asa Il yaa Il alll ac

Sudan University of Science and Technology
College of Graduate Studies

Declaration

I, the signing here-under, declare that I’m the sole author of the Ph.D. thesis
entitled

which is an original intellectual work. Willingly, I assign the copy-right of this work
to the College of Graduate Studies (CGS), Sudan Universit~ ~f Crience &
Technology (SUST). Accordingly, SUST has all the rights to put__ : ::__,‘_-'-u k for
scientific purposes.

7 ;
Candidate’s nam--#‘j' lqlﬂkLﬂ.b&LtﬂxﬂeﬁAl’\mﬁd
Candidate’s signature: Q.\\\A.G\b Date\/el/2uf.§n

8
.. 5 giall ol g3l Al e g Cilipall ity 8 oliaf a8 gall U

........... fL‘*’zf'-n—’—LﬁLf’C/’)ﬂvé‘toh'{’l P C DY S

Ol saal) Arala Lidadl cbad ol A0€Y Jan) 138 iy aula (558a el o lialy, Jual (5 088 e 2

L dcalall Gl S Jardl 13 dS dxaladl gag dglec Lin gl 53l g o slall
§ |
... ! e, il ol pad

Sudan University of Science and Technology
COLLEGE OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

METHODS FOR MAPPING STATE MACHINES IN MODEL DRIVEN ARCITECTURE

calal e diudf dojlaall § c¥ladl &Y Jagadil 3,k

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy of Science

by
Rihab Eltayeb Ahmed

Supervised by
Prof. Robert M Colomb

Co-Supervised by
Dr. Abdelgafar Hamid Ahmed

August 2015

ot

;‘Jw;ﬂ

=

111

sl

\{‘
| e
4

o LN

T

—_—

q, ii’lmﬂﬂé f

i

O

:

A 2L or”
o Slhadlon
ot higlang

3

2
' Bz

o g2 &
o I

¥
))-6

2

. £ 7 - w/
(¥

3)

o
.
< .,

Z
2

DEDICATION

To
My
Family

I'm usually not at a loss for words, but this

time |l am.

ACKNOWLEDGEMENTS

| would never have been able to finish my dissertation without
the will and mercy of ALLAH (swt). Am indebted to the support,
encouragement and profound understanding of my lab members,

colleagues , friends and family.

I would like to express my deepest gratitude to my supervisor,
Prof. Robert M. Colomb, for his excellent guidance, caring and patience.
Continents , oceans and my humble thinking capabilities doesn't
prevent him from kindly giving hints, clues and detailed email
messages. With sincerity and high sense he apologized one time of not
being expressive enough, but really all his messages were self
explanatory and all the time satisfied my hungry mind.

| would like to thank my co-supervisor Dr. Abdelgafar Hamid
Ahmed, who let me experience the research and practical issues
beyond the textbooks, patiently listened to us in the Saturday
meetings and give his best suggestions.

Special thanks goes towards people who remain in my memory
forever, trusted me, always there cheering me up and stood by me
through the good times and bad.

Rihab Eltayeb Ahmed

Abstract

Model Driven Architecture (MDA) is an initiative of the Object
Management Group that uses models as the first class artifacts in the
software development process. MDA aims at deriving values from
models that capture the system structural and behavioral aspects. One
of the values of models is to derive an implementation from models in
an automated fashion. Automation enables rapid response to changes,
increases the efficency of software development and decreses its cost.
The derivation involves a Platform Independent Model PIM, a targeted
Platform Specific Model PSM and mapping transformation rules
between the PIM and the PSM. The PIM washes away the technical
details and focuses on the business logic of the system where as the
PSM contains the technical detailed information. The main challenge is
the transformation from PIM to PSM (different models). In practice the
transformation process from PIM to PSM might be a lot more complex
and challenging. Between the models, gaps can exist because of the
difference in the abstraction layers exhibited in the models. The gaps
may not be small enough to perform a direct transformation. Moreover
there is still difficulties when the application behavior is addressed in
MDA. In most cases, behavioral models are used for other purposes
like documentation rather than complementing the structural models
to facilitate automatic software generation. The problem is the lack of
mechanisms for mapping behavior models from an abstraction level to
another. This research study proposes a method for mapping UML
behavior models from PIM to PSM. Both the PIM and the PSM are

9

augmented with UML class model and state machine behavioral model.
A transformation framework, taxonomy and guidelines were identified
beside the suitable languages and tools based on MDA best practices
and standards. The PIM models for two application domains were built
using MDA compliant modeling tool. The PSM model for a standard
messaging oriented platform was developed and used along with the
proposed transformation framework to map the PIM models to the PSM.
The work is completed by including the PSM to code translation. The
resulted artifacts were transferred to an execution environment to run
the program. The proposed method achieved an acceptable degree of
automation of the software application development using the MDA
approach.

dcgans (po 3yl o (Model Driven Architecture (MDA gital e diall & jlaal)
oS ahe a8 Y pulwls gl alaaiwl oty Ladg Object Management Group OMG
IS Jefiai Lagae ay F zaladl (je 3036 sl godaiwl I MDA Sagi . asbias pdl jaghat dalac
doiail g Lge BuSA (odAiwly 7 alaul aluiicl §yb (o Bualy dassllly GalSugll aliull Cilga
e iy bl da all Dlaiwd Lo aelud LaiYl .zl e folaicl ol pdf B dulac
galanll e Teloy 3a80ill doiail dalae (gg0ias LA gkt 48IST Julfi I BBLAYL lias pdl S5 lis

o Taaay Glallail) Gl dada 4l aiyg adiicll (3 dgag e alE cilllvis yuSay gagad e

10

Platform Independent (il zigadls zigasdl 138 oy daldli of L0l Juoldi dyf
dgalatl) galanll s o o luial JGM adgll S gl) AT gigad sbu ot . (Model (PIM
Jeill zigall by aiy .Platform Specific Model PSM taui M 73gaul canssg Buuas
e G aelgllly (nadganll s SNl wiaali s als Jagad dalac @1k (e dai U zagall pe
Jsaill dolag MDA Jlas & wbuaill gual Jagaill dalac piad Laghn Jagaill alaw luolul
SHaa Lao pal1 I (s giue (o galaadl w a8 GUMEAT ugagl baiye gagas I Hiwe gaga (e
Slaa Y5 Y ey e Sgdey .galaill (nn pblas Jagad shay A L S 0o (9<i ¥ oS 39ad
il yigall il gl ! ddal g Sy s3Iy wlsaa il gl ol e MDA $ eilygan
Fio s paT g1, dasgludl Zolal aladiv iy ¥l alias S gy dasall Ll go leleliiy
aY) dlae g Las @iaiin Ao G goladl ps AU 3500 JaaSi e Yy ol all B il
S syl alall ugag ane o e USAL G gllall Al d) guas alldnl) i QU1 dlels)l
G dplanll Auogi aags ¥ dun AT I (sgiue (o dasglall Zilall Jagal dalac Al () (Sa
Al daly Saall Hglull £ilad Jagail &l caall a3 ¢ A8 MDA (o Sadiall 3iligll 3
Onadgadll S axeali ally Cunan Jadi L) £ agal) s gime I Sl £agalll s gims (0 clliy UML
BLAYL dasall e gaill pleaY clifiaiy Jall jUal waai ai {ee dsglally dalsugll zalaly

a1 ga¥ 1y daswlil) Uil wyans Lyl at las . Jagaill dalae 8 Leale aloieadl GSay U1 Galall 1

11

e Il sl ati Jagaill dolae alai¥ MDA 3 julakly oolulel) Juddl po ghilaii &I
Las Lo daflll Jygaill ulac @ilglad 30y Ayl 3,lis dama s @¥las (a dlasiyo gilely
S Sl zlganlly dyluddl (8 Ao gl o) L8 Yo 3308 8500 I iladd] daa yi el
iy ol culia el gL Glalas Js o8 zaladl olaichs MDA g suaa L Jiai 3,90

MDA s alasiinily Slaas) Slisadai jaghai dulac diail (jo dgalla da o da AGL

12

TABLE OF CONTENTS

61
DEDICATION. ..cittieiiisnnnsnnssssnnnnssssssssnssssssssssnnsssnssssnnnnnnnsssnnnnns 5
ACKNOWLEDGEMENTS....cciiictriammrmnnnnmnsnnsssnnsmssnnssssnssssnnsssnnnnnns 6
ABSTRACT .. iiiieriinnsrasanssssnssassssssanssassssnsssssssssnnnnssssnsnnnnnnnns 7
N P 7
LIST OF TABLES.....ccovticciiimmnsssnssssnnnssssssssnnnnnnnssssnnsnnnnnssnnnnnnnns 8
LIST OF FIGURES......ccttiueetrinnmrnnnnrminnsmssnssmssnssssnnssssnsssssssnnnnnnns 9
INTRODUCTION....ccitttrrmnnmnsansnnnnssnsnssnnsssssssssssnsnnnnsnnnnns 12
OV BIVIBW . ettt e e et e e e e e e e enees 12
MDA N Brie e 12
MOTIVATION et e 12
Problem background.........coooiiiiii 13
ResearCh QUESLIONS. 13
Objectives
... 13
Main ContribULIONS. ... oo 14
ThesSisS OULINES. ... e 14
LITERATURE REVIEW......ccccttiemmrmnnmmmnnnnrmnnnssssnsnnnnnsssnnnnas 14
OV IVIBW . ettt ettt e e e et e e e e e eaees 14

Model Driven Architecture (MDA).......oiiiiiiie e 15

MajOr MDA CONCEPES. . iuiiiiiiiii i e 15
MDA Adoption and PromiSesS.......c.vveuiiiiiiiiiiieiieee e 17
OMG Adopted Standards for MDA........ccooiiiiiii e, 17
UML and Behavior Modeling ..o 17
UML Structure and Behavior Models Relation...........cc.cooeviiiiiiinnnnns 18
BasSiC UML 2 CONCEPLS. . ittt 18
Traditional Support of State Machine in Software Development.....22
Automation and Model to Code Transformation............cc.coevvviinnennen. 23
oY U] 000 ¢ T= 2P PPUPRPRRRN 24
RESEARCH METHODOLOGY ...ctteecsssssnsnnnssssssnssssssnnssnnnnns 24

OV BIVIBW . ettt ettt e e e e e e e e e e e e e e enees 24
Case Study Methodologycooviviiiiii 24
Brief Description of the Proposed Case Studies.........c.cccovvvviivinnennenn. 25
Languages and Tools Used in Case studies.........ccoccvviiiiiiiiiiiininnns 25
UML 2 Metamodel... ..o e 25
1 = To Lol B T = 1 PP PP 25
XML 25
QN T et 25
Eclipse Modeling Framework EMF..........ccoooiiiiiiiiineea 25
Case Studies Main SEEPS .. 26

oY U] 000 ¢ T= 2P PPUPRPRRRN 26

CASE STUDY: FINANCIAL SYSTEM SERVICEScccc0u1ees 27

OV BIVIBW . ettt ettt e e e e e e e e e e e e e e enees 27
Models of the System ..., 27
Financial SYystem PIM.........iiiiiiiii e e 27
Financial System PSM. ... 29
Suggested MappPing ProCESS.....c.viuiiiiii e 30
Class Model Mapping.. ..o 30
Behavior Model Mapping.....cocoviiiiii e 31
The promise of turning the PIM into a working program................. 32
Guards Representation and Interpretation...........cocooooviiiiiiinninnnn. 32
Observations and ISSUES.couiiiiiiiie e 33
U I A Y ottt 34
CASE STUDY: NEWS APPLICATION.......ccovviinnnnnnnnnnnnnnnnnss 35

OV BIVIBW . ettt e e e e e ees 35
Approaching the Problem........coooiiiii 35
Models Of The System.. ... 36
News System Platform Independent Model...........ccooiiiiiiiiiinninn, 36
Messaging System Platform Specific Model..........coooviiiiiiiiininnnnn, 37
Class Model MappinNg ..o 37

Behavioral Models Mapping...c.covviiiii e 38

PIMClient and Client ClasSes........c.ovviiiiiiiiiiieeee e 38
The NewsSender and Producer ClasSes......coccvvvvviiiiiiniiiiiiieineieea 42
The NewsReceiver and Consumer ClasSes........cocovviviiiiiiiinieneenannns 44
U 0 0] 0 011 25 PP 46
MODELS TO TEXT AND THE APPLICATION EXECUTION..... 47

OV BIVIBW . ettt e e e e e ees 47
Possible Option 1 : Generic Mapping to prove concepts................... 48
Possible Option 2 : Mapping of UML State Machine to SCXML 48
Apache ACtIVEMQ ..o 49
UML, SCXML and the Apache Commons SCXMLcocevveiinnnnns 49
Transforming UML State Machine to SCXML...........ccoooviiiiiiiiiinnnnns 52

Suggested Algorithm to transform State machines to SCXML

DOCUMIBNT. e 52
Concrete Mapping EXamples ..o 53
Java Code to run the state machine.............oooiin 55
1.Sample Run of the application.........c.ccoviiiiiiiiie 57
PROPOSED APPROACH RESULTS AND DISCUSSION......... 60

(@Y =T VAT PSP 60
Results SUMMArIZed.........oeniii e 61

(BT el B E3Y (0] o P 61

Forbidden States Mapping....ccccoviiiiiii e 61
UML Constraints Mapping......cooeueiuieiiiiieineeeee e eas 62
CONCLUSION....cciiiemmrmnnmssnannsmssnssssnnssssnssssnnsssssnnnnssnnnns 64

@1V =T VAT TP P TP 64
Summary of The RESUILS ... 64
LiMItatioNS. ... 66
Lack of Supporting Tool Set.......cooviiiiii 66
Automating Code Generation.......c.covviiiiiiii e, 66
Lack of Standard Models. ... 66
MaNUAT WOTK....e e e e 66
FUEUIE WOIK. ... e 66
U 0 0] 0 011 25 PP 66

17

LIST OF TABLES

18

LIST OF FIGURES

19

List of Symbols /Abbreviations

MDA Model-Driven Architecture

ERP Enterprise Resource Planning
system

OMG Object Management Group

UML Unified Modeling Language

CORBA Common Object Request Broker

E)B Enterprise Java Bean

PIM Platform Independent Model

PSM Platform Specific Model

API Application Programming
Interface

CIM Computational Independent
Model

MOF Meta Object facility

BPMN Business Process Modeling and
Notation

OowL Web Ontology Language

SQL Structured Query Language

CWM Common Warehouse Metamodel

OCL Object Constraint Language

ATM Automated Teller Machine

QVT Query View Transform

MDD Model Driven Development

20

DTD
XSLT

MOF
00
XMl
IDE

EMF
EMOF
JMS
SCXML

W3C
CCXML
MOM

21

Document Type Definition

Extensible Style Sheet Language

Transformation

Meta Object Facility
Object Oriented

XML Metadata Interchange

Integrated Development

Environment

Eclipse Modeling Framework
Essential Meta-Object Facility

Java Messaging Service

State Chart extensible Markup
Language

World Wide Web Consortiums

Call Control XML

Message Oriented Middleware

Introduction

Overview

This chapter gives a brief introduction to the concepts that will be
referenced later in the thesis. Section 1.1 first gives a brief introduction
to the Model-Driven Architecture (MDA) software development
approach. Section 1.2 of this chapter presents the reasons motivating
the research work to be done. It is followed by Section 1.3 presenting
the problems faced in this domain.

The following section, Section 1.4, explains some research questions
that will be answered through this thesis. Section 1.6 presents the
main contribution of the research work, taking account of the
objectives presented in Section 1.5. Section 1.7 presents the scope and
context in which this research work has been developed. Finally
Section 1.8 presents the outline of the whole thesis, describing each

chapter in brief.

MDA in Brief

Software development is a complex process. The information
technology market is faced by many challenges among them is the
effect of technology "platforms" change (languages, operating-
systems, interoperability solutions, architecture frameworks etc.). This
is an issue for software companies, developers and even customers.
Software companies are forced to follow technology change or be
abandoned by their customers. Customers may follow technology
change to find new and interesting things. Software developers may
fear being left behind by technological changes. The result is that

22

software market migrates to a new technology frequently, regardless
of whether the technological change is beneficial or not (Flater 2002).

Business process modeling plays an important role in software
intensive information systems. It become more vital specially when the
information systems grow in scale and complexity. Nowadays many of
the large scale and complex information systems are driven by models.
Models are representations of reality. A model of a system in MDA is a
description or specification of that system and its environment.
Business process modeling is the basis of process centric systems such
as Enterprise Resource Planning system (ERP). A software system like
an ERP is not just an artifact. Moreover The enterprise focus of such a
system made it hard to rely on conventional methods only.

Model Driven Architecture (MDA) (OMG 2014a) is a new development
method that represents a positive effort from the Object Management
Group (OMG) to overcome software development problems including
but not limited to technology change. The philosophy of MDA regarding
technology change is the separation of concerns. That is to capture the
most valuable and reusable part of the system- conceptual design- and
washing away technical details. The conceptual design of the system
then can be realized on new technologies cheaply because the process
is going only to add the “new technology” details. The same
conceptual design of the system can be realized into a technology or
another hence no more fear from technology change.

The conceptual design of the system in MDA is captured as a model
that describes the structures and/or behaviors of the intended software
application. A modeling language is used to create these models such

23

as the Unified Modeling Language (UML). As the emphasis is
increasingly shifted towards models; the role of standard models
increases. Two applications may be implemented in different
technologies but conforming to the same standard model. This will
enable them to share a common understanding of the system.
Conformance to well- designed standard models in software
development using MDA will in turn increase the chances for
interoperability. This was another part of the motivation for the MDA.

Based on the MDA document (OMG 2003), the following are the key
terms in MDA. A Model is a formal specification of the function,
structure and/or behavior of a system. A Platform represents the
technological and engineering details that are irrelevant to the
fundamental functionality of a software component. Example platforms
are Common Object Request Broker (CORBA), Enterprise Java Bean
(EJB), and Microsoft Dot Net Framework. In MDA, structures and
behaviors based on the business functions are abstracted and modeled
in a Platform Independent Model (PIM). The implementation specific
structures and behaviors are modeled in a Platform Specific Model
(PSM). The PIM is then realized into the PSM through a
transformation process to generate the software. A mapping
provides specification for transforming a PIM to a PSM in a specific
platform.

Model transformation is the process of converting a source model into
a target model according to some transformation specifications.
Transformation specifications are the rules that specify how to
transform the source to the target. A distinction can be made between

horizontal and vertical transformation. Horizontal transformation is a
24

transformation where the source and target models reside in the same
abstraction level. The aim of a horizontal transformation may be an
optimization to improve certain quality attributes of the system
(performance) or a simplification and normalization to decrease the
syntactic complexity. Vertical transformation is a transformation where
the source and target models reside at a different abstraction level.
Refinement is an example of a vertical transformation in which the
higher level, more abstract source model (e.g. design) is gradually
refined into a lower level, more concrete model (e.g. a model of a Java

program) (Mens et al. 2005).

Figure 1IMDA Model Transformation

Motivation

Software development using MDA is promising. One of the promises of
MDA is the automatic generation of executables. The software
development is model centric and no longer code centric. We create a
model of the application problem and select a technology that
performs the class of tasks. Then we establish a mapping between the
model and the technology platform (middleware or API). The mapping
will enable turning the model of the application problem into a working

system automatically without (or with minimal) programming.

Raising the abstraction level of the system design into models leads to
reusability which is another gain using MDA. The model represents the
business in a technology-independent fashion. New technology means

25

just a new transformation for the same (reusable) model. So the same
system spans several platforms. Through modeling and transformation
in MDA the productivity of system developments increases, the
development time for new systems is reduced and time to market
decreases. The reason is that the whole development process is
simplified and the core asset (the model) is reusable. The system
model serves the purpose of the documentation and is the enabler of
the code generated for the system. The system documentation is
consistent with the system itself. When changes occurred they are also
applied to the models, resulting in consistent and more efficient

change management.

Behavior execution -automatically verifying models on a computer- at
PIM level is a remarkable feature to verify high level models against
the requirements and to provide conformance for implementation at
PSM and code level. One of the promises of MDA is the automatic
generation of software based on models. But the static structural
features of the modeled system are not always enough to generate a
completely full automated application unless complemented by
behavioral features of the system. One can conclude that behavior
modeling is important to support MDA goals.

Significance of the study

The study will help in bridging the gap between the design and
development phase and will support the developers in the software
development process using MDA.

Since MDA is considered a young discipline, standard models and Meta

models are not yet created for a wide range of application domains.
26

Problem background

The main idea of MDA is to make models the main driver of software
development process. To build an application in MDA, the process
starts with defining a Computational Independent Model (CIM) aka
domain model. An enterprise architect will transform the CIM into a PIM
by adding architectural information. A CIM represents the system
within the environment. To complete the build process, the
transformed PIM has to target a platform. A platform specialist will
carry out the transformation from the PIM to the PSM. The resulted PSM
is considered an implementation when it provides all needed
information, structures and behaviors that construct a system and
make it up and running.

UML is a formal modeling language that is standardized by the Object
Management Group (OMG) and is the recommended language to build
various types of models in MDA. UML provides diagrams to model
structural and behavioral aspects of a system. Structure diagrams in
UML show the static structure of the system. The class diagram is
widely used to describe static structures while other diagrams such as
object, component and deployment diagrams are also provided. A
variety of mechanisms to specify behaviors are supported in UML such
as automata (state machine), Petri-net like graphs (activity), informal
description (use case) and sequence of events (interaction) (OMG
2011). These different behavior specification mechanisms differ in their
expressive power and domain of applicability so the choice of one of

them depends on convenience and purpose.

Almost every application contains functionality and behavior besides
possessing a structure. Any behavior is the direct consequence of the
action of at least one object called the host object (OMG 2011). A

27

behavior has access to the structural features of its host object.
Behavior modeling is used to visualize, specify and construct various
dynamic aspects such as modeling a flow of control, an element
behavior, a workflow or an operation. Fund transfer between two bank
accounts is an operation example. The formal definition of the behavior
of this operation remains the same despite whether it was
implemented in different platforms by a CORBA object, an Enterprise
Java Beans, or a SOAP operation. Modeling the operation behavior is
important since modeling expresses the operation in a higher level of
abstraction that in turn allows for reusing the operation specifications

between different languages, frameworks and execution environments.

Although MDA acknowledge richer modeling, reusability, reliability and
automation of software generation, they are still far from defining a
real engineering approach to tackle the transformation process, not
even the MDA first guide published by The OMG (Richter & Conti 2004).

Some transformations can be considered heavy and challenging such
as code generation, compilation and parsing. Some can be considered
as light such as changing the internal software architecture to provide
modularity while maintaining the same software behavior. Heavy
transformations need certain set of tools and techniques. Certain
aspects of the source model has to be preserved in the transformation
to the target model. In the horizontal transformation the observable
behavior of the system is preserved while the internal structure
changes. In the vertical transformation the correctness has to be
preserved from an abstraction level to another.

28

The main challenge is the transformation from PIM to PSM (different
models).In traditional approaches, the transformation is inefficient
because of the lack of formal models. Using informal models will
prevent the formalization of transformation hence the transformation
cannot be automated. In practice the process from PIM to PSM might
be a lot more complex and challenging. Between the models, gaps can
exist because of the difference in the abstraction layers exhibited in
the models. The gaps may not be small enough to perform a direct

transformation.

The idea of MDA works for structural models(OMG 2014c), (Ahmed
2010) but there is still difficulties when behavior is addressed as
(Abdalla & Abdullah 2011) had investigated. Current practice shows
that, in most cases, behavioral models are used for other purposes like
documentation rather than complementing the structural models to
facilitate automatic software generation. The problem is the lack of
mechanisms for mapping behavior models from an abstraction level to

another, for example from PIM to PSM.

The mapping is an important part of the process of generating an
implementation. There are different types of mappings. Model type
mappings specify mappings of the instances of model types from the
source model language to the instances of target model types. Model
types can be specified using Meta -Object facility MOF (OMG 2006) or
any other language including natural languages. Another kind of
mapping is the model instance mappings. A mapping will identify
model elements in the PIM that can be transformed. Most mappings,
however, will consist of some combination of the above approaches.
What we want to do is to relate MO instances of the PIM to the MO
29

instances of the PSM as an implementation of the application. The OMG
document (Richter & Conti 2004) doesn’t address how to relate and
transform models when developing software applications using the
MDA approach.

Several attempts such as (Aksit et al. 2009) described various
approaches to better support automatic software generation by using
behavior models but a concrete method to map the behavior models
(state machine) from PIM to PSM is still an open question and to be
answered.

Research Questions
The following research question is formulated:

* Research Question 1: How to automate software application generation using
UML behavior models in MDA approach?
It can be seen that methods for mapping the state machine behavior model between
PIM and PSM are strongly needed to facilitate the complete generation of fully

automatic software applications using MDA

These research questions are analyzed and answered in Section 1.6.

Objectives
This research aims to provide a proposed MDA based engineering
methods to map the UML behavior models. The method is aimed at

achieving an acceptable degree of automation of software

development. The general objectives are:

1. To find an engineering approach or a method for mapping state
machine behavior models from PIM to PSM.

30

2. To investigate suitable transformation Ilanguages and
metamodels that better facilitate the mapping process.

3. To evaluate the proposed approach by developing a system
automatically using MDA best practice and transferring the
generated artifacts (programs, configuration files and all the

generated classes to a suitable environment to be executed.

Main Contributions

The main contribution of this research is the method for mapping UML state machine
behavior models from PIM to PSM. This contributes to the MDA in bridging the gap
between various design levels (PIM to PSM) and implementation (PSM to Code aka text).

Based on the method, transformation framework , guidelines, models and meta models an
MDA approach can be successfully applied to other software applications. Contributions

are summarized as follows:

1. Domain assets creation

The careful design of various models including PIM in two domains
is valuable since the MDA approach is model centric. The PIMs can
serve as a working samples for PIMs in different domains thus
contributing to the development knowledge in MDA.

The formal design of The PSM created for the ATM machine is
formed based on a standard and can be used with various
implementation platforms. An equivalent effort was done in
designing the messaging system PSM. Chapter 3 and Chapter 4
illustrate the designs in detail based on UML static and dynamic
features. Moreover the QVT transformations and the generated
codes, files and documents included in the appendix, would
increase the scale of capital equipment available to software

solution developers.
31

Considering the implementation of the system, the algorithm that
define the mapping between UML state machine meta model and
the SCXML provides a basis for translating between them. The
algorithm in Chapter 6 can be applied in different programming
languages to provide the translation in different platforms and
execution environments other than the one tried in the case study
thus providing a generic translation technique.

. The strategic messaging system PSM could be re-used to afford
many products from the domain.

The formal and precise representation of the messaging system in
a model enables the usage of the model in other types of software
applications such as email and chat applications. This facilitates
the mapping automation and adds a value of selecting among
alternatives. The PSM is illustrated in detail in chapter 4.

. Taxonomy and guidelines for state machine mappings

The suggested framework , guidelines , naming conventions or
the taxonomy for state machine elements and the transformation
are the heart of the proposed engineering method. In software
engineering and design science the designs and the foundations
are recognized as contributions to the knowledge in the field.
Extending the existing knowledge and applying what we already
know in a new and creative way is existed in the case studies
spaces and in the conclusions drawn from tackling them. The case
studies were deeply illustrated in Chapter 3 and 4, the result
discussed and summarized in Chapter 7.

. State of the art tools in the MDA context was identified and used.
The MDA approach promotes the use of standardized languages,
models and toolsets. The conformance to the standard is always a

32

benefit to software development team members. In our study we
tried to follow the MDA best practices and set of languages that
support the design and coding when treating the models. UML,
QVT and EMF that conforms to and uses the UML meta models are
used in our case studies. The complete set of standards and tools
used is discussed in Chapter 3.

Thesis Outlines
The thesis is structured as follows. Chapter 1 introduces the research motivations,
background information on MDA and concepts that will be referenced throughout the
thesis. Chapter 2 describes the MDA and present the Unified Modeling Language (UML)
and the behavior modeling capabilities. The research methodology, tools, languages and
case studies description are covered in Chapter 3. In Chapter 4 and Chapter 5 the case
studies are described, observation and issues were identified. The model to code and
application execution are detailed in Chapter 6. The proposed approach results are
presented and discussed in Chapter 7. Finally, we conclude by summarizing the
contributions of the thesis, answers to the research questions and how objectives were

achieved in Chapter 8.

Literature Review

Overview

This chapter serves as an introductory, review and criticize of three
main topics in this thesis: Model Driven Architecture, Unified Modeling
Language and automation and the model to code transformation.

This chapter begins by providing an overview on Model-Driven
Architecture (MDA) as a modern software development paradigm and

how it can leverage the many concepts such abstraction, automation
33

and reusability. Section 2.2 of this chapter is to present the Unified
Modeling Language (UML) and the behavior modeling capabilities. It is
followed by Section 2.3 presenting the automation and model to code
transformation in the traditional manner and how MDA changes that.

Section 2.4 explains the relationship between UML structure and
behavior models. Section 2.5 presents the basic concepts of UML 2
class and state machine diagram elements. Section 2.6 presents the
tools and techniques that support state machine models. This chapter
is ended with Section 2.7 to summarize and provide a brief description
of the whole chapter.

Model Driven Architecture (MDA)

An organization need to make sure that its existing legacy software
system will evolve and it can easily integrate what it is building with
what is going to be built in the future. As the pace of technology
continues to speed up, the organization needs an architecture as a
base for its infrastructure. The bad news is that neither a single
platform nor a single operating system nor a single programming
language nor a single network architecture will be available to depend
upon. In the other hand with new approaches to software development,
the organization can still manage to build software systems in such
changing environment. Model Driven Architecture (MDA) is an initiative
of OMG Object Management Group that is intended to better deal with
the complexity of software system development. Figure 2 OMG Model
Driven Architecture (OMG 2015) lays out the MDA which is transparent
to operating systems, programming languages and network protocols.

34

Figure 2 OMG Model Driven Architecture (OMG 2015)

Major MDA concepts

System

A system is a collection of parts and their relationships organized to
achieve some purpose (OMG 2014a). In MDA, the term ‘system’ can
refer to a software system or it can be generalized to include anything:

software, hardware, people etc.

Model

MDA uses models as the first class artifacts in the software
development process. It aims at deriving values from models that
capture the system structural and behavioral aspects. A model in the
context of MDA is information that represent a system based on a
specific concern (OMG 2014a). The model also should include the
integrity rules applied to the system beside the meaning of terms

used. A model can represent business, domain, software, hardware and

35

environments or any other aspect of the system. A physical system
model could include representations of a hardware environment and a
performance simulation. A software system model could include UML
class diagram and screen shots of the user interface. A model of an
enterprise may include business processes, services and resources.
Models can provide a common understanding of the modeled system
between different stakeholders. They can also be analyzed and
evaluated to help in decision making. Models can simulate how the
system being modeled is going to function. Moreover, models can be
executed thus providing a design realization into a working system.

Metamodel

A metamodel is a model that set of models conforms to. It is the
common foundation for the models expressed using such metamodel.
The Meta Object facility (MOF) (OMG 2014b) is a key foundation to the
Object Management Group MDA. MOF includes a family of specification
and unifies the steps of development, integration and evolution of
models. The key modeling concepts are Classifier , Instance (class and
object) and the navigation between them. These concepts allow the
traversal of any number of layers recursively. OMG defines a four layer
architecture of model levels each of which conforms to (aka is an
instance of) the one above it. The four levels are illustrated by an
example as in Figure 2 An example of four-layer metamodel hierarchy
(OMG 2014b).

Figure 2 An example of four-layer metamodel hierarchy (OMG
2014Db)

36

Metamodels also specify the schema for a repository that stores model
instances. A case tool can use the repository to create, store, browse,
render , edit etc. model elements. A transformation process can take
place where both the target and source models metamodels are
present. The transformation specification will look at the source
instances model that conforms to a source metamodel and try to
produce the target instances that conforms to the target metamodel.
More on transformation and their examples are illustrated in the next

sections.

Modeling Language

To be useful for the system stakeholders, any model need to be
expressed in a way that facilitate the communication of information
about the system and also need to be correctly interpreted by the
stakeholders and their technologies. A modeling language is used to
express the structure, terms, notations, integrity rules, syntax and
semantic of a model. OMG 's standard modeling language is the
Unified Modeling Language (UML) (O M G 2011). SQL Schema, Business
Process Modeling and Notation (BPMN), Web Ontology Language (OWL),

and XML Schema are examples of well known modeling languages.

Model driven

Describes an approach to software development whereby models are
used during the various development phases as the primary source
artifact for documenting, analyzing, designing, constructing, deploying

and maintaining a system.

37

Architecture

The architecture of a system is a specification of the parts of the
system , its connectors and the rules that define the interactions of the
parts using the connectors (Garlan & Shaw 1993). Within the context of
MDA these parts, connectors and rules are expressed via a set of

models.

In MDA an architectural process include understanding the
stakeholders requirements , understanding the system scope and
satisfying the requirements by a design of that system. MDA promotes
modeling to the architectural process and formalizes the resulting
artifacts (e.g. formal designs or models) so that developing systems or

improving them could be less expensive and less error prone.

Platform

A platform is a set of subsystems and technologies that provide a rational set of
functionality through interfaces and usage patterns. The users of a platform use it without
the concern of how functions are done. Examples of platforms include operating systems,

programming languages, databases, user interfaces, middleware solutions etc.

Platform Independence and Abstraction

Platform independence is a quality that a model may have. When a model is platform
independent then it is expressed independently of the features of that platform.
Independence is a relative indicator in terms of measuring the degree of abstraction (i.e.
where one platform is either more or less abstract compared to the other).

An important basic concept in MDA is the abstraction. Abstraction is the concept of
understanding the system in a general way and eliminating certain elements from the

defined scope. Modeling and abstraction go well together. We can design a model of a

38

system while abstracting away particular details such as those that tie the system to how
it can be implemented in a specific platform or technology. The more abstract the system
the more systems it can represent. The more specific the system the more bounded to

specific details of the technology or platform that it represents.

CIM, PIM and PSM

When a model of a system is defined in terms of a specific platform it is called a
“Platform Specific Model” (PSM). A model that is independent of such a platform is
called a “Platform Independent Model” (PIM). A Domain is defined as a bounded area of
knowledge. Domains relate to knowledge in two ways: vertically and horizontally.
Vertical domains are the business domains such as banking, accounting, etc. Horizontal
domains are specific software implementation technologies that are frequently used by
vertical domains. In MDA, a Computation Independent Model (CIM) specifies the
requirements of the system and includes the domain model which is in a level higher than

a PIM.

Implementation

An implementation is a specification that provides all the information
required to construct a system and to put it into operation.

Model Transformation

Model transformation is the process of converting one model to
another (PIM to PIM , PIM to PSM, PSM to PSM and PSM to Text). One of
the MDA capabilities is the automation of transforming the models
from abstraction level to another e.g. from a PIM (closer to business
concepts) to a PSM (closer to technology). Given an abstract concept
in one model such as a class in UML , we could transform and produce
a SQL table representation of the class in an Oracle data base system.
The transformation specifies the definition of the pattern and
39

parameters that are applied to the source element in order to produce
the target element. Note that for the same PIM we can specify different
patterns and parameters thus support different technologies.

Figure 2 MDA Pattern(OMG 2003) illustrates the MDA pattern by which a PIM is
transformed to a PSM. It is a generic pattern and there are many ways to carry out the
transformation. The empty box represents additional information that can be supplied to

the transformation according to the MDA chosen style and along with the PIM.

Figure 2 MDA Pattern(OMG 2003)

The conversion of the source model to the target model will be carried
out by standard mappings. In Figure 2 OMG Model Driven Architecture
(OMG 2015) the target platforms are represented by the thin ring
surrounding the core. Automation of the mapping is a goal, however
some hand coding may be necessary because of the immaturity and
lack of MDA tools.

One of the steps in creating an application using MDA is to produce the
application artifacts.

Figure 2 MDA- based Software Development Process Example (OMG
2003) depicts an example for full MDA process that includes the
execution environments. For example in a component based
environments, the necessary files will be generated such as interfaces,
component definitions and configuration files. The platform
independent model reflects the general model of the application. The
more complete this reflection is, the more complete the application

structural and behavioral features can be included in the specific
40

model hence the more complete application can be generated. In a
mature MDA environment, code and related files production can be
significant and even complete. Deriving code and implementation from
models is one of the uses of MDA. Automation enables rapid response

to changes, increases the efficency of software development and
decreses its cost.

Standard ._. : gt;n;ia—rd— -

I
Domain I QoS [
Models ' Models :
SRR e
Model Transformation
[!] L CJ]
PSM PSM PSM
EJB Specific .NET Specific Other Specific
Platform models Platform models Platform models
I| II) .|
Modelto Code ‘ ‘ ‘
Transformation |
\ \ \"

Execution Infrastructures

EJB/J2EE .NET/COM Other

Figure 2 MDA- based Software Development Process Example
(OMG 2003)

41

QVT is the standard OMG transformation language and is expressed in

section .

MDA Adoption and Promises

MDA has been advantageously implemented in small and large
organizations for different types of systems. some companies prefer to
keep their success a secret to their competition, while many have
agreed to publish their accomplishments, as can be seen on the OMG
website (OMG 2014c) as well as in various articles.

MDA is a software development method that promises to facilitate the
creation of formal models to achieve the long term flexibility in terms
of:

* Technology Proven: new implementation technologies can easily integrated and
supported by existing designs. Separation of concerns is an old engineering
principle. Dijkstra is generally credited for bringing this idea to the attention of

software community (Dijkstra 1976)

Dijkstra: “I have a small mind and can only comprehend one thing
at a time.”

Separating the business logic from technical details allows both PIM and PSM
models to change without affecting each other and provide a solution to the
software churn that burdens developers, system venders and users.

 Portability: existing designs and functionality can easily
migrated to different environments and platforms.
 Productivity and time to market: automating tedious

development tasks would free the developers and architects to

42

focus on the business logic. The resulted system development
would be faster and less error prone.

* Quality: Formality, separation of concerns, consistency and
reliability of artifacts produced all contribute to the quality of the
produced system.

+ Testing and simulation: models can be validated against the
requirement and also tested against different infrastructures and
platforms. They can be used to simulate the system behavior

too.

OMG Adopted Standards for MDA

In order to enable the MDA approach, a set of technologies were
adopted by OMG. Including UML as a standard modeling language ,
Meta Object Facility (MOF) (OMG 2014b) as a repository for model
manipulations and Common Warehouse Metamodel (CWM) that enable
the interchange of warehouse and business metadata. These are the
core models of the architecture represented in Figure 2 OMG Model
Driven Architecture (OMG 2015). Each core model represents the
common features of all the platforms in its category, technically it is a
metamodel of the category.

UML and Behavior Modeling

This section is the second one in the literature review specifically
related to modeling in UML because models are the building blocks of

MDA. The Unified Modeling Language (UML) is an OMG standard for
43

modeling systems. UML provides diagrams to model structural and
behavioral aspects of a system. Structure diagrams in UML represent
the static structure of the system. The class diagram is widely used to
describe static structures while other diagrams such as object,
component and deployment diagrams are also provided. A variety of
mechanisms to specify behaviors are supported in UML such as
automata (state machine), Petri-net like graphs (activity), informal
description (use case) and sequence of events (interaction) (OMG
2011). These different behavior specification mechanisms differ in their
expressive power and domain of applicability so the choice of one of
them depends on convenience and purpose.

Almost every application contains functionality that describes its
features. Beside that the application has behavior and possess a
structure. Behavior modeling is used to visualize, specify and construct
various dynamic aspects such as modeling a flow of control, an
element behavior, a workflow or an operation. Depositing an amount of
money into a bank account is an operation example. The formal
definition of the behavior of this operation remains the same despite
whether it was implemented in different platforms or in d9ifferent
programming languages. Modeling the operation behavior helps to
express the operation in a higher level of abstraction. The abstract
level description as a result allows for reusing the operation
specifications between different languages, frameworks and execution

environments.

Behavior execution -automatically verifying models on a computer- at

PIM level is a remarkable feature to verify high level models against

the requirements and to provide conformance for implementation at
44

PSM and code level. Considering that the promise of MDA is the
automatic generation of software based on models, the static
structural features of the modeled system are not always enough to
generate a completely full automated application wunless
complemented by behavioral features of the system. One can conclude
that behavior modeling is important to support MDA goals.

Current practice shows that MDA approach works quite well (OMG
2012) but, in most cases, behavioral models are used for other
purposes like documentation rather than complementing the structural
models to facilitate automatic software generation. The problem is the
lack of mechanisms for mapping behavior models from an abstraction
level to another, for example from PIM to PSM.

There are different approaches for modeling and executing behavior in
the UML at PIM level. According to the study in (Riccobene & Scandurra
2009) they may mainly fall into the following mentioned categories. In
the first category , behavior is not included in the PIM at all, but
instead it is added as code to structural code skeletons later in the
MDA process. This, however, prevent validating the system at earlier
stages.

A notion of behavior is represented in the second category by the use
of the Object Constraint Language (OCL) (OMG 2010) to add behavioral
information (such as pre- and post-conditions) to other more structural
UML modeling elements. This representation came at its own cost
because OCL does not allow the change of a model state, though it

allows describing it. In other words OCL is side-effect free.
45

In the last category, UML behavioral diagrams such as state machines,
activity diagrams, sequence diagrams are used for behavior modeling
and representation. However the purpose of that is for documenting
the user requirements. The various mentioned diagrams are not used
as a facilitator for automatic code generation. As a consequence
behavioral models are separated from the code, which finally even
leads to dead models.

Some effort was dedicated to enhance and extend UML diagrams as in
(Kalnins et al. 2009). Their work was based on extending two UML
behavior modeling notations, the sequence diagram and the activity
diagram. The extension aims to provide more expressivity to the
activity diagram and to allow the sequence diagram to represent
behavior of multiple classes.

In our study , we are going to use UML statechart diagram to represent
the behavior of the classes represented in the case study. We do
believe that realization of the MDA vision requires that the business
logic behavior of an application be represented explicitly in the PIM.
State-machines provide the suitable basis for such representation
(Mcneile & Simons 2004).

UML Structure and Behavior Models Relation

In order to simplify the semantic considerations, we are going to give
an overview of the relation between UML classes and its behavior,

considering both the activities and states.

46

package Datal [£] PShiMetablodel]
N
Ul infra august 2011, page 107
Version 2.4.1

Behavior o st 0.1

ownedBeha T |
Figure 10,3 - The classes
defined in the Classes diagram
'+ classifierBehavior Ssehme e
0.1 0.1 ¢cunlextTl]..1
*_behavior Behavi ature cinas StructuraiFeature
+method
~specificat
. +specification ~ o
Figure 13.6 -
Common Behavior - rownedOperation +ownedAttribute
UKL super page n] K] 0 gRecry
456 LJ L
+operation 1

Figure 11.4 - Basic |
invocati

Y
UML Super , Figure 152 -
Stats

ns
uml super page 246
e Machines page 552 cebivionto et

Figure 2 Simplified UML Class and Behavior Models
Relationship

Figure 2 Simplified UML Class and Behavior Models Relationship is a
diagram constructed from the BasicBehaviors, Kernel and
BehaviorStateMachines Packages of UML (OMG 2011). Class can have
zero or more owned attribute of type Property which is a
StructuralFeature. It can also be associated with zero or more owned
operations of type Operation which is a BehavioralFeature.
ownedAttribute and ownedOperation can belong to at most one Class.
The specification mechanisms used to specify the behavior of an
Operation can be a StateMachine, an Activity or any concrete sub
class of the abstract class Behavior. The behavior (eg. activity) in this
case is considered the implementation of the feature (the computation
that generates the effects) that the class is modeling by its operation.

47

A StateMachine is a Behavior that has at most one
BehavioredClassifier as its context. The BehavioredClassifier is a
Classifier. Since the Class is also a Classifier, then navigating from
the state machine using its context attribute will link the state machine
back to its class. Navigation from the Class to the associated
behavior(s) is possible using the directed association relations
ownedBehavior and classifierBehavior respectfully. In a similar
way we can navigate between the Activity and the Class to its
context class. We conclude that within a particular model instance,
UML pretty well integrates various diagrams.

The StateMachine is composed of one or more regions which in turn
composed of zero or more states. Each state may compose of three
owned elements, entry, exit and doActivity of type Behavior as an
effect of a transition related to the state region. In other words a state
has the ability to do a behavior before it transitions.

A fundamental unit of behavior is an Action that can modify the
system state in which it is executed. Behaviors provide the action
context and determine when actions to be executed and with what
parameters (property values of objects). Actions can perform calls to
operations specified in the model; the called operations may be bound
to activities, state machines or other behavior.

Basic UML 2 Concepts

Class and State Machine

48

In this part we briefly introduce UML 2 state machines that represent
the current state of the art in the long evolution of these techniques.
The intention is not to give a complete, formal discussion of UML state
machines, which the official OMG specification (OMG 2004) covers
comprehensively and with formality. Rather, the goal in is to lay a
foundation by establishing basic terminology, introducing basic
notation, clarifying semantics, and giving some examples. This section
is restricted to only a subset of those state machine features that are
arguably most fundamental. The emphasis is on the role of UML state
machines in the practical everyday programming rather than
mathematical abstractions.

For illustration purposes Figure 2 Simplified ATM Class represents a
simplified class diagram with one class - the ATM class which is
represented in an Automated Teller Machine (ATM) software system.
The ATM allows users (i.e., bank customers) to perform basic financial
transactions. The first case study in provides a concise, carefully
paced, complete analysis and design experience.

ATM

-inState ; State = Idle
-AThMe ; int
-userfutherticated ;| boaolean

+ATMC atmiMo ; int)
+verifyZardl)

+digpence! amourt ;| double)
+printReceipt(details : String)
+ejectCard()

Figure 2 Simplified ATM Class

The ATM objects (instances) have both behavior and static structures
or, in other words, they do things and they know things. The ATMNo is

49

an attributes of the class representing static structures. The verifyCard
method is considered a behavior. Beside that the class has a state
machine that describe its life time and shown in Figure 2 ATM State
Machine Diagram.

UML state machine diagram is a behavior diagram that is used to
visualize, specify and construct various dynamic aspects of a designed
system through nodes (states) and edges (transitions). State machine
diagrams can also be used to specify the usage protocol of a system.
UML provide behavior state machine and protocol state machine. The
behavior state machine which we will refer to as state machine, is an
object based variant of Harel state charts (Harel 1987).

(‘state machine ATMStates| &) ATMStates]J

reta'in(.:ard

{too many invalidPIM }
{authenticated }

die verifying

| | -
- {cardinserted} | do /verifyOperation l
ServingCusomer
{unreadableCard} one SR
SelectingService
| I
Failed ftimeout} k {optionSelected}
performingService :
ATMServices
sy
{again=yes}
{unreachableBank
{TranSuccess}
{cardEjected} feleassCard”- | {canceled}
do [ejectCardOperation {InsufficiertFund} . Primmg i
do / printReceiptOperation |
| reporﬁl"lgFaiIure
{again=No}

Figure 2 ATM State Machine Diagram

50

A state represents a stage in the behavior pattern of an object. During
the life time of the object, a state satisfies some condition, performs
some activity or waits for events to occur. It is possible to have initial
state and final state. When the object is created it is placed in the
initial state. The final state has no transitions going out of it.

A transition is a relation between two states, the source and target
states. A transition indicates that the object will move (transit) from
the source state and enter the target state when an event occurs, a
condition is satisfied or an action is performed. A self-transition is a
transition whose source and target states are the same.

Figure 2 ATM State Machine Diagram presents an example state
machine diagram for the ATM class. The rounded rectangles represent
states where the arrows with stick arrow head represent transitions.
The instances of ATM can be in one of the modeled states such as
Idle, verifying, or ServingCustomer states. The instance can start in
the initial state, represented by the closed circle, and can end up in the
Idle state again.

A state machine can change from one state configuration to another in
a response to an occurrence of an event. An event is the specification
of a significant occurrence. The name or description of the event that
cause the transition is written the line that corresponds to the
transition. For example, the ATM object changes from verifying state to
servingCustomer state after the bank database authenticates the user.

A transition may be associated with at most one guard which is a
constraint (condition) that controls the firing of the transition. The

51

guard condition is a boolean expression that is evaluated when the
event occurred, if the evaluation result is true ,the transition is enabled
or otherwise it is disabled. A user class which is not shown here is
authenticated by comparing the account number and PIN entered by
the user with those of the corresponding account in the database. If
the bank database indicates that the user has entered a valid account
number and correct PIN, The ATM object transitions to servingCustomer
state and changes its authenticated attributes to a value of true.

In order to model complex behaviors, sub states cab be grouped into a
composite state. The state ServingCustomer is a composite state that
is having SelectingService as a sub state. Another type of states is the
compound state which indicates that the details of the PerformService
sub-machine are shown in a separate diagram.

Constraints

A constraint is a restriction on UML models and model elements. As
Figure 2 UML Constraints Metamodel (OMG 2011) depicts, the
constraint is associated with an element and it has at most one
specification.

52

PrchapeableElement

T {orcred
P 1cuns‘rrnnu:dEbm¢r¢; Bauat
Haespice t '
[ubsars {aubeets awnert Jsusets owreglElment
{iLlsts PAMESCEEE] et cowrigCrait 4RI, | YaheSpeeiiination
ot < rERE *ﬂ 1 7
0.1 '

Figure 2 UML Constraints Metamodel (OMG 2011)

Specifying constrains is enabled by the flexibility of the ValueSpecification class and the
OpaqueExpression extension as denoted in Figure 2 Elements defined in UML
Expression Package (OMG 2011). The metamodel specifies the wusage of a

ValueSpecification wherever a value can be provided by a variety of technologies.

53

I frastructurelibrary:: Core:rAbstractions: -Ownerships::
Elermaent

{subsats owned Elamaent, ordaerad}

I Valw e Specification L + operand
=

= :

OpagueE xpression I Expression I 0..1
+ body : String [*] (nonunigque, ordered) | + symibol @ Strirng [O..1] |
+ language : String [*] {ordered} + expression

{subsets owner}

Figure 9.20 - The elements defined in the Expressions package

Simple specification values can be provided by a string literal in any language including
natural languages. More values can be provided by an OpaqueExpression that has two
attributes, one of language names [language attribute] and the other of string bodies in the
corresponding language [body attribute]. The attributes provide an ability to present
implementations in a variety of languages. If the language name is omitted, an
implementation default of The Object Constraint Language OCL is assumed. OCL is a
precise text language that provides constraint and object query expressions on MOF
model or meta-model. It is a key component in the OMG QVT specifications.

Specification of a behavior such as “name.toUpper()” can be achieved by an
OpaqueExpression in which the language wvalue is ‘OCL’ and the body is
‘name.toUpper()’. The OCL is therefore embedded in a textual form that has no
knowledge of the classes in OCL metamodel. Users have the choice to use programming
languages API such as the OCL Java API. The benefit is to avoid the need to incur OCL
parsing costs by exploiting OCL’s ExpressionInOCL class that extends ValueSpecificaion

and delegates functionality to an OCLExpression.

Specifying Constraints in UML

Some constraints can be effectively specified using the graphical UML
features. Some types of constrains can't be represented by UML. Using
UML comments to add constraints in the form of text was previously

used but that was a source of ambiguity, informal specification and

54

none interpreted constraints. Figure 2 Account Constraint: Positive
Balance shows a comment used to express a constraint.

BankAccount
==comment== -accountMo ; int [1] = 999
balance should be T [-acType : String [1] = "debt"c
a postive number -halance ; doukle [1] =1000

Figure 2 Account Constraint: Positive Balance

OCL is a language that is intended to provide a formal and
comprehensive specification of model constraints. It has a precise
syntax that enables the construction of unambiguous constraints and
can avoid the inherent difficulty of using complex mathematics too.
OCL can be applied to UML models and is used in MOF and QVT.

OCL statements are constructed in four parts:

1. a context in which the constraint is to be evaluated.

2. a property that defines some characteristics of the context
(e.qg., if the context is a class, a property might be an attribute)
3. an operation (e.qg., arithmetic, set-oriented) that
manipulates or qualifies a property, and

4, keywords (e.qg., if, then, else, and, or, not, implies) that are
used to specify conditional expressions.

There are four types of constraints on an object that can be specified
using OCL: invariants, pre conditions , post conditions and guards.

55

Invariant

Invariants are constraints that applies to all instances of a class and
evaluates to true if a condition is met. An invariant constraint consists
of an OCL expression of type Boolean. The expression must be true for
each instance of the classifier at any moment in time. For the ATMCard
class in Figure 2 UML Constraints Metamodel (OMG 2011) the invariant
expirationDate.isAfter(today) ensures the validity of the card when
used by checking the class property expirationDate.

The syntax of an invariant is as follows:

context <class name> inv: <Boolean OCL expression>

Multiplicity constraints can be understood as simple cases of
invariants. Specifying the multiplicity in associations can constraint the
relation between the association ends instances. Each association end
is a property whose type is a class. The association between the
BankCustomer and an ATMCardas in Figure 2 ATM Card and Customer
Association Multiplicity is named customerCard . An instance of the
BankCustomer class can have one or more instances of ATMCard
(myCard) denoted by 1..* , where an instance of ATMCard can only
belong to one BankCustomer(holder).

ATrﬂCard BankCustomer
:E:Irt;ﬂgll'?«lélln”é[:ﬂﬁtring 1] -myCard customerCard -holder -name : String [1]
-expirationDate : date [1] 1 .* 1 .'PlN: "T't [1]])
-bankhame : String [1] isFundingheeded boolean=true
+requestService(service : Service § : boolean

Figure 2 ATM Card and Customer Association Multiplicity
56

Precondition

A precondition is a constraint that may be associated with an operation
of a classifier. The purpose of a precondition is to describe the
conditions that has to hold before executing the operation by an
instance. The precondition consists of an OCL expression of type
Boolean evaluated to true whenever the operation is executed. Figure
2 UML Constraints Metamodel (OMG 2011) shows the placement of a

precondition in the UML meta model.

ModelElement 0.n +constraint Constraint
(from Core) -, dhnstrainedElement 0. | [fomcCorel

% 0.1
{ordered) 1| +body

+owner —
(from Core) yfeature 0.1 (from Core) (from DataTypes)
Behai:fralgeazure ExpressioninOcl L OclExpression
om L.are - -
+hodyExpression

Figure 2 An OCL ExpressionIlnOcl used as a pre or postcondition

Postcondition

57

As the precondition constraint, the postcondition is a constraint that
may be associated with an operation of a classifier. The purpose of a
postcondition is to describe the conditions that has to hold after
executing the operation by an instance. The precondition consists of an
OCL expression of type Boolean evaluated to true whenever the
operation stops executing. The mark "@pre" can be used to refer to
values before execution time and the variable result refers to the

returned value of the operation if any.

The OCL syntax to denote a precondition, a postcondition or a pair of

them for an operation is:

context <class name> :: <operation> (<parameters>)

pre: <Boolean OCL expression>

post: <Boolean OCL expression>

Let us assume that the withdraw operation of ATM class is as follows:

Preconditions:

1. The ATM must not be in an error state

2. it must hold some card

3.The amount to be withdrawn is positive

4. The balance covers the withdrawal amount

58

Post-conditions:

After withdraw has been executed, the right amount of money must

have been spent or some error has occurred.

The OCL statements are as follows:

context ATM::withdraw(amount : Integer)

pre: (state = #0k) and (cardld <> 0) and (amount > 0) and

(balance > amount+100)

post: (balance = balance @pre - amount) or (state = #error)

The post-condition expression makes use of the OCL operator @pre

that yields an expression's value at pre-condition time.

Guard

A guard is an expression that can be linked to an association in a state
machine. It places a restriction on the transition to the target state.
Whenever the transition is attempted, its value must evaluate to true.
The value of the guard is of Boolean type. The context of the guard is a

classifier which is the owner of the state machine.

OCL syntax is simple. It defines an OCL expression, which always has a
type. The classes defined in the class diagram can be used in OCL
expressions. These types are called model types in the OCL literature.
Typical operations for class types deal with the properties of a class
type, i.e. its attributes, operations and associations.

59

Traditional Support of State Machine in Software
Development

There are a few different techniques to implement state machines in
different programming languages such as C, C++ and Java. These can
be categorized into the following:

- native language support

+ hand-coded implementation

- tabular implementation

. unintentional state machines
« State pattern

60

« use of a library

« model-based code generation
Native Language Support:
Some languages has built in support for state machines such as
Erlang(Anon n.d.). Erlang is a programming language designed at the
Ericsson Computer Science Laboratory. It contains libraries of code for
building robust fault-tolerant distributed applications.
Hand-coded Implementation
A program that contains a switch statement where the code for each
state is written and the next state is determined.
Tabular Implementation
A state transition table of entries represented as (source state,
destination state, input condition) and the table is processed in the
application. Then for each update of the state machine, the table is
used to determine the next state.
Hidden State Machines
The logic is added in a program that contains a flag that switches
between two states. The source code is considered the specification of
the state machine behavior.
State Pattern
The state pattern is a behavioral software design pattern, also known
as the objects for states pattern. This pattern is used in computer
programming to encapsulate varying behavior for the same routine
based on an object's state .lt is a way for an object to change its
behavior at runtime in class instances that encapsulate the behavior in
each state, including determining which state is next.
Use of a Library
Some programming languages provide libraries to create and
implement state machine such as the free C++ Boost libraries.
Model-based Code Generation using state charts
The state charts are drawn and the code is generated directly from
them using some tools. Example of tools are Stateflow and StateMate
that vary in their support and price. Most of the tools available in the

market can generate the static parts of a model aka classes.
In MDA approach, sets of transformations are applied to a platform

independent model (PIM) in order to derive a platform specific models.

Query View Transform (QVT) standard addresses the model to model
61

transformation (e.g., PIM to PIM, PIM to PSM and PSM to PSM). In order
to complete the process of software development using models, those
models has to be transformed to text artifacts such as code,
deployment specifications, reports, documents, etc. The MOF Model to
Text (mof2text) standard addresses how to translate a model to a text
representation using a template base approach (Object Management
Group (OMG) 2008). A Template is a text template that contains
placeholders(expressions) for data extracted from metamodels entities
through queries. For example, the following Template specification
generates a Java definition for a UML class.

[template public classToJava (c : Class)]

class [c.name/] {

/] Constructor

[c.name/]() { }

} [/template]

For a class ‘ATM’ (shown in Figure 2 ATM State Machine Diagram), the
following text will be generated:

class ATM {
// Constructor
ATM() { }

}

Automation and Model to Code Transformation

This section illustrates the third part of the literature review. One of the
challenges in software engineering industry is to determine the
software mistakes or at least to find mistakes (bugs) early during the
requirement or design phases and not after delivery. Automatic code
generation can provide a solution to the problem especially when it is

62

based on a human-built model or design as investigated in (Burke &
Sweany 2008). The authors concluded that the use of Model Driven
Development (MDD) with automatic code generation can contribute
significantly in decreasing the development costs and at the same time
increase the reliability of products. As a result software development
becomes faster, better, and cheaper.

Automation provides an increase in productivity. Generators can
produce many application artifacts in short time. Tedious and boring
parts of code can be also generated instead of hand written.
Automation can also provide architecture consistency when
programmers work within the architecture. Beside that automation lifts
the problem to a higher level thus providing an easier porting to
different languages and platforms. In contrast to the mentioned
advantages, generators themselves - programs that produce
programs- have to be written first. So there will always be hand coding
required.

A research study (Dominguez et al. 2012) provides a systematic
literature review that focuses on the code generation from state
machine specifications in the context of MDD. The state machine
specifications include UML state machines, finite state machines and
Harel statecharts (Harel 1987). These constitute the most widely used
specifications to specify the dynamic behavior of a system. The study
analyzed the elements of the state machine specification supported by
research and how they are implemented. The former analysis is
denoted by element based comparison, the latter is referred to as
pattern based comparison. Additionally the software feature that is

63

desirable in the software development is considered and denoted as
feature based comparison.

The review put it clear that the state machine specifications (UML state
machines, finite state machines and Harel statecharts) constitute the
most widely used to specify the dynamic behavior of a system.
Moreover the UML state machines are the most common form used in
automatic code generation in MDD. The results of the review show that
the techniques of automatic code generation from state machine
specifications can be classified into two groups , those based on design
patterns and those not. Design pattern specifies a general solution for
recurring design problems. Regarding the element based comparison,
the review concluded that most of the implementations focus on
elements such as simple states, events, guards, and actions in
transitions. Specific elements of state machine such as simple and
orthogonal composite states were less investigated by research. A key
finding in the review regarding the feature based comparison is that
many implementation strategies do not care about features like

maintenance, reusability, or modularity.

Another conclusion drawn from the review is that code generation from
state machine specification is one of the most challenging tasks.
Because there is a gap between the modeling languages and the
programming languages. Another reason is the dynamic nature of the
state machine. Additionally, concepts such as states and events are
not directly supported by most of the object oriented programming
languages. MDA resolves what programming languages failed to
handle by building a model of the system using modeling languages.
UML - a standard modeling language- is having the concepts of states,
64

transitions, actions, events and more. Traditionally modeling and
programming are viewed to be different. Moreover there was a gap
between the design phase and the implementation phase. The value of
using the models created in the design phase is not gained and stops
along the line in the software development process. As a result there
was a difference between a model and a program. Our interest in MDA
let us say that both the model and program are descriptions of the
software system. MDA concepts rely on platform independent and
platform specific models that can be seen as models and programs at a
first glance. At a point in the software development process , the
existing modeling artifacts are transformed to programming languages
artifacts, after which the development method can proceed. This is
only one benefit of gaining a value from models and there are more

discussed in section

(Sunitha, E. V. 2012) presents a method to convert behavioral models
to implementation code. The method concentrates on behavioral
models which includes state machines, sequence diagrams and activity
diagrams. The approach used was an MDA approach where the system
is designed as a PIM using UML and mapped to a PSM using
transformation. The implementation language targeted was Java. The
method implementation, UML Code, includes a UML modeler, model
processor, XMl generator and code generator.

In their method , the activity diagram reflects the business process

flow. Each activity is explained using sequence diagram. The states of

objects in the activity diagram is explained by state machine. The

various diagrams contents are stored in a single XML file that conforms

to a specific Document Type Definition (DTD). The DTD document
65

shows how to express UML 2.0 activity diagram in XML. The XML file is
parsed to identify behavioral objects and to transform them into Java
classes using Extensible Style Sheet Language Transformation (XSLT).
The generated code constructs were compared to similar tools output.
The approach used in the study shows that 80% of source code can be
produced automatically.

The mentioned method is parsing the files, in MDA the models are
transformed from abstraction level to another to produce target
artifacts. They also used XSLT which is a common and powerful
language for XML transformations, but not suitable for transformations
of semantically complex models due to its low level syntax. The
method does not apply the principles of MDA, hence the benefits of
MDA such as reusability and interoperability are not achieved.
Although the mentioned method is not under the ideal MDA approach,
but it assures that incorporating and using behavioral constructs is
going to pave the way strongly between system designs and the
generated code. The promise is to provide a complete code and not
only code skeletons. In a comparable way we are suggesting a method
that implements the MDA best practices and concentrates in the PIM to
PSM mapping. The method could benefit from the several available
UML modeling tools in addition to the other formal and de facto OMG
standards such as QVT (OMG 2011a) and OCL (OMG 2012). Query View
Transform (QVT) is the standard language that the OMG specified to
carry on the transformation from model to model and from model to
code. Object Constraint language (OCL) is a standard language that is
used to specify constraints on models and model elements.

66

Summary

MDA places modeling at the heart of the software development
process. Various models are used to capture various aspects of the
system in a platform independent manner. Sets of transformations
are then applied to these platform independent models (PIM) to
derive platform specific models (PSM).

Deriving code and implementation from models is one of the uses of
MDA. Automation enables rapid response to changes, increases the
efficiency of software development and decreases its cost.

UML is an OMG standard for modeling systems and it provides a
rich representation for different aspects of any under development
software system. Behavioral models in UML complement the static
models and provide the full picture of the system. Along with other
OMG standards such as MOF, QVT, OCL the automatic code
generation from models can be feasible.

UML state machine diagram is a behavior diagram that is used to
visualize, specify and construct various dynamic aspects of a
designed system through nodes (states) and edges (transitions).
Models can be constrained by adding constraints to them using OCL
which has its own limitations.

Code generation from state machine specification is one of the most
challenging tasks. Because there is a gap between the modeling

67

languages and the programming languages. Another reason is the
dynamic nature of the state machine. Additionally, concepts such as
states and events are not directly supported by most of the object
oriented programming languages.

Research Methodology

Overview

This chapter presents the research methodology applied in order to
complete this research. There are two case studies were conducted.
Those are briefly described. The tools, languages, environments which
were used are identified and described in this chapter too. The chapter

also depicts the main steps for both case studies.

Case Study Methodology

The research methodology is basically based on (Hevner et al. 2004) to
build and evaluate system techniques and methods iteratively and
incrementally based on cases. A language, model or guidelines are to be
identified in order to define the method under study. The strategy of the
research is based on case study. (Creswell 2012) define case study as
“researcher explores in depth a program, an event, an activity, a
process, or one or more individuals” (p. 15). Leedy and Ormrod (2009)
stated that , using case studies the researcher is attempting to learn

“more about a little known or poorly understood situation” (p.149).

Brief Description of the Proposed Case Studies

First we have started by a case study that examines and tests the
issues and problems when mapping Behavior models from PIM to PSM.
We had reported on that in (Ahmed et al. 2013) by giving examples

68

from real world and trying to highlight the importance of behavior in
models. We concluded that a concrete method to map the behavior
models (state machine) from PIM to PSM was still an open question.
Eventually using a case study to raise issues helped us to understand
how to tackle the problem and to improve model driven development.
The second case study provides a concrete detailed and practical way
of finding solutions to the issues raised. It describes an end to end
model driven software development that incorporates both static and
behavioral models with more focus on behavioral part. More details are
provided in next chapters.

Languages and Tools Used in Case studies
In order to carry on the various steps in the two case studies some

tools and languages were needed. The tools and languages were
chosen because they are OMG standard or they comply with OMG
standards. A modeling language , an IDE to create models that allow
also the exchange of models in a standard way, a transformation
language and an IDE that supports instances generation are specified

in the sections below.

UML 2 Metamodel

The Unified Modeling Language™ - UML -isa specification and
standard from the Object Management Group OMG's. It is used to
model application structure, behavior, and architecture, business
process and data structure. UML and Meta Object Facility (MOF) are
corner stone in MDA. After its first release versions as UML 1.x, UML
has gone through various improvements. UML arrived at version UML
2.Xx. specification that had four parts: UML Superstructure (OMG 2011b)
for diagrams and elements description , UML Infrastructure (O M G

69

2011) that defines the core metamodel on which the Superstructure is
based, the Object Constraint Language (OCL) (OMG 2010) for defining
constraints for model elements and UML Diagram Interchange that
defines how to exchange the diagrams.

Software system exhibits two characteristics:

e Static (structural): Logical Structure, e.g., relationship
between classes, attributes of a class, etc. UML provide the
use case and class diagram for describing system static
structures.

 Dynamic: Behavior of the system, e.g., how to respond to a
certain event, how to initiate an action, etc. This view
includes sequence diagram, activity diagram, state
machine diagram, Object diagram and collaboration

diagram.

Magic Draw

Magic Draw UML Personal Edition 16.5 SP 1 from No Magic, Inc was
used. It is a development tool that facilitates analysis and design of
Object Oriented (O0) systems and databases (Anon n.d.). Designed for
business and software analysts, programmers, and Quality Assurance
engineers. Major MDD vendors recommend using it in the world of
Model Driven Architecture. It is used to create, visualize edit and
export various UML diagrams including class, state, activity, package,
and UML metamodel for PIM and PSM.

XMI
The XML Metadata Interchange (XMI) (OMG 2014d) is a standard and a
trade mark for OMG. It is a framework for defining, interchanging,
manipulating and integrating XML data and objects. It is mainly used
as interchange format for UML tools and to integrate tools,
applications, repositories and data warehouses. XMl also defines rules

70

for schema definition and the rules for metadata generation of
document production — how is a model mapped onto text.

Magic Draw tool has the support for XMl 2.x in many options. One
option is to store native files in XMI format. Another option is to import
from XMI and to export UML 2.x models to XMI. In the case studies the
PIM and PSM models were exported as XMI documents to integrate
them into the Eclipse Modeling Framework to further transform them.

QvVT
QVT (OMG 2011a) is another standard set of languages from OMG to
Query, View and Transform models. QVT standard defines three
languages: QVT-Operational, QVT-Relation and QVT-Core. Model
transformation is a program which operates on models and contains
transformation rules with model elements to be matched and
transformed.

Figure 3 QVT Operational Context

In Figure 3 QVT Operational Context the abstract syntax of the
language is defined as MOF 2.0 metamodel. The program of the
transformations (T.,) are defined on the base of (MM, MM,)
metamodels. Transformations are executed on instances of MM,
metamodels (M) in order to produce instances of MM, metamodels
(Mb).

Transformation as depicted by Figure 3 Structure of A Simple QVT
Program can consists of mapping operations that form the

transformation logic. A mapping operation maps one or more source

elements into one or more target elements. It matched the source

71

elements on the base of a type and executes operations in its body to
create target elements

transformation News2Msg(in source : NewsPIM , out target : MsgPSM)

\
main() [} E\\ Mapping operaticn example Signature

Entry point: The execution of
the transformation starts here

mapping Sender: :NewsSendzr2Producer (in model : Model) : Producer

{
Id=self. senderld;

name:= self.name; N
}

Operationbody

Figure 3 Structure of A Simple QVT Program

In the case studies a transformation program was written to transform

the PIM instances model into the PSM instances model.

Eclipse Modeling Framework EMF
Eclipse is an Integrated Development Environment (IDE) written in Java
programming language and can be used to develop applications (The
Eclipse Foundation n.d.). The Modeling project in Eclipse (EMF) contains
projects that focus on model-based development technologies and
provide modeling and code generation facilities. Models as an input to
EMF can be specified as UML or XMI documents then imported into the
framework. From the specified model document, EMF will generate
Java classes for the model along with adapter classes to instantiate
them. Beside that an editor is generated to manipulate model
elements. The meta model for EMF is Ecore which is a reference
implementation of the OMG's simplified version EMOF (Essential Meta-

Object Facility). An extract of a small part of the metamodel is shown in

72

Figure 3 Ecore EMF's Metamodel Sample (The Eclipse Foundation n.d.)
Applications might consider using Ecore or defining their own
metamodels based on it.

eSuperTypes

0..*
EClass E StructuralFeature
- eStructuralFeatures -
name : String| @ 0. name : String
//\\
eReferenceType 1
‘_ . EDataType
EAttribute eAttributeType :
EReference YP® fame - String
containment : boolean 1

lowerBound : int
upperBound : int

eOpposite | 0..1

Figure 3 Ecore EMF's Metamodel Sample (The Eclipse
Foundation n.d.)

Case Studies Main Steps

The case studies are an attempt to develop an entire small but rich
enough application to illustrate the MDA approach. The PIM and the
PSM are developed as UML2 class’s model, with the dynamics
developed using UML2 State machine and Activity models. The
developed models are not claimed to be the best but they were
selected and modeled because they have facilities to exercise the
proposed method, familiar to the developers and readers and big
enough and not trivial.

1. Input Models

a. PIM meta model

First we analyzed and build a model with a high level of abstraction for a
software system. The PIM is augmented with structural model (Class Diagram)

and behavioral model (State machine Diagram).

b. PSM meta model
73

In this step the meta models of a chosen platform specific
model (PSM) of a software system are analyzed and modeled.
A PSM is tailored to specify the system in terms of the
implementation constructs that are available in one specific
implementation technology. The PSM is augmented with the
structural model (Class Diagram) and behavioral model
(State machine Diagram).

2. Transformation in the first case study

The relationship between the PIM and PSM constructs were investigated and
studied. A manual mapping(not by tools) was conducted to identify the
relationships among structural features. For the behavioral features the process is
carried out by creating the equivalence classes between PIM states and PSM states
for particular objects. In mathematics when an equivalence relationship exists in a
set , this denotes the natural grouping of elements related to each other. The issues
raised by conducting the first case study were discussed and reported to the
research community in (Ahmed et al. 2013).

Two stages of transformations were suggested, the first was the transformation
from the PIM to the PSM and the second stage was the translation from PSM to
code. The second stage is a rendering of the output into code and code alike
constructs as prove of concepts. The benefit of the first case study is to check the
feasibility of conducting more investigations and research on the topic. Moreover,
to gain confidence on applying a more concrete case study and use the proper

languages and tools.

3. Transformation in the second case study

The second case study provides a concrete detailed and practical
end to end model driven software development that incorporates
both static and behavioral models. The main idea is to model the

structural and behavioral features of the news system in a PIM
74

and to model the common features of a messaging system in a
generic PSM. The models were prepared as step 1 above
-defining the input- suggested. The generic messaging system
enables the news application to be implemented in more than
one platform such as Sun’s Java Messaging Service (JMS((Oracle
2013) Microsoft’'s MSMQ, or IBM’s MQSeries. The PIM to PSM
transformation was conducted using OMG's QVT transformation
language. The final step is to transform a PSM to code. The
complex step is the one in which a PIM is transformed to a PSM.
The Apache Active MQ implementation of JMS is chosen as the

execution environment for the resulting software system.

Summary

The research methodology used was the case study
methodology. The case study approach facilitate the exploring
and examining of the case under the study. Moreover provides
a way to conduct a detailed solution to the issues raised while
learning about new or poorly understood situations.

The models and meta-models are developed using UML 2
specifications in an environment called Magic Draw. The
Eclipse Modeling Framework (EMF) provides a modeling and
code generation framework.

The tools for developing and executing transformations are
based on the Eclipse M2M project. This implementation is not
completely finished and contains some bugs. In addition, the
available documentation and tutorials about QVT are a bit
limited ,not always clear or as practical as could be. Because
of these limitations it can be difficult to make an optimal
transformation, however the environment is certainly suitable
to model easy to average transformations. It is very likely the
75

environment will be able to manage more complex
transformations in the near future, because it has a high
potential.

Two case studies were conducted and research publications
on initial results and issues were reported to the research
community in (Rihab Eltayeb Ahmed 2012) and (Ahmed et al.
2013)

Case Study: Financial System Services

Overview

This chapter introduces the first case study of a financial system that is
used to develop an application using MDA paradigm. The system is
taken as an attempt to develop an entire application to illustrate the
MDA approach. The PIM and the PSM are developed as UML2 classes
model, with the dynamics developed using UML2 state machine. The

76

observations and issues raised by the case study are identified and
discussed.

Models of the System

In this case study we begin by the design of an object oriented
automated teller machine (ATM) software system for a major bank. The
requirement document of the system determines what functionality the
system must include. For simplification and scope we are not going
through the details of the document rather we limit our design to the
basic financial transactions each ATM is capable of. Each user can have
one account at the bank. ATM users can view account balance,

withdraw , deposit and transfer money between accounts and more.

Financial System PIM

The UML class diagram in Figure 4 Financial Services PIM Class Model
shows the implementation classes for the financial service system at
the PIM level with default values for class attributes. It shows the
internal structure of the system with the essential details at this stage.
From a structural point of view, there is: a customer (BankCustomer
class) with a specific bank account (BankAccount) and who is a
holder of an ATM card (ATMCard class). With the ATM card the
customer can benefit from various services such as getting the
remaining balance, withdraw some amount of money, transfer fund
between accounts, buy mobile credit and prepaid electricity. These

services are concrete subclasses of the abstract (Service Class).

77

package Data| PIMCIasngrm]J

ATMCard BankCustomer LinkProvision

—cardNo : it [1] -myCard -holder [-name : String [1] cuser -provider [[oyeyote State [1] = Idie
-holderMame : String [1] 0. 1 -PIM : int [1] = - =
-expirationDate ; date [1]] isFundinghleeded:boolean=true frrefreshlink(service : Service) : boolean
-bankMame : String [1]

+reguestService(service : Service) : boolean

o
-customer |1.. -customer
. *
hankAccount |0.. —requestedService
BankAccount i
Service

—accountho : int [1] = 999

-acType : String [1] = "debt" |_

“balance : double [1] = 1000 2504 1. =
.

! -affectecBy

-Serviceld : int =1

AirtimeService EnqueryService

-mohileMo : int [1]=19
-rechargefAmourt : int [1] =10 .

WithdrawService
—-withdrawAmount ; double [1]=10

ElectricityService

-meterMo ; int [1] = 888
-electrictyAmount : int [1] = 50 —

TransferService

—|tolccount : int [1]=0
-transferamount : double [1] =100

Figure 4 Financial Services PIM Class Model

LinkProvision is the provider of the service which a customer can
request. Its behavior is specified by a state machine diagram.
LinkProvision is Idle by default as indicated by the linkState attribute in
the class diagram. To put LinkProvision in the proper state to serve the
customer, a customer will demand a service by setting its own
attribute isFundingNeeded to true. That is going to set the
isFundingNeeded guard to true, hence triggering the transitions of
LinkProvision from “ldle” to “validateUser” state as in Figure 4 State

Machine Behavior Diagram of PIM LinkProvision Class.

78

(‘state machine LinkProStates(s : Service) [%LinkPmStates]J

linkStart handleUserErrors
T[invalid]
+ [isFundingMeeded) uslidateliaer % handleTr tion [faied] } HandleFailure
Idle | entry / calRefreshActivity

[succeeded]

' finalize

Figure 4 State Machine Behavior Diagram of PIM LinkProvision
Class

A Customer is the initiator of the service he demands. The
LinkProvision is the provider for the service by which the Customer is
got served. The Customer has the state “Requesting” as in Figure 4

BankCustomer States that upon entry will call the requestService
operation of the Customer. The behavior of the requestService
operation is specified by an activity as in Figure 4 RequestService
Operation Behavior that in turn creates a BehaviorAction call to put the
LinkProvision in the proper state to serve the Customer. This Behavior
Action call will set the isFundingNeeded guard to true, hence
transitions the LinkProvision to “validateUser” state as in Figure 4
State Machine Behavior Diagram of PIM LinkProvision Class. Upon
entry of the “validateUser” there is a call to refreshLink operation. The
implementation of the refreshLink is provided by the ATM in the PSM

models.

79

('state machine CustomerStatesDgrm [CustmnerStatengrm]J

[serviceMeeaded] ’ : [served] -
. Requesting . !)
entry [regquestOperationCall

Figure 4 BankCustomer States
"-at:tiuily servicebActivity | service : Service) : boolean [@Service.&.cﬁvi‘w]J

-

[+

-

linkCall : LinkProStateDgrm r|1]

L]

isFundingMeeded : boolean[1]

Figure 4 RequestService Operation Behavior

PIM Class Model Instances

The Object diagram in UML shows possible configurations of instances
of the class diagram. Similar to the class diagram it shows the static
view of the system but this static view is a snapshot of the system at a
particular moment. The class diagram is abstract while the object
diagram is more concrete because it is more close to the actual
behavior of the system.

UML specify that a Classifier can have zero or more
InstanceSpecification that describe its instances. These instances are
considered level zero instances. The diagram in Figure 4 Extract from

80

The UML Kernel Package below is the instances
superstructure specification v2.4.1.(OMG 2011b).

PackageableFlement

i

InstanceSpecification

N
{subsets

ownedElsment} Jsubsets owner}t

{subsets owner}

diagram from UML

{subsets ownedElement,
ordered}

+ owninginstance + it + owening=lot
Slot
¢1 * 0.4
N

+ value ValuaSpecification I
B

{subsets owner} {subsets ownedElement’:
+ ovvninginstanceSpec T + spemflcaﬂoq

E 0.1~ Vatuespecitication |

+ classifier. —
" Classifior |

Figure 7.8 - Instances diagram of the Kernel package

+ definingFesture
StructuralFeature |
1

Figure 4 Extract from The UML Kernel Package

According to the specifications in Figure 4 Extract from The UML Kernel
Package, the object diagram in Figure 4 PIM Model Instances can show
an object's classifier (e.g. ATMCard class) and instance name (e.g.

cardl), as well as attributes and other structural features using slots.

Each slot corresponds to a single attribute or feature, and may include

a value for that entity. For example the accountNo attribute with the
value 9999. Figure 4 PIM Model Instances instantiates the model

presented in the class diagram in Figure 4 Financial Services PIM Class

Model.

81

package Data[[EPIMinstanceDarm]J

“card1: ATMCard] [customer1 : BankCustomer | e [linkPro : LinkProvision |
B = 1 I =" ink Custm |6 =
accountho = 9999 bankAccount = accountl 1 linkState = Idle
carc_iNo_ = card] custm? myCard = t_:ard‘l user=customeri
expirationDate ="2/9/2012" ———— X X X X X name ="Rihah"
holder = customert | PIN=3
| holderMame ="Rihahb" provider = linkPro
?maccount'l g BankAccoun‘l_:
| accountto = 999 | acc1Custmi

| acType = "debt"

| affectedBy = withdraw
| balance ="1000"

| customer= customer1

.withdr-aw1 : WithdrawService i .

| account= accountt
| withdrawAmount="100"

=85 - acc1Withd1

Figure 4 PIM Model Instances

PIM Behavior Model Instances

A state machine is a Behavior. Behavior is an abstract class that
inherits from the concrete class Class that also inherits from Classifier
from kernel package in UML superstructure (OMG 2011b). Hence a
state machine is a Classifier and can have instance specification to
represent it an object. A state is a concrete sub class of the abstract
super class Vertex. Each implementation of a vertex can have a name
because it inherits from the class NamedElement. Since a state is not
a Classifier neither one of its super classes then a state cannot have
instances (at level zero). A state named "ldle" is a level one (meta
model M1) instance of the State meta class and cannot be represented
in an object diagram. This can be considered a limitation because the
states are not represented in most of the tools editors that represent
the exported models. Using the Eclipse Modeling Framework, and when
trying to show the XMl file contents diagrammatically, all the states
were lost. The only thing that represented was the state machine itself.

82

Another important factor was that EMF is based on Ecore which is a
simplified representation of UML.

Amendments to the state diagram model in UML or Ecore can solve the
issue. A model element that has an instance specification with an
association to the State class can be a valid solution. A solution is
presented in (Eric Cariou n.d.), they extended the UML meta model for
the state machine and provided the OCL constraints on that as shown
in Figure 4 UML Meta-model Extension for State Machine Instance
Specification (Eric Cariou n.d.).

package UMLEx J

InstanceSpecification |* * | Classifier ?Iaﬁ
{from UML) from UME) |<]— | {J;';{')‘
+ +classifier
.) - ‘? " - - 1 | StateMachine Behavior
statelMachinelnstancespecification) i) I)
+activeSubmachine. |StateMachinelnstanceSpecification from UML trom UIVIL
0.1 * tstateMachine
0.1 0..1]+activelnstance { subsets classifier }
+histofylnstance
+activeRegion
) “|_ActiveRegion | * + 1| Region
+history Configuration {from UML]
)) + /region
] +activeRegion
+activeCpntainer Flement
{from UML)
+activeSpbvertex)
1 +activeState State
ActiveState 0.1 ! {from
UML)
o+ +state
+]0..1

Figure 4 UML Meta-model Extension for State Machine Instance
Specification (Eric Cariou n.d.)

83

Financial System PSM

An ATM machine model is used as a PSM for the financial system. The
detailed class model can include two parts. The first is the ATM
hardware and how that is managed, and the second is the banking part
related to achieving the financial services. The ATM class in the PSM
class model is associated with a DeviceManager class through which
it manages the composed financial devices. Financial devices have in
common attributes and operations inherited from the base class
FinancialDevice. Classes such as CardReader, Display,
CashDispenser and ReceiptPrinter are sub classes of the
FinancialDevice super class, each of which is specialized in
facilitating part of the ATM job. This part is modeled in UML and can
further be implemented for example through the J/XFS Java eXtensions
for Financial Services for the JavaTM platform. J/XFS provides a set of
standard Java interfaces in support of the input/output peripheral
devices used in the finance industry such as Cash Dispenser, Recycler
and ATM Interface (Members 2004).

In the second part of the PSM class model shown in Figure 4 PSM Class
Model of an ATM with regard to the financial services, a session
(ATMUserSession) will be started for an inserted card (Card class)
inside the ATM machine. A session is associated with a bank (Bank
class) through a connection (BankConnection class) to provide a
channel for reflecting the user selections back to the bank account
(Account class). An account is associated with one or more
transactions (Transaction class) and a transaction can affect one or

more accounts.

84

85

package Data| PSMC\asngrm]

FinancialDevice

HwStaus it

sstat])
opl)

+getHinStatus): it
setHStatus it hwStatus)
+loLog(msg: String)

T

Dispaly

Cashbispenser

ReceiptPrinter

wreadOptiansy) nt
wreagAmount]) ; flogt

-cashCaunt: in

+tispenseCashl money ; int)

+print msg: Siring |

wreaUserPN) it ‘ +isCashEnaughi): hoclen I
tshowllessage{ msg: Sing) g e— TragedPiner
Manageclisplay |1
LashManager {1 -Printerblanager 1
DisplayManager DAL
CardReader
Ferklh 1 +etDevice(device : FinanciaDevics) : FinanciaDevice
RN | mgedtrd Readerlnager *geevcels): Fancieice 0
sreadCand): Card | |
Rearer |1

anagedDevices

AN

-t Switalus
-ATHNo: nt

SwStatus

AT)
Hacine |syerfyoard)

f

LariRead

Card

-UserCart]

0

-accountlio

-folderame; Siring

-expirefiond)

-cardho: nt

0.¢ (#ransterFund(foAccourtd: String,amourt: double)
+ispence amount: double)
rintReceipt detals : Sting)

-CARD NSERTED it =1

-SERVING _CUSTONER . it =2
SELECTNG_TRANSACTION int = 3
FEADING_CARD: int=4
FEADING_PiN =5

-CASH DISPENCED =6
SER_AUTHENTICATED =7

AT

-ATWGession 0.
AThlUserSession

AN it

PLISESSON |t o

il

e - dete

+Carl cardNumber: it)
+getPN): int

il

-geeout

Account

-gccountl:
-halance: double

it

Hransfer()

+getBalancef): double
+0eposi(maney : doube)
+wihdraw()

+ATHszrSession(atm: ATH, pin: it)

-SEgsin

-Lornecton

BankCannettion
hankAddress : Sting

+HankComnection| hAddress : Sting)
+apen()
+lsel)

Bank

arkld: int
hankiame ; String

Figure 4 PSM Class Model of an ATM

86

The specification mechanism used to specify the behavior of the ATM
class is the state machine in Figure 4 ATM State Machine Diagram.
When the guard cardlnserted is true, the ATM state will change from
“Idle" to "verifying". According to the verification result, the ATM state
would change from ‘"verifying" to either "servingCustomer",
“retainCard" or "Failed" state. The servingCustomer state is a composite
state that has sub states to describe its behavior shown in Figure 4

Substate Machine Behavior of performingService Composite State

(state machine ATMStates | B ATMStates]J

retainCard

’[{too many invalidPIN }
{autherticated }

Idle | verifying
. {cardinserted} | do J verify J{

ServingCusomer
{unreadableCard} one
SelectingService
e

Failed {timeout}

l{OMiOHSEBHEd}

performi‘ngService 5
ATMServices

o

{again=yes}
{unreachableBank

{TranSuccess}

releaseCard

{cardEjected} {canceled}

{nsufficientFund} | Printing
o / print

reportingFailure

{again=No}

Figure 4 ATM State Machine Diagram

(‘state machine ATMServices [@ ATMServices]J

entry

finguiry }

Inquiring | Withdrawing

) Iwi‘thdl'éwOpera{ion

contactBank

{Approvepithdrawal }

dispenseCash
do | dispenseOperation

[dispensed]

{withdraw} [FundTransfer] ‘

Transfering
do transferOperation

[

{ApprovedTransfer}

{TransactionDisapproved}

{InguiryResult }

Succeeded Failed
Exit Exit

Figure 4 Substate Machine Behavior of performingService
Composite State

Suggested Mapping Process

The mapping between PIM model and the PSM model have to be
identified in order to generate the application. Given the PIM class

model and the PIM

instances model, the mapping expressed as

transformation rules is going to generate the PSM instances.

Table 4. PIM to PSM Class Model Mapping represents the mapping
between class models from PIM to PSM.

Table 4. PIM to PSM Class Model Mapping

PIM PSM Using

BankCustome | ATMUserSessi | PIM BankCustomer -
r on PIN

ATMCard Card

BankAccount | Account
LinkProvision | ATM
- DeviceManag | PSM Specific

er
- CardReader PSM Specific
- Display PSM Specific

- CashDispense | PSM Specific
[
- ReceiptPrinter | PSM Specific

- Bank PIM ATMCard-
bankName
- BankConnecti | PSM Specific
on
WithdrawSer | - PIM Specific

vice

To map the behavior models we assume that the following rules are
known:

1) PIM Idle is equivalent to PSM Idle

2) PIM isFundingNeeded is equivalent to PSM cardinserted

3) PIM valid is equivalent to PSM authenticated

4) PIM succeeded is equivalent to PSM tranSSuccess

5) PIM invalid is equivalent to PSM tooManylnvalidPins

6) PIM failed is equivalent to PSM unreadableCard

We have two state models, A as in Figure 4 State Machine Behavior
Diagram of PIM LinkProvision Class and B as in Figure 4 ATM State
Machine Diagram. Model B belongs to the PSM, so is an
implementation of Model A, which belongs to the PIM.

Assume, as in the case study, that there are fewer states in model A
than in model B, and that every state in model B corresponds to
exactly one state in model A. This means that we can divide the states
in model B into groups, indexed by the state of model A they
correspond to. If a is a state of A, then the states of B corresponding to

a form an equivalence class. Let's call that B(a).

If given an a state of A, there is one state in B(a), then call that state b,
and the PIM/PSM mapping maps a into b. If given an a state of A, there
are several states in B(a), then map a to those states if possible. The

mapping is one state to many.

Assuming that every state of A corresponds to at least one state of B.
Otherwise, the orphan state of A cannot be implemented. This could
form part of an evaluation of the suitability of a PSM for implementing
a given PIM. What happens if there are states in B that don't
correspond to some state in A? Let's call them forbidden states.
Whether this is a problem would depend on whether the transitions

mapped from A ever take a state in B to the forbidden state.

The mapping process would begin by first mapping the transitions and

constrains (guards). Then construct the concrete mapping from the PIM

state model to the PSM state model according to the above framework.
We can entail the following using rule 1:
[idle]={ idle}

The PIM idle state will transition to validateUser when isFudingNeeded
is true and idle will transition to verifying in the PSM model. Using rule
2 validateUser can be mapped to verifying forming an equivalence
class as follows:

[validateUser]={ verifying }

using rule 3:

[handleTransaction]= {servingCustomer (composite state) }
using rule 5:

[handleErrors]={ retainCard}

using rule 6:

[handleFailure]={ failed}

using PIM state model the state handleFailure transitions without a
guard to finalize state, the same is true for the path from state failed
to releaseCard in the PSM. We can entail that finalize can be mapped

to releaseCard

[finalize]={ releaseCard}

Using 4: PIM.succeeded is equivalent to PSM.tranSuccess

We can propose to map the PSM Succeeded state as follows:

[handleTransaction]= { servingCustomer, succeeded}

The problem here is that the guard condition again=No is not explicitly
mapped to any guards from the PIM. Hence the Succeeded State can

also be considered as forbidden.

package Data[|2 PShinstancesheta |

atm1 ; Class

ownedOperation = dowithdraw

ATMStates : StateMachine
allStatesRegion,

doWithdraw : Operation
= atm1

allStatesRegion : Region
state = Idle, Verifying,
SenvingCustomer,
Succeeded

stateMachine = ATMStates

ICust : State
incoming = 2
outgoing = 12
I region = region = allStatesRegion
t1: Transitic
[quard=et | 12: Transition

guard = c1

source = Idle
1arget= Verifying c2: Constraint '7
target = SeningCustomer

©1: Constraint

one : Region
Selectingsenice,

stat

incoming = t9 Printing
ragion = sllStatssRegion stateMachine = ATW States
T
1

z 8 =
19.; Transition e State [Se:ecllnnse;wt! State
¢9: Constraint - incoming = T
source = Printing _
target= Succeeded T
32 Transition

guard = ¢3
source = SelectingSanvice
target = PerformingService

c8: Constraint

state = Withdrawing,
contactBank, dispenceCash

stateMachine = ATMSenvices

incoming
outgoing = t6
region = SenicesRegion

outgoing = 17
region = SenvicesRegion

region=

4: Transition

15: Transition

17 : Transition 16 : Transition
‘snurce:mshemacash‘ guard = ¢6 source=Withdrawing +
sourc: target= Withdrawing
target= dispenceCash

L cd: Constraint

I withdrawoperationAct: Actity | e
w—;m""ﬂ'w;‘ calWithdraw ; CallOperationAction

operation = doWithdraw

node =

Figure 4 PSM Model Instances mapped Manually - Part of the
behavior for withdraw Service

the PIM into a working program

Apparently the state machine depicts the flow of control an object has.

In the context of the case study what we need is the application flow of

the PIM instances hence their behavior and how that is achieved

through PSM instances.

If we concentrate on the PSM instances which are mapped manually ,

especially the guards and operation calls, we get a sequence of calls

guarded by conditions.

We are going to render the state machine of PIM and PSM as following:

» A state is rendered as a comment with state name. example //**

Idle **//

« A guard condition is rendered as “Evaluate “+ guard specification

« A do action of a state is rendered as “Call "+ the operation if the

action is a CallOperationAction type.

Table 4. Rendering of Behavior Instances

PIM instance Behavior

PSM instance Behavior

/[¥* dle **//

Evaluate isFundingNeeded

If true //**Active**//

Call refreshLink(s:Service):boolean
Evaluate isSucceeded

If true //** succeeded **//
Evaluate isFailed

If true //**failed **//

[[¥* |dle **//

Evaluate cardinserted

If true //** verifying **//

call verifycard()

Evaluate too Many invalidPINs
If true //** retainCard**//
Evaluate unReadableCard

If true //** failed**//

[[F* releaseCard**//

call

ejectCard()
Evaluate authenticated

If true //**ServingCustomer **//

PSM instance behavior Rendering | PSM instance Behavior To Java

Options Code

Since the transformed state | If (cardinserted)

machine is a program, it is better { verifycard(); return;}
to represent it visually as If(tooManylnvalidPINs)
+ Activity Diagram { retainCard(); return ;}

If (unReadableCard)
{ ejectCard(); return }

The result of the rendering is what we can call a high level algorithm,
in other words a high level program specified as model elements. The
goal is to verify that the state machine mapping can generate an
application (from PIM to PSM) that can further be transformed to code
(PSM to code), yet applying the MDA concepts.

and Interpretation

A state machine can change from one state configuration to another in
a response to an occurrence of an event through a transition. A
transition may be associated with at most one guard which is a
constraint that controls the firing of the transition. The guard is
evaluated when the event occurred, if The evaluation result is true ,the
transition is enabled or else disabled (O M G 2011)

UML as a modeling language defined some constraints to impose

restrictions on various models and model elements. A user defined

constraint (in our case a guard) is often expressed as a text string in

some language including natural language as the two figures Figure 4
The Elements defined in the Constraints UML Package (O M G 2011)
and Figure 4 The Element defined in the Expressions UML Package (O

M G 2011) depict. As a result the syntax and interpretation of the

constraints are out of the UML scope and they are language and tool

dependent. If a formal (machine readable) language such as OCL is

used, then tools may be able to verify some aspects of the constraints.

Element

!

!

{readOnly, union,

subsets ownedElement,

subsets member}
+ownedMember

{readOnly , union}

NamedElement

+member

{readOnly, union,
subsets owner}

*

+/namespace | (.1

’ *

Namespace

{subsets ownedMember}

Constraint

OCL

is

+ownedRule
subsets namespace
{ +context space)

.

0.1

{ordered)
+constrainedElement | Element
* *
{subsets ownedElement}
{subsets owner} +gpecification —
+owningConstraint ValueSpecification

Fiaure 9 13 - The elements defined in the Constraints nackaae

usually but not necessarily used to constrain a model.

-

0.1 1

Figure 4 The Elements defined in the Constraints UML

Infrastructurelibrary:: Core::Abstractions: :Ownerships::
Element

{subsets ownedElement, ordered}

I ValueSpecification L_"‘C‘T-”-'"E“d

Figure 4 The Element defined in the Expressions UML

OpaqueExpression Expression 0.1
+ body : String [*] {(nonunique, ordered} + symbol @ String [0..1]
+ language : String [*] {ordered} + expression Another

{subsels owner}

aspect of
Figure 9.20 - The elements defined in the Expressions package guards is that
they should not include expressions causing side effects (OMG 2011b) .
Being side effect free means that the state of the system will never
change because of an expression even though expressions are used to
specify such a state change (when true). Specifying constraints will not
change elements as well as relationship among elements in the model.
The same restrictions applies to an OCL expression. Whenever an OCL

expression is evaluated, it simply delivers a value.

As a consequence of the semantic of constraints in the standard UML
and even OCL , modelers must firstly transform the constraints into
formal language if they want the constraints to have effects at run
time. Secondly a language is needed to evaluate the formal constraint
and provide an effect which is of a considerable value to the process
we are proposing (mapping method).

Observations and Issues

1. The PSM has more states than the PIM.

2. Some PSM states such as ServingCustomer state is a composite
state aka a state of states. The same process can be applied to
map this kind of states also.

3. The given PSM platform is capable of implementing the PIM
specification because every state or transition is mapped to at
least one state or transition which indicates that the PSM state
machine is indeed a superset of the PIM state machine.

4. A decisions has to be specified for the guard conditions that are
not mapped to the PIM ones.

5. A decision is needed for the forbidden states.

6. Mapping the constraints to each other involve relating the
attributes that are constrained. For example cardlnserted is a
constraint with a guard condition that checks the boolean
property “cardinserted" in the PSM Card class. "fundingNeeded" is
a property of the class BankCustomer in the PIM which is also
constrained. BankCustomer is mapped to ATMUserSession in the
class model mapping . Each ATMUserSession is associated with a

user card of Card class. So the relation between the two

constrains, the PIM one and the PSM's involves the mapping of
PIM class model to the PSM class model first.

7. The PIM doesn't express explicitly that the successful completion
of a transaction would result in a print of a receipt describing the
transaction. The PIM and PSM state machines are structurally
different, the PSM had additional states and logic. By mapping
the constraints , the states and transitions ends up in the idle
state of the PIM state machine, while it continues to print and
release the card in the PSM. In this situation we are going to map
the additional PSM states to the PIM one in order to complete the
application logic.

Summary

Some issues were raised by attempting the development of an entire
small application using the MDA approach. A service in a financial
system is taken as a case study. The PIM and the PSM are developed as
UML2 classes model, with the dynamics developed using UML2 State

machine and Activity models.

One of the issues is the guards representation and interpretation. A
state machine can change from one state configuration to another in a
response to an occurrence of an event through a transition. A transition
may be associated with at most one guard which is a constraint that

controls the firing of the transition.

The guards in the PIM state machine are specified using the
terminology of the PIM Classes model, while the guards in the PSM
state machines are specified using the terminology of the

corresponding PSM Classes models. It is therefore necessary to map
the guard expressions from PIM terminology to PSM terminology, using
the mapping of the PIM Classes model to the PSM Classes models. The
possible mapping of state guards can be carried out by examining the
participating instances attributes. Involving instances in the mapping
as well as classes is another research issue.

A second problem is that the PIM and PSM state machines may be
structurally different. In order for a PSM to implement an application
specified in the PIM, its state machine must be a superset of the PIM

state machine, otherwise the application's specification cannot be met.

A related question is to be able to test whether a given platform is
capable of implementing a PIM specification, which involves testing
whether the PSM state machine is indeed a superset of the PIM state
machine. One way to use this information is to help select from a
number of potential platforms. Another way might be in a circumstance
where only a deficient platform is available. Mapping back from the
PSM state model to the PIM might help the designers alter the

specifications to make them implementable.

Case Study: News Application

Overview

A news software application is taken as an attempt to develop an
entire small application to illustrate the MDA approach. The PIM and
the PSM are developed as UML2 classes model, with the dynamics
developed using UML2 State machine.

The main idea is to model the structural and behavioral features of the
news system in a PIM and to model the common features of a
messaging system in a generic PSM. The generic messaging system
enables the news application to be implemented in more than one
platform such as Sun’s Java Messaging Service (JMS) (Oracle 2013),
Microsoft’'s MSMQ, or IBM’s MQSeries,

Deriving code and implementation from models is one of the uses of
MDA and may be fully or partially automated. Automation enables
rapid response to changes, increases the efficency of software
development and decreses its cost. As Figure 5 Detailed mapping From
PIM to PSM and to Execution Environment depicts, the Apache Active
MQ implementation of JMS is chosen as the execution environment for
the resulting software system.

Platform Inde pendent Model
for News System

IMS SCXML Schema
Specification Specification
for classes for states

Q‘ansﬁ:}nﬁ

4 N

Platform Specific Model for News System
with

JMS Classes SCXML Documents

v

Apache
configured in Commons 2.0

APl
v

JMS Implementation for News
System

Apache ActiveMQ MOM Execution Environment

- J

Figure 5 Detailed mapping From PIM to PSM and to Execution
Environment

Approaching the Problem

In order to generate the software application we tried two different
approaches. The first approach is by writing Java code programs that
reads in the meta models files and transform them. The second is by
writing QVT rules. The first approach is considered as a guidance
because of the tools limitations we had faced when trying the second

approach.

Major Steps: Part 1 using Java Programs for transformation

PIM

1. Model the News system PIM structures and behaviors
2. Generate Java classes for PIM
a. Generate PIM instances and serialize them into XMI using EMF
b. Writing a Java program for structures read from the model exported to EMF
frame work.
PSM(s)
1. Model the generic messaging platform PSM structures and behaviors
2. Generate Java classes for PSM
3. Generate PSM instances and serialize them into XMI using EMF
a. writing a Java program for structures read from the model exported to EMF
frame work.
b. Generate the simple program (send & receive) from the behaviors read from
the original Magic Draw file. The exported version of the model in step 3
above does not include the behaviors part.

Transformation
1. Transform the PIM instances to PSM instance to generate Java classes containing
both attributes (structure) and methods (behavior) for the system
2. Transform the resulted classes to JMS native classes .
3. Transfer The main program and all the generated classes to the Apache ActiveMQ
environment to be executed

Major Steps: Part 2 using QVT for transformation

PIM to PSM, PSM to JMS API

1. Model the News system PIM and the JMS PSM structures and behaviors using
Magic Draw 16.5
2. Export the models in Eclipse Modeling Framework EMF to generate Java classes
3. Programmatically generate PIM instances and serialize them into XMI using EMF
4. Write QVT mapping rules to transform the model elements from PIM to PSM
a. QVT mapping style for structures is UML level zero to UML level zero
instances. The transformation uses the PIM , PSM and PIM instances to
generate PSM class instances.
b. QVT mapping style for behaviors is UML level one to UML level one. The
mapping is done in more than one step and finally map the state machine
diagrams to SCXML document.
5. Export the result and write a Java program to start the execution.
6. Install and configure The Apache Commons inside the Apache ActiveMQ server.
7. Transfer The main program and all the generated classes to the Apache ActiveMQ

environment to be executed.

Models Of The System

News System Platform Independent Model

Figure 5 PIM Class Model for News System shows a simple class’s
model for the news system platform independent model. The classes
identified are NewsSender that sends the message using the method
writeData. The NewsReceiver class represents a receiver side that

receive the news through the readData method. The message that is

represented by the NewsMessage class. Each NewsMessage has a
content and a status. The DataLink class represents the link
established in order to send and receive the messages. It is used for

delivering the data.

The PIMClient is an active class. Active classes and hence active
objects initiate and control their own flow of behavior, while passive
classes store data and serve other classes. Rather than being invoked
or activated by other objects, active objects can operate standalone
and define their own thread of behavior. In UML, active classes are
rendered with a thicker border. The system is represented by the
PIMClient class that controls the other classes. It generates the
message, establish the link, call the NewsSender's writeData
method for sending news, call the NewsReceiver readData method

to receive news when available and display them.

HewsMessage
HewsSender {context NewsMessage inv NHewsReceiver

-senderld : String _sender senderDataAssomentData self getStatus="generated; | : ; emaiver |-TECEIVEr : String
-name : Sting NotReceived} receivedData receiverDataAssoc TECEIVEr | e String

+writeDatal data : NewsMessage) :::ﬁledm Stsr{';% o +readDatal) : NewshMessage

-gtatus ; String

+setContent{ newContent : String)
-senderEnd +getContent() : String

+setStatus(newsStatus : String)
+getStatus() : String

-receiverEnd

-sender -receiver

-msg
X datalinkDataAssoc
link

DataLink
senderLinkAssoc -senderLink {receiverLinkOHK, |-receiverLink receiverLinkAssoc
receiverLinkProblem,

senderLinkProblem}

-d : String
-status : String

+deliverData() : Mewshessage

clientSender Assoc

PIMClient

~postTo : String -client -dlatalLink
-news : String

-client

-client cliertReceiver Assoc

+generateh) String
+displayNews(news : String)|
+establishLink()

Figure 5 PIM Class Model for News System

Messaging System Platform Specific Model

The Java Message Service JMS (Oracle 2013) provides a common way
for Java programs to create, send, receive and read an enterprise
messaging system’s messages. JMS is a set of interfaces and
associated semantics that define how a JMS client accesses the
facilities of an enterprise messaging product. Among JMS objectives is
to provide portable application across products within the same

messaging domain.

The basic building blocks of a JMS application are shown in Figure 5
JMS API Programming Model (Oracle 2013). It consists of Administered
objects: Connection factories and destinations, Connections, Sessions,
Message producers, Message consumers and Messages. Figure 5 JMS
APl Programming Model (Oracle 2013) shows how all these objects fit
together in a JMS client application.

Figure 5 JMS API Programming Model (Oracle 2013)

The PSM for the messaging system aims to provide a standardized
model to send and receive messages in a vendor-neutral manner. It
formally defined many concepts and artifacts from the world of
messaging:

Client - An application modeled to create, send and receive
messages.

Producer - A client application that sends messages

Consumer - A client application that receives messages.
Message - The most fundamental concept of PSM; sent and
received by clients.

ConnectionFactory - Clients use a connection factory to create
connections.

Destination - A generic object to which messages are addressed

and sent and from which messages are received.

The two styles of messaging that include point-to-point and
publish/subscribe are supported in the PSM. Accordingly there are two
types of producers, QueueSender and TopicPublisher. Two types of
destination, Queue and Topic. Two types of consumers,
QueueReceiver and TopicPublisher.

ackage Deta[|2 MsgPSIiClassD rmJ
packa [v ym] sendsToAsso -sendingDest Destination receivingDest recelvingFromAssoc

Topic Queue
-narme: String -narme: String
+etTopicName() : String +etCluuehame() : String
Message
-contentType : Siring
-contert : String
g sessionhlsgAssoc
-msgSession
Session ~CONSUMET
-ALTO_ACKNOIALEDGE : Infeger Consumer
.pmduce[-CUENT_ACKNOW_EDGE‘ Integer I S{rmg
Prod -DUPS_OK_ACKNCWLEDGE : Integer -name:; String
L SESSION_TRANSACTED : Iteger -consSesslonconsumer

1 String - . +close() : void
-name: String -producer-pSession +close(): void consumerSessionAsso +receive() : Message

+commi() : voidl il " +receive(timeoat : long) : Message
+sen destination : Destination, message : Message) |prodSessiondssoc +createConsumer(destination : Destination): Consumer +receiveloiVat() : Message

+cresteConsumen(destination : Destination, messageSelector : String) : Consumer

+createllessage() : Message

+cregteTextMessage(): Message

+cresteTextessage(text: String) : Message

QueueSender TopicPublisher +creteProducer(destingtion : Destination) : Producer -

+oreeteQueue(queuellame ; Sting) Cueue QueueReceiver TapicSubseriber

send] msg. Message) spublehi msg - Nessage) +createTopic(topicName : String) : Topic :
+etCueue() : Queus e T Tk

-clientSession -ession
Client ‘ JIMSException
consessionAssoc
url: String :
news: String +MSException(reason: String)
+IMSException(reason ; String, errorCode ; String)
Hproduceews(): String ! +getErrorCode) : String
sshowhiews{ news: Sing) -t clentSessionAsspe
- -connection [
wden Connection
clientConAssoc ~clientCon i

scoss() vaid MessageFormatException
+start() : void
+stop() - void

bl InvalidDestinationException
administer

factory MessagellotWriteableException

ConnectionFactory

+createConnection) : Connection MessagellotReadableException
+createConnection(userhlame : String, password : String) : Connection

JIMSRuntimeException

clientfactary/entfactory

Figure 5 PSM Class Model for a Messaging System

Class Model Mapping

Table 5. PIM to PSM mappings represents the class model mapping
between the PIM and the PSM. The PIM instances are provided as an
ecore file.The QVT transformation and mapping rules are going to
manipulate these instaces to create the PSM instances.

Table 5. PIM to PSM mappings

PIM Classes | PSM Classes

NewsSender Producer(QueueSender or
TopicPublisher)
NewsReceiver | Consumer(QueueReceiver,
TopicSubscriber
NewsMessage | Message

Datalink Connection

PIMClient Client

- Destination(Queue or Topic)
- ConnectionFactory

- Session

- Exceptions

Table 5. Simplified XMl File of PIM Instances

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:Data="http:///NewsPIMData.ecore"
xsi:schemaLocation="http:///NewsPIMData.ecore NewsPIMData.ecore'>

<Data:NewsSender senderId="S001" name="senderl1" sentData="/6"/>

<Data:NewsReceiver receiverId="R0O0O1" name="receiver1"

receivedData="/6"/>
<Data:PIMClient postTo="TESTQUEUE" news="Hello"/>

<Data:DataLink Id="DLOO1" status="OK'"/>

<Data:NewsMessage dataId="Msgl" content="Hello" status='"generated"/>

<Data:NewsMessage dataId="Msg2" content="The second msg"
status="generated"/>

<Data:NewsMessage dataId="Msg3" content="The third msg"
status="generated" receiver="/1" sender="/0"/></xmi:XMI>

Table 5. Example of a Transforming Program in QVT

transformation trans(source : NewsPIMData, target : NewsPSMData) {

top relation senderToProducer {

varName, identity : String;

checkonly domain source s : NewsPIMData::NewsSender {
name = varName,
senderId = identity

Iy

enforce domain target p : NewsPSMData: :Producer {
name = varName,
Id = identity

i

top relation receiverToConsumer {

rName, rId : String;

checkonly domain source rcvr : NewsPIMData::NewsReceiver
name = rName,
receiverId = rId

3

enforce domain target con : NewsPSMData::Consumer {
name = rName,

Id = rId

top relation PIMClientToPSMClient {
to,n: String;
enforce domain source c:NewsPSMData::PIMClient {
postTo=to,
news=n
Iy

enforce domain target PSMC:NewsPSMData::Client {

url=to,
news=n
}s

top relation DatalLinkToConnection {

id,st: String;

enforce domain source d:NewsPSMData
Id=id,
status=st

Iy

enforce domain target c:NewsPSMData

top relation NewsMessageToMessage {

dId,con,st: String;

enforce domain source d:NewsPSMData
datald=dId,

content=con,
status=st

Iy

enforce domain target c:NewsPSMData

content=con

H

top relation createSession{

::DataLink {

::Connection {

. :NewsMessage

::Message {

{

enforce domain target s:NewsPSMData::Session {

+

top relation createQueue{

enforce domain target g:NewsPSMData: :Queue {

H

top relation createConnectionFactory{

enforce domain target cf:NewsPSMData::ConnectionFactory {

+i

Table 5. Generated XMI File of PSM Instances-Simplified

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:NewsPSMData="http:///NewsPSMData.ecore"

xsi:schemaLocation="http:///NewsPSMData.ecore NewsPSMData.ecore'>

<NewsPSMData:Consumer Id="RO01" name="receiverl"/>
<NewsPSMData:Producer Id="S001" name="senderl1"/>
<NewsPSMData:Client url="TESTQUEUE" news="Hello"/>
<NewsPSMData:Connection/>

<NewsPSMData:Message content="The third msg"/>
<NewsPSMData:Message content="The second msg"/>
<NewsPSMData:Message content="Hello"/>
<NewsPSMData:ConnectionFactory/>
<NewsPSMData:Queue/>

<NewsPSMData:Session/>

</Xmi:XMI>

Behavioral Models Mapping

PIMClient and Client Classes

The PIMClient behavior is started and placed initially in the setup
state as shown in figure 3.The setupNotOK and setupOK are
constraints on the transitions going out of the setup state. The
constraints specification expressed in OCL 2.0 syntax [transition
names are not shown]. The constraints are checking the DataLink class
to find if the status attribute is 'ok' or 'notOK'. When the setupNotOK

constraint is true, the state behavior transitions to the
handleProblems state. After that it can either transition to do the

setup again or to exit.

(‘state machine PIMCliertStateDgrm [PIMCIierrtStateDgrm]J

[context Datalink inv
self Status="ok\

[context Mewshessage inv

.—> setup prepareHewséE”'w)ew sending L’(@
do / sendct
readData() : Newshessage [finish] [sending problem]
Receiving
|I T
[cortext Datalink inv '\J.-' handleSendingProblems

self Status="notOK"]

[receiving Problem)

handleReceivingProblems

handleProblems

Figure 5 PIM Client State Diagram

When the setupOK constraint is satisfied, the PIMClient can
transition to the next state. The transition took place either to the
prepareNews state or to the receiving state when a call to
readData method is specified. In the prepareNews state and when
the news are generated, their status is set to "Generated" which leads
to the firing of the next transition to sending state. The sending state
is going to do an action that calls the writeData method in the
Sender class in order to send the newly created news message. If
there are problems in sending which is indicated by the constraint
sendingProblems evaluated to true, the state handleProblems is
going to be visited. If the sending is to be repeated, the next transition
is going to be to the prepareNews state again. When sending is

finished, the behavior will end in the final state.

After the setup, the Client PSM class behavior can transition to the
receiving state by specifying a call to readData method of the
Receiver class. The receiving can be repeated, in which case
transitioning back to the receiving state itself. When receiving is

completed the transition ended in the final state.

(‘state machine ClientStateDgrm| @CIierﬂStateDgrm]J 3

| initialize Factory manage manage register in
.—)‘ 1 connection | 2 session — queue

Pre'parei\n'essages
manageReceiving do J doPrepareMsgAct
—A
) re_p_t_aiue ’ | [again?]
do [/ receivingOperation
) manageséndiﬁg
[fails to receive] |'egion_2 £
send
do J sendOperation
ssal | — B : R
nextiis] | handleReceivingFailures [runTimeError]
check
[invalidMsg]
[finished] [invalidDestination]
_' éhowMessage | “handleSendi -ra;=u|93
do / doShowaAct
l exitReceiving Rutzencing

®

Figure 5 PSM Client State Diagram

Behavioral Mapping of PIMClient to Client

Setup State

PIMClient behavior starts in the initial node and transitions to the
setup state. The PSM starts in the initial node and transitions to
initialize factory. Moreover the PSM continues to transition to other
states to manage the Connection, session and Queue. Referring to
the class model mapping, we find that the DataLink class is
equivalent to the Connection <class. The Session |,
connectionFactory and Queue are PSM specific and they do not
correspond to any class in the PIM. The setup process according to the
PIM means creating the DataLink class and ensuring that its status is
‘ok' to proceed. On the other hand the preparation in the PSM include
preparing the ConnectionFactory to establish the connection, assign a
session for the user and registering in a queue. The PSM Connection
class is created and started but its status is not checked explicitly -
using an associated attribute or a method- but is checked internally by
raising exceptions when an error in starting or stopping the connection

occur. The same applies to the Session , connectionFactory and

Queue classes. So the transitions between the states to manage these

classes are not guarded.

we can entail that:

Setup={initialize factory,

register in queue}

manage Connection,

manage session,

The decision here is to create a new composite state with a new

region and add the states to it as the transformation result.

Name

Setup

Reason/Justific

Table 5. Setup State Transformation

Type

Single State
more than
state
PIMClient

to

one

is

Equivalence
Class (PSM)

={initialize

factory, manage

Connection,

manage session,

register
queue}

in

Transformation

Decision
Create a new
composite state

with name=Setup,
Create a new region
with

name=SetupRegion
and add to it the

ation

Transitions

Guards

Actions

initially in the
setup state, Client
PSM class is
initially
transitioned
between several
states.

setupOk

No equivalent

equivalence class

states as sub states

Environment

internal check is
carried out using
exception
mechanism.

Table 5. HandleProblems State Transformation

Name
Handle
Problems

Reason/Justifica
tion

Transitions

Guards

Type

Orphan state

To setup and to
End

setupNotOK

Equivalence Class
(PSM)

={}

Handling problems

is implicitly done
through raising
exceptions when

an error occurred.

{1}

Transformation
Decision

Ignore the orphan
state

Ignore the guard

Actions - -

The PIM specify that if problems occur in the setup process then the
application will transition to the handleProblems state. The PSM
mechanism in dealing with problems/failures or abnormal conditions is
by raising/throwing exceptions. An exception is an event that occurs
during the execution of a program that disrupts the normal flow of
control. Exceptions are represented by <classes such as
MessageFormatException, InvalidDestinationException and
MessageNotWritableException. Exceptions can be caught by handlers.
Uncaught exceptions may be handled by the environment and can
cause the termination of the thread of control. Handling the
exceptions according to the PSM is carried out by the rules and not by
an explicit state. The decision for the handleProblems PIM state is
simply not transforming it to a state in the PSM because its

functionality is implemented in another way in the PSM.

Table 5. Receiving State Transformation

Name Type Equivalence Class Transformation
(PSM) Decision

Receiving Single State ={manage Map the single
to part of a receive:: receiving, state to the
composite manage receive:: composite state
state showMessage }

Reason/Justifica receive PSM -

tion state
transitions to
showMessage

without a

condition

Transitions To self ={nextMsg?}
Guards Receiving ={Fails to receive}
problem
Finish Transition without a
guard to the end
Actions Call to Receiving method
readData in Consumer class.
method
- doShowAct

Map the
transition

Map the guard

Map the
transition

Map the calls
Create the
action

One of the capabilities of the PSM is message receiving. The PIM

Receiving single state is equivalent to receiving PSM state which is a

sub state in a composite state aka manageReceiving. Consumption

of news messages in the PIM is not specified. In the PIM the message

reception is followed by showing the message. The decision is to map

the single state to the composite state that contains more functionality

than specified in the PIM.

Table 5. HandleReceivingProblems State Transformation

Name Type Equivalence Class Transform
(PSM) ation
Decision

HandleReceivingP Single state to a ={handleReceiving Map the

roblems part of a Failures}
composite state
(manageReceivin

single
state to
the

Reason/Justificati
on

Transitions

Guards

Actions

9)

To self

To end

Transition from
HandleReceivingP
roblems back to
the Receiving
state

Receiving
problem

Finish

Call to readData
method

To composite state
self

={To composite
state exit, To end}

No equivalent, but
the PSM has
mechanisms to
retry the message
reception.

={Fails to receive}

Transition without
a guard to the end

Receiving method
in Consumer class.

composite
state as
done with
the
Receivin
g state

Map the
transition

Map the
transition

Map the

guard

Map the
transition

Map the

calls

HandleReceivingProblems is mapped to handleReceivingFailures

in the PSM forming an equivalence class together with the receiving

and showMessage PSM state. The application logic specified in the

PIM is to receive a message, if problems in receiving occur then handle

the situation and go back to receive again. The PSM does not go back

to receive again, because there is no transition going back to the

receiving state from HandleReceivingFailures. The PSM Consumer
class provide overloaded receive methods, one of them has a timeout
period as a parameter and can wait for the message to arrive. The
default receive operation blocks indefinitely until a message is
produced or until the message consumer is closed. The decision
regarding the call action to the readData method is to map it to the
receive method. This way the message reception will be tried until the

message arrived or an error occurred.

Table 5. Forbidden State Transformation

Name Type Equivalence Class Transformat

(PSM) ion Decision

- forbidden state ={ cleanUp} Create the
PSM state

Reason/Justificatio The PIM The logic in

n transitions to PSM

the end when completes

finished. The by closing
PSM cleans up resources.

the resources
such as the

connection
object before
ending.
Transitions To end To end Map the

transition

Guards -

{}

Actions - -

The PSM ensures the proper initialization of classes instances such as
the Connection and Session through manageConnection and
manageSession states. Class instances use computing resources that
are finite therefore it is reasonable to free and release the resources
when they are no longer needed. The PSM specify a cleanup state in
order to close the opened connection, close the session and so on. In
the other hand , the PIM doesn't specify such details. The decision is to
create the cleanUp state in the resulting instances, because its
functionality is recommended in the PSM in order to create applications

that conforms to the best practices.

Table 5. PrepareNews State Transformation

Name Type Equivalence Transformatio
Class (PSM) n Decision

prepareNews Single state to ={ prepareMe Map the
single state ssages } states

Reason/Justificati

on

Transitions

Guards Invariant Context ={} Ignore , PSM
Message messages
-Self.getStatus='gen lacks a status

erated' property that
is to be
checked.

Actions - doPrepareMsg Create the

Act action

The state PrepareNews is equivalent to the state PrepareMessages.
The mapping is one to one. In the class model the News Class is
mapped to the PSM Message class. The News class contains an
attribute status that reflects the status of the message whether
generated, sent or notReceived. On the other hand the Message class
has no such attribute. Moreover the sending/receiving of a message is
setting/getting attributes related to the queue, session, connection,
News producers and consumers. The decision here is to keep the
default behavior of the PSM regarding the message status from
sending till receiving. The default behavior include default values for

various attributes in other objects used to send/receive the message.

Table 5. Sending State Transformation

Name Type Equivalence Transformati
Class (PSM) on Decision
Sending Single state to ={send} Map the
single state state

Reason/Justificatio

n
Transitions
Guards Done ={ finished} Map the
guard
SendingProblem ={runtimeError, Map the
invalidMsg, guards

invalidDestinatio

n}

- ={again?} create the
guard

Actions sendAct sendOperation Map the
actions

The sending state is mapped to the send PSM state. The sending of
the news fits exactly what specified in the PSM. The related actions,
method calls and transitions are equivalent to the PSM ones. The guard
sendingProblems is equivalent to more than one guard in the PSM. The
PSM specify detailed and specific situations of problems/failures that
can occur. The PSM qguards trigger the creation of instances of
exceptions. Exceptions is the mechanism that the PSM raise/handle
various types of problems. In the PSM class model various types of
exceptions are included while there is no equivalent classes in the PIM.
The mapping of the guards between the PIM and the PSM assure that
the decision to map the exceptions classes was a right decision
although no equivalent classes are in the PIM.

Table 5. HandleSndingProblems State Transformation

Name Type Equivalence Class Transformati

(PSM) on Decision
HandleSendingProbl ={handleSendingFai Map the
ems lures } states

Reason/Justification

Transitions To end ={To exitSending, Map the
To end} guard

to sending ={} Ignore

Guards - -

Actions - -

HandleSendingProblems is mapped to handleSendingFailures in
the PSM forming an equivalence class together with the send PSM
state. The application logic specified in the PIM is to send a message, if
problems in sending occur then handle the situation and go back to
send again. The PSM does not go back to send again, because there is
no transition going back to the send state from
handleSendingFailures. The PSM Producer class provide overloaded
send methods, some of them has a timeTolLive as a parameter that
specify the length of time in milliseconds from its dispatch time that a
produced message should be retained by the message system. The
default send operation sends a message using the Producer's default
delivery mode, priority, and time to live. The decision regarding the call
action to the sendData method is to map it to the send method. This

way the message retained till consumed or an error occurred.

Mapping of Other Types

Initial node , Final node, Fork node , Merge node with decision node , are mapped to the

equivalent.

e

exitReceaiving

a2

()

Setup
state machine ClientStateDgrm [CIientStnthgrm]J
setupRegion
initialize Factory | [manage 1 (manage 1 | registerin |
L }_ connection X session A fueiie
Pre pareNews
PrepareMessages)
manageReceiving _| do / doPrepareMsgact /
———¢——— receiving
EMER [again7]
do i receivingOperation
< 4 ion2
[failz to receive] r8g 0 o i
FRE sending
do / sendOperation
(_/-_ — . - n AR
s handleReceivingFailuree Jf_‘ [runTimeError]
chech
nandleRecgivingProblems
“ﬁ:alidMsg]
[finizhed] J/ [invalicDestination]
(showMessage 1 | ailures |
do / doShowAct |
handleSendingProblems

e&ﬂSendin

7

PSM

Figure 5 The mapping result of the PIM (in rectangles) to The

The NewsSender and Producer Classes

The NewsSender class is responsible for sending messages. As
depicted in Figure 5 PIM NewsSender State Diagram it is initially
waiting for its clients as indicated by the waiting state. The clients
request sending a message by calling the method writeData in the
NewsSender class that triggers the change of the NewsSender state
to the sending state. After writing the data, the NewsSender can go
back to the waiting state when the wait constraint is true. When
sending is not successful, the problem is raised so as to let the caller-
the Client- handle the situation properly. The NewsSender ends its
behavior when the Finished constraint is true.

(‘state machine SenderStatesDgrm [SenderStatengrm U

. [senderLinkOK] writeDatal data : MewsMessage) [finished]

waiting sending

(I

[MotSent]

declareSendingProblems

Figure 5 PIM NewsSender State Diagram

(‘state machine ProducerPSMStates [ProducerPSMStates]J

. 5 ready p foalToSend] send [close] close X @

[invalidMsgF ormat]
[failToSend] [invalidDestination]
[MsgSent] [faiToClose]
raiseExceptions

Figure 5 PSM Producer State Diagram

Behavioral Mapping of NewSender and Producer

Table 5. Waiting State Transformation

Name Type Equivalence Transformati
Class (PSM) on Decision
Waiting Single state to ={ ready} Map the
single state states

Reason/Justification The producer is
initially put on

ready state
without
conditions
Transitions
Guards senderLinkOk ={} Ignore the
guard
Call to ={callToSend} Map the calls
writeData
Waiting ={msgSent} Map the
guard

Actions

Table 5. Sending State Transformation

Name Type Equivalence Class Transformati
(PSM) on Decision
Sending Single state ={send } Map the
to single state states

Reason/Justification

Transitions

Guards NotSent ={failToSend, Map the
invalidMsgFormat, guards
invalidDestination
}

- ={close} Map the
guard
Actions

Table 5. declareSendingProblems State Transformation

Name Type Equivalence Transformati
Class (PSM) on Decision
declareSendingProble Single state ={ raiseExceptio Map the
ms to single ns} states
state

Reason/Justification

Transitions -

Table 5. Forbidden State Transformation

Guards -

Actions -

Name Type

- forbidden state

Reason/Justification The PIM
transitions to
the end when
finished. The
PSM closes the
resources used
before ending.

Transitions To end

Guards -

Actions -

Equivalence
Class (PSM)

={ close}

To end

Transformatio
n Decision

Create the
PSM state

The logic in
PSM
completes by
closing
resources.

Map the
transition

The mapping process resulted in a state machine equivalent to the

PSM state machine with no further changes to it.

The NewsReceiver and Consumer Classes

The NewsReceiver class shown in Figure 5 PIM NewsReceiver State
Diagram below behaves similarly to the NewsSender class. It is
responsible for receiving messages. It is initially placed in the waiting
state ready to serve its clients. The clients request receiving a
message by calling the method readData that triggers the change of
the Receiver state into the receiving state. After writing the data, the
NewsReceiver can go back to the waiting state when the wait
constraint is true. When receiving is not successful, the problem is
raised so as to let the caller- the Client- handle the situation as
required. The NewsReceiver ends its behavior when the Finished
constraint is true.

 state machine ReceiverStatesDgrm | /554 ReceiverStatesDgrm |
||

[Finished) —

. wiiling readData() : Newshessage receiving :::?~
1 [wait]]

[MotReceived)

declareReceivingProblems

Figure 5 PIM NewsReceiver State Diagram

(state machine ConsumerPSMStateDgrm [=1 ConsumerPSMStateDgrm]J

|

._) ready [callToReceive receive

[MsgReceived] ‘

[closg]

[timeout] [receiveFaled]

raiseExceptions

tlose

[falloClose] f‘.)
[
\

Figure 5 PSM Consumer State Diagram

Behavioral Mapping of NewsReceiver and Consumer

Table 5. Waiting State Transformation

Name

Waiting

Reason/Justification

Transitions

Guards

Type
Single state to
single state

The Receiver is
initially put on

ready state
without
conditions

Call to

Equivalence
Class (PSM)

={ ready}

={callToReceive}

Transformati
on Decision

Map the

states

Map the call

readData

Waiting ={msgReceived} Map the
guard
Actions - -
Table 5. Receiving State Transformation
Name Type Equivalence Transformatio
Class (PSM) n Decision
Receiving Single state to ={receive } Map the
single state states
Reason/Justification
Transitions To receiving ={} ignore
Guards NotReceived ={ timeout, Map the
receiveFailed } guards
Finished ={close} Map the
guard

Actions - -

Table 5. declareReceivingProblems State Transformation

Name Type Equivalence Transformati
Class (PSM) on Decision
declareReceivingProbl Single state ={ raiseExceptio Map the
ems to single ns} states
state

Reason/Justification

Transitions
Guards

Actions

Table 5. Forbidden State Transformation

Name

Reason/Justification

Transitions

Guards

Type

forbidden state

The PIM
transitions to
the end when
finished. The
PSM closes the
resources used
before ending.

To end

Equivalence
Class (PSM)

={ close}

To end

={failToClose}

Transformatio
n Decision

Map the
states

Map the
transition

Map the

guard

Actions - -

The mapping process resulted in a state machine equivalent to the

PSM state machine with further changes applied to it.

Summary

Model transformation is a young field and there are several competing,
yet partly overlapping definitions of the terms. (Tratt 2005) defines
model transformation very widely as "a program that mutates one
model into another”. The Object Management Group (OMG) defines
model transformation in the context of the model-driven architecture
(MDA) as "the process of converting a model into another model of the
same system” in the first MDA guide (OMG 2003). The second revision
of MDA (OMG 2014a) extends this definition by also allowing several
models as input or output and define model transformation as ”
Transformation deals with producing different models, viewpoints, or
artifacts from a model based on a transformation pattern. In general,
transformation can be used to produce one representation from

another, or to cross levels of abstraction or architectural layers”.

The proposed mapping process would begin by first mapping the class
models that map the classes and their attributes. According to the
class mapping , the behavior of the mapped classes would be mapped
also. Behavior mappings begin with mapping of transitions and
constrains (guards). Then construct the concrete mapping from the PIM
state model to the PSM state model according to the following
framework.

We have two state models, A and B. Model B belongs to the PSM, so is
an implementation of Model A, which belongs to the PIM. Model A will
describe the application states and model B describe technically how
to use the available services provided in order to achieve some
functionality. An example of model A is the behaviour model developed
for the financial system application in Figure 4 State Machine Behavior

Diagram of PIM LinkProvision Class and the other one developed for the news
application Figure 5 PIM Client State Diagram. Examples for Model B are
Figure 4 ATM State Machine Diagram and Figure 5 PSM Client State Diagram.

Assume, as in the case studies, that there are fewer states in model A
than in model B, and that every state in model B corresponds to
exactly one state in model A. This means that we can divide the states
in model B into groups, indexed by the state of model A they
correspond to. If a is a state of A, then the states of B corresponding to

a form an equivalence class. Let's call that B(a).

Model transformations of behavior models represented as UML state
machine in this research can be classified into five categories:
1. Single State to Single State Transformation
If given an a state of A, there is one state in B(a), then call that state b, and the

PIM/PSM mapping maps a into b.

2. Single State to More Than One State Transformation
If given an a state of A, there are several states in B(a), then map
a to those states if possible. The mapping is one state to

many.

3. Single State to part of a composite state Transformation

4. Orphan State Transformation
Assuming that every state of A corresponds to at least one state of B. Otherwise, the
orphan state of A cannot be implemented. This could form part of an evaluation of

the suitability of a PSM for implementing a given PIM.

5. Forbidden State Transformation

What happens if there are states in B that don't correspond to

some state in A? Let's call them forbidden states. Whether this

is a problem would depend on whether the transitions mapped

from A ever take a state in B to the forbidden state.

Table 5. Issues and Behavioral Mapping Decisions summarized

Type (state/transition)
Single state to single state

Single state to multiple

states

Orphan State

Forbidden State

Single transition to single

transition

Single transition to multiple
transitions

Mapping
Direct mapping

Create a new composite state with
name=the PIM single state name,
Create a new region with name=PIM
state name+"Region" and add to the
newly created composite state the PSM

equivalence class states as sub states

Ignored, in the case study, this type of
states are handled implicitly by the
PSM , so ignoring them is not going to
create problems in the application logic.
This type of states are important to

complete the PSM logic, they are
created in the resulting model.

Direct mapping

Map the transitions (create the PSM
transitions) and check the target states
of each transition for equivalence with

PIM.
Orphan transition Ignored

Forbidden transition Created in the resulting model

the same process was done to the guards, actions, Initial node , Final
node, Fork node , Merge node with decision node , are mapped to the

equivalent.

Models To Text and The Application Execution

Overview

The mapping of PIM behavior model- state Machine - to the PSM
behavior model yield a behavior model expressed as PSM constructs
(state machine). The generated state machine models are highly
reusable since they are expressed in UML. The models then can be
transformed into other forms to enable complementing the class model
and provide the big picture as a complete application with class and
behavior instances both available to be executed.

Figure 6 Models to Text Translation

In the following sections we are going to discuss different possibilities
of mapping the PSM Behavior model instances into more usable
constructs. The main objective is to find various ways to make a

forward step towards application execution.

Possible Option 1 : Generic Mapping to prove concepts

Apparently the state machine depicts the flow of control an object has.
In the context of the case study what we need is the application flow of
the PIM instances hence their behavior and how that is achieved
through PSM instances.

If we concentrate on the PSM instances which are mapped manually ,
especially the guards and operation calls, we get a sequence of calls
guarded by conditions.

Proposed Rendering

We are going to render the state machine instances of the PIM
NewsSender and the PSM Producer classes that depicted in Figure 5
PIM NewsSender State Diagram and Figure 5 PSM Producer State
Diagram respectably as following:
e Astate is rendered as a comment with state name. example //** Idle **//
e A transition with a guard condition is rendered as “Evaluate “+ guard specification

* A none guarded transition is rendered as " and"+ target state name

* A do action of a state is rendered as “Call ”+ the operation if the action is a
CallOperationAction type.

PIM instance Behavior

Evaluate senderLinkOK

If true //**waiting**//

Evaluate

writeData(data:NewsMessage)

If true //** sending **//

Evaluate finished

If true //** final **//

Evaluate NotSent

If true //**declareSendingProblems

Evaluate wait

If true //** waiting **//

PSM instance Behavior

[[** ready **//

Evaluate callToSend

If true //** send **//

Evaluate close

and

If true //**

close**//

[I**final**//

Evaluate failToSend

If true //** raiseException**//

Evaluate invalidMsgFormat

If true //** raiseException **//

Evaluate invalidDestination

If true //** raiseException **//

Evaluate failToClose

If true //** raiseException **//

The result of the rendering is what we can call a high level algorithm,

in other words a high level program specified as model elements.

Possible Option 2 : Mapping of UML State Machine to SCXML

State Chart extensible Markup Language: State Machine Notation for
Control Abstraction (SCXML) is a standard developed by the World
Wide Web Consortiums (W3C) with the objective of generifying the
state diagrams notations used in XML contexts. According to the
working draft dated May 2014 (W3C n.d.), SCXML combines the
concepts of the Call Control XML (CCXML) standard and Harel State
Tables (Harel 1987). CCXML is an event based state machine language
that supports the call control features in voice application. Harel State
Tables are state machine notation that is included in UML and provide

several extensions to the basic notions of the CCXML state machine.

UML state machine diagram is an object-based variant of Harel state

chart tables.

SCXML= CCXML enhanced with Harel State Tables

SCXML=State machine + event handling syntax + standard call

controls

SCXML provide core constructs to represent state machine concepts
such as state, transition, parallel, history and other constructs. It also
provide executable constructs such as if, elseif, foreach and log. Beside
that it offers the capability of manipulating the state internal data as
elements and initial values in an abstract representation that can be
realized by various languages. SCXML also provide a way to

communicate with external entities through events.

The Apache Foundation supports the SCXML specification by providing
a working implementation, a set of APIs and an engine that can
execute a SCXML state machine described as a document. The Apache
Commons SCXML 2.0 (Apache n.d.) is the Java SCXML engine aligned
and compliant with the latest SCXML specifications.

Since the concepts and terminology used in SCXML and UML state
machine are both based on the Harel state charts table , a mapping
process is feasible between them. This implies that the SCXML
development tools, class library and runtime implementation of the

Apache Common SCXML can be used to create a platform model and
also provide an execution environment for the behavior of an end to
end application. The reason here is to provide constructs that can be

executed since the UML state charts are not.

Figure 6 Detailed mapping From PSM to Execution
Apache ActiveMQ

In the JMS API architecture, a JMS Provider is a messaging system that
implements the JMS interfaces and provides administrative and control
features. Apache ActiveMQ is an open source, Java Message Service
(JMS) 1.1-compliant, message oriented middleware (MOM) from the
Apache Software Foundation (Apache 2015). ActiveMQ implements the
JMS specification and offers additional features and value on top of this
specification. The goal of ActiveMQ is to provide standards-based,
message-oriented application integration across as many languages
and platforms as possible.

Apache ActiveMQ in this case study is used as the execution
environment where the JMS clients respectively the producer and
consumer PSM instances are running and the administered objects are
configured. The behavior instances can be executed in the Apache
ActiveMQ environment by configuring the Apache Commons SCXML
inside it to run the behavior models along with the class models.

UML, SCXML and the Apache Commons SCXML

A comparison of UML, W3C SCXML and the Apache Common SCXML
was carried out. The differences existed because of the continuous
improvements to the SCXML specification and its Apache
implementation. The latest release of the Apache Commons SCXML is
0.9. Subsequent changes to the SCXML Draft may necessitate changes
to portions of the Commons SCXML library APl but the core APIs
(SCXMLParser, SCXML Executor etc.) are stable (W3C n.d.).

Table 6.Comparing some elements of UML, W3C SCXML and the
Apache Common SCXML

UML State machine SCXML Apache Commons SCXML
Constructs (OMG CONSTRUCTS API
2011c)
(W3C n.d.) (Apache n.d.)
State Machine Document org.apache.commons.scxml2.env.Abs
<scxml > tag tractStateMachine
region -
Simple state <state> org.apache.commons.scxml2.model.S
tate
Initial Pseudostate <initial> org.apache.commons.scxml2.model.l
nitial
FinalState <final> org.apache.commons.scxml2.model.F
inal
History State <history> org.apache.commons.scxml2.model.

History

composite state

Orthogonal State
submachine state
Transition

Guard /Constraint

Event /Trigger

fork and join is a short

heavy bar

entry: Behavior[0..1]

doActivity:
Behavior[0..1]

exit: Behavior[0..1]

choice pseudostate

diamond-shaped
symbol

A compound

state is a <state>
that has <state>,
<parallel>, or
<final> children
(or a combination
of these).]

<transition>

Cond attribute of
<transition>

event attribute of
<transition>

<parallel>

<onentry>

<invoke>

<onexit>
<raise>

<if>

<elseif>

<else>

org.apache.commons.scxml2.model. T
ransition

String cond

Property that specifies the trigger(s)
for this transition class

String event

Property that specifies the trigger(s)
for this transition class

org.apache.commons.scxml2.model.P
arallel

org.apache.commons.scxml2.model.
OnEntry

org.apache.commons.scxml2.model.l
nvoke

org.apache.commons.scxml2.model.
OnEXxit

org.apache.commons.scxml2.model.
Raise

org.apache.commons.scxml2.model.If

org.apache.commons.scxml2.model.E
Iself

org.apache.commons.scxml2.model.E
Ise

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

Transforming UML State Machine to SCXML

The UML class diagram and state machine diagrams were imported
from the Magic Draw environment as an XML document. The XML
document is very large so we present here the equivalent SCXML
document for the diagram in Figure 5 PSM Producer State Diagram.

.

<?xml version="1.0" encoding="UTF-8" 7>
<scxml wversion="1.0" zmlns = "http://www.w3.org/2005/07/scxml"

xmlns:my="http://my.custom-actions.domain/PRODUCER" name="ProducerPSMStates"

initial="regionl":>
<state id="regicnl">

<initial id="begin"><transition target="ready" »></initial>
<state id="ready":>

<onentry><my:producer passing="ready" /> </onentry>
<transition target="sending" event="callSendEvent"/>
</state>

<state id="sending">

<onent

<my:producer passing="Producer.send (destination,messags)" />
</onentry>
<transition name="TE&" targst="raiseEwxceptions" event="failToSendEvent" />
<transition id="T5" target="ready" event="MsgSentEvent" />
</state>
<gtate id="close"><transition id="T4" target="end" /»</stats>
<state id="raiseExceptions">
<transition id="T7" target="end"»</transition:
</state>
<final id="end"></final>
</state>

</scuml >

Figure 6 SCXML Document for the Producer State Machine Diagram
in Figure 5 PSM Producer State Diagram

Suggested Algorithm to transform State machines to SCXML

Document

Input:
XML file representing the UML state diagram
Output:
XML file representing the SCXML document
Steps:
1. Read and parse the input file

2. Get the owned behavior id from the behaviored class (producer,
sender ,...)

3. Start with the element <ownedBehavior xmi:type="uml:StateMachine"
a. map to <scxml> with name=name
b. map the first state name to the scxml initial attribute
4. Process the children of the <ownedBehavior>
a. if the element is a <region>
i. map it to an upper level state with id= region name

ii. if the region is the first one map its name as in step
3, b part.

b. if the element is a <Pseudostate> map it to <initial> with
id= Pseudostate name

C. if the element is a <subvertex xmi:type='uml:FinalState' >
map it to <final> with id= Final state name

d. if the element is a <subvertex xmi:type='uml:State' >
i. map it to <state> with id= state name
ii. Find the nested state actions and map them.

iii. Find the state transitions and map them. Match the
transition source=state id

e. if the element is a <transition>

i. map it to a <transition> with the target= UML
transition target state name

ii. find the target state name by matching using the
specified id

iii. find transition triggers <trigger
xmi:type='uml:Trigger'

1. map to event attribute with name = the UML
trigger event name

2. Search for an element matched by id to find
event name

f. if the element is <entry>
i. map it to <onentry>
ii. map the specification

1. as a script inside the <onentry>, or code in a
programming language of choice.

2. if it is a method call try to locate the class
operation name and parameters

Concrete Mapping Examples

UML tags are represented in the first line and the equivalent SCXML tag

after it.

1. UML <OwnedBehavior> to SCXML <SCXML>

Each State machine diagram is mapped to an SCXML document with

the root being the state machine.

<ownedBehavior xmi:type="uml:StateMachine"

id="_16_5_1_b8d02e4 1391972952867 _520512_1044" name="ProducerPSMStates"

visibility="public">

<scxml version="1.0" xmlns="http://www.w3.0rg/2005/07/scxml" xmlIns:my="http://my.custom-

actions.domain/PRODUCER" hame="ProducerPSMStates" initial="region1">

2. UML <region> to SCML <state>

Since there is no equivalent for a region in SCXML, it is mapped into a composite state
that contains all the remaining states inside it.

<Fegion xmitype='uml:Region' xmi:id='_16_5 1 _b8d02e4 1408362414529 426609 465'

name='regionl' visibility="'public'>

<state id="regionl">

3. UML <PseudoState> to SCXML <initial>

In UML an initial pseudostate represents a default vertex. It is mapped to the initial
state in the SCML document structure.

<subvertex xmi:type='uml:Pseudostate'

xmi:id='_16_5 1 b8d02e4 1408362443489 943063_484' name='begin' visibility="public'/>
<initial id="begin">

4. UML <state> to SCXML <state>

<subvertex xmi:type="'uml:State' xmi:id='_16_5_1_b8d02e4_1408362443490_654880_488'

name='close' visibility="public'/>
<state id="close">

5. UML < transition> to SCXML <transition>

<transition xmi:type="'uml:Transition' xmi:id='_16_5_1 b8d02e4_1408364127870 470179 638’
name='T1' visibility="public' source='_16_5 1 b8d02e4 1408362443489 943063_484'

target='16 5 1 b8d02e4 1408362443490 261204 487'> </transition>

<transition target="ready" />

6. UML transition with trigger sub element to SCXML transition with
an event attribute

<transition xmi:type="'uml:Transition' xmi:id='_16_5 1 b8d02e4_1408364164846_157322_642'
name='T2' visibility="'public' source='_16_5 1 b8d02e4 1408362443490 261204 _487'
target='_16_5_1 b8d02e4_1408362443489 615661_485'>

<trigger xmi:type="'uml:Trigger' xmi:id='16 5 1 b8d02e4 1408364175183 723161 643’

name='SendTrigger' visibility="public' event="_16_5_1 b8d02e4 1408364213530 593838 644'/>
</transition>

<packagedElement xmi:type="'uml:SignalEvent'
xmi:id="_16_5_1_b8d02e4_1408364213530_593838_644' name='callSendEvent' visibility="public'/>

<transition id="_16_5 1 b8d02e4 1392133664229 112965 _1035" target="sending"

event="callSendEvent"/>

7. UML state with entry action to SCXML <onentry>

<subvertex xmi:type="uml:State' xmi:id='_16_5 1 b8d02e4 1408362443489 615661 _485'
name='sending' visibility="public'>
<entry xmi:type="'uml:Activity' xmi:id='_16_5_1_b8d02e4_1408365151206_870767_804'
name='sendActivity' visibility="'public'>
<node xmi:type="'uml:CallOperationAction'
xmi:id='_16_5 1 b8d02e4 1408365265134 660380 808' name='callSendOpAction' visibility="public'
operation='_16_5 1 b8d02e4 1408364861740_896861 711'>
<argument xmi:type="uml:InputPin’
xmi:id='_16_5_1 b8d02e4_1408365301521_636072_809' name='destination' visibility="public'>
<xmi:Extension extender='MagicDraw UML 16.5'> <modelExtension
parameter='_16_5_1 b8d02e4 1408364861754 523511 734'/>
</xmi:Extension></argument>
<argument xmi:type="'uml:InputPin’
xmi:id='_16_5_1 b8d02e4_1408365301522_117517_810' name='message' visibility="public'>
<xmi:Extension extender='MagicDraw UML 16.5'>
<modelExtension parameter='_16_5 1 b8d02e4_1408364861755_761884_735'/>
</xmi:Extension></argument>
</node>
</entry>
</subvertex>

<state id="sending">
<onentry>
<my:producer passing="Producer.send(destination,message)" />

</onentry>

Java Code to run the state machine

The UML class diagram contains the system classes. Referring to the
mapping process , the classes were imported the Eclipse Modeling
Framework EMF to generate Java classes. To add the behavioral
features to a class, the Apache Commons SCXML Java API is used. A
program is written in Java language in which the method
startStateMachine() loads the SCXML file presented in Figure 6 SCXML
Document for the Producer State Machine Diagram in . The method also
inspects the current state which the object is in, logs the state name
and responds accordingly.

public void startStateMachine() throws Exception

{
// Read the SCXML document
SCXML scxml = null;
ErrorHandler errHandler = null;
//url is the SCXML document path
scxml = SCXMLParser.parse(url, errHandler);//,
customActions);

SCXMLExecutor exec = null;

exec = new SCXMLExecutor ();

JexlEvaluator ev= new JexlEvaluator() ;
exec.setEvaluator(ev);

exec.setEventdispatcher(new SimpleDispatcher());
SimpleErrorReporter er= new SimpleErrorReporter();
exec.setErrorReporter(er);
exec.setStateMachine(scxml);
exec.addListener(scxml, new SimpleSCXMLListener());
Context rootCtx=ev.newContext(null);
exec.setRootContext(rootCtx);

exec.go();
while
(exec.getCurrentStatus().getStates().iterator().hasNext())
State CurrentState = (State)

exec.getCurrentStatus().getStates().iterator().next();
if(CurrentState.isFinal())
break;
else

String stateId=CurrentState.getId();
System.out.println("In state:
"+stateIld);
switch (stateld)

{

case

"regioni":displayl("regionli");
break;

case "begin":

displayi("begin");
break;

case "ready":

getReady(exec);
break;

case "sending":

sending(exec);
break;

case "close":

displayi("close");
connection.jmsConnection.close();
break;
case "raiseExceptions":
displayl("raiseExceptions");
break;
}//switch
}//else

}//while

The sending method is an example of the code that can represent the
sending state. The method sends the message once and chooses to
transit to close state. The same code can be written using the SCXML
constructs in the SCXML document but this needs more investigation.

public void sending(SCXMLExecutor ex)throws ModelException,
JMSException
{

String nextEvent;

System.out.println("Producer is sending...");

//call the object send method
// Here we are sending the message!
jmsProducer.send(data.message);

System.out.println("Sent message '" + data.message.getText() +
min) ;

// if sent nextEvent="MsgSentEvent";

nextEvent="closeEvent";

//if failed nextEvent="failToSendEvent";

//if close nextEvent="closeEvent";

TriggerEvent event = new TriggerEvent(nextEvent,

TriggerEvent.SIGNAL_EVENT);

System.out.println("event..."+event.getName());

ex.triggerEvent(event);
3
1. Sample Run of the application

The Apache Commons Engine log

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.io.SCXMLParser begin

WARNING: Ignoring element <producer> in namespace "http://my.custom-actions.domain/PRODUCER"
at file:/C:/Users/rahboni/workspace/RunSCXMLProj+/bin/producer.xml:36:44 and digester match
"scxml/state/state/onentry/producer"

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.io.SCXMLParser begin

WARNING: Ignoring element <producer> in namespace "http://my.custom-actions.domain/PRODUCER"

at file:/C:/Users/rahboni/workspace/RunSCXMLProj+/bin/producer.xml:82:64 and
digester match "scxml/state/state/onentry/producer”

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry

INFO: /regionl

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry

INFO: /regionl/ready

In state: ready

Producer is ready...

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit

INFO: /regionl/ready

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition

INFO: transition (event = callSendEvent, cond = null, from = /regionl/ready, to =
/regionl/sending)

event...callSendEvent

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry

INFO: /regionl/sending

In state: sending

Producer is sending...

event...closeEvent

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit

INFO: /regionl/sending

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition

INFO: transition (event = closeEvent, cond = null, from = /regionl/sending, to =
/regionl/close)

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry

INFO: /regionl/close

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onExit

INFO: /regionl/close

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onTransition

INFO: transition (event = null, cond = null, from = /regionl/close, to =
/regionl/end)

Aug 19, 2014 4:19:36 PM org.apache.commons.scxml.env.SimpleSCXMLListener
onEntry

INFO: /regionl/end

The point here is that the Apache Commons engine logs onEntry,
onExit, events, transitions,...etc. The state machine is followed in each
step of its lifetime. In the other hand, the programming part is able to
log (in black color) the states having actions such as onEntry ,
onExit, ..etc. The Apache Commons log is expressive enough but its log
info is not displayed in the Apache ActiveMQ log as shown below.

(oo | C:\PhD\msgScxml\apache-ant-1.8.3\bin\ant msgProducer = = ‘
erminate batch job <¥/NXT y

:\PhD\nsgScxnlnapache-activeng—5.5.1\inpleHsgPSHYC: \PhD\nsgScxnlyapache-ant—1.8.3\binvant nsgProducer
Buildfile: Gz PhD\msgScxmlzapache activemq-5.5.1\8 impleMsgPSHbuild .xml

[Jauac] C:\PhD\nsgScxnlnapache-activemg-5.5.1\§inpleMsgPSHubuild.xm1:151: warning: *includeantruntime’ was not set, defaulting to build.sysclasspath=last; set to fals
e for repeatable builds
[javac] Compiling 2 source files to C:\PhDmsgScxml\apache-activemg-5.5.1%$impleMsgPSHntargetscla

sgProducer:
[echo]l Running producer against server at $url = tep://localhosti61616 For suhject $subject = TEST.FOO
[javal Reading KMI fi
[javal Root element :
[javal : “Rihah
[javal N No_sppenders could bs found for logger (org.apache.commons.digester.Digester.sax).

[javal JARN Please initialize the log4j system prope
[javal ready

[javal Ri nnnect)nnlmpl created.

[javal Rihab: JMS Connection establis

[javal Rihah: Sessionlmpl created

[javal S i

[javal

[javal

[javal

[javal Rihah: g cleated pith text: Melbourne naned world’s nost liveable city for fourth straight year
[javal Ri y : Melbourne named world’s most liveable city for fourth straight year

[javal

Haval

[javal In

[javal Producer

[javal Sent message ‘Melbourne named world’s most liveable city for fourth straight year’

[javal event...closeEvent

X (Bl o L I.CIESNIN =

Figure 6 Executing the Producerimpl class

C:\PhD\msgScxml\apache-activemq-5.5.1\SimpleMsgPSM>C:\PhD\msgScxml\apache-ant-1.8.3\bin\ant
msgProducer
Buildfile: C:\PhD\msgScxm\apache-activemq-5.5.1\SimpleMsgPSM\build.xml

init:

compile:
[javac] C:\PhD\msgScxml\apache-activemq-5.5.1\SimpleMsgPSM\build.xmI:151: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds
[javac] Compiling 2 source files to C:\PhD\msgScxml\apache-activemqg-
5.5.1\SimpleMsgPSM\target\classes

msgProducer:

[echo] Running producer against server at $url = tcp://localhost:61616 for subject $subject = TEST.FOO

[javal Reading XMl file....

[java] Root element :xmi:XMI

[javal Sender : Rihab

[java] log4j:WARN No appenders could be found for logger (org.apache.commons.digester.Digester.sax).

[java]l log4j:WARN Please initialize the log4j system properly.

[java] In state: ready

[javal Rihab: Connectionlmpl created.....

[java] Rihab: JMS Connection established.....

[javal Rihab: Sessionimpl created.....

[javal Rihab: JMS Session created.....

[javal connection started

[java] Rihab: queue created with subjectTESTQUEUE

[javal Rihab: Datalmpl is created:

[java] Rihab: JMS Message created with text: Melbourne named world's most liveable city for fourth
straight year

[java] Rihab: New JMS Message is set: Melbourne named world's most liveable city for fourth straight
year

[java] Message is ready...

[java] event...callSendEvent

[javal In state: sending

[java]l Producer is sending...

[java] Sent message 'Melbourne named world's most liveable city for fourth straight year'
[java] event...closeEvent

o] Command Prompt - activemq = = l

icrosoft Windows [Uersion 6.2.92081
> 2012 Microsoft Corporation. All rights reserved.

\Usersirahboni>ed CG:\PhD\msgS8cxml\apache-activemg-5.5_1%\hin

.\P]lD\m;gScxml\apal:he activeng! 5 5. 1\b1n)a:t1uenq
Nt im sacle Corporation 1.7.8_ ol “Pro ran Files (x86>\Javarjdki.?.B_68\jre
Clll‘l‘el’lt— 5872k fl‘ee—lﬂl?ﬁl(ma
= sun.management . jnxremote mx512'1 —Dorg.apache . activeny.UseDedicatedTaskRunner=true —Djava.util.logging.config.file=logging.properties —nacnuemq.clar
path=C: \Phn\m«gs':xmlxapaclm activenq-5.5.15\bhin. . conf ;C:\PhD\msgScxmlnapache—activeng—5.5.1\bin\. . sconf ; -Dactivemq.home=C:\PhD\msgScxnlapache—act ivemg—5.5.1%hin% 1|
t:tluemq hase=C:~PhD\nsgScxml\apache-activeng-5.5.1\bhin.
C:\PhD\msgScxmlNapache—activemg—5.5_1\bin. .
G: \PhDsmsgScxmlhapache—activemg—5.5.1NbinN..
oading message broker from: xbean:activemg.xm
i Refreshing org.apache.activenq.xbean.XBeanBrokerFactory$1B6b6ile: startup date [Tue Aug 19 16:84:51 AST 20141; root of context hierarchy
de«-m-nynpplma:1nnCnn:exc0nsmp parameter is deprecated. please use shutdoun hooks instead
t8tore :C:\PhD\nsgScxmlNapache-activeng—5.5.1\bin%. .NdataNlocalhost \tmp_storage started
Using Persistence Adapter: KahaDBPersistencefdapter[C:PhDnsgScxnlNapache—activemg-5.5.15bin\. .\data\kahadh1
KahaDB is version 3
Recovering from the journal ...
Recovery replayed 2 operations from the journal in 893 seconds.
ActiveM@ 5.5.1 JMS Message Broker (localhost) is starting
For help o» more information please see: http: //al:twenq apache .org/
Listening for connections at: tep:s rahbonz61616
Connector npenull‘e Started
ActiveM? JMS Message Broker {localhost. ID:rahhon-51522-14@8453496488-8:1> started
jetty=7.1_6_u201PB715
ActiveM@ WebGonsole initialized.
Initializing Spring FrameworkServlet spatcher‘
http:/,
ActiveMQ Web Demos at http /8.8.9.0: 8161/denn
RESTful file access application at http://0.8.8.8:8161/fileserver
Started SelectChannelConnectorPA.A.0.8:8161
Transport failed: java.net.SocketException: Connection reset
! Transport failed: java.net.SocketException: Connection peset

B 94 s & [NIE -

Figure 6 Apache Active MQ Server is running

Proposed Approach Results and Discussion

Overview

This chapter presents a set of model transformations on UML class and
state machine models. Each transformation is provided with an
explanation of its purpose, examples of its use and conditions
necessary for its correct use. The results are presented and discussed

with examples.
Results Summarized

Model transformations of behavior models represented as UML state
machine in this research can be classified into five categories: Single
State to Single State, Single State to more than one State, Single State
to part of a composite state, orphan state and forbidden state
transformations.

If the PSM has a forbidden state which can be entered for a given PIM,
and the forbidden state has actions that involved changes to any PIM
class instances, then the PIM must be enhanced to take account that
PSM behaviour, otherwise a PIM state can map to a composite PSM
state including the forbidden state. A test for this kind of situation

would be valuable. Some observations are following:

a. A forbidden state with no guard predicate will generally do something
necessary for the operation of the PSM which is not visible in the PIM, so

the mapping is to a composite state.

b. A forbidden state with a guard predicate. A PIM may be constrained in
such a way that the PSM guard predicate will always evaluate to true, in
which case situation a above is obtained, or always false, in which case

the forbidden state can never occur.

C. In fact, if a forbidden state has no action with an effect on the PIM
database (PIM Classes model instances), then what it does would appear

to be irrelevant to the PIM.

d. In the case where a forbidden state has a guard predicate which may
evaluate to either true or false (this requires that the guard predicate
include terms which involve mapped PIM class model instances), and the
forbidden state has actions which change PIM class model instances, then
the PSM behaviour is richer than the PIM, and the PIM needs to be

enhanced to make the necessary specifications.

Another aspect in the state machine models is the constraints in
various forms. A constraint is formulated on the level of classes, but its
semantics is applied on the level of objects.
a. In the state models of both the PIM and PSM the
predicates can take different forms.

b. PSM class may have more attributes than PIM class, if such attributes
existed in the constraint they need a decision. If the PSM attributes are left in
the expression as specified by the PSM, then we have to note that the values
are PSM specific and are not specified by the PIM instance model.

C. PSM specific classes that are not part of the PIM classes may also have
their own constraints. These classes may be part of an equivalence class too.

d. The relation between the attributes used in the guard
expression involves the mapping of PIM class model to the
PSM class model first in order to map the attributes values of

instances accordingly.

e. The guard predicate in the PSM may be manually edited to find the
corresponding semantically equal behavior as specified by the PIM.

Discussion

Forbidden States Mapping
The fifth type of transformation identified is the “forbidden state”
transformations where the PIM state model has no equivalent for the

PSM state.

5

Y
B o[C
T1

Figure 7: Forbidden state C targeted by transition T1

Figure 7 : Forbidden state C targeted by transition T1 shows state B
which is equivalent to state A from the PIM state machine model. State

B links to state C with the transition T1.

The mapping decisions can be as follows:

Non guarded Transitions from B to C:

When T1 has no guard condition:

» Safely ignore state C and do not include it in the PSM.

In this case the PIM is followed strictly. The PSM contains more functionality
specified by the more states it has. In order for a PSM to implement a PIM , its
state should be superset of the PIM states. The forbidden states can be used to
enhance the PIM and alter its specification by mapping back from the PSM states
to the PIM states.

e Consider state C in the equivalence class of the PSM

In this case the logic is to be completed by visiting the forbidden state C from state
B, since the transition T1 has no condition.

0 The equivalence class would be A= { B, C }. It can be mapped as a
composite state, or another new region containing both state B and C.

0 An example to this situation is the printing of a receipt in the first case
study. The PIM doesn't express explicitly that the successful completion of
a transaction would result in a print of a receipt describing the
transaction. By mapping the constraints , the states and transitions ends up
in the idle state of the PIM state machine, while it continues to print and
release the card in the PSM. In this situation it is recommended to map the
additional PSM states to the PIM one in order to complete the application
logic.

0 Another example is the cleanUp forbidden state in the second case study.
The PIM transitions to the end state when finished sending or receiving.
The PSM cleans up the resources such as closing the connection object
before ending. The cleanUp state is required in the PSM so it is mapped
and added to the equivalence class.

Guarded Transitions from B to C:

0

FSh

B o C
T 1[Condition]

Figure 7 : Forbidden state C targeted by a guarded transition
Tl

In a state machine model, a guard condition is a boolean
condition that is evaluated when the transition is initiated. The
transition to the target state occurs when the guard condition is
evaluated to true. In the UML notation, guard conditions are shown in

square brackets.

It is possible that in an implementation of a particular PIM

that the guard for a forbidden transition is always false. In this case, a

forbidden state can safely be ignored as it can never be reached in that

application.

UML Constraints Mapping

Invariant

Assuming the following invariant as follows:

context Card inv: : expirationDate.isAfter(today)

. Determine the context of the constraint in the PSM class model, let us call it

PSMContext

. Determine the PIM class that is equivalent to the PSM class denoted by the <class

name>, let us call it PIMContext.

. Map the attributes of the PIMContext to the PSMContext
. Check the OCL expression

5. For each attribute in the constraint expression, map the equivalent attribute from the

6.

PIMContext class.

Assess the OCL functions used (involves checking the semantic of the constraint)

According to the class model mapping of the PIM to PSM, the ATMCard is mapped to a

Card class in the PSM. Since the Card is the context of the constraint, then we are going to

map the equivalent class attribute value for each object of type ATMCard from the

instances model into the PSM instance model. Note that the name of both attributes need

not be the same.

WGt

j:?;:émw] il tamtrd At e i

T Al
mmnﬁw o e

ikt

=

A e S ey

Figure 7 PIM ATMCard Class

Card

~cardMo ;int

-holderMame : String
-expirationDate : date
-cardinserted : boolean = false

+Cardl cardMumber ; int)
+zetCardinserted(to : boolean)
tisCardinserted() : hoolean

Figure 7 PSM Card Class

Observations:

1. PSM class may have more attributes than PIM class, if such attributes existed in the
constraint they need a decision. If the PSM attributes are left in the expression as
specified by the PSM, then we have to note that the values are PSM specific and

are not specified by the PIM instance model.

2. PSM specific classes that are not part of the PIM classes may also have their own

constraints. These classes may be part of an equivalence class too.

Pre and Postcondition

context ATM::dispence(amount : Integer)

pre: self.inState=performingTransaction

or

pre: oclinState(performingTransaction);

The pre condition specifies that the state machine that is owned by the
context object- ATM object - is in a specific state in order to enable the
execution of the operation dispense. In this case the mapping should
check that the state specified is equivalent to some state in the PIM
and if there is no constraint , a decision has to be made. Because the
PSM constraints are stronger than PIM ones, the decision here can be
to keep the constraint as it is in the PSM.

State Machine Constraint

A Constraint may be applied to a State machine in the same way as for a Class to specify
an invariant of the State machine. The guard condition of a State machine transition may

be specified by associating a constraint with a transition

retainCard

{too many invalidPIM }
\ {ATMUserSession userCard cardinserted =True }
Idie verifying
cdo § verifyOperation

Figure 7 Part of the PSM ATM states model

In Figure 7 Part of the PSM ATM states modelFigure 7 Part of the PSM ATM
states model above the transition from Idle state to Verifying state is
constrained with a guard condition that checks the boolean property
“cardinserted" in the PSM Card class. The navigation from the ATM

context - who owns the states - to the class Card is done through the
userCard association end that associated with the ATMUserSession
class. The "fundingNeeded" is a property of the class BankCustomer in
the PIM. BankCustomer is mapped to ATMUserSession in the class
model mapping . Each ATMUserSession is associated with a user card
of Card class. So the relation between the attributes used in the
constraint expression involves the mapping of PIM class model to the
PSM class model first in order to map the attributes values of instances
accordingly.

Example 2

In the state models of both the PIM and PSM the predicates can take
different forms. For example the PIMClient class in the messaging case
study has an attribute newsCount that specify the number of messages
generated and sent , with a default value set to 3, while the PSM
Client class has a guard predicate again? which is true if we want to
stop message generation and sending. The guard predicate in the PSM

may be edited to find the corresponding semantically equal behavior
as specified by the PIM.

{ [context hew shcESsogs n'.'l| [— a1
- 1 Ty manar et - e =gl =
| prepareliews oot ues Gensrm T sending :,(\J

o s ee |

PIMClient

:-pustTo: String
~news . String
-newsCount : Integer = 3

;-n-genera‘teﬂews{} : String
HdisplayMNews(String news)
+establishLink({)

Figure 7 PIMClient and the sending state

PrepareMessages
| do JfdoPrepareMsglct

[again=trus]

manageSemndim
regionz2

send] [Client T
do f sendOperation Ll - String 1
T— — FNewWs String
/)L rag&:n . boolean

rshowhewws({ news © String)

check i—rpro—ducehlews(_)_:_s_triﬁg i
+clear() |

[invaliciMsq] ‘|/

[again=Talse]
handleSend

gy

i exitSending

Figure 7 Client class and send state

A mapping solution can be as follows: The specification body of the
PSM constrain has to include the check expressed by the PIM
constraint.

<body> count=0 </body>

Beside that a new attribute or a complete data structure to hold the
attributes and values from the PIM should be invented and attached to
the PSM in order to preserve the semantic specified in the PIM.A semi
manual approach is needed.

Conclusion

Overview

This chapter is a conclusion of the thesis. Answers to the research
questions and explanation are drawn here. The chapter also presents
how the objectives were achieved beside showing the limitations and

future directions.

Summary of The Results

MDA is about using models as first class artifacts in the development
process from designs to implementations thus providing an end to end
complete process. Automating the path from models to executable
systems is a featured proposition in MDA that reduce cost, time and
improving their fitness for purpose. Our end to end engineering
approach creates domain assets in the form of metamodels , models
and QVT transformations for software solution developers.

The built PSM for messaging system could be re-used to afford many
products from the domain although it is not MDA or OMG standard.
Ideally, the standard PSMs will allow the software vendors to use them
off the shelf and generate code automatically.

Taxonomy and guidelines for state machine mappings will also be
valuable to the architects and developers. State of the art tools in the
MDA context was identified and used that pave the way for developers

who are examining the MDA process.

The research question was

How to automate software application generation using UML behavior

models in MDA approach?

The answer is provided through the thesis and covered by the relevant
literature. Automation is achieved by defining and discussing the
mapping relations between the PIM and PSM and also from the PSM to
code. The guidelines for doing the transformation is established and
implemented successfully that resulted in executing the program
modeled in the first place as a PIM thus providing the evidence of MDA
concepts. In the next paragraphs our approach is compared to the
ideal MDA and the traditional software development methods. The
models were formally represented as UML models which is the
standard modeling language from OMG.

Approaching the problem using case study methodology is considered
an evaluation to the problem. Moreover and considering the second

case study we had tried to build the same application in two ways: One

that uses pure MDA approach with current tools and languages , we
call it our approach. The other one is model driven but not MDA in the
sense of no PIM , PSM nor transformation is used, we can call it
traditional approach. In the recent future the MDA is going to be
mature enough and the software development process can be as
described by the MDA guides, we call this (dreamt) optimal MDA.

Table 8. Optimal MDA , our approach and traditional code

PIM

PSM
Messaging PSM
SCXML

Document

alternatives

Code written

generation approaches compared

Optimal MDA

Built

Standard and
ready on the
shelf
Standard and
ready on the
shelf
Standard and
ready on the
shelf

Existed as
other PSMs

Transformation

Our Approach

Built

Built

Built

Built

Need
investment

(time and
effort)

QVT + minimal
coding in Java
for illustration

Traditional
Code
generation
from models
Built

API level not
model level

Hard coding of
everything
again

Code for
relating classes
in a specific
language+
business logic

Regarding the PIM that captures the application logic, all the methods
get the benefit of having a model of the system. The PIM model
promotes the reuse and conformance with the requirement. The PSM in
the optimal MDA process is ready and the architect may select one
that suits the needs. One of the uses of a PSM is to suggest
functionality that the application may need to use. For example with
commercial accounting software, the software package reflects
industry best practice, and the customer will often change their
procedures to take advantage of the facilities provided by the package.
In our approach and because of the lack of standard PSMs we had built
the PSM. In the traditional approach there is no notion of a PSM.
Specifically we had written code and glue code to link the objects
created by the models and the object needed in the execution
environment. So we were working in the APl level and not the model

level.

In the optimal MDA, the platform models or platform specific models
for messaging systems and SCXML and alike technologies are going to
be standardized and available to compare, select and use. In our
approach we had built them so using an alternative is costly. On the
other hand, there were examples of changes to the models being
formulated, agreed and deployed in the working system. We had
experienced the built models being enhanced as if we had chosen a
deficient PSM at the beginning and also experienced working with the
complete and stable PSM after it reaches its stability when it had the
functions most applications look for. This experience is what we can
find in the context of the optimal MDA when judging about which PSM

to choose. The messaging platform chosen and modeled is a standard

one (but not MDA standard) that has sufficient facilities to implement
the PIM.

Augmenting the structural model with behavioral models in terms of
state machine models allowed the application logic to be available in a
higher level constructs that mapped to the API level objects
(instances) by transformations not by code writing. The code written in
our approach is the java code that initializes the state machine and
loads the files that contains the instances. We used that code for
illustration purposes only and to show the server log messages. Such
code could easily be illuminated. The effort of programming -if we can

say- is devoted to writing the transformation specification and rules.

The main objective of this research is to find an engineering method
for mapping UML state machine behavior diagrams from PIM to PSM.
The objectives were achieved by :

a) Designing and modeling a suitable software application PIM structures

Using the UML class model.

b) The PIM is enriched and complemented with UML state machine models
beside the UML class diagram. The state machine models assist in
providing enough information in the PIM that enables the automatic

generation of code artifacts.

C) Developing a generic model to present the implementation of the chosen
software application functionality described in the PIM model. This generic

model was used as PSM (Target Model).

d) Specifying the mapping rules to transform the PIM to the generic model
PSM containing both attributes (structure) and methods (behavior) for the

system.

e) Developing a module (using QVT) to carry out the mapping specification
in the previous step. The module is used to execute the model
transformation and provide the platform connection between the design

model (PIM instances) and the instances of the generic PSM.

f) QVT was the suitable transformation languages and UML
metamodels provide a base for better facilitating the

mapping process.

g) The proposed approach was evaluated by developing a
system using MDA best practices and transferring the
generated artifacts (programs, configuration files and all
the generated classes to a suitable environment to be
executed.

The way we approached the problem, the development of our
methodology, and the integration of our approach with the
programming technologies, modeling tools, ,development frameworks
and execution environments, remains the subject of future research. In
the meantime, we hope that our success in applying Model Driven
Architecture techniques in this study might inspire others to adopt a
similar approach, and thus make a positive effort towards the quality,
reliability, and maintainability of enterprise level information systems.

Limitations

Lack of Supporting Tool Set

MDA is a young discipline in which a mature set of tools are still
required. In this research we had consulted many different set of tools

each with its own strengths and weaknesses. Although the tools may
support export/ import models and model elements but the resulted
files were too big and error prone. Some features were not supported
in another tool that would result in different representation of the same
model. The Eclipse Modeling Framework EMF is based on Ecore which
is a subset of UML that does not include behavioral features of classes.
The modeling project of EMF would be an enhancement towards

providing a complete model representation and generation.

Automating Code Generation

Automatic code generation provides an increase in productivity.
Generators can produce thousands lines of codes in short time. Tedious
and boring parts of code can be also generated instead of hand
written. Automation can also provide architecture consistency when
programmers work within the architecture. Beside that automatic code
generation lifts the problem to a higher level thus providing an easier
porting to different languages and platforms. In contrast to the
mentioned advantages, generators themselves - programs that
produce programs- have to be written first. So there will always be
hand coding required. The code generation aspect fell partially in our
research scope because Model-to-Model Transformation was considered as
the main scope of this thesis. We had tested code generation to provide

an end to end transformation and provide a complete MDA approach.

Lack of Standard Models

In both case studies we had built the platform independent
models and the platform specific models. The process continually
involves enhancing and enriching the models which can create a sort

of bias. The MDA approach specify that the platforms should be

standardized and can be utilized by many software builders. This is the

optimal case.
Manual Work

In the MDA process, models are the heart. Because the whole
MDA process is driven by the PIM, and the PIM is automatically
transformed into a PSM, and from there to code, modeling in effect will
become programming on a higher level. The PIM specifies the structure
and behavior that need to be produced. In this research some
guidelines were identified and a semi manual and sometimes manual
contributions could not be avoided. This is because of the richness and
complexity of behavior models beside the many under research issues.
When the MDA become mature enough, there will be far less
programming, or that remains to be done by hand. Programming, in
the sense of building software systems, will eventually become
modeling. All software development effort will be focused on producing
a good, high level, independent model of the system.

Future Work

More work is to be carried out in the constraints parts of the state
machine models. Moreover state machine elements such as actions,
Initial node , Final node, Fork node , Merge node with decision node ,

has to be deeply investigated and decided upon how to be mapped.

In addition, we plan to test how to select a suitable platform
specific model based on the structure and behavior specified in the
platform independent model. Another interesting experiment would be
to translate the transformed constructs into a working software using

the MDA approach and tool sets in a fully automatic way.
Summary

This chapter concludes the mapping of UML state machine
models from the PIM to the PSM and to code. It provides answers to the
research questions and how the objective were achieved. Some
limitations regarding the manual work, lack of tool support and the lack
of standard models were discussed. Finally some future work were
described.

Abdalla, O.M.M. & Abdullah, A. Bin, 2011. Mapping of Behavior Model using Model-
Driven Architecture. International Journal of Computer Available at:
http://www.ijcaonline.org/volume13/number8/pxc3872495.pdf [Accessed May 28,
2011].

Ahmed, abd elgaffar hamed, 2010. Automating specification to implementation software
development using model driven architecture ali universiti teknologi malaysia.

Ahmed, R.E., Colomb, R.M. & Ahmed, A.H., 2013. A method for mapping state machine
behavior models in MDA issues and challenges. In 2013 INTERNATIONAL
CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC
ENGINEERING (ICCEEE). IEEE, pp. 404-409. Available at:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6633971 [Accessed March
22, 2015].

Aksit, M. et al., 2009. Behaviour Modelling in Model Driven Architecture. In CTIT
Workshop Proceedings Series WP09-04.

Anon, Erlang Programming Language. Available at: http://www.erlang.org/ [Accessed
June 26, 2015a].

Anon, MagicDraw. Available at: http://www.nomagic.com/products/magicdraw.html
[Accessed March 20, 2015b].

Apache, 2015. Apache ActiveMQ ™ -- Index. Available at: http://activemq.apache.org/
[Accessed March 25, 2015].

Apache, SCXML - Commons SCXML. Available at:
http://commons.apache.org/proper/commons-scxml/ [Accessed March 25, 2015].

Burke, P.W. & Sweany, P., 2008. Automatic Code Generation Through Model-Driven
Design. 20th System and Software Technology Conference, Las Vegas NV.

Creswell, J.W., 2012. Educational research: Planning, conducting, and evaluating
quantitative and qualitative research,

Dijkstra, E.W., 1976. A Discipline of Programming, Prentice Hall.

Dominguez, E. et al., 2012. A systematic review of code generation proposals from state
machine specifications. Information and Software Technology, 54, pp.1045-1066.

Eric Cariou, UML meta-model extension for state machine instance specification.
Available at: http://ecariou.perso.univ-pau.fr/contracts/uml-state-machine-
extension.html [Accessed March 24, 2015].

Flater, D., 2002. Impact of model-driven standards. Proceedings of the 35th Annual
Hawaii International Conference on System Sciences.

Garlan, D. & Shaw, M., 1993. An Introduction to Software Architecture. In Advances in
Software Engineering and Knowledge Engineering. pp. 1-40. Available at:
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf.

Harel, D., 1987. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3), pp.231-274. Available at:
http://www.sciencedirect.com/science/article/pii/0167642387900359 [Accessed
March 1, 2015].

Hevner, A.R. et al., 2004. Design Science in Information Systems Research. MIS
Quarterly, 28, pp.75-105. Available at: http://dblp.uni-
trier.de/rec/bibtex/journals/misq/HevnerMPRO04.

Kalnins, A. et al., 2009. Behaviour modelling notation for information system design.
Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven
Architecture - BM-MDA °09, pp.1-7. Available at:
http://portal.acm.org/citation.cfm?doid=1555852.1555854.

Mcneile, A. & Simons, N., 2004. METHODS OF BEHAVIOUR MODELLING A
Commentary on Behaviour Modelling Techniques for MDA. A Commentary on
Behavior Modelling Techniques for MDA. Metamaxim Ltd, 201, pp.1-11. Available
at: http://www.metamaxim.com/download/documents/Methods.pdf.

Members, C.J.W., 2004. J/eXtensions for Financial Services (J/XFS) for the Java
Platform - Part 1: Base Architecture - Programmer’s Reference. CEN/ISSS J/XFS
Workshop Event (London), Ref. No. C.

Mens, T., Czarnecki, K. & Gorp, P. Van, 2005. 04101 Discussion -- A Taxonomy of
Model Transformations. Language Engineering for ModelDriven Software
Development, pp.1-10. Available at: http://drops.dagstuhl.de/opus/volltexte/2005/11.

O M G, 2011. OMG Unified Modeling Language TM (OMG UML), Infrastructure. ,
(January).

Object Management Group (OMG), 2008. MOF Model to Text Transformation Language
1.0. Formal/2008-01-16, (January).

OMG, 2003. MDA Guide Version 1.0. 1., (June), p.51. Available at:
http://www.omg.org/docs/omg/03-06-01.pdf.

OMG, 2015. MDA OMG web page. Available at: http://www.omg.org/mda/ [Accessed
July 5, 2015].

OMG, 2011a. Meta Object Facility (MOF) 2 . 0 Query / View / Transformation
Specification. , version 1.(January), p.246. Available at:
http://www.omg.org/spec/QVT/1.1.

OMG, 2006. Meta Object Facility (MOF) Core Specification. Management,
080907(January), pp.1-76. Available at: http://www.omg.org/spec/MOF/2.0/.

OMG, 2010. Object Constraint Language. Language, 03(December).

OMG, 2014a. Object Management Group, Model Driven Architecture (MDA). , (June),
pp.1-15. Available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01.

OMG, 2014b. OMG Meta Object Facility (MOF) Core Specification, Version 2.1.4.,
2(April).

OMG, 2011b. OMG Unified Modeling Language TM (OMG UML), Superstructure. ,
(January). Available at: http://www.omg.org/spec/UML/2.4/Superstructure.

OMG, 2011c. OMG Unified Modeling Language TM (OMG UML), Superstructure. ,
(August).

OMG, 2014c. Success Stories. Available at:
http://www.omg.org/mda/products_success.htm [Accessed March 22, 2015].

OMG, 2004. UML 2.4.1 Superstructure Specification. October, 02(August), pp.1-786.

OMG, 2014d. XML Metadata Interchange (XMI) Specification. Interchange, 2(April),
pp.1-112. Available at: http://www.omg.org/spec/XM1/2.4.2/PDF/.

Oracle, 2013. Java Message Service Concepts. , (March). Available at:
http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html.

Riccobene, E. & Scandurra, P., 2009. Weaving executability into UML class models at
PIM level. In Proceedings of the 1st Workshop on Behaviour Modelling in Model-
Driven Architecture - BM-MDA °09. pp. 1-9. Available at:
http://portal.acm.org/citation.cfm?doid=1555852.1555853.

Richter, W. & Conti, M., 2004. The oligomerization state determines regulatory
properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases.
Journal of Biological Chemistry, 279, pp.30338-30348. Available at:
http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:MDA+Guide+Version+1.0.1#0\nhttp://dret.net/bibli
o/reference/mda10.

Rihab Eltayeb Ahmed, N.S., 2012. BEHAVIOR MODELING, LANGUAGES AND
DIAGRAMS IN COMPONENT BASED SOFTWARE DEVELOPMENT. Journal
of Asian Scientific Research, 2(11), pp.773-781. Available at:
http://www.aessweb.com/pdf-files/773-781.pdf [Accessed March 22, 2015].

Sunitha, E. V., and P.S., 2012. Translation of behavioral models to source code. In 12th
International Conference on Intelligent Systems Design and Applications (ISDA).
IEEE, pp. 598-603.

The Eclipse Foundation, Eclipse Modeling Project. Available at:
http://www.eclipse.org/modeling/emf/ [Accessed March 22, 2015].

Tratt, L., 2005. Model transformations and tool integration. Software and Systems
Modeling, 4(2), pp.112—122. Available at: http://link.springer.com/10.1007/s10270-
004-0070-1 [Accessed February 15, 2015].

W3C, State Chart XML (SCXML): State Machine Notation for Control Abstraction.
Available at: http://www.w3.0rg/TR/2014/WD-scxml-20140529/#Examples
[Accessed March 25, 2015].

PUBLICATIONS

[1] Ahmed, R.E., Colomb, R.M. & Ahmed, A.H., 2013. A Method for Mapping State
Machine Behavior Models in MDA, Issues and Challenges. In 2013 International
Conference on Computing Electrical and Electronic Engineering (ICCEEE). IEEE,
pp. 404-409. Available at: http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=6633971

[2] Rihab Eltayeb Ahmed, N.S., 2012. Behavior Modeling Languages and Diagrams in
Component Based Software Development. Journal of Asian Scientific Research,
2(11), pp.773-781. Available at: http://www.aessweb.com/pdf-files/773-781.pdf

Screenshots of the Models

™
><

File Edt Mavigate Search Project SamplefcoreEdtor Run Window Help

AWAIERRIERY Bty T bl W Ko el SN WA e A CRA S) KXY Ry T R S e e LA
:‘ m f]\jResource) Papyrus Y}Debug

o

8 Package Exglorer 3 <§'>| 9 T=8 [MnstancesSaerive [Translomeriava | #) Datacoore 5% S0 Emsklst B =
7 Guard:Projectct20f3 1‘@ platlolm:Irmuchn'sgPSMlImodeVDaIa.ecme‘ v ®=-| '.\'y‘ X | 4
DE msgPIM1 4 fi Data -
b E msgPIM.edit - {3 GenMode!
) i msgPeditr » 5 Producer Find Q) b ALY Adite.,
b i megPests 5 Session
b [maghH b B Message
b S magShH edi » & Consumer
b [mgPMediton » B Destination
b E msgPSh1 ests & Consumer_ConsumerPSM&tateDgm
) et 5 Connection
» & Connectionfactory
» g Clent

& Clent_ ClientStateDgrm

» B Queve-> Destination . -

5 £ Topic > Destination g Outine £ ¢ 718
& Producer ProducerPSMStates An outline s not available.

) B CueueSender -> Producer

» B IMSRuntimeEsception -» IMSException

» B IMSEuception

» B MessageFommatEsception -> |MSException

» B MessegeNotWiitezbleEception -» IMSException

» & TopicPublisher-» Producer

5 B QueueReceiver-» Consumer

5 TopicSubscriber -» Cansumer

5 B InvalidDestinationEiception -» IMSException

5 B MessageNotReadsblebception -> MSException

5 @ UMLStandardProfile

3 Detug dE =0

i Problems @ Jai

No consoles to display atthistime.

Selected Object platform: resource/msgPSM1/model Data.ecore

337AM
o/16/2014

«] BG

™
>

Fle Edt Source Refactor Navigate Search Project Run Window Help

DRSS R 2B 2 PO ENNE G 0 Ve PPl E M St
“‘ ﬁ| ([Resource 7} Papyrus ﬁ[}ebug

@ 7= 8 [MinstancesSaverjaa £ | [Transformerjava &) Data eoore S0 [TaskList 1 =8

¥

2 Package Explorer 52 g

7 GuardsProject0ct2013 1 package Data; L) ﬁ v %-: Pl | bl
b E’ msgPIM1 W@ 2% import java.io.File;[] -
b g magPMedit 12
b 9 magPIM1editor 158 /4] Find Q) AL Adivate.,
3 E‘ msgPIM1.tests 1
b El maghhi 17 public class XMIInstancesSaver {
) mughM i e
*
b msgPShT editor /@para.m B
*
3 El msgPSM1 tests
T test
PiEt public static void main{String[] args) |
/] Initialize the model
DataPackage., 2INSTANCE.eClass();
// Retrieve the default factory singleton
DataFactory factory = DataFactory.eINSTANCE; s
2% Qutine 5 =
/[create the content of the model via this program 9 lﬂz Bew 7
NewsSender newsSender = factory.createNewsSender(); E Dita
newsSender, aetSenderId("5001"); 4 @ WWilnstancesSaver
F

newsSender, aetName ("Rihab") ; 9 H main(String]]) : void
NewsReceiver newsReceiver= factory.createNewsReceiver();

newsReceiver, setReceiverId("R00L");

newsReceiver, setName ("ReceiverEnd");

Datalink datalink=factory.createDatalink(); n
datalink.setId("DLO01");
datalink,setStatus ("CE"); v
" problems @ Javadoc [8) Dectaraon ') Console 20 = Propertes 4 Debug #E-rir=13

No consoles to display at thistime,

| Witable Smatiset | 29:12 !

File Edit Source Refactor Mavigate Search Project Run Window Help

Rni AENEREEE ERile Bu N AR B A RTINSl

ERA RADIRAT: BB bl [E e R SR RS SRR S e
& | [Resource D Papyrus

t2 Package Explorer 52 |l =8 |@ java | [0] T java ©% @) Dataecore =8
[E7 GuardsProjectOct2013 1 package Data.impl: ~
b 2 msgPIM1 2® //import Data.impl.=*:[]
b S?‘J megPIM1.edit 7% import javax.xml.parsers.DocumentBuilderFactory;[] =
I msgPIM1.editor 26 3
b msgPIMI tests 27 public class Transformer {
b) msgPSM1 28
b 2 msgPSM1.edit 308 * Eparan axgs[]
b &5 msgPSM1.editor 32 static Document doc:
b msgPSM tests 33 //QueuesenderInpl gg)
= 345 public static void main(String[] args) {
b test 35 // TODO Buto-generated method stub
36 NodeList nList:
37 try ¢
38 //load the PIM instances from file
39 File fXmlFile = new File("src\\inputs\\My2.PIM1"); Bl =g
40 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance(): = ==
41 DocumentBuilder dBuilder; 18| %
42 dBuilder = dbFactory.newDocumentBuilder(); -
43
44 deoc = dBuilder.parse (fXmlFile); & Datair
45 doc.getDocumentElement () .normalize () ; 4 B, Transfo
26 a5 do
47 System.out.println("Reading XMI file...."): o9 m:
48 System.out.printin("Root slement :" + doc,getDocumentElemsnt () .getNodeName ()): o mi
49 @ Ne
50 @ Ne
51 // Retrieve the default factory singleton e Pt
£ //DataFactory factory = DataFactory.eINSTANCE: - o Da
< ' > < >
" Probles @ Javadoc [& D & Console 3 | E Properties % Debug #EB~rg>=189

N consoles to display at this time.

| Writable Smart Insert | 51:44

File Edit Source Refactor Mavigate Search Project Run Window Help

AR RS At A A P E AN TN R A SRR s P R - =R d ol L I
2§ | s Resource 3 Papyrus
t2 Package Explorer 52 Ele =@ java | [0] T java ©% @) Dataecore =8
ﬁJG“”"P"’JEGOCﬂOB // Retrieve the default factory singlecon @
3 EvJ msgPIM1 //DataFactory factory = DataFactory.eINSTANGE;
b [msgPIM1.edit // Create an instance =
b B msgPIM1.editor //DataFactoryImpl factory = new DataFactoryImpl () : 4
b) msgPIM tests DataFactoryImpl.init():
b g msgPSM1
2 msgPSM1.edit //Map NewsSender to QueueSender Part
(2 msgPSM1,editer Transformer transformer—new Transformer():
b G msgPSM.tests nList = doc.getElementsByTagName ("Data:NewsSender”) :
A
b g test
//PSH Part
o derImpl q ormer.map rToQ r{nList):
//Mapping NewsMessage to Message Part
MessageInpl msg—transformer.NewsMessageToMessage (nList): Bl m=x =8
S| B
//producer.setUp (msgContent) ; = a s
//Mapping of NewsReciever to QueueReceiver 1% | W
QueueReceiverImpl gr=transformer.NewsRecieverToQueueReceiver (nList); -
B Datairr
//Mapping of PIMClient to Client + @, Transfo
ClientImpl c=transformer.PIMClientToClient (nList,msg); sy
o
% m
X X o m
//Mapping of Data to Connection
ConnectionImpl con=transformer.DatalinkToConnection(nList): o Ne
//<Data:DataLink I4="DLOO1" status="OK"/> o Ne
e PI
//Map other BSM Cbjects| v @ Da
< > < >
" Probles @ Javadoc [& D & Console 3 | E Properties % Debug #EB~rg>=189

N consoles to display at this time.

| Writable Smart Insert 78:44 g

import

import

import

import

import

import

import

import

import

import

import

import

import

import

Source Code

Data.impl.*;

Data.DataFactory;

Data.Producer;

javax.jms.JMSException;

javax.xml.parsers.DocumentBuilderFactory;

javax.xml.parsers.DocumentBuilder;

javax.xml.parsers.ParserConfigurationException;

org.w3c.dom.Document;

org.w3c.dom.NodeList;

org.w3c.dom.Node;

org.w3c.dom.Element;

org.xml.sax.SAXException;

java.io.File;

java.io.IOException;

public class JMSMain {

Jx*

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

try {

File fXmlFile = new File("src\\Data\\impl\\MsgXmiPIM.xml");

DocumentBuilderFactory dbFactory

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder;

dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

doc.getDocumentElement().normalize();

System.out.println("Reading XMI file....");

System.out.println("Root element .

doc.getDocumentElement().getNodeName());

NodelList nList;Node node;

//Sender Part

nList = doc.getElementsByTagName("Data:sender");

node =nList.item(0);

System.out.println("Sender

((Element)node).getAttribute("id"));

//JIMS Part

// Retrieve the default factory singleton

//DataFactory factory = DataFactory.eINSTANCE;

// Create an instance

/*DataFactoryImpl factory = new DataFactoryImpl();

factory.init();*/

//producer.setProductId(1);

//System.out.println(producer.getProductId());

//Message Part

nList = doc.getElementsByTagName("Data:Email");

node =nList.item(0);

//System.out.println("Email Message

((Element)node).getAttribute("content"));

"y

"y

//this is not used, a msg is builtin for now

String msgContent= ((Element)node).getAttribute("content");

ProducerImpl2 producer= new ProducerImpl2("Producer2.xml");

producer.startStateMachine();

nList = doc.getElementsByTagName("Data:reciever");

node =nList.item(0);

System.out.println("Receiver

((Element)node).getAttribute("id"));

/*

*/

ConsumerImpl consumer=new ConsumerImpl();

consumer.createStateMachine();

if (consumer.stm.getCurrentStateId()=="setUp")

consumer.setData();

//

nList = doc.getElementsByTagName("Data:Inbox");

node =nList.item(0);

System.out.println("Inbox : "+((Element)node).getAttribute("id")

} catch (ParserConfigurationException el) {

"y

)

// TODO Auto-generated catch block

el.printStackTrace();

} catch (SAXException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

// System.out.println(e);

/*ProducerImpl prod= new ProducerImpl();

try {

prod.setUp();

} catch (JMSException e) {

// TODO Auto-generated catch block

e.printStackTrace();

package Data.impl;

import

import

Data.DataFactory;

Data.impl.*;

/*import Data.Data;

import

import

import

import

import

import

Data.DataPackage;

Data.Producer;

Data.Connection;*/

javax.jms.*;

java.net.URL;

java.util.*;

import org.apache.commons.scxml.*;

//import org.apache.commons.scxml.ErrorReporter;

//import org.apache.commons.scxml.Evaluator;

//import org.apache.commons.scxml.EventDispatcher;

//import org.apache.commons.scxml.SCXMLExecutor;

import org.apache.

import org.apache.

import org.apache.

import org.apache.

commons.

commons

commons.

commons.

scxml.env.*;

.scxml.env.jexl.JexlEvaluator

scxml.io.SCXMLParser;

scxml.model. *;

import org.xml.sax.ErrorHandler;

public class ProducerImpl2 {

VAR

* @param args

*/

URL url=null;

ConnectionImpl connection;

MessageProducer jmsProducer;

14

DataImpl data;

public ProducerImpl2(String doc) {

url=getClass().getResource(doc);

public void startStateMachine() throws Exception

//ClientTest ct=new ClientTest("Producer2.xml");

// TODO Auto-generated method stub

// (1) Create a list of custom actions, add as many as are needed

// List<CustomAction> customActions = new ArrayList<CustomAction>();

// CustomAction ca new CustomAction("http://my.custom-

actions.domain/PRODUCER",

// "producer", ProducerActions.class);

//System.out.println(ca.getClass().getName());

// customActions.add(ca);

//try {

// URL url= new URL("hello2.xml");

//URL url = docIt("hello2.xml");

// (2) Read the SCXML document containing the custom action(s)

SCXML scxml = null;

ErrorHandler errHandler = null;

scxml = SCXMLParser.parse(url, errHandler);//, customActions);

// Also see other methods in SCXMLReader API

SCXMLExecutor exec = null;

//try {

exec = new SCXMLExecutor ();

JexlEvaluator ev= new JexlEvaluator() ;

exec.setEvaluator(ev);

exec.setEventdispatcher(new SimpleDispatcher());

SimpleErrorReporter er= new SimpleErrorReporter();

exec.setErrorReporter(er);

exec.setStateMachine(scxml);

exec.addListener(scxml,new SimpleSCXMLListener());

Context rootCtx=ev.newContext(null);

exec.setRootContext(rootCtx);

exec.go();

while (exec.getCurrentStatus().getStates().iterator().hasNext())

State CurrentState = (State)

exec.getCurrentStatus().getStates().iterator().next();

if(CurrentState.isFinal())

break;

else

String stateId=CurrentState.getId();

System.out.println("In state: "+stateld);

switch (stateld)

{
case '"regionl": displayil("regioni");
break;
case '"begin": display1("begin");
break;
case "ready": getReady(exec);
break;
case "sending": sending(exec); break;
case '"close": displayl("close");
connection.jmsConnection.close(); break;
case "raiseExceptions":
displayl("raiseExceptions"); break;
}

}//else

}//while

public void setUp(String msg)throws JMSException

// Name of the queue we will be sending messages to

String subject = "TESTQUEUE",

// Retrieve the default factory singleton

DataFactoryImpl factory = new DataFactoryImpl();

factory.init();

// Getting JMS connection from the server and starting it

connection = new ConnectionImpl();//factory.createConnection();

connection.start();

System.out.println("connection started");

// JMS messages are sent and received using a Session. We will

// create here a non-transactional session object. If you want

// to use transactions you should set the first parameter to 'true'

SessionImpl session = (SessionImpl)connection.childSession;

// Destination represents here our queue 'TESTQUEUE' on the

// JIMS server. You don't have to do anything special on the

// server to create it, it will be created automatically.

BufferImpl queue = new BufferImpl(session,subject);

// MessageProducer is used for sending messages (as opposed

// to MessageConsumer which is used for receiving them)

jmsProducer = session.jmsSession.createProducer(queue.jmsQueue);

// We will send a small text message saying 'Hello' in Sudanese

data = new DataImpl (session,msg);

// we can call

//String newMsg="am so tired and having headache ";

data.setMsg(session, msg);

public void displayl(String name)

System.out.println("In state: "+name);

public void getReady(SCXMLExecutor ex)throws ModelException,

JMSException

setUp("Melbourne named world's most liveable city for

fourth straight year");

System.out.println("Message is ready...");

TriggerEvent event = new TriggerEvent("callSendEvent",

TriggerEvent.SIGNAL_EVENT);

System.out.println("event..."+event.getName());

ex.triggerEvent(event);

public void sending(SCXMLExecutor ex)throws ModelException,

JMSException

String nextEvent;

System.out.println("Producer is sending...");

//String passing=(String)

ex.getRootContext().getVars().get((Object) "passing");

//System.out.println("Executing...has it "+passing);

//call the object send method

// Here we are sending the message!

jmsProducer.send(data.message);

System.out.println("Sent message '" +

data.message.getText() + "'");

// if sent nextEvent="MsgSentEvent";

nextEvent="closeEvent";

//failed nextEvent="failToSendEvent";

//close nextEvent="closeEvent";

TriggerEvent event = new TriggerEvent(nextEvent,

TriggerEvent.SIGNAL_EVENT);

System.out.println("event..."+event.getName());

ex.triggerEvent(event);

public void callState(String name){

// this.invoke(name);

VAR

* Get current state ID as string

*/

/* public String getCurrentStateId() {

Set states = getEngine().getCurrentStatus().getStates();

State state = (State) states.iterator().next();

return state.getId();

Y/

	
	DEDICATION
	ACKNOWLEDGEMENTS
	Abstract
	المستخلص
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	MDA in Brief
	Motivation
	Problem background
	Research Questions
	Objectives
	Main Contributions
	Thesis Outlines

	Literature Review
	Overview
	Model Driven Architecture (MDA)
	Major MDA concepts
	MDA Adoption and Promises
	OMG Adopted Standards for MDA

	UML and Behavior Modeling
	UML Structure and Behavior Models Relation
	Basic UML 2 Concepts
	Invariant
	Precondition
	Postcondition
	Guard

	Traditional Support of State Machine in Software Development

	Automation and Model to Code Transformation
	Summary

	Research Methodology
	Overview
	Case Study Methodology
	Brief Description of the Proposed Case Studies
	Languages and Tools Used in Case studies
	UML 2 Metamodel
	Magic Draw
	XMI
	QVT
	Eclipse Modeling Framework EMF

	Case Studies Main Steps
	Summary

	Case Study: Financial System Services
	Overview
	Models of the System
	Financial System PIM
	Financial System PSM

	Suggested Mapping Process
	Observations and Issues
	Summary

	Case Study: News Application
	Overview
	Approaching the Problem
	Models Of The System
	News System Platform Independent Model
	Messaging System Platform Specific Model

	Class Model Mapping
	Behavioral Models Mapping
	PIMClient and Client Classes
	Behavioral Mapping of PIMClient to Client

	The NewsSender and Producer Classes
	Behavioral Mapping of NewSender and Producer

	The NewsReceiver and Consumer Classes
	Behavioral Mapping of NewsReceiver and Consumer

	Summary

	Models To Text and The Application Execution
	Overview
	Possible Option 1 : Generic Mapping to prove concepts
	Possible Option 2 : Mapping of UML State Machine to SCXML
	Apache ActiveMQ
	UML, SCXML and the Apache Commons SCXML
	Transforming UML State Machine to SCXML
	Suggested Algorithm to transform State machines to SCXML Document
	Concrete Mapping Examples
	Java Code to run the state machine
	1. Sample Run of the application

	Proposed Approach Results and Discussion
	Overview
	Results Summarized
	Discussion
	Forbidden States Mapping
	UML Constraints Mapping

	Conclusion
	Overview
	Summary of The Results
	Limitations
	Lack of Supporting Tool Set
	Automating Code Generation
	Lack of Standard Models
	Manual Work

	Future Work
	Summary

