes such as

MessageFormatException, InvalidDestinationException and

MessageNotWritableException. Exceptions can be caught by handlers.

Uncaught exceptions may be handled by the environment and can

cause the termination of the thread of control. Handling the

exceptions according to the PSM is carried out by the rules and not by

an explicit state. The decision for the handleProblems PIM state is

simply not transforming it to a state in the PSM because its

functionality is implemented in another way in the PSM.

Table 5. Receiving State Transformation

Name Type Equivalence Class
(PSM)

Transformation
Decision

Receiving Single State
to part of a
composite
state

={manage
receive:: receiving,
manage receive::
showMessage }

Map the single
state to the
composite state

Reason/Justifica
tion

receive PSM
state
transitions to
showMessage
without a

-

condition

Transitions To self ={nextMsg?} Map the
transition

Guards Receiving
problem

={Fails to receive} Map the guard

Finish Transition without a
guard to the end

Map the
transition

Actions Call to
readData
method

Receiving method
in Consumer class.

Map the calls

- doShowAct Create the
action

One of the capabilities of the PSM is message receiving. The PIM

Receiving single state is equivalent to receiving PSM state which is a

sub state in a composite state aka manageReceiving. Consumption

of news messages in the PIM is not specified. In the PIM the message

reception is followed by showing the message. The decision is to map

the single state to the composite state that contains more functionality

than specified in the PIM.

Table 5. HandleReceivingProblems State Transformation

Name Type Equivalence Class
(PSM)

Transform
ation
Decision

HandleReceivingP
roblems

Single state to a
part of a
composite state
(manageReceivin

={handleReceiving
Failures}

Map the
single
state to
the

g) composite
state as
done with
the
Receivin
g state

Reason/Justificati
on

Transitions To self To composite state
self

Map the
transition

To end ={To composite
state exit, To end}

Map the
transition

Transition from
HandleReceivingP
roblems back to
the Receiving
state

No equivalent, but
the PSM has
mechanisms to
retry the message
reception.

Guards Receiving
problem

={Fails to receive} Map the
guard

Finish Transition without
a guard to the end

Map the
transition

Actions Call to readData
method

Receiving method
in Consumer class.

Map the
calls

 HandleReceivingProblems is mapped to handleReceivingFailures

in the PSM forming an equivalence class together with the receiving

and showMessage PSM state. The application logic specified in the

PIM is to receive a message, if problems in receiving occur then handle

the situation and go back to receive again. The PSM does not go back

to receive again, because there is no transition going back to the

receiving state from HandleReceivingFailures. The PSM Consumer

class provide overloaded receive methods, one of them has a timeout

period as a parameter and can wait for the message to arrive. The

default receive operation blocks indefinitely until a message is

produced or until the message consumer is closed. The decision

regarding the call action to the readData method is to map it to the

receive method. This way the message reception will be tried until the

message arrived or an error occurred.

Table 5. Forbidden State Transformation

Name Type Equivalence Class
(PSM)

Transformat
ion Decision

- forbidden state ={ cleanUp} Create the
PSM state

Reason/Justificatio
n

The PIM
transitions to
the end when
finished. The
PSM cleans up
the resources
such as the
connection
object before
ending.

The logic in
PSM
completes
by closing
resources.

Transitions To end To end Map the
transition

Guards - ={ }

Actions - -

The PSM ensures the proper initialization of classes instances such as

the Connection and Session through manageConnection and

manageSession states. Class instances use computing resources that

are finite therefore it is reasonable to free and release the resources

when they are no longer needed. The PSM specify a cleanup state in

order to close the opened connection, close the session and so on. In

the other hand , the PIM doesn't specify such details. The decision is to

create the cleanUp state in the resulting instances, because its

functionality is recommended in the PSM in order to create applications

that conforms to the best practices.

Table 5. PrepareNews State Transformation

Name Type Equivalence

Class (PSM)

Transformatio

n Decision

prepareNews Single state to

single state

={ prepareMe

ssages }

Map the

states

Reason/Justificati

on

Transitions

Guards Invariant Context

Message

-Self.getStatus='gen

erated'

={ } Ignore , PSM

messages

lacks a status

property that

is to be

checked.

Actions - doPrepareMsg

Act

Create the

action

The state PrepareNews is equivalent to the state PrepareMessages.

The mapping is one to one. In the class model the News Class is

mapped to the PSM Message class. The News class contains an

attribute status that reflects the status of the message whether

generated, sent or notReceived. On the other hand the Message class

has no such attribute. Moreover the sending/receiving of a message is

setting/getting attributes related to the queue, session, connection,

News producers and consumers. The decision here is to keep the

default behavior of the PSM regarding the message status from

sending till receiving. The default behavior include default values for

various attributes in other objects used to send/receive the message.

Table 5. Sending State Transformation

Name Type Equivalence
Class (PSM)

Transformati
on Decision

Sending Single state to
single state

={send } Map the
state

Reason/Justificatio
n

Transitions

Guards Done ={ finished} Map the
guard

SendingProblem ={runtimeError,
invalidMsg,
invalidDestinatio
n}

Map the
guards

- ={again?} create the
guard

Actions sendAct sendOperation Map the
actions

-

The sending state is mapped to the send PSM state. The sending of

the news fits exactly what specified in the PSM. The related actions,

method calls and transitions are equivalent to the PSM ones. The guard

sendingProblems is equivalent to more than one guard in the PSM. The

PSM specify detailed and specific situations of problems/failures that

can occur. The PSM guards trigger the creation of instances of

exceptions. Exceptions is the mechanism that the PSM raise/handle

various types of problems. In the PSM class model various types of

exceptions are included while there is no equivalent classes in the PIM.

The mapping of the guards between the PIM and the PSM assure that

the decision to map the exceptions classes was a right decision

although no equivalent classes are in the PIM.

Table 5. HandleSndingProblems State Transformation

Name Type Equivalence Class
(PSM)

Transformati
on Decision

HandleSendingProbl
ems

={handleSendingFai
lures }

Map the
states

Reason/Justification

Transitions To end ={To exitSending,
To end}

Map the
guard

 to sending ={} Ignore

state

Guards - -

Actions - -

HandleSendingProblems is mapped to handleSendingFailures in

the PSM forming an equivalence class together with the send PSM

state. The application logic specified in the PIM is to send a message, if

problems in sending occur then handle the situation and go back to

send again. The PSM does not go back to send again, because there is

no transition going back to the send state from

handleSendingFailures. The PSM Producer class provide overloaded

send methods, some of them has a timeToLive as a parameter that

specify the length of time in milliseconds from its dispatch time that a

produced message should be retained by the message system. The

default send operation sends a message using the Producer's default

delivery mode, priority, and time to live. The decision regarding the call

action to the sendData method is to map it to the send method. This

way the message retained till consumed or an error occurred.

Mapping of Other Types

Initial node , Final node, Fork node , Merge node with decision node , are mapped to the

equivalent.

Figure 5 The mapping result of the PIM (in rectangles) to The
PSM

The NewsSender and Producer Classes

The NewsSender class is responsible for sending messages. As

depicted in Figure 5 PIM NewsSender State Diagram it is initially

waiting for its clients as indicated by the waiting state. The clients

request sending a message by calling the method writeData in the

NewsSender class that triggers the change of the NewsSender state

to the sending state. After writing the data, the NewsSender can go

back to the waiting state when the wait constraint is true. When

sending is not successful, the problem is raised so as to let the caller-

the Client- handle the situation properly. The NewsSender ends its

behavior when the Finished constraint is true.

Figure 5 PIM NewsSender State Diagram

Figure 5 PSM Producer State Diagram

Behavioral Mapping of NewSender and Producer

Table 5. Waiting State Transformation

Name Type Equivalence
Class (PSM)

Transformati
on Decision

Waiting Single state to
single state

={ ready} Map the
states

Reason/Justification The producer is
initially put on
ready state
without
conditions

Transitions

Guards senderLinkOk ={ } Ignore the
guard

Call to
writeData

={callToSend} Map the calls

Waiting ={msgSent} Map the
guard

Actions

Table 5. Sending State Transformation

Name Type Equivalence Class
(PSM)

Transformati
on Decision

Sending Single state
to single state

={send } Map the
states

Reason/Justification

Transitions

Guards NotSent ={failToSend,
invalidMsgFormat,
invalidDestination
}

Map the
guards

- ={close} Map the
guard

Actions

Table 5. declareSendingProblems State Transformation

Name Type Equivalence
Class (PSM)

Transformati
on Decision

declareSendingProble
ms

Single state
to single
state

={ raiseExceptio
ns}

Map the
states

Reason/Justification

Transitions - -

Guards - -

Actions - -

Table 5. Forbidden State Transformation

Name Type Equivalence
Class (PSM)

Transformatio
n Decision

- forbidden state ={ close} Create the
PSM state

Reason/Justification The PIM
transitions to
the end when
finished. The
PSM closes the
resources used
before ending.

The logic in
PSM
completes by
closing
resources.

Transitions To end To end Map the
transition

Guards - -

Actions - -

The mapping process resulted in a state machine equivalent to the

PSM state machine with no further changes to it.

The NewsReceiver and Consumer Classes

The NewsReceiver class shown in Figure 5 PIM NewsReceiver State

Diagram below behaves similarly to the NewsSender class. It is

responsible for receiving messages. It is initially placed in the waiting

state ready to serve its clients. The clients request receiving a

message by calling the method readData that triggers the change of

the Receiver state into the receiving state. After writing the data, the

NewsReceiver can go back to the waiting state when the wait

constraint is true. When receiving is not successful, the problem is

raised so as to let the caller- the Client- handle the situation as

required. The NewsReceiver ends its behavior when the Finished

constraint is true.

Figure 5 PIM NewsReceiver State Diagram

Figure 5 PSM Consumer State Diagram

Behavioral Mapping of NewsReceiver and Consumer

Table 5. Waiting State Transformation

Name Type Equivalence
Class (PSM)

Transformati
on Decision

Waiting Single state to
single state

={ ready} Map the
states

Reason/Justification The Receiver is
initially put on
ready state
without
conditions

Transitions - -

Guards Call to ={callToReceive} Map the call

readData

Waiting ={msgReceived} Map the
guard

Actions - -

Table 5. Receiving State Transformation

Name Type Equivalence
Class (PSM)

Transformatio
n Decision

Receiving Single state to
single state

={receive } Map the
states

Reason/Justification

Transitions To receiving ={} ignore

Guards NotReceived ={ timeout,
receiveFailed }

Map the
guards

Finished ={close} Map the
guard

Actions - -

Table 5. declareReceivingProblems State Transformation

Name Type Equivalence

Class (PSM)

Transformati

on Decision

declareReceivingProbl

ems

Single state

to single

state

={ raiseExceptio

ns}

Map the

states

Reason/Justification

Transitions - -

Guards - -

Actions - -

Table 5. Forbidden State Transformation

Name Type Equivalence
Class (PSM)

Transformatio
n Decision

- forbidden state ={ close} Map the
states

Reason/Justification The PIM
transitions to
the end when
finished. The
PSM closes the
resources used
before ending.

Transitions To end To end Map the
transition

Guards - ={failToClose} Map the

guard

Actions - -

The mapping process resulted in a state machine equivalent to the

PSM state machine with further changes applied to it.

Summary

Model transformation is a young field and there are several competing,

yet partly overlapping definitions of the terms. (Tratt 2005) defines

model transformation very widely as ”a program that mutates one

model into another”. The Object Management Group (OMG) defines

model transformation in the context of the model-driven architecture

(MDA) as ”the process of converting a model into another model of the

same system” in the first MDA guide (OMG 2003). The second revision

of MDA (OMG 2014a) extends this definition by also allowing several

models as input or output and define model transformation as ”

Transformation deals with producing different models, viewpoints, or

artifacts from a model based on a transformation pattern. In general,

transformation can be used to produce one representation from

another, or to cross levels of abstraction or architectural layers”.

The proposed mapping process would begin by first mapping the class

models that map the classes and their attributes. According to the

class mapping , the behavior of the mapped classes would be mapped

also. Behavior mappings begin with mapping of transitions and

constrains (guards). Then construct the concrete mapping from the PIM

state model to the PSM state model according to the following

framework.

We have two state models, A and B. Model B belongs to the PSM, so is

an implementation of Model A, which belongs to the PIM. Model A will

describe the application states and model B describe technically how

to use the available services provided in order to achieve some

functionality. An example of model A is the behaviour model developed

for the financial system application in Figure 4 State Machine Behavior

Diagram of PIM LinkProvision Class and the other one developed for the news

application Figure 5 PIM Client State Diagram. Examples for Model B are

Figure 4 ATM State Machine Diagram and Figure 5 PSM Client State Diagram.

Assume, as in the case studies, that there are fewer states in model A

than in model B, and that every state in model B corresponds to

exactly one state in model A. This means that we can divide the states

in model B into groups, indexed by the state of model A they

correspond to. If a is a state of A, then the states of B corresponding to

a form an equivalence class. Let's call that B(a).

Model transformations of behavior models represented as UML state

machine in this research can be classified into five categories:

1. Single State to Single State Transformation

If given an a state of A, there is one state in B(a), then call that state b, and the

PIM/PSM mapping maps a into b.

2. Single State to More Than One State Transformation

If given an a state of A, there are several states in B(a), then map

a to those states if possible. The mapping is one state to

many.

3. Single State to part of a composite state Transformation

4. Orphan State Transformation

Assuming that every state of A corresponds to at least one state of B. Otherwise, the

orphan state of A cannot be implemented. This could form part of an evaluation of

the suitability of a PSM for implementing a given PIM.

5. Forbidden State Transformation

What happens if there are states in B that don't correspond to

some state in A? Let's call them forbidden states. Whether this

is a problem would depend on whether the transitions mapped

from A ever take a state in B to the forbidden state.

Table 5. Issues and Behavioral Mapping Decisions summarized

Type (state/transition) Mapping

Single state to single state Direct mapping

Single state to multiple

states

Create a new composite state with

name=the PIM single state name,

Create a new region with name=PIM

state name+"Region" and add to the

newly created composite state the PSM

equivalence class states as sub states

Orphan State Ignored, in the case study, this type of

states are handled implicitly by the

PSM , so ignoring them is not going to

create problems in the application logic.

Forbidden State This type of states are important to

complete the PSM logic, they are

created in the resulting model.

Single transition to single

transition

Direct mapping

Single transition to multiple

transitions

Map the transitions (create the PSM

transitions) and check the target states

of each transition for equivalence with

PIM.

Orphan transition Ignored

Forbidden transition Created in the resulting model

 the same process was done to the guards, actions, Initial node , Final

node, Fork node , Merge node with decision node , are mapped to the

equivalent.

Models To Text and The Application Execution

Overview

The mapping of PIM behavior model- state Machine - to the PSM

behavior model yield a behavior model expressed as PSM constructs

(state machine). The generated state machine models are highly

reusable since they are expressed in UML. The models then can be

transformed into other forms to enable complementing the class model

and provide the big picture as a complete application with class and

behavior instances both available to be executed.

Figure 6 Models to Text Translation

In the following sections we are going to discuss different possibilities

of mapping the PSM Behavior model instances into more usable

constructs. The main objective is to find various ways to make a

forward step towards application execution.

Possible Option 1 : Generic Mapping to prove concepts

Apparently the state machine depicts the flow of control an object has.

In the context of the case study what we need is the application flow of

the PIM instances hence their behavior and how that is achieved

through PSM instances.

If we concentrate on the PSM instances which are mapped manually ,

especially the guards and operation calls, we get a sequence of calls

guarded by conditions.

Proposed Rendering

We are going to render the state machine instances of the PIM

NewsSender and the PSM Producer classes that depicted in Figure 5

 PIM NewsSender State Diagram and Figure 5 PSM Producer State

Diagram respectably as following:

• A state is rendered as a comment with state name. example //** Idle **//

• A transition with a guard condition is rendered as “Evaluate “+ guard specification

• A none guarded transition is rendered as " and"+ target state name

• A do action of a state is rendered as “Call ”+ the operation if the action is a

CallOperationAction type.

PIM instance Behavior PSM instance Behavior

Evaluate senderLinkOK

If true //**waiting**//

Evaluate

writeData(data:NewsMessage)

If true //** sending **//

Evaluate finished

If true //** final **//

Evaluate NotSent

If true //**declareSendingProblems

**//

Evaluate wait

If true //** waiting **//

//** ready **//

Evaluate callToSend

If true //** send **//

 Evaluate close

If true //** close**// and

//**final**//

Evaluate failToSend

If true //** raiseException**//

Evaluate invalidMsgFormat

If true //** raiseException **//

Evaluate invalidDestination

If true //** raiseException **//

Evaluate failToClose

If true //** raiseException **//

The result of the rendering is what we can call a high level algorithm,

in other words a high level program specified as model elements.

Possible Option 2 : Mapping of UML State Machine to SCXML

State Chart extensible Markup Language: State Machine Notation for

Control Abstraction (SCXML) is a standard developed by the World

Wide Web Consortiums (W3C) with the objective of generifying the

state diagrams notations used in XML contexts. According to the

working draft dated May 2014 (W3C n.d.), SCXML combines the

concepts of the Call Control XML (CCXML) standard and Harel State

Tables (Harel 1987). CCXML is an event based state machine language

that supports the call control features in voice application. Harel State

Tables are state machine notation that is included in UML and provide

several extensions to the basic notions of the CCXML state machine.

UML state machine diagram is an object-based variant of Harel state

chart tables.

SCXML= CCXML enhanced with Harel State Tables

SCXML=State machine + event handling syntax + standard call

controls

SCXML provide core constructs to represent state machine concepts

such as state, transition, parallel, history and other constructs. It also

provide executable constructs such as if, elseif, foreach and log. Beside

that it offers the capability of manipulating the state internal data as

elements and initial values in an abstract representation that can be

realized by various languages. SCXML also provide a way to

communicate with external entities through events.

The Apache Foundation supports the SCXML specification by providing

a working implementation, a set of APIs and an engine that can

execute a SCXML state machine described as a document. The Apache

Commons SCXML 2.0 (Apache n.d.) is the Java SCXML engine aligned

and compliant with the latest SCXML specifications.

Since the concepts and terminology used in SCXML and UML state

machine are both based on the Harel state charts table , a mapping

process is feasible between them. This implies that the SCXML

development tools, class library and runtime implementation of the

Apache Common SCXML can be used to create a platform model and

also provide an execution environment for the behavior of an end to

end application. The reason here is to provide constructs that can be

executed since the UML state charts are not.

Figure 6 Detailed mapping From PSM to Execution

Apache ActiveMQ

In the JMS API architecture, a JMS Provider is a messaging system that

implements the JMS interfaces and provides administrative and control

features. Apache ActiveMQ is an open source, Java Message Service

(JMS) 1.1–compliant, message oriented middleware (MOM) from the

Apache Software Foundation (Apache 2015). ActiveMQ implements the

JMS specification and offers additional features and value on top of this

specification. The goal of ActiveMQ is to provide standards-based,

message-oriented application integration across as many languages

and platforms as possible.

Apache ActiveMQ in this case study is used as the execution

environment where the JMS clients respectively the producer and

consumer PSM instances are running and the administered objects are

configured. The behavior instances can be executed in the Apache

ActiveMQ environment by configuring the Apache Commons SCXML

inside it to run the behavior models along with the class models.

UML, SCXML and the Apache Commons SCXML

A comparison of UML, W3C SCXML and the Apache Common SCXML

was carried out. The differences existed because of the continuous

improvements to the SCXML specification and its Apache

implementation. The latest release of the Apache Commons SCXML is

0.9. Subsequent changes to the SCXML Draft may necessitate changes

to portions of the Commons SCXML library API but the core APIs

(SCXMLParser, SCXML Executor etc.) are stable (W3C n.d.).

Table 6.Comparing some elements of UML, W3C SCXML and the
Apache Common SCXML

UML State machine
Constructs (OMG
2011c)

SCXML
CONSTRUCTS

(W3C n.d.)

Apache Commons SCXML
API

(Apache n.d.)

State Machine Document
<scxml > tag

org.apache.commons.scxml2.env.Abs
tractStateMachine

region - -

Simple state <state> org.apache.commons.scxml2.model.S
tate

Initial Pseudostate <initial> org.apache.commons.scxml2.model.I
nitial

FinalState <final> org.apache.commons.scxml2.model.F
inal

History State <history> org.apache.commons.scxml2.model.
History

composite state A compound
state is a <state>
that has <state>,
<parallel>, or
<final> children
(or a combination
of these).]

-

Orthogonal State -

submachine state -

Transition <transition> org.apache.commons.scxml2.model.T
ransition

Guard /Constraint Cond attribute of
<transition>

String cond

Property that specifies the trigger(s)
for this transition class

Event /Trigger event attribute of
<transition>

String event

Property that specifies the trigger(s)
for this transition class

fork and join is a short
heavy bar

<parallel> org.apache.commons.scxml2.model.P
arallel

entry: Behavior[0..1] <onentry> org.apache.commons.scxml2.model.
OnEntry

doActivity:
Behavior[0..1]

<invoke> org.apache.commons.scxml2.model.I
nvoke

exit: Behavior[0..1] <onexit> org.apache.commons.scxml2.model.
OnExit

 <raise> org.apache.commons.scxml2.model.
Raise

choice pseudostate

diamond-shaped
symbol

<if> org.apache.commons.scxml2.model.If

<elseif> org.apache.commons.scxml2.model.E
lseIf

<else> org.apache.commons.scxml2.model.E
lse

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

Transforming UML State Machine to SCXML

The UML class diagram and state machine diagrams were imported

from the Magic Draw environment as an XML document. The XML

document is very large so we present here the equivalent SCXML

document for the diagram in Figure 5 PSM Producer State Diagram.

Figure 6 SCXML Document for the Producer State Machine Diagram
in Figure 5 PSM Producer State Diagram

Suggested Algorithm to transform State machines to SCXML

Document

Input:
XML file representing the UML state diagram

Output:
XML file representing the SCXML document

Steps:
1. Read and parse the input file

2. Get the owned behavior id from the behaviored class (producer,
sender ,...)

3. Start with the element <ownedBehavior xmi:type="uml:StateMachine"

a. map to <scxml> with name=name

b. map the first state name to the scxml initial attribute

4. Process the children of the <ownedBehavior>

a. if the element is a <region>

i. map it to an upper level state with id= region name

ii. if the region is the first one map its name as in step
3, b part.

b. if the element is a <Pseudostate> map it to <initial> with
id= Pseudostate name

c. if the element is a <subvertex xmi:type='uml:FinalState' >
map it to <final> with id= Final state name

d. if the element is a <subvertex xmi:type='uml:State' >

i. map it to <state> with id= state name

ii. Find the nested state actions and map them.

iii. Find the state transitions and map them. Match the
transition source=state id

e. if the element is a <transition>

i. map it to a <transition> with the target= UML
transition target state name

ii. find the target state name by matching using the
specified id

iii. find transition triggers <trigger
xmi:type='uml:Trigger'

1. map to event attribute with name = the UML
trigger event name

2. Search for an element matched by id to find
event name

f. if the element is <entry>

i. map it to <onentry>

ii. map the specification

1. as a script inside the <onentry>, or code in a
programming language of choice.

2. if it is a method call try to locate the class
operation name and parameters

Concrete Mapping Examples

UML tags are represented in the first line and the equivalent SCXML tag

after it.

1. UML <OwnedBehavior> to SCXML <SCXML>

Each State machine diagram is mapped to an SCXML document with

the root being the state machine.

 <ownedBehavior xmi:type="uml:StateMachine"

id="_16_5_1_b8d02e4_1391972952867_520512_1044" name="ProducerPSMStates"

visibility="public">

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml" xmlns:my="http://my.custom-

actions.domain/PRODUCER" name="ProducerPSMStates" initial="region1">

2. UML <region> to SCML <state>

Since there is no equivalent for a region in SCXML, it is mapped into a composite state
that contains all the remaining states inside it.

 <region xmi:type='uml:Region' xmi:id='_16_5_1_b8d02e4_1408362414529_426609_465'

name='region1' visibility='public'>

<state id="region1">

3. UML <PseudoState> to SCXML <initial>

In UML an initial pseudostate represents a default vertex. It is mapped to the initial
state in the SCML document structure.

<subvertex xmi:type='uml:Pseudostate'

xmi:id='_16_5_1_b8d02e4_1408362443489_943063_484' name='begin' visibility='public'/>

<initial id="begin">

4. UML <state> to SCXML <state>

<subvertex xmi:type='uml:State' xmi:id='_16_5_1_b8d02e4_1408362443490_654880_488'

name='close' visibility='public'/>

<state id="close">

5. UML < transition> to SCXML <transition>

<transition xmi:type='uml:Transition' xmi:id='_16_5_1_b8d02e4_1408364127870_470179_638'

name='T1' visibility='public' source='_16_5_1_b8d02e4_1408362443489_943063_484'

target='_16_5_1_b8d02e4_1408362443490_261204_487'> </transition>

<transition target="ready" />

6. UML transition with trigger sub element to SCXML transition with
an event attribute

<transition xmi:type='uml:Transition' xmi:id='_16_5_1_b8d02e4_1408364164846_157322_642'
name='T2' visibility='public' source='_16_5_1_b8d02e4_1408362443490_261204_487'
target='_16_5_1_b8d02e4_1408362443489_615661_485'>

<trigger xmi:type='uml:Trigger' xmi:id='_16_5_1_b8d02e4_1408364175183_723161_643'
name='SendTrigger' visibility='public' event='_16_5_1_b8d02e4_1408364213530_593838_644'/>

</transition>

<packagedElement xmi:type='uml:SignalEvent'
xmi:id='_16_5_1_b8d02e4_1408364213530_593838_644' name='callSendEvent' visibility='public'/>

<transition id="_16_5_1_b8d02e4_1392133664229_112965_1035" target="sending"

event="callSendEvent"/>

7. UML state with entry action to SCXML <onentry>

<subvertex xmi:type='uml:State' xmi:id='_16_5_1_b8d02e4_1408362443489_615661_485'
name='sending' visibility='public'>

<entry xmi:type='uml:Activity' xmi:id='_16_5_1_b8d02e4_1408365151206_870767_804'
name='sendActivity' visibility='public'>

<node xmi:type='uml:CallOperationAction'
xmi:id='_16_5_1_b8d02e4_1408365265134_660380_808' name='callSendOpAction' visibility='public'
operation='_16_5_1_b8d02e4_1408364861740_896861_711'>

<argument xmi:type='uml:InputPin'
xmi:id='_16_5_1_b8d02e4_1408365301521_636072_809' name='destination' visibility='public'>

<xmi:Extension extender='MagicDraw UML 16.5'> <modelExtension
parameter='_16_5_1_b8d02e4_1408364861754_523511_734'/>

</xmi:Extension></argument>
<argument xmi:type='uml:InputPin'

xmi:id='_16_5_1_b8d02e4_1408365301522_117517_810' name='message' visibility='public'>
<xmi:Extension extender='MagicDraw UML 16.5'>
<modelExtension parameter='_16_5_1_b8d02e4_1408364861755_761884_735'/>
</xmi:Extension></argument>

</node>
</entry>

</subvertex>

<state id="sending">
<onentry>

 <my:producer passing="Producer.send(destination,message)" />
</onentry>

 Java Code to run the state machine

The UML class diagram contains the system classes. Referring to the

mapping process , the classes were imported the Eclipse Modeling

Framework EMF to generate Java classes. To add the behavioral

features to a class, the Apache Commons SCXML Java API is used. A

program is written in Java language in which the method

startStateMachine() loads the SCXML file presented in Figure 6 SCXML

Document for the Producer State Machine Diagram in . The method also

inspects the current state which the object is in, logs the state name

and responds accordingly.

public void startStateMachine() throws Exception
{
 // Read the SCXML document
 SCXML scxml = null;
 ErrorHandler errHandler = null;

//url is the SCXML document path
 scxml = SCXMLParser.parse(url, errHandler);//,

customActions);
 SCXMLExecutor exec = null;

 exec = new SCXMLExecutor ();
 JexlEvaluator ev= new JexlEvaluator() ;
 exec.setEvaluator(ev);
 exec.setEventdispatcher(new SimpleDispatcher());
 SimpleErrorReporter er= new SimpleErrorReporter();
 exec.setErrorReporter(er);
 exec.setStateMachine(scxml);
 exec.addListener(scxml,new SimpleSCXMLListener());
 Context rootCtx=ev.newContext(null);
 exec.setRootContext(rootCtx);
 exec.go();

 while
(exec.getCurrentStatus().getStates().iterator().hasNext())

 {
 State CurrentState = (State)

exec.getCurrentStatus().getStates().iterator().next();
 if(CurrentState.isFinal())
 break;
 else

 {
 String stateId=CurrentState.getId();

 System.out.println("In state:
"+stateId);

 switch (stateId)
 {
 case

"region1":display1("region1");
 break;

 case "begin":
display1("begin");

break;
 case "ready":

getReady(exec);
break;

 case "sending":
sending(exec);

break;
 case "close":

display1("close");
connection.jmsConnection.close();

break;
 case "raiseExceptions":

display1("raiseExceptions");
break;
 }//switch

 }//else
 }//while
}

The sending method is an example of the code that can represent the

sending state. The method sends the message once and chooses to

transit to close state. The same code can be written using the SCXML

constructs in the SCXML document but this needs more investigation.

public void sending(SCXMLExecutor ex)throws ModelException,
JMSException
{
 String nextEvent;
 System.out.println("Producer is sending...");

 //call the object send method
 // Here we are sending the message!
 jmsProducer.send(data.message);

 System.out.println("Sent message '" + data.message.getText() +
"'");

 // if sent nextEvent="MsgSentEvent";
 nextEvent="closeEvent";
 //if failed nextEvent="failToSendEvent";
 //if close nextEvent="closeEvent";
 TriggerEvent event = new TriggerEvent(nextEvent,

TriggerEvent.SIGNAL_EVENT);
 System.out.println("event..."+event.getName());
 ex.triggerEvent(event);

}

1. Sample Run of the application

The Apache Commons Engine log

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.io.SCXMLParser begin
WARNING: Ignoring element <producer> in namespace "http://my.custom-actions.domain/PRODUCER"
at file:/C:/Users/rahboni/workspace/RunSCXMLProj+/bin/producer.xml:36:44 and digester match
"scxml/state/state/onentry/producer"
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.io.SCXMLParser begin
WARNING: Ignoring element <producer> in namespace "http://my.custom-actions.domain/PRODUCER"
at file:/C:/Users/rahboni/workspace/RunSCXMLProj+/bin/producer.xml:82:64 and
digester match "scxml/state/state/onentry/producer"
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry
INFO: /region1
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry
INFO: /region1/ready
In state: ready
Producer is ready...
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit
INFO: /region1/ready
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition
INFO: transition (event = callSendEvent, cond = null, from = /region1/ready, to =
/region1/sending)
event...callSendEvent
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry
INFO: /region1/sending
In state: sending
Producer is sending...
event...closeEvent

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit
INFO: /region1/sending
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition
INFO: transition (event = closeEvent, cond = null, from = /region1/sending, to =
/region1/close)
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry
INFO: /region1/close
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit
INFO: /region1/close
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition
INFO: transition (event = null, cond = null, from = /region1/close, to =
/region1/end)
Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry
INFO: /region1/end

The point here is that the Apache Commons engine logs onEntry,

onExit, events, transitions,...etc. The state machine is followed in each

step of its lifetime. In the other hand, the programming part is able to

log (in black color) the states having actions such as onEntry ,

onExit, ..etc. The Apache Commons log is expressive enough but its log

info is not displayed in the Apache ActiveMQ log as shown below.

Figure 6 Executing the ProducerImpl class

C:\PhD\msgScxml\apache-activemq-5.5.1\SimpleMsgPSM>C:\PhD\msgScxml\apache-ant-1.8.3\bin\ant
msgProducer
Buildfile: C:\PhD\msgScxml\apache-activemq-5.5.1\SimpleMsgPSM\build.xml

init:

compile:
 [javac] C:\PhD\msgScxml\apache-activemq-5.5.1\SimpleMsgPSM\build.xml:151: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds
 [javac] Compiling 2 source files to C:\PhD\msgScxml\apache-activemq-
5.5.1\SimpleMsgPSM\target\classes

msgProducer:
 [echo] Running producer against server at $url = tcp://localhost:61616 for subject $subject = TEST.FOO
 [java] Reading XMI file....
 [java] Root element :xmi:XMI
 [java] Sender : Rihab
 [java] log4j:WARN No appenders could be found for logger (org.apache.commons.digester.Digester.sax).
 [java] log4j:WARN Please initialize the log4j system properly.
 [java] In state: ready
 [java] Rihab: ConnectionImpl created.....
 [java] Rihab: JMS Connection established.....
 [java] Rihab: SessionImpl created.....
 [java] Rihab: JMS Session created.....
 [java] connection started
 [java] Rihab: queue created with subjectTESTQUEUE
 [java] Rihab: DataImpl is created:
 [java] Rihab: JMS Message created with text: Melbourne named world's most liveable city for fourth
straight year
 [java] Rihab: New JMS Message is set: Melbourne named world's most liveable city for fourth straight
year

 [java] Message is ready...
 [java] event...callSendEvent
 [java] In state: sending
 [java] Producer is sending...
 [java] Sent message 'Melbourne named world's most liveable city for fourth straight year'
 [java] event...closeEvent

Figure 6 Apache Active MQ Server is running

Proposed Approach Results and Discussion

Overview

This chapter presents a set of model transformations on UML class and

state machine models. Each transformation is provided with an

explanation of its purpose, examples of its use and conditions

necessary for its correct use. The results are presented and discussed

with examples.

Results Summarized

Model transformations of behavior models represented as UML state

machine in this research can be classified into five categories: Single

State to Single State, Single State to more than one State, Single State

to part of a composite state, orphan state and forbidden state

transformations.

 If the PSM has a forbidden state which can be entered for a given PIM,

and the forbidden state has actions that involved changes to any PIM

class instances, then the PIM must be enhanced to take account that

PSM behaviour, otherwise a PIM state can map to a composite PSM

state including the forbidden state. A test for this kind of situation

would be valuable. Some observations are following:

a. A forbidden state with no guard predicate will generally do something

necessary for the operation of the PSM which is not visible in the PIM, so

the mapping is to a composite state.

b. A forbidden state with a guard predicate. A PIM may be constrained in

such a way that the PSM guard predicate will always evaluate to true, in

which case situation a above is obtained, or always false, in which case

the forbidden state can never occur.

c. In fact, if a forbidden state has no action with an effect on the PIM

database (PIM Classes model instances), then what it does would appear

to be irrelevant to the PIM.

d. In the case where a forbidden state has a guard predicate which may

evaluate to either true or false (this requires that the guard predicate

include terms which involve mapped PIM class model instances), and the

forbidden state has actions which change PIM class model instances, then

the PSM behaviour is richer than the PIM, and the PIM needs to be

enhanced to make the necessary specifications.

Another aspect in the state machine models is the constraints in

various forms. A constraint is formulated on the level of classes, but its

semantics is applied on the level of objects.

a. In the state models of both the PIM and PSM the

predicates can take different forms.

b. PSM class may have more attributes than PIM class, if such attributes

existed in the constraint they need a decision. If the PSM attributes are left in

the expression as specified by the PSM, then we have to note that the values

are PSM specific and are not specified by the PIM instance model.

c. PSM specific classes that are not part of the PIM classes may also have

their own constraints. These classes may be part of an equivalence class too.

d. The relation between the attributes used in the guard

expression involves the mapping of PIM class model to the

PSM class model first in order to map the attributes values of

instances accordingly.

e. The guard predicate in the PSM may be manually edited to find the

corresponding semantically equal behavior as specified by the PIM.

Discussion

Forbidden States Mapping

The fifth type of transformation identified is the “forbidden state”

transformations where the PIM state model has no equivalent for the

PSM state.

Figure 7: Forbidden state C targeted by transition T1

 Figure 7 : Forbidden state C targeted by transition T1 shows state B

which is equivalent to state A from the PIM state machine model. State

B links to state C with the transition T1.

The mapping decisions can be as follows:

Non guarded Transitions from B to C:

When T1 has no guard condition:

• Safely ignore state C and do not include it in the PSM.

In this case the PIM is followed strictly. The PSM contains more functionality
specified by the more states it has. In order for a PSM to implement a PIM , its
state should be superset of the PIM states. The forbidden states can be used to
enhance the PIM and alter its specification by mapping back from the PSM states
to the PIM states.

• Consider state C in the equivalence class of the PSM

In this case the logic is to be completed by visiting the forbidden state C from state
B, since the transition T1 has no condition.

o The equivalence class would be A= { B, C }. It can be mapped as a

composite state, or another new region containing both state B and C.

o An example to this situation is the printing of a receipt in the first case

study. The PIM doesn't express explicitly that the successful completion of
a transaction would result in a print of a receipt describing the
transaction. By mapping the constraints , the states and transitions ends up
in the idle state of the PIM state machine, while it continues to print and
release the card in the PSM. In this situation it is recommended to map the
additional PSM states to the PIM one in order to complete the application
logic.

o Another example is the cleanUp forbidden state in the second case study.

The PIM transitions to the end state when finished sending or receiving.
The PSM cleans up the resources such as closing the connection object
before ending. The cleanUp state is required in the PSM so it is mapped
and added to the equivalence class.

Guarded Transitions from B to C:

Figure 7 : Forbidden state C targeted by a guarded transition
T1

In a state machine model, a guard condition is a boolean

condition that is evaluated when the transition is initiated. The

transition to the target state occurs when the guard condition is

evaluated to true. In the UML notation, guard conditions are shown in

square brackets.

It is possible that in an implementation of a particular PIM

that the guard for a forbidden transition is always false. In this case, a

forbidden state can safely be ignored as it can never be reached in that

application.

UML Constraints Mapping

Invariant

Assuming the following invariant as follows:

context Card inv: : expirationDate.isAfter(today)

1. Determine the context of the constraint in the PSM class model, let us call it

PSMContext

2. Determine the PIM class that is equivalent to the PSM class denoted by the <class

name>, let us call it PIMContext.

3. Map the attributes of the PIMContext to the PSMContext

4. Check the OCL expression

5. For each attribute in the constraint expression, map the equivalent attribute from the

PIMContext class.

6. Assess the OCL functions used (involves checking the semantic of the constraint)

According to the class model mapping of the PIM to PSM, the ATMCard is mapped to a

Card class in the PSM. Since the Card is the context of the constraint, then we are going to

map the equivalent class attribute value for each object of type ATMCard from the

instances model into the PSM instance model. Note that the name of both attributes need

not be the same.

Figure 7 PIM ATMCard Class

Figure 7 PSM Card Class

Observations:

1. PSM class may have more attributes than PIM class, if such attributes existed in the

constraint they need a decision. If the PSM attributes are left in the expression as

specified by the PSM, then we have to note that the values are PSM specific and

are not specified by the PIM instance model.

2. PSM specific classes that are not part of the PIM classes may also have their own

constraints. These classes may be part of an equivalence class too.

Pre and Postcondition

context ATM::dispence(amount : Integer)

pre: self.inState=performingTransaction

or

pre: oclInState(performingTransaction);

The pre condition specifies that the state machine that is owned by the

context object- ATM object - is in a specific state in order to enable the

execution of the operation dispense. In this case the mapping should

check that the state specified is equivalent to some state in the PIM

and if there is no constraint , a decision has to be made. Because the

PSM constraints are stronger than PIM ones, the decision here can be

to keep the constraint as it is in the PSM.

State Machine Constraint

A Constraint may be applied to a State machine in the same way as for a Class to specify

an invariant of the State machine. The guard condition of a State machine transition may

be specified by associating a constraint with a transition

Figure 7 Part of the PSM ATM states model

In Figure 7 Part of the PSM ATM states modelFigure 7 Part of the PSM ATM

states model above the transition from Idle state to Verifying state is

constrained with a guard condition that checks the boolean property

"cardInserted" in the PSM Card class. The navigation from the ATM

context - who owns the states - to the class Card is done through the

userCard association end that associated with the ATMUserSession

class. The "fundingNeeded" is a property of the class BankCustomer in

the PIM. BankCustomer is mapped to ATMUserSession in the class

model mapping . Each ATMUserSession is associated with a user card

of Card class. So the relation between the attributes used in the

constraint expression involves the mapping of PIM class model to the

PSM class model first in order to map the attributes values of instances

accordingly.

Example 2

In the state models of both the PIM and PSM the predicates can take

different forms. For example the PIMClient class in the messaging case

study has an attribute newsCount that specify the number of messages

generated and sent , with a default value set to 3, while the PSM

Client class has a guard predicate again? which is true if we want to

stop message generation and sending. The guard predicate in the PSM

may be edited to find the corresponding semantically equal behavior

as specified by the PIM.

Figure 7 PIMClient and the sending state

Figure 7 Client class and send state

A mapping solution can be as follows: The specification body of the

PSM constrain has to include the check expressed by the PIM

constraint.

<body> count=0 </body>

Beside that a new attribute or a complete data structure to hold the

attributes and values from the PIM should be invented and attached to

the PSM in order to preserve the semantic specified in the PIM.A semi

manual approach is needed.

Conclusion

Overview

This chapter is a conclusion of the thesis. Answers to the research

questions and explanation are drawn here. The chapter also presents

how the objectives were achieved beside showing the limitations and

future directions.

Summary of The Results

MDA is about using models as first class artifacts in the development

process from designs to implementations thus providing an end to end

complete process. Automating the path from models to executable

systems is a featured proposition in MDA that reduce cost, time and

improving their fitness for purpose. Our end to end engineering

approach creates domain assets in the form of metamodels , models

and QVT transformations for software solution developers.

The built PSM for messaging system could be re-used to afford many

products from the domain although it is not MDA or OMG standard.

Ideally, the standard PSMs will allow the software vendors to use them

off the shelf and generate code automatically.

Taxonomy and guidelines for state machine mappings will also be

valuable to the architects and developers. State of the art tools in the

MDA context was identified and used that pave the way for developers

who are examining the MDA process.

The research question was

How to automate software application generation using UML behavior

models in MDA approach?

The answer is provided through the thesis and covered by the relevant

literature. Automation is achieved by defining and discussing the

mapping relations between the PIM and PSM and also from the PSM to

code. The guidelines for doing the transformation is established and

implemented successfully that resulted in executing the program

modeled in the first place as a PIM thus providing the evidence of MDA

concepts. In the next paragraphs our approach is compared to the

ideal MDA and the traditional software development methods. The

models were formally represented as UML models which is the

standard modeling language from OMG.

Approaching the problem using case study methodology is considered

an evaluation to the problem. Moreover and considering the second

case study we had tried to build the same application in two ways: One

that uses pure MDA approach with current tools and languages , we

call it our approach. The other one is model driven but not MDA in the

sense of no PIM , PSM nor transformation is used, we can call it

traditional approach. In the recent future the MDA is going to be

mature enough and the software development process can be as

described by the MDA guides, we call this (dreamt) optimal MDA.

Table 8. Optimal MDA , our approach and traditional code
generation approaches compared

Optimal MDA Our Approach Traditional
Code
generation
from models

PIM Built Built Built

PSM Standard and
ready on the
shelf

Built -

Messaging PSM Standard and
ready on the
shelf

Built API level not
model level

SCXML
Document

Standard and
ready on the
shelf

Built -

alternatives Existed as
other PSMs

Need
investment
 (time and
effort)

Hard coding of
everything
again

Code written Transformation QVT + minimal
coding in Java
for illustration

Code for
relating classes
in a specific
language+
business logic

Regarding the PIM that captures the application logic, all the methods

get the benefit of having a model of the system. The PIM model

promotes the reuse and conformance with the requirement. The PSM in

the optimal MDA process is ready and the architect may select one

that suits the needs. One of the uses of a PSM is to suggest

functionality that the application may need to use. For example with

commercial accounting software, the software package reflects

industry best practice, and the customer will often change their

procedures to take advantage of the facilities provided by the package.

In our approach and because of the lack of standard PSMs we had built

the PSM. In the traditional approach there is no notion of a PSM.

Specifically we had written code and glue code to link the objects

created by the models and the object needed in the execution

environment. So we were working in the API level and not the model

level.

In the optimal MDA, the platform models or platform specific models

for messaging systems and SCXML and alike technologies are going to

be standardized and available to compare, select and use. In our

approach we had built them so using an alternative is costly. On the

other hand, there were examples of changes to the models being

formulated, agreed and deployed in the working system. We had

experienced the built models being enhanced as if we had chosen a

deficient PSM at the beginning and also experienced working with the

complete and stable PSM after it reaches its stability when it had the

functions most applications look for. This experience is what we can

find in the context of the optimal MDA when judging about which PSM

to choose. The messaging platform chosen and modeled is a standard

one (but not MDA standard) that has sufficient facilities to implement

the PIM.

Augmenting the structural model with behavioral models in terms of

state machine models allowed the application logic to be available in a

higher level constructs that mapped to the API level objects

(instances) by transformations not by code writing. The code written in

our approach is the java code that initializes the state machine and

loads the files that contains the instances. We used that code for

illustration purposes only and to show the server log messages. Such

code could easily be illuminated. The effort of programming -if we can

say- is devoted to writing the transformation specification and rules.

The main objective of this research is to find an engineering method

for mapping UML state machine behavior diagrams from PIM to PSM.

The objectives were achieved by :

a) Designing and modeling a suitable software application PIM structures

Using the UML class model.

b) The PIM is enriched and complemented with UML state machine models

beside the UML class diagram. The state machine models assist in

providing enough information in the PIM that enables the automatic

generation of code artifacts.

c) Developing a generic model to present the implementation of the chosen

software application functionality described in the PIM model. This generic

model was used as PSM (Target Model).

d) Specifying the mapping rules to transform the PIM to the generic model

PSM containing both attributes (structure) and methods (behavior) for the

system.

e) Developing a module (using QVT) to carry out the mapping specification

in the previous step. The module is used to execute the model

transformation and provide the platform connection between the design

model (PIM instances) and the instances of the generic PSM.

f) QVT was the suitable transformation languages and UML

metamodels provide a base for better facilitating the

mapping process.

g) The proposed approach was evaluated by developing a

system using MDA best practices and transferring the

generated artifacts (programs, configuration files and all

the generated classes to a suitable environment to be

executed.

The way we approached the problem, the development of our

methodology, and the integration of our approach with the

programming technologies, modeling tools, ,development frameworks

and execution environments, remains the subject of future research. In

the meantime, we hope that our success in applying Model Driven

Architecture techniques in this study might inspire others to adopt a

similar approach, and thus make a positive effort towards the quality,

reliability, and maintainability of enterprise level information systems.

Limitations

Lack of Supporting Tool Set

MDA is a young discipline in which a mature set of tools are still

required. In this research we had consulted many different set of tools

each with its own strengths and weaknesses. Although the tools may

support export/ import models and model elements but the resulted

files were too big and error prone. Some features were not supported

in another tool that would result in different representation of the same

model. The Eclipse Modeling Framework EMF is based on Ecore which

is a subset of UML that does not include behavioral features of classes.

The modeling project of EMF would be an enhancement towards

providing a complete model representation and generation.

Automating Code Generation

Automatic code generation provides an increase in productivity.

Generators can produce thousands lines of codes in short time. Tedious

and boring parts of code can be also generated instead of hand

written. Automation can also provide architecture consistency when

programmers work within the architecture. Beside that automatic code

generation lifts the problem to a higher level thus providing an easier

porting to different languages and platforms. In contrast to the

mentioned advantages, generators themselves - programs that

produce programs- have to be written first. So there will always be

hand coding required. The code generation aspect fell partially in our

research scope because Model-to-Model Transformation was considered as

the main scope of this thesis. We had tested code generation to provide

an end to end transformation and provide a complete MDA approach.

Lack of Standard Models

In both case studies we had built the platform independent

models and the platform specific models. The process continually

involves enhancing and enriching the models which can create a sort

of bias. The MDA approach specify that the platforms should be

standardized and can be utilized by many software builders. This is the

optimal case.

Manual Work

In the MDA process, models are the heart. Because the whole

MDA process is driven by the PIM, and the PIM is automatically

transformed into a PSM, and from there to code, modeling in effect will

become programming on a higher level. The PIM specifies the structure

and behavior that need to be produced. In this research some

guidelines were identified and a semi manual and sometimes manual

contributions could not be avoided. This is because of the richness and

complexity of behavior models beside the many under research issues.

When the MDA become mature enough, there will be far less

programming, or that remains to be done by hand. Programming, in

the sense of building software systems, will eventually become

modeling. All software development effort will be focused on producing

a good, high level, independent model of the system.

Future Work

More work is to be carried out in the constraints parts of the state

machine models. Moreover state machine elements such as actions,

Initial node , Final node, Fork node , Merge node with decision node ,

has to be deeply investigated and decided upon how to be mapped.

In addition, we plan to test how to select a suitable platform

specific model based on the structure and behavior specified in the

platform independent model. Another interesting experiment would be

to translate the transformed constructs into a working software using

the MDA approach and tool sets in a fully automatic way.

Summary

This chapter concludes the mapping of UML state machine

models from the PIM to the PSM and to code. It provides answers to the

research questions and how the objective were achieved. Some

limitations regarding the manual work, lack of tool support and the lack

of standard models were discussed. Finally some future work were

described.

Abdalla, O.M.M. & Abdullah, A. Bin, 2011. Mapping of Behavior Model using Model-
Driven Architecture. International Journal of Computer …. Available at:
http://www.ijcaonline.org/volume13/number8/pxc3872495.pdf [Accessed May 28,
2011].

Ahmed, abd elgaffar hamed, 2010. Automating specification to implementation software
development using model driven architecture ali universiti teknologi malaysia.

Ahmed, R.E., Colomb, R.M. & Ahmed, A.H., 2013. A method for mapping state machine
behavior models in MDA issues and challenges. In 2013 INTERNATIONAL
CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC
ENGINEERING (ICCEEE). IEEE, pp. 404–409. Available at:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6633971 [Accessed March
22, 2015].

Aksit, M. et al., 2009. Behaviour Modelling in Model Driven Architecture. In CTIT
Workshop Proceedings Series WP09-04.

Anon, Erlang Programming Language. Available at: http://www.erlang.org/ [Accessed
June 26, 2015a].

Anon, MagicDraw. Available at: http://www.nomagic.com/products/magicdraw.html
[Accessed March 20, 2015b].

Apache, 2015. Apache ActiveMQ TM -- Index. Available at: http://activemq.apache.org/
[Accessed March 25, 2015].

Apache, SCXML - Commons SCXML. Available at:
http://commons.apache.org/proper/commons-scxml/ [Accessed March 25, 2015].

Burke, P.W. & Sweany, P., 2008. Automatic Code Generation Through Model-Driven
Design. 20th System and Software Technology Conference, Las Vegas NV.

Creswell, J.W., 2012. Educational research: Planning, conducting, and evaluating
quantitative and qualitative research,

Dijkstra, E.W., 1976. A Discipline of Programming, Prentice Hall.
Domínguez, E. et al., 2012. A systematic review of code generation proposals from state

machine specifications. Information and Software Technology, 54, pp.1045–1066.
Eric Cariou, UML meta-model extension for state machine instance specification.

Available at: http://ecariou.perso.univ-pau.fr/contracts/uml-state-machine-
extension.html [Accessed March 24, 2015].

Flater, D., 2002. Impact of model-driven standards. Proceedings of the 35th Annual
Hawaii International Conference on System Sciences.

Garlan, D. & Shaw, M., 1993. An Introduction to Software Architecture. In Advances in
Software Engineering and Knowledge Engineering. pp. 1–40. Available at:
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf.

Harel, D., 1987. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3), pp.231–274. Available at:
http://www.sciencedirect.com/science/article/pii/0167642387900359 [Accessed
March 1, 2015].

Hevner, A.R. et al., 2004. Design Science in Information Systems Research. MIS
Quarterly, 28, pp.75–105. Available at: http://dblp.uni-
trier.de/rec/bibtex/journals/misq/HevnerMPR04.

Kalnins, A. et al., 2009. Behaviour modelling notation for information system design.
Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven
Architecture - BM-MDA ’09, pp.1–7. Available at:
http://portal.acm.org/citation.cfm?doid=1555852.1555854.

Mcneile, A. & Simons, N., 2004. METHODS OF BEHAVIOUR MODELLING A
Commentary on Behaviour Modelling Techniques for MDA. A Commentary on
Behavior Modelling Techniques for MDA. Metamaxim Ltd, 201, pp.1–11. Available
at: http://www.metamaxim.com/download/documents/Methods.pdf.

Members, C.J.W., 2004. J/eXtensions for Financial Services (J/XFS) for the Java
Platform - Part 1: Base Architecture - Programmer’s Reference. CEN/ISSS J/XFS
Workshop Event (London), Ref. No. C.

Mens, T., Czarnecki, K. & Gorp, P. Van, 2005. 04101 Discussion -- A Taxonomy of
Model Transformations. Language Engineering for ModelDriven Software
Development, pp.1–10. Available at: http://drops.dagstuhl.de/opus/volltexte/2005/11.

O M G, 2011. OMG Unified Modeling Language TM (OMG UML), Infrastructure. ,
(January).

Object Management Group (OMG), 2008. MOF Model to Text Transformation Language
1.0. Formal/2008-01-16, (January).

OMG, 2003. MDA Guide Version 1.0. 1. , (June), p.51. Available at:
http://www.omg.org/docs/omg/03-06-01.pdf.

OMG, 2015. MDA OMG web page. Available at: http://www.omg.org/mda/ [Accessed
July 5, 2015].

OMG, 2011a. Meta Object Facility (MOF) 2 . 0 Query / View / Transformation
Specification. , version 1.(January), p.246. Available at:
http://www.omg.org/spec/QVT/1.1.

OMG, 2006. Meta Object Facility (MOF) Core Specification. Management,
080907(January), pp.1–76. Available at: http://www.omg.org/spec/MOF/2.0/.

OMG, 2010. Object Constraint Language. Language, 03(December).
OMG, 2014a. Object Management Group, Model Driven Architecture (MDA). , (June),

pp.1–15. Available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01.
OMG, 2014b. OMG Meta Object Facility (MOF) Core Specification, Version 2.1.4. ,

2(April).
OMG, 2011b. OMG Unified Modeling Language TM (OMG UML), Superstructure. ,

(January). Available at: http://www.omg.org/spec/UML/2.4/Superstructure.

OMG, 2011c. OMG Unified Modeling Language TM (OMG UML), Superstructure. ,
(August).

OMG, 2014c. Success Stories. Available at:
http://www.omg.org/mda/products_success.htm [Accessed March 22, 2015].

OMG, 2004. UML 2.4.1 Superstructure Specification. October, 02(August), pp.1–786.
OMG, 2014d. XML Metadata Interchange (XMI) Specification. Interchange, 2(April),

pp.1–112. Available at: http://www.omg.org/spec/XMI/2.4.2/PDF/.
Oracle, 2013. Java Message Service Concepts. , (March). Available at:

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html.
Riccobene, E. & Scandurra, P., 2009. Weaving executability into UML class models at

PIM level. In Proceedings of the 1st Workshop on Behaviour Modelling in Model-
Driven Architecture - BM-MDA ’09. pp. 1–9. Available at:
http://portal.acm.org/citation.cfm?doid=1555852.1555853.

Richter, W. & Conti, M., 2004. The oligomerization state determines regulatory
properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases.
Journal of Biological Chemistry, 279, pp.30338–30348. Available at:
http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:MDA+Guide+Version+1.0.1#0\nhttp://dret.net/bibli
o/reference/mda10.

Rihab Eltayeb Ahmed, N.S., 2012. BEHAVIOR MODELING, LANGUAGES AND
DIAGRAMS IN COMPONENT BASED SOFTWARE DEVELOPMENT. Journal
of Asian Scientific Research, 2(11), pp.773–781. Available at:
http://www.aessweb.com/pdf-files/773-781.pdf [Accessed March 22, 2015].

Sunitha, E. V., and P.S., 2012. Translation of behavioral models to source code. In 12th
International Conference on Intelligent Systems Design and Applications (ISDA).
IEEE, pp. 598–603.

The Eclipse Foundation, Eclipse Modeling Project. Available at:
http://www.eclipse.org/modeling/emf/ [Accessed March 22, 2015].

Tratt, L., 2005. Model transformations and tool integration. Software and Systems
Modeling, 4(2), pp.112–122. Available at: http://link.springer.com/10.1007/s10270-
004-0070-1 [Accessed February 15, 2015].

W3C, State Chart XML (SCXML): State Machine Notation for Control Abstraction.
Available at: http://www.w3.org/TR/2014/WD-scxml-20140529/#Examples
[Accessed March 25, 2015].

 PUBLICATIONS

[1] Ahmed, R.E., Colomb, R.M. & Ahmed, A.H., 2013. A Method for Mapping State
Machine Behavior Models in MDA, Issues and Challenges. In 2013 International
Conference on Computing Electrical and Electronic Engineering (ICCEEE). IEEE,
pp. 404–409. Available at: http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=6633971

[2] Rihab Eltayeb Ahmed, N.S., 2012. Behavior Modeling Languages and Diagrams in
Component Based Software Development. Journal of Asian Scientific Research,
2(11), pp.773–781. Available at: http://www.aessweb.com/pdf-files/773-781.pdf

Screenshots of the Models

Source Code

import Data.impl.*;

import Data.DataFactory;

import Data.Producer;

import javax.jms.JMSException;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.NodeList;

import org.w3c.dom.Node;

import org.w3c.dom.Element;

import org.xml.sax.SAXException;

import java.io.File;

import java.io.IOException;

public class JMSMain {

/**

 * @param args

 */

public static void main(String[] args) {

// TODO Auto-generated method stub

try {

File fXmlFile = new File("src\\Data\\impl\\MsgXmiPIM.xml");

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder;

dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

doc.getDocumentElement().normalize();

System.out.println("Reading XMI file....");

System.out.println("Root element :" +

doc.getDocumentElement().getNodeName());

NodeList nList;Node node;

//Sender Part

nList = doc.getElementsByTagName("Data:sender");

node =nList.item(0);

System.out.println("Sender : "+

((Element)node).getAttribute("id"));

//JMS Part

// Retrieve the default factory singleton

//DataFactory factory = DataFactory.eINSTANCE;

// Create an instance

/*DataFactoryImpl factory = new DataFactoryImpl();

factory.init();*/

//producer.setProductId(1);

//System.out.println(producer.getProductId());

//Message Part

nList = doc.getElementsByTagName("Data:Email");

node =nList.item(0);

//System.out.println("Email Message : "+

((Element)node).getAttribute("content"));

//this is not used, a msg is builtin for now

String msgContent= ((Element)node).getAttribute("content");

ProducerImpl2 producer= new ProducerImpl2("Producer2.xml");

producer.startStateMachine();

nList = doc.getElementsByTagName("Data:reciever");

node =nList.item(0);

// System.out.println("Receiver : "+

((Element)node).getAttribute("id"));

/*

ConsumerImpl consumer=new ConsumerImpl();

consumer.createStateMachine();

if (consumer.stm.getCurrentStateId()=="setUp")

consumer.setData();

//

nList = doc.getElementsByTagName("Data:Inbox");

node =nList.item(0);

System.out.println("Inbox : "+((Element)node).getAttribute("id"));

*/

} catch (ParserConfigurationException e1) {

// TODO Auto-generated catch block

e1.printStackTrace();

} catch (SAXException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

// System.out.println(e);

}

/*ProducerImpl prod= new ProducerImpl();

try {

prod.setUp();

} catch (JMSException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}*/

}

}

package Data.impl;

import Data.DataFactory;

import Data.impl.*;

/*import Data.Data;

import Data.DataPackage;

import Data.Producer;

import Data.Connection;*/

import javax.jms.*;

import java.net.URL;

import java.util.*;

import org.apache.commons.scxml.*;

//import org.apache.commons.scxml.ErrorReporter;

//import org.apache.commons.scxml.Evaluator;

//import org.apache.commons.scxml.EventDispatcher;

//import org.apache.commons.scxml.SCXMLExecutor;

import org.apache.commons.scxml.env.*;

import org.apache.commons.scxml.env.jexl.JexlEvaluator;

import org.apache.commons.scxml.io.SCXMLParser;

import org.apache.commons.scxml.model.*;

import org.xml.sax.ErrorHandler;

public class ProducerImpl2 {

/**

 * @param args

 */

 URL url=null;

 ConnectionImpl connection;

 MessageProducer jmsProducer;

 DataImpl data;

public ProducerImpl2(String doc) {

 url=getClass().getResource(doc);

}

public void startStateMachine() throws Exception

{

//ClientTest ct=new ClientTest("Producer2.xml");

// TODO Auto-generated method stub

// (1) Create a list of custom actions, add as many as are needed

 // List<CustomAction> customActions = new ArrayList<CustomAction>();

 // CustomAction ca = new CustomAction("http://my.custom-

actions.domain/PRODUCER",

 // "producer", ProducerActions.class);

 //System.out.println(ca.getClass().getName());

 // customActions.add(ca);

 //try {

 // URL url= new URL("hello2.xml");

 //URL url = docIt("hello2.xml");

 // (2) Read the SCXML document containing the custom action(s)

 SCXML scxml = null;

 ErrorHandler errHandler = null;

 scxml = SCXMLParser.parse(url, errHandler);//, customActions);

 // Also see other methods in SCXMLReader API

 SCXMLExecutor exec = null;

 //try {

 exec = new SCXMLExecutor ();

 JexlEvaluator ev= new JexlEvaluator() ;

 exec.setEvaluator(ev);

 exec.setEventdispatcher(new SimpleDispatcher());

 SimpleErrorReporter er= new SimpleErrorReporter();

 exec.setErrorReporter(er);

 exec.setStateMachine(scxml);

 exec.addListener(scxml,new SimpleSCXMLListener());

 Context rootCtx=ev.newContext(null);

 exec.setRootContext(rootCtx);

 exec.go();

 while (exec.getCurrentStatus().getStates().iterator().hasNext())

 {

 State CurrentState = (State)

exec.getCurrentStatus().getStates().iterator().next();

 if(CurrentState.isFinal())

 break;

 else

 {

String stateId=CurrentState.getId();

 System.out.println("In state: "+stateId);

 switch (stateId)

 {

 case "region1": display1("region1");

break;

 case "begin": display1("begin");

break;

 case "ready": getReady(exec);

break;

 case "sending": sending(exec); break;

 case "close": display1("close");

connection.jmsConnection.close(); break;

 case "raiseExceptions":

display1("raiseExceptions"); break;

 }

 }//else

 }//while

}

public void setUp(String msg)throws JMSException

{

// Name of the queue we will be sending messages to

 String subject = "TESTQUEUE";

 // Retrieve the default factory singleton

DataFactoryImpl factory = new DataFactoryImpl();

factory.init();

// Getting JMS connection from the server and starting it

 connection = new ConnectionImpl();//factory.createConnection();

 connection.start();

System.out.println("connection started");

 // JMS messages are sent and received using a Session. We will

 // create here a non-transactional session object. If you want

 // to use transactions you should set the first parameter to 'true'

 SessionImpl session = (SessionImpl)connection.childSession;

 // Destination represents here our queue 'TESTQUEUE' on the

 // JMS server. You don't have to do anything special on the

 // server to create it, it will be created automatically.

 BufferImpl queue = new BufferImpl(session,subject);

 // MessageProducer is used for sending messages (as opposed

 // to MessageConsumer which is used for receiving them)

 jmsProducer = session.jmsSession.createProducer(queue.jmsQueue);

 // We will send a small text message saying 'Hello' in Sudanese

 data = new DataImpl (session,msg);

 // we can call

 //String newMsg="am so tired and having headache ";

 data.setMsg(session, msg);

 }

 public void display1(String name)

 {

 System.out.println("In state: "+name);

 }

 public void getReady(SCXMLExecutor ex)throws ModelException,

JMSException

 {

 setUp("Melbourne named world's most liveable city for

fourth straight year");

 System.out.println("Message is ready...");

 TriggerEvent event = new TriggerEvent("callSendEvent",

TriggerEvent.SIGNAL_EVENT);

 System.out.println("event..."+event.getName());

 ex.triggerEvent(event);

 }

 public void sending(SCXMLExecutor ex)throws ModelException,

JMSException

 {

 String nextEvent;

 System.out.println("Producer is sending...");

 //String passing=(String)

ex.getRootContext().getVars().get((Object) "passing");

 //System.out.println("Executing...has it "+passing);

 //call the object send method

 // Here we are sending the message!

 jmsProducer.send(data.message);

 System.out.println("Sent message '" +

data.message.getText() + "'");

 // if sent nextEvent="MsgSentEvent";

 nextEvent="closeEvent";

 //failed nextEvent="failToSendEvent";

 //close nextEvent="closeEvent";

 TriggerEvent event = new TriggerEvent(nextEvent,

TriggerEvent.SIGNAL_EVENT);

 System.out.println("event..."+event.getName());

 ex.triggerEvent(event);

 }

 public void callState(String name){

 // this.invoke(name);

 }

 /**

 * Get current state ID as string

 */

 /* public String getCurrentStateId() {

 Set states = getEngine().getCurrentStatus().getStates();

 State state = (State) states.iterator().next();

 return state.getId();

 } */

}

	
	DEDICATION
	ACKNOWLEDGEMENTS
	Abstract
	المستخلص
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	MDA in Brief
	Motivation
	Problem background
	Research Questions
	Objectives
	Main Contributions
	Thesis Outlines

	Literature Review
	Overview
	Model Driven Architecture (MDA)
	Major MDA concepts
	MDA Adoption and Promises
	OMG Adopted Standards for MDA

	UML and Behavior Modeling
	UML Structure and Behavior Models Relation
	Basic UML 2 Concepts
	Invariant
	Precondition
	Postcondition
	Guard

	Traditional Support of State Machine in Software Development

	Automation and Model to Code Transformation
	Summary

	Research Methodology
	Overview
	Case Study Methodology
	Brief Description of the Proposed Case Studies
	Languages and Tools Used in Case studies
	UML 2 Metamodel
	Magic Draw
	XMI
	QVT
	Eclipse Modeling Framework EMF

	Case Studies Main Steps
	Summary

	Case Study: Financial System Services
	Overview
	Models of the System
	Financial System PIM
	Financial System PSM

	Suggested Mapping Process
	Observations and Issues
	Summary

	Case Study: News Application
	Overview
	Approaching the Problem
	Models Of The System
	News System Platform Independent Model
	Messaging System Platform Specific Model

	Class Model Mapping
	Behavioral Models Mapping
	PIMClient and Client Classes
	Behavioral Mapping of PIMClient to Client

	The NewsSender and Producer Classes
	Behavioral Mapping of NewSender and Producer

	The NewsReceiver and Consumer Classes
	Behavioral Mapping of NewsReceiver and Consumer

	Summary

	Models To Text and The Application Execution
	Overview
	Possible Option 1 : Generic Mapping to prove concepts
	Possible Option 2 : Mapping of UML State Machine to SCXML
	Apache ActiveMQ
	UML, SCXML and the Apache Commons SCXML
	Transforming UML State Machine to SCXML
	Suggested Algorithm to transform State machines to SCXML Document
	Concrete Mapping Examples
	Java Code to run the state machine
	1. Sample Run of the application

	Proposed Approach Results and Discussion
	Overview
	Results Summarized
	Discussion
	Forbidden States Mapping
	UML Constraints Mapping

	Conclusion
	Overview
	Summary of The Results
	Limitations
	Lack of Supporting Tool Set
	Automating Code Generation
	Lack of Standard Models
	Manual Work

	Future Work
	Summary

