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Abstract

We studied in this research the Laplace transiormation of
function. In chapter I we defined Laplace transiorm and we

solved some examples and we proved some theorems.

In chapter 2 we gave the inverse of Laplace and solved some
problems and we defined the convolution.

In chapter 3 we applied the Laplace transiormation to solving
the system of difierential equations with constant coelficient.
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Introduction

We shall study in our research the importance of
existence of Laplace transiorms of functions and also
we interested by applying the convolution to Laplace
iverse, and we also we are giving some applications

to illustrate the importance of our theorems

(Existence theorem ) used in the applications.



Chapter 1
The Laplace Transform

In this chapter we shall introduce a concept which is especially
useful in the solution of initial-value problems. This concept is the so-
called Laplace transform, which transforms a suitable function F of
order variable t into related function f of real variable a linear
differential equation on unknown” function so t it transforms. The given
initial-value problem into an algebraic problem in variable s, in section
(1.3) we shall indicate. Just how this transformation is accomplish and
how the resulting algebraic problem is then comploxed to find the
solution of the given initial-value problem first however, in section (1.1)
we shall introduce the Laplace transform itself and develop certain of
it’s most basic and useful properties.

At First we define Improper Integral
We say that the integral ff f(x) dx is improper integral:

i)  If the integer and function f(x) has some dis
continuous points on [a, b].
i) If a or b is equal infinity.

In case 1 we have:
DIf x = b is the point of discontinuity of f(x) we put
b b—e¢
] f(x)dx = lim f(x)dx
a e—0

a

2)If x = a is the point of discontinuity of f(x), we put

b b
f fx)dx = £1_r>% f(x)dx

ate

3)If a < ¢ < b, cisthe point of discontinuity of f(x), we put



b c—€ b
Lf(x)dx=l€i_r)r6fa f(x)dx+€l;£n)0j;+€’f(x)dx

while case 2 we have

1) joof(x) dx = &1_1)1010 juf(x) dx
b b
2)] f(x)dx = ullin_looj f(x)dx

00 u 0
3)] f(x)dx = 111—>nolo_[ f(x)dx + u}irpmj f(x)dx
—o 0 u'

Example 1.1

(1) f03 \/j_% has discontinuity at x = 3

(2)  J; = has discontinuity at x = 2

X

@ f xfi} improper integral atbh = o

Note:

The improper integral has a value if the limits in every case above
are exist.

Definition: Bounded Functions

We say that f(x) is bounded if |f(x)| < M, VM € IN, and then
—-M< f(x) <M

—M is the lower bound of f(x) and M is the upper bound of f(x).
Definition, Existence, and Basic Properties of the Laplace Transform

Definition and Existence
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Definition:-

Let F be a real-valued function of the real variable defined t > 0 let
s be a variable which we shall assume to be real, and consider the
function defined by

o0

f(s) = j e StF(t) dt (1.1)
0

For all values of s for which this integral exists. The function f
defined by the integral (1.1) is called the Laplace transform of the
function F. We shall denote the Laplace transform f of F by Z(F) and
shall denote f(s) by Z{F(t)} in order to be certain that the integral
(1.1) does exist for some range of values of s the must impose suitable
restrictions upon the function F under consideration mental do this
shortly; however, first we shall directly determine the Laplace
transforms a few simple functions

Example 1.2
Consider the function F defined by
F(t)=1, fort>0

Then
o0 R _e—St R
Z{1} = j e St.1dt = lim | e %t.1dt = lim [ ]
0 R—o 0 R—- S O
_ [1 e‘SR] 1
= lim |- — = -
R—>x | S S S

For all s > 0. Thus we have
1
Z{1} = A (s > 0).

Example 1.3
Consider function F defined by then

11



F(t) =t, for t >0
then

o0 R

Z{t} =j e St.tdt =lim | e St.tdt
0 R=c0 Jj

Let

u=t, dv = e Stdt

1
du =1, v=——e St
S
Hence Integrating by parts we get
R R
Z{t}=1lim | e st.tdt = u—v—j vdu
R=x Jg 0

1 1 (R
= lim <—— te‘“) + —j =St dt
R— S

m [ te‘“]R 4]

e‘St e”
(st + 1) = lim [——

= lim —
B 52 R | 52 52 2

(SR + 1)] =
For all s > 0. Thus

1
g{t}=s—2 (S>0).

Example 1.4
Consider the function f defined by
F(t) =e*, fort>0

12



0 R e(a—s)t R
Z{e} = f e Ste® dt = lim | e@ 9t dt = lim [ ] 0

0 R— 0 R0 | A — S

e(a—s)R 1 1
= lim — = — = foralls > a
Roo|l a—S a—s a—s S—a
Thus
1
Z{e¥}=—— (s> a).
s—a
Example 1.5
Consider the function F defined by
F(t) = sin bt, for t >0
0 R
Z{sinbt} = j e St sinbtdt = }eim e St sin bt dt
0 ~*Jo
u=e S = du=—se Stdt
1
v =sinbtdt > v = —Ecosbt
1 R ¢ (R
[ = lim [——e"t cos bt] ——j e St cos bt dt
Roo| b 0 b J,

I =i [1-“ bt S] €Y
= —— ——J| -
Rl_r)rolo be coS b]
R
]=f e St cos bt dt
0

u=e St = du=—seStdt

1
v =coshtdt = v =Bsinbt

13



1 R ¢ (R
J = lim |—e 5¢sin bt] +—j e St sinbt dt
1 R
] = [—e‘“ sin bt] +—J — (2)
b b
0
form (2) in (1)

I = tim [~Le=st cos bt == e~5t sin bt — =
—Rl_r)lgo —Ee COS t—ﬁe sin t—b_z

I+SZI—1 ! —SR bR > SR g bR]
2 im e cos sz " sin

R—o0

i+ 5] 2 im (2L =% cosbr — S e-5R s bR]
b2 1m be CoS bze Sin

R—o0

I [1 + —] = lim [-be SR cos bR — se 5% sin bR]

R—>oo

1[S? + b?] = lim [-be K cos bR — se™ SR sin bR]

R—o0

1 —SR —SR o
I—Ill_r)glo _Sz+bze o cosbR—Sz_I_bze o smbR]

B e

(S cosbR — b sin bR)]

R—00 S2 + b2

b e—sR
= lim [_Sz+b2_ (SsmbR—bcosbR)]=SZ_|_b2

Z{sin bt} = . forall s > 0.

2_|_b2
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Example 1.6
Consider the function F defined by
F(t) =cosbt, fort>0

0 R

Z{cosht} = j e St coshtdt = Ilzim e St.coshtdt
0 ~*Jo
by part integral
u=e S = du=—se Stdt

1
dv =sinbtdt = v = —Ecosbt

R—o0

1 s (R
I = lim |-e S®sinR +—j e St sin bt dt
b b,

1 S
[ = lim Ee‘SR sin R +E]] — (1)

R—o0
] = j St sin bt dt
u=e St =du=—seStdt

1
v =sinbtdt > v = —Ecosbt

e—st S R
]=}%i_r)rolo[— 2 COSR_EfO e‘“sinbtdt]

I N
1—[— —cos —5]—><>

form (2) in (1)

N S se”St 52
I=1%1_r)£1o Ee sin bR — 02 cosbR—b—ZI

15



[+—1=1i 1 —SR gj bR—i —SR bR
pal = 1[21_1)r01o R e sin I e coS
Sz- : 1 —SR i S —SR -
I 1+ﬁ =}%1_r)r.}o _—Ee smbR—b—ze cos bR
Sz- : 1 —SR : S —SR ]
I 1+ﬁ =}%1_r)r.}o _—Ee smbR—b—ze cos bR
I[S? + b?] = I%im [be SR sin bR — se ™SR cos bR]
[ = lim |- b ~SR cos bR — S ~SR sin bR g
= Rl_r)I")lo ST 52 e coS ST 2 e sin

0

1. l be—sR . bR Se—SR bR] R
= 1lim |— > > Sin — 2 > COoS
S +b S +b 0

R

e—sR
= lim ISZ "y~ (bsinbR — S cos bR)]

0
o Z{cosht} =

S
152 (s > 0).

In each the above examples we have seen directly that the integral
(1.1) actually does exist for some range of values of s. We shall now

determine a class of functions F for which this is always the case. To do

S0 we consider certain properties of functions.

Definition :-

A function F is said to be piecewise continuous (or sectionally

continuous ) on a finite interval a < t < b if this interval can be defined

into a finite number of subintervals such that (1) F is continuous in the
interior of each of these subintervals, and (2) F(t) approaches finite

limits as t approaches either endpoint of each of the subintervals, from

its interior.

16



Suppose F is piecewise continuousona <t < b,and ty, a < ty, <
b, is an endpoint of one of the subintervals of the above definition. Then
the tinite limit approached by F(t) as t approaches t, from the left (that
is, through smaller values of) is called the left-hand limit of F(t) as t
approaches t,, denoted by lim,_,.~ F(¢) or by (¢;). In like manner, the

finite limit approached by F(t) as t approaches t, from the right
(through larger values ) is called the right-hand limit of F(t) as t
approaches t, denoted by lim, .+ F(t) or F(t, +). We emphasize that

at such a point t,m both F(t, —) and F(t, +) are finite but they are not
in general equal.

We point out that if F is continuouson a <t < b it is necessarily
piecewise continuous on this interval. Also, we note that if F is pieswise
continuouson a <t < b, then F is integrableon a < t < b.

Example 1.7

Consider the function F defined by

1 0<t<2
F(O) ={ 1 t>2

F is piecewise continuous on every finite interval 0 < t < b, for
every positive number b. Att = 2, we have

F(2-)= lim F(t) = -1,
F2+) = tlirzn+ F(t) = +1,

The graph of F is show in figure (1)

17



F(t) |

FIGURE (1)

Definition :-

A function F is said to be of exponential order if there exists a
constant a and positive constants t, and M such that

e " |F(t)| <M

For all t > t, at which F(t)is defined. More explicitly, if F is of
exponential order corresponding to some definite constant x in (1.7),
then we say that F is of exponential order e?t.

In other words, we say that F is of exponential order if a constant «
exist such that the product e %t|F(¢t)| is bounded for all sufficiently
large values of t. From (1.7) we have

|F(t)| < Me?t

Forall t > t, at which F(t) is defined. Thus if F is of exponential
order and the values F (t) of F become infinite as t — oo, these values
cannot become infinite more rapidly than a multiple M of the
corresponding values e?* of some exponential function. We note that if
F is of exponential order e®¢, then F is also of exponential order eAt for
any g > a.

Example 1.8

Every bounded function is of exponential order, with the constant
a = 0. Thus, for example, sin bt and cos bt are of exponential order.

18



Example 1.9

The function F such that F(t) = e%® sin bt is of exponential order,
with the constant @ = a. For we then have

e | F(t)| = e *te*t|sin bt| = |sin bt|,
Which is bounded for all t.
Example 1.10

Consider the function F such that F(t) = t™, where n > 0. Then
e *t|F(t)] is e t™. Forany a > 0,lim,_, e~ %t™ = 0. Thus there
exists M > 0 and t, > 0 such that

e ®|F(t)| =e *t" < M

Fort > t,. Hence F(t) = t™ is exponential order, with the constant
a equal to any positive number.

Example 1.11

The function F such that F(t) = et is not of exponential order, for

in this case e~#¢|F(t)| is et =% and this becomes unbounded as ¢t — oo,
no matter what is the value of a.

We shall now proceed to obtain a theorem giving conditions on F
which are sufficient for the integral (1.1) to exist. To obtain the desired
result we shall need the following two theorems from advanced calculus,
which we state without proof.

Theorem A. comparison Test for Improper Integerls
Hypothesis
1.Let g and G be real functions such that
0<g(t)<G(t) ona<t< oo,

2.Suppose [~ G(t) dt exists.

19



3.Suppose g is integrable on every finite closed subinterval of
a<t<oo.

Conclusion. Then [~ g(¢) dt exists.
Theorem B
Hypothesis

1.Suppose the real function g is integrable on over finite closed
subinterval of a < t < oo.

2.Suppose [ |g(D)] dt exists.

Then [ ”|g(t)] dt exist.

We now state and prove an existence theorem for Laplace
transforms.

Theorem 1.1

Hypothesis. Let F be a real function which has the following
properties:

1.F is piecewise continuous in every finite closed interval
0<t<b((b>0).

2.F is of exponential order; that is, there exist ¢, M > 0 and
to > 0 such that

e ®|F(t)| <M for t>t,

The Laplace transform

f e SF(t) dt
0

of F exists for s > «

20



proof:
We have

(0]

jme‘StF(t) dt = jtoe‘StF(t) dt +] e SUF(t) dt
0

0 to

By Hypothesis 1, the first integral of the right member exists. By
Hypothesis 2,

e SHF(t)| < e StMe®* = Me~(~a)t

Fort > t,. Also

o R Me—(s—a)t R
Me=G=®tqt = lim | Me =Mt dt = lim [— —]
to R—o o0 to R— o S—a tO
— lim M ] [e—(s—a)to _ e—(s—a)R]

R |S — &
— [ M ]e_(s_“)to if s>a
S—a

Thus

(0]

Me~G—Dt gt exists fors > a
to

Finally, by Hypothesis 1, e~St|F(t)] is integrable on every finite
closed subintegral of t, < t < oo. Thus, applying Theorem A with
g(t) = e St F(t)| and G(t) = Me~ G~ we see that

] e St F(t)|dt existsifs > a
t

0

In other words,

f le StF(t)|dt existsifs > a
t

0

and so Theorem B
21



j e SUF(t)dt
t

0

also exists if s > a. Thus Laplace transform of F exist for s > «a.

Let us look back at this proof for a moment. Actually we showed that
If F satisfies the hypothesis stated, then

j e St F(t)|dt existsifs > a
t

0

Further, Hypothesis 1 shows that
to
j e St|F(t)| dt exists
0
Thus
j e St F(t)| dt existsfors > a
0

In other words, if F satisfies the hypothesis of Theorem (1.1), then

not only does . {F} exists for s > «a, but also .Z {|F|} exists for s > a.
That is,

j e St|F(t)|dt is absolutely convergent for s > a
0

We point out that the condition on F described in the hypothesis of
Theorem (1.1) we not necessary for the existence of . {F} exists. For
distance, suppose we replace Hypothesis 1 by the following less
restrictive condition. Let us suppose that F is piesewise continuous in
every finite closed interval a < t < b, where a > 0, and is such that
|t™F(t)| remains bounded as t — 0% for some number where 0 < n <
1. Then, provided Hypothesis 2 remains satisfied, it can be shown that
7 {F} still exists. Thus for example, if F(x) = t~Y3,t > 0, Z{F}
exists. For though F does not satisfy Hypothesis 1 of Theorem (1.1)

22



[F(t) » o as t — 0%], it does satisfy the less restrictive requirement
stated above (take n = %), and F is of exponential order.

Basic Properties of the Laplace Transform

Theorem 1.2

The Linear Property

Let F; and F, be functions whose Laplace transforms exist, and let c;
and ¢, be contents.

then
Z{c1Fi(t) + c;F, (1)} = o Z{F, ()} + ¢, Z{F,()}. (1.9)
Proof.
LR © + 6FR0] = [[aR @ + 6 Fy0]d
0
j c, F,(t)dt + j c, F,(t)dt
0 0
=>c, | Fi(t)dt +c, | F,(t)dt
f o]
c, ZF (t) + c, ZF,(t)

Example 1.12

Use Theorem (1.2) to find .# {sin? at}.

Since sinat = (1 — cos 2at)/2, we have
1

1
Z{sin®at} = & {E — 5 cos Zat}.

23



g{l 1 Zt}—lgu} L 2 (cos 2at)
2 2COS a —2 2 cos zatg.

By Theorem (1.2), #{1} = 1/s, and by (1.6), .Z{cos2at} =
s/(s* + 4a*). Thus

S B 2a?
s2+4a?  s(s? +4a?)

1
- (1.10)
S

Z{sin? at) = 1 1
SIin~ a —2. 2.
Theorem 1.3

1.Let F be a real function which is continuous t > 0 and of
exponential order e™.

2.Let F' (the derivative of F) be piecewise continuous in every
finite closed interval 0 < t < b.

Then . {F '} exist for s > a; and
Z{F ()} =s2{F()}—-F(0)
Proof.

By definition of the Laplace transform,

R

Z{F(©} = lim j e S'F'(t) dt,
0

—st

u=e st = du=-se

dv=F'(t)dt =v=F()

R R
lim [eStF(t) f +s f F(t)e st dt]
R—o0 0 0

lim [e™*F(R) = F(0) + 5.2 [F(D)]]

= —F(0) +sZ[F(t)]
Z(F'@®) =s2[f ()] + F(0).

24



provided this limit exist. In any closed interval 0 < t < R, F'(t) has
at most finite number of discontinuities; denote these by ¢, t,, ..., t;,,
where

0<t;<t,<--<t, <R.

Then we may write

t1

R
je‘StF’(t)dt=j e SF'(t) dt
0

0
R

()
=j e‘StF’(t)dt+---+j e SUF'(t) dt.
t

1 tn

Now the integrand of each of the integrals on the right is continuous.
We must therefore integrate each by parts. Doing so, we obtain

R
j e SLF'(t) dt
0 .

= [e™StF(t)]g + sj e SLF(t) dt + [e‘“F(t)]ZI
0

ty
+ Sj e SIF(t)dt + -+ [e ' F(DIF
t

1

R
+ S] e SLF(t) dt
t

n

By Hypothesis 1, F is continuous for t > 0. Thus
F(t; =) =F(t; +),F(t, =) =F(t, +), ..., F(t, —) = F(t,+).

Thus all of the integrated “pieces” add out, except for e *F (¢)] ,_,
and e StF(t)] +—o and there remains only

R R
j e SEF'(t) dt = —F(0) + e SRF(R) + sj e SLF(t) dt.
0 0

25



But by Hypothesis 1 F is of exponential order e“t. Thus there exists
M > 0 and t, > 0 such that e %*|F(t)| < M for t > t,. Thus
le SRF(R)| < Me~G~®R for R > t,. Thus if s > «,

lim e SRF(R) = 0

R—o0

Further,

lim s j e~SUF () dt = s 2 {F (D)},
0

R—o0

Thus, we have

lim s j e~SUF'(£) dt = —F(0) + 5.2 {F(O)}.
0

R->x
and so Z{F (t)} exists for s > & and is given by (1.11).
Example 1.13

Consider the function defined by F(t) = sin?at. This function
satisfies the hypothesis of Theorem(1.3). Since F'(t) = 2a sin at cosat
and F(0) = 0, Equation(1.11) gives

Z{2asinat cosat} = s.Z{sin*at}.

By (1.10).
2a?
Z{sinat} = :
tsin“at} s(s? + 4a?)
Thus,
Z{2asinat t} = 20°
asinatcosa _52+4a2'

Since 2a sin at cos at = a sin 2at, we also have

Z{sin2at} = ———
tsin 20t} = 42

26



Observe that this is the result (1.5), obtained in Example (1.4), with
b = 2a.

We now generalize Theorem (1.3) and obtain the following result:
Theorem 1.4
If

1.Let F be a real function having a continuous (n — 1)st
derivative F™~V (and since F, F’, ..., F"=2) are also continuous)
for t > 0; and assume that F, F’, ..., F™~V are all of exponential
order e*t. and Suppose F™ is piecewise continuous in every finite
closed interval 0 < t < b.

Then
Z{F™ ()} exists for s > a and

Z{F™ ()}
= s"Z{F()} — s"*F(0) — s"2F (0) — s"3F (0) — -

— Fm=D (), (1.12)
Proof

{F"} existforall S > a and is given by
Z{F"} = Sz{F™D — F-D(0)}
atn =k
7 {FM(@)} =
Sk Z{F(£)} — S*1F(0) — S*72F (0) = S*¥ 3£ "(0) — -- — f*~1(0)
which is relation is true

atn=k+1

27



J{F(k-l_l)(t)}
— Sk+1f{F(t)} _ S(k+1)—1F(0) _ S(k+1)—2F(O) — .
_ F(k+1)—1(0)

Outline of Proof.

One first proceeds as in the proof of Theorem (1.3) to show that
Z{F™} exists for s > « and is given by

Z{FW} = sz{F-D} - (=1 (0).
Then completes the proof by mathematical induction.
Example 1.14

We apply Theorem (1.4), with n = 2, to find - {sin bt}, which we
are already found directly and given by (1.5). Clearly the function F
defined by F(t) = sin bt satisfies the hypothesis of the theorem with
a = 0. For n = 0 Equation (1.12) becomes

Z{F ()} = s22{F ()} — sF(0) — F(0). (1.13)

We have F (t) = b cosbt,F (t) = —b%sinbt,F(0) = 0,F'(0) =
b. substituting into Equation (1.13) we find

Z{—b?sinbt} = s Z{sinbt} — b,
and so
(s? + b?) Z{sinbt} = b.
Thus,

Z{sinbt} = (s >0),

s? + b?
Which is the result (1.5), already found directly.
Theorem 1.5 Translation Property

Hypothesis.

28



Suppose F is such that Z {F} exist for s > a.
Then

For any constant a.

Z{¥F)}=f(s—a)
for s > a + a, where f(s) denotes Z {F(t)}.

Proof.

oo

f(s)=2{F(t)} = j e SUF(t) dt.

0

Replacing s, by s — a, we have

f-a =

0

(0] (0]

e~ ~DtE () dt = j e St[e™F(t)]dt = Z{e®F(t)}
0

Example 1.15
Find .2 {e%t}. We apply Theorem (1.5) with F(t) = t.
Z{e¥t} =f(s —a),
where f(s) = Z{F(t)} = Z{t}. By (2.3), Z{t} = 1/s% (s > 0).
Thatis f(s) = 1/s?andso f(s —a) = 1/(s — a)?. thus

Z{e*t} =

1
G —a)? (s > a). (1.15)

Example 1.16

Find .# {e% sinbt}. We let F(t) = sin bt. Then Z{e% sinbt} =
f(s —a), where

f(s) = Z{sinbt} = (s > a).

s2 + b2
Thus

29



fls—a)=

(s —a)? + b?
And so
Z{e% sinbt} = G+ (s > a).
Theorem 1.6
Hypothesis.

Suppose F is a function satisfying the hypothesis of Theorem (1.5)
with Laplace transform f so that

(00)

f(s) = j e SLE(t) dt;
0

and G is the function defined as follows:

cO={ie-w,  toa (1.17)
Then
Z{G()} = e “f(s).
Proof:
Z1G = ) “StG(t) dt = a‘“.Od ) “StE(t—a)d
{(t)}]oe (t)tjoe t+jae (t—a)dt

= ] e SUF(t — a) dt.
a

Letting t — a = 7, we obtain
f e SLF(t —a)dt = f e STHIE (1) dr = e‘asj e STF (1) dt
a 0 0
=e YW Z{F(1)}.

Thus
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216G} = e ¥ f(s).

Example 1.17
Find Z{G(t)} if
VA
0, 0<t<5,
G(t) = o
int, t>—.
Sin >
Since sint = cos(t — m/2), we may write
VA
0, 0<t< >
G(t) = T T
COS(t—E), t>E.

Thus Theorem (1.6) applies with F(t) = cost and
S
s2+1

Z{G(t)} = e~ T/DsF(s), wrere f(s) = Z{cost} =

(using (1.6) with b = 1). Therefore, we have
Se—(n/z)s
SO =G5

Theorem 1.7

Suppose F is a function satisfying the hypothesis of Theorem (1.6),
with Laplace transform f,where

(0e]

f(s) = f e STF(t) dt. (1.19)
0
Then

ZUFO}= (D" S [f] (120)
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Proof.

Differentiate both sides of Equation (1.19) n times with respect to s.
Thus differentiation is justified in the present case and yields

f'(s) = (—1)1f e SLEF (t) dt,
0
f'"(s) = (—1)2j e SLE2F(t) dt,
0
f(s) = (—1)”] e SUTF(t) dt,
0
from which the conclusion (1.20) is at once apperent,
Example 1.18

Find
Z{t? sin bt}.
By Theorem (1.7),
2

d
Z{t*sinbt} = (—1)? L0

Where
f(s) = Z{sinbt} = T 152

(using (1.5)). Form this,

d = 2bs

s ="y
and

d? (F ()] = 6bs? — 2b°

252 VO =Tz ey
Thus,

6bs? — 2bh3

%sin bt} = :
Z{t*sin bt} CEWDE
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Chapter 2

The Inverse Transform and the Convolution

A. The Inverse Transform

Thus far in this chapter we have been concerned with the following
problem: Give a function F, defined for t > 0, to find its Laplace
transform, which we denoted by . {F} or f. Now consider the inverse
problem: Given a function f to find a funcfe F whose Laplace transform
is the given f. We introduce the notation . {f} to denote such a
function F, denote .Z{f (s)} by F(t), and call such a function inverse
transform of f. That is,

F(t) = 2 Hf(s)}
Means that F(t) is such that

Z{F)} = f(s).

Theorem 2.1

Hypothesis. Let F and G be two functions which are continuous for
have the same Laplace transform f.

Conclusion.

F(t) =G(t) for all t = 0.

Thus if it is known that a given function f has a continuous inverse
transform F, then Fis the only continuous inverse transform of f. Let us
consider the following example

Example. 2.1

By Equation (1.1), # {1} = 1/s. Thus an inverse transform of the
function fdefined by f(s) = 1/s is the continuous function F defined
forall t by F(t) = 1. Thus by Theorem (2.1) there is no other continuous
inverse transform of the function fsuch that f(s) = 1/s. However,
discontinuous inverse transforms of the function fexist. For example,
consider the function G defined as follows:

1, 0<t<3,
G(t) =12, t =3,
1, t> 3.

Then
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3 %)

e‘Stdtﬁ—j~ e Stdt
3

(00]

J{G(t)}:j e StG(t) dt=j

0 0

oSt 3 et R 1
= |- + lim |— =— ifs>0
S R—0 S 0 S

Thus this discontinuous function G is also an inverse transform of f
defined by f(s) = 1/s. However, we again emphasize that the only
continuous inverse transform of fdefined by f(s) = 1/s isF defined for
all t by F(t) = 1. Indeed we write

Example 2.2

UsingTable(l),findg-l{ L }

s2+6s+13

Solution.

Looking in the f(s) column of Table (1), we would first look for

— 1 T . -
f(s) = T However, we find no such £ (s); but we do find

b . .
f(s) = Groti? (number 11). We can put the given expression

> in this form as follows:
54+65+13

1 B 1 1 2
s2+6s+13 (s+3)2+4 2 (s+3)2+2?

Thus, using number 11 of Table (1), we have

PRI A N
s2+6s+13) 2 (s+3)2+22)  2° >4

Example 2.3

Using Table (1), find .~ {——}

s(s2+1)
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Solution.

No enter of this form appears in the f(s) column of Table (1). We
employ the method of partial fractions. We have

1 A Bs+C

S —
s(s?+1) s s?+1

and hence
1=(A+B)s?+Cs + A.
Thus
A+B =0, C =0, and A4 = 1.
Form these equations, we have the partial fractions decomposition
1 1 S

S(SZ+1)=S s+ 1

Thus

f‘l{ﬁ} - -2 )

By number 1 of Table(1),# ! {1} = 1 and by number 4,

S
w1 {5254-1} = cost.

Thus

71 { - } 1 t

—————(— 1 — COSUL.

s(s?+1)

B. The Convolution

Another important procedure in connection with the use of tables of
transforms is that furnished by the so-called convolution theorem which
we shall state below. We first define the convolution of two functions F
and G.
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Definition :-

Let F and G be two functions which are piecewise continuous on
every finite closed interval 0 < t < b and of exponential order. The
function denoted by F * G and defined by

1

F(t) « G(t) =j F(t)G(t —1)dt (2.1)

0

Is called the convolution of the function F and G.

Let us change the variable of integration in (2.1) by means of the
substitution u = t — 7. We have

tF(T)G(t —1)dt = —jOF(t —u)G(u) du

t

F(t)«G(t) = j

0
=j GWF(t —u) du = G(t) * F(2).
0

Thus we have shown that
FxG=GxF (2.2)

Suppose that both Fand G are piecewise continuous on every finite
closed interval . 0 < t < b and of exponential order e%*. Then it can be
shown that F G is also piecewise continuous on every finite closed
interval 0 < t < b and of exponential large where e(@+€)¢ js any
positive number. Thus Z{F = G} exists for s sufficiently large. More
explicitly, it can be shown that Z {F * G} exists for s > a.

We now prove the following important theorem concerning . {F
G}.

Theorem 2.2

Let the functions F and G be piecewise continuous on every finite
closed interval 0 < t < b and of exponential order e?t.

Then
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Z{F G} = Z{F}Z{G} (2.3)
fors > a.
Proof.

By definition of the Laplace transform, {F * G) is the function
defined by

joo e St UtF(T)G(t - 1) dr] dt. (2.4)
0 0

The integral (2.4) may be expressed as the iterated integral

o At
j f e SUF(1)G(t — 1) dT dt. (2.5)
0 0
Further, the iterated integral (2.5) is equal to the double integral

ﬂ e SUF(1)G(t — 1) dt dt, (2.6)
R

1

where R, is the 45° wedge bounded by the linest=0andt =t
(see Figure(2)).

v

FIGURE.(2)
We now make the change or varianie
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u=t-—-r,
bt (2.7)

to transform the double integral (2.6). The change of variables (2.7)
has Jacobian and transforms the region R, in the 7, t plane into the first
quadrant of the u, v plane. Thus the double integral (2.6) transforms into

the double integral

ﬂ e S E ()G (u) du dv, (2.8)

2
where R, is the quarter plane defined by u > 0, v > 0 (see
Figure(3)).

v

FIGURE.(3)

The double integral (2.8) is equal to the iterated integral
o At
j ] e SWHIE(v)G (u) du dv. (2.9)
0 0
But the iterated integral in (2.9) can be expressed in the form

fooe"StF(v) dv fooe"suG(u) du (2.10)
0 0
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But the left-hand integral in (2.10) defines . {F} and the right-hand
integral defines .Z {G}. Therefore the expression (2.10) is precisely
Z{F}7{G}.

We not that since the integrals involved are absolutely convergent for

s > a, the operations performed are indeed legitimate for s > a.
Therefore we have shown that

Z{F «G} = Z{F}Z{G}fors > a

Denoting Z{F} by f and .Z{G} by g, we may write the convolution
(2.3) in the form

L)« G} = f(s)g(s).

Hence, we have
t

7 Hf()g($)} = F(t) * G(t) =j F(@)G(t —1)dr (3.11)
0
and using(2.2), we also have

t
29O = 6@ F© = [ 6OFE-Ddr (312)
0
Suppose we are given a function h and are required to determine
< ~Hh(s)}. If we can express h(s) as a product f(s)g(s), where
Z " Hf(s)} = F(t) and 2 {g(s)} = G(t) are known, then we can
apply either (2.11) or (2.12) to determine . ~{h(s)}.

Example 2.4

Fined # 1 { } using the convolution and Table (1).

s(s2+1)
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Solution.

: 1 _1

We write 2D as the product f(s)g(s), where f(s) = - and
g(s) = 521+1. By Table(1), number 1, F(t) = # 1 {%} = 1, and by
number 3, G(t) = %~ {=} = sint. Thus by (3.12),

=F()*xG(t) = jtl.sin(t — 1) dT,

0

1 1
7 {s(s2 + 1)}
and by (2.12),

t
=G(t)*F(t) = j sint.1dr,
0

f‘l{ﬁ}

The second of these two integrals it slightly more simple. Evaluating
it, we have

j‘l{;} =1 — cost.
s(s2+1)

Observe that we obtained this result in Example (2.4) by means of
partial fractions.
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TABLE.(1). LAPLACE TRANSFORMS

F(t) f(s)
1 1 1
s
2 eat 1
s—a
3 sin bt b
s2 + b2
4 cos bt S
s2 + b2
5 sinh bt b
2 _ 2
6 cosh bt S
2 _ 2
7 t"(n=1,23,..) n!
Sn+1
8 t"e% (n=1,2,3,...) n!
(s — a)n+1
9 t sin bt 2bs
10 t cos bt s? — b?
11 e % sin bt b
(s +a)? + b2
12 e~ cos bt s+a
(s +a)? + b2
13 sin bt — bt cos bt 1
2b3 (s2 +b?)?
14 t sin bt S
T Ay

41



Chapter 3

Laplace Transform Solution of Linear Differential Equations
with Constant Coefficients

A. The Method

We now consider how the Laplace transform may be applied to
solve the initial-value problem consisting of the mth-order linear
differential equation with consider coefficients

dny drly dy
aoﬁ+a1 T +~--+an_1a+anY = B(t), (3.1)
Plus the initial conditions
Y(0) = ¢y, Y'(0) = ¢, ... YV(0) = ¢, (3.2)
Theorem 3.1

assures us that this problem has a unique solution.

We now take the Laplace transform of both members of Equation
(3.1). By Theorem (3.1), we have

dtn dtn-1 dt
= Z{B(t)},

d"Y dav1ly dY
aoj{ }+a1j +"'+an_1j{_}+anj{Y}

We now apply Theorem (3.1) to

j{d”Y} P dvly j{dY} (33)
dtn)’ den=1)" 777 (dt '

in the left member of Equations(3.3). Using the initial conditions
(3.2), we have
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n

7 {—Y} = s 2{Y(£)} — s"1Y(0) — s"2Y"(0) — - — YD (0)

dtm
=s"Z{Y(t)} —cos™ 1 — ¢ s™E— i — g,

z{f;;_f} = s L2 (Y (D)} — s"2Y(0) — s™2Y'(0)—.. =Y (D (0)

="V (O} — oS — ey s"T — = Cpy,

7 {ﬂ} — s 2 YD)} —Y(0) = s2{Y (D)} — ¢
dt) B o
Thus, letting y(s) denote Z{Y(t)} and b(s) denote . {B(t)},
Equation (4.3) becomes

[ags™ + a;s™ 1+ -+ a,_ys + a,]y(s)
— colags™t+ a;s™ %+ -+ a,_4]
— cilapgs™ % +a;s" 34+ a,_,] — o
— Cnzlaos + a1l — a9 = b(s). (3.4)

Since B is known function of ¢, then b, assuming it exists and can be
determined is a known function of s. Thus Equation (3.4) is an algebraic
equation in the “unknown” y(s). We now solve the algebraic equation
(3.4) to determine y(s). Once y(s) has been found, we then find the
unique solution

Y(t) = 2 Hy(s)}
of the given initial-value problem using the table of transforms.

1. Take the Laplace transform of both sides of the differential
equation (3.1) applying Theorem(3.1) and using the initial
conditions (3.2) in the process, and equate the result to obtain the
algebraic equation (3.4) in the “unknown” y(s).

2.So0lve the algebraic equation (3.4) thus obtained to determine

y(s).
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3.Having found y(s), employ the table of transforms to
determine the solution y(s) = .2 ~1{y(s)} of the given initial-
value problem.
B. Examples

We shall now consider several detailed examples which will
illustrate the procedure outlined above.

Example 3.1

Solve the initial-value problem

dY
E —2Y = eSt (35)

Y(0) =3 (3.6)

Step 1. Taking the Laplace transform of both sides of the differential
equation (3.5), we have

dY
7 {E} 22{(Y(D)} = 2 (%), 3.7)

Using Theorem (3.1) with n = 1 and denoting Z{Y (t)} by y(s), we
may express Z{dY /dt} in terms of Y (0) as follows:

dY

K74 {E} = sy(s) — Y(0).

Applying the initial condition (3.6), this becomes
g{dY} — sy(s) — 3
a0l = sy(s :

Using this, the left member of Equation (3.7) becomes sy(s) — 3 —
2y(s). From Table (1), number 2, #{e5} = 1/(s — 5). Thus Equation
(4.7) reduces to the algebraic equation

1
[s —2]y(s) =3 = Py (3.8)
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in the unknown y(s).

Step 2. We now solve Equation (3.8) for y(s). We have

3s — 14
s—5

[s — 2]y(s) =

and so
3s — 14
V) = GG -9

Step 3. We must now determine

j—1{ 3s — 14 }

(s—2)(s—05)
We empty partial fractions. We have

3s — 14 A B

(S—Z)(S—S)zs—2+s—5'

and so 3s — 14 = A(s — 5) + B(s — 2). From this we find that

8 1
A=§ and B=§,
and so
o R IIE RV
(s—2)(s=5) 3 s—2) 3 s—75

Using number 2 of Table (1),

1
Thus the solution of the given initial-value problem is
Y = §eZt +165t.

3 3
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Example 3.2

Solve the initial-value problem

dzy ZdY 8 =0 (3.9)

dt2 dt - '
Y(0) = 3, (3.10)
Y'(0) = 6, (3.11)

Step 1. Taking the Laplace transform of both sides of the differential
equation(4.9), we have

d’Y dy
7 {W} ey {E} _82{Y(®O} = 2{0}. (312)

Since {0} = 0, the right member of equation(3.12) is simply 0.
Denote Z{Y (t)} by y(s). Then, applying Theorem (3.4), we have the
following expressions for 2 {d?Y/dt?} and Z{dY /dt} in terms of
y(s),Y(0),and Y'(0);

d?y
Z {W} = s%y(s) — sY(0) — Y'(0),

K74 {%} = sy(s) — Y(0).

Applying the initial conditions (3.10) and (3.11) to these expressions,

they become:
d’y )
fﬁ = s°y(s) —3s — 6,

dY

R4 {E} = sy(s) — 3.

Now, using these expressions, Equation (3.12) becomes
s2y(s) —35s—6—2sy(s) + 6 —8y(s) =0
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or

[s?2 — 25 — 8]y(s) —3s = 0. (3.13)
Step 2. We now solve Equation (3.13) for y(s). We have at once
3s
V) = TGy

Step 3. We must now determine

ol

(s—4)(s+2)
We shall again employ partial fractions. From
3s A B

= +
(s—4)(s+2) s—4 s+2
we findthat A = 2,B = 1. Thus

77 {(s — 45;?5 + 2)} =277 {S i 4} +z {S -Il— 2}'

By Table (1), number 2, we find

1
— 0% and f‘li }: —2t
s—4} ¢ an s+2) ¢

Thus the solution of the given initial-value problem is

-

Y = 2e?t 4+ 72,

Example 3.3

Solve the initial-value problem
d’y _
F_I_Y = e ?tsint, (3.14)
Y(0) =0, (3.15)

Y'(0) = 0, (3.16)
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Step 1. Taking the Laplace transform of both sides of the differential
equation (4.14), we have

7 {%} + 2{Y(t)} = Z{e ?* sint}. (3.17)

Denoting Z{Y (t)} by y(s) and applying Theorem (1.4), we express
Z{d?Y/dt*} in terms of y(s), Y (0), and Y’ (0) as follows:

AN _ s Y(0) —Y'(0
f{ﬁ}—s y(s) —sY(0) = Y'(0).

Applying the initial conditions (3.15) and (3.16) to this expression, it

becomes simply
d*y
& {F} = s5%y(s);

and thus the left member of Equation(3.17) becomes s2y(s) + y(s).
By number 11, Table (1), the right member of Equation (3.17) becomes

1
(s+2)2+1
Thus Equation (3.17) reduces to the algebraic equation
1
2 —
(s*+ Dy(s) GT2ZT1 (3.18)

In the unknown y(s).

Step 2. Solving Equation (3.18) for y(s), we have
1
(sZ+D[(s+2)2+1]

Sep 3. We must now determine

y(s) =

71 !
{(52 + D[(s+2)2+ 1]}'

48



We may use either partial fractions or the convolution. We illustrate
both methods.

1.Use of Partial Fractions. We have
1 As + B Cs+ D

= + .
(s24+1)(s?+4s+5) s?+1 s24+4s+5
From this we find

1=(As+B)(s?+4s+5)+(Cs+D)(s*+1)
=(A+C)s®>+ (4A+B+D)s*?+ (54+4B + C)s

+ (5B + D).
Thus we obtain the equations
A+C=0,
4A+ B+ D =0,
5A+4B+C =0,
5B+D =1.
From these equations we find that
ao L og 1 1 03
8’ 8’ 8’ 8’

and so

) 1
7 {(s2 + 1)(s%2+4s + 5)}

1 S 1 1
Lk
8 {52+1}+8 s2+1

+1f—1{ > }+3z-1{ ! } (3.19)
8 s2+4s+5) 8 s2+4s+5) '

In order to determine
1 S 3 1

— 71 +—j‘1{ } 3.20
8 {52+4s+5} 8 s2+4s+5 ( )
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we write
S B s+ 2 2
s24+4s+5 (s+2)24+1 (s+2)2+1

Thus the expression (3.20) becomes

1g—1{ s+ 2 }+1g—1{ 1 }
8 (s+2)*+1) 8 (s+2)2+1)
and so (3.19) may be written

7 {(52 + 1)(S1 + 4s + 5)}

1 S 1 1
PN
8 {SZ+1}+8 s2+1

+1£‘1{ s+ 2 }+1Z‘1{ 1 }
8 (s+2)2+1) 8 (s+2)2+1)

Now using Table (1), numbers 4,3,12, and 11, respectively, we
obtain the solution

1
Y(t) = —=cost +—=sint + —e % cost + —e ?‘sint

8 8 8 8
or
1 e—Zt
Y(t) = 3 (sint — cost) + 3 (sint + cost). (3.21)
2.Use of the Convolution. We write ! as the

(s2+1)[(s+2)2+1]

and g(s) =

1

product f (s)g(s), where f(s) = 5

— p-1(_1
Table (1), number 3, F(t) = & {52+1
11, G(6) = 21 {ﬁ} = e~2t sint. Thus by Theorem (2.9)

using (3.20) or (3.21), we have, respectively,

By

} = sin t, and by number

(s+2)2+41°
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z {(s Tl (s+2)2+1]}=F(t)*G(t)

jsmr e 2= gin(t — 1) dt

or

4 1
7z {(52 + D[(s+2)% + 1]

= j e 2Dgint.sin(t — 1) dt
0

}: G(D) * F ()

The second of these integrals is slightly more simple; it reduces to
t t
(sint) j e ?%sint.cost dt — (cost) j e 2% sin? t dt.
0 0

Introducing double-angle formulas this becomes

sint (¢ cost (¢ cost (¢
— | e “'sin2tdt — e “tdrt + e~ cos 2t drt.
2 Jo 2 Jy 2 Jy

Carrying out the indicated integrations we find that this becomes

-2T

e cost
—sint [ 3 (sin 27 + cos 21')] — [8—21]6
—-27
+ cost [ 3 (sin 27 — cos 21')]
e 27 cost

=-—3 (sint sin 2t + sin 2t cos 2t) + g

Using double-angle formula and simplifying, this reduces to

—2T

1
3 (sint — cost) + (sint + cost),
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Which is the solution (3.21) obtained above using partial
fractions.

Example 3.4
Solve the initial-value problem
a3y d?y

dY
T3 H4T7 + 5 +2Y =10cost, (3.22)

Y (0) =0,
Y’'(0) =0,
Y (0) = 3,

Step 1. Taking the Laplace transform of both sides of the
differential equation (3.22), we have

d3y d?y B
z {ﬁ} + 47 {W} +52{Y(t)} = 10.Z{cost}. (4.23)

We denote Z{Y (t)} by y(s) and then apply to express

d3y d?y dy
74 {E} , 74 {W} , and & {E}
In terms of y(s), Y(0), Y'(0), and Y"'(0). We thus obtain
d3yY
Z {E} = s3y(s) — s?2Y(0) — sY(0) — Y"'(0),
d?Y e .
K74 {F} = s*y(s) —sY(s) —Y'(0),
7 {ﬂ} — sy(s) — Y(0)
dt Y '

Applying the initial conditions (3.22), these expressions become
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3
74 {ﬂ} = s3y(s) — 3,

d3
& {%} = 5%y(s),
dY
K74 {E} = sy(s).

Thus the left member of Equation (3.23) becomes
s3y(s) — 3 + as?y(s) + 5sy(s) + 2y(s)
or
[s3 + 4s? + 55 + 2]y(s) — 3.
By number 4, Table (1),

10s
sZ+4+1
Thus Equation (3.23) reduces to the algebraic equation

10s
s2+1

10.Z{cost} =

(s3+4s2+5s5+2)y(s)—3 = (3.24)

in the unknown y(s).
Step 2. We now solve Equation (3.23) for y(s). We have

352 + 10s + 3

(s3+ 452+ 55+ 2)y(s) = 1

352+ 10s + 3
(s2+ 1)(s3+4s2+5s+2)
Step 3. We must now determine
_ 352+ 10s + 3
71 :
(s24+1)(s3+4s2+5s+2)

53

y(s) =




Let us not despair! We can again employ partial fractions to put
expression for y(s) into a form where Table (1) can be used, but the
work will be rather involved.

We proceed by writing

352 +10s + 3 B 352 +10s + 3
(s24+1)(s3+4s2+55+2) (s2+1D(s+1)2(s+2)
A B C Ds+ E
.(3.25)

= + + +
s+2 s+1 (s+1)% s2+1
From this find

3s2+10s+ 3
=A(s+1)%(s?+ 1) +B(s+2)(s+1)(s?+1)
+C(s+2)(?+1)+Ds+E)(s+2)(s+1)3, (3.26)

or

352+ 10s + 3
=(A+B+D)s*+(R2A+3B+C+4D +E)s3
+ (2A + 3B + 2C + 5D + 4E)s?
+(2A+B+C+2D+5E)s+ (A+ 2B+ C+ 2E)

From this we obtain the system of equations
A+B+D =0,
2A+3B+C+4D +E =0,
2A+ 3B+ 2C + 5D +4E =3,
2A+ B+ C+2D + 5F =10,
A+2B+C+ 2E =3. (3.27)

Letting s = —1 in Equation (3.27), we find that C = —2; and
letting s = —2 in this same equation results in A = —1. Using these
values for A and C we find from the system (3.28) that

B =2, D= -1, and E = 2.
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Substituting these values thus found for A, B, C, D, and E into
Equation (3.25), we see that

_1{ 352+ 10s + 3 }

(s2+1)(s3®+4s2+5s5+2)

= Z‘li 1 }+ZCZ‘1{ 1} 20?‘1{ 1 }
B s+ 2 s+1 (s + 1)2
S S
| -1
z {SZ+1}+2°? {52+1}'

Using Table (1), numbers 2, 2, 8, 4, and 3, respectively, we obtain
the solution

Y(t) = —e 2t +2e7t — 2te™t — cost + 2sint.

Example 3.5
Solve the initial-value problem
d’y dy
772 + 2 T + 5Y = H(t). (3.28)
where
,0<t<m
H(t) = {0’ o (3.29)
Y(0) =0, (3.30)
Y'(0) = 0. (3.31)

Step 1. We take the Laplace transform of both sides of the
differential equation (3.28) to obtain

3
7 {d—;} +2g {%} 52V (O} = Z{HE)).  (3.32)

Denoting Z{Y (t)} by y(s), using Theorem 31 as in the previous
examples, and then applying the initial conditions (3.30) and (3.31), we
see that the left member of Equation (3.32) becomes [s? + 2s +
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5]y (s). By the definition of the Laplace transform, from (3.29) we
have

o T e~St T 1 — e~ TS
Z{H(t)} = j e StH(t) dt = f e Stdt = [ ] =
0 0 —S O S
Thus Equation (32) becomes
1—e™™
[s?2 + 25 + 5]y(s) = — (3.33)

Step 2. We solve the algebraic equation (3.33) for y(s) to obtain
1—e™™

s(s2+2s+5)

y(s) =

Step 3. We must now determine

1—e™™
z-l{ }
s(s?2+2s+5)
Let us write this as
__—TS
7 - e mre)
s(s2+2s+5) s(s2+2s+5))

and apply partial fractions to determine the first of these two
inverse transforms.

Writing

1 A Bs+C

S(SZ+25+5)=S+52+25+5'

we find at once that A = % B = —%, C = —g, Thus
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g—1{ 1 }—1g—1{1} 1g—1{ s+ 2
s(s24+2s+5)) 5 s) 5 (s+1)2+4

—1g—1{1} 1g—1{ s+ 21 }
5 s) 5 (s+1)2+4

1 2

e
10 (s+1)2+4
1 1

_§_§e cosZt—l—Oe_tsiHZt,

using Table (1), numbers 1,12, and 11, respectively. Letting

fs) =S(S2+25+5)
and
F(t) = 1 1e t cos2t — —e " tsin 2t,
5 5 10

we thus have

2 Hf()}=F@).

We now consider

- e ™ —7Ss
7 {S(s2 + 2s + 5)} THeT ),

By Theorem (3.2),
Z He ™ f(s)} = G(1),
where

O<t<m
G(t) = {F(t 1), t>m

Thus
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g_l{ e—TES }
s(s?2+2s+5)

(0, O0<t<m
- ‘1_ le‘(t‘”) cos2(t +m) — ie_(t_”) sin2(t — m) t>m
\5 5 10 ,
(0, O0<t<m
=11 1 1
1§—§e‘(t‘”) cos Zt—l—oe_(t_”) sin2t, t>m

Thus the solution is given by

—TtS

Ytzf‘l{ }=Ft—Gt
(©) s(s?2+ 2s+5) © ©
1 1 - 2t ! “tsin2t—0 0<t<
_ 5 56 COS 106 Sin , T
1 1 1 1 1
— -t -t a4 ,-(t-m _ (1)
c 5e cos 2t 106 sin 2t 5+58 cos 2t Oe sin 2t t>m
or
(1 _t 1
g[l—e <cosZt—§sm2t>], O<t<m
Y(t)={ i
e e™ —1

—t
k ?[(e”—1)+c052t+< )sinZt], t>m

Laplace Transform Solution of Linear Systems
A. The Method

We apply the Laplace transform method to find the solution of
linear system

dX dY

4~ + a, I + az;X + a,Y = B,(t),
dX dy
bi— + by —+ baX + byY = By (1), (3.34)

where a4, a,, as, a4, by, by, b3, and b,are constants and B; and B,

are known functions, which satisfies the initial conditions
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X(0) =c¢; and Y(0) =c,, (3.35)
where c; and ¢, are constants.

Example 3.7

Use a Laplace transform to find the solution of the system

dX
— — 6X + 3Y = 8¢,

dt
dY
—=-2X-Y =aqe’ :
7 aet, (3.36)
which satisfies the initial conditions
X(0) = -1,
Y(0) = 0. (3.37)

Step 1. Taking the Laplace transform of both sides of each
differential equations of system (3.36), we have

7 {i—f} — 6 2{X(O}+ 32 (D)} = 2 (8et}

7 {%} 27X} = Z{Y (O} = Z{4et).  (338)

Denote Z{X(t)} by x(s) and Z{Y(t)} by y(s). Then applying
Theorem and the initial conditions (3.37), we have

7 {Z—f} = sx(s) — X(0) = sx(s) + 1, (3.39)

dy
7| = 5015 =Y = s

Using the Table (1) number 2, we find
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Z{8et} =

8 4
and Z{4et} = ——. (3.40)
s—1 s—1

Thus, from (3.39) and (3.40), we see that Equation (3.38) become

sx(s) +1—6x(s) +3y(s) = i

s—1
sy() = 26(8) = y(8) =
Which simplify to the form
(s — 6)x(s) + 3y(s) = S_il ~1,
~2x(s) + (5= DY) = —
(s = 6)x(s) + 3y(s) = ——=
—2x(s) + (s — Dy(s) = & (3.41)

Step 2. We solve the linear algebraic system of the two equations (3.41)
in two “unknown” x(s) and y(s). We have

(s—1D(s—6)x(s)+3(s—1Dy(s)=—s+9,

12
—6x(s) +3(s — 1Dy(s) = ——.

s—1
Subtracting we obtain
(s2—=7s+12)x(s) = —s+9 — %,
From which we find
—s% +10s — 21 —s+7

x(s) =

G-1DGE-3)G6-4) (-1)GE—4)
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In like manner, we find
_ 25— 6 _ 2
V) = TG -36-8  G-DG-4

Step 3. We must now determine

—s+7 }

X(t) = 7 Hx(s)} = 71 {(S Ty

and

2
Y = 706 = 7 o)

We first find X (s). We use partial fractions and write

—s+7 _ A N B
(s—1D(s—4) s—1 s—4

From this we find
A=-2 and B = 1.

Thus
1 1
x(t) = —2 7 {—} + f’li }
s—1 s—4
And using Table (1), number 2, w obtain
X(t) = —2et + e*t. (3.42)
In like manner, we find Y (s). Doing so, we obtain
2 2
Y(t) = —§et + §e4t. (343)

The pair define by (3.42) and (3.43) constitute the solution of the given
system (3.36) which satisfies the given initial conditions (3.37).
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