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Abstract

First we study some basic concept of ring and
homomorphism of ring, we prove some theorem’s of

ring’s and ideal and we give an example of subring.
Also we study the characteristic of ring.

Also we study the idempotent and nilpotent elements.
We study the vector space,field’s.

Final we study inner product space and nor of vector.



The Contains

subject

=]
(¢

Dedication

Abstract 1A%

Chapter 1 1
The Rings

Chapter 3 51
Fields

5



Def (1.1):

Anon empty set R from a ring if the following axioms are satisfied:
Wa+b+c)=((a+b)+cforall ab€R

(i) a+b =>b + aforall a,b €R

(i11)) 3 some element 0 inR ,st a+0=0+a = aforalla €R

(iv) Foreach a € R,3 anelement (-a) €R,s.ta+ (—a) = (—a) +a =0
(v)a.(b.c) = (a.b).cforall a,b,c €R
(vi)a.(b+c)=a.b+a.c(b+c).a=b.a+c.aforall a,b,c ER
Remarks :

Since we say that + and . are binary compositions on R under stood that
the closure properties w.r.t these hold in R . in other words ,for all
a,b €R,a+ band a.b are unique in R .

-In fact the statement that R in a ring would mean that R has two binary
composition + and . defined on it and satisfied the above axioms .

-The ring (R, +) forms an abelian group .

Def (1.2):

A ring R is called a commutative ring if ab = ba for all a,b € R.

If 3anelement e €R s.tae =ea forall a b € R itis also called
unit element or multiplicative identity.

Remark:

We recall that in a group by a? we mean a.a was binary composition of
the group .

Theorem (1.3):

In a ring R the following results hold

(1)a.0=0.a=0 forall a,b €R

(i)) a(—b) = (a)b = —abforall a,b €R

(iii) (—a)(—b) = ab

(ivia(b—c)=ab—a

Proof:
i)a.0=a.(0+0)=a.0=a.0+a.0=>a.0+0=a.0+a.0
using cancelation w.r.t + in the group (R, +)

(11)a.0 =0 = a(-b + b) = 0 = a(—bh) + ab = 0 = a(—b) = —(ab)

similarly (—a)b = —ab.

(iii) (=a)(=b) = —[a(b)] = —[—ab] = ab

(ivya(b—c)=a(b+ (—c)=ab+a(—c) =ab —ac

Remark:

if n, m are integers and a, b elements of a ring then it is easy to see that
n(a+b) =na+nb

(n+m)a =na+ma

(nm)a = n(ma)

aman — amn

(a™)" = g™



We are so much used to the property that we every ab = 0 then either
a = 0 or b = 0 but the convincing is not true ,"these property holds" in
the ring of integers we have

A=[8 (1)]¢OB:[(2) 8]¢0but AB=[8 8]=0
Def (1.4):

Let R be a ring . An element 0 # a € R is called a zero-divisor if there

exist an element a # b such that, ab =0o0rba=0.

Def (1.5):

A commutative ring R is called an integral domain if ab = 0 in ether

a=0 orb=0,ifaring has no zero divisor .

Theorem (1.6):

A commutative ring R is an integral domain iff for all a,b,c € R,a # 0
ab=ac=b=c

Proof:

Let R be an integral domain

ab=ac (a+0) then ab—ac=0 =alb—-c)=0

=a=0 or b—c=0 since a+0 = b=c

Conversely , let the given condition hold.

Leta,b € R be any elements with a # 0

supposeab =0 , ab=a.0 = b=0

henceab =0 = b = 0 whenever a # 0 or that R is integral domain .

Def (1.7):

A ring R is the said to satisfy left cancellation law if forall a,b € R

ab=ac = b=c and ba=ca = b=c

Def (1.8):
(1) A ring R an element a in a ring with unity called invertible (or a unity) w.r.t
multiplication if there exist b € R such that a.b = b.a =1

(2) A ring R whose non zero element of R from a group under
multiplication is a called a division ring, a commutative division ring
is afield.

Now we get example to division ring which is not a field . let M be the set

b

of all 2 X 2 matrices of the type [—aE ] where a,b are complex

number and @, b are their conjugate. But M will not be a field as it is not

commutative as ' '
—01 (1)”:) —Oi =[—0i ?)l

[(l) Bl] [—01 (1)] - [—Ol (l)] > [—Ol _ol
Theorem (1.9):
A field is an integral domain .

But



Proof :
Let (R, +,.) be a field then R is commutative ring . now let a.b = 0 in R
we want to show that either a = 0 or b = 0 suppose a # 0 then exists
a.b=0=a'(a.b)=a'0=b=0= Risanintegrdbmin
Theorem (1.10):
A non zero finite integral domain is a field .
Proof :
Let R be a non zero finite integral domain , and let R' be the subset of
containing non zero elements of R.
Since a associativity hold in R , it will hold in R' thus R' is a finite semi
group Hence R' is a finite semi group w.r.t multiplication in which
cancellation laws hold.
~ (R',.) forms a group
In other words (R,+,.) is a field ( it being commutative as it is an
integral domain ).
Remark :
An infinite integral domain which is not a field is the ring of integers .
Problem(1) :
Show that a Boolean ring 1s commutative .
Solution:
Let for a,b € R be any elements then a + b € R by given condition
(a+b)?>=a+b
= a’+b’+ab+ba=a+b
— a+b+ab+ba=a+b

= ab+ba=0 — (1)
= ab = —ba
= a(ab) = a (—ba)
= a’b = —aba
= ab = —aba — (2)
From (1) and (2) we get
(ab)a = (ba)a
= aba = —ba? = —ba — (3)
From (2) and (3) we get
ab = ba = —aba

= R is commutative ring .
Problem (2):
Show that an element a in z, is a unity iff a and n are relatively prime.
Solution :
z, =[0,1,2,....,n—1] modn
Let a € z,be a unit,then there exist b € z,, s.ta®b =1
i.e when a b is divided by n , in other words
ab=nq+1 orab—ng=1



= a and n are relatively prime
Now let (a,n) = 1 then there exists integers u,v st au+nv =1 or
= au=n(-v)+1
Suppose u=nq+r, 0<r<n, rez,
Lea®r =1 r €z, = alsunit .
Problem (3):
If in a ring R , with unity (xy)? = x2y? for all x,y € R then show that R
1s commutative .
Solution :
Letx,y € R be any elements . theny +1 € Ras 1 €R
By given condition
(x(y+1))? =x*(y+1)?
= (xy +x)? = x%(y + 1)?

1
= (xy)? + x? +§yx + xxy = x2(y? + 1+ 2y)

= x%y? + x% + xyx + xxy = x%y? + x% + 2x%y
= xyx = x2y — (1)

Since (1) holds for all x, y in R we get

(x+Dy(x+1)=(x+ 1%y

= xy+y)(x+1)=x%+1+2x)y
= x’y+xy+yx+y=x’y+y+2xy

= yx = xy using (1)
Hence R is commutative.
Problem (4):
Show that the ring R of real valued continues function on [0,1] has zero
divisors .

Solution:

Consider the functions f and g defined on [0,1] by

f(x)zl/z—x , OSXS1/2 , fx)=0 |, 1/2Sx§1
And

g)=0 , nggl/z ) g(x)zx—l/z ) 1/2Sx£1
Then f, g are continues functions and f # 0 , g+*0

=>9f(x)=g(x)f(x)=0.<1/2—x) if Ongl/Z

=<x—1/2>.0=0 if 1/, <x<1

iegf(x) =0 forallx
=gf =0 but f#0 , g=+0
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Sub Ring

Def (1.11):

A non empty subset S of a ring R is a said be a subring of R if S form a

ring under the binary compositions of R.

The ring < z, +,.> of integers is a subring of the ring < R, +,.> of real

number.

if R is a ring then {0} and R are always subring of R , called trivial

subring of R.

Theorem (1.12):

A non empty subset S of a ring R is a subring of R iffa,b € S = ab,a —

bes

Proof:

Let S be a subring of R then

a,b €S = ab € S (closure)

abeS=a—-—beS

as (S, +) is a subgroup of (R, +)

conversely, since a,b € S = a — bS ,we fined (S, +) forms a subgroup

of (R, +) A gain for any a,b € S since S S R

ab€eER=a+b=b+a

And so we a fined S is abelian.

In other words ,S satisfies all the axioms in the definition of a ring Hence

S is a subring of R.

Sum of Two sub Rings

Def (1.13):

Let S and T be two subring of a ring R .we define

S+T={s+tlseS,teT}

Def(1.14):

let R be a ring ,the set Z(R) = {x € R|xr =rx, for all r € R} is called

centre of the ring .

problem(1) :

if R is a division ring then show that the centre Z(R) of R is a field .

Solution:

Z(R) is aring (as it is a subring )

Z(R) is commutative by its definitions.

Z(R) hasunity as 1.x = x.1 = x for all x € R.

Thus we need show that every non zero clement of Z(R) has

multiplicative inverse (in Z(R)).

Let x € Z(R) be any non zero element .

Then x € R and since R is a division ring .x 1 € R.

Let y € R be any non zero element ,then y~! € R. Now
Ty =TT =Gy )T = yxT

= x~lcommutes with all non zero elements of R

1
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Again as xL.0=0x1=0
We fined x 'r=r.x"1 forallreR= x"1€Z(R)
Showing Z(R)is a field
Problem(2) :
If in a ring R the equation ax = b for all a,b (a # b) has a solution,
show that R is a division ring .
Solution :
We first show that are has no zero division , suppose
ab=0,a#0,b#0

As a # 0 ,ax = a has a solution ,say x = e;then ae; = a
Again bx = e, has a solution , let x = e, be a solution of this be, = e;
Now ab =0 = (ab)e, = 0.e, =0

= a(be,) =0=ae; =0

=a=0,but a#0
Hence R without zero divisor
Now for any a # Oax = a has solution, let x = e be solution then
ae =a=aex =ax forallx = alex—x)=0 forallx or
that e 1s left identity .
Again (xe —x)e = xee — xe = x(ee) —xe = xe —xe = 0 (as ¢ is left
identity ) ,bute # 0,thusxe —x =0 orxe =x forallx
1.e e is right identity .
now equation ax = e has a solution foralla # 0 = 3b s.t ab =e
hence a has right invers . since right identity also exists , (R,.) Forms a
group or the R is a division ring .
Remark:
In continuation to the above problem we make the following
observations.
(a) (Z,+,.) Has same unity 1 as that of its parent ring (E, +,.).
(b) Finally, we notice we can have a ring without unity which has a
subring with unity. Take for instance, the ring

R={[% %]jabez)

0 0
Now if [g 8] is unity of this ring then [g g [(1) (1) = [8 g] should
b [1 11 . _
¢l 0] rea=1
aso[s JJ[& 2] =[2 7] shouldbe[; o] iea=1=b

Therefor if R has unity then it must be [(1) (1)] but
[(1) 8] - [(1) (1) = [(1) (1)] * (1) (1)] hence R has no unity

11



It is easy to check that S = {[g 8] la € Z } is a subring of R and has
.1 0
unity [ 0 0]

Characteristic of a Ring
Def(1.15):
Let R be a ring . if there exists a positive integer n such that na = 0 for
all a € R then R is said to have finite characteristic and also the smallest
such positive integer is called the characteristic of R
If no such positive integer exists then R is said to have characteristic zero
(or infinity ).
If ch of a ring 1s n then ch of any subring or extension ring is also n.
Theorem (1.16):
Let R be a ring with unite . if 1 is of additive order n then ch R = n. If 1
additive order infinity then ch R is 0.
Proof:
Let additive order of 1 be n .then n.1 = 0 and n is such last +iv integer
now for any x € R.
nx=x+x+--+x=1Lx+1lx+--+1x
=(1+14+-4+1Dx=0x=0
Showing ch R = n.
Has infinite order under addition then 3 non s.t n.1 = 0 and thus .
Remark :
(1) The above result can be stated as. If R is a ring with unity then R has
ch n > 0 iff n 1s the smallest positive integer s.t n.1 =0
(i1) Ch of Z,, ring of integers modulo n is n.
Problem :
If D is an integral domain then characteristic of D is ether zero or a prime
number .
Proof :
If ch D is the zero , we have nothing to proof . suppose D has finite
characteristic then 3 a +ve integer ms.t ma = 0 for alla € D
Let k be least +ve integer then ch D = k0 ,we show k is a prime .Suppose
k is not a prime , then we can write
k=rs ,1<r ,s<k
Now
ka=0 foralla€D
= (rs)a? =0 Va€eD
= a’+a*+--+a*=0 (rstimes)
= (a+a+-+a)lat+ta+--+a)=0
= (ra)(sa) =0 Va€D

12



=ra=0o0r sa=0 Va
€ D (D is integral domain)
In either case it will be a contradiction as 7, s < k but k is the ieast +ve
integer s.t ka = 0.
problem :
If D is an integral domain and if na = 0. For sum 0 # a € D and some
integer n # 0 then show that the characteristic of D is finite .
Solution :
Since na = 0
(na)x =0 forallx € D
= (a+a+-+a)x=0
= ax+ax+ -+ ax =0 (ntimes)
=alx+x+--+x)=0 forallxeD
= x+x+-+x=0forallxe€D asa+0

= nx =0 forallxeD ,n+0

= ch D is finite
Def (1.17):
An element e in a ring R is called idempotent if e? = e. An element
a € R is called nilpotent if e = 0 for some positive integer n .
If R is a ring with unity ,then 0 and 1 are idempotent element. Also O is
nilpotent element of R.
Problem:
a non zero idempotent cannot be nilpotent .
Solution:
let x be non zero idempotent , then x? = x if x is also nilpotent then 3
integer n > 1 s.tx™ = But

x2=0=x3=x*=x
=xt=x*=x

= x" =x = x =0 a contradiction.

Problem:

In an integral domain R (with unity) the only idempotent are the zero and

unite .

Solution :

Let x € R be any idempotent then
>=x=>x?-x=0=x(x—-1)=0=>x=0o0rx=1

As R is an integral domain .

Product of Ring

Let R; and R,be two ring. Let R = {(a,b)|a € Ry,b € R,}, then it is easy
to verify that R forms a ring under addition and multiplication defined by
(a1, b1) + (az,by) = (ay + az, by + by)

13



(ay,b1).(az, by) = (aiaz, byby)
problem :
if R and S are two ring , then
ch(Rxs)=0ifchR=0o0orchS=0
=k where k = l.c.m(chR,chS)
Solution :
Let ch R = 0 and suppose ch (R X §) =t # 0 then
t(a,b) =(0,0)Va€eR ,beS

= (ta,tb) = (0,0) = ta = 0 Va € R, a contradiction as ch R = 0 thus
ch(RxS8)=0
Similarly, if ch S = 0 ,thench (R X S) = 0.
Letnow chR=m ,chS =n and let K = l.c.m.(m,n)
Then k(a,b) = (ka,kb) = (0,0) Va € R, b € S as m,n divide k
Suppose p(a, b) = (0,0), then (pa, pb) = (0,0)

= pa=0=pb=m|p,n|p

= klb=k<p=ch(RxS)=k
Def(1.18):
A non empty subset I of a ring R is a called a right ideal of R if
)a,bel=a—-bel
(i)a€el, =reR=arel
I is a called a left ideal R if
)a,bel=a—-bel
(i)a€l, =reR=racl
For example let (Z, +,.) Be the ring of integers . then E = set of even
integers in an ideal of Z a,b € E = a = 2n , b = 2n thus

a—b=2n—-m)€EE
Again , if 2n € E ,r € Z then as (2n)r or r(2n) are both in E ,E is an
ideal .
Problem :
Let S be a non empty subset of a ring R . show that
r(s) = {x € R|Sx = 0} and I(s) = {x € R|Sx = 0} are respectively right
and left ideal of R.
Solution :
r(s)#@as 0€r(s) ,againx,y €r(s) = sx =0 ,sy =0 now
Sx=y)=Sx—Sy=0-0=0=x—y €r(s)

Again if r € R by any element then

S(xr)=(sx)r=0.r =0= xr € r(s)
Hence r(s) is a right ideal. Similarly , [(s) will form a left ideal .
r(s) and [(s) are called right and left annihilators of S, respectively .
r(s) and [(s) would both be ideal of R if S is an ideal .(verifty!)

problem :

14



let R be a ring such that every subring of R is an ideal of R. further
ab=0in R= a =0 orb =0.show that R is commutative.
Solution :
Let 0 # a € R be any element .
Then N(a) = {x € R|xa = ax is a subring of R and therefore an ideal of
R . let r € R be any element Since a € N(a),r € R we find ra €
N (a)(def. of ideal) also then a(ra) = (ra)a and so
(ar—ra)a=0=ar—-ra=0asa+0
Thus ar =ra VreR, VO#a€R andas0.s =r.0 = 0 we find
Ar =ra VareR
Hence R is commutative.
Sum of Two Ideal
Let A and B be two ideals of a ring R . we define A + B to be the set
{a + b|la € A,b € B} called sum of the ideal A and B .
Theorem (1.19):
if A and B are two ideals of R then A+B is an ideal of R , containing
both A and B.
proof :
A+B#¢ as0+0€A+B Again x,yEA+B=>x=a,+b;
y=a,+b, forsome aa,€A, b,b,EB since
x —y =(a; +by) — (az + by) = (a; — az) + (by — by)
we find x—y€A+B
let x=a+b €A+ B,r €R be any element then
xr=(a+b)r=ar+br € A+ B as A, B are ideals
rs=r(a+b)=ra+ba€A+B
Thus A+B is an ideal of R.
Again for any a €R , since a=a+0€ A+ B and for any b € B ,
sincec b=0+b€eA+B.wefined ACSA+B , BSA+B.
Remark :
we can show that A is an ideal of A+B.
a,,a, €Ea=a, —a, € Aas Aisanideal of R .againifa € Aands €
A + B be any element then s = a; + b; for some a; € A,b; € B also
as = a(a; + by)
=aa; +ab; €A asa,a; €EA = aa; €A
a€A,beEBSCR=ab,€A=aa, +ab €A
Similarly sa € A showing that A is an ideal of A+B
Def(1.20):
Let S be subset of a ring R .An ideal A of R is the said to be generated by
S if
(i) Sc A
(i1)) Foranyideal[of R,SC ] = AC ]
We denote it by writing A = (S) or A = (s)

15



In fact < S > will be intersection of all ideals of R that contain S ,and is
the smallest ideal containing S. if S is finite, we say A =< § > is finite
generated .
Theorem (1.21):
if a and B two ideal of R, then A + B =< AU B >.
Proof :
We have already proved that A+B is an ideal of R ,containing A and B
thus A+B is an ideal containing A U B.
Let I be any ideal of Rs.t AUB C [
Letx € A + B be any elementthen x =a+ b forsomea €A , b€EB
since

a€ACAUBCI

beBCAUBCI
We fined a + b € [ as I is an ideal

= x €1l orthat A+ B Cc |

Example :
Let (E,+,.) be the ring of even integers. It i1s commutative ring without
unity. let a =4 € E. Then

<4>={4n+ (2m)4nm e Z}

= {4n + 8m|n,m € Z}

Whereas 4F = {4(2k)|k € Z} = {8k|k € Z}
We notice then < 4 ># 4F as4 €<4 > but 4 ¢ 4E.
Problem :
If A is an ideal of a ring R with unity such that I € A then show that
A=R.
Solution :
Since A € R always ,all we need show is that R € A. Let r € R be any
element .
Since] € Aand Aisanideal r=1.r € A= R € A or that A=R.
Problem :
Show by means of any example that we can fined A € B € R where A is
an ideal of B ,B is an ideal of R ,but a is not an ideal of R.
Solution :

a b c
Let R be the set containing matrices of the type [d e f ‘ over integers
0 0 g
then R forms a ring under matrix addition and multiplication . Take
0 0 x
A= { 0 0 O] |x an integer}
0 0 O

16



0 0 u

B={0 0 v] |u,vintegers}
0 0 O

It would be easy to verify that A is an ideal of B, B is an ideal of R. to
see that A 1s not an 1deal of r, we notice

1 1 1110 0 1 0 0 1

1 1 1{|10 0 O 0 0 1

O 0 1110 0 O 0O 0 O
Product of Two Ideal

Let A,B be two ideal of a ring R. we defined the product AB of A and B
by AB = {Z aibi|ai €A ,bi € B}
Where summation is finite
Theorem(1.22):
The product AB of any two ideals A&B of a ring R is an ideal of R.
Proof :
Let yeEAB+ ¢ as0=0.0 € AB
Then x = ayb; + ayb, + -+ + a, b,
y=aby+-+a,by,
Forsome a; ,a’; € A,b; ,b'; €B
x —y = (a;b; + ayb, + -+ a,b,) — (@'1b'y + -+ a',b'y)
Which clearly belongs to A,B as the R.H.S can written as
x1Y1 + %32 + XY (k =n+m)
Wherex; €A, y; €EB
Again for any x = a,b; + ay,b, + -+ a,b, € AB andr €R
rx =r(a;b; + a,b, + -+ a,b,)
= (ray)b; + (ray)b, + -+ (ra,)b, € AB
Becausera; €A asa; €A , r €R ,and A is an ideal
Similarly xy € AB
Showing there by that AB is an ideal of R.
problem :
if A asa left and B i1s aright ideal of a ring R then show
that AB is a two sided ideal of R whereas AB need not be even a one
— sided ideal of R.
Solution :
That AB will be a two sided ideal of R follows by the theorem above.
We show by an example that BA need not be even a one-sided ideal

Take A= {[Z 8] la,b € Z}

C
B={g o]lc d ez}
In the ring R of 2x2 matrices over integers then as seen earlier A is left

and B is a right ideal of R.

17



BA would have members of the type [8 g] [Z 8]
1.e. of the type [3(; 8] , X EZ

1 1

Now if we type [(1) 8] in BA and [1 1

hen [y oll; 1]=lp o €54

[ llo ol ol

Hence BA is nether a left nor a right ideal of R.

]inR
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The motivating factor in rings was set -of integers and in groups the set of
all permutations of a set. A vector space originates from the notion of a
vector that we are familiar with in mechanics or geometry. Our aim in
this volume is not to go into details of that. Reader would recall that a
vector is defined as - a directed line segment, which in algebraic, terms is
defined as an ordered pair (a, #) , being coordinates of the terminal point
relative to a fixed coordinate system. Addition of vectors is given by the
rule-(a;, b) + (az, b,) = (a4 + aq4,b; + b,)One can easily verify that
set” of vectorse under this forms an a belian group.

Also scalar multiplication is defined by the rule a (a, b) = (aa, af)
which satisfies certain properties.This concept is extended similarly to
three dimensionS. We generalise the whole idea through definition of a
vector space and vary the scalarsnot only in the set of real’s but in any
field F. A vector space thus differs from groups and rings in as much as it
also involves elements from outside itself.

Def(2.1):

Let <V, + >be an abelian group and <F, +.>be a field. Define a function
(called scalar multiplication) from F XV — V,st., for all a € F,v €
V, a.v €V. Then V is said to form a vector space over F if for all
x,y €V , ap € F, the following hold

() (a+ B)x = ax+ Px
(i)alx+y) =ax+ay

(i) (aB)x = a(Bx)

(iv) 1.x = x,1 being unity of F.

Also then, numbers of F are called scalars and those of V are called
vector S.
Remark:

We have used the same symbol + for the two different binary
compositions of / and F, for convenience.Similarly same symbol . is
used for scalar multiplication and product of the field F.

Since <V, + >is a group, its identity element is denoted by 0. Similarly
the field F would also have zero element which will also be represented
by 0. in case of doubt one can use different symbols like 0,, and O etc..
Since we generally Workwith afixed field we hall only ho writing V isa
space (or Sometimes V (F) or Vi ) I would always be understood that it is
a vector space over F' (unless stated otherwise ) .

We defined the scalar multiplication from F X V' — V. One can also
define it from F X V' — V and have a similar definition. The first one is

.called a left vector space and the second a right vector space. it is easy to
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show that if V'is a left vector space over F then it is a right vector space
over F and conversely. In view this result it becomes redundant to talk
about left or right vector spaces. We shall thus talk of only vector spaces
over F.

One can also talk about the above system when the scalars are allowed to
take values in a ring instead of a field, which leads us to the definition of
modules

Theorem (2.2):

In any vector space V(F) the following results hold

() 0.x = 0
(ii)a.0 = 0

(iii) (—a)x = —(ax) = a(—x)
(iv) (a — B)x = ax — Px

Proof:
0.x=00+4+0).x=0x4+0x=04+0.x=0.x+0.x=0=0.xx
(cancellation in V)

(i)a.0 = a(0+0)=a.0 + a.0=>a.0=0

) (—a).x +ax = [(—a) +a]Jx =0.x=0
(i11) follows from above

Example :

If <F, +, . >be a field, then F is a vector space < F,+>=< V,+>is an
additive abelian group. Scalar multiplication can be La as the product of
F. All properties are seen to hold . Thus F(F) is a vector space S.
Example:
Let P = set of all polynomials over a field F, then P forms a vector space
under addition and scalar multiplication defined by

fx) +g(x) = (f+9)x

a(fx)) = (af) (x) aaF
Subspaces:
Def(2.3):
A non empty subset W of a vector space V(F) is said to form a subspace
of V if W forms a vector space under the operations of V.
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Theorem (2 ,4):

necessary and sufficient condition for a non empty subset W of a vector

space V(F) to be a subspace is that W is closed under addition and scalar

multiplication.

Proof:

If W is a subspace , the result follows by definition.

Conversely, let W be closed under addition and scalar multiplication.
Letx,y € W,sincel eF ,—1 € F
-lL,yeW=yeWw
x,-yeEW=x—-—yeW

=< W, +>forms a subgroup of <V, + >

Rest of the conditions in the definition follows trivially.

Theorem (2.5):

A non empty subset W of a vector space V(F) is a subspace of V

iffax + Py € W fora,F €EF, x,y e W.

Proof :

If W is a subspace, result follows by definition.

Conversely, let giver condition hold in W.

Let x,y € W be any elements. Since 1 € F

lx+1ly=x+yeW
= W is closed under addition.
Again,x € W,a € F then
ax=ax +0.y foranyyeW, 0€eF

which W. (Note here 0 may not be in W)

Hence W is closed under scalar multiplication. The result thus follows by

previous theorem.

Problem:

Show that union of two subspaces may not be a subspace

Solution:

W, U W,will be the set containing all pairs of the type (a,0), (0, b)In

particular (1,0),(0,1) € W; U W, But, (1,0) + (0,1) (1,1) & W; U W,.

Hence W; U W,is not a subspace. Reader is referred to exercises for more

results pertaining to intersection, union of subspaces.

Sum of Subspaces

If W;and W,be two subspaces of a vector space V(F) then, we define

Wi+ W, = {w; +wylw; EW, w, € W,}
W1+W2¢(pa50=0+OEW1+WZ
Againx,y e W, + W, , a,f € Fimplies

X=w;+w,
y == W,1 + W,2W1,W,1 € W1 ’ W2,W’2 € WZ
ax + ﬁy = a (Wl + Wz) + ﬁ(Wll + le)

21



= (aw; + Bw’l) + (aw, + pw',) e W, + W,
Showing thereby that sum of two subspaces is a subspace.

Def(2.6):
We say a vector space V' is the direct sum of two subspace W, and W,if

(i)every v €V can be expressed uniquely as the sum w; +
w, € Fand w, € W,
and in that case we write V = W, W,
Theorem(2.7):
V=weew,esV=w+W, W, nWw, =(0)

Proof:

LetV = W, ©@W,

We need prove W; N W, = (0)
Let

xeEW,=>xeW,and x e W,
=Sx=0+xeW, +W,=V
=>x=x+0eW, +W,=V
Since x has been expressed as x = x + 0and 0 + x and the
representation has to be unique, we getx = 0 = W, N W, = (0)
Conversely, let v € VV be any element an suppose
vV=w; +Ww,
v=w' +w',
are two representations of v then ,
witw, =w +w,(=v) 2w, —-w,=w,—-w,=0
Now L.H.S. is inW; and RH.S belongs , to W,, i.e each belongs to
w,nw, =(0)
=w —-—w;=w,—w,=0
Sw, =w,,w,=w,
Hence the result.

Example :
Consider the space V(F) = F?(F) where F is a field.
solution :
LetW, = {(a,0)la €F} , W, ={(0,b)|b€ F)

then V is direct sum of W, and W,
veV=v=(ab)=(a0)+ (0,b) e W, + W,
thusVCcW, +W, , orthat V=W, +W,
Again if (x,y) € W; N W, be any element then
(x,y) € Wyand (x,y) € W, =y =0 and x =0= (x,y) = (0,0)
= W, nW, =(0)
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Hence V = W, ®&W,
Problem :
Let V be the vector space of all functions from R — RLet V, = {f €
V|fis even}V, = {f € V|fis odd}.ThenV,and V,, are subspaces of }J and
=l,ew,.
Solution :
Addition and scalar multiplication in V are given by the rule

f+9x= flx)+ gl ; (af)x = af(x)
Nowl, #¢p as0(—x) = 0(—x)=0= 0(x) =0(—x) = 0€V,
Againfora,f € R, f,g €V, we have

(af + Bg)(=x) = (af)(=x) + (Bg) (—x) = a(f (—x) + B(g(-x))
=af(x) + Bg(x) = (af + Bg)x
= af + fg €V,

=V is a subspace of V
Similarly ,V, + V, is a subspace of V.
Thus V, + V0 is a ubspace of V. We show V € I, + 1, .Let f € V be any
member ,Let g : R — R e such that g(x) = f(—x), then g € V, Also
then

_(1 +1 )+ 1 1
f=5r*+39)+Gf 59
Since
(1 +1 ) 1 +1 1 +1
Sf+59) (=0 = ZF (=) +59(=) = 59() + 5 f ()
= (37 +39)
=2/ +39)*
We fined %f+%geVe
Similarly , ~f--g€Vy=f€EV,+Vy=VEV,+V, or that
V=V,+V,
Finally feV,nVo=f€eV,,f eV,
f(=x) = f(x)and f(—x) = —f(x)
= fx)=—f(x) = f(x) + f(x) = 0 = 0(x)
= 2f(x) = 0 (x) forallx
= 2f=0= f= V,nV,=(0)
Hence the result .
Problem :
If L, M N are three subspaces of a vector space V, such that M C Lthen
show that

LAnM+N)=(LnNnM)+(LNN)=M+ (LNN).
Also give an example, where the result fails to hold when M € L.
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Solution :
We Jeave the first part for the reader to try. Recall a similar result was
proved for ideals in rings. The equality is- called modular equality.
Consider now the vector space V = R?
Let

L={(a,a)|la € R}

M = {(a,0)|a € R}

N ={(0,b)|b € R}
It is a routine matter to cheek that L, M, N are subspaces of V. indeed

a(a,a) +a(a,.a)(,a’,a’") = (aa,aa) + (Ba’,pa’)
(aa + Ba’,aa + Ba") € Letc
Now (x,y) ELNM = (x,y) ELand (x,y) EM=y=xandy =0
x=0=y=(x,y)=(00)
Similarly, LN N = {(0,0)}
LnN ={(0,0)}
Again,
M+ N = {(a,b)|la,b € R}and as(1,1) e M+ N ,(1,1) € L

wefind (1, 1) eLN(M+ N),but (1,1) ¢LNM+ LNN
Hence LNn(M+N=(LnM)+(LNnN),whenM & L
Quotient Spaces

If W be a subspace of a vector space V(F) then since <W, +> forms an
abelian group of < V,+ >,we can talk of cosets of W in V. Let be the set

4
of all cosetsW + v, v € V, then we show thatW also forms a vector space

over F, under the operations defined by
W+x)+W+y) =W+ (x+y) x,y€EV
aW+x)=W+ax a€F
Addition 1s well defined, since,
WH+x =W+x'
w+y =W+ y
>x—-x€eW , y—yeWw
=S x-xX)+—-y)ew
Sx+y)—-&+y)ew
SW+kx+y) =W+ +y)
Agam W+x=W +x
=x—xX EW
=alx—x)EW ,a€F
= ax—ax €W
SW+ax=W + ax’
= aW+x)=a(W +x")
W + 0 will be zero of %W—xwill be inverse of W + x Also

a(W+x)+W+y)=aW+x+y)=W+alx+y)
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= W+ (ax + ay)

= (W+ax)+ (W + ay)

= a(W +x) + a(W + y) etc.
Hence, V /W forms a vector space over F, called the quotient space of V
by W.
Homomorphism Or Linear Transformations
We are already familiar with the concept of a homomorphism in case
group and rings. We introduce the same in vector spaces.
Def(2.8):
Let V and U be two vector spaces over the same field F, then a mapping
T:V — U is called a homomorphism or a linear transformation if

T(x+y)T(x)+T(y) forall x,y eV
T(ax) =aT(x) a€F
One can combine the two conditions to get a single condition
Tax+py) =aT(x)+pT(y) x,y€EV, a,BEF
It is easy to see that both are equivalent. If a homomorphism happens to
be one - one onto also we call it an isomorphism, and say the two spays
are isomorphic.
(Notation V = U)
Example :
(i) Identitymap:V —V st I(v) =v
and the zero map 0:V — V s.t 0(v) = 0 are clearly linear
transformations.
(ii) For a field F, consider the vector spaces F? and. Define, a map
:F3 —> F% byT(a,pB,y) =(ap).
then T is a linear transformation as
forany x,y € F3,if x = (ay, B,¥1) » ¥ = (az B2 ¥2) then
T(x+y) =T(a, +az p1+ B2,v1 +v2) = (a1 +az 1, B2)
= (ay, B1) + (ay, B2) =T(x) + T (y)
And
T(ax) = T(a (a1u81;)’1)) = T(aay,apy, ay,) = (aay, afy)
= a(ay, 1) = aT(x)
(1) Let V be the vector space of all polynomiall! in x over a field F.
Define
T:V— N ,s.t.

d
T(f() = — f&)
then T(f +9) = = (f+9) =2 f+2= g =T(H) +T(g)

d d
T(af) = —(af) = a f = aT()
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show that T is linear transformation. In fact, if U: V — V be defined such
that | Ox f(t)dt ,then U will also be a linear transformation.

In the theorems that follow, we take V and U to be vector spaces
Theorem(2.9):
Under a homomorphism T:V — U

1)TO)=0

(1) T(—x) = =T (x).

Proof :

T(0)=T(0 +0)=T(0) + T(0) =T(0)=0
Again

T(—x)+T(x)=T(—x+x)=T(0) =-T(x) = T(—x).
Def(2.10):
Let T:V — U be a homomorphism, then kernel of T is a subspace of F.
Proof:
Ker T # ¢ as 0 € kerT by any elements then
Tlax+By)=aT(x)+pT(y) =a.0+L.0=0+0=0
= ax + fy € kerT

Theorem(2.11) :
Let T:V — U be a homomorphism, then
Ker T = {0} iff T is one-one.
Proof :
LetKer T = {0} IfT(x) = T(y)
then T(x)— fly)=0

=Tx—-y)=0

= (x —y) € Ker T = {0}
=x=Yy

Conversely, let T be one - one
if x € Ker T be any element, then T(x) = 0

= T(x) =T(0)

=x=0

= Ker T = {0}.
Def(2.12):
Let T:V — U be a linear transformation then range of T is defined to be.

TWV)={T(x)[xeV =RangeT =Rr={u€elUlu=T(v),v eV}

Theorem(2.13):
Let T:V — U be a LT. (linear transformation) then range of T is a
subspace of U.
Proof :
SinceT(0) =0, 0€eV , T(0) € RangeT ie. RangeT # ¢
Let a,f € F,T(x),T(x) € T(V) be any elements then x,y €V Now
aT(x) + BT (y) =T(ax +By) €eT(V) asax+ Ly €V
Hence the result.
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Note : T(V) = U iff T is onto.

Theorem(2.14):
LetT:V — U be a L.T. then
V

kerT

= Range T =T (V)

Proof :
LetT:V — U and put Ker T = K, then K being a subspace of V, we can
talk of V/K.
Define a mapping 6:V/K —- T(V), stO0(K+x)=T(x),x €V
Then 0 1s will defined one-one map as
K+x =K+y
=x—yeK=KerT
STx—-—y)=0
=Tk =TWy)

S O0K+x)=0(K+y)
If T(x) e T(V)be any element, then x €V and 6(K + x) = T(x),
showing that 6 is onto .
Finally

O((K+x)+(K+y)=0(K+(x+y))
=Tx+y) =T+ TW)
=(K+x)+0(K+y)
B(a((K + x)) =0(K +ax) =T(ax) = aT(x) = af(K + x)

shows 6 is L.T. and hence an isomorphism. .
Note :
The above is called the Fundamental Theorem of homomorphism vector
spaces.

If the map T is also onto, then we have proved keV? = U.

Theorem(2.15):
If A and B be two subspaces of a vector space V(F)

A+B B
A TANB
Proof :
A being a subspace of A + B and A N B being a subspace of B, we can
A+B B
talk of — and —
A ANB

DeﬁneamapB:B—VqA;Bst. 6(b)=A+b,bEB

Since b; = b,, we find 6 is well defined.
Again as 8(b; + b;) = A+ (aby + Bb,)
= (A+aby) + (A + Sb,)
=a(A+ b))+ B(A+Db,)
= af(6) + po (by)
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Oisal.T
For any +x EAA;B,weﬁndx EA+B
x=a+b, a€eA,bE B
A+x=A+(a+b)
A+a)+(A+b)=A+(A+b)= A+Db=06(h)
Showing that 1, is the required pre image of A + x under O and thus O
is onto. Hence by Fundamental theorem

A+B B
A  Kker6
Weclaim Ker @ = ANB
Indeed
XxXEker0 = 0(x)=A=A+x=A4A
S x E A4, also x € Ker0 € B < x € ANB
Hence
A+B B
A ~ANB
Note :
. ) B+A _ . A+B _ B
By interchanging A and B, we get. o S le —— =

Corllory : If A+B is the direct sum then as AN B = {0} we get
A _A®B

0 B

4 1 z@
But@zA givesus 4 = o

Theorem (2.16):

Let W be a subspace of V then an onto L.T. 8:V — % such that
Ker0 =W ¢

Proof :

Define 6:V —>% st O(x) =W +x.

then 6 is clearly well defined .Also

O(ax+py) =W + (ax + By)

= W+ ax)+ (W + By)
= aW +x)+BW +y) =abd(x) +p6(y)

Shows 0 is a L.T.
@is dourly onto.
Aganx EKer0 0x) =W eSS WH+x=W S xeW
Hence Ker 6 = W.
T is called the natural homomorphism or the quotient map.
Remark :
In case W=(0) in the above we find 6 will be 1 — 1 also as

6(a)=0(b)=>W+a=W+b»b
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= a—-beW =(0)
=a—b=0
= a =b.

Hence in that case V = — or V = —
w 0)

Note W = (0) = Ker 8 = (0) = 6 is one - one.
Problem :
4

Let W and U be subspaces of V(F) suchthat W c U cV let V:V — ”

be the quotient map. Show that 8: V — % f(U) is a proper subspace of %

Solution :
Since fis a L.T., f(U) is a subspace of V/W.
If f(U)=0then f(x) =0forallx € U
= W+x= W forall xeU
= x €W forall xeU
= U € W, a contradiction
AgainsinceU #V,3v g €Vs.t vy&U
If f(vg) € f(U) then f(vy) = f(x) for some x € U
= f(vg—x)=0
=W+ (vg—x)=W
= vo—x€EW
= x +w forsome weW

= 0 € U , a contradiction of hence f(v,) € f(U) = f(U) i% or

that f(U)is proper subspace of V/W.
Theorem (2.17):
Let V — U be an onto homomorphism with Ker T = W then there exists
a one-one onto mapping between the subspaces of U and the subspace of
V which contain W
Proof :
Let A =set of all subspaces of V, which contain W

R =set of all subspaces of U
Define a mapping 8:A — R s.t

o(Wy) = T(Wy)
Since T:V — U, T(W;)will be a subspace of U as for any
T(x), T(y) € TW;)anda,B €EF
aT(x) +T(y) € T(ax + By) e T(W;),as x,y € W;
Again W, =W, = T(W;) = T(W;") = 6 is well define
Now if 6(W;) =0(W;").
Then TW) T(W,) = W, =W,’
AsxeW, = T(x) eT(W,) = T(W))
= T(x) eT(W)) = T(x) =T(y), y EW,;
=Tx—-—y)=0
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=x—y€EKerT =W, cW/

=W, eW as ye W’
W, € W{Similarly W;," € W,
Hence 6 is 1—1.
Let U; e be any member.
Define T(U;) = {x € V|T(x) € U;)
Then 0€T Y(U)as T(O)=0€UForaBEF, x,ye€T (U,
we have T(x) e U, T(y) € U,y

aT(x) + BT (y) € U; = T(ax + By) € U, = ax + By € T 1(U,)
Or that T~1(U,) is subspace of V.
Let x€ KerT=T(x)=0€ U,
=xeT Y (U)=>WcT1U)
=T YU)eEA
also
T(T~*(U,)) ={T(x) eV|T(x) EU;} € U,
let
yeU =yelU=3xeVs.tT(x)=y
asTisonto x €T Y(U;)) =y = T(x) € T"Y(U,))
= T(T~'(Uy)) = U,
6(T~1(Uy) = U,
= 0 is onto

Hence the theorem is proved.
Liner Span
Def(2.18) :
Let V(F) be a vector space, v; €V, a; € F be elements of V and F
respectively .Then element of the type ).iL; a;v; are called linear othina
of vy, v,, ...v,0ver F.
Let S be a non empty subset of V, then the set

n
L(S)={Zaivi|vieV, a, EF,v, €S, a; € F ,n finite

i=1
i.e the set of ail linear combinations of finite sets of elements of S is
called linear span of S. It is also denoted by <S>.
Theorem (2.19):
L(S) is the smallest subspace of V, containing S.
Proof :

LS)#@pasveS=v=1v,1€F = veEL(S).
thus, in fact, S € L(S).
Letx,y € L(S), a,f € F be any elements then
X = avy +av, +--+a,v,
y =PV + BV + ot BV
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Thus
ax + By = aa vy + aa,v, + -+ aa,v, + BBV + BP0, +
+ BBmV'm
R.H.S. being a liner combination belongsto L(S) .Hence L(S) is a
subspace .V containing S.

Let now W be any subspace of V containing S
We show L(S) € W

xEL(S)=>x=Zaivi , a, €EF,v,eS
v; €S € W forall i and W is a subspace
:Zaiview=>x€W=L(s)§W

Hence the result follows.

Theorem(2.20):

If S;andS,are subsets of V then

(1) S; €5, = L(S;) € L(S,)

(i) L(S1 U S2) L(S1) + L(S2)

(iit) L(L(S1)) = L(51)

Proof :

)x€L(S;)) = x=Yav,v;ES;, a; € Fthusv; €S; £ S, forall i

= Zaivi €S, = x €L(S,)

= L(S;) € L(S2)
(ii)S; €S, US, = L(S;) €S L(S;US,)
S, €5 US,=L(S,) €SL(S;US,)
= L(S;) + L(S,) S L(S; US,)
Again S; € L(S;) € L(S;) + L(S)
Sz € L(S2) € L(S1) +L(S2)
hence S; US, € L(S;) + L(S;)
L($1US,) S L(S1) +L(S1)
as L(S; U S,) is the smallest subspace containing S; U S,and
L(S;) + L(S,) is a subspace, being sum of two subspaces (and contains
S1US,).
Thus L(S;US,) =L(S;) +L(S,)
(i11) Let L(S;) = K then we show L(K) = L(S;)
Now K € L(K)
s~ L(S;) € L(L(Sy))
Again x € L(L(S;)) x is linear combination of members of L(S;) which
are linear combinations of members of S;.
So x is a linear combination of members of S; = x € L(S;)

Thus  L(L(S;)) S L(S;)hence L(L(S,)) = L(Sy).
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Theorem (2.21) :
If W is a subspace of V then L(W) and conversely.
Proof :
W < L(W) by definition and since L(W) is the smallest subspace of
containing W and W is itself a subspace
L(W)cw
Hence L(W)=W
conversely let L(IW) =W ,letx,yeW , a,f €F then x,y € L(W)
= x,y are liner combination of members of W.
= ax + Pyis liner combination of members of W.
= ax + fy € L(W)
= ax+py eW
=W is a subspace.
Def(2.22):
If V = L(S), we say S spans (or generates) V. The vector space V is said
to be finite - dimensional (dyer F) if there exists a finite subset S of V.
such that V = L(S) . We use notation F.D. V.S. for a finite dimensional
vector space.
It now follows, from the results we proved that ,1fS; and S,. are two
subspaces of V, then §; + S is the subspace spanned by S; U S,
Indeed, L(S; US,) = L(S;) +L(S,) =S5, +S,
Problem:
Let S = {(1,4),(0,3)} be a subset of R?*(R) Show that (2.3) belongs to
L(S).
Solution:
(2,3) € L(S) if it can be put as a linear combination of (1,4 ) and (0, 3)
Now
(2,3)=a(1,4)+B(0,3) = (23) =(a+0,4a + 3p)

5
=2 = a,4a +3,8=3,8ﬁa=2,,8—§

hence (2,3) = 2 (1,4) — 2 (0,3) Showing that (2,3) € L(s)
Linear Dependence and Independence
let V(F) be a vector space. elements v,, v,, ... v, in V are said to be
linearly dependent (over F) if 3 scalars a4, a,, ..., a,, € F. (not all zero)
such that

a, vy +av, + -+ a,v, =0
(vq, vy, ... vyare finite in number, not essentially distinct).
Thus for linear dependence ) a;v; =0 . and at least one a; # 0.
If vy, v,, ...v,are not linearly d’pendent (L.D.) these are called linearly
independent(L.I).
In other words,v;, v,, ... vyare L.I. if
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Zaivi =0 ,a;=0 foralli
A finite set X = {x4,x,, ..., x,} is said to be L.D. or L.I. according as its
n members are L.D. or L.I.
In general any subset Y of V(F) is called L.I, if every finite non empty
subset of Y 1s L.I , otherwise it 1s called L.D.
So, if some subsets are L.I. and some are L.D. then Y is called L.D.
Observations:
(1) A non zero vector is always L.I.as v # 0, av = 0 would mean a = 0.
(i1) Zero vector is always L.D.,1.0=0 1+#0,1€F.
Thus any collection of vectors to which zero belongs is always L.D
In other words, if v;,v,,..v,are L.I then none of these can be
zero. (But not conversely, see example ahead).
(1) VisL.Iiffv #0
(i1) Empty set ¢ is L.I. since it has no non empty finite subset and
consequently it satisfies the condition for linear independence. In other
words, whenever ), a;v; = 0 in ¢ then as there. is no i for which a; # 0,
set 1s L.I. We sometimes express it by saying that empty set is L.I.
vacuously.
Examples:
(i) Consider R?*(R),R = reals.
v =(1,0), v, = (0,1) € R? are L.1

as aqv; +a,v, =0 for a;,a, €ER

= a,(1,0) + a,(0,1) = (0,0)

= (aq,a,) =(0,0) = a, =a, =0.
(i1) Consider the subset S = {(1,0,0),(0,1,0),(0,0,1),(2,3,4)}
in the vector space R3 (R).
Since 2(1,0,0) + 3(0,1,0) + 4(0,0,1) —1(2,3,4) = (0,0,0)
we find Sis L.D .
In the vector space P of polynomials the vectors (x) = 1 —x, g(x) =
x —x2%,h(x) =1 — x2are L.D. since f(x) + g(x) — h(x) = O0..
Problem :
Show that the vectors

v, =(1,124) v, =(2,-1,-5,2) ,
vs= (1,-1,—4,0) and v, =(2,1,1,6)
are L.D in R* (R).
Solution :
Suppose av, + bv, + cv; +dv, =0, a,b,c,d €R then
a(1,1,2,4) + b(2,—-1,-5,2) +¢c(1,-1,-4,0) + d(2,1,1,6)
= (0,0,0,0)
=a+2b+c+2d=0
a—b—c+d =0

33



2a—5b—4c+d =
4a+2b+0c+6d—0

1 a 0
1 —1 1 bl 1o
= |2 —5 4 0‘ H

4
R1 _)RZ _Rl,R3 _>R3 _2R1,R4 _)R4_4‘R1

1 2 1 2 a 0
0 -3 -2 -—-1{(|b|_|0
0 -3 -2 -1}||¢ 0
0 -3 -2 -1 d1 0
R4_>R2_R1;R3_’§R3

1 2 -1 27
0 -3 -2 —-1lra 0
1 2 _1fp|_|o
0 3 3 311¢ 0
0 —- 1|ld 0

4 -1 —=

| 2
R4_)R4_R2,R3_>R3_R2
1 2 1 2 a 0
0 -3 -2 -—-1]|b 0
0O O 0 0 ¢ 0
0 0 d 0

= a+ 2b + c +2d =0

—3b—2c—d=0

3b+2c+ +d =0
a=1,b=1, c=1, d=1satisty the equations. .
Since coefficients are non zero, the given vectors are L.D.
Problem:
If two vectors are L.D. then one of them is the scalar multiple of the
other
Solution :
Suppose v;, vyare L.D. then 3a; € Fs.t

a,v; +a,v, =0 forsomea; =0

Without loss of generality we can take a; # Othen a4
av; = (=a,v;) = vy = (—a;'ay)v, = B,
which proves the result.
Problem:
If x,y, z are L.I. over the field C of complex nos. then so are
x+y,y+z and z + x over C.

—1 exists and
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Solution :
Suppose a;(x +y) +a,(y+2z)+as;(z +x)=0, a; €C
Then (a; + az)x + (a; + ay)y + (a, +a3z)z=0
= aq taz=a,+a,=a,+a;=0 , as x,y,z arelL.l.
Solving we find.
a=a,=a3=0
Hence the result.
Note :
Linear dependence depends not only upon the vector space , but the field
as well.
Consider, for instance, C(C), C(R), C = complex, k=real's .
Take1l, i€ C ,if a,B €Rthena.14+p.i =0=0 +1i0
=a=0 ,pf=0 =1,1 are L.I.in C(R)
Now if we take a, f In C, then as we cantakea = 1« f = —1, so that
.1+ (-1)i=0we fined3a,f #0
s.t sums of the type ), a;v; =0
1.el,i are L.D iv C(C).
Def(2.23):
Let V(F) be a vector space. A subset S of V is called a basis of V if S
consists of L.I. elements (i.e., any finite number of elements in S are L.1.)
and V = L(S), i.e S spans V.
Theorem(2.24):
letS = {vy,v,,...v,} is a basis of V, then every element of V can be
expressed uniquely as a linear combination of vy, vy, ... v,
Proof:
Since, by definition of basis, V = L(S) each element v € V can be
expressed as n linear combination of vy, v,, ... v, Suppose
vV =av1+av, + -+ ayvpa; EF
V=p1v;+ Bova o+ BunBi EF
Then a,v;+a,v, + -+ a,v, = f1v1 + Povy + -+ Lo,
= (a; — v+ (az = Blvy + -+ (@ — BV = 0
= a;f; = 0 forall I (vy,v,,..v, areL.I)
= aq; =pf; foralli
Theorem(2.25):
Suppose S is a finite subset of a vector space V such that
V =L(S) [i.e., V is a F.D.V.S] then there exists a subset of S which is a
basis of V.
Proof :
If S consists of L.I. elements then S itself forms basis of V and we’ve
nothing to prove.
Let now T be a subset of S, such that T spans Vof S (Existence of T is
ensured as S is finite )

35



Suppose T = {v;,v,, ...V}
we show T is L.I.
Suppose a; # Ofor some 1 Without any loss of generality we can
takea, # 0Then a, ! exists.
avtavy + -+ ayv, =0
= a; Yayv;+ayv, + -+ a,v,) =0
= v =(—a; " a)v, + (—ay tag)v + -+ (—a; M ay)v,
= Pavy + Bavs + -+ Py EF
If v € V be any element then
V=yY01+YU, o+ Yy €EF as V = L(T)
= v =Y1(Bavz + -+ Buvn) + Y2V + o+ Yy
i.e any element of V is a linear combination of vy, v, ... U,.
= V4, Uy, ... Uy spans V, which contradicts our choice of T (as T was such
minimal)
Hence a; = 0 orthat a; =0 foralli = v,,v,,...v, arelL.l
And thus t is a basis of F.
Def(2.26):
A F.D.V.S V is said to have dimension n if n is the number of
elements in any basis of V .we use the notation dimy V=n or
simply dim V and say V is n—dimensional vector space .
In view of an example done earlier dim R?=2
In fact, dim R™=n.
Theorem(2.27) :
A F.D.V.SV has dimension n iff n is the maximum number of
L.I. .vectors in any subset of V

Proof:

Let dm V =n and let {v;,v,,....... v, } be a basis of V , then
these are L.I..

Let S= {w;,ws,....... W, } be a subset of V where m > n . we show
S must be L.D. set .

Since Wy ,Wy , ooovennnn... w,, all belong to V and {v;,v,,....... U}
1s a basis of V; we can write

Wi =Aq1V; tAyV ... +a,1 Uy

W, =Aq,V1 tay,U, +...... tan,vna;j €EF

Wy, =Q1mV1 tAom Vs *...... +ApmVn

Ay Xy t+...... a1 mXm =0

ApiX1 + o+ apmxm = 0
Since n <m , the above system has a non—zero solution a4,
...... a, €F (ie,some a; #0).
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allal + e+ almam = 0

anlal + . + anmam = O

= a1 + ot agmav; = 0
An1A1Vy + ot @y = 0
= a1(ay1V; + 0 F auy) + ot (@i + o Fapm )
=0
= a;w; t.....ta,w,, =0, where some a; # 0
D W, Woyeiiiiiinnnnn. , Wy, are L.D.

Which proves our result .

Conversely , let the maximum number of L.I. elements in any
subset of V be n the there exists a subset, S ={v; ,v, ,...... vy} of
V such that Sis L.I. we claim S forms a basis of V.

Let v € V be any element.

Let T = {v;,v,, ..., v, v} than as it contains n+1 elements , it is
L.D.= 3a;ay, ...,a, ,a inF such that
av; + o + a,v, + av = 0 with some coefficients not zero.

Suppose a =0 then a;v; + -+ a,v, =0
= a; =0forallias v,,v,,..,v,are L.L

i.e. all @; and « are zero , which is not true . Hence a # 0 = a™ !

existsinF.nowav = —a,v; — ayv; — ....—a,Vy,
>v =(—ala)v; + (—atlay) v, +.+ (—alay,) vy,
Or that v is linear combination of v; ,v, ...... ,U, and v being any

element , we find S spans V or that S forms basis of V.

Hence dim V =n.

Theorem(2.28) :

If VisaF.D.V.S. and {v,,v,, ..., v } is a L.I. subset of V , then it
can be extended to form a basis of V.

Proof :

If {vy,v,, ..., } spans V, then it itself forms a basis of V and
there is nothing to prove

Let S ={v, vy, ...,V Vpyq, ..., Un} be maximal L.I. subset of V.
we show S is a basis of V, for which it is enough to prove that S
spans V. Let v€ V be any element .

Then T= {v,,v,, ..., v, v} is L.D. by choice of S

= Jday, ay, ..., &, ,a € F(not all zero ) such that

av; + -+ a,v, tav =0

We claim a # 0. Suppose a =0

Then vy + -+ ... + a,v, =0

= a; =0 for allias vy, vy, ..., v, are L.L.

& a= a; = 0 for all 1 which is not true
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Hence a # 0 and so a~ ! exists .

Since = (—a tay)v; + (—a " tay)v,t.. ... + (—ata,)v, vis a
linear combination of v4, v,,........... Vp,.

Which proves our assertion .

Theorem(2.29):

ifdimV =n ands {vq, vy,........... v,.} spans V then S is a basis
of V.

Proof :

since dim V=n , any basis of V has n elements . By theorem 17, a
subset of S will be a basis of V but as S contains n elements , it
will itself form basis of V.

Theorem(2.30):

ifdimV=nand S={v;, vy,........... v,.}1s L.1. subset of V then S
is a basis of V.

Proof:

since {Vq, Vpyeevvvennnn. v,.} =S is L.I. it can be extended to form a

basis of V , but dim V being n , it will itself be a basis of V .
Problem:

If {vi,vg,cceeinn... V,.} 1s abasis of F.D.V.S. Vofdimnand v=
Y. a;v; a, # 0 then prove that {v,, v,,........... Vy_1, UUpyq,....Up}
is also a basis of V .

Solution :

we have

V=av+...+a, v, +....Fa,v,a, #0 -~ a1 exists

>v= (—alayw, +..+(—a ta,_v,_y +a," v+ +

(_ar_lan)an
=pv1+ o+ BroaVr1 F BV BriaVigr + o+ By
If x€ V be any element, then
X = a1 + ayvy ++ava; € F
= X =V o+ gV + G(Brvr o+ Brvn) +
-+ av, orthatis a linear combination of

Vi, s UVp_1, VUV, Vpgqy oonr Up
And x being any element , we find V is panned by
{v1, e, Vp_1,V,Vp_q, ..., Up} and it forms a basis of V , using
theorem done above .

Theorem(2.31):

Two finite dimensional vector spaces over F are isomorphic iffthey
same dimension .

Proof :

Let V and W be two isomorphic vector spaces over F and let 6
: V — W be the isomorphism .

Let dim V =n and {v;,v,, ..., v,} be abasisof V.
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We claim { 0 (v;), (v3),....., 8(v,)} is a basis of W.

Let r,ab() =0q; €EF,
= Z 6(a;v;) =0 = 6(0)
= Zaivi=0=(9isl—1)
= ;=0 forall i as v;,vy .c....,v, are L.l
= 0(vy),0(y), .co...,0(v,) arel.l

Again, if w€ W is any element, then as 6 is onto,3 some v €V s.t
(V) =w

Now vEV= v=Y" a;v;forsome a; EF

—w =0 = H(Z(xivi)

= w= Z 0(a;v;) = a;0(vy) + a,0(vy)+......+a,0(v,)

or that wis a linear combination of 6(v,),08(v,), ... .. ,0(vy)
Hence 0(v,),0(w,), ... ... ,0(v,)span W and therefore, form a
basis of W showing that dim W =n. .
Conversely, let dimV = di mlW = nand suppose {v1,v,,.....0,}
and {w;, wy, .....w,, }are basis of V and W respectively .
Define a map 0:V - Ws.t.
0 (v) = 0 (qv; + av, + -+ a3v3)

= awy +awy + -+ a,w,
then 6 is easily seen to be well defined (Indeed any vE V is a
linear combination of members of basis)
If v, ¥ € V' be any elements then

VvV = Zaivi,ﬁ = Z,Biviai,ﬂi € F
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v+ v) =20 Z“i%‘"‘ Z,Bivi

= 00 (@ + B,

= Z(“i + Bw;
= Z a;w; + Z Biw;

= 0(w)+ 0(v)

Also
0 (av) = 6 az av; | =86 Z aa;v; | = Z(aai)wi

=« Z a;w; = ab(v)

Thus@ is a homomorphism.

Now if v € Ker 6
then 6 (v)=0

= 9(2 a;v;)) =0

= ) aw; =0= a;=0foralli wy,w,,.......,wybeing L.IL

= v=0= kerf = {0} = 6 is one-one
That 0 is onto is obvious. Hence 8 is an. [somorphism
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Corollary :

Under an isomorphism, a basis is mapped onto a basis

Follows by first part of the theorem.

Problem :

Show that the set of all real valued continuous functions y= f(x)

3 2
sati sing the differential equatlon% +6 % + 11% + 6y = 0is a
vector space over R. Find a basis of this
Solution :
One can check that V. = { f|f: R — R, fcont.} is a vector space,
over R,under (f + g)x = f(x) + g(x)
(a fx = a(f(x))

Let W = {f € V|fis a solution of given differential equation}
The given differential equation is.
(D3 +6D?+ 11D +6)y =0
D+1D)(D+2)(D+3)y=0
D= -1,-2,-3
and this general solution is
y = Ae ™+ Be ?* + Ce™3%
If S= {e % e~2* e73%} then clearly S spans W
Let Ae™™+Be ®* +Ce™* =0
Then—Ae ™™ + (—2)Be X + (—3D)e 3

Ae™* + (4D)e ?* + (9D)e3* =0 Vx

Put x =0
1 1 1714 A
-1 -2 =3||Bl =0=M|B| =0
1 4 911C C
Where

detM = 1(-18+12) = 1(—9+3)+1(—4+2) = -2 %0

ThusM lexistsandso A = B= C =0
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=S i1s L.I. and hence a basis ofW.
Note :

W is a vector space as it is a subspace of V.

[V1,V2,€ W = a;y; + ayy,is asolution of the given
differential equation = a;y; + a,y, EW].

Problem:
IS = {vy,v,,.....,v}is a L.1. subset of V and v € V be such that
v € L(S),then S U {v}isalL.l, subset of V.
Solution:
S U= {v,v,,.....,0,, V}
Letajv, + av, + -+, v, +av=0a; EF ,a €F
If « #0 then a~ ! exists and we get
a Y, + vy, + -+ ayv.+ av) = 0

=v =(—ala)v,+(—alay)v, + . +(—ata,)v,
= v € L(S), a contradiction

Thus a=0

=SV TA, V. +a,v,=0

=a;=0 foralliasv,,v,,.....,v, are L.I.
=a = q; = 0for all 1.

= Vq,Up,...... U, vare L.L.

Hence the result follows.

Problem:

(1, 1, 1) is L.I. vector in R3(R). Extend it to form a basis of R3.
Solution:
(1, 1, 1)is non zero vector and is therefore L.I. in R3.
LetS = {(1,1, D}, thenL(S) = {= a(,1,1)|a € R}
Now (1,0,0) € R3,but (1,0,0) & L(S)
thus by above problem S; = {(1,1,1),(1,0,0)}1is L.I.
Now L(S;) = {a(1,1,1) + £(1,0,0)| o, R}
= {(@+B, a,a)|a B ER}
Again (0,1,0) ¢ L(S;) and by above problem
S, = {(1,1,1),(1,0,0), (0,1,0)} is L.I. subset of R3Since dim R?
= 3,we find S, will be a basis of R3.
Problem:
A finite set of non zero vectors {v;,v,,.....,U,} In a vector space
V(F)is L.D. iff3v,, 2 <k < n, s.t., v, 1s a linear combination of
V1,V ey Vg1
Solution:
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Letv,,v,,.....,v, be L.D. Then 3q; € F, not all zero s.t
n

Zaivi =0

i=1
Let k be the largest integer s.t aj # 0
then k#1 as if k=1,
then a;v;=0,0 # 0(a; =0 forall i = 2) = v,=0, not true
as v; are non zero. Hence , 2 <k <n
thus a; # 0 and a; = Ofor alli > k + 1. Also then a1l exists
= V1AVt +a;, v, =0

= a L (avta,v,t.. ... +a, vy )=0

= v,= (—ap ta))viH—a, ray) vt ... H(—ap tag_)ag_q
which proves the result.

Conversely, suppose Ik, , 2<k<n st v, is a linear
combination of v;,v,,.....,Vk_1.

Let v, = ajvitav, + -+ ap_1Vp_1a; EF

Then aivita,v, + -+ Api1Vike1 — 1. =0

= V,,Vy,.....,vgare L.D.as (—1) # 0

= V1,Un,e ey Uy Ukggdseennn- ,Up are L.D. as any super set of a L.D.
setis L.D. Hence the result follows.

Theorem(2.32):

Let W be a subspace of a F.D.V.S. V, then W is finite dimension
anddim W < dimV.Infact, dimlV = dimW iffV = W.
Proof :

Let dimV = n,then n is the maximum number of L.I. elements
in any subset of V. Since any subset of W will be a subset of V,n
is the maximum number of L.I. elements in W.

Let wy,w,,.....,w,,, be the maximum number of L.L elements inW
thenm < n

We show {w;,w,,.....,w,,} is a basis of W. These are already L.I.
If we W beany element then the set {w;,w,,.....,w,,,,w} 1s L.D.
= da,,ay,......0,, @ In F (not all zero) s.t

awyt......... +a,,w, + aw =0.

If a=0 ,we get a;= 0 for all 1 as wy,...... Wy, are L.L. which is not
true

Thus a #0and so a~3 exists.

The above equation then gives us

w=(—ata) wy + -+ (—a"tay,) w,)

Showing that {w;,w,, ..., w,,} spans W (and thus w is finite

dimensional) =  {w;,w,,.....w,,} isabasisof W= dimw =
m<n = dimV Finally, if dimV = dimW =n
and {wy,w,,.....,w,,} be .a basis of W then as {w;,w,,.....w,,} is
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L.Iin W,itwillbe L.I.in V.

and as dim V=n, {w;,w,,.....,w,,} is a basis of V. Now if vE V

be any element the v=a;w;+ta,w,+....... +a,w, €W

=SVvEW =V=W

Conversely, of course, V= W = dimV = dimW.

Remark:

If W is a subspace of V where W = (0) then dimension of W is taken to
be zero .

Theorem (2.33):

LetW be subspace of a F.D.V.S.V then

V
di mW =di nV —di miW

Proof:
Let di MWW =mand let {w;,w,,..,w,} be a basis of W
Wi, Wy,..,W,, being LI in W will be LI in V and thus
{wy,w,, ... ,wp,} can be extended to form a basis of V .
Let {w; ,wy, ... ,Wy, ,V1,V3, ... , Uy} be the extended basis of. V then

diml/=n+m
Consider the set = {W +v; ,W +v,,.. , W +v,}, we show it form a
basis of%

Let aa(W +v)+ - +a,(W+v,) =W,a; €EF then
W+ (avy++a,v,) =W=aqv;++a,v, €W

= a;v; + -+ a,v,i sal i neaconbi nati onfw, , ... ,wy,
= a1 + o+ apvy = fywy + o+ Bywp B €F
= aqv;++a, v, — Wy — = LWy, =0

a;=p; =0 foral L,j
= {W+v, , W+v,,.., W+uv,}isLl
Again for any ,v € % , VEV means v is a linear combination of
Wi, Wy, , Wy, U1,Vs, ., Uy
Lea;wy + -+ apuWy + B1vy + -+ Brvga; B EF
again W + (a,wy + -+ auwy,) + (B1vy + -+ Brvn)
=W + (Byvg + - + Bu)
=pi(W+v)+ -+ B (W +vy)
Hence s space % and is therefore a basis di m% = 0 thus
di m% =di mV — di mW
Theorem (2.34):
If A and B are two subspace of a F.D.F.S. V then
di n{A + B) = di mA + di mB — di n{4 n B).
Proof :
We have already proved that
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A+B _ B

A “ANB
o ATB_ B
e =AY B

= di {A + B) —di m4A = di mB — di n{A N B)
Orthe dim{A + B) = di m4 + di mB — di {4 N B)
Remark:
The reader should try to give an independent proof of the above theorem
an exercise .
Corllory :
IfANnB = (0) then di n{A+ B) = di m4 + di mB

di {A®B) = di mA + di mB

Problem:
Le p,be the vector space of all polynomial of degree < n over R exibit

a basis of% . hence verify that di mf)—" = di mP, — di mP,.
2 2

Solution:
It is easy to see {1,x,x2,x3,x*} is a basis of P, and thus di mP, = 5.
Similarly di mP, = 3 as {1, x, x*} will be a basis of P,.

Let S ={P, + x3 P,x*} then S is a basis of% as

2

P
P, +fEP—4=>P2+a0+a1x+a2x2+a3x3+a4x4=P2 +f
2
== PZ +f == a3(P2 + x3) + a4(P2 + x4)
=S spans—4
P,
Again  a(P, + x3) + B(P, + x*) = zero=P,
=P, +ax3+ px* =P,
= ax>+px*=a+bx+cx?>€P,
= a=b=c=a= =0 as polynomial is zero , if each coefficient is

. . p
zero thus S is a basis of P—“
2

Hence di m* =2 =5 — 3 = di mP, — di nP,

2
Theorem (2.35):
Let W be a subspace of F.DV.S. V , then there exists a subspace W' of V
such that V = We@W’ .

Proof :

Let {w; ,w,, ... ,wy,} be a basis of W, then w; ,w,, ... ,w,, being L.l in
W will be L.I in V. we extend these L.I elements to form a basis of V ,
say {wy , Wy , ee. , Wy, ,V1,V5, .. ,Un}

LetW' = L ({vy,vy,...,}), i.e., W’ be the subspace spanned by

{v1 ,v2, ., v}
We show W@ W' = V Letv €V be any element, then
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V=(awy + -+ W) + (v + 4 Ban), i€ F
where the first bracket term belongs to W and the second to W’ and the
second to W’
~veE W+W andthusVE W + W

=SV =W+W
Again, if x € W N W’ be any element
thenx € W and x € W’

= x = Wy + . Fapwpa, b € F
X = byvy + -+ by,

= Wit ...+, Wy, + (=b)vy . +(=by)v, =0
= a;=b=0 foralli,j wi,....Wm, vi,...., v, being L.I
Hence x = 0

wnw = (0)
orthatV = W W’
Note :
W’ is called complement of W. Thus we have proved that every
subspace of a F.D. V.S. has a complement.
Corllory :
If W' is any complement of W in V then dimW’ = dimV/ —
di mlW/
SinceV = WOW’ =2dinV =dinlWdW') =di mW +
di miW/’
= dimW’ =dimlV/ —di mlV.
Although every complement of a subspace has same dimension it
does not mean. that a subspace has a unique complement.
Consider
Example :
LetV = R?(R)and let
W = {(a,0)|a €ER}
W;= {(0,b)lbe R}

W, ={(c,c)|c € R}
it is easy to see that W,W, , W, are subspaces of V
Weshow V=W@W, andV=W W,
Now v eV =v=(x,y)= (x,00+ (0,y) e W + W,
>SVCEW+W, >sV=WwW+W
againx e WNW1 = x€ Wandx € W,
= x = (a,0),x =(0,b)
=2(a,0)=0,b)>a=b=0 =2x=0

Hence W nNnW; = (0)
or that V=W W;.
AlsoveV = v=(y)=x-y, 0 + (yy) e W +
W,
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>V EW+W,=>V=W+W,
Nowx eWnW, s xeWandxeW,=> x = (a,0),x =
(c,c) » (a,0) = (¢c,c) = ¢c =0, x = (0,0).
Thus WnN W,=(O)orthat V=W @ W;.
.. Notice that W, W, ,W, ,are spanned by {(1; 0)},{(0, 1)}, {(l,)}
respectively d as each of these is L.1. (they are non zero). These
subsets form bases of
W, W, ,W, respectively.
Hence dimW = dim W, dim W, = 1.
Inner Product Spaces
In general a vector space i1s defined over an arbitrary field F and this is
what We did earlier . In this’ section .we restrict F the field of real or
complex numbers. In the first case, the vector space is called real vector
space and in the second case it is called a complex vector space. We
study real vector spaces in analytical geometry and vector analysis.
There we discuss the concept of length and orthogonality. We also have
dot or scalar product of two vectors which among other things satisfies
the following

O)v.v=0and (W.¥) =0 & v=0
() v.w = wW.v

(ii)v.(av + Bv) = a(u.v) + B(U.w)

where U, U,w are vectors and af8 real numbers .We wish to extend
the concept of dot product to complex vector spaces also. We
define a map on V' X V of (where V= vector space over F) with
same property as dot product, called inner product and study the
concept of length and orthogonality.

Def(2.36) :

Let V' be a vector space over field F' (where F' = field of real or
complex numbers). Suppose for any two vectors u, v € V' 3 an
element (u,y) € F s.t [(u, v)here is just an element of F and
should not be confused with the ordered pair.]

(1) (u,v) = (v,u)(i.e .,comblex conjugate of (v, u))
(i) (w,u) =20and (u,u) =0 & u=0

(i) (au + pr,w) = a(u,w) + L(v,w)
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forany u,v,w € Vanda,p €F.

Then V is called an inner product space and the function satisfying
(1), (i1) and., (ii1) is called an inner product. Thus inner product
space 1s a vector space over the field of real or complex numbers
with an inner product function.

Remarks :

1. Property (i1) in the definition of inner product space makes sense
in as much as (u,u) = (u,u)by (i) = (u, u) = real.

2. Property (ii1) can also be described by saying that inner product
is a linear map in 1st variable.

3. Can we say that inner product is linear in and variable?

Let’s evaluate

(u,av + pw)(av + pw,u) by (i)

= a(v,u) + B(w,u)
= a(u,v) +E(u,w)
So, it need not be linear in 2nd variable.

1. If F =field of real numbers, then the function inner product
satisfies same properties as dot product seen earlier.

2. Inner product space over real field is called Euclidean space and
over complex field is called Unitary space.

Example:
Let V=R® u=({a; ,a;) v= (B1,B2)-

Defin (u,v) = a;8; — axf; — a1 5 + 4ayp;
Then

(i) wv) = (nuw) = Wu)

() (wu) = (a; —ay)?+ 3a5 = 0

uwu)=0=aq =a,,0,=0=a0,=0= a,
ou=(—a)= (00 =0

(i) (au + pu,w) = a(u,w) + (v,w)

can be easily verified. Thus, (u, v) defines an inner product.
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Example:

Let ,W; ,W, be two subspaces of a vector space V If W, , W, are inner
product spaces, show that W; + W, is also an inner product space.
Solution:

Letx.y € W, + W,.

Then x=u; +u,

y=v+vu ,vy EWi;u,v, €W

Define <x,y >= (uy,v1) + (uy,vy)

Then x=u; +u,

y=vitva , u Vi€EW,, Uy, v, €W,
Define < x, y > = (u; ,v))+(uy, vy)

Then

() <y,x>= (v,uy) + (v, Uy)

= (v, up) + ((v2, uy)
=(u; ,vi)Huy, V)= <X, y>

(11) <XxXx >=(U.l,ll1) + (UZ,Uz) >0And < x x>=0& (111,111)
=0=Wuw)euy=0=u,<x=0

) <ax+pPy,z>=a<x,z>+f <y, z > can be easily
verified.

~< x,y > defines an inner product on W; + W,

So, u; + u4 is an inner product space .
Norm of a vector
Let V be an inner product space. Let v € V. Then norm of v (or

length of v) defined as / (v, v) and is denoted by ||v|].

Problem:
|laev|| = |a|||v|| for all « € F, vE V
Solution:
2 _
llavl|” =(av, av)= aa(v,v) =|a|?||a||? = |lav]| = la| ||v]|

We now prove an important inequality known as Cauchy Schwarz
inequality
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Theorem(2.37):
Let V be an inner product space.
Then |(u,v)| <|u]| ||v|] forallu,veV

Proof :

Ifu= 0,then (w,v) = (0,v) = 0and ||u|] = J(u,u) =
(0,0)=0

~ LH.S.=R.H.S.

Letu +# 0. Then ||u|| # 0
(as]lul]|=0 = J(0,00)=0= (,,u) =0 =>u =0)

(u,v)
Let W =——u
Il (wv) (w, u)
u,v v, U
Then (W, W) = [W u,v— T u]
(v, uw)
= (uwv) — = (u,v)
[lull ,
(u, v)(u, v) |(u, v)|
= vl —— = Il = =5
[lull [lull

lull?llvl? - [(u, v)|?
||ul|?
Since (w, v) =0.|(w, v)|? < |lull?||v]|?
|(w,v)| < |[ullllv]l.

Remark :

The above inequality will be an equality if and only if

Proof:

suppose |(u, V)|[[ullllVI|

Ifu=0, then u =0, v = wu, v are linearly dependent. Let u
# 0. Then from above

w, wy=0 =>w =0
v, u
( 2) _ 0
[lull
(v, u) .
= v = W u = u,v are linearly dependent.
Conversely, Let u = av, a €F
Then |(u, v)| =la(w,v)|=|alllv]|?
lulllvii=lalllvillvii=lalllvI*lwv)]= lulllvl

Theorem(2.38) :
Let V be an inner product space. Then
@Ollx +yll = llx|| + [ly|l forallx,y €V
(Triangle inequality)
(i) llx + ¥lI* + llx — y1I* = 2(l|x|I* + [lylI*)(parallelogram law)

50



Proof:
Ollx +ylI* = x+y,x +y)
=x)+x)+ &y +Oy)
= IxlI” + (. y) + (6 ¥) + lyll?
=[x + 2Re(x, ) + llylI?
< lIxlI? + 21Cx, )| + llylI?
< llxll? + 2[lx 11 llylI* + llylI?
= (llxlI* + llyl1*)?
Hence |[[x + y|| < [lx|| + [[¥]]
This is called triangle inequality as||x||? + ||y||*> = sum of the lengths of
two sides of a triangle
||x + y|| = length of the third side of the triangle showing that sum of
two of a triangle is less than. its third side.
@lx+yl?+llx—yllP=G@x+yx+y)+x—-—y,x—y) =
lxll? + Iyl? + o) + (%) + llxl1? + llyll? = (x, ) —
3, %) = 2l + Iyl1?)
Note :
llx + y|I? + ||x — y||*> = sum of squares of lengths of diagonals a
parallelogram
2(||x[|* + [|1¥]I*) = sum of squares of sides of a parallelogram.
~sum of squares of lengths of diagonals of a parallelogram is equal to
sum of squares of lengths of its sides. For this reason (ii) is called
parallelogram law.
Problem:
Using Cauchy Schwarz inequality, prove that cosine of an angel is of
absolute vale at most 1.
Solution:
Let F = field of real numbers and V =F (3)
Consider standard inner product on V.
Let u=(x1,y1,21) , v=(%3,Y2,2,) €F,0 = (0,0,0)
Let 8 be an angle between OU and OV.

Then
050 = X1X2 +Y1Y1 + 21 + 2, _ (u,v)
a2+ y2 + 22 x2 +y2 + 22 llulllvl
u,v ullllv
Icos8] = (u,v) < [ull{|v]| _
lullllvll — [lulllvll
Orthogonality

Let V' be an inner product space. Two vectors u, v € Vare said to be
orthogonalif (u,v) = 0 & (v,u) = 0. So, u is orthogonal to v iff v is
orthogonal to u. Since (0,v) = 0 forall v € V,0 is orthogonal to every
vector in V.
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Conversely ,if u € Vis orthogonal to every vector in V' then (u,v) =
0 = u = 0. Let Whbe a subspace of V.

Define W+ = {v €V |(v,w) = 0 for all w € W(W'is read as W
perpendicular).

Then Wis a subspace of Vas 0 € W+ = W # pand

(avy + Bv,,w) = a(vy,w) + B(vy,w) =0 forallw e W

= av,; + v, = W+
Wis called orthogonal complement of W. The reason for calling it thus
is because we shall prove later that V. = W@W*
Problem:

Let V be an inner product space. Let x,y €V s.t.x L y Then show
that||x + y||? = ||x||? + ||y||>(This is Pythagoras Theorem when F=R as
in triangle ARC with AB 1 BC,AB? = ||x||?,BC? = ||y||?, AC?l =

llx + ylI%)
Solution:

Ix+yll?= (& +yx +y)=0x)+ @)+ &y + Q%)
= |lx|I* + [lyll* as (x,y) = 0 = (,x)
Orthonormal Set

A set {u;};0f vectors in an inner product space V is said to be orthogonal
if (u;,w;) = 0 fori # jlIf further (ui,uj) = 1 for all i then the set
{u; }is called an orthonormal set.

Example:

Let V' be the real vector space of real polynomials of degree less than or
equal to n. Define an inner product on V' by

n n n
z aixi ,z b]xl = z Clibj
i=1 j=1 1

Then { 1, x, ... ,x™} is an orthonormal subset of V.

Theorem (2.39):

Let S be an orthogonal set of non zero vectors in an inner product space
V. Then S is a linearly independent set.

Proof :

To show S is linearly independent, we have to show that every finite
subset of S is linearly independent.

Let {v4, ..., v, } be a finite subset of S.

Let avq,...,apv, =0,a; €EF
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(v + -+ ayv,, a4V, ...,apvy) =0

= |a; *llvill? + - + lap?lvp]l? = 0
= |a;|?||v;||* = 0 for all i=1,...n
= |aq;|l?=0forallllas||v;|I?=0=|lv;]] =0=v;=0
Which is not true

= a; =0alli=1,...,n

=S is linearly independent.

Corllory:

An orthonormal set in an inner product space is linearly independent
Proof:

Let S be an orthonormal set in an inner product space V. Let vE S
gthenv+# 0asv =0= (v,v) = 0 # 1, a contradiction. Therefore, S
is an orthogonal set of non zero vectors and so linearly independent.
Theorem (2.40):

(Gram-Schmidt Orthogonalistion process)

Let V be a nonzero inner product space u/dimension n. Then V has an
orthonormal basis.

Proof :

It is enough to construct an orthogonal basis .of V. For let S € V be

orthogonal set. Then T = {ﬁ

Let {v,, ..., v, }be a basis of V.

|x € S} a is an ortlnormal set.

(va,wy)
Let w, = v,Definew, = v, —
(] 1 1 cIime 2 2 (W1,W1) 1
N (V2,vyp)
2 (Vlivl) !
then (Wa, wy) = (W, vy)
(VZJVl)
(Vy,v1) = (vy,v1) =0
(v1,vy)
AISO vz = a1v1 + W2 = a1W1 + WZ
Where a; = GoVi) e
(vi,v1)
Note v, , is linearly independent v; # 0 = (v4,v;) # 0)
(v3,w1) _ (vzwy)

Define w, = v, —
1 3 (wq,wy) 1 (wy,wy)
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Then (W3, Wz) =0 = (W3, Wl)
Also where
In this way, we can construct an orthogonal set {w;, ..., w, } where each

vi=awgt++w; , aq;€F
w;y wy, ) . C e
{ T } is an orthonormal set which is linearly
- U [[Wall
independent by
Problem :

Obtain an orthonormal basis, w.r.t. the standard inner product for
the subspace of R3 generated by (1,0,3) and (2,1,1).
Solution:

Let v, =(1,0,3), ,=(2,1,1).

(v1,w1)
(uguq) 1
Now (Wl, Wl) = (vl , vl) =2+0+3=5

Then W=V, Wy =V,p —

(Wl'Wl) == (vl,vl) =1+0+9+10
o ws[[=v10

So,w, =(2,1,1) — = (1,0,3)

Il
~
N w
—_
N |-
—

T
--W2—4

=~ required orthonormal basis is

wi  wp ) (1 \/E\/§_
ﬁmewm}‘ﬁﬁ%“”3”7<7”L Q}

Theorem(2.41): (Bessel’s inequality)

If (w; ,w) is an orthonormal set in V. then

m
ZKWz,U)IZ <|lvl|* forall veV
i=1
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Proof :

Let x = v— X2 (v,w)w;
(x,w;) = (v,w;) — (v,w;) = Oforallj = 1,..,m . Let
m m

w = Z(V' w)w; = Z a;w;,a; = (v,w;)
i=1

i=1
v=x+w

Also
w,x) = (aywy + -+ ayWy, , X)
=a;(Wy,x) + -+ @y (W ,x) = 0
Now ||v||? = (v,v)
= wW+x,w+x)=ww)+ (x,x) = lw|l?]x]|* = [[w]|?
But [|[w]|* = (w,w)
= (a,wy + -+ a,,Wy, ,a;w; + -+ a,,Wy,)

= ala_l(wl ’ Wl) + ot am@(Wm ’ Wm)

= lay|* + - + |ap|?
as {wy , ..., wy, } is an orthonoal set

m m m m

—2
Dlail? = Y jwwolr = Y (G|’ = ) low v
;';1 i=1 i=1 i=1

ZI(Wi W2 < |wll* forall|lvl*veV
i=1

Corllory:

Equality holds ifand only if v =w
Proof:

Suppose v = w

Then

m
Iwll? = Iwliz = ) |we, v)1?
i=1
conversely ,suppose equality holds . then

vz =lwll* = x?P=0=(x,x) =0=0
Srv=w+x=w
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Fields play an important role algebra with applications to Number theory
of equations and geometry .
Def(3.1):
Let L be a field and suppose K is a subfield od F, then K is called an
extension of F .
Suppose S is a non empty subset of K, let F(S) denote the smallest
subfield of K which contains both f and s .(in fact F(S) would be the inter
section of all subfields of K that contain F and S fand s.)
The following theorem is then an easy consequence .
Theorem (3.2):
If S, T are non empty subset of afield k and K is an extension of afield F
then F(SUT) = F(S)(T) (Where of course , if F(S)=E , then by F(S)(T)
we men E(T)
Proof:
F(S U T) is the smallest subfield of k containing (SU T), F
i.eS,T,FCSFSUT)=F(S) S FSUT), TSFSUT)

= F(S)(T)SF(SUT)
again F,S,T C F(S)(T) = F,SUT < F(S)(T)

= FSUT) < F(S)(T)
orthat F(SUT) = F(S)(T)
Remark:
If s is finite subset {a,, a,, ..., a, }JK we write F(S) = F(aq, a,, ..., a,).
The order in which a;appear is immaterial in view of the next lemma as

F(ay, az, ..., a,) = F({a;}{ay, az, ..., an}) = F({ay, as, ..., an})
= F(Clz, as, ..., Ay, al)
Also then
F(a)(b) = F(a,b) = F(b,a) = F(b)(a)

Again if K = F(a) k is called simple extension of F and we say K is got
by adjoining the element a to F.
Lemma (3.3):
F(SUT)=F(TuUS)=F(S)(T) follows clearlyas SUT =T US.
Problem:
Let Q be the field of rationales then show that Q(v2,v3) = Q(v2 + V3).

Solution :
By definition

V2,V3 € Q(2,V3) = V2 +V3 € Q(2,V3) (closure)
= Q(V2 +V3) € Q(2,V3)

Now VZ+v3€Q(VZ+v3)= (VZ+3) € Q(VZ +V3)
Also 5 € Q(\/E+\/§)
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5+2V2V3-5=2, V2V3 € QW2 ++3)
AlsoZEQ(\/E+\/§)

2x%x/§\/§=\/§\/§eQ(\/§+\/§)

Also V2++v3€QW2++3)
= 3vV2+3V3-2V3-3V2=v3 € Q2 +/3)
= 2V3+3V2-2V2-V3=v2€ Q2 +V3)
QW2 ,V3) c QW2 +v3)
= Q(V2,V3) = Q(V2 +V3)
If k is an extension of F, then we know that K can be regarded as a vector
space over F. in that case dimension of K over F is called degree of K
over F and we denote it by [K:F].
Our next theorem is about the degree of extension fields. If [K:L]is finite
,we say k is finite extension of F.
Theorem (3.4):
Let L be a finite extension of K and F, a finite extension of K . then L is a
finite extension of F and [L:F]:[L:K][K:F].
Proof:
Let [L:K]=m , [K:F]=n
Let {ay, ..., a,;,} be a basis of L over K and {by, ..., b, }be be a basis of k
over F. we show that {a;b;|1 < i , j < n}is abasis of L over F.
a,€L , bjeK=bjelL . abjelforallij

m n
ZZaijaibj=0 aijEF

i=1 j=1

m n n
ZZ(aijbj)ai =0 ,z al]b] EK
j=1

i=1 j=1
Since {a, ..., a,,} are linearly independent over K,
n

Zaijbj =0 foralli=1,..,m

=1
Also {by, ..., by} aré linearly independent over F . a; ;= 0 for all i=1,..,m
,J=1,....1,n
~{a;bj|l1 <m , 1 <j <n}is linearly independent subset of L over F.
Let a € L since {a4, ..., a,} is a basis of L over K

a=aaq ++ana, ,a €K
a; € K and {b4, ..., b, } is a basis of K over F.

= Pirby + -+ Binbn ,BijEF

Then
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3

=iaiai=2(ﬁub1+ 4 Binbn) a; = EZﬁl,bb Bi;€F
i=1

=1 i=1 j=1
" {aibj|1 <i<m, 1<j< n} spans L over F and so forms a basis of
L over F.

[L: F] = mn = [L:K][K: F]
Remark :
if [L: K] is finite then [L: K] is also finite because [L: K| = r =every
subset of L having r+1 elements is linearly dependent over F. since [L:K]
is infinite , 3a4, ..., a,,1 € K which are linearly independent over F as
1+#0. As in theorem (3.4) , a; —1,a, —1,...,a, + 1, 1 are linearly
independent over F .we fined aq,...,a,,, € L are linearly independent
over F, a contradiction .
~ [L: K] is infinite . similarly , [K: F] is infinite .
Lemma(3.5):
If f is finite extension of f, then K:F if and only if [K: F] divides [L: F].
Proof:
By remark above [K: F] is finite as [K: F] =finite also [L: K] is finite .
By theorem (3.4)

~-

[L:K] = [L: K][K: F]

[K: F] divides [L: F]
Lemma(3.6):
If k is an extension of F , then K=F if and only if [K: F] = 1.
Proof:
IfK:F,then [K:F] = [K:K] =1
If [K:F] = 1let {a} be a basis of K over F.
~1€K=aa,a€F ,a#0 asl#¥0=a=al€F
LetheK=b=fa ,FEF ,BEF ,a€F=b€eEF=KC
F =K=F.
Lemma(3.7):
If L is an extension of f and [L:K] is a prime number p, then there is no
field KstF c K c L.
Suppose 3 a field K s.t , F € K c L then p = [L: F] = [L:K][K: F] By
theorem(3.4)

= [L:K]=1or [K:F]=1
= K =L or K=F bylemma (3.7) acontradiction.
Hence the result Trivially then, if K is an extension of F of prime degree
then foranya € K, F(a) =F or F(a) =K
Theorem(3.8):
Let k be a finite extension of F. let [K:F]=n, let a € K. Then q, ...,a™ are
linearly independent over F. thus 3 a4, a4, ...,a, €EF s.t ap.1+a,a+
a,a™ =0 for somea; # 0.
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Let F(x) = ag+ a;x + a,x™,then F(x) is non zero polynomial in f[x]
as some a; # 0 , also
F(a)= ap+aia+a,a™ =0
~ ais algebraic over F.
=~ k is algebraic over F.
Note:
Convers of theorem (3.8) is not true.
Lemma(3.9):
a € K is algebraic over F if [F(a): F] =finite
Proof:
By theorem (3.8) , F(a) is algebraic over F.
~ a € F(a) 1s algebraic over F.
Converse of above lemma is also true .
Corllory 1:
If a4, ...,a, € K are algebraic over F then F(a,, ..., a;) is finite
extension of and so is algebraic over F.
Proof:
We proof the result by indication on n .if n = 1, result follows from cor
1. assume it to be true for naturals less than n .let a4,...,a, € K be
algebraic over F. Now a, is algebraic over F = a, is algebraic over
F(ay,...,a,)
By cor 1. [F(aq,..,an—1)(a,) ;F(aq,..,ay,)is finite by indication
hypothesis,
[F(aq, ..., an): F] Is finite
[F(ay,...,an) F] =[F(aq, ..., an): F(aq, ...,ay)][F(al, ....an —
1): F] =finite
Result is true for n also
By indication is true for all n> 1.
Def(3.10):
A complex number is said to be an algebraic number if it is algebraic over
the field of rational numbers.
Roots of polynomials
Let F be a field and f(x) € F[X].we ask whether there exists an extension
K of containing a root.

Theorem(3.11):

A polynomial of degree n over a field can have at most n roots in any
extension field.

Def(3.12):

Let E and L be tow extensions of a field K. An isomorphism f:E — L is
called a K —isomorphism if f(a) = a ,and in that case we say E and L
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are K —iosmorphic. similarly we talk of K-homomorphism or

K —automorphism.

Theorem(3.13):

Suppose g: K; = K, is an isomorphism from a field K; to a field K.

Let a; be a zero an irreducible over polynomial f; (x) over K; and a, be
zero of the corresponding polynomial f;(x) = a(f;(x)) over K ,then
there exists a unique isomorphism 6 from K;(a;) to K;(a;) such that
O(a)=aando(a) =«a

Proof:

Now ¢q:K;[x] = K;[a4]

With  ¢;(g91(x)) = g1(a1)

Is an onto homomorphism such that Ker ¢; = <f;>.

Prime subfields

Def(3.14):

Let F be a field .The intersection of all subfield of F is the smallest
subfield of F and is called prime subfield of F.

Theorem(3.15):

Let P be the prime subfield of a field F. Then either P = Q or P =

some prime p, Z being the ring of integers.

Proof:

Define 8:Z - p € F such that

6 (n) = ne ,where e denotes the unity of F

Then 6 is a homomorphism.

Problem:

Show that regular pentagon is constructible.

Solution:

It would be possible to construct a pentagon if we can construct

2T o o
a = 2cos?= 2cos72 =2sin80.
-14+/5

z
(PY

for

Since si 80" =

construct a regular pentagon.

Problem:

Every automorphism of a field F leaves the prime subfield P of F,element
wise fixed

which is constructible we fine it is possible to

Solution:

Let 0 be an automorphism of F

Let K={a€F|O(a)=a}

Then K is a subfield of F.

Since P 1s the smallest subfield of F, P € K .let b € P.then b € K,
= 6(b) = b =,0 fixes element of P.
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Separable Extensions
In the next we have a polynomials which have a simple roots and the field
generated by these roots.
Def(3.16):
A polynomial is said to be a separable if all roots are simple.
Theorem(3.17):
A polynomial f(x) € F[x] is seperable if and only if f and f” are
relatively prime.
Def(3.18):
A field K is called perfect field if every algebraic extension of K is
separable.
Theorem(3.19):
Let char K = p. then every algebraic extension of K is seperable if and
onlyif K = K? .
Proof:
Leta € K .let f(x) = x° — a and b be a zero of f(x).then
0=f(b)=b°—a,a=D>b"
,f(x) = xP — bP = (x — b)P.then f(x) is irreducible over k.
Now a is root of p(x), = x — a divides p(x) in E[x]
= Px)=(x-a)qix) , qx)€E[X]
Since degp(x) =2 ,deg q(x) = 1.
Soq(x) =(x—pB),BEF
Therefore p(x) = (x — a)(x — B) splits in E[x].
Problem:
Let F be a perfect field .show that the set of elements fixed under all
automorphisms of F is a perfect subfield.
Solution:
Let char F = p,K = {a € F|o(a) = aVo € G},where G is a group of F.
then K is a subfield of F.
Define 6:F — F such that,
f0(a) =a®

Then 0 is a homomorphism, since F is perfect, 0 is onto,
Sof €G,leta €K .theno(a) =«

=0(a)=a=>a’=a = aeK?P = K € K?
= K = KP, K is perfect.

Normal Extensions

As seen earlier if f(x) € K|[x] is irreducible over K, then there extension
E of K containing a root of f(x).
Def(3.20):
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An extension L: K is called a normal extension if every irreducible
polynomial in K[x] have any at least one root in L.

Theorem(3.21):

A finite normal extension is a minimal splitting field of some polynomial.

Theorem(3.22):

Let K be an algebraic closed field such that K is an extension of K.
Let F = {aeK|a is algebraic over K}

Proof:

We now thatk € F € K is tower of field

By definition of F,F/K is algebraic

Thus F is algebraically closed

Hence F is an algebraic of K.

Lemma(3.23):

Let E be an algebraic extension of K and let o:F — E be a K-
homomorphism. then ¢ is a K-automorphism .

Proof:
Leta € E,p(x) = Irr(K, a),
Let ¢y = a, a4, ....., a,

LetE’ = K(aq,.....,a,) € FE
Then E’/K is finite
Let p(x) = (x — ai)qi(x) , qi(x) € K(a;)[x]
Since g(a) = a for alla € K, a(p(x)) = p(x).
Theorem(3.24):
Let K be an algebraic extension of K, then following are equivalent.
(1) K/k 1s normal .
There fore p(x) = o(p(x)) = (x — o(ai))o(qi(x))
Buto:E - F = o(a;) € E for all i
So g(a;) € E’ for all i,
= 0: E - E’ is a K-homomorphism
Also E’/K is finite
Since o is also 1-1
So 0: E' - E' IS on to, o is a K-automorphism of E.
Galois Extensions
Def(3.25):
An extension E of F is called a Galois extension if E/F is finite .f is the
fixed of a group of automorphisms of E.

Theorem(3.26):
Let E/F be a finite extension .then E /F is a Galois extension if and only
if it 1s both normal and seperable.
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Note:

When E/F is Galois, the group of all F-automorphisms of E is denoted by
Gal(E/F) or G(E/F) called the Galois group of E/F.

Corllory 2:

Let char K = 0.then K is contained in some Galois extension of K.
Proof:

Let f(x) be a non constant polynomial in K[x].Let E be a minimal
splitting field of f(x) over K .then E /K is finite normal .Since is perfect,
=FE/K is seperable ,

So, E /K is Galois.

Theorem (3.27):

Let E/F be a finite extension .then E/F is contained in Galois extension
if and only if it is seperable.

Proof:

Let E /F be contained in Galois extension E’/F.then F € E C E’

Now E’/F is Galois = E’/F is seperable E /F' is seperable

Conversely, Let E/F be seperable. since E /F is finite,E = F(aq, ..., a;,)
Let pi=Irr(F,a;) , a; € E. a; € E = a; is seperable over F= q;

is a simple zero of p; =each zero of p; in a splitting field is simple.
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