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Abstract 

First we study some basic concept of ring and 

homomorphism of ring, we prove some theorem’s of 

ring’s and ideal and we give an example of subring. 

Also we study the characteristic of ring. 

Also we study the  idempotent and nilpotent elements. 

We study the vector space,field’s. 

Final we study inner product space and nor of vector. 
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Def (1.1): 
Anon empty set R from a ring if the following axioms are satisfied: 
(i) � + (� + �) = (� + �) + � for all  �, � ∈ � 
(ii)  � + � = � + �for all  �, � ∈ � 
(iii) ∃ some element 0 in R , s.t  � + 0 = 0 + � = �for all � ∈ � 
(iv) For each � ∈ � , ∃ an element �– �� ∈ �, �. � � + (−�) = (−�) + � = 0 
(v) �. (�. �) = (�. �). �for all  �, �, � ∈ � 
(vi) �. (� + �) = �. � + �. �(� + �). � = �. � + �. �for all  �, �, � ∈ � 
Remarks : 
Since we say that + ��� .  are binary compositions on R under stood that 
the closure properties w.r.t these hold in R . in other words ,for all 
�, � ∈ � , � + � ��� �. � are unique in R . 
-In fact the statement that R in a ring would mean that R has two binary 
composition + ��� .   defined on it and satisfied the above axioms . 
-The ring (�, +) forms an abelian group . 
Def (1.2): 
A ring R is called a commutative ring  if  �� = �� for all  �, � ∈ �. 
If  ∃ an element   � ∈ �    �. ��� = ��    for all  �, � ∈ �   it is also called 
unit element or multiplicative identity. 
Remark: 
We recall that in a group by �� we mean �. � was binary composition of 
the group .    
Theorem (1.3): 
In a ring R the following results hold 
(i) �. 0 = 0. � = 0  for all  �, � ∈ � 
(ii) �(−�) = (�)� = −��for all  �, � ∈ � 
(iii) (−�)(−�) = �� 
(iv) �(� − �) = �� − � 
 Proof: 
(i) �. 0 = �. (0 + 0) ⟹ �. 0 = �. 0 + �. 0 ⟹ �. 0 + 0 = �. 0 + �. 0   
using cancelation w.r.t  + in the group (�, +) 
(ii)�. 0 = 0 ⟹ �(−� + �) = 0 ⟹ �(−�) + �� = 0 ⟹ �(−�) = −(��)   
 similarly (−�)� = −��. 
(iii) (−�)(−�) = −[�(�)]= −[−��]= �� 
(iv) �(� − �) = �(� + (−�) = �� + �(−�) = �� − �� 
Remark: 
if �, � are integers and �, � elements of a ring then it is easy to see that  
�(� + �) = �� + �� 
(� + �)� = �� + �� 
(��)� = �(��) 
���� = ��� 
(��)� = ��� 
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We are so much used to the property that we every �� = 0 then either 
� = 0 ��  � = 0 but the convincing is not true ,"these property holds" in 
the ring of integers we have  

� = �
0 1
0 0

�≠ 0� = �
2 0
0 0

�≠ 0  but       �� = �
0 0
0 0

�= 0 

Def (1.4): 
Let R be a ring . An element 0 ≠ � ∈ � is called � zero-divisor if there 
exist an element � ≠ � such that , �� = 0 �� �� = 0 . 
Def (1.5): 
A commutative ring R is called an integral domain if �� = 0 in ether 
� = 0   �� � = 0 , if a ring has no zero divisor . 
Theorem (1.6): 
A commutative ring R is an integral domain iff for all  �, �, � ∈ � , � ≠ 0 

�� = �� ⟹ � = � 
Proof: 
 Let R be an integral domain  
�� = ��      (� ≠ 0)        �ℎ��       �� − �� = 0      ⟹ �(� − �) = 0 
⟹ � = 0   ��   � − � = 0     �����        � ≠ 0  ⟹ � = � 
Conversely , let the given condition hold. 
Let �, � ∈ �    be any elements with       � ≠ 0 
suppose �� = 0   , �� = �. 0   ⟹ � = 0 
hence �� = 0  ⟹   � = 0  whenever � ≠ 0 or that R is integral domain . 
Def (1.7): 
A ring R is the said to satisfy left cancellation law if  for all  �, � ∈ � 
�� = ��     ⟹    � = �       ���     �� = ��  ⟹    � = � 
 
Def (1.8): 

(1)  A ring R an element a in a ring with unity called invertible (or a unity) w.r.t 
multiplication if there exist � ∈ � such that �. � = �. � =1 

(2) A ring R whose non zero element of R from a group under 
multiplication is a called a division ring, a commutative division ring 
is afield. 

Now we get example to division ring which is not a field . let M be the set 

of all 2 × 2 matrices of the type �
� �

−�� ��
� where �, �  are complex 

number and ��, ��  are their conjugate. But M will not be a field as it is not 
commutative as  

�
0 1

−1 0
��

� 0
0 −�

�= �
0 −�

−� 0
� 

But       

                      �
� 0
0 −�

��
0 1

−1 0
�= �

0 �
−� 0

�≠ �
0 −�

−� 0
� 

Theorem (1.9): 
A field is an integral domain . 
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Proof : 
Let (�, +, . ) be a field then R is commutative ring . now let �. � = 0 in R  
we want to show that  either � = 0 ��  � = 0 suppose � ≠ 0 then exists 
�. � = 0 ⟹ ���(�. �) = ���0 ⟹ � = 0 ⟹ � is an integral domain  
Theorem (1.10): 
A non zero finite integral domain is a field . 
Proof : 
Let R be a non zero finite integral domain , and let R' be the subset of 
containing non zero elements of R. 
Since a associativity hold in R , it will hold in R' thus R' is a finite semi 
group Hence R' is a finite semi group w.r.t multiplication in which 
cancellation laws hold. 
∴ (��, . ) forms a group 
In other  words (�, +, . ) is a field ( it being commutative as it is an 
integral domain ). 
Remark : 
An infinite integral domain which is not a field is the ring of integers . 
Problem(1) : 
Show that a Boolean ring is commutative . 
Solution: 
Let for  �, � ∈ � be any elements then   � + � ∈ � by given condition 

(� + �)� = � + � 
⟹ �� + �� + �� + �� = � + � 
⟹    � + � + �� + �� = � + � 
⟹  �� + �� = 0           ⟶ (1)  
⟹  �� = −��                               

⟹ �(��) = � (−��) 
⟹ ��� = −���                         

⟹ �� = −���                  ⟶ (2) 
From (1) and (2) we get  

(��)� = (��)�                        
⟹ ��� = −��� = −��   ⟶ (3) 

From (2) and (3) we get  
�� = �� = −��� 

⟹ � �� commutative ring . 
Problem (2): 
Show that an element a in zn is a unity iff a and n are relatively prime. 
Solution : 
 �� = [0,1,2, … . , � − 1] ��� � 
Let � ∈ ��be a unit,then there exist � ∈ ��  �. ��⨂ � = 1 
i.e when a b is divided by n , in other words  

�� = �� + 1  �� �� − �� = 1 
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⟹ � ��� � are relatively  prime  
Now let (�, �) = 1  then  there exists integers �, �     s.t  �� + �� = 1  or 
⟹ �� = �(−�) + 1 
Suppose   � = �� + � ,    0 ≤  � < � , � ∈ �� 
i.e�⨂ � = 1         � ∈ �� ⟹ � �� ����   . 
Problem (3): 
If in a ring R , with unity (��)� = ���� for all �, � ∈ � then show that R 
is commutative . 
Solution : 
Let �, � ∈ � be any elements . then � + 1 ∈ � as   1 ∈ � 
By given condition 

(�(� + 1))� = ��(� + 1)� 
⟹ (�� + �)� = ��(� + 1)� 

⟹ (��)� + �� +
1

2
�� + ��� = ��(�� + 1 + 2�) 

⟹ ���� + �� + ��� + ��� = ���� + �� + 2��� 
⟹ ��� = ���                   ⟶ (1) 

Since (1) holds for all �, � in R we get 
(� + 1)�(� + 1) = (� + 1)�� 

⟹ (�� + �)(� + 1) = (�� + 1 + 2�)� 
⟹ ��� + �� + �� + � = ��� + � + 2�� 

⟹ �� = ��             ����� (1) 
Hence R is commutative. 
Problem (4): 
Show that the ring R of real valued continues function on [0,1] has zero 
divisors . 
 
Solution: 
Consider the functions f and g defined on [0,1] by  

�(�) = 1
2� − �     ,     0 ≤ � ≤ 1

2�       ,        �(�) = 0      ,     1
2� ≤ � ≤ 1 

And  

�(�) = 0     ,       0 ≤ � ≤ 1
2�     ,      �(�) = � − 1

2�        ,   1 2� ≤ � ≤ 1 

Then f , g are continues functions and � ≠ 0        ,     � ≠ 0 

⟹ �� (�) = �(�)�(�) = 0. �1
2� − ��         ��  0 ≤ � ≤ 1

2�  

                    = �� − 1
2� � . 0 = 0                  �� 1

2� ≤ � ≤ 1 

i.e�� (�) = 0     ��� ��� � 
⟹ �� = 0    ���    � ≠ 0       ,     � ≠ 0 
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Sub Ring 

Def (1.11): 
A non empty  subset S of a ring R is a said be a subring of R if S form a 
ring under the binary compositions of R. 
The ring < �, +, . >  of integers is a subring of the ring < �, +, . >  of real 
number.  
if R is a ring then {0} and R are always subring of R , called trivial 
subring of R. 
Theorem (1.12): 
A non empty subset S of a ring R is a subring of R iff�, � ∈ � ⟹ ��, � −
� ∈ � 
Proof: 
Let S be a subring of R then 
�, � ∈ � ⟹ �� ∈ � (�������) 
�, � ∈ � ⟹ � − � ∈ � 
as 〈�, +〉 is a subgroup of 〈�, +〉 
conversely, since �, � ∈ � ⟹ � − �� ,we fined 〈�, +〉 forms a subgroup 
of 〈�, +〉 A gain for any �, � ∈ � since � ⊆ � 
�, � ∈ � ⟹ � + � = � + � 
And so we a fined S is abelian. 
In other words ,S satisfies all the axioms in the definition of a ring Hence 
S is a subring of R. 
Sum of Two sub Rings  
Def (1.13): 
Let S and T be two subring of a ring R .we define 

� + � = {� + �|� ∈ � , � ∈ �} 
Def(1.14): 
let R be a ring ,the set �(�) = {� ∈ �|�� = ��, ��� ���  � ∈ �} is called 
centre of the ring . 
problem(1) : 
 if R is a division ring then show that the centre �(�) of R is a field . 
Solution: 
�(�) is a ring (as it is a subring ) 
�(�) is commutative by its definitions. 
�(�) has unity as 1. � = �. 1 = � for all � ∈ �. 
Thus we need show that every non zero element of �(�) has 
multiplicative inverse (in �(�)). 
Let � ∈ �(�)  be any non zero element . 
Then � ∈ �  and since R is a division ring ,��� ∈ �. 
Let � ∈ � be any non zero element ,then ��� ∈ �. Now  

���� = (����)�� = (����)�� = ���� 
⟹ ���commutes with all non zero elements of R  



11 
 

Again as        ���. 0 = 0. ��� = 0 
We fined    ���� = �. ���     ��� ��� � ∈ � ⟹ ��� ∈ �(�) 
Showing �(�)�� � �����  
Problem(2) : 
If in a ring R the equation �� = � for all �, �  (� ≠ �) has a solution, 
show that R is a division ring . 
Solution : 
We first show that are has no zero division , suppose   

�� = 0 , � ≠ 0, � ≠ 0 
As � ≠ 0  , �� = � has a solution ,say � = ��then ��� = � 
Again �� = �� has a solution , let � = �� be a solution of this ��� = �� 
Now                       �� = 0 ⟹ (��)�� = 0. �� = 0 

⟹ �(���) = 0 ⟹ ��� = 0 
⟹ � = 0  , ���   � ≠ 0        

Hence R without zero divisor  
Now for any � ≠ 0�� = �  has solution, let  � = � be solution then 
�� = � ⟹ ��� = ��      ��� ��� �    ⟹ �(�� − �) = 0   ��� ��� � or 
that e is left identity . 
Again  (�� − �)� = ��� − �� = �(��) − �� = �� − �� = 0 (as e is left 
identity ) ,but � ≠ 0, �ℎ�� �� − � = 0  �� �� = �   ��� ��� � 
i.e  e is right identity . 
now equation �� = � has a solution for all � ≠ 0 ⟹ ∃�  �. �  �� = � 
hence � has right invers . since right identity also exists , 〈�, . 〉 Forms a 
group or the R is a division ring . 
Remark: 
In continuation to the above problem we make the following 
observations. 
(a) 〈�, +, . 〉 Has same unity 1 as that of its parent ring 〈�, +, . 〉. 
(b) Finally, we notice we can have a ring without unity which has a 
subring with unity. Take for instance, the ring   

                   � = ��
� �
0 0

�|�, � ∈ �� 

Now if �
� �
0 0

� is unity of this ring then �
� �
0 0

��
1 1
0 0

�= �
� �
0 0

� should 

be �
1 1
0 0

�   i.e  � = 1 

Also �
1 1
0 0

��
� �
0 0

�= �
� �
0 0

�  should be �
1 1
0 0

�  i.e  � = 1 = � 

Therefor if R has unity then it must be �
1 1
0 0

� but  

�
1 0
0 0

�. �
1 1
0 0

�= �
1 1
0 0

�≠ �
1 1
0 0

� hence R has no unity  
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 It is easy to check that � = ��
� 0
0 0

�|� ∈ �� is a subring of R and has 

unity �
1 0
0 0

� 

 
Characteristic of a Ring  
Def(1.15): 
Let R be a ring . if there exists a positive integer n such that �� = 0 for 
all � ∈ � then R is said to have finite characteristic and also the smallest 
such positive integer is called the characteristic of R   
If no such positive integer exists then R is said to have characteristic zero 
(or infinity ). 
If ch of a ring is n then ch of any subring or extension ring is also n. 
Theorem (1.16): 
Let R be a ring with unite . if  1 is of additive order n then �ℎ � = �. If 1 
additive order infinity then �ℎ � is 0. 
Proof: 
Let additive order of 1 be n .then �. 1 = 0 and n is such last +iv integer 
now for any � ∈ �. 

�� = � + � + ⋯ + � = 1. � + 1. � + ⋯ + 1. � 
= (1 + 1 + ⋯ + 1)� = 0. � = 0            

Showing �ℎ � = �. 
Has infinite order under addition then ∃ no n s.t �. 1 = 0 and thus . 
Remark : 
(i) The above result can be stated as. If R is a ring  with unity then R has 
�ℎ � > 0 iff n is the smallest positive integer s.t �. 1 = 0 
(ii) Ch of �� ring of integers modulo n is n. 
Problem : 
If D is an integral domain then characteristic of D is ether zero or a prime 
number . 
Proof : 
If �ℎ �  is the zero , we have nothing to proof . suppose D has finite 
characteristic then ∃ � +ve integer m s.t �� = 0 for all � ∈ �  
Let k be least +ve integer then �ℎ � = �0 ,we show k is a prime .Suppose 
k is not a prime , then we can write  

� = ��   , 1 < �   , � < � 
Now  

�� = 0          ��� ��� � ∈ �   
⟹ (��)�� = 0      ∀� ∈ �   

⟹ �� + �� + ⋯ + �� = 0  (�� ����� ) 
⟹ (� + � + ⋯ + �)(� + � + ⋯ + �) = 0 

⟹ (��)(��) = 0     ∀� ∈ �   
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⟹ �� = 0  ��   �� = 0       ∀�
∈ �  (�  �� ��������  ������)  

In either case it will be a contradiction as �, � < � but k is the ieast +ve 
integer s.t  �� = 0. 
problem : 
If D is an integral domain and if �� = 0. For sum 0 ≠ � ∈ �  and some 
integer � ≠ 0 then show that the characteristic of D is finite . 
Solution : 
Since �� = 0 

(��)� = 0  ��� ��� � ∈ �  
⟹ (� + � + ⋯ + �)� = 0                             

⟹ �� + �� + ⋯ + �� = 0 (� �����) 
⟹ �(� + � + ⋯ + �) = 0  ��� ��� � ∈ �  

⟹ � + � + ⋯ + � = 0 ��� ��� � ∈ �    �� � ≠ 0 
⟹ �� = 0 ��� ��� � ∈ �   , � ≠ 0             
⟹ �ℎ �  �� ������                                        

Def (1.17): 
An element e in a ring R is called idempotent if �� = �. An element 
� ∈ � is called nilpotent if �� = 0 for some positive integer n . 
If R is a ring with unity ,then 0 and 1 are idempotent element. Also 0 is 
nilpotent element of R. 
Problem: 
a non zero idempotent cannot be nilpotent . 
Solution: 
let x be non zero idempotent , then �� = � if � is also nilpotent then ∃ 
integer  � ≥ 1  �. ��� = 0      But 

�� = 0 ⟹ �� = �� = � 
              ⟹ �� = �� = � 

⟹  �� = � ⟹ � = 0   a contradiction.  
 
Problem: 
In an integral domain R (with unity) the only idempotent are the zero and 
unite . 
 Solution : 
Let � ∈ � be any idempotent then  

�� = � ⟹ �� − � = 0 ⟹ �(� − 1) = 0 ⟹ � = 0  �� � = 1 
As R is an integral domain . 

Product of Ring  

Let �� and ��be two ring. Let � = {(�, �)|� ∈ ��, � ∈ ��}, then it is easy 
to verify that R forms a ring under addition  and multiplication defined by 

(��, ��) + (��, ��) = (�� + ��, �� + ��) 
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(��, ��). (��, ��) = (����, ����) 
problem : 
if R and S are two ring , then 
�ℎ (� × �) = 0  if �ℎ � = 0 or �ℎ � = 0 
  = �  where � = �. �. �(�ℎ �, �ℎ �) 
Solution : 
Let �ℎ � = 0 and suppose �ℎ (� × �) = � ≠ 0 then 

�(�, �) = (0,0) ∀� ∈ �  , � ∈ � 
⟹ (��, ��) = (0,0) ⟹ �� = 0  ∀� ∈ �, a contradiction as �ℎ � = 0 thus 
�ℎ (� × �) = 0 
Similarly, if   �ℎ � = 0 ,then �ℎ (� × �) = 0.  
Let now  �ℎ � = �  , �ℎ � = �  ��� ��� � = �. �. �. (�, �) 
Then  �(�, �) = (��, ��) = (0,0)  ∀� ∈ �  , � ∈ �  as �, � divide k 
Suppose �(�, �) = (0,0), �ℎ�� (��, ��) = (0,0) 

⟹ �� = 0 = �� ⟹ �|� , �|�                
⟹ �|� ⟹ � ≤ � ⟹ �ℎ (� × �) = �   

Def(1.18): 
A non empty subset I of a ring R is a called a right ideal of R if  
(i) �, � ∈ � ⟹ � − � ∈ � 
(ii) � ∈ �,   ⟹ � ∈ � ⟹ �� ∈ � 
I is a called a left ideal R if  
(i) �, � ∈ � ⟹ � − � ∈ � 
(ii) � ∈ �,   ⟹ � ∈ � ⟹ �� ∈ � 
For example let 〈�, +, . 〉 Be the ring of integers . then � = ��� of even 
integers in an ideal of Z �, � ∈ � ⟹ � = 2�  , � = 2�  thus  

� − � = 2(� − �) ∈ � 
Again , if 2� ∈ �  , � ∈ �  then as (2�)� ��   �(2�) are both in E ,E is an 
ideal . 
Problem : 
Let S be a non empty subset of a ring R . show that 
�(�) = {� ∈ �|�� = 0} and �(�) = {� ∈ �|�� = 0} are respectively right 
and left ideal of R. 
Solution : 
�(�) ≠ �  ��  0 ∈ �(�)  , again �, � ∈ �(�) ⟹ �� = 0  , �� = 0  now  

�(� − �) = �� − �� = 0 − 0 = 0 ⟹ � − � ∈ �(�) 
Again if � ∈ � by any element then  

�(��) = (��)� = 0. � = 0 ⟹ �� ∈ �(�) 
Hence �(�) is a right ideal. Similarly , �(�) will form a left ideal . 
�(�) and �(�) are called right and left annihilators of S, respectively . 
�(�) and �(�) would both be ideal of R if S is an ideal .(verifty!) 
 
problem : 



15 
 

let R be a ring such that every subring of R is an ideal of R. further 
�� = 0 ��  � ⟹ � = 0  �� � = 0 . show that R is commutative. 
Solution : 
Let 0 ≠ � ∈ � be any element . 
Then � (�) = {� ∈ �|�� = �� is a subring of  R and therefore an ideal of 
R . let � ∈ � be any element Since � ∈ � (�) , � ∈ � we find �� ∈
� (�)(def. of ideal) also then �(��) = (��)�  and so  

(�� − ��)� = 0 ⟹ �� − �� = 0  �� � ≠ 0 
Thus  �� = ��   ∀ � ∈ �  ,   ∀  0 ≠ � ∈ �  and as 0. � = �. 0 = 0 we find  

�� = ��      ∀�, � ∈ � 
Hence R is commutative.  
 Sum of Two Ideal 
Let A and B be two ideals of a ring R . we define � + �  to be the set 
{� + �|� ∈ � , � ∈ �} called sum of the ideal A and B . 
Theorem (1.19): 
if A and B are two ideals of  R then A+B is an ideal of R , containing 
both A and B. 
proof : 
� + � ≠ �    �� 0 + 0 ∈ � + �    Again  �, � ∈ � + � ⟹ � = �� + �� 
� = �� + ��    ��� ����      ��, �� ∈ � ,   ��, �� ∈ �   since  

� − � = (�� + ��) − (�� + ��) = (�� − ��) + (�� − ��) 
we  find      � − � ∈ � + �  
let  � = � + � ∈ � + � , � ∈ � be any element then 
�� = (� + �)� = �� + �� ∈ � + �  as A, B are ideals 

�� = �(� + �) = �� + �� ∈ � + �  
Thus A+B is an ideal of R. 
Again  for any � ∈ � , since � = � + 0 ∈ � + �  and for any � ∈ �  , 
since   � = 0 + � ∈ � + � . we fined  � ⊆ � + �   ,     � ⊆ � + � . 
Remark : 
we can show that A is an ideal of A+B. 
��, �� ∈ � ⟹ �� − �� ∈ � as A is an ideal of  R .again if � ∈ � ��� � ∈
� + � be any element then � = �� + �� for some �� ∈ � , �� ∈ �  also  

�� = �(�� + ��) 
      = ��� + ��� ∈ �  as �, �� ∈ � ⟹ ��� ∈ � 

� ∈ � , �� ∈ � ⊆ � ⟹ ��� ∈ � ⟹ ��� + ��� ∈ � 
Similarly �� ∈ � showing that A is an ideal of A+B 
Def(1.20): 
Let � be subset of a ring R .An ideal A of R is the said to be generated by 
S if  
(i) S⊆ � 
(ii) For any ideal I of  R ,� ⊆ � ⟹ � ⊆ � 
We denote it by writing � = 〈�〉 �� � = (�) 
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In fact < � >  will be intersection of all ideals of R that contain S ,and is 
the smallest ideal containing S. if S is finite, we say � =< � >  is finite 
generated .  
Theorem (1.21): 
if a and B two ideal of R, then � + � =< � ∪ � > . 
 Proof : 
We have already proved that A+B is an ideal of R ,containing A and B 
thus A+B is an ideal containing � ∪ � . 
Let I be any ideal of R s.t � ∪ � ⊆ � 
Let � ∈ � + �  be any element then  � = � + � for some � ∈ �    ,    � ∈ �  
since 

� ∈ � ⊆ � ∪ � ⊆ � 
� ∈ � ⊆ � ∪ � ⊆ � 

We fined � + � ∈ � as I is an ideal  
⟹ � ∈ �  �� �ℎ�� � + � ⊆ � 

 
Example : 
Let (E,+,.) be the ring of even integers. It is commutative ring without 
unity. let  � = 4 ∈ �.  Then  

< 4 >  = {4� + (2�)4|�, � ∈ �} 
 = {4� + 8�|�, � ∈ �} 

Whereas    4� = {4(2�)|� ∈ �} = {8�|� ∈ �} 
We notice then  < 4 > ≠ 4� as 4 ∈< 4 >   ���   4 ∉ 4�. 
Problem : 
If A is an ideal of a ring R with unity such that � ∈ � then show that 
� = �. 
Solution : 
Since � ⊆ � always ,all we need show is that � ⊆ �. Let � ∈ � be any 
element .  
Since � ∈ � and A is an ideal     � = 1. � ∈ � ⟹ � ⊆ �  or that A=R. 
Problem : 
Show by means of any example that we can fined � ⊆ � ⊆ � where A is 
an ideal of B ,B is an ideal of R ,but a is not an ideal of R. 
Solution : 

Let R be the set containing matrices of the type �
� � �
� � �
0 0 �

� over integers 

then R forms a ring under matrix addition and multiplication . Take 

� = ��
0 0 �
0 0 0
0 0 0

�|� �� �������� 
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� = ��
0 0 �
0 0 �
0 0 0

�|�, � ��������� 

It would be easy to verify that A is an ideal of  B, B is an ideal of R. to 
see that A is not an ideal of r, we notice  

�
1 1 1
1 1 1
0 0 1

��
0 0 1
0 0 0
0 0 0

� = �
0 0 1
0 0 1
0 0 0

� ∉ � 

Product of Two Ideal  

Let A,B be  two ideal of a ring R. we defined the product AB of A and B 
by  �� = {∑ ����|�� ∈ �  , �� ∈ �} 
Where summation is finite  
Theorem(1.22): 
The product AB of any two ideals A&B of a ring R is an ideal of R. 
Proof : 
Let  ,y ∈ AB ≠ �   as 0 = 0.0 ∈ ��   
Then � = ���� + ���� + ⋯ + ���� 

� = �′��′� + ⋯ + �′��′� 
For some �� , �′� ∈ � , ��  , �′� ∈ �  

� − � = (���� + ���� + ⋯ + ����) − (�′��′� + ⋯ + �′��′�) 
Which clearly belongs to A,B as the R.H.S can written as  

���� + ���� + �� �� (� = � + �) 
Where �� ∈ �  , �� ∈ �  
Again for any � = ���� + ���� + ⋯ + ���� ∈ ��    ��� � ∈ � 

�� = �(���� + ���� + ⋯ + ����) 
= (���)�� + (���)�� + ⋯ + (���)�� ∈ ��  

Because ��� ∈ �   �� �� ∈ �   , � ∈ �  , and A is an ideal  
Similarly  �� ∈ ��  
Showing there by that AB is an ideal of R.   
problem : 
  if A as a  left and B  is  a right ideal of a ring  R then show  
that AB is a two sided ideal of   R  whereas  AB  need not be even  a one 
– sided ideal  of  R. 
Solution : 
That AB will be a two sided ideal of  R follows by the theorem above. 
We show by an example that BA need not be even a one-sided ideal 

Take                     � = ��
� 0
� 0

�|�, � ∈ �� 

� = ��
� �
0 0

�|�, � ∈ �� 

In the ring R of 2x2 matrices over integers then as seen earlier A is left 
and B is a right ideal of  R. 
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BA would have members of the type   �
� �
0 0

��
� 0
� 0

� 

i.e.  of  the type  �
� 0
0 0

� ,  x ∈Z  

Now if we type �
1 0
0 0

�  in BA  and �
1 1
1 1

�  in R 

Then �
1 0
0 0

��
1 1
1 1

� =�
1 1
0 0

�∉ ��  

�
1 1
1 1

��
1 0
0 0

� =�
1 0
1 0

�∉ ��  

Hence BA is nether a left nor a right ideal of R. 
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The motivating factor in rings was set -of integers and in groups the set of 
all permutations of a set. A vector space originates from the notion of a 
vector that we are familiar with in mechanics or geometry. Our aim in 
this volume is not to go into details of that. Reader would recall that a 
vector is defined as - a directed line segment, which in algebraic, terms is 
defined as an ordered pair (a, h) , being coordinates of the terminal point 
relative to a fixed coordinate system. Addition of vectors is given by the 
rule-(��, �) + (��, ��) = (�� + ��, �� + ��)One can easily verify that 
set’ of vectors• under this forms an a belian group. 
 Also scalar multiplication is defined by the rule a (�, �) =  (��, ��) 
which satisfies certain properties.This concept is extended similarly to 
three dimensionS. We generalise the whole idea through definition of a 
vector space and vary the scalarsnot only in the set of real’s but in any 
field F. A vector space thus differs from groups and rings in as much as it 
also involves elements from outside itself.  
Def(2.1): 
Let <V, + >be an abelian group and <F, +.>be a field. Define a function 
(called scalar multiplication) from � × � ⟶ � ,s.t., for all � ∈ �, � ∈
� ,   � . � ∈ � . Then V is said to form a vector space over F if for all 
�, � ∈ �    , �� ∈ � , the following hold  

(i) (� +  �)� =  �� + ��  

(ii) �(� + �) = �� + ��  

(iii) (��)� =  �(��) 

(iv) 1 . � =  �,1 being unity of F.  
Also then, numbers of F are called scalars and those of V are called 
vector  S.  
Remark: 
 We have used the same symbol + for the two different binary 
compositions of V and F, for convenience.Similarly same symbol . is 
used for scalar multiplication and product of the field F.  
Since  <V, + >is a group, its identity element is denoted by 0. Similarly 
the field F would also have zero element which will also be represented 
by 0. in case of doubt one can use different symbols like 0�  and 0�  etc..  
Since we generally Workwith afixed field we hal1 only ho writing V isa 
space (or Sometimes V (F) or ��  ) I would always be understood that it is  
a vector space over F (unless stated otherwise ) . 
We defined the scalar multiplication from � × � ⟶ � . One can also 
define it from � × � ⟶ �  and have a similar definition. The first one is 
.called a left vector space and the second a right vector space. it is easy to 
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show that if V is a left vector space over F then it is a right vector space 
over F and conversely. In view this result it becomes redundant to talk 
about left or right vector spaces. We shall thus talk of only vector spaces 
over F. 
One can also talk about the above system when the scalars are allowed to 
take values in a ring instead of a field, which leads us to the definition of 
modules  
Theorem (2.2): 
In any vector space V(F) the following results hold  

(i) 0. � =  0  

(ii) �. 0 = 0 

(iii) (−�)� = −(��) = �(−�) 

(iv) (� −  �)� = �� − �� 
Proof: 
0. � = (0 + 0). � = 0. � + 0. � ⟹ 0 + 0. � = 0. � + 0. � ⟹ 0 = 0. �x 
(cancellation in V)  

(i) �. 0 =  �(0 + 0) =  �. 0 +  �. 0 ⟹ �. 0 = � 

(ii)  (− �) . � +  �� =  [(− �)  +  �]� =  0 . � =  0  

(iii) follows from above 

Example : 

 If <F, + , . >be a field, then F is a vector space  < �, +> =<  � , +> is an 
additive abelian group. Scalar multiplication can be La as the product of 
F. All properties are seen to hold . Thus F(F) is a vector space S. 
Example: 
 Let P = set of all polynomials over a field F, then P forms a vector space 
under addition and scalar multiplication defined by  

�(�)  +  �(�)  =  (� + �)� 
�(��))  =  (��) (�) � �� 

Subspaces: 
Def(2.3): 
 A non empty subset W of a vector space V(F) is said to form a subspace 
of V if W forms a vector space under the operations of V.  
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Theorem (2 ,4): 
 necessary and sufficient condition for a non empty subset W of a vector 
space V(F) to be a subspace is that W is closed under addition and scalar 
multiplication. 
Proof: 
 If W is a subspace , the result follows by definition.  
Conversely, let W be closed under addition and scalar multiplication.  

��� �, � ∈  � , ����� � ∈ �  , −1 ∈ � 
−1, � ∈ � ⟹ � ∈ �  
�, −� ∈ � = � − � ∈ �  

⟹ < � , +> forms a subgroup of <V, + > 
Rest of the conditions in the definition follows trivially.  
Theorem (2.5): 
 A non empty subset W of a vector space V(F) is a subspace of V 
iff �� + �� ∈ �  for �, � ∈ � , �, � ∈ � . 
Proof : 
If W is a subspace, result follows by definition.  
Conversely, let giver condition hold in W.  
��� �, � ∈ �  be any elements. Since 1 ∈  � 

1. � + 1. � = � + � ∈ �  
⟹ W is closed under addition.  
Again,� ∈  � , � ∈ � then  

�� =  �� + 0. �    ��� ��� � ∈ � ,   0 ∈ � 
which W. (Note here 0 may not be in W)  
Hence W is closed under scalar multiplication. The result thus follows by 
previous theorem.   
Problem: 
Show that union of two subspaces may not be a subspace 
Solution: 
� � ∪ � �will be the set containing all pairs of the type (�, 0) , (0, �)In 
particular (1, 0), (0, 1) ∈ � � ∪ � � But , (1,0) + (0, 1) (1, 1)  ∉ � � ∪ � �. 
Hence � � ∪ � �is not a subspace. Reader is referred to exercises for more 
results pertaining to intersection, union of subspaces.  
Sum of Subspaces  
If � ���� � �be two subspaces of a vector space V(F) then, we define 

� � + � � = {�� + ��|�� ∈ � �  , �� ∈ � �} 
� � + � � ≠ �   �� 0 = 0 + 0 ∈ � � + � � 

Again,�, � ∈ � � + � �    ,   �, � ∈ �implies  

� = �� + �� 
� = ��

� + ��
���, ��

� ∈ � �  ,    ��, ��
� ∈ � � 

�� + ��  =  � (�� + ��) + �(��
� + ��

�) 
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= ���� + ���
�

� + (��� + ���
�) ∈ � � + � � 

Showing thereby that sum of two subspaces is a subspace. 

Def(2.6): 
We say a vector space V is the direct sum of two subspace � �and � �if  

(i) � = � � + � � 

(ii) every � ∈ �  can be expressed uniquely as the sum �� +
�� ∈ �and �� ∈ � � 
and in that case we write � = � �⨁ � � 

Theorem(2.7): 
� = � �⨁ � � ⇔ � = � � + � � , � � ∩ � � = (0) 

Proof: 
Let � = � �⨁ � � 
We need prove � � ∩ � � = (0) 
Let 

 � ∈ � � ⟹ � ∈ � � ���  � ∈ � � 
⟹ � = 0 + � ∈ � � + � � = �  

                ⟹ � = � + 0 ∈ � � + � � = �  
Since x has been expressed as � = � +  0 and 0 + � and the 
representation  has to be unique, we get � =  0 ⟹ � � ∩ � � = (0) 
Conversely, let � ∈ �  be any element an suppose 

� = �� + �� 
� = ��

� + ��
� 

are two representations of v then , 
�� + �� = ��

� + ��
�(= �)   ⟹ �� − ��

� = ��
� − �� = 0 

Now L.H.S. is in� �and RH.S belongs , to � �, i.e each belongs to  
� � ∩ � � = (0) 

⟹ �� − ��
� = ��

� − �� = 0 
⟹ �� = ��

� , �� = ��
� 

Hence the result. 
Example : 
 Consider the space � (�) = ��(�) where F is a field. 
solution : 
Let � � = {(�, 0)|� ∈ �}     ,       � � = {(0, �)|� ∈ �} 
then V is direct sum of � � and � � 

� ∈ � ⟹ � = (�, �) = (�, 0) + (0, �) ∈ � � + � � 
thus � ⊆ � � + � �    ,   �� �ℎ��   � = � � + � � 
Again if (�, �)  ∈  � � ∩ � � be any element then 
(�, �) ∈  � � ��� (�, �) ∈  � � ⟹ � = 0  ���  � = 0 ⟹ (�, �) = (0,0)

⟹ � � ∩ � � = (0) 
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Hence  � = � �⨁ � � 
Problem : 
 Let V be the vector space of all functions from � ⟶ �  Let �� = {� ∈
� |��� ����}�� = {� ∈ � |��� ���}.Then��and �� are subspaces of V and 
= ��⨁ � � . 
Solution : 
Addition and scalar multiplication in V are given by the rule 

(� + �)� =  �(�) +  �(�)  ; (��)� =  ��(�) 

Now�� ≠ �   �� 0(−�)  =  0(— �) = 0 ⟹  0(�) = 0(−�) ⟹ 0 ∈ �� 
Again for �, � ∈ � ,   �, � ∈ �� we have  

(�� + �� )(−�) = (��)(−�) + (�� )(−�) = �(�(−�) + ���(−�)�

= ��(�) + �� (�) = (�� + �� )� 

⟹ �� +  �� ∈ �� 
⟹ V is a subspace of V 
Similarly ,�� + �� is a subspace of V. 
Thus �� +  �0 is a ubspace of V. We show � ⊆ �� + �� .Let � ∈ �  be any 
member ,Let g : � ⟶  �  e such that �(�) = �(−�), then � ∈ � , Also 
then  

� = �
1

2
� +

1

2
�� + (

1

2
� −

1

2
�) 

Since   

�
1

2
� +

1

2
�� (−�) =

1

2
�(−�) +

1

2
�(−�) =

1

2
�(�) +

1

2
�(�)

= �
1

2
� +

1

2
�� � 

We fined      
�

�
� +

�

�
� ∈ �� 

Similarly , 
�

�
� −

�

�
� ∈ �� ⟹ � ∈ �� + �� ⟹ � ⊆ �� + �� or that 

� = �� + �� 
Finally    � ∈ �� ∩ �� ⟹ � ∈ �� , � ∈ �� 

 �(−�) =  �(�)��� �(−�) =  −�(�) 
              ⟹ �(�) = −�(�)  ⟹  �(�)  +  �(�)  =  0 =  0(�) 

              ⟹  2�(�)  =  � (�) ��� ��� � 
              ⟹  2� =  � ⟹  � =    �� ∩ �� = (0) 

Hence the result . 
Problem : 
 If L, M ,N are three subspaces of a vector space V, such that � ⊆ �then 
show that  

� ∩ (� + � ) = (� ∩ �) + (� ∩ � ) = � + (� ∩ � ). 
Also give an example, where the result fails to hold when M ⊈ L . 
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Solution : 
We  Jeave the first part for the reader to try. Recall a similar result was 
proved for ideals in rings. The equality is- called modular  equality. 
Consider now the vector space � = �� 
Let      

� = {(�, �)|� ∈ �} 
� = {(�, 0)|� ∈ �} 
� = {(0, �)|� ∈ �} 

It is a routine matter to cheek that L, M,  N are subspaces of V. indeed 
�(�, �) + �(�, . �)(, ��, ��) =  (��, ��)  + (��′, ��′) 
(�� + ���, �� + ��′)  ∈  � ��� 

���  (�, �) ∈ � ∩ � ⟹ (�, �) ∈ � ��� (�, �) ∈ M ⟹ � = � ��� � = 0  
� = � = � ⟹ (�, �) = (0,0) 

Similarly, � ∩ �  =  {(0, 0)} 
� ∩ � = {(0, 0)} 

Again, 
� + �  =  {(�, �)|�, � ∈ �}��� ��(1,1) ∈ � + �    , (1, 1) ∈ � 

we find (1, 1) ∈ � ∩ (� + � ), ��� (1, 1) ∉ � ∩ � +  � ∩ �  
Hence � ∩ (� + � ≠ (� ∩ �) + (� ∩ � ), �ℎ�� � ⊈ � 
Quotient Spaces 

If W be a subspace of a vector space V(F) then since <W, +> forms an 
abelian group of < V,+ >,we can talk of cosets of W in V. Let be the set 

of all cosets� + �, � ∈ � , then we show that
�

�
 also forms a vector space 

over F, under the operations defined by 
(� + �) + (� + �) = � + (� + �)    �, �€�  

�(� + �) = � + ��    � ∈ � 
Addition is well defined, since, 

� + � = � + �’ 
� + � = � +  �’ 

     ⟹ � − �’ ∈ �    ,    � − �’ ∈  �  
⟹ (� − �’) + (� − �’) ∈ �  

    ⟹ (� +  �) − (�’ +  �’) ∈ �  
          ⟹ � + (� + �) = � + (�’ + �’) 

Again  � + � = � + �’ 
⟹ � − �’ ∈ �                         
⟹ �(� − �) ∈ �    , � ∈ �    
⟹ �� − ��� ∈ �                    

⟹ � + �� = � + ��� 
⟹ �(� + �) = �(� + ��) 

� + 0 will be zero of 
�

�
� − � will be inverse of � + � Also  

� �(� + �) + (� + �)� = ��� + (� + �)� = � + �(� + �) 
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             =  � + (�� + ��) 
                          =  (� + ��) + (� + ��) 

                                   =  �(� + �) + �(� + �) ���. 
Hence, � /�  forms a vector space over F, called the quotient space of V 
by W. 
Homomorphism Or   Linear Transformations 
We are already familiar with the concept of a homomorphism in case 
group and rings. We introduce the same in vector spaces. 
Def(2.8): 
 Let V and U be two vector spaces over the same field F, then a mapping 
�: � ⟶ � is called a homomorphism or a linear transformation if 

�(� + �)�(�) + �(�) ��� ���  �, � ∈ �  
�(��) = ��(�)      � ∈ � 

One can combine the two conditions to get a single condition 
�(�� + �� ) = ��(�) + �� (�)     �, � ∈ �   ,   �, � ∈ �  

It is easy to see that both are equivalent. If a homomorphism happens to 
be one - one onto also we call it an isomorphism, and say the two spays 
are isomorphic. 
(Notation � ≅ �) 
Example : 
(i)  Identity map : � ⟶ �   s.t   �(�) = � 
and the zero map �: � ⟶ �  s.t �(�) = 0 are clearly linear 
transformations. 
(ii)  For a field F, consider the vector spaces �� and. Define, a map 
: �� ⟶ �� , �� �(�, � , �) = (�, �) . 
then T is a linear transformation as 
for any �, � ∈ ��, �� � = (��, ��, ��)    ,      � = (��, ��, ��) then  

�(� + �) = �(�� + ��, �� + ��, �� + ��) =  (�� + ��, ��, ��)
= (��, ��) + (��, ��) = �(�) + �(�) 

And 

�(��) = ��� (��, ��, ��)� =  �(���, ���, ���) = (���, ���)

=  �(��, ��) = ��(�) 
(i) Let V be the vector space of all polynomial� in x over a field F. 
Define  

�: � ⟶ �   , �. �. 

���(�)� =
�

��
 �(�) 

then  �(� + �) =
�

��
(� + �) =

�

��
 � +

�

��
 � = �(�) + �(�) 

�(��) =
�

��
(��) = �

�

��
 � = ��(�) 
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show that T is linear transformation. In fact, if �: � ⟶ �  be defined such 

that  ∫ �(�)��
�

�
 ,then U will also be a linear transformation. 

In the theorems that follow, we take V and U to be vector spaces 
Theorem(2.9): 
Under a homomorphism �: � ⟶ � 
(i) �(0) = 0 
(ii) �(−�)  =  −�(�). 
Proof : 
�(0) = �(0 + 0) = �(0)  +  �(0)  ⟹ T(0) =0 
Again 

�(−�) + �(�) = �(−� + �) = �(0) = −�(�)  =  �(−�). 
Def(2.10): 
Let �: � ⟶ � be a homomorphism, then kernel of T is a subspace of F. 
Proof: 
��� � ≠ �   ��   0 ∈ ker�  by any elements then  

�(�� + �� ) = ��(�) + �� (�) = �. 0 + �. 0 = 0 + 0 = 0 
⟹ �� + �� ∈ ker�  

Theorem(2.11) : 
Let �: � ⟶ � be a homomorphism, then 
��� � = {�} iff T is one-one. 
Proof : 
Let ��� � = {�}. If �(�) = �(�) 
then    �(�) − ���) = 0 

⟹ �(� − �) =  0 
⟹ (� − �) ∈ ��� � = {0} 
⟹ � = � 

Conversely, let T be one - one 
if � ∈ ��� �  be any element, then �(�) = 0 

⟹ �(�) = �(0) 
⟹ � =  � 

⟹  ��� � =  {0}. 
Def(2.12): 
 Let �: � ⟶ � be a linear transformation then range of T is defined to be. 

 �(� ) = {�(�)|� ∈ � = ����� � = �� = {� ∈ �|� = �(�), � ∈ � } 
Theorem(2.13): 
 Let �: � ⟶ � be a LT. (linear transformation) then range of T is a 
subspace of U. 
Proof : 
Since �(0) = 0  ,   0 ∈ �       ,    �(0) ∈ ����� �    i.e.   ����� � ≠ �  
Let �, � ∈ �, �(�) , �(�) ∈ �(� ) be any elements  then �, � ∈ �  Now 
��(�) + �� (�) = �(�� + �� ) ∈ �(� )  as �� + �� ∈ �  
Hence the result. 
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Note : T(V) = U iff T is onto. 
 
Theorem(2.14): 
 Let �: � ⟶ � be a L.T. then 

�

ker�
≅ ����� � = �(� ) 

Proof : 
Let �: � ⟶ � and put ��� � = �, then K being a subspace of V, we can 
talk of V/K. 
Define a mapping  �: � /� ⟶ �(� ) ,  s.t �(� + �) = �(�) , � ∈ �  
Then � is will defined one-one map as 

� + � =  � + �     
⟺ � − � ∈ � = ��� �      
⟺ �(� − �) = 0                 

⟺ �(�) = �(�) 
⟺ �(� + �) = �(� + �) 

If �(�) ∈ �(� )be any element, then � ∈ �  and �(� + �) = �(�), 
showing that � is onto . 
Finally  

��(� + �) + (� + �)� = ��� + (� + �)� 

      = �(� + �) =  �(�) +  �(�) 
= (� + �) + �(� + �) 

�(��(� + �)� = �(� + ��) = �(��) = ��(�) = ��(� + �) 
shows � is  L.T. and hence an isomorphism. . 
Note : 
The above is called the Fundamental Theorem of homomorphism vector 
spaces. 

If the map T is also onto, then we have proved 
�

��� �
≅  �. 

Theorem(2.15): 
 If A and B be two subspaces  of a vector space V(F) 

� + � 

�
≅

�

� ∩ �
 

Proof : 
A being a subspace of � + �  and � ∩ �  being a subspace of B, we can 

talk of   
���

�
 ��� 

�

�∩�
 

Define a map �: � ⟶
���

�
 st.  �(�) = � + � , � ∈ �  

Since �� = ��, we find � is well defined. 
Again as �(�� + ��) =  � + (��� + ���) 

= (� + ���) + (� + ���) 
= �(� + ��) + �(� + ��) 

= ��(�) + ��(��) 
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� is a L.T 

For any +� ∈
���

�
 , we find � ∈ � + �  

� = � + �,   � ∈ � , � ∈  �  
� + � = � + (� + �) 

(� + �) + (� + �) =  � + (� + �) =  � + � = �(ℎ) 
Showing that 1, is the required pre image of � +  � under O and thus O 
is onto. Hence by Fundamental theorem 

� + �

�
≅

�

ker�
 

We claim   ��� � = � ∩ �  
Indeed 

� ∈ ker� ⟺ �(�) = � ⟺ � + � = � 
⟺ � ∈ �, ����   � ∈ ��� � ⊆ � ⟺ � ∈ �⋂�  

Hence 
� + �

�
≅

�

� ∩ �
 

Note : 

By interchanging A and B, we get. 
���

�
≅

�

�∩�
  i.e  

���

�
≅

�

�∩�
 

Corllory : If A+B is the direct sum then as � ∩ � =  {0} we get  
�

(0)
≅

�⨁ �

�
 

 

But 
�

(�)
≅ �  gives us  � ≅

�⨁ �

�
. 

Theorem (2.16): 

 Let W be a subspace of V then  an onto L.T. �: � ⟶
�

�
 such that 

��� � = �  ‘ 
Proof : 

Define �: � ⟶
�

�
   s.t   �(�) = � + � . 

then � is clearly well defined .Also   
�(�� + �� ) = �  + (�� + �� ) 

=  (� +  ��) + (� +  �� ) 
=  �(�  + �) + �(� + �) = ��(�) + ��(�) 

Shows � is a L.T. 
�is dourly onto. 
Again � ∈ ��� � ⟺ �(�) =  � ⟺  � + � =  � ⟺ � ∈ �  
Hence   ��� � =  � . 
T is called the natural homomorphism or the quotient map. 
Remark : 
In case W=(0) in the above we find  � will be 1 − 1 also as  

�(�) = �(�) ⟹ � + � = � + � 
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⟹  � − � ∈ � = (0) 
⟹ � − � = 0                                                          
⟹  � = �.                                                              

Hence in that case � ≅
�

�
 �� � ≅

�

(�)
 

Note � = (0) = ��� � = (0) = � is one - one. 
Problem : 

 Let W and U be subspaces of V(F) such that � ⊂ � ⊂ �  let  � : � ⟶
�

�
 

be the quotient map. Show that �: � ⟶
�

�
�(�) is a proper subspace of 

�

�
 

Solution : 
Since f is a L.T., f(U) is a subspace of V/W. 
�� �(�) = 0 then �(�) = 0 for all � ∈ � 

          ⟹ � + � =  �  ������  � ∈ � 
⟹ � ∈ �   ������  � ∈ � 

⟹ � ⊆ � , a contradiction 
Again since � ≠ � , ∃ �� ∈ �  �. �      �� ∉ � 
If �( ��) ∈ �(�) then �( ��) = �(�) for some � ∈ � 

⟹ �( �� − �) =  0 
⟹ � + ( �� − �) = �  

⟹  �� − � ∈ �  
⟹ � + �  ��� ����  � ∈ �  

⟹ 0 ∈ � , a contradiction of hence   �( ��) ∈ �(�) ⟹  �(�) ≠
�

�
 or 

that �(�)is proper subspace of V/W.  
Theorem (2.17): 
Let � ⟶ � be an onto homomorphism with ��� � = �  then there exists 
a one-one onto mapping between the subspaces of U and the subspace of 
V which contain W 
Proof : 
Let A =set of all subspaces of V, which contain W 
      R =set of all subspaces of U 
Define a mapping �:A ⟶  R   s.t 

�(� �)  =  �(� �) 
Since �: � ⟶  �  , �(� �) will be a subspace of U as for any 
�(�), �(�)  ∈  �(� �) and �, � ∈ � 

��(�) + �(�) ∈ �(�� + �� ) ∈ �(� �), �� �, � ∈ � � 
Again   � � = � �

� ⟹ �(� �)  =  �(� �’) ⟹ � is well define  
Now if    �(� �) = �(� �′) . 
Then  �(� �) �(� �′) ⟹ � � = � �′ 
As � ∈ � � ⟹  �(�) ∈ �(� �) =  �(� �

�) 
⟹  �(�) ∈ �(� �

�) ⟹  �(�) = �(�), � ∈ � � 
                     ⟹ �(� − �) = 0 
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⟹ � − � ∈ ��� � =  � � ⊆ � �
� 

⟹ � � ∈ � �
� ��   � ∈  � �’ 

� � ⊆ � �
�Similarly � �′⊆ � � 

Hence � is 1—1. 
Let �� e  be any member. 
Define  �(��)  =  {� ∈ � |�(�) ∈ ��) 
Then 0 ∈ � ��(��) ��   �(�) = 0 ∈ ����� �, � ∈ �  ,    �, � ∈ � ��(��), 
we have  �(�) ∈ �� , �(�) ∈ �� 

��(�) + �� (�) ∈ �� ⟹ �(�� + �� ) ∈ �� ⟹ �� + �� ∈ � ��(��) 
Or that � ��(��) is subspace of V. 
Let  � ∈  ��� � ⟹ �(�) = 0 ∈ �� 

⟹ � ∈ � ��(��) ⟹ � ⊆ � ��(��) 
⟹ � ��(��) ∈ �                                             

also   

     � �� ��(��)� = {�(�) ∈ � |�(�) ∈ ��} ⊆ �� 
let 
 � ∈ ��  ⟹ � ∈ � ⟹ ∃ � ∈ �  �. � �(�) = � 
as T is onto  � ∈ � ��(��) ⟹ � =  �(�) ∈ � ��(��)) 

⟹ ��� ��(��)� = �� 

��� ��(��)� = �� 

⟹  � �� ����                      
Hence  the theorem is proved. 
Liner Span  
Def(2.18) : 
Let V(F) be a vector space, �� ∈ �  , �� ∈ � be elements of V and F 
respectively .Then element  of the type ∑ ����

�
���  are called linear othina 

of ��, ��, … ��over F. 
Let S be a non empty subset of V, then  the set  

�(�) = �� ����

�

���

|�� ∈ �  , �� ∈ � , �� ∈ � , �� ∈ �  , � ������� 

i.e the set of ail linear combinations of finite sets of elements of S is 
called linear span of S. It is also denoted by <S>. 
Theorem (2.19): 
L(S) is the smallest subspace of V, containing S. 
Proof : 

�(�) ≠ �  ��  � ∈ � ⟹ � = 1. � , 1 ∈ � ⟹ � ∈ �(�). 
thus, in fact, � ⊆ �(�). 
Let �, � ∈ �(�),     �, � ∈ � be any elements then  

� =  ���� + ���� + ⋯ + ���� 
� = ���′� + ���′� + ⋯ + ���′� 
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Thus  

�� + �� = ����� + ����� + ⋯ + ����� + �����
� + �����

� + ⋯
+ ����′� 

R.H.S. being a liner combination  belongsto  L(S) .Hence �(�) is a 
subspace .V containing S. 
Let now W be any subspace of V containing S 
We show �(�) ⊆ �  

� ∈ �(�) ⟹ � =  � ����    , �� ∈ � , �� ∈ � 

�� ∈ � ⊆ �  for all i and W is a subspace 

⟹ � ���� ∈ � ⟹ � ∈ � ⟹ �(�) ⊆ �  

Hence  the result follows. 
Theorem(2.20): 
 If  ��and��are subsets of V then  
(i) �� ⊆ �� ⟹ �(��) ⊆ �(��) 
(ii) �(�� ∪ ��) �(��)  +  �(��) 
(iii) �(�(��)) =  �(��) 
Proof : 
(i) � ∈ �(��) ⟹  � = ∑ ������ ∈ ��  ,   �� ∈ �thus �� ∈ �� ⊆ �� for all i 

           ⟹ � ���� ∈ �� ⟹ � ∈ �(��) 

⟹ �(��) ⊆ �(��) 
(ii) �� ⊆ �� ∪ �� ⟹ �(��) ⊆ �(�� ∪ ��) 

      �� ⊆ �� ∪ �� ⟹ �(��) ⊆ �(�� ∪ ��) 
⟹ �(��) + �(��) ⊆ �(�� ∪ ��) 

Again  �� ⊆ �(��) ⊆  �(��) + �(��) 
             �� ⊆ �(��) ⊆ �(��)  + �(��) 

 hence   �� ∪ �� ⊆ �(��) + �(��) 
�(�� ∪ ��) ⊆ �(��) + �(��) 

as �(�� ∪ ��) is the smallest subspace containing �� ∪ ��and 
�(��) +  �(��) is a subspace, being sum of two subspaces (and contains 
�� ∪ ��). 
Thus      �(�� ∪ ��) = �(��)  + �(��) 
(iii) Let �(��) =  � then we show �(�) = �(��) 
Now � ⊆ �(�)    
 ∴  �(��) ⊆ �(�(��)) 
Again � ∈ �(�(��))  � is linear combination of members of L(��) which 
are linear combinations of members of  ��. 
So x is a linear combination of members of �� ⟹ � ∈ �(��) 

Thus    �(�(��))  ⊆ �(��) hence ���(��)� = �(��). 
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Theorem (2.21) : 
If  W  is a subspace of V then L(W) and conversely.  
Proof : 
 � ⊆ �( � ) by definition and since L(W) is the smallest subspace of 
containing  W and W is itself a subspace 

�(� ) ⊆ �  
Hence �(W) = W 
conversely let �(� ) = �   , let �, � ∈ �   ,    �, � ∈ � then �, � ∈ �(� ) 
⟹  �, �  are liner combination of members of W. 
⟹ �� + �� is liner combination of members of W. 

⟹ �� + �� ∈ �(� ) 
⟹ �� + �� ∈ �  

⟹ W is a subspace. 
Def(2.22): 
If V = L(S), we say S spans (or generates) V. The vector space V is said 
to be finite - dimensional (dyer F) if there exists a finite subset S of V. 
such that V = L(S) . We use notation F.D. V.S. for a finite dimensional 
vector space. 
It now follows, from the results we proved that ,1f �� and ��. are two 
subspaces of V, then �� + �� is the subspace spanned by �� ∪ �� 
Indeed, �(�� ∪ ��) = �(��) + �(��) = �� + �� 
Problem: 
 Let � = {(1,4), (0,3)} be a subset of � �(� ) Show that (2.3) belongs to 
L(S). 
Solution: 
(2, 3) ∈ �(�) if it can be put as a linear combination of (1,4 ) and (0, 3)  
Now  
(2, 3) = �(1, 4) + �(0, 3) ⟹ (2,3) = (� + 0 , 4� + 3�) 

                                                ⟹ 2 =  � , 4� + 3� = 3� ⟹ � = 2  , � −
5

3
 

hence  (2,3) = 2 (1,4) −
�

�
 (0,3) Showing that  (2,3) ∈ �(�) 

Linear Dependence and Independence 
let  V(F) be a vector space. elements ��, ��, … �� in V are said to be 
linearly dependent (over F) if ∃ scalars ��, ��, … , �� ∈ �. (not all zero) 
such that  

���� + ���� + ⋯ + ���� = 0 
(��, ��, … ��are finite in number, not essentially distinct). 
Thus for linear dependence ∑ ���� = 0  . and at least one  �� ≠ 0. 
If ��, ��, … ��are not linearly d’pendent (L.D.) these are called linearly 
independent(L.I). 
In other words,��, ��, … ��are L.I. if 
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� ���� = 0    , �� = 0  ��� ��� � 

A finite set � =  {��, �� , … , ��} is said to be L.D. or L.I. according as its 
n members are L.D. or L.I. 
In general any subset Y of V(F) is called L.I , if every finite non empty 
subset of Y is L.I , otherwise it is called L.D. 
So, if some subsets are L.I. and some are L.D. then Y is called L.D. 
Observations: 
(i) A non zero vector is always L.I. as � ≠ 0 , �� = 0 would mean � = 0. 
(ii) Zero vector is always L.D. , 1.0 = 0     1 ≠ 0 , 1 ∈ � . 
Thus any collection of vectors to which zero belongs is always L.D 
In other words, if ��, ��, … ��are L.I then none of these can be                                   
zero. (But not conversely, see example ahead). 
(i) V is L.I iff� ≠ 0 
(ii) Empty set �  is L.I. since it has no non empty finite subset and 
consequently it satisfies the condition for linear independence. In other 
words, whenever ∑ ���� = 0 in �  then as there. is no i for which �� ≠ 0, 
set  is L.I. We sometimes express it by saying that empty set is L.I. 
vacuously. 
Examples:  
(i) Consider � �(� ), �  = reals. 

� = (1, 0) , �� =  (0, 1) ∈ � � ��� �. � 
as    ���� + ���� = 0   ���    ��, �� ∈ �  

          ⟹ ��(1, 0) + ��(0, 1)  =  (0, 0) 
                   ⟹ (��, ��) = (0, 0) ⟹ �� = �� = 0. 

(ii) Consider the subset � = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 3, 4)} 
in the vector space � � (R). 
 Since 2(1, 0, 0) +  3(0, 1, 0) +  4(0, 0, 1) − 1(2, 3, 4)  =  (0, 0,0) 
we find S is L.D  . 
In the vector space P of polynomials the vectors (�) =  1 − � , �(�) =
 � − �� , ℎ(�) = 1 − ��are L.D. since �(�) +  �(�) − ℎ(�)  =  0. . 
Problem : 
Show that  the vectors  

�� = (1, 1,2,4)        ,          �� = (2, −1, −5, 2)       ,           
�� =  (1, −1, −4, 0)    ���           �� = (2, 1, 1,6) 

are L.D in � � (R). 
Solution : 
Suppose ��� + ��� + ��� + ��� = 0  ,     �, �, �, � ∈ �  then  

�(1, 1, 2, 4) +  �(2, −1, −5, 2) + �(1, −1, −4, 0) + �(2, 1, 1, 6)
= (0, 0, 0, 0) 

⟹ � + 2� + � + 2� = 0  
       � − � − � + � =  0 
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2� − 5� − 4� + � =  0 
4� + 2� + 0� + 6� = 0  

⟹ �

1 2 1 2
1 −1 −1 1
2
4

−5
2

−4 1
0 6

� �

�
�
�
�

� = �

0
0
0
0

� 

�� → �� − ��, �� → �� − 2��, �� → �� − 4�� 

�

1 2 1 2
0 −3 −2 −1
0
0

−3
−3

−2 −1
−2 −1

� �

�
�
�
�

� = �

0
0
0
0

� 

�� → �� − ��  , �� →
1

3
�� 

⎣
⎢
⎢
⎢
⎢
⎡
1 2 −1    2
0 −3  −2  −1

0
0

−1  

−
3

4

−
2

3
−

1

3

−1 −
1

2 ⎦
⎥
⎥
⎥
⎥
⎤

�

�
�
�
�

� = �

0
0
0
0

� 

�� → �� − �� , �� → �� − �� 
 

�

1 2 1 2
0 −3 −2 −1
0
0

0
0

0 0
0 0

� �

�
�
�
�

� = �

0
0
0
0

� 

⟹ � + 2� + � + 2� =  0 
−3� − 2� − � =  0  
3� + 2� + +� = 0 

� = 1 , � = 1 , � = 1  , � = 1 satisfy  the equations. . 
Since coefficients are non zero, the given vectors are L.D. 
Problem: 
 If two vectors are L.D. then one of them is the scalar  multiple of the 
other 
Solution : 
Suppose ��, ��are L.D. then ∃�� ∈ �s.t 

���� + ���� = 0     ��� ���� �� = 0 
Without loss of generality  we can take �� ≠ 0then ��

�� exists and 
���� = (−����) ⟹ �� = (−��

����)�� = ��� 
which proves the result. 
Problem: 
 If �, �, � are L.I. over the field C of complex nos. then so are 
� + � , � + �   ���  � + � over C. 
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Solution : 
Suppose ��(� + �) + ��(� + �) + ��(� + �) =  0 ,   �� ∈ � 
Then (�� + ��)� + (�� + ��)� + (�� + ��)� = 0 

⟹ �� + �� = �� + �� = �� + �� = 0    , ��  �, �, �   ��� �. �. 
Solving we find  .  

�� = �� = �� = 0 
Hence the result. 
Note : 
Linear dependence depends not only upon the vector space , but the field 
as well. 
Consider, for instance, C(C), C(R), C = complex, k= real's . 
Take 1 , � ∈ �  , ��   �, � ∈ �.then �. 1 + �. � = 0 = 0 + �0 
⟹ � = 0     , � = 0    ⟹ 1, I  are  L.I. in C(R) 

Now if we take �, �  In C , then as we can take � = 1 ، � =  −1, so that 
�. 1 + (−1)� = 0 �� ����� ∃ �, � ≠ 0 

s.t sums of the type ∑ ���� = 0     
i.e1 , �  are L.D iv C(C). 
Def(2.23): 
Let V(F) be a vector space. A subset S of V is called a basis of V if S 
consists of L.I. elements (i.e., any finite number of elements in S are L.I.) 
and � = �(�), i.e S spans V. 
Theorem(2.24): 
let � = {��, ��, … ��} is a basis of V, then every element of V can be 
expressed uniquely as a linear combination of ��, ��, … �� 
Proof: 
Since, by definition of basis, � = �(�) each element � ∈ �  can be 
expressed as n linear combination of ��, ��, … �� Suppose 

� = ����+���� + ⋯ + ������ ∈ � 
� = ���� + ���� + ⋯ + ������ ∈ � 

Then  ����+���� + ⋯ + ���� = ���� + ���� + ⋯ + ���� 
⟹ (�� − ��)�� + (�� − ��)�� + ⋯ + (�� − ��)�� = 0 

⟹ ���� = 0 for all I (��, ��, … �� ��� �. �) 
⟹ �� = ��  ��� ��� � 

Theorem(2.25): 
Suppose S is a finite subset of a vector space V such that 
� = �(�) [i.e., V is a F.D.V.S] then there exists a subset of S which is a 
basis of V . 
Proof : 
 If S consists of L.I. elements then S itself  forms basis of  V and we’ve 
nothing to prove. 
Let now T be a subset of S, such that T spans Vof S (Existence of T is 
ensured as S is finite ) 
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Suppose � =  {��, ��, … ��} 
we show T is L.I. 
Suppose �� ≠ 0for some i Without any loss of generality we can 
take�� ≠ 0Then ��

�� exists. 
����+���� + ⋯ + ���� = 0 

⟹ ��
��(����+���� + ⋯ + ����) = 0 

⟹ � = (−��
����)�� + (−��

����)�� + ⋯ + (−��
����)�� 

            = ���� + ���� + ⋯ + ������ ∈ � 
If � ∈ �  be any element then 

� = ����+���� + ⋯ + ������ ∈ �    ��  � = �(�) 
⟹ � = ��(���� + ⋯ + ����) + ���� + ⋯ + ���� 

i.e  any element  of  V is a linear combination of ��, ��, … ��. 
⟹ ��, ��, … �� spans V, which contradicts our choice of T (as T was such 
minimal) 
Hence  �� = 0 or that  �� = 0  for all � ⟹ ��, ��, … ��  ��� �. � 
And thus t is a basis of F. 
Def(2.26): 
A F.D.V.S  V is said to have dimension  n if n is the number of  
elements in any basis of V .we use the notation di��  V=n or 
simply dim V and say V is  n−dimensional vector space . 
In view of an example done earlier dim ��=2 
In  fact , dim ��=n . 
Theorem(2.27) : 
A   F.D.V.S V has dimension n   iff   n  is the maximum number of  
L.I. .vectors in any subset of V 
Proof: 
 Let dim � = � and  let  {��,��,…….�� } be a basis of V , then 
these are L.I.. 
Let S= {��,��,.……��} �� a subset of V where m > � . we show 
S must be L.D. set . 
Since  �� , �� , ………….�� all belong to V and {��,��,…….��} 
is a basis of V; we can write  
�� =����� +����� + ……+����� 
�� =����� +����� +……+�������� ∈ F  

………… 
�� =����� +����� +……+����� 
Consider  the following system of  n  equations in  m  unknowns  
����� +……+����� = 0                     

�����  + ⋯ … + �����  =  0  
Since  n  < m , the above system has a non−zero solution  ��, 
……�� ∈ F  (i.e., some  �� ≠ 0 ). 
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�����  + ⋯ … + �����  =  0      
 … … … … . . ..        

�����  + ⋯ … + �����  =  0 
⇒ �������  + ⋯ … + ������� =  0 

… … … … .. 
�������  + ⋯ … + ������� =  0 

⇒ ��(����� + ⋯  + �����) + ⋯ . . + ��(����� + ⋯ . +�����)  
=  0 

⇒ ���� + ….. +� ���  = 0,  where some �� ≠ 0 
⇒ ��, ��,…………., �� are L.D. 
Which proves our result . 
Conversely , let the maximum number of  L.I.  elements in any 
subset of  V be n  the there exists a subset , S ={�� , �� ,……��} of  
V such that S is  L.I. we claim S forms  a  basis of  V. 
Let v ∈ V  be any element. 
Let T = {�� , �� , … , ��, �} than as it contains  n+1  elements , it is 
L.D. ⇒ ∃����, … , �� , �  in F such that 
����  + … … + ����  +  �� =  0  with some coefficients not zero. 
Suppose  � =0  then     ����  + ⋯ + ���� = 0 
⇒ �� = 0 for all i as  ��,��, … , �� are    L.I.  
i.e. all �� and � are zero , which is not true . Hence  � ≠ 0 ⇒ ��� 
exists in F . now � � = −����  − ����  − … . −���� 

⇒ � = (−�����)��  + (−�����) ��  + ⋯ . + (−�����) �� 
Or that  v is linear combination  of  �� ,�� ……,�� and v being any 
element , we find S spans V or that S  forms basis of  V. 
Hence dim V = n. 
Theorem(2.28) : 
If V is a F.D.V.S. and {��, ��, … , �� } is a L.I. subset of  V , then it 
can be extended to form a basis of  V. 
Proof : 
 If {��, ��, … , �� } spans V, then it itself forms a basis of V  and 
there is nothing to prove  
Let � = {��, ��, … , ��, ����, … . , ��} be  maximal L.I. subset of V. 
we show S  is a basis  of V , for which it is enough to prove that  S 
spans V. Let  v∈ V   be any element . 
Then  T= {��, ��, … , ��, �} is L.D. by choice of S  
⇒ ∃��, ��, … . , �� , � ∈ F( not all zero ) such that  
����  + ⋯ + ���� +�� = 0 
We claim � ≠  0. Suppose � = 0 
Then ���� + ⋯ … + ���� = 0 
⇒ �� = 0 for all i as ��, ��, … , �� are L.I. 
∴ �= �� = 0 for all i which is not true  
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Hence  � ≠  0 and so ��� exists . 
Since = (−�����)�� + (−�����)��+………+ (−�����)�� v is a 
linear combination of  ��, ��,………..��. 
Which  proves  our  assertion . 
Theorem(2.29): 
if dim �  = �  and s {��, ��,………..��.} spans V then S is a basis 
of  V. 
Proof : 
 since dim V=n , any basis of V has n elements . By theorem 17, a 
subset of  S will be a basis of   V but as S contains n elements , it 
will itself  form  basis  of  V . 
Theorem(2.30): 
if dim V = n and  S= {��, ��,………..��.}is L.I. subset of V then S 
is a basis of  V. 
Proof: 
since {��, ��,………..��.} =S is L.I. it can be extended to form a 
basis of V , but dim V being n , it will itself  be a basis of V . 
Problem: 
If  {��, ��,………..��.}  is a basis of  F.D.V.S. V of dim n and v = 
∑ ���� �� ≠  0 then prove that {��, ��,………..����, �,����,….��} 
is also a basis of V . 
Solution : 
we have  
V = ����+…..+���� +…..+������ ≠  0    ∴ ��

�� exists 
⇒ ��= (−�����)�� +…..+(−��

������)���� +��
��v+…. + 

(−��
����)�� 
= ���� + ⋯ + �������� + ��� + �������� + ⋯ + ���� 

If  x∈ V be any  element, then  
 � = ����  + ����  + ⋯ + ������ ∈  � 

⇒   � =  ����  + ⋯ + ��������  + ��(���� + ⋯ + ����)  +
⋯ + ���     or that is a linear combination of  

��, … ,  ����, � , ����, … , �� 
And x being any element , we find V is panned  by  
{��, … ,  ����, � , ����, … , ��} and it forms a basis of V , using 
theorem done above . 
Theorem(2.31): 
Two finite dimensional vector spaces over F are isomorphic iffthey 
same dimension . 
Proof : 
Let V and W be two isomorphic vector  spaces over  F and let � 
:  � ⟶  �  be the isomorphism . 
Let dim V =n and {��, ��, … , ��}  be a basis of V . 
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We claim { � (��), (��) ,….., �(��)} is a basis of  W. 
Let                         ∑ � �(��)�

��� = 0�� ∈ F , 

⇒                            �  �(����) = 0 =  �(0) 

 ⇒                       � ���� = 0 =  (� �� 1 − 1) 

⟹  �� = 0    ���  ���   �    ��    �� , ��, … … . , ��  ���      �. �.  

⟹           �(��) , �(��), … … . . , �(��)   ��� �. � 

Again, if w∈ W is any element, then as � is onto,∃ some v  ∈V s.t � 
(v) = w  

Now          v ∈V⟹ �= ∑ ����
�
��� for some   �� ∈ F  

⟹ � =  � (�)    =  � (� ����) 

⟹    � = � �(����)  = ���(��) + ���(��)+. . … . +���(��) 

 or that wis a linear combination of �(��), �(��) , … … , �(��) 
Hence �(��), �(��) , … … , �(��)span W and therefore, form a 
basis of W showing that dim W =n.                                  .  
Conversely, let ��� �  = dim� =  �and suppose {��,��,…..��} 
and {��, ��, … . . ��}are basis of V and W respectively . 
Define a map �: � →  � s.t. 

  � (�) =  � (���� + ���� + ⋯ + ����)
=  ���� + ���� + ⋯ + ���� 

then � is easily seen to be well defined (Indeed any v ∈ V is a 
linear combination of members of basis)                                   .  
If v, �́ ∈ V be any elements then  

� =  � ����, �́  =  � ������, �� ∈  �  
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               �(� +  � ́)  =  � �� ���� +  � ����� 

                   =  �( �(�� + ��)�� 

            = �(�� + ��)�� 

                                                  = � ���� + � ����

=  �(�) +  �(� ́) 

Also     

� (��) =  � �� � ����� = � �� ������ = �(���)�� 

= � � ���� = ��(�) 

Thus� is a homomorphism.  

Now if v ∈ Ker � 
then                            � (v) = 0  

⟹ �(� ����) = 0 

⟹  ∑ ���� = 0 ⟹  ��=0 for all i   ��, ��, … … . , ��being    L.I. 

⟹  v=0⟹ ker�  = {0} ⟹ �  is   one-one 
That � is onto is obvious. Hence � is an. Isomorphism 
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Corollary : 
Under an isomorphism, a basis is mapped onto a basis 
Follows by first part of the theorem.  
Problem :  
Show that the set of all real valued continuous functions y= f(x)  

sati sing the differential equation
���

���
+ 6

���

���
+ 11

��

��
+ 6� = 0is a 

vector space over R. Find a basis of this 
Solution : 
One can check that � =  { �|�: �  →  � , �cont.} is a vector space, 
over R, under (� +  �)� =  �(�)  +  �(�) 

(� �)� = �(�(�)) 
Let � =  {� ∈  � |�is a solution of given differential equation} 
The given differential equation is. 

(� � + 6� � +  11� + 6)� = 0 

(� + 1)(� + 2)(� + 3)� = 0 

� =  −1, −2, −3 
and this general solution is 

� =  �� �� + �� ���  + ����� 

If S= {���,����,����} then clearly S spans W 

Let    Ae�� + Be��� + Ce��� = 0 

Then−Ae�� + (−2)Be��� + (−3D)e��� 

Ae�� + (4� )���� + (9� )���� = 0          ∀� 

Put  � = 0 

�
1 1 1

−1 −2 −3
1 4 9

��
�
�
�

� =  0 ⟹ � �
�
�
�

� = 0 

Where  

det� = 1(−18 + 12) − 1(−9 + 3) + 1 (−4 + 2) = −2 ≠ 0 

Thus���exists and so � =  � =  � = 0 
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⟹ S is L.I. and hence a basis ofW.                     .  
Note : 

W is a vector space as it is a subspace of V. 

 [��, ��, ∈   �   ⟹   ���� + ����is asolution of the given 
differential equation  ⟹ ���� + ���� ∈W].  

Problem: 
If� =  {��, ��, … . . , ��}is a L.l. subset of V and v ∈ V be such that 
� ∉  �(�), then � ⋃ {�} is a L.I., subset of V. 
Solution: 
 S ∪ {v}= {��,��,…..,��, v} 
Let ���� + ���� + ⋯ + ���� + �� = 0�� ∈ � , � ∈ F 
If  � ≠ 0  then ��� exists and we get  

���(���� + ���� + ⋯ + ���� +  ��) =  0 

⟹ � = (−�����) �� + ( −�����)�� + ⋯ . +( −�����)�� 
⟹    v ∈ L(S), a contradiction  

Thus            � = 0 
⟹ ����+����+…….+����=0 
⟹ ��= 0    for all i as ��,��,…..,�� are L.I.  
⟹ � = �� = 0for   all  i.  
⟹  ��,��,……,�� ,  v are   L.I..  
Hence the result follows.  
Problem: 
(1, 1, 1) is L.I. vector in ��(R). Extend it to form a basis of ��.  
Solution: 
 (1, 1, 1)is non zero vector and is therefore   L.I. in ��.  
Let � =  {(1, 1, 1)}, then �(�)  =  { ⟹  �(�, 1, 1)| � ∉  �} 
Now (1, 0 , 0)  ∈  � �, but (1, 0, 0)   ∉  �(�) 
thus by above  problem  �� =  {(1, 1, 1), (1, 0, 0)} is L.I.  
Now   �(��)  =  {�(1, 1, 1)  +  � (1, 0, 0)| �, �   � } 
                                     = {(� + � , �, �) | �, � ∈ R}  
Again (0, 1, 0)   ∉  �(��) and by above problem  
�� =  {(1, 1, 1), (1,0,0), (0, 1, 0)} is L.I. subset of ��Since dim �� 
= 3,we find �� will be a basis of ��.  
Problem: 
 A finite set of non zero vectors {��,��,…..,��} in a vector space 
V(F) is L.D.  iff∃�� ,  2 ≤ � ≤ �, s.t., ��  is a linear combination of 
��,��,…..,���� .  
Solution: 
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Let��,��,…..,��  be L.D. Then ∃�� ∈ F, not all zero s.t 

� ����

�

���

= 0 

 Let k be the largest  integer  s.t �� ≠ 0 
 then k≠ 1  as  if   k = 1, 
then   ����=0 ,� ≠ 0(�� = 0 ��� ���  � ≥  2 ) ⟹ ��=0 , not true 
as �� are non zero. Hence  ,  2 ≤ � ≤ � 
thus �� ≠ 0 and �� = 0for all i ≥  � + 1. Also  then  ��

��l  exists  
⟹ ����+����+…….+�� ��  =0 
⟹ ���

� (����+����+……+�� �� )=0  
⟹ �� = (−��

����)��+(−��
����)��+…….+(−��

������)����  
which proves the result. 
Conversely, suppose ∃�, ,  2 ≤ � ≤ � s.t ��  is a linear 
combination of  ��,��,…..,����. 
 Let   ��  =  ����+���� + ⋯ + ���������� ∈ � 
Then   ����+���� + ⋯ + �������� − 1.��  =0 
⟹ ��,��,…..,�� are L.D. as (−1)  ≠ 0 
⟹ ��,��,…..,�� ,����,……,�� are L.D. as any super set  of a L.D. 
set is L.D.  Hence the result  follows. 
Theorem(2.32): 
Let W be a subspace of  a  F.D.V.S. V, then W is finite dimension 
and dim � ≤ ��� � . In fact,  dim�  =  ��� �  iff �  =  � . 
Proof : 
Let ����  =  �, then  n  is the maximum   number of L.I. elements  
in any subset of V. Since any subset of  W will be a subset of  V , n 
is the maximum number of   L.I. elements in W.  
Let ��,��,…..,��, be the maximum number of  L.L elements inW 
then � ≤  � 
We show {��,��,…..,��} is a basis of W. These are already L.I. 
If w∈ �  beany element then the set {��,��,…..,��,w}  is L.D.  
⟹ ∃��,��,…..,��, �  in  F (not all zero) s.t  
����+………+���� + �� =0. 
If �=0 ,we get ��= 0 for all i as ��,……,��  are L.L. which is not 
true 
Thus � ≠ 0and so ��� exists.  
The  above  equation  then  gives  us  
w = (−�����) �� + ⋯ + (−�����) ��) 
Showing  that  {��, ��, … , ��} spans W (and thus w is finite 
dimensional) ⟹      {��,��,…..,��} is a basis of  W ⟹ ��� � =
� ≤ � =  ��� �   Finally,   if   ��� �  =  ��� �  =  � 
and {��,��,…..,��} be .a basis of  W then as {��,��,…..,��} is 
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L.I. in W, it will be L.I. in V.   
and  as dim V= n, {��,��,…..,��} is a basis of V. Now if v ∈ V 
be any element the    v = ����+����+…….+���� ∈ �  
⟹  v ⊆ � ⟹  V =W 
Conversely, of  course, � =  � ⟹  ��� � =  ��� � . 
Remark:  
If W is a subspace of V where � = (0) then dimension of W is taken to 
be zero . 
Theorem (2.33): 
LetW be subspace of a F.D.V.S.V then  

dim
�

�
= dim� − dim�  

Proof: 
Let dim� = �and let {�� , �� , …  , ��} be a basis of W . 
�� , �� , …  , �� being  L.I in W will be L.I in V and thus 
{�� , �� , …  , ��} can be extended to form a basis of V . 
 Let {�� , �� , …  , �� , �� , �� , …  , ��} be the extended basis of.  V then 

dim� = � + � 
Consider the set = {� + �� , � + �� , …  , � + ��} , we show it form a 

basis of 
�

�
 

Let  ��(� + ��) + ⋯ + ��(� + ��) = �  , �� ∈ �  then 
� + (���� + ⋯ + ����) = � ⟹ ���� + ⋯ + ���� ∈ �  

⟹ ���� + ⋯ + ����is a linear combination of�� , …  , �� 
⟹ ���� + ⋯ + ���� = ���� + ⋯ + ������ ∈ � 

⟹ ���� + ⋯ + ���� − ���� − ⋯ − ���� = 0 
�� = �� = 0  for all �, � 

⟹ {� + �� , � + �� , …  , � + ��}is L. I 

Again for any , � ∈
�

�
 , v∈ �   means � is a linear combination of 

�� , �� , …  , �� , �� , �� , …  , �� 
i.e���� + ⋯ + ���� + ���� + ⋯ + ������ , �� ∈ � 

again  � + (���� + ⋯ + ����) + (���� + ⋯ + ����) 
= � + (���� + ⋯ + ����) 

= ��(� + ��) + ⋯ + ��(� + ��) 

Hence s space 
�

�
 and is therefore a basis dim

�

�
= 0 thus  

dim
�

�
= dim� − dim�  

Theorem (2.34): 
If A and B are two subspace of a F.D.F.S.  V then  

dim(� + �) = dim� + dim� − dim(� ∩ �). 
Proof : 
We have already proved that  



45 
 

� + �

�
≅

�

� ∩ �
 

dim
� + �

�
= dim

�

� ∩ �
 

⟹ dim(� + �) − dim� = dim� − dim(� ∩ �) 
Or the dim(� + �) = dim� + dim� − dim(� ∩ �) 
Remark: 
The reader should try to give an independent proof of the above theorem 
an exercise . 
Corllory : 
If � ∩ � = (0) then  dim(� + �) = dim� + dim�  

dim(�⨁ �) = dim� + dim�  
Problem: 
Le ��be the vector space of all polynomial of ������ ≤ � over R exibit 

� basis of 
��

��
 . hence verify that dim

��

��
= dimP� − dimP�. 

Solution: 
It is easy to see {1, �, ��, ��, ��} is a basis of P�  and thus dimP� = 5. 
Similarly dimP� = 3 as {1, �, ��} will be a basis of P�. 

Let   � = {P� + ��, P���} then S is a basis of 
��

��
 as  

P� + � ∈
P�

P�
⟹ P� + �� + ��� + ���� + ���� + ���� = P� + � 

⟹ P� + � = ��(P� + ��) + ��(P� + ��) 

⟹ �  spans 
P�

P�
 

Again      �(P� + ��) + �(P� + ��) = zero= P� 
⟹ P� + ��� + ��� = P� 

⟹ ��� + ��� = � + �� + ��� ∈ P� 
⟹ � = � = � = � = � = 0 as polynomial is zero , if each coefficient is 

zero thus S is a basis of  
��

��
 

Hence dim
��

��
= 2 = 5 − 3 = dimP� − dimP� 

Theorem (2.35): 
Let W be a subspace of F.DV.S. V , then there exists a subspace � ′ of V 
such that � = � ⨁ � ′ . 
Proof : 
Let {�� , �� , …  , ��} be a basis of W , then �� , �� , …  , �� being L.I in 
W will be L.I in V. we extend these L.I elements to form a basis of V , 
say {�� , �� , …  , �� , �� , �� , …  , ��} 
Let � ′ =  � ({�� , ��, … , ��}), i.e., W’ be the subspace spanned by 
{��  , ��, … , ��} 
We  show  � ⨁ � ′=  �  ,Let � ∈ V be any element, then  
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V = (���� + ⋯ + ����) + (���� + ⋯ + ����),    ��, �� ∈  � 
where  the  first bracket  term  belongs to W and the second to � ’ and the  
second to � ’ 
∴ � ∈  � + � ’  and thus � ⊆  �  +  � ’ 

⟹ �  = � + � ’ 
Again, if � ∈  � ∩  � ’  be any element  
then � ∈  �   and  � ∈  � ’ 

⟹  � =  ���� + ⋯ . +������, �� ∈  � 

� =  ���� + ⋯ + ���� 
⇒ ��w1+ . . . . +���� + (−b1)v1 +……+(−bn)�� = 0 
⇒ ��=bj=0  for all �, �      w1 ,….,wm, v1 ,…., vn  being L.I. 
Hence � = 0 

� ∩ � ’ =  (0) 
or that � =  � ⨁ � ′ 
Note :  
W’ is called complement of W. Thus we have proved that every 
subspace of a F.D. V.S. has a complement.  
Corllory :  
If � � is any complement of W in V then ���� ’ = dim� −
dim�  
. Since �  =  �  ⨁ � ’ ⇒ dim� = dim(� ⨁ � �) = dim� +
dim� ’  
=  ���� ’ = dim� − dim� .  
Although every complement of a subspace has same dimension it 
does not mean.  that a subspace has a unique complement. 
Consider  
Example : 
 Let �  =  ��(�)��� ��� 
�  = {(�,0)|� ∈R}  
� �= {(0,b)|b∈ �}  

� � = {(�, �)|� ∈ � } 
it is easy to see that W,� �,� �  are subspaces of  V  
We show  V = W ⨁ � �  and V = W ⨁ � � 
Now     � ∈  �  ⟹ � =  (�, �) =  (�, 0) + (0, �) ∈  �  + � � 

⇒ �  ⊆ � + � �  ⇒  � = � + � � 
again � ∈ � ⋂� 1 ⇒  � ∈  �  ��� � ∈  � � 

⇒  � =  (�, 0), � = (�, �)  
⇒ (�, 0) = (0, �) ⇒  � = � = �  ⇒ � = � 

Hence    � ∩ � �  =  (0)  
or that   V =W⨁ � �.  
Also � ∈  �  ⇒   � =  (�, �) =  (� −  �, 0)  + (�, �)  ∈  �  +
 � � 
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⇒  �  ⊆  � + � � ⇒  � =  �  + � � 
 Now � ∈ � ∩ � �  ⇒ � ∈ �  ��� � ∈ � � ⇒    � =  (�, 0), � =
(�, �)  ⇒   (�, 0)  =  (�, �)  ⇒   � =  0, ⇒  � =  (0,0). 
 Thus   W∩  � �=(O) or that  � =  �  ⨁ � �.  
.: Notice that W, � �,� �,are spanned by {(1;  0)}, {(0, 1)}, {(�, �)} 
respectively d as each of these is L.I. (they are non zero). These 
subsets form bases of  
 W,� �,� �  respectively.   
Hence ��� �  =  ��� � � ��� � � =  1.  
Inner Product Spaces 
In general a vector space is defined over an arbitrary field   F and this is 
what We did earlier . In this’ section .we  restrict F the field of real or 
complex numbers. In the first case, the vector space is called real vector 
space and in the second case it is called a complex vector space. We 
study real vector spaces in analytical geometry and vector analysis. 
There we discuss the concept of length and orthogonality. We also have 
dot or scalar product of  two vectors which among other things satisfies 
the following  

(i) �⃗. �⃗ ≥ 0 and (�⃗. �⃗)  = 0 ⇔  �⃗ = 0 

(ii) �⃗. ���⃗  =  ���⃗ . �⃗ 

(iii)�⃗.(��⃗ + ��⃗)  = �(��⃗ . �⃗)  + �(��⃗ . ���⃗ )  
where ��⃗ , �⃗, ���⃗   are vectors and ��  real numbers .We wish to extend  
the  concept of  dot product to complex vector spaces also. We 
define a map on V ×  V of (where V= vector space over F) with 
same property as dot product, called inner product and study the 
concept of length and orthogonality. 

Def(2.36) : 

 Let V be a vector space over field F (where F = field of real or 
complex numbers). Suppose for any two vectors u, v ∈ V ∃ an 
element (�, �)  ∈ � �. � [(�, �)here is just an element of F and 
should not be confused with the ordered pair.]  

(i) (�, �) = (�, �)(i.e .,comblex conjugate of (�, �)) 

(ii) (�, �) ≥ 0 ��� (�, �) = 0 ⇔  � = 0 

(iii) (�� +  ��, �)  =  �(�, �)  +  �(�, �) 
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for any �, �, � ∈  �  and �, � ∈ F.  
Then V is called an inner product space and the function satisfying 
(i), (ii) and., (iii) is called an inner product. Thus inner product  
space is a vector space over  the field of real or complex numbers 
with an inner product function.  
Remarks  : 
1. Property (ii) in the definition of inner product space makes sense 

in as much as (�, �) =  (�, �)by (i) ⇒ (u, u) = real.  
2. Property (iii) can also be described by saying that inner product 
is a linear map in 1st variable. 
3. Can we say that inner product is linear in and variable?  
Let’s evaluate  

(�, �� +  ��)(�� + ��, �)   �� (�) 

=  �(�, �) + �(�, �) 

=   � (�, �)  + � (�, �) 

           So, it need not be linear in 2nd variable.  

1. If F =field of real numbers, then the function inner product 
satisfies  same properties  as dot  product seen earlier. 

2. Inner product space over real field is called Euclidean space and 
over  complex field is called Unitary space.  

Example: 
 Let V = �(�), u = ({��  , ��)  � =  (�� , � 2) . 

Defin (�, �) =  ���� − ���� − ���� + 4���� 
Then 

(i) (�, �)  =  (�, �)  = (�, �) 

(ii) (�, �) =  (�� − ��) � +  3��
� ≥  0 

(�, �) = 0 ⟺ �� = ��, �� = 0 ⟺ �� = 0 =  ��  
⟺ � =  (�� − ��) =  (0, 0)  = 0 

(iii) (�� +  ��, �)  =  �(�, �)  +  �(�, �) 
can be easily verified. Thus, (u, v) defines an inner product.  
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Example: 
 Let ,� � , � � be two subspaces of a vector space V If � � , � � are inner 
product spaces, show that  � � + � � is also an inner product space.  
Solution: 
 Let �. � ∈  � � + � �. 
Then      � = �� + �� 
� =  �� + ���� , ��  ∈ � � ; ��, �� ∈ �  
Define    < �, � >  =  (��, ��)  + (��, ��) 
Then  x=u1 + u2 

y = v1+v2  ,  u1 ,v1 ∈W1 , ��, �� ∈ � � 

Define  <  �, � >  = (u1 ,v1)+(��, ��) 

Then  

(i) < �, � > = (��, ��) + (��, ��) 

= (��, ��
��������) + ((��, ��

���������) 

                                     =(u1 ,v1)+(��, ��)= < x,  y> 

(ii) < �, � > =(u1,u1)  + (u2,u2) ≥ 0 And < � , � >  = 0 ⟺ (u1,u1) 
= 0 = (u2,u2)⟺ �� = 0 = �� ⟺ � = 0       

(iii) < �� + �� , � >  = � < �, � > +� < �, � >  can be easily 
verified. 

∴< �, � >    defines an inner product on � � + � � 

So ,  �� + �� ��  an inner product space . 
Norm of a vector 
Let  V  be an inner product space. Let v ∈  V. Then norm of v (or 

length of v) defined as  �(�, �) and is denoted by ||v||.  
Problem: 
 ||�v|| = |�| ||v|| for all � ∈ F, v∈ V  
Solution:           

�|��|�
�

=(�v, �v)=  ��(�, �) =|�|�||�||� ⇒ �|��|� = |�|  ||�|| 
We now prove an important  inequality known as Cauchy  Schwarz  
inequality 
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Theorem(2.37): 
  Let V be an inner product space.  
Then     |(u ,v)| ≤  ||u||  ||v|| for all u ,v ∈ V 
Proof : 

 If � =  0, then (�, �)  =  (0, �)  =  0 and    ||�||  =   �(� , �) =

 �(0,0) = 0 
∴  LH.S. = R.H.S.  
Let u ≠  0. Then ||u|| ≠  0  
(as ||�||= 0 ⇒  �(0,0) = 0 ⇒  (�, �)  = 0 ⇒  � = 0 )                                                

���    � =
(�, �)

‖�‖�
�  

Then (�, �)  = �
(�,�)

‖�‖�
 � , � −

(�,   � )

‖�‖�
 � � 

= (�, �) −
(�,   �)

‖�‖�
(�, �) 

                  = ‖�‖� 
(�, �)�������(�, �)

‖�‖�
   =  ‖�‖� − 

|(�, �)|�

‖�‖�
 

=  
‖�‖�‖�‖� – |(�, �)|�

‖�‖�
 

Since   (�, �) ≥ 0. |(�,   �)|� ≤ ‖�‖�‖�‖� 
|(�, �)|≤  ‖�‖‖�‖. 

Remark :  
 The  above  inequality   will  be  an  equality  if  and  only  if   
Proof:   
suppose  |(�, �)|‖�‖‖� ‖ 
If � = 0 ,     then  � = 0  , � ⟹   �, �  are  linearly  dependent. Let  u 
≠ 0.  Then  from  above  

(�,   �) =  0  ⟹  �  =  0 

�  −
(�,   �)

‖�‖�
 �   =  0 

⟹ � =  
(�,   �)

‖�‖�
  � ⟹ �, �  ��� ��������  ���������.  

Conversely ,  Let  u  =  ��  , � ∈ �  
Then |(�, �)| = |� (� , �)|= | � |‖ � ‖� 
‖ � ‖‖ � ‖ = |� |‖ � ‖‖ � ‖ =|� |‖ � ‖�|(�, �)|=  ‖ � ‖‖ � ‖ 
Theorem(2.38) : 
Let V be an inner product space. Then 
(i)‖� + �‖ = ‖�‖ + ‖�‖  for all �, � ∈ �  

(Triangle inequality) 
(ii) ‖� + �‖� + ‖� − �‖� = 2(‖�‖� + ‖�‖�)(parallelogram law) 
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Proof: 
(i)‖� + �‖� = (� + �, � + �) 

  = (�, �) + (�, �) + (�, �) + (�, �) 
   =   ‖�‖� + (�, �)������� + (�, �) + ‖�‖� 

 = ‖�‖� + 2��(�, �) + ‖�‖� 
  ≤ ‖�‖� + 2|(�, �)|+ ‖�‖� 

  ≤ ‖�‖� + 2‖�‖�‖�‖� + ‖�‖� 
  = (‖�‖� + ‖�‖�)� 

Hence  ‖� + �‖ ≤ ‖�‖ + ‖�‖ 
This is called triangle inequality as‖�‖� + ‖�‖� = sum of the lengths of 
two sides of a triangle 
‖� + �‖ = length of the third side of the triangle showing that sum of 
two of a triangle is less than. its third side. 
(ii)‖� + �‖� + ‖� − �‖� = (� + �, � + �) + (� − �, � − �) =
‖�‖� + ‖�‖� + (�, �) + (�, �) + ‖�‖� + ‖�‖� − (�, �) −
(�, �)  = 2(‖�‖� + ‖�‖�) 
Note : 
‖� + �‖� + ‖� − �‖� = sum of squares of lengths of diagonals a 
parallelogram  
2(‖�‖� + ‖�‖�) = sum of squares of sides of a parallelogram. 
∴sum of squares of lengths of diagonals of a parallelogram is equal to 
sum of squares of lengths of its sides. For this reason (ii) is called 
parallelogram law. 
Problem: 
Using Cauchy Schwarz inequality, prove that cosine of an angel is of 
absolute vale at most 1. 
Solution: 
Let F = field of real numbers and V = F (3) 
Consider standard inner product on V. 
 Let   � = (��, ��, ��)  ,    � = (��, ��, ��) ∈ �, � =  (0,0,0) 
Let � be an angle between OU and OV. 
Then  

cos� =
���� + ���� + �� + ��

���
� + ��

� + ��
����

� + ��
� + ��

�
=

(�, �)

‖�‖‖�‖
 

|cos�|=
(�, �)

‖�‖‖�‖
≤

‖�‖‖�‖

‖�‖‖�‖
= 1 

Orthogonality 
Let V be an inner product space. Two vectors �, � ∈ � are said to be 
orthogonalif (�, �) = 0 ⇔  (�, �) = 0. So, u is orthogonal to v iff v is 
orthogonal to u. Since (0, �) =  0 for all � ∈  � , 0 is orthogonal to every 
vector in V.  
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Conversely ,if � ∈  � is orthogonal to every vector in V  then (�, �) =
 0 ⟹ � =  0. Let W be a subspace of V.  
Define � � =  {� ∈ �  |(�, �) = 0 for all � ∈ � (� �is read as W 
perpendicular).  
Then � �is a subspace of Vas 0 ∈ � � ⟹ � � ≠ � and  

(�v� + ��� , �) =  �(v�, �) + �(v�, �) = 0  for all � ∈ �  

⟹ �v� + �v� = � � 
� �is called orthogonal complement of W. The reason for calling it thus 
is because we shall prove later that �  =  � ⨁ � � 
Problem: 

Let V be an inner product space. Let �, � ∈ �  s.t. � ⊥  � Then show 
that‖� + �‖� = ‖�‖� + ‖�‖�(This is Pythagoras Theorem when F=R as 
in triangle ARC with �� ⊥ �� , �� � = ‖�‖�, ��� = ‖�‖�, ���� =
‖� + �‖�)  
Solution: 

‖� + �‖� =  (� +  �, � +  �) = (�, �) + (�, �) + (�, �) + (�, �) 

= ‖�‖� + ‖�‖� as (�, �) = 0 = (�, �) 

Orthonormal Set  

 A set {��}�of vectors in an inner product space V is said to be orthogonal 

if (��, ��)  =  0 ��� � ≠  �.If further ���, ��� = 1 for all i then the set 

{��}is called an orthonormal set. 
Example: 
 Let V be the real vector space of real polynomials of degree less than or 
equal to n. Define an inner product on V by  

�� ���� ,

�

���

� ����

�

���

� = � ����

�

�

 

Then { 1, �, …  , ��} is an orthonormal subset of V.  
Theorem (2.39): 
Let S be an orthogonal set of non zero vectors in an inner product space 
V. Then S is a linearly independent set.  
Proof : 
To show S is linearly independent, we have to show that every finite 
subset of S is linearly independent.  
Let {��, … , ��} be a finite subset of S.  
Let  ����, … , ���� = 0 , �� ∈ � 
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(���� + ⋯ + ���� , ����, … , ����) = 0 

⟹ |��|�‖��‖� + ⋯ + |��|�‖��‖� = 0 

⟹ |��|�‖��‖� = 0 for all i=1,…n 

⟹ |��|� = 0 for all I I as ‖��‖� = 0 ⟹ ‖��‖ = 0 ⟹ v� = 0 

Which is not true  

⟹ �� = 0 all i=1,…,n 
⟹ S is linearly independent.  
Corllory: 
An orthonormal set in an inner product space is linearly independent  
Proof: 
 Let S be an orthonormal set in an inner product space V. Let � ∈ �  
,then � ≠  0 �� � = 0 ⟹  (�, �)  =  0 ≠ 1, a contradiction. Therefore, S 
is an orthogonal set of non zero vectors and so linearly independent.  
Theorem (2.40): 
(Gram-Schmidt Orthogonalistion process)  
Let V be a nonzero inner product space u/dimension n. Then V has an 
orthonormal basis.  
Proof : 
It is enough to construct an orthogonal basis .of V. For let � ⊆  �  be  

orthogonal set. Then � =  �
�

‖�‖
|� ∈ �� a is an ortlnorma1 set.  

Let {��, … , ��}be a basis of V.  

 Let w� = v�Define w� = v� −
(��,��)

(��,��)
w� 

= v� −
(v�, v�)

(v�, v�)
v� 

then                             (��, ��) = (��, ��) 

(��, ��) =
(v�, v�)

(v�, v�)
(��, ��) = 0 

Also                    �� = ���� + �� = ���� + �� 

Where      �� =
(��,��)

(��,��)
∈ � 

Note v� , is linearly independent  v� ≠ 0 ⟹ (v�, v�) ≠ 0) 

Define w� = v� −
(��,��)

(��,��)
w� −

(��,��)

(��,��)
�� 
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Then (��, ��)  =  0 =  (��, ��)  
Also where  
In this way, we can construct an orthogonal set {��, … , ��} where each  

�� = ���� + ⋯ + ��   ,       �� ∈ � 

∴ �
��

||��||
 , … … . ,

��

||��||
�  is an orthonormal set which is linearly 

independent by  
Problem :  
Obtain an orthonormal basis, w.r.t. the standard  inner  product for 
the subspace of � � generated by (1,0,3) and (2,1,1).  
Solution: 
  Let  �� = (1, 0, 3),   ��= (2, 1, 1) .  

Then    ��=��,  �� = �� −
(��,��)

(��,��)
�� 

Now     (��, ��) = (�� , ��)  = 2+ 0 + 3=5 

 (��, ��)  =  (�� , ��)   = 1 + 0 + 9 + 10 

∴   ||��|| = √10 

So , �� = (2, 1, 1 )  − 
�

��
 (1, 0, 3 )  =  �

�

�
, 1 ,

�

�
� 

∴  ‖��‖ = �
9

4
+ 1 +

1

4
= �

7

2
 

∴ required orthonormal basis is  

�
��

‖��‖
,

��

‖��‖
� = �

1

√10
(1,0,3),

√2

7
�

√3

2
, 1, −1�� 

Theorem(2.41): (Bessel’s inequality) 

If (�� , �) is an orthonormal set in V. then  

�|(��, �)|�

�

���

≤ ‖�‖�    ��� ���  � ∈ �  
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Proof : 

Let  � =  � − ∑ (�, ��)��
�
���  

��, ��� =  ��, ��� − (�, ��)  =  0 for all � =  1, … , �  . Let 

� = �(�, ��)��

�

���

= � ���� , ��

�

���

= (�, ��) 

∴          � = � + � 

Also  
(�, �) =  (���� + ⋯ + ���� , �)

= ��(��, �) + ⋯ + ��(�� , �) =  0  
Now    ‖�‖� = (�, �) 

=  (� + � , � + �) = (�, �) + (�, �) = ‖�‖�‖�‖� ≥ ‖�‖� 

But   ‖�‖� = (�, �) 

= (���� + ⋯ + ���� , ���� + ⋯ + ����) 

= �������(�� , ��) + ⋯ + ��������(�� , ��) 

= |��|� + ⋯ + |��|� 
as {�� , … , ��} is an orthonoal set  

�|��|�

�

���

= �|(�, ��)|�

�

���

= ��( �� , �)�����������
�

�

���

= �|(�� , �)|�

�

���

 

∴    �|(�� , �)|�

�

���

≤ ‖�‖�   ��� ��� ‖�‖� � ∈ �  

Corllory: 
 Equality holds if and only if   � = � 
Proof: 
 Suppose � =  � 
Then      

‖�‖� = ‖�‖� = �|(�� , �)|�

�

���

 

conversely ,suppose equality holds  . then  

‖�‖� = ‖�‖� ⟹ ‖�‖� = 0 ⟹ (�, �) = 0 ⟹ 0 
⟹ � = � + � = � 
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Fields play an important role algebra with applications to Number theory 
of equations and geometry . 
Def(3.1): 
Let L be a field and suppose K is a subfield od F, then K is called an 
extension of F . 
Suppose S is a non empty subset of K, let F(S) denote the smallest 
subfield of K which contains both f and s .(in fact F(S) would be the inter 
section of all subfields of K that contain F and S f and s.) 
The following theorem is then an easy consequence .  
Theorem (3.2): 
If S,T are non empty subset of afield k and K is an extension of afield F 
then �(� ∪ �) = �(�)(�) (Where of course , if F(S)=E  , then by F(S)(T) 
we men E(T) 
Proof:  
�(� ∪ �) is the smallest subfield of k containing (� ∪ �), � 
i.e �, �, � ⊆ �(� ∪ �) ⟹ �(�) ⊆ �(� ∪ �)  ,    � ⊆ �(� ∪ �) 

⟹ �(�)(�) ⊆ �(� ∪ �) 
again   �, �, � ⊆ �(�)(�) ⟹ �, � ∪ � ⊆ �(�)(�) 

⟹ �(� ∪ �) ⊆ �(�)(�) 
or that    �(� ∪ �) = �(�)(�) 
Remark: 
If s is finite subset {��, ��, … , ��}K we write �(�) = �(��, ��, … , ��). 
The order in which ��appear is immaterial in view of the next lemma as 

�(��, ��, … , ��) = �({��}{��, ��, … , ��}) = �({��, ��, … , ��})
= �(��, ��, … , ��, ��) 

Also then  
�(�)(�) = �(�, �) = �(�, �) = �(�)(�) 

Again if � = �(�) k is called simple extension of F and we say K is got 
by adjoining the element a to F. 
Lemma (3.3): 
�(� ∪ �) = �(� ∪ �) = �(�)(�) follows clearly as  � ∪ � = � ∪ � . 
Problem: 
Let Q be the field of rationales then show that ��√2 , √3� = �(√2 + √3). 
 
 
Solution : 
By definition  

√2 , √3 ∈ �(√2 , √3) ⟹ √2 + √3 ∈ �(√2 , √3)   (closure) 

⟹ �(√2 + √3) ⊆ �(√2 , √3) 

Now    √2 + √3 ∈ ��√2 + √3� ⟹ �√2 + √3�
�

∈ ��√2 + √3� 

Also � ∈ ��√2 + √3� 
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5 + 2√2√3 − 5 = 2  ,   √2√3 ∈ �(√2 + √3) 

Also 2 ∈ ��√2 + √3� 

2 ×
1

2
√2√3 = √2√3 ∈ �(√2 + √3) 

Also   √2 + √3 ∈ �(√2 + √3) 

⟹ 3√2 + 3√3 − 2√3 − 3√2 = √3 ∈ �(√2 + √3) 

⟹ 2√3 + 3√2 − 2√2 − √3 = √2 ∈ �(√2 + √3) 

∴ �(√2 , √3) ⊆ �(√2 + √3) 

∴ ��√2 , √3� = �(√2 + √3) 
If k is an extension of F, then we know that K can be regarded as a vector 
space over F. in that case dimension of K over F is called degree of K 
over F and we denote it by [K:F]. 
Our next theorem is about the degree of extension fields. If [K:L]is finite 
,we say k is finite extension of  F. 
Theorem (3.4): 
Let L be a finite extension of K and F, a finite extension of K . then L is a 
finite extension of F and [L:F]:[L:K][K:F]. 
Proof:  
Let [L:K]=m   ,   [K:F]=n 
Let {��, … , ��} be a basis of L over K and {��, … , ��}be be a basis of k 
over F. we show that {����|1 ≤ �  , � ≤ �} is a basis of L over F. 

�� ∈ �    ,   �� ∈ � ⟹ �� ∈ �    ∴ ���� ∈ � for all �, � 

� � �������

�

���

�

���

= 0    ��� ∈ � 

Then  

� ����������

�

���

�

���

= 0   , � �����

�

���

∈ �   

Since  {��, … , ��} are linearly independent over K,  

� �����

�

���

= 0   ��� ��� � = 1, … , � 

Also {��, … , ��} are linearly independent over F . ��� = 0 for all i=1,..,m  

, j=1,….1,n 
∴ {����|1 ≤ �  , 1 ≤ � ≤ �} is  linearly independent subset of L over F. 

Let � ∈ � since {��, … , ��} is a basis of L over K  
� = ���� + ⋯ + ����    , �� ∈ � 

�� ∈ � and {��, … , ��} is a basis of K over F. 
⟹ ����� + ⋯ + �����  , ��� ∈ � 
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� = � ����

�

���

= �(����� + ⋯ + �����)

�

���

�� = � � ������   , ��� ∈ �  

�

���

�

���

 

∴  �����|1 ≤ � ≤ �  ,   1 ≤ � ≤ �� spans L over F and so forms a basis of 

L over F. 
∴   [�: �]= �� = [�: �][�: �] 
Remark : 
if [�: �] is finite  then [�: �] is also finite because [�: �]= � ⟹ every 
subset of L having r+1 elements is linearly dependent over F. since [L:K] 
is infinite , ∃��, … , ���� ∈ � which   are linearly independent over F as 
1 ≠ 0 . As in theorem (3.4) , �� − 1, �� − 1, … , �� + 1 , 1 are linearly 
independent over F .we fined ��, … , ���� ∈ � are linearly independent 
over F, a contradiction . 
∴ [�: �] is infinite . similarly , [�: �] is infinite . 
Lemma(3.5): 
If f is finite extension of f, then K:F  if and only if [�: �] divides [�: �]. 
Proof:  
 By remark  above [�: �] is finite as [�: �] =finite also [�: �] is finite . 
By theorem (3.4) 

[�: �]= [�: �][�: �] 
[�: �] divides [�: �] 
Lemma(3.6): 
 If k is an extension of F , then K=F if and only if [�: �]= 1. 
Proof: 
If �: �, then [�: �]= [�: �]= 1 
If [�: �]= 1 let {a} be a basis of K over F. 
∴ 1 ∈ � ⟹ ��  , � ∈ �  , � ≠ 0   �� 1 ≠ 0 ⟹ � = ��� ∈ � 
 Let � ∈ � ⟹ � = ��  , � ∈ �   , � ∈ �   , � ∈ � ⟹ � ∈ � ⟹ � ⊆
�  ⟹ � = � . 
Lemma(3.7): 
If L is an extension of f and [L:K] is a prime number p, then there is no 
field K s.t � ⊂ � ⊂ �.  
Suppose ∃ a field K s.t , � ⊂ � ⊂ � then � = [�: �]= [�: �][�: �] By 
theorem(3.4)  

⟹ [�: �]= 1  �� [�: �]= 1    
⟹ � = �  �� � = �   by lemma (3.7) acontradiction. 
Hence  the result Trivially then, if K is an extension of F of prime degree 
then for any � ∈ �, �(�) = �  �� �(�) = � 
 Theorem(3.8): 
Let k be a finite extension of  F. let [K:F]=n, let � ∈ �. Then �, … , �� are 
linearly independent  over F. thus ∃ ��, ��, … , �� ∈ �  s.t  ��. 1 + ��� +
���� = 0  ��� ���� �� ≠ 0. 
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Let �(�) =  �� + ��� + ���� , �ℎ�� �(�) is non zero polynomial in f[x] 
as some  �� ≠ 0  , also  

�(�) =  �� + ��� + ���� = 0 
∴ a is algebraic over F. 
∴ k is algebraic over F. 
Note: 
Convers of theorem (3.8) is not true. 
Lemma(3.9): 
� ∈ �  is algebraic over F if [�(�): �]=finite  
Proof: 
By theorem (3.8) ,  F(a) is algebraic over F. 
∴ � ∈ �(�) is algebraic over F. 
Converse of above lemma is also  true . 
Corllory 1: 
If  ��, … , �� ∈ � are algebraic over F then �(��, … , ��) is finite  
extension of and so is algebraic over F. 
Proof: 
 We proof the result by indication on n .if � = 1, result follows from cor 
1. assume it to be true for naturals less than n .let ��, … , �� ∈  � be 
algebraic over F. Now �n is algebraic over F ⇒ �n is algebraic over 
�(��, … , ��)  
By cor 1. [�(��, … , ����)(�n) ;�(��, … , ��) is finite by indication 
hypothesis,  
[�(��, … , ��): �] Is finite 
[�(��, … , ��) �]= [ �(��, … , ��): �(��, … , ��)][�(�1, … . �� −
1): �]=finite 
Result is true for n also  
By indication is true for all n≥  1. 
Def(3.10): 
A complex number is said to be an algebraic number if it is algebraic over 
the field of rational numbers. 
Roots of polynomials 
Let F be a field and ƒ(�) ∈ �[�].we ask whether there exists an extension 
K of containing a root.          
 
Theorem(3.11): 
A polynomial of degree n over a field can have at most n roots in any 
extension field. 
Def(3.12): 
Let E and L be tow extensions of a field K. An  isomorphism  �: � → � is 
called a � −isomorphism if ƒ(�) = � ,and in that case we say  E and L 
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are � −iosmorphic. similarly we talk  of  K-homomorphism or 
� −automorphism. 
Theorem(3.13): 
Suppose �: �� → �� is an isomorphism from a field �� to a field ��. 
Let �� be a zero an irreducible over polynomial ��(�) over �� and �� be 
zero of the corresponding polynomial ��(�) = �(��(�)) over � ,then 
there exists a unique isomorphism θ from K1(α1) to K1(α1) such that  
�(�1)= �2 and �(�) = � 
Proof: 
Now   � �: ��[�]→ ��[��] 
With    � �(��(�)) = ��(��) 
Is an onto homomorphism such that  Ker � � = ˂��˃. 
Prime subfields  
Def(3.14): 
Let F be a field .The intersection of all subfield of F is the smallest 
subfield of F and is called prime subfield of F.  
Theorem(3.15): 

Let P be the prime subfield of a field F. Then either � ≅ � or � ≅
�

(�)
,for 

some prime �, �  being the ring of integers. 
Proof: 
Define �: � → � ⊆ �   such that  
�(�) = �� ,where e denotes the unity of F 
Then �  is a homomorphism. 
Problem: 
Show that regular pentagon is constructible. 
Solution: 
It would be possible to construct a pentagon if we can construct 

� = 2 cos
2�

5
= 2 cos72° = 2 sin180°. 

Since sin180° =
���√�

�
 which is constructible we fine it is possible to 

construct a regular pentagon. 
Problem: 
Every automorphism of a field F leaves the prime subfield P of F,element 
wise fixed 
 
Solution: 
Let θ be an automorphism of F 
Let     � = {� ∈ �|�(�) = �} 
Then K is a subfield of F.  
Since P is the smallest subfield of F, � ⊆ � .let � ∈ �.then  � ∈ �, 
⟹ �(�) = � ⟹ ,� fixes element of P. 
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Separable Extensions 
In the next we have a polynomials which have a simple roots and the field 
generated by these roots. 
Def(3.16): 
A polynomial is said to be a separable if all roots are simple. 
Theorem(3.17): 
A polynomial ƒ(�) ∈ �[�] is seperable if and only if � and �’ are 
relatively prime. 
Def(3.18): 
A field K is called perfect field if every algebraic extension of K is 
separable. 
Theorem(3.19): 
Let char � = �. then every  algebraic extension of K is seperable if and 
only if � = �� . 
Proof: 
Let � ∈ �  .let �(�) = �ᵖ − � and b be a zero of �(�).then   

0 = �(�) = �ᵖ − � , � = �ᵖ 
, �(�) = �ᵖ − �ᵖ = (� − �)ᵖ.then �(�) is irreducible over k. 
Now α is root of �(�), ⟹  � − � divides p(x) in �[�] 

 ⟹ �(�) = (� − �)�(�)   , �(�) ∈ �[�] 
Since    ��� �(�) = 2   , ��� �(�) = 1. 
So �(�) = (� − �), � ∈ � 
Therefore �(�) = (� − �)(� − �) splits in �[�]. 
Problem: 
Let F be � perfect field .show that the set of elements fixed under all 
automorphisms of F is a perfect subfield. 
Solution: 
Let char � = �, � = {� ∈ �|�(�) = �∀� ∈ �},where G is a group of  F. 
then K is a subfield  of F. 
Define     �: � → �  such that,  

�(�) = �ᵖ 
Then θ is a homomorphism, since F is perfect, θ is onto, 
So � ∈ �, let � ∈ � .then �(�) = � 

⟹ �(�) = � ⟹ �ᵖ = � ⟹ ���ᵖ ⟹ � ⊆ �� 
⟹ � = �ᵖ, � is perfect. 

 

Normal Extensions 

As seen earlier if  �(�) ∈ �[�] is irreducible over K, then there extension 
E of K containing a root of  ƒ(x). 
Def(3.20): 
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An extension �: � is called a normal extension if every irreducible 
polynomial in �[�] have any at least one root in L. 
Theorem(3.21): 
A finite normal extension is a minimal splitting field of some polynomial. 
 
Theorem(3.22): 
Let K be  an  algebraic closed  field such that K is an extension of  K. 
Let � = {���|� is algebraic over K} 
Proof: 
We now that� ⊆ � ⊆ � is tower of field   
By definition of F,F/K is algebraic 
Thus F is algebraically closed  
Hence F is an algebraic of K. 
Lemma(3.23): 
Let E be an algebraic extension of K and let  �: � → � be a K-
homomorphism. then σ is a K-automorphism . 
Proof: 
Let � ∈ �, �(�) = ���(�, �), 
    Let  �� = �, ��, … . . , �� 
Let �’ = �(��, … . . , ��) ⊆ � 
Then  �’/� is finite  
Let �(�) = (� − �ᵢ)�ᵢ(�)  , �ᵢ(�) ∈ �(�ᵢ)[�] 
Since �(�) = � for all� ∈ �, �(�(�)) = �(�). 
Theorem(3.24): 
Let K be an algebraic extension of K, then following are equivalent. 
(i) �/� is normal . 
There fore �(�) = �(�(�)) = (� − �(�ᵢ))�(�ᵢ(�)) 
    But �: � → � ⟹ �(�ᵢ) ∈ � for all � 
So �(�ᵢ) ∈ �’ for all i, 
⟹ �: � → �’ is a K-homomorphism 
Also �’/� is finite  
Since σ is also 1-1 
So �: �′→ �′ IS on to, σ is a K-automorphism of E. 
Galois Extensions 
Def(3.25): 
An extension E of F is called a Galois extension if  �/� is finite .f is the 
fixed of a group of  automorphisms of E. 
 
 
Theorem(3.26): 
Let �/� be a finite extension .then �/� is a Galois extension if and only 
if it is both normal and seperable. 
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Note: 
When E/F is Galois, the group of all F-automorphisms of E is denoted by 
���(�/�) or �(�/�) called the Galois group of E/F. 
Corllory 2: 
Let char � = 0.then  K is contained in some Galois extension of K. 
Proof: 
Let ƒ(x) be a non constant polynomial in �[�].Let E be a minimal 
splitting field of ƒ(x) over K .then �/� is finite  normal .Since is perfect, 
⟹ E/K is seperable  , 
So, �/� is Galois. 
Theorem (3.27): 
Let �/� be a finite extension .then �/� is contained in Galois extension 
if and only if it is seperable. 
Proof: 
Let �/� be contained in Galois extension �’/�.then � ⊆ � ⊆ �′  
Now �’/� is Galois ⟹  �’/� is seperable �/�′ is seperable  
Conversely, Let  �/� be seperable. since �/� is finite,� = �(��, … , ��) 
Let     �ᵢ = ���(�, �ᵢ)  , �ᵢ ∈ �. �ᵢ ∈ � ⟹ �ᵢ is seperable over F⟹  �ᵢ 
 is a simple zero of �ᵢ ⟹ each zero of �ᵢ in a splitting field is simple. 
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