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1.1 MATRICES AND VECTORS 

A. Linear Independence and Dependence  

 Before proceeding, we state without proof the following two theorems from 

algebra.  

THEOREM A 

A system of n homogeneous linear algebraic equations in n unknowns has a 

nontrivial solution if and only if the determinant of coefficients of the system is 

equal to zero. 

THEOREM B 

A system of n linear algebraic equations in n unknowns has a unique solution if 

and only if the determinant of coefficients of the system is unequal to zero,  

DEFINTION: 

A set of m constant vectors            is linearly dependent if there exist a set 

of m numbers            not all of which are zero, such that  

                   

Example 1.1. 

 The set of three constant vectors  

   (
 
 
 
)       (

 
  
 

)         (
 
 
 
) 

Is linearly dependent, since there exists the set of three numbers 2, 3, and —1, 

none of which are zero, such that 

2       (  )     

DEFINITION: 

  A set of m constant vectors is linearly independent if and only if the set is not 

linearly dependent. That is, a set of m constant vectors            is linearly 

independent if the relation  
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Example 1.2. 

The set of three constant vectors  

   (
 
 
 
)     (

  
 
 

)             (
 
 
 
)   

Is liner independent. For where  

                                                      (   ) 

that is, 

  (
 
 
 
)    (

  
 
 

)    (
 
 
 
)  (

 
 
 
) 

is linearly independent. For we have 

                                       (   ) 

of three homogeneous linear algebraic equations in the three unknowns 

        . The determinant of coefficients of this system is  

|
    
   
   

|      

Thus by Theorem A, with n = 3, the system (1.2) has only the trivial solution 

          . Thus for the three given constant vectors, the relation (1.1) 

implies            ; and so these three vectors are indeed linearly 

independent.  

DEFINITION: 

The set of m vector functions            is linearly dependent on an interval 

a   t   b if there exists a set  of m numbers             numbers not all zero, 

such that  

    ( )      ( )        ( )    

for all t   [a, b].  
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Example 1.3. 

Consider the set of three vector functions       and    defined for all t by 

  ( )  (
   

    

    

)     ( )  (
   

    

     

)          ( )  (
   

   

    

) 

Respectively. This set of vector functions is linearly dependent on any interval a 

  t   b. To see this, note that  

 (
   

    

    

)  (  )(
   

    

     

)  (  )(
   

   

    

)  (
 
 
 
) 

and hence there exists the set of three numbers 3,   1, and  2, none of which 

are zero, such that 

   ( )  (  )  ( )  (  )  ( )    

for all t   [a, b]  

DEFI NIT1ON: 

A set of m vector functions is linearly independent on an interval if and only if 

the set is not linearly dependent on that interval. That is, a set of m vector 

functions            is linearly independent on an interval a   t   b if the 

relation  

    ( )      ( )        ( )    

For all t   [a, b] implies that  

             

Example 1.4. 

Consider the set of two vector functions   ( )  and   ( ). Defined for all t  

  ( )  ( 
 

  )          ( )  (    

    ) 

Respectively. We shall show that    and    are linearly independent on any 

interval      . To do this, we assume the contrary; that is, we assume that 

         are linear dependent on [a, b]. Then there exist numbers    and   , 

not both zero, such that  
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    ( )      ( )    

for all t   [a, b]. Then  

   
     

      

   
      

      
and multiplying each equation through by    , we have  

      
     

       
     

for all t   [a, b]. This implies that     
     

      
      

   and hence 1 = 

2, which is an obvious contradiction. Thus the assumption that    and    are 

linearly dependent on [a, b] is false, and so these two vector functions are 

linearly independent on that interval.  

Note: If a set of m vector functions            is linearly dependent on an 

interval a   t   b, then it readily follows that for each fixed      [a, b], the 

corresponding set of m constant vectors   (  )   (  )     (  ) is linearly 

independent. 

Indeed the corresponding set of constant vectors   (  )   (  )     (  )  

may be linearly dependent for each     [a, b]. See Exercise 6 at the end of this 

section. 

B. Characteristic Values and Characteristic Vectors 

Let A be a given n x n square matrix of real numbers, and let S denote the set of 

all n x 1 column vectors of numbers. Now consider the equation  

                                                                                (   ) 
 

In the unknown vector    , where   is a number. Clearly the zero vector 0 is a 

solution of this equation for every number  . We investigate the possibility of 

finding nonzero vectors     which are solutions of (1.3) for some choice of 

the number  . In other words, we seek numbers  . Corresponding to which there 

exist nonzero vectors x which satisfy (1.3). These desired values of   and the 

corresponding desired nonzero vectors are designated in the following. 
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DEFINITION: 
A characteristic value (or eigenvalue) of the matrix A is a number 2 for which 

the equation Ax =    has a nonzero vector solution x.  

A characteristic vector (or eigenvector) of A is a nonzero vector x such that      

Ax =  x for some number  .   

We proceed to solve this problem. Suppose  

   (

      
    

      
    

 
   

 
   

  
    

) 

is the given n x n square matrix of real numbers, and let  

  (

  

  

 
  

) 

Then Equation (1.3) may be written  

(

      
    

      
    

 
   

 
   

  
    

)(

  

  

 
  

)   (

  

  

 
  

) 

and hence, multiplying the indicated entities, 

(

                   

                   

 
                   

)  (

   

   

 
   

) 

Equating corresponding components of these two equal vectors, we have  

                        

                         

  

                        

and rewriting this, we obtain 

(     )                    

      (     )                 (1.4) 
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              (     )      

Thus we see that (1.3) holds if and only if (1.4) does. Now we are seeking 

nonzero vectors x that satisfy (1.3). Thus a nonzero vector x satisfies (1.3) if and 

only if its set of components            is a nontrivial solution of (1.4). By 

Theorem A of Section (1.1)B, the system (1.4) has nontrivial solutions if and 

only if its determinant of coefficients is equal to zero, that is, if and only if 

|

      
    

      
    

 
   

 
   

  
    

|                            (   ) 

It is easy to see that (1.5) is a polynomial equation of the nth degree in the 

unknown 2. In matrix notation it is written 

|    |    

where I is the n x n identity matrix (see Section 1.1A). Thus Equation (1.3) has a 

nonzero vector solution x for a certain value of   if and only if   satisfies the 

nth-degree polynomial equation (1.5). That is, the number   is a characteristic 

value of the matrix A if and only if it satisfies this polynomial equation. We now 

designate this equation and also state the alternative definition of characteristic 

value that we have thus obtained. 

DEFINITION: 

Let A = (   ) be an n x n square matrix of real numbers. The characteristic 

equation of A is the nth-degree polynomial equation  

|

      
    

      
    

 
   

 
   

  
    

|                                               (   ) 

in the unknown  ; and the characteristic values of A are the roots of this 

equation. 

Since the characteristic equation (1.5) of A is a polynomial equation of the nth 

degree, it has n roots. These roots may be real or complex, but of course they 

may or may not all be distinct. Then we say that that root has multiplicity m. If 

we count each no repeated root once and each repeated root according to its 

multiplicity, Then we can say that the n x n matrix A has precisely n 

characteristic values, say           . 
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Corresponding to each characteristic value    of A there is a characteristic 

vector    (k = 1, 2,..., n). Further, if    is a characteristic vector of A 

corresponding to characteristic value   , then so is    , for any nonzero number 

c. We shall be concerned with the linear independence of the various 

characteristic vectors of A. Concerning this, we state the following two results 

without proof.  

Result C. Each of the n characteristic values           . of the n x n square 

matrix A is distinct (that is, nonrepeated); and let            be a set of n 

respective corresponding characteristic vectors of A. Then the set of these n 

characteristic vectors is linearly independent.  

Result D. Suppose the n x n square matrix A has a characteristic value of 

multiplicity m, where 1 < m   n. Then this repeated characteristic value having 

multiplicity m has p linearly independent characteristic vectors corresponding to 

it, where 1  p   n.  

Now suppose A has at least one characteristic value of multiplicity m, where 1 < 

m   n; and further suppose that for this repeated characteristic value, the 

number p of Result D is strictly less than m; that is, p is such that 1   p   m. 

Then corresponding to this characteristic value of multiplicity m, there are less 

than m linearly independent characteristic vectors. It follows at once that the 

matrix A must then have less than n linearly independent characteristic vectors. 

Thus we are led to the following result: 

Result E. If the n x n matrix A has one or more repeated characteristic values, 

then there may exist less than n linearly independent characteristic vectors of A.  

Before giving an example of finding the characteristic values and corresponding 

characteristic vectors of a matrix, we introduce a very special class of matrices 

whose characteristic values and vectors have some interesting special properties. 

This is the class of so-called real symmetric matrices, which we shall now define 

below. First, however we give a preliminary definition. 

DIFINITION: 

A square matrix A of real numbers is called a real symmetric matrix if    . 

For example, the 3x3 square matrix 

  (
    

    
   

) 
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Is a real symmetric matrix since       

Concerning real symmetric matrices, we state without proof the following 

interesting results:  

Result F. All of the characteristic values of a real symmetric matrix are real 

numbers.  

Result G. If A is an n x n real symmetric square matrix, then there exist n 

linearly independent characteristic vectors of A, whether the n characteristic 

values of A are all distinct or whether one or more of these characteristic values 

is repeated.  

Example 1.5. 

Find the characteristic values and characteristic vectors of the matrix  

  (
    

       
     

) 

Solution. The characteristic equation of A is 

|
      
         
       

|    

Evaluating the determinant in the left member, we find that this equation may be 

written in the form 

                 

Or 

(   )(   )(   )   . 

Thus the characteristic values of A are 

                     

The characteristic vectors corresponding to     are the nonzero vectors 

  (

  

  

  

) 
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 Such that 

(
    

       
     

)(

  

  

  

)   (

  

  

  

) 

Thus          must be non trivial solution of the system 

7              

                       

-2             

That is 

5            

                   

-2            

Note that the second of these three equations is merely a constant multiple of the 

first thus we seek nonzero numbers          which satisfy the first and third of 

these equations. Writing these two as equations in the unknowns    and   , we 

have  

              

          .  

Solving for    and   , we find 

                        

We see at once that     k,      k,     k is a solution of this for every 

real k. Hence the characteristic vectors corresponding to the characteristic value 

  = 2 are the vectors  

  (
 

  
  

) 

where k is an arbitrary nonzero number. In particular, letting k = 1, we obtain 

the particular characteristic vector 
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(
 

  
  

) 

corresponding to the characteristic value   = 2.  

Proceeding in like manner, one can find the characteristic vectors corresponding 

to   = 3 and those corresponding to   = 5. We find that the components 

         of the characteristic vectors corresponding to   = 3 must be a 

nontrivial solution of the system  

4           , 

-10            , 

-2           . 

From these we find that 

                       

and hence    = k,    =   2k,      k is a solution for every real k. Hence the 

characteristic vectors corresponding to the characteristic value    3 are the 

vectors 

  (
 

   
  

) 

where k is an arbitrary nonzero number. In particular, letting k = 1, we obtain 

the particular characteristic vector  

(
 

  
  

) 

corresponding to the characteristic value   = 3.  

Finally, we proceed to find the characteristic vectors corresponding to   = 5. We 

find that the components          of these vectors must be a nontrivial solution 

of the system  

  2           , 

-10            , 

-2           . 

From these we find that 
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                   . 

We find that                     satisfies this for every real k. Hence 

the characteristic vectors corresponding to the characteristic value   = 5 are the 

vectors  

  (
  

   
   

) 

where k is an arbitrary nonzero number. In particular, letting k = 1, we obtain 

the particular characteristic vector  

(
 

  
  

) 

corresponding to the characteristic value   = 5. 
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2.1 DIFFERENTIAL OPERATORS AND AN OPERATOR METHOD 

A. Types of Linear Systems 

    We shall consider the general linear system of two first-order differential 

equations in two unknown functions x and y is of the form 

  ( )
  

  
 +   ( )

  

  
 +   ( )  +   ( )  =   (t). 

                                   (2.1)                      

  (t) 
  

  
 +   (t) 

  

  
 +   (t)   +   (t)   =   (t). 

   An example of such a system which have constant coefficients is  

2
  

  
  + 3

  

  
  - 2    +     =      ,     

  

  
  - 2

  

  
  + 3    + 4    =    . 

We shall say that a solution of system (2.1) is an ordered pair of real functions 

(f,g) 

such that      ( )      ( ) simultaneously satisfy both equations of the 

system (2.1) on some real interval          . 

 The general linear system of three first-order differential equations in three 

unknown functions x, y and z and of the form 

  ( )
  

  
 +   ( )

  

  
 +   (t) 

  

  
 +   ( )  +   ( )  +   (t)z  =   (t). 

  ( )
  

  
 +   ( )

  

  
 +   (t) 

  

  
 +   ( )  +   ( )  +   (t)z  =   (t).    (2.2) 

  ( )
  

  
 +   ( )

  

  
 +   (t) 

  

  
 +   ( )  +   ( )  +   (t)z  =   (t). 

As in the case of system of the form 

  

  
 + 

  

  
 - 2

  

  
 + 2   - 3   + z = t , 

2
  

  
 - 

  

  
 + 3

  

  
 +    + 4   -           , 

  

  
 + 2

  

  
 + 

  

  
 - 3   + 2   -          . 
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 A solution of this system is an ordered triple of real functions (f, g, h) such that     

  =  ( ),   =  (t),   =  (t) simultaneously satisfy all three equations of the 

system (2.2) on some real interval a ≤ t ≤ b. 

System of the form (2.1) and (2.2) contained only first derivatives, and we not 

consider the basic linear system involving higher derivatives. This is the general 

linear system of two second-order differential equations in two unknown 

functions   and   and is a system of the form 

  ( )
   

   
 +   ( )

   

   
 +   ( )

  

  
 +   ( )

  

  
  +   (t) x +   (t) y =   (t). 

                                                                                                      (2.3) 

  ( )
   

   
 +   ( )

   

   
 +   ( )

  

  
 +   ( )

  

  
  +   (t) x +   (t) y =   (t). 

We shall be concerned with systems having constant coefficients in this case 

also an example is provided by 

2 
   

   
 +   

   

   
 +   

  

  
 +  

  

  
  + 2 y = 3t + 1. 

  
   

   
 +   

   

   
  - 2 

  

  
  + 4 x +        

  For given fixed positive integers m and n, we could proceed, in like manner, to 

exhibit other general linear systems of n nth-order differential equations in n 

unknown functions.  

  We consider special type of linear system (2.1) which is of the form 

  

  
      ( )       ( )      ( )                         

              
  

  
      ( )       ( )      ( )                        (   )      

This is the so-called normal form in the case of two linear differential equations 

in two unknown functions. The characteristic feature of such a system is 

apparent from the manner in which the derivatives appear in it. An example of 

such a system with variable coefficients is 
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  =   x + (   )  +     

  

  
  = t  x +   y -                  

 While one with constant coefficients is 

  

  
  = 5x + 7y +   , 

  

  
  = 2x - 3y + 2t. 

The normal form in the case of a linear system of three differential equations in 

three unknown functions x, y, and z is 

  

  
 =    (t) x +    (t) y +    (t) z +   (t), 

  

  
 =    (t) x +    (t) y +    (t) z +   (t), 

  

  
 =    (t) x +    (t) y +    (t) z +   (t). 

  An example of such a system is the constant coefficient system 

  

  
 = 3x + 2y + z +              

  

  
 = 2x - 4y + 5z -            

  

  
 = 4x + y - 3z + 2t + 1. 

  The normal form in the general case of a linear system of n differential 

equations in n unknown functions  ,   ,   ,     is 

   

  
 =    (t)    +    (t)    +   +    (t)    +   (t) 

   

  
 =    (t)    +    (t)    +   +    (t)      (t) (   ) 

  

   

  
 =    (t)    +    (t)    +   +    (t)    +   (t) 
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An important fundamental property of a normal linear system (2.5) is its 

relationship to a single nth-order linear differential equation in one unknown 

function. Specifically, consider the so-called normalized (meaning, the 

coefficient of the highest derivative is one) nth-order linear differential equation 

   

   
 +   (t) 

     

     
 +   +     (t)

  

  
 +   (t) x = F(t)              (2.6) 

in the one unknown function x. Let 

   = x,    = 
  

  
 ,    = 

   

   
 ,   ,      = 

     

     
 ,   = 

     

     
     (2.7) 

From (2.7), we have  

  

  
 = 

   

  
 , 

   

   
 = 

   

  
 ,   , 

     

     
 = 

     

  
 , 

   

   
 = 

   

  
 .               (2.8) 

   Then using both (2.7) and (2.8), the single nth-order equation (2.6) can be 

transformed into 

   

  
                                                                                                           

   

  
                                                                                      (2.9) 

                                                                                                                 

     

  
                                                                                                         

   

  
 = -   ( )    -     ( )    -   -   ( )        ( )                       

Which is a special case of the normal linear system (2.5) of n equations in n 

unknown functions. Thus we see that a single nth-order linear differential 

equation of form (2.6) is one unknown function is indeed intimately related to a 

normal linear system (2.5) of n first-order differential equation in n unknown 

functions. 

B. Differential Operators 

Let x be an n-times differentiable function of the independent variable t. We 

denote the operation of differentiation with respect to t by the symbol D and call 



16 

D a differential operator. In terms of this differential operator the derivative 
  

  
  

is. Denoted by   . That is, 

   = 
  

  
 . 

In like manner, we denote the second derivative of x with respect to t by    . 

Extending this, we denote the nth derivative of x with respect to t by    . That 

is, 

    = 
   

   
 (         )  

Further extending this operator notation, we write 

(     )              
  

  
      

and 

(          )              
   

   
    

   

   
 

where a, b, and c are constants. 

In this notation the general linear differential expression with constant 

coefficients 

  ,   ,  ,     ,                                        

  
   

   
 +   

     

     
 +        

  

  
 +     

 Is written as 

(   
      

                  )   

 The operators             are to be carried out upon this function. The 

expression 

    
      

                

By itself, where                 are constants, is called a linear differential 

operator with constant coefficients. 
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Example 2.1. 

Consider the linear differential operator. 

         

If x is a twice differentiable function of t, then 

(        )            
   

   
  

  

  
     . 

For example, if x =   , we have 

(        )        
  

   
(  )   

 

  
(  )     (  ) 

                                =18t + 15    - 2  . 

We shall now discuss certain useful properties of the linear differential operator 

with constant coefficients. In order to facilitate our discussion, we shall let L 

denote this operator. That is, 

       
     

                

where                 are constants. Now suppose that    and    are both n-

times differentiable functions of t and    and    are constants. Then it can be 

shown that 

                                    

For example, if the operator L            is applied to 3   + 2sint, then 

                                       

Or 

(        )(            )  
   (        )      (        )      

Now let 

        
      

                

And 
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 +   

   + +     +   

Be two linear differential operators with constant 

Coefficients   ,              and  ,               respectively. Let 

                     
 +   

   + +     +   

And              
 +   

   + +     +   

Be the two polynomials in the quantity r obtained from the operators    and  , 

Respectively, by formally replacing D by r,    by  , ,    by   . Let us denote 

the product of the polynomials    (r) and    (r) by L(r) that is, 

L(r) =    (r)    (r). 

Then, if f is a function possessing n + m derivatives, it can be shown that 

      =       = Lf 

Where L is the operator obtained from the “product polynomial” L(r) by 

formally replacing r by D,    by   , ,      by      Equation (2.10) 

indicates two important properties of linear differential operators with constant 

coefficients. First, it states the effect of first operating on f by    and then 

operating on the resulting function by    is the same as that which results from 

first operating on f by    and then operating on this resulting function by  . 

Second Equation (2.10) states that the effect of first operating on f by either    

or    and then operating on the resulting function by the other is the same as that 

which results from operating on f by the “product operator” L. 

We illustrate these important properties in the following example. 

Example 2.2 

Let                         ( )            

         (      )(      )     (      )(         )  
   (      )      (      )   

  (    )   (      )                       

and 
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         (      )(      )    (      )(       ) 

 (      )    (      )    

  (    )    (9  +2  ) = 2   + 9             . 

Finally, L  3   + 2   + 3D + 2    and 

     (3   + 2   + 3D + 2)   = 3(6) + 2(6t) + 3(3  ) + 2   

= 2   + 9   + 12t + 18. 

Now let L     
 +   

   +       +   , where                 are 

Constants, and let L(r)      
 +   

   + +     +   be the polynomial in r 

obtained from L by formally replacing D by r,    by   , ,    by    let 

  ,        be the roots of the polynomial equation L(r) = 0. Then L(r) may be 

written in the factored form 

L(r) =   (     )(    ) (    ). 

Now formally replacing r by D in the right member of this identity, we may 

express the operator L      
 +   

   +       +    in the factored form 

L =   (     )(    ) (    ) 

We thus observe that linear differential operators with constant coefficients can 

be formally multiplied and factored exactly as if they were polynomials in the 

algebraic quantity. 

C. an Operator Method for linear Systems with Constant Coefficients 

We consider a linear system of the form 

            ( ) 

       (2.11) 

            ( ) 

Where            and    are linear differential operators with constant 

coefficients. 

That is,   ,   ,   , and    are operators of the forms 
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 +   

   +       +   

       
 +   

   +       +   

        +      +       +   

       
 +   

   +       +   

Where the a’s, b’s,  ’s, and  ’s are constants.  

A simple example of a system which may be expressed in the form (2.11) is 

provided by 

2
  

  
 - 2

  

  
 - 3x = t 

2
  

  
 + 2

  

  
 + 3x +8y = 2 

Introducing operator notation this system takes the form 

(      )                              

(      )    (      )       

This is clearly of the form (2.11), where     2D - 3,      -2D,     2D + 3, 

and      2D + 8. 

Returning now to the general system (2.11), we apply the operator    to the first 

equation of (2.11) and the operator     to the second equation of (2.11), 

obtaining 

      +       =      

      +       =      

We now subtract the second of these equations from the first. Since       = 

      

we obtain 

      -       =      -      

Or                                                                                                              (2.12) 

(     -     )  =      -      
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The expression      -      in the left member of this equation is itself a linear 

differential operator with constant coefficients. We assume that it is neither zero 

nor a nonzero constant and denote it by   . If we further assume that the 

functions    and    are such that the right member      -      of (2.12) exists, 

then this member is some function, say   , of t. Then Equation (2.12) may be 

written 

     =    .                                                              (2.13) 

Equation (2.13) is a linear differential equation with constant coefficients in the 

single dependent variable x. We thus observe that our procedure has eliminated 

the other dependent variable y. We now solve the differential equation (2.13) for 

x using the methods developed in Chapter 4[in book 1]. Suppose Equation 

(2.13) is of order N. Then the general solution of (2.13) is of the form 

x =      +      +   +      +   ,                         (2.14) 

 Where            are N linearly independent solutions of the homogeneous 

linear equation     = 0,   ,    ,  ,    are arbitrary constants, and    is a 

particular solution of     =    . 

We again return to the system (2.11) and this time apply the operators     and 

    to the first and second equations, respectively, of the system. We obtain 

      +       =      

      +       =      

Subtracting the first of these from the second, we obtain 

(     -     )  =      -     . 

Assuming that    and    are such that the right member      -      of this 

equation exists, we may express it as some function, say   , of t. Then this 

equation may be written 

    =   ,                                                                     (2.15) 

Where    denotes the operator      -     . Equation (2.15) is a linear 

differential equation with constant coefficients in the single dependent variable 

y. This time we have eliminated the dependent variable x. solving the 

differential equation (2.15) for y, we obtain its general solution in the form 

y =      +      +   +      +   ,                           (2.16) 
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Where            are the N linearly independent solutions of     = 0(or 

   =0) that already appear in (2.14),            are arbitrary constants, and 

   is a particular solution of     =   . 

We thus see that if x and y satisfy the linear system (2.11), then x satisfies the 

single linear differential equation (2.13) and y satisfies the single linear 

differential equation (2.15). Thus if x and y satisfy the system (2.11), then x is of 

the form (2.14) and y is of the form (2.16). However, the pairs of functions 

given by (2.14) and (2.16) do not satisfy the given system (2.11) for all choices 

of the constants                     . That is these pairs (2.14) and (2.16) 

do not simultaneously satisfy both equations of the given system (2.11) for 

arbitrary choices of the 2N constants                     . 

In other words, in order for x given by (2.14) and y given by (2.16) to satisfy the 

given system (2.11), the 2N constants                       Cannot all be 

independent but rather certain of them must be dependent on the others. It can 

be shown that the number of independent constants in the so-called general 

solution of the linear system(2.11) is equal to the order of the operator      - 

     obtained from the determinant 

|
    

    
| 

of the operator “coefficients” of x and y in (2.11), provided that this determinant 

is not zero. We have assumed that this operator is of order N Thus in order for 

the pair (2.14) and (2.16) to satisfy the system (2.11) only N of the 2N constants 

in this pair can be independent. The remaining N constants must depend upon 

the N that are independent. In order to determine which of these 2N constants 

may be chosen as independent and how the remaining N then relate to the N so 

chosen, we must substitute x as given by (2.14) and y as given by (2.16) Into the 

system (2.11).  

  This determines the relations that must exist among the constants 

                      in order that the pair (2.14) and (2.16) constitute the 

so-called general solution of (2.11). Once this has been done, appropriate 

substitutions based on these relations are made in (2.14) and/or (2.16) and then 

the resulting pair (2.14) and (2.16) contain the required number N of arbitrary 

constants and so does indeed constitute the so-called general solution of system 

(2.11). 

We now illustrate the above procedure with an example. 
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Example 2.3. 

Solve the system 

 
  

  
 -  

  

  
                                                            

 
  

  
 +  

  

  
                                            (2.17) 

We introduce operator notation and write this system in the form 

(      )                                                   

(      )    (      )                                            (    )  

We apply the operator (2D + 8) to the first equation of (2.18) and the operator 

2D to the second equation of (2.18), obtaining 

(      )(      )    (      )       (      )   

  (      )      (      )    (  )   

Adding these two equations, we obtain  

 (      )(      )      (      )     (      )    (  )  

Or (           )                                     (    ) 

or, finally (        )x = t + 
 

 
.  

The general solution of the differential equation (2.19) is 

      
      

     
 

 
   

    

    
                                  (    ) 

We now return to the system (2.18) and apply the operator (      ) to the first 

equation of (2.18) and the operator (   —   ) to the second equation of (2.18). 

We obtain 

(      )(      )    (      )      (      )   

(      )(      )    (      )(      )    (      )   

Subtracting the first of these equations from the second, we have 
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 (      )(      )    (      )       (      )    (      )  

Or             

(         —  )                                             (    ) 

Or, finally 

 (        )    
 

 
    

The general solution of the differential equation (2.21) is 

       
       

      
 

 
   

 

  
    

Thus if x and y satisfy the system (2.17), then x must be of the form(2.20) and y 

must be of the form(2.22) for some choice of the constants   ,   ,   ,   .The 

determinate of the operator ''coefficients'' of x and y in (2.18) is 

|
       
        

|              

Since this of order two, the number of independent contents in the general 

solution of the system (2.17) must also be two. Thus in order for the pair (2.20) 

and (2.22) to the satisfy the system (2.17) must also be two of the four constants 

         and    can be independent. In  order to determine the necessary 

relations which must exist among these constants, we substitute   as given by 

(2.20) and   as given by (2.22) into the system (2.17). substituting into the first 

equation of (2.17), we have  

[    
      

    
 

 
]  [    

      
    

 

 
]

 [    
      

      
  

  
]    

Or 

(       ) 
  (        ) 

       

Thus in order that the pair (2.20) and (2.22) satisfy the first equation of the 

system (2.17) we must have  

 



25 

           

                                                                                (    ) 

Substituting of   and   into the second equation of the system (2.17) will lead to 

relations equivalent to (2.23). Hence in order for the pair (2.20) and (2.22) to 

satisfy the system (2.17) , the relations (2.23) must be satisfied. Two of the four 

constants in (2.23) must be chosen as independent. If we chose    and    as 

independent, then we have  

    
 

 
          

 

 
    

Using these values for    and    in (2.22), the resulting pair (2.20) and (2.22) 

constitute the general solution of the system (2.17). that is, the general solution 

of (2.17) is given by  

     
     

    
 

 
  

  

  
  

   
 

 
   

  
 

 
   

    
 

 
  

 

  
  

Where    and    are arbitrary constants. If we had chosen    and    as the 

independent constants in (2.23), then the general solution of the system (2.17) 

would have been written  

       
  

 

 
   

    
 

 
  

  

  
  

     
     

    
 

 
  

 

  
  

An Alternative Procedure 

Here we present an alternative procedure for solving a linear system of the form  

          ( )                                   

          ( )                         (    ) 

Where                 are linear differential operators with constant 

coefficient this alternative procedure beings in exactly the same way as the 

procedure already described. That is, we first apply the operator    to the first 
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equation of (2.11) and the operator    to the second equation of (2.11), 

obtaining  

                  

                  

We next subtract the second from the first, obtaining  

(         )                                                (    ) 

Which, under the same assumptions as we previously made at this point, may be 

written  

                                                                                    (    ) 

Then we solve tis single linear differential equation with constant coefficients in 

the single dependent variable  . Assuming its order is  , we obtain its general 

solution in the form  

                                                (    ) 

Where            are   linearly independent solutions of the homogenous 

linear equation                  are   arbitrary constants, and    is 

particular solution of         

   Up to this point, we have indeed proceeded just exactly as before. However we 

now return to system (2.11) and attempt to eliminate from it all terms which 

involve the derivatives of the other dependent variable  . In other words,  we 

attempt to obtain from system (2.11) a relation   which involves the still 

unknown   but none the derivatives of  . This relation   will involve   and/or 

certain of the derivatives of  ; but   is given by (2.14) and its derivatives can 

readily be found from (2.14). Finding these derivatives of   and substituting 

them and the know   itself the relation  , we see that the result is merely a 

single linear algebraic equation in the one unknown  . Solving it, we thus 

determine   without the need to find (2.15) and (2.16) or to relate the arbitrary 

constants. 

    As we shall see, this alternative procedure always applies in an easy straight 

for wean manner if the operators                 are all of the first order. 

However, for system involving one or more higher-order operators, it is 

generally difficult it eliminate all the derivatives of  . 
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  We now give an explicit presentation of the procedure for finding   when 

                are all first-order operators. 

Specifically, suppose  

           

           

           

           

Then (2.11) is  

(      )  (      )    ( )  

(      )  (      )    ( ) 

Multiplying the first equation of (2.24) by    and the second by     and adding, 

we obtain  

 (         )  (         )   (         )      ( )      ( ) 

Note that this involves   but none of the derivatives of  . From this, we at once 

obtain  

  
(         )   (         )      ( )      ( )

         
      (    ) 

Assuming            . Now   is given by (2.14) and    may be 

           (    )                  differentiation. Then substituting these 

known expressions for   and    into (2.25) , we at once obtain   without the 

need of obtaining (2.15) and (2.16) and hence without having to determine any 

relations between constants    and   (         ), as in the original 

procedure. 

   We illustrate the alternative procedure by applying it to the system of Example 

2.3. 
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Example 2.4. 

Solve the system  

 
  

  
  

  

  
       

 
  

  
  

  

  
                                                             (    ) 

Of example 2.3 by the alternative procedure which we have just described. 

   Following this alternative procedure, we introduce operator notation and write 

the system (2.17) in the form  

(    )                                                                        

(    )  (    )                                                     (    ) 

Now we eliminate  , obtain the differential equation  

       )                                                             (    ) 

For   and find its general solution  

     
     

    
 

 
  

  

  
                                               (    ) 

Exactly as in Example 2.3. 

 We now proceed using the alternative method. We first obtain from (2.18) a 

relation which involves the known   but not derivative   . The system (2.18) of 

this example is so very simple that we do so by merely adding the equation 

(2.18). doing so, we at once obtain  

            

Which dose indeed involve   but not the derivative   , as desired. From this, 

we at once find  

     (       )                                                           (    ) 

From (2.20), we find  
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Substituting into (2.26), we get  

  
 

 
(        

       
    

 

 
) 

  
 

 
   

  
 

 
   

    
 

 
  

 

  
  

Thus the general solution of the system may be written  

     
     

    
 

 
  

  

  
  

   
 

 
   

  
 

 
   

   
 

 
  

 

  
  

Where           are arbitrary constants. 
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2.2 BASIC THEORY OF LINEAR SYSTEMS IN NORMAI FORM: 

TWO EQUATIONS IN TWO UNKNOWN FUNCTIONS 

A. Introduction: 

We shall begin by considering a basic type of system of two linear differential 

equations in two unknown functions. This system is of the form, 

  

  
     ( )      ( )     ( ), 

                                                                                                   (    ) 

  

  
     ( )      ( )     ( ). 

We shall assume that the functions   ,    ,    ,    ,    , and    are all 

continuous on a real interval a   t   b. If   (t) and   (t) are zero for all t, then 

the system (2.27) is called homogeneous; otherwise, the system is said to be non 

homogeneous. 

Example 2.6. 

The system 

  

  
                                                                                                        

  

  
      .                        (2.28) 

Is homogeneous; the system 

  

  
                                                                                 

  

  
        .             (2.29) 

Is non homogeneous. 

DEFINITION: 

By a solution of the system (2.27) we shall mean an ordered pair of real 

functions (f , g),      (2.30)  

Each having a continuous derivative on the real interval a   t   b, such that 
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  ( )

  
     ( ) ( )      ( ) ( )     ( ), 

  ( )

  
     ( ) ( )      ( ) ( )     ( ), 

For all t such that a   t   b. In other words, 

      ( )                                                                              

      ( )                                                                   (    ) 

Simultaneously satisfy both equations of the system (2.27) identically for 

 a   t b. 

Notation. W shall use the notation 

      ( )                                                                         

      ( )                                                               (    ) 

to denote a solution of the system (2.27) and shall speak of “the solution 

      ( )  

      ( )  

Whenever we do this, we must remember that the solution thus referred to is 

really the ordered pair of functions (f , g ) such that (2.31) simultaneously satisfy 

both equations of the system (2.27) identically on a   t   b. 

 Example 2.7. 

The ordered pair of functions defined for all t by (    ,      ), which we denote 

by 

                                                                          

         .                                               (    ) 

is a solution of the system (2.24). That is, 

 

       , 
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         .              (2.32) 

Simultaneously satisfy both equations of the system (2.28). Let us verify this by 

directly substituting (2.32) into (2.28). We have 

 

  
 (   ) = 2(   )   (     ), 

 

  
 (     ) = 3(   ) + 6(      ) 

   

                

                   

Hence (2.32) is indeed a solution of the system (2.28).  Theorem 2.1 is the basic 

existence theorem dealing with the system (2.27).  

THEOREM (2.1). 

Hypothesis. Let the functions    ,    ,   ,    ,      and    in the system (2.27) 

all be continuous on the interval a   t   b. Let    be any point of the interval a 

  t  b and let    and    be two arbitrary constants. 

Conclusion. There exists a unique solution 

     ( ) 

     ( )  

of the system (2.27) such that 

 (  )           (  )      , 

and this solution is defined on the entire interval a   t   b. 

Example 2.8. 

Let us consider the system (2.29). The continuity requirements of the hypothesis 

of Theorem (2.1) are satisfied on every closed interval a   t   b. Hence, given 

any point    and any two constants    and   , there exists a unique solution 

   ( )    ( ) of the system (2.29) that satisfies the conditions  (  )  
      (  )     . For example, there exists one and only one solution    
  ( )      ( )            ( )       ( )        
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B. Homogeneous Linear Systems 

We shall now assume that   ( ) and   ( ) in the system (2.27) are both zero for 

all and consider the basic theory of the resulting homogeneous lineal system 

  

  
 =    ( )      ( )                                                       

  

  
 =    ( )      ( )                                      (2.33) 

We shall see that this theory is ana1oous to that of the single nth-order 

homogeneous linear differential equation presented in Section 4.1B[in book b1] 

Our first result concerning the system (2.33) is the following. 

THEOREM (2.2) 

 Let 

  =   ( )                 ,                 =   ( )                            (    ) 

  =   ( )                 ,                =   ( )                                          

Be two solutions of the homogeneous linear system (2.33). Let    and    be two 

arbitrary constants. 

Then 

  =     ( )       ( )                                                                      

  =     ( )       ( )                                                 (    ) 

is also a solution of the system (2.33).  

DEFINITION: 

The solution (2.35) is called a linear combination of the solutions (2.34). This 

definition enables us to express Theorem 2.2 in the following alternative form. 

THEOREM (2.2) RESTATED 

Any linear combination of two solutions of the homogeneous linear system 

(2.33) is itself a solution of the system (2.33). 
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Example 2.9. 

We have already observed that 

  =                                               =     

and 

  =                                          =      

Are solutions of the homogeneous linear system (2.28). Theorem 2.2 tells us that 

  =    
       

   

  =      
       

   

Where    and    are arbitrary constants, is also a solution of the system (2.28). 

For example, if      and        we have the solution 

  =           , 

  =             . 

 

DEFINITION: 

Let 

  =   ( )                                       =   ( ) 

and 

  =   ( )                                       =   ( ) 

Be two solutions of the homogeneous linear system (2.33). These two solutions 

are linearly dependent on the interval a   t   b if there exist constants    and   , 

not both zero, such that 

    ( )       ( )                                                                   

    ( )       ( ) = 0                            (    ) 

For all t such that          . 
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DEFINITION: 

Let 

  =   ( )                                       =   ( ) 

and 

                              =   ( )                                       =   ( ) 

Be two solutions of the homogeneous linear system (2.33). These two solutions 

are linearly independent on a   t   b if they are not linearly dependent on a   t 

 b. That is, the solutions      ( ),      ( ) and      ( ),      ( ) are 

linearly independent on a   t   b 

    ( )       ( )                                                                    

    ( )       ( ) = 0                                           (2.37) 

For all t such that a   t   b implies that 

   =    =0. 

Example 2.10. 

The solutions 

  =                                                    =      

and 

  =                                                 =       

Of the system (2.28) are linearly dependent on every interval a   t   b. For in 

this case the conditions (2.36) become 

 

   
        

                                                                  

     
        

                                          (2.38) 

And dearly there exist constants    and   , not both zero, such that the 

conditions (2.38) hold on a   t   b. For example, let      and       . 
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On the other hand, the solutions 

  =                                                    =     

and 

  =                                                 =     

Of system (2.28) are linearly independent on a   t   b. For in this case the 

conditions (2.37) are 

   
       

     

     
       

    . 

If these conditions hold for all t such that a   t   b, then we must have           

       . 

We now state the following basic theorem concerning sets of linearly 

independent solutions of the homogeneous linear system (2.33). 

THEOREM (2.3). 

There exist sets of two linearly independent solutions of the homogeneous linear 

system (2.33).Every solution of the system (2.33) can be written as a linear 

combination of any two linearly independent solutions of (2.33). 

Example 2.11. 

We have seen that 

  =                                                    =     

and 

                                     =                                                 =       

Constitute a pair of linearly independent solutions of the system (2.28). This 

illustrates the first part of Theorem (2.3). The second part of the theorem tells us 

that every solution of the system (2.28) can be written in the form 
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Where    and    are suitably chosen constants. 

We now give an analogous definition of general solution for the homogeneous 

linear system (2.33). 

DEFINITION: 

Let 

  =   ( )                                       =   ( ) 

amd 

  =   ( )                                       =   ( ) 

Be two linearly independent solutions of the homogeneous linear system (2.33). 

Let    and    be two arbitrary constants. Then the solution 

        ( )       ( ) 

        ( )       ( ) 

Is called a general solution of the system (2.33). 

Example 2.12. 

Since 

  =                                                    =     

and 

  =                                                 =      

Are linearly independent solutions of the system (2.28), we may write the 

general solution of (2.28) in the form 

       
       

   

         
       

   

Where   , and    are arbitrary constants. 

THEOREM ( 2.4). 

Two solutions 
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  =   ( )  ,   =   ( ) 

and 

  =   ( )  ,    =   ( ) 

Be two solutions of the homogeneous linear system (2.33). A necessary and 

sufficient condition that these two solutions be linearly independent on a   t b. 

Is that is determinant 

                                                  ( ) =  |
  ( )   ( )
  ( )   ( )

| 

be different from zero for all t such that a   t   b. 

Concerning this determinant, we also state the following result. 

THEOREM (2.5). 

The determinant  ( ) of theorem (2.4) either is identically zero or vanishes for 

no t on the interval a   t   b. 

Example 2.13. 

Let us employ Theorem 2.4 to verify the linear independence of the solutions 

  =                                                    =     

and 

  =                                                 =      

of the system (2.28). We have 

                                         ( ) = |       

         |  =        . 

on every closed Interval a   t   b. Thus by Theorem 2.4 the two solutions are 

indeed linearly independent on a   t   b. 

C. Nonhomogeneous linear Systems 

Let us now return briefly to the nonhomogeneous system (2.27). A theorem and 

a definition, illustrated by a simple example, will suffice for our purposes here. 
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THEOREM (2.6). 

 Let 

     ( ) 

     ( ) 

be any solution of the nonhomogeneous system (2.27), and let 

     ( )  

   ( )  

be any solution of the corresponding homogeneous  system (2.33) 

 Then 

   ( )      ( ) 

   ( )      ( ) 

is also a solution of the nonhomogeneous system (2.27). 

DEFINITION: 

Let 

     ( ) 

     ( ) 

be any solution of the nonhomogeneous system (2.27), and let 

  =   ( )  ,    =   ( ) 

and 

  =   ( )  ,    =   ( ) 

Be two linearly independent solutions of the corresponding homogeneous 

system (2.33), let    and    be two arbitrary constants. Then the solution 

       ( )       ( )     ( ) 

       ( )       ( )     ( ) 
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will be called a general solution of the nonhomogeneous system (2.27). 

Example 2.14. 

We have the system (2.29),and 

       

      

is a solution of the nonhomogeneous system (2.29). The corresponding 

homogeneous system is the system (2.28), and we have already seen that  

  =      ,     =           

 and 

  =        ,      =      

are Linearly independent solutions of this homogeneous system. Theorem 2.6 

tells us for example, that 

             

            

Is a solution of the nonhomogeneous system (2.29). From the preceding 

definition we see that the general solution of (2.29) may be written in the form 

       
       

         

         
       

      

Where    and    are arbitrary constants. 
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2.3 HOMOGENEOUS LINEAR SYSTEMS WITH CONSTANT 

COEFFICIENTS: TWO EQUATIONS IN TWO UNKNOWN 

FUNCTIONS: 

A. Introduction 

In this section we shall be concerned with the homogeneous linear system 

  

  
 =                                                                         , 

  

  
 =                                                         (2.40) 

Where the coefficients  ,   ,   ,    are real constants. We seek solutions of this 

system.Remembering the analogy that exists between linear systems and single 

higher-order linear equations, we might now attempt to find exponential 

solutions of the system (2.40). Let us therefore attempt to determine a solution 

of the form 

                                                                                 

                                                                 (2.41) 

where A, B, and   are constants. If we substitute (2.41) into (2.40), we obtain 

      =                

      =                

These equations lead at once to the system 

(     )  +                                                                    

    (     )  = 0                                          (2.42) 

in the unknowns A and B. This system obviously has the trivial solution A = B = 

0. 

But this would only lead to the trivial solution x = 0, y = 0 of the system (2.40). 

Thus we seek nontrivial solutions of the system (2.42). A necessary and 

sufficient condition that this system have a nontrivial solution that the 

determinant 
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                                           |
      

      
| = 0 (2.43) 

Expanding this determinant we are led at once to the quadratic equation 

    (   +   )   + (          ) = 0                       (2.44) 

In the unknown  . This equation is called the characteristic equation associated 

with the system (2.40). Its roots    and    are called the characteristic roots. If 

the part (2.41) is to be a solution of the system (2.40), then λ in (2.41) must be 

one of these roots. Suppose 

     . Then substituting       into the algebraic system (2.42), we may 

obtain a nontrivial solution   ,    of this algebraic system. With these values 

  ,    we obtain the nontrivial solution 

     
   

     
   

of the given system (2.40). 

Three cases must now be considered: 

1. The roots    and    are real and distinct. 

2. The roots    and     are real and equal. 

3. The roots    and     are conjugate complex. 

B. Case 1. The Roots of the Characteristic Equations (2.44) are Real and 

Distinct 

If the roots    and    of the characteristic equation (2.44) are real and distinct, it 

appears that we should expect two distinct solutions of the form (2.41), one 

corresponding to each of the two distinct roots. This is indeed the case. 

Furthermore, these two distinct solutions are linearly independent. We 

summarize this case in the following theorem. 

THEOREM 2.7. 

 Let the roots    and    , of the characteristic equation (2.44) associated with the 

system (2.40) are real and distinct. 
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Then the system (2.40) has two nontrivial linearly independent solutions of 

the form 

     
                                                                

    

and 

     
                                                                 

    

where          and    are definite constants. The general solution of the 

system (2.40) may thus be written 

        
          

    

        
          

    

Where    and    are arbitrary constants. 

Example 2.15. 

  

  
 =                                                                                        

  

  
 =                                                                   (2.45) 

We assume a solution of the form (2.41): 

                                                                                    

                                                                 (2.46) 

Substituting (2.46) into (2.45) we obtain 

      =              

      =             

and this leads at once to the algebraic system 

(    )                                                                       

   (    )  = 0                                          (2.47) 

in the unknown  . For nontrivial solutions of this system we must have 
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                                            |
      

     
| = 0 

Expanding this we obtain the characteristic equation 

             

Solving this, we find the roots    = 3,    = 4. 

Setting    =    = 3 in (2.47), we obtain 

             

             

A simple nontrivial solution of this system is obviously A = B = 1. With these 

values of A, B, and   we find the nontrivial solution 

                                                                                               

                                                                             (2.48) 

Now setting     in (2.47), we find 

             

             

A simple nontrivial solution of this system is A = 3, B = 2. Using these values of 

A, B and   we find the nontrivial solution 

                                                                                               , 

      .                                                                     (2.49) 

By Theorem 2.7 the solutions (2.48) and (2.49) are linearly independent (one 

may check this using Theorem 2.4) and the general solution of the system (2.45) 

may be written 

      
        , 
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Where   and   are arbitrary constants. 

C. Case 2 The Roots of the Characteristic Equation (2.44)  are Real and 

Equal  

if the two roots of the characteristic equation (2.44) are real and equal, it would 

appear that we could find only one solution of the form (2.41). Except in the 

special sub case in which                  this is indeed true. In 

general, how shall we then proceed to find a second, linearly independent 

solution? Recall the analogous situation in which the auxiliary equation 

corresponding to a single nth-order linear equation has a double root. This 

would lead us to expect a second solution of the form  

        

        
However, the situation here is not quite so simple .We must actually seek a 

second solution of the form 

  (      ) 
                                                           

  (      ) 
  .                         (2.50) 

 We shall illustrate this in Example 2.17. We first summarize Case 2 in the 

following theorem. 

THEOREM 2.9. 

  If the roots    and    of the characteristic equation (2.44) associated with the 

system (2.40) are real and equal. Let   denote their common value. Further 

assume that system (2.40) is not such that                . 

Then the system (2.40) has two linearly independent solutions of the form  

  

                                                                   (      ) 
   

 and                                  

                                                                         (      ) 
    

where       ,    ,    , and     are definite constants,   and    are not both 

zero, and 
  

  
⁄      ⁄ . The general solution of the system (2.40) may thus be 

written 
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            (      ) 
   

            (      ) 
   

 Example 2.16. 

  

  
                                                                             

  

  
                                                                 (    ) 

We assume a solution of the form (2.41): 

                                                                                

      .                          (2.52) 

Substituting (2.52) into (2.51) we obtain 

                  

                . 

       And this leads at once to the algebraic system 

(   )                                                                                                  

  (   )   .                                 (2.53) 

In the unknown  . For nontrivial solutions of this system we must have 

|
     

    
|                                                    

  Expanding this we obtain the characteristic equation 

                                                                              

(   )   .                                           (2.54) 

thus the characteristic equation (2.54) has the real and equal roots 3, 3. Setting   

= 3 in (2.53), we obtain 

       

       
A simple nontrivial solution of this system being     , we obtain the 

nontrivial solution  
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of the given system (2.50). 

Since the roots of the characteristic equation are both equal to 3, we must seek a 

second solution of the form (2.50), with   = 3. That is, we must determine   , 

  ,   , and    (with    and    not both zero) such that 

  (      ) 
                                                                    

  (      ) 
  .                         (2.56) 

 

is a solution of the system (2.51). Substituting (2.56) into (2.51), we obtain  

(           ) 
    (      ) 

   (   +  ) 
   

(           ) 
   (      ) 

    (   +  ) 
   

These equations reduce at once to, 

(     )  (        )    

(     )  (        )    
In order for these equations to be identities, we must have  

(     )                                                                          

(     )                                                             (    ) 

Thus in order for (2.56) to be a solution of the system (2.51), the constants   , 

  ,  

  , and    must be chosen to satisfy the equations (2.57). From the equations 

       , we see that      . The other two equations of (2.57) show that 

   and    must satisfy 

           .                                                            (2.58) 

 we may choose any convenient nonzero values for    and   . We choose    = 

     . Then (2.58) reduces to        , and we can choose any 

convenient values for    and    that will satisfy this equation. We choose 

    ,     . We are thus led to the solution  
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  (   )                                                                

      .                                                     (2.59) 

By Theorem 2.9 the solutions (2.55) and (2.59) are linearly independent. We 

may thus write the general solution of the system (2.51) in the form  

     
     (   )     

     
       

    

where    and    are arbitrary constants.  

 D. Case 3. The Roots of the Characteristic Equation (2.44)are Conjugate 

Complex 

If the roots    and    of the characteristic equation (2.44) are the conjugate 

complex numbers a + bi and a - bi, then we still obtain two distinct solutions 

     
   

(    )                            ,                   
   

(    )                       

     
   

(    )                            ,                   
   

(    )             (2.60) 

Of the form (2.41), one is corresponding to each of the complex roots. However, 

the solutions (2.60) are complex solutions. In order to obtain real solutions in 

this case we consider the first of the two solutions (2.60) and proceed as follows: 

We first express the complex constants   
  and   

  in this solution in the forms 

  
 =    + i   and   

  =    + i   , where  ,              are real. We then 

apply Euler’s formula     =      +       and express the first solution (2.60) 

in the form   

  (       )    (             ). 

  (       )    (             ) 

Rewriting this, we have 

       (                )    (                )                   

       (                )    (                ) .      (2.59) 

It can be shown that a pair [  (t) + i  (t),   (t) + i  (t)] of complex functions is 

a solution of the system (2.40) if and only if both the pair [  (t),   (t)] consisting 
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of their real parts and the pair [  (t),   (t)] consisting of their imaginary parts 

are solutions of (2.40). Thus both the real part 

      (                )                                                         

      (                ).                                      (2.62) 

And the imaginary part 

      (                )                                                   

      (                ).                                    (2.63) 

of the solution (2.61) of the system (2.40) are also solutions of (2.40). 

Furthermore, the solutions (2.62) and (2.63) are linearly independent. We verify 

this by evaluating the determinant (2.39) for these solutions. We find 

 ( )   |
   (                )    (                )

   (                )     (                )
|    (2.64) 

                                    =     (          ) 

Now, the constant   
  is a normal multiple of the constant   

 . If we assume 

that 

           = 0, then it follows that   
   is a real multiple of   

 .  , which 

contradicts the result stated in the previous sentence. Thus              0 

and     determinant  t in (2.64) is unequal to zero. Thus by Theorem 2.4 the 

solutions (2.62) and (2.63) are indeed linearly independent. Hence a linear 

combinationof these two real solutions provides the general solution of the 

system (2.40) in this case. There is no need to consider the second of the two 

solutions (2.60). We summarize the above results in the following theorem; 

THEOREM 2.9. 

If the roots    and    of the characteristic equation (2.44) associated with the 

system (2.40) are the conjugate complex numbers a ± bi. 

Then the system (2.40) has two real linearly independent solutions of the form 

      (                )  ,           (                ) 

And 
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     (                ) ,            (                ) 

where   ,              are definite real constants. The general solution of the 

system (2.40) may thus be written 

         (                )     (                )  

         (                )     (                )  

where    and    are arbitrary constanis. 

Example 2.17. 

  

  
                                                                                   

  

  
                                                            (2.65) 

We assume a solution of the form (2.41) 

                                                                                        

      .                                                         (2.66) 

Substituting (2.66) into (2.65) we obtain 

      =             

      =              

and this leads at once to the algebraic system 

(    )  +                                                                       

    (    )  = 0                                                   (2.67) 

in the unknown  .For nontrivial solutions of this system we must have 

                                           |
(    )  

  (    )
|=0 

Expanding this, we obtain the characteristic equation  

            
The roots of this equation are the conjugate complex numbers 2   3i.  

Setting        in (2.67), we obtain 
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(    )        

    (     )     
A simple nontrivial solution of this system is            . Using these 

values we obtain the complex solution 

    (    )   

  (     ) (    ) .  

of the given system (2.65). Using Euler’s formula this takes the form 

      (      )   (      )  

       (             )   (            ) .  

Since both the real and imaginary parts of this solution of system (2.65) are 

themselves solutions of (2.65), we thus obtain the two real solutions 

                                                                                      

      (            )                 (2.68) 

and 

 

                                                                                    

     (            )                                      (2.69) 

 Finally, since the two solutions (2.68) and (2.69) are linearly independent we 

may write the general solution of the system (2.63) in the form  

                       , 

         (             )    (            ) . 

where    and    are arbitrary constants. 
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2.4 BASIC THEORY OF LINEAR SYSTEMS IN NORMAL FORM: N 

EQUATIONS IN N UNKNOWN FUNCTIONS. 

A. Introduction  

We consider the normal form of the system of n first-order differential equation 

in n unknown functions           . As noted in section 2.1 A[in book No.1], 

this system is of the form  

   

  
     ( )      ( )        ( )     ( )                               

   

  
     ( )      ( )        ( )     ( )              (    ) 

   

  
     ( )      ( )        ( )     ( )  

We shall assume that all of the functions defined by    ( )             

        and   ( )            are continuous on a real interval        If 
all   ( )              for all t, then the system(2.70) is called 

homogeneous. Otherwise, the system is called nonhomogeneous. 

Example 2.18.  

The system 

 
   

  
                                           

   

  
                                     

 
   

  
                                         

Is a homogeneous linear system of the type (2.70)with n=3 and having constant 

coefficient. The system  
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Is a nonhomogeneous linear system of the type (2.70) which n=3, the 

homogeneous terms being              and 2, respectively we note the 

system (2.70)can be written more compactly as 
   

  
 ∑    ( )    

   

  ( )  (         )  

We shall now proceed to express the system in an even more compact manner 

using vectors and matrices. We introduce the matrix A defined by  

 ( )  (

      
    

      
    

 
   

 
   

  
    

)                          (    ) 

And the vectors F and x defined respectively by 

 ( )  (

  ( )
  ( )

 
  ( )

)                       (

  

  

 
  

)                              (2.74) 

Then first by definition of the derivative of vector, and second by multiplication 

of matrix by a vector followed by addition of vectors, we have respectively  

  

  
 

(

 
 
 
 

   

  
   

  
 

   

  )

 
 
 
 

 

And 
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 ( )   ( )  (

   ( )    ( )     ( )

   ( )    ( )     ( )
 

   ( )
 

   ( )
         

    ( )

)(

  

  

 
  

)  (

  ( )
  ( )

 
  ( )

) 

 (

   ( )      ( )        ( )     ( )

   ( )      ( )        ( )     ( )

   ( )      ( )        ( )     ( )
) 

Comparing the components of 
  

  
 with the left members of (2.73), we see that 

system (2.70) can be expressed as the linear vector differential equation 
  

  
  ( )   ( )                                (2.74) 

conversely, if A(t) is given by (2.73) and F(t) and x are given by (2.74), then we 

see that the vector differential equation(2.74) can be expressed as the system 

(2.73). 

  Thus, the system (2.73) and the vector differential equation (2.74) both express 

the same relations and so are equivalent to one another. We refer to (2.74) as the 

vector differential equation corresponding to the system (2.73), and we shall 

sometimes call the system (2.73) the sealar from the vector differential equation 

(2.74). hence forth throughout this section, we shall usually write the system 

(2.73) as the corresponding vector differential equation(2.74). 

Example 2.19. 

The vector differential equation corresponding to the nonhomogeneous  

system(2.74) of example 2.26 is 

  

  
  ( )   ( ) 

 ( )  (
    

       
     

)    (

  

  

  

)       ( )  (
     
      

 
) 

Thus we can write this vector deferential equation as 

  

  
 (

    
       
     

)  (
     
      

 
) 
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Where x is the vector with components          as given above 

DIFINITION: 

  By a solution of the vector deferential equation (2.74)we mean as nx1 column 

vector function  

  (

  

  

 
  

)                                      (    ) 

Whose components            each have a continuous derivative on the real 

interval      , which is such that 

  ( )

  
  ( ) ( )   ( )            (    ) 

For all t such that      . In other words,    ( ) satisfies the vector 

deferential equation (2.72) identically on      . That is, the components 

           of   are such that  

     ( ) 

     ( ) 
 

     ( ) 

                                      (    ) 

Simultaneously satisfy all n equation of the scalar form (2.70) of the vector 

differential equation (2.72) for      . Hence we say that a solution of the 

system (2.70) is an order of n real function           , each having 

continuous on      , such that 

     ( ) 

     ( ) 
 

     ( ) 

                                      (    ) 

Simultaneously satisfy all n equation of the system (2.70) for      . 

Example 2.20. 

The vector differential equation corresponding to the homogeneous linear 

system 
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                         (    ) 

  

  
 (

    
       
     

)   where   (

  

  

  

)                         (2.76) 

The column vector function   is defined by 

 ( )  (
   

     

    

) 

Is a solution of the vector differential equation (2.76) on every real interval 

     , for    ( ) satisfies (2.76) identically on      , that is 

(
    

     

     

)  (
    

       
     

)(
   

     

    

) 

      

        

       

                                                           (    ) 

Simultaneously satisfy all three equation of the system (2.71) for      , and 

so we call (2.77) a solution of the system. 

THEOREM (2.10). 

Consider the vector differential equation  

  

  
  ( )   ( )            (    ) 

Corresponding to the linear system (2.70) of n equation in n unknown functions. 

Let the components    ( ),          ,          , of the matrix A(t) and 

the components   ( ),          , of the vector F(t) all be continuous on the 

real interval      . Let to be any point of the interval      , and let 
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  (

  

  

 
  

) 

Be an nx1 column vector of any n numbers           . Then there exists a 

unique solution 

  (

  

  

 
  

) 

Of the vector differential equation (2.72) such that 

 (  )                                                       (    ) 

That is  

  (  )     

  (  )     
 

  (  )     

                                                (    ) 

And this solution is defined on the entire interval      . Interpreting this 

theorem in terms of the scalar form of the vector differential equation (2.72), 

that is, the system (2.70), we state the following : under the stated continuity 

hypotheses on the functions     and   , given any point to in the interval  

      and any n numbers           , then there exist a unique solution 

     ( ) 

     ( ) 
 

     ( ) 

 

Such that 

  (  )     

  (  )     
 

  (  )     

                                                     (    ) 

And this solution is defined for all t such that      . 
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B.HOMOGENEOUS LINEAR SYSTEM 

We now assume that all   ( ) = 0,          , for all t in the linear system 

(2.67) and consider the resulting homogeneous linear system 

  
   

  
     ( )      ( )        ( )                                      

   

  
     ( )      ( )        ( )                         (    ) 

    
   

  
     ( )      ( )        ( )                                           

The corresponding homogeneous equation in equation of the form (2.72) for 

which F(t) = 0 for all t and hence is  

  

  
  ( )                                                                                        (    ) 

Throughout reminder of section 2.6[in book No.1] we shall always make the 

following assumption whenever we write or refer to the homogeneous vector 

differential equations (2.81) : we shall assume that (2.81) is the vector 

differential equation corresponding to the homogeneous linear system (2.80) of 

n equation in n unknown function and the components    ( )             

       , of the n n matrix A(t) are all continuous on the real interval     
 . Our first result corresponding equation (2.81) is an immediate consequence of 

theorem 2.10 

COROLLARY TO THEOREM (2.10) 

Consider the homogeneous vector differential equation  

  

  
  ( )                                                                                    (    ) 

Let    be any point of       ; and let 

  (

  

  

 
  

) 
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Be a solution of (2.81) such that  (  )   , that is, such that 

  (  )    (  )      (  )                         (    ) 

Then  (  )    for all t on      ; that is, 

  (  )    (  )      (  )    

For all t on      . 

Proof . 

Obviously   defined by  (  )    for all t on       is a solution of the 

vector differential equation (2.81) which satisfies conditions (2.83). These 

conditions are of the form (2.79), where               and by theorem 

2.10, there is a unique solution of the differential equation satisfying such a set 

of conditions thus   such that  ( )    for all t on       is the only 

solution of (2.81) such that  (  )   . 

THEOREM (2.11) 

A linear combination of m solutions of the homogeneous vector differential 

equation  

  

  
  ( )                                                                   (    ) 

Is also a solution of (2.81). that is, if the vector functions           , are 

solutions of (2.81) and           , are m numbers, then the vector function 

  ∑     

 

   

 

Is also a solution of (2.81). 

Proof. 

We have  

 

  
[∑     ( )

 

   

]  ∑ [
 

  
    ( )]

 

   

 ∑   [
   ( )

  
]
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Now since each    is a solution of (2.81) 

   ( )

  
  ( )  ( ) for          . 

Thus we have  

 

  
[∑     ( )

 

   

]  ∑    ( )  ( )

 

   

 

We now use results A and B of section 1.1 A. First applying result B to each 

term in the right member above, and then applying result A(m-1) times , we 

obtain 

∑    ( )  ( )  ∑  ( ) 
        ( ) 

 
     ( )∑     ( )

 
   . 

Thus we have 

 

  
[∑     ( )

 

   

]   ( ) [∑     ( )

 

   

]   

That is, 

  ( )

  
  ( ) ( ) 

For all t on       thus the linear combination  

  ∑     ( )

 

   

 

is a solution of (2.81). 

In each of the next four theorem we shall be concerned with n vector functions, 

and we shall use the following combination for the n vector function for each of 

the theorems. We let           , be the n vector functions respectively by 
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  ( )  (

   ( )

   ( )
 

   ( )

)    ( )  (

   ( )

   ( )
 

   ( )

)      ( )  (

   ( )

   ( )
 

   ( )

)     (    ) 

Carefully observe the notation scheme. For each vector, the first subscript of a 

component indicates the row of the component in the vector, where as the 

second subscript indicates the vector of which the component is an element. For 

instance,     would be the component occupying the third row of the vector   . 

DEFINITION: 

The n n determinant  

|

          

          

 
   

 
   

 
 

 
   

|                                             (    ) 

Is called the Wronskian of the n vector function           , defined by 

(2.83). we will denote it by W(          ) and its value at t by 

W(          )(t). 

Theorem (2.12) 

If the n vector functions           , defined by (2.83) are linearly dependent 

on      , then their Wronskian W(          )(t) equals zero for all t on 

      

Proof. 

We begin by employing the definition of linear dependence of vector functions 

on an interval: since            are linearly dependent on the  

interval      , there exist n numbers           , not all zero, such that 

    ( )      ( )        ( )    

For all        , now using the definition (2.83) of            and writing 

the proceeding vector relation in the form of the n equivalent relation 

corresponding components, we have 
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     ( )       ( )         ( )     

     ( )       ( )         ( )     

  

     ( )       ( )         ( )     

For all        ,thus, in particular, these must hold in an arbitrary point 

         

Thus , letting      in the preceding n relations, we obtain the homogeneous 

linear algebraic system 

   (  )      (  )        (  )      

   (  )      (  )        (  )      

  

   (  )      (  )        (  )      

In n unknown            since           are not all zero, the determinant of 

coefficients of the preceding system must be zero, by Theorem A of( section 

1.1B) the A is, we must have 

|

   (  )    (  )     (  )

   (  )    (  )     (  )
 

   (  )
 

   (  )
 
 

 
   (  )

|    

But the left member of this is the Wronskian W (          )(  ) thus we 

have 

  (          )(  )    

Since to is an arbitrary point of [a,b], we must have 

  (          )( )     

For all   on      . 
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Example 2.21. 

In Example 1.3 of section 1.1B we saw that the three vector function 

             defined respectively by 

  ( )  (
   

    

    

)     ( )  (
   

    

     

)          ( )  (
   

   

    

) 

Are linearly dependent on any interval      . Therefore, by theorem 2.12, 

their Wronskian must equal zero for all   on      . Indeed, we fined 

 (          )( )  |
         

           

             

|    for all  . 

Theorem 2.13. 

Let the vector function            defined by (2.83) be n solution of the 

homogeneous linear vector differential equation 

  

  
  ( )                                                            (    ) 

If the wronskian W (          )(   )    at some         , then 

            are linearly dependent on      . 

Proof. 

Consider the linear algebraic system 

     ( )       ( )         ( )     

     ( )       ( )         ( )     

  

     ( )       ( )         ( )     

In the n unknown            since the determinant of the coefficients is  

W (          )(  ) and W (          )( )    by hypothesis, this system 

has a non trivial solution by A of section 1.1 B that is, there exist numbers 
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          , not all zero, which satisfy all n equations of system (2.85). these n 

equations are the n corresponding component relation equivalent to the one 

vector relation  

    (  )      (  )        (  )                            (    ) 

Thus there exist numbers           , not all zero, such that (2.86) holds.  

Now consider the vector function   defined by 

 ( )      ( )      ( )        ( )                   (    ) 

For all        .  

Since            are solution of the differential equation (2.81), by theorem 

2.11, the linear combination   defined by (2.87) is also a solution of (2.81). 

Now from (2.86), we see that this solution   is such that  (  )    thus by the 

corollary to theorem 2.10, we must have  ( )    for all        . That is, 

using the definition (2.87), 

    ( )      ( )        ( )    

For all        , where           , are not all zero. Thus by definition 

           are linearly dependent on      . 

Example 2.22. 

Consider the vector functions              defined respectively by 

  ( )  (
   

     

    

)     ( )  (
    

     

     

)          ( )  (
     

    

    

) 

It is easy to verify that              are all solution of the homogeneous linear 

vector differential equation 

  

  
 (

    
       
     

)             (

  

  

  

)                      (    ) 

On every real interval      . Thus, in particular,              are 

solutions of (2.76) on every interval [a,b] containing     . It is easy to see that 
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  (          )( )  |
    

     
     

|    

Thus by theorem 2.13,              are linearly dependent on every [a,b] 

containing 0. Indeed, note that  

  ( )    ( )    ( )    

For all t on every interval [a,b], and recall the definition of linear dependence. 

 

Theorem 2.14. 

Let the vector function            defined by (2.83) be n solutions of the 

homogeneous linear vector differential equation  

  

  
  ( )                                                         (    ) 

On the real interval [a, b]. Then  

Either   (          )( )    for all        , 

Or   (          )( )    for no        . 

Proof. 

Either   (          )( )    for some        , 

Or   (          )( )    for no        . 

If   (          )( )    for some        , then by theorem 2.13, the 

solutions            are linearly dependent on [a, b]; and then by theorem 

2.12   (          )( )    for all        . Thus the Wronskian of 

           either equals zero for all         or equals zero for no        . 

Theorem 2.15. 

Let the vector function             defined by (2.83) be n solutions of the 

homogeneous linear vector differential equation 
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  ( )        (    ) 

On the real interval [a, b]. These n solutions            of (2.81) are linearly 

independent on [a, b] if and only if 

  (          )( )     

For all        . 

 

 

Proof . 

By theorem 2.12 and 2.13, the solutions            are linearly dependent on 

[a, b] if and only if   (          )( )    for all        . Hence, 

           are linearly independent on [a, b] if and only if  

  (          )(  )    for some         . Then by theorem 2.14 

  (          )(  )    for some          if and only if 

   (          )( )    for all        . 

Example 2.23. 

Consider the vector function       and    defined respectively by  

  ( )  (
   

    

    

)     ( )  (
   

     

    

)          ( )  (
    

     

     

) 

It is easy to verify that       and    are all solutions of the homogeneous linear 

vector differential equation  

   

  

  
 (

    
       
     

)             (

  

  

  

)                      (    ) 

On every real interval      . We calculate  
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 (        )( )  |
          

              

             

|          

For all real t. Thus by theorem 2.15, the solutions        and    of (2.76) 

defined by (2.88) are linearly independent on every real interval [a, b]. 

DEFINITION: 

Consider the homogeneous linear vector differential equation 

  

  
  ( )                      (    ) 

Where   is an n x1colmun vector. 

1. A set of n linearly independent solutions of (2.81) is called a fundamental 

set of solutions of (2.81). 

2. A matrix whose individual columns of fundamental set of solutions of 

(2.81),is called a fundamental matrix of (2.81), that is, if the vector 

functions            defined by (2.83) make up a fundamental of 

solutions of (2.81), then the n n square matrix 

(

          

          

 
   

 
   

 
 

 
   

) 

Is a fundamental matrix of (2.81). 

Example 2.24. 

In Example 2.31 we saw that the three vector functions       and    defined 

respectively by  

  ( )  (
   

    

    

)     ( )  (
   

     

    

)          ( )  (
    

     

     

)       (    ) 

Are linearly independent solutions of the differential equation  

  

  
 (

    
       
     

)             (

  

  

  

)                      (    ) 
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On every real interval [a, b]. Thus these three solutions       and    from a 

fundamental set of differential equation (2.76), and a fundamental matrix of the 

differential equation is 

(
          

              

             

) 

We know that the differential equation (2.76) of example 2.31 and 2.32 has the 

fundamental set of solutions          defined by (2.88). We now show that 

every vector differential equation (2.81) has fundamental sets of solutions. 

 

Theorem 2.16. 

There exist fundamental sets of solutions of the homogeneous linear vector 

differential equation 

  

  
  ( )               (    ) 

Proof. 

We begin by defining a special set of constant vectors            defined 

   (

 
 
 
 

)     (

 
 
 
 

)       (

 
 
 
 

) 

That is, in general, for each          , has ith component one and all other 

components zero. Now let            be the n solution of (2.81) which satisfy 

the conditions  

  (  )           (         )  

That is   (  )       (  )         (  )      where    is an arbitrary (but 

fixed) point of [a, b] not that these solutions exist and are unique by theorem 

2.10. we now find  

W (          )(  )   W (          )  |

    
    
 
 

 
 

    
  

|       
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Then by theorem 2.14 W (          )( )    for all        , and so by 

theorem 2.15, solutions            from fundamental set of differential 

equation(2.81). 

Theorem 2.17. 

Let            defined by (2.83) be a fundamental set of solutions of the 

homogeneous linear vector differential equation 

  

  
  ( )                    (    ) 

And let   be an arbitrary solution of (2.81) on the real interval [a, b]. Then   

can be represented as a suitable linear combination of           ; that is, 

there exist number            such that  

                                     

Proof. 

Suppose  (  )     where          and 

   (

   

   

 
   

) 

A constant vector. Consider the linear algebraic system 

     (  )       (  )         (  )                                        

     (  )       (  )         (  )                         (    ) 

  

     (  )       (  )         (  )                                         

n equation in n unknowns             since            is a fundamental set 

of functions on [a, b] and hence by theorem 2.15 W (          )(  )   . 

Now observe that W (          )(  ) is the determinant of coefficients of 

system (2.89), and so this determinant of coefficients is unequal to zero. Thus by 

theorem B of section 7.5 B, the system (2.89) has a unique solution for 

          . That is, there exists a unique set of numbers            such that 
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    (  )      (  )        (  )      

And hence such that 

 (  )     ∑     (  )

 

   

  

Now consider the vector function   defined by 

 ( )  ∑     (  )

 

   

  

By theorem 2.11, the vector function   is also a solution of the vector 

differential equation (2.81). now note that 

 (  )  ∑     ( )

 

   

  

For all        . Thus   is expressed as the linear combination 

                   

Of           , where            is the unique solution of system (2.89) 

As a result of theorem 2.17, we are led to make the following definition. 

DEFINITION: 

Consider the homogeneous linear vector differential equation 

  

  
  ( )   

Where   is an nx1 column vector. By a general solution of (2.81), we mean 

solution of the form 

                 

Where            are n arbitrary number and           , is a fundamental 

set of solutions of (2.81). 

Example 2.25. 
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Consider the differential equation 

  

  
 (

    
       
     

)             (

  

  

  

) 

In example 2.32 we saw that the three vector function       and    defined 

respectively by 

  ( )  (
   

    

    

)     ( )  (
   

     

    

)          ( )  (
    

     

     

) 

From a fundamental set of differential equation(2.76). Thus by theorem 2.17 if 

  is an arbitrary solution of (2.76), then   can be represented as a suitable linear 

combination of these three linearly independent solutions       and    of 

(2.76). 

Further, if       and    are arbitrary numbers, we see from the definition that 

               is a general solution of (2.76) is defined by  

  (
   

    

    

)    (
   

     

    

)    (
    

     

     

) 

And can be written as 

      
      

       
    

       
       

       
    

       
      

       
     

Where        and    are arbitrary numbers. 

C. Non homogeneous Linear Systems  

We return briefly to the non homogeneous linear vector differential equation 

  

  
  ( )   ( )                                                     (    ) 

Where A(t) is given by (2.70) and F(t) and   are given by (2.71). 

We shall see corresponding homogeneous equation 
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  ( )                                                       (    ) 

 

 

 

Theorem 2.18. 

Let    be any solution of the non homogeneous linear differential equation 

  

  
  ( )   ( )                                                      (    ) 

Let            be a fundamental set of solution of the corresponding 

homogeneous differential equation  

  

  
  ( )                                                                              (    ) 

And let            be n numbers. 

Then: (1) the vector function 

   ∑     

 

   

                                                                                  (    ) 

Is also a solution of the non homogeneous differential equation (2.72) for every 

choice of           ; and  

(2) an arbitrary solution   of the non homogeneous differential equation (2.72) 

of the form (2.91) for suitable choice of           . 

Proof. 

(1) We show that (2.91) satisfies (2.72) for all choices of            we 

have 
 

  
   ( )  ∑     

 
   ( )  

   ( )

  
 

 

  
 ∑     

 
   ( )  

Now since    satisfies (2.72), we have 

   ( )

  
  ( )  ( )   ( )  
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And since by theorem 2.11∑     
 
    satisfies (2.81), we also have 

 

  
[∑     

 

   

( )]   ( ) [∑     

 

   

( )] 

Thus  

 

  
[  ( )  ∑     

 

   

( )]   ( )  ( )   ( )   ( ) [∑     

 

   

( )]

  ( ) [  ( )  ∑     

 

   

( )]   ( )  

That is  

  ( )

  
  ( ) ( )   ( ) 

Where 

     ∑     

 

   

  

And so 

     ∑     

 

   

  

Is a solution of (2.72) for every choice of           . 

(2)  Now consider an arbitrary solution   of (2.72) and evaluate the 

derivative of the difference     . We have  

 

  
  ( )    ( )  

  ( )

  
 

   ( )

  
 

Since both   and    satisfy (2.72), we have respectively  

  ( )

  
  ( ) ( )   ( )  
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   ( )

  
  ( )  ( )   ( )  

Thus we obtain 

 

  
  ( )        ( ) ( )   ( )    ( )  ( )   ( )   

Which at once reduces to 

 

  
  ( )    ( )   ( )  ( )    ( )   

Thus      satisfies the homogeneous equation (2.81). Hence by theorem 

2.17, there exist a suitable choice of numbers            such that 

     ∑     

 

   

 

Thus the arbitrary solution   of (2.72) is of the form  

     ∑     

 

   

                                                                 (    ) 

For a suitable choice of           . 

DEFINITION: 

Consider the non homogeneous linear vector differential equation (2.72) and the 

corresponding homogeneous linear differential equation (2.81). by a general 

solution of (2.72), we mean a solution of the form 

                     

Where           n arbitrary numbers are            is a fundamental set of 

solutions of (2.81), and    is any solution of (2.72). 

Example 2.26. 

Consider the non homogeneous differential equation  
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 (

    
       
     

)  (
     
      

 
)                      (    ) 

And the corresponding homogeneous differential equation 

  

  
 (

    
       
     

)             (

  

  

  

)                           (    ) 

These were introduced in example 2.26, where they were written out in 

component form , and (2.71) has been used in example 2.33 and other examples 

as well. 

In example 2.33 we observed that          defined respectively by 

  ( )  (
   

    

    

)     ( )  (
   

     

    

)          ( )  (
    

     

     

) 

From a fundamental set of the homogeneous differential equation (2.71)[ or 

(2.76) as it is numbered there]. Now observe that the vector function    defined 

by 

  ( )  (
  

    
    

) 

As a solution of the non homogeneous differential equation (2.72) . 

Thus a general solution of (2.72) is given by  

      ( )      ( )      ( )    ( )  

That is  

    (
   

    

    

)    (
   

     

    

)    (
    

     

     

)  (
  

    
    

)  

Where              are arbitrary numbers . Thus a general solution of (2.72) 

can be written as  

      
      

       
       



76 

       
       

       
         

       
      

       
        

Where              are arbitrary numbers. 
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2.5 HOMOGENEOUS LINEAR SYSTEMS WITH CONSTANT 

COEFFICIENTS: N EQUATIONS IN N UNKNOWN FUNCTIONS  

A. Introduction 

 We now consider the normal form of homogeneous linear system of n first-

order differential equations in n unknown functions            where all of the  

coefficient constants. To be more specific we shall discuss the case in which 

each coefficient is a real number. Hence the system to be considered is of the 

form  
   

  
     ( )      ( )        ( )                                

   

  
     ( )      ( )        ( )                (    )

   

  
     ( )      ( )        ( )             

 

Where all of the     ,                    , are real numbers, introducing 

the     constant matrix of real numbers  

  (

      
    

      
    

 
   

 
   

  
    

)                                    (    ) 

and the vector  

  (

  

  

 
  

)                                                                    (    ) 

The system (2.92) can be expressed as the homogeneous linear vector 

differential equation  

  

  
                                                                            (    ) 

The real constant matrix A that appears in (2.95) and is defined by (2.93) is 

called the coefficient matrix of (2.95).  

We seek solutions of the system (2.92), that is, of the corresponding vector 

differential equation (2.95), we shall proceed by analogy with the presentation in 

Section 2.4 A. Doing this, we seek nontrivial solutions of system (2.92) of the 



78 

form  

      
  

      
  

 
        

                                                                 (    ) 

where            and   are numbers . Letting 

  (

  

  

 
  

)                                                                        (    )  

and using (2.94) we see that the vector form of the desired solution (2.96) is 

       

Thus we seek solutions of the vector differential equation (7. 1 29) which are of 

the form  

                                                                                          (2.98)  

where   is a constant vector and   is a number.  

Now substituting (2.98) into (2.95), we obtain  

            

which reduces at once to 

                                                                             (    ) 

and hence to  

(    )    

Where I is the n x n identity matrix . Written pt in terms of components, this is 

the system of n homogeneous linear algebraic equations  

 (     )                                                 

      (     )          

         (     )              (     )      

in the n unknowns           By Theorem A of Section 7.5 B, this system has 

a nontrivial solution if and only if  
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|

        
    

            

 
   

 
   

       
        

|                                        (     ) 

that is, in matrix notation,  

|    |     
Looking back at Section 7.5 C, we recognize Equation (2.101) as the 

characteristic equation of the coefficient matrix A = (   ) of the vector 

differential equation (2.95). We know that this is an nth-degree polynomial 

equation in  , and we recall that its roots            are the characteristic 

values of A. Substituting each characteristic value   (i = 1,2, . . . , n), into 

system (2.100), we obtain the corresponding nontrivial solution  

                       

(i = 1,2,...,n), of system (7. 134). Since (2.100) is merely the component form of 

(2.99), we recognize that the vector defined by  

 ( )  (

   

   

 
   

)     (         )                                       (     ) 

is a characteristic vector corresponding to the characteristic value   (i= 1, 2, ..., 

n). Thus we see that if the vector differential equation  

  

  
                                                                              (2.95) 

has a solution of the form  

                                                                                         (    ) 

then the number   must be a characteristic value    of the coefficient matrix A 

and the vector   must be a characteristic vector  ( ) corresponding to this 

characteristic value   .  

B. Case of n Distinct Characteristic Values  

Suppose that each of the ii characteristic values            of the n x n square  

coefficient matrix A of the vector differential equation is distinct (that is non 

repeated);  and let  ( ) ,  ( ) ,…,  ( )  be a set of n respective corresponding 
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characteristic vectors of  A. Then the n distinct vector functions            

defined respectively by  

  ( )    ( )       ( )    ( )         ( )    ( )                 (     ) 

are solutions of the vector differential equation (2.95) on every real interval [a, 

b]. This is readily seen as follows: From (2.99), for each i = 1, 2, …, n, we have  

    
( )    ( )  

and using this and the definition (2.103) of   ( ), we obtain 

   ( )

  
    

( )       ( )        ( ) 

which states that   ( ) satisfies the vector differential equation  

  

  
                                                                                      (    ) 

on      . 

Now consider the Wronskian of the n solutions            defined by (2.103) 

we find 

 (          )( )  ||

    
       

           

    
       

           

 
    

   
 

    
   

 
 

 
       

|| 

  (          ) |

      
    

      
    

 
   

 
   

 
 

 
   

| 

By Result C of Section 1.1 C, the n characteristic vectors  ( ) ,  ( ) ,…,  ( ) are 

linearly Independent. Therefore   

|

      
    

      
    

 
   

 
   

 
 

 
   

|    

Further, It is clear that  

 (          )     

For all t. Thus W (          )( )    for all t on [a,b]. Hence by Theorem 7. 

15, the solutions           , of vector differential equation (2.95) defined by 
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(2.103), are linearly independent on [a,b] and so form a fundamental set of 

solutions of (2.95) on [a,b]. Thus a general solution of (2.95) is given by  

                  

Where            are n arbitrary numbers. We summarize the results obtained 

in the following theorem:  

THEOREM 2.19.  

Consider the vector differential equation 

  

  
                          (    ) 

Where A is an n n real constant matrix. Suppose each of the n characteristic 

value t            of A is distinct; and let  ( )  ( )    ( )  be a set of n 

respective corresponding characteristic vectors of A. Then on every real interval 

[a, b] the n functions defined by 

 ( )      ( )        ( )     

From a linearly independent set (fundamental set) of solution of (2.95) 

     
( )        

( )          ( )      

Where            are n arbitrary numbers, is a general solution of (2.95) on 

 [a, b] 

Example 2.27. 

Consider the homogeneous linear system 
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Or in matrix form 

  

  
  (

    
       
     

)            (

  

  

  

)  (2.105) 

We assume the solution of the form 

      , 

       
  , 

       
  , 

       
  . 

Substituting (2.106) into (2.104) and dividing through by      , we obtain  

                

                    

                

 

(   )                                                                

      (   )                                             (     ) 

        (    )                                                        

This homogeneous linear algebraic system in          has a non trivial solution 

if and only if the determinant of its coefficients equals zero, that is, if and only if  

|
      
         
       

|                                                                       (     ) 

Clearly this is the characteristic equation of the coefficient matrix  
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  (
    

       
     

)                                                              (     ) 

Of the given system (2.104) [or (2.105)]. It’s a cubic equation in  ; and its roots   

that is, the vector differential equation          are the characteristic values of 

the matrix A given by (2.109) expanding the determinant involved, we see that 

the characteristic equation (2.108) of A may be written  

                 

Or in factored form 

(   )(   )(   )    

Thus the roots of the characteristic equation (2.108) are  

                                                          (     ) 

A characteristic vector corresponding to       is a non zero vector  

(

  

  

  

)                                                                     (2.111) 

Whose component are a non trivial solution           of algebraic system 

(2.107) when     equivalent it’s a non zero vector given by (2.111) such that 

(
    
      
     

)(

  

  

  

)   (

  

  

  

) 

Starting in either of this completely equivalent ways, we at once find that 

          must be anon trivial solution of the system  
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We have already solved this algebra problem in example (2.25) (except for the 

notational difference of having used     here) looking back at the example, we 

found that a characteristic vector corresponding to       is given by  

 ( )  (
 

  
 

) 

Likewise reference to example (2.25) shows that characteristic vector 

corresponding to        and      

 ( )  (
 

  
  

) And  ( )  (
 

  
  

) 

Respectively thus around mental set of solutions of (2.104) [or (2.105)] is 

  ( )      ,   ( )    ,  ( )     , that is  

(
 

  
 

)     (
 

  
  

)       (
 

  
  

)    

Or rewriting  these slightly   

(
   

    

   

)  (
   

     

    

)    (
    

     

     

) 

Respectively. A general solution of the system may thus be expressed as 

        
       

         
   

         
      

        
   

        
       

        
   

 Where              are arbitrary numbers. 

We return to the vector differential equation, 

  

  
                                                                      (2.95) 
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Where A is an n x n real constant matrix and reconsider the result started in 

theorem (2.19) in that theorem we stated that if each of the n characteristic 

values         of A is distinct; and if  ( ), ( )    ( ) is a set of n respective 

corresponding characteristic vectors of A, Then the n functions defined by 

 ( )    ,  ( )        ( )     

Form a fundamental set of solution of (2.95) note that although we assume that 

           Are distinct, we do not require that they be real. Thus complex 

characteristic values may be present however, since A is a real matrix, any 

complex characteristic values must suppose                      form 

such a pair. Te the corresponding solutions are 

 ( ) (    ) And ( ) (    ) , 

And these solutions are complex solutions. Thus if one or more conjugate 

complex of characteristic values occur, the fundamental set defined by  ( )    , i 

= 1,2,…,n,   contains complex function. However, in such a case, this 

fundamental maybe replaced by another fundamental set, all of whose members 

are real functions this is a accomplished exactly as explained in section 2.4 D 

and illustrated in example 2.18 C. 

We again consider the vector differential equation  

  

  
                                                                      (2.95) 

Where A is an n x n real constant matrix; but here we given a brief introduction 

the case in which A has a repeated characteristic value to be definite we suppose 

that A has a real characteristic value   of multiplicity m, where     , and 

they are the other characteristic value                , (if there are any) are 

distinct. B result D of section 7.5 C, we know that the repeated characteristic 

value     of multiplicity m has p linearly independent characteristic vectors 

where     , now consider two sub case (1), p = m, and (2)    . In sub 

case (1), there are m linearly independent characteristic vector ( ), ( )    ( ) 

corresponding    then the n functions defined by 

 ( )    ,  ( )        ( )    , 

 (   )          ( )     
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Form a linearly independent set of n solutions of deferential equation (2.95), and 

general solution of (2.95) is a linear combination of these n solutions having 

arbitrary numbers as the “constant of combination” 

Example 2.28. 

Consider the homogeneous linear system  

   

  
                                                                   

   

  
                                                    (    ) 

   

  
                                                               

Or in matrix form, 

  

  
 (

    
    
    

)            (

  

  

  

)                        (    ) 

 

We assume a solution of the form.  

     
   

That is 

      
    

      
    

      
    

Substituting (2.114) into (2.112) and dividing through by      , we obtain 
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or 

(   )            

   (   )         

       (    )      

This homogenous linear algebraic system in          has anon trivial solution 

if and only if the determinate of its coefficients equals zero, that is if and only if 

|
      

      
      

|  = 0                                     (2.116) 

Of course this is the characteristic equation of the coefficients matrix 

A = (
    
    
    

)                                                         (2.117) 

Of the given system (2.112) [or (2.113)]. It’s a cubic equation in  ; and its roots 

         are the characteristic values of the matrix A is given by (2.117) 

expanding the determinant involved, we see that the characteristic equation 

(2.116) of A maybe written  

               , 

Or in factored form 

(   )(   )(   )     . 

Thus the roots of the characteristic equation (2.116) are 

                                                                 (2.118) 

Note that the real number 1 is a distinct characteristic value of the coefficient 

matrix (2.117) of the given system (2.112) but the real number 2 is a repeated 

characteristic value of this coefficient matrix. 

We first consider the distinct characteristic value     , a characteristic  vector 

corresponding to      is a non zero vector  
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(

  

  

  

)                                                                               (     ) 

Whose components are a non trivial solution           of the algabric system 

(2.115), when     equivalently it’s a non zero vector or given by (2.119) such 

that 

(
    
    
    

)(

  

  

  

)    (

  

  

  

) 

Starting in either of these completely equivalent ways, we at once find that  

          must be non trivial solutions of the system 

               

              

                 

Note that                   is a solution of this system for every real k. 

hear the characteristic vectors corresponding to the characteristic value    , 

are the vectors 

  (
 
 
  

) 

Where k is an arbitrary non zero number. In particular, letting k = 1 , we obtain 

the particular characteristic vector 

 ( )  (
 
 
 
) 

Corresponding to    . Thus the corresponding solution of the form  

      

That is 
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(
 
 
 
)                                                                                 (     ) 

We now turn to the repeated characteristic value        . To be more 

specific this characteristic value 2 has multiplicity        , 

Where n of course denotes the common number of rows and column of the 

coefficient matrix (2.117) of the given system (2.112). 

A characteristic vector corresponding to this double characteristic value 

        a non zero vector  

(

  

  

  

)                                                                               (     ) 

Whose components are a non trivial solution           of algebraic system (2.14 

a) when     equivelantly. It’s a non zero vector given by (2.121) such that 

(
    
    
    

)(

  

  

  

)   (

  

  

  

) 

Starting in either of these completely equivalent ways, we at once find that  

          must be a non trivial solution of the system 

              

             

                 

Note the each of these three relations is equivalent to both of the other two and 

only relationship among           is that given most simply by 

              

Clear there exist two linearly independent of the form (2.121) whose 

components satisfy this relation (2.122) for example if         
            

We obtain the vector 
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 ( )  (
 

  
 

) 

And if                    , we obtain the vector 

 ( )  (
 
 
 
) 

First note that the component of each of these two vectors  ( )      ( ) do 

satisfy (2.122) and hence each is characteristic vector corresponding to the 

double root        , next note that these vectors  ( )      ( ) are indeed 

linear independent (use the definition of linear independence of a set of constant 

vectors) thus the characteristic value     of multiplicity m = 2 has the p = 2 

linearly independent characteristic vectors 

 ( )  (
 

  
 

) and      ( )  (
 
 
 
) 

Corresponding to it hence this is illustration of sub case (1) of the discussion 

preceding this example those corresponding to the two fold characteristic value 

   , there are two linearly independent solution of the form  ( )    of the 

given system these are 

 ( )        ( )    

(
 

  
 

)        (
 
 
 
)        (2.123) 

Respectively, hence a fundamental set of solutions of the given system (2.112) 

[or 2.113)] consist of the 

Or rewriting these slightly 

(
 
 
 
)    (

 
  
 

)        (
 
 
 
)    
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(
  

  

   

)  (
   

    

 

)      (
   

 
   

) 

        
   (     ) 

   

        
     

   

        
      

   

Where              are arbitrary numbers. 

One type of vector differential equation (2.95) which always leads to sub case 

one p = m, in the case of repeated characteristic value    is that in which n x n 

coefficient matrix A of (2.95) is real symmetric matrix for then by result G of 

section (7.5) c there always exist n linearly independent characteristic vectors of 

A regard less of whether the n characteristic values of A are all distinct or not. 

We now turn to a very brief consideration of sub case (2),     in this case 

there are less than m linearly independent solutions of differential equation 

(2.95) of the form  ( )     corresponding to   ; and so there is not a 

fundamental set of solutions of the form  ( )    , where    is a characteristic 

value of A and  ( ) is a characteristic  vector corresponding to    clearly we 

must seek linearly independent solutions of another form. 

To discover what other forms of solution to seek we look back at the analogous 

situation in section (2.4) C. the result there suggest the following: if    is a 

characteristic value of multiplicity n = 2 and p = 1   m, then we seek linearly 

independent solution of the form  

      and             ; 

Where   is a characteristic vector corresponding to   , that is   satisfies 

(     )   = 0; 

And   is a vector which satisfies the equation  

(     )   =   

If    is a characteristic value of multiplicity m   2, and p   m then the forms of 

the m linearly independent solutions corresponding to    depend upon whether 
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3.1 APPLICATIONS  

There are many Physical Problems that involve a number of separate elements 

linked together in some manner. For example electrical networks have this 

chapter and in other fields. In these and similar Case, the corresponding 

mathematical problems consists of a system of two or more differential 

equations, which can always be written as first order equations. 

A.Applications to Mechanics  

Systems of linear differential equations originate in the mathematical 

formulation of numerous problems in mechanics. We consider one such problem 

in the following example. Another mechanics problem leading to a linear system 

in given in.  

Example 3.1 

On a smooth horizontal plane BC (for example, a smooth table top) an object    

is connected to a fixed point P by a mass less spring    of natural length   . An 

object    is then connected to    by a mass less spring    of natural length    in 

such a way that the fixed point P and the centers of gravity    and    all lie in a 

straight line (Figure 3.1).  

The object    is then displaced a distance    to the right or left of its 

equilibrium  

position   , the object    is displaced a distance    to the right or left of its 

equilibrium position    and at time t = 0 the two objects are released (Figure 

3.2). What are the positions of the two objects at any time t > 0. 

Formulation. We assume first that the plane BC is so smooth that frictional 

forces may be neglected. We also assume that no external forces act upon the 

system. Suppose object    has mass    and object    has mass   . Further 

suppose spring    has spring constant    and spring    has spring constant   .  

Let    denote the displacement of    from its equilibrium position    at time t 

  0 and assume that    is positive when    is to the right of 

  (          ).Consider the forces acting on    at time t > 0. There are two 

such forces,    and   , where    is exerted by spring    and    is exerted by 

spring   . By Hooke’s law 
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Figure 3.1 

 

Figure 3.2 

 

Figure 3.3 

 (Section 5.1): the force    is of magnitude  |  |. Since this force is exerted 

toward the left when    is to the right of    and toward the right when    is to 

the left of   , we have F1 =      . Again using Hooke’s law, the force    is of 

magnitude   s, where s is the elongation of    at time t. Since s = |     |, we 

see that the magnitude of    is  |     |. Further, since this force is exerted 

toward the left when       < 0 and toward the right when       > 0, we see 

that    =   (     ).  

Now applying Newton’s law (Section 3.2) to the object   , we obtain the  

differential equation 
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         (     )                                             (3.1) 

We now turn to the object    and consider the forces that act upon it at time t > 

0. There is one such force,   , and this is exerted by magnitude   s =   |   
  |, since    is exerted toward the left when       > 0 and toward the right 

when       < 0, we see that    =    (     ). Applying Newton’s second 

law to the object   , we obtain the differential equation 

  
    

   
    (     )                                                            (3.2) 

 

In addition to the differential equations (3.1) and (3.2), we see from the 

statement of the problem that the initial conditions are given by  

  ( )         
 ( )              ( )                  

 ( )          (3.3) 

The mathematical formulation of the problem thus consists. of the differential 

equations (3.1) and (3.2) and the initial conditions (3.3). Writing the differential 

equations in the form 

  

    

   
 (     )                                                    

  

    

   
                                                              (   ) 

 

We see that they form a system of homogeneous linear differential equations 

with constant coefficients.  

Solution of a specific case. Rather than solve the general problem consisting of  

the system (3.4) and conditions (3.3), we shall carry through the solution in a  

particular case that was chosen to facilitate the work. Suppose the two objects 

   and    are each of unit mass, so that    =    = 1. Further, suppose that the 

springs    and    have spring constants    = 3 and     2, respectively. Also, 

we shall take    =    and    = 2. Then the system (3.4) reduces to 

    

   
                                                                         

    

   
                                                           (   ) 

and the initial conditions (3.3) become 
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  ( )         
 ( )              ( )                 

 ( )                   (3.6) 

Writing the system (3.5) in operator notation, we have 

(    )                                                        

     (    )                                              (   )  

We apply the operator (   + 2) to the first equation of (3.7), multiply the second 

equation of (3.7) by 2, and add the two equations to obtain 

((    )(    )   )                                                
or  

(   + 7   + 6)   = 0.                                                           (3.8) 

The auxiliary equation corresponding to the fourth-order differential equation 

(3.8) is 

   + 7   + 6 = 0 or (    )(    )    

Thus the general solution of the differential equation (3.8) is  

                      √        √                        (   ) 

We now multiply the first equation of (3.7) by 2, apply the operator (    ) to 

the second equation of (3.7), and add to obtain the differential equation  

(        )                                                                   (3.10)       

for   . The general solution of (3.10) is clearly  

                      √        √   .                  (3.11) 

The determinant of the operator “coefficients” in the system (3.7) is 

| 
     
      

|           

 Since this is a fourth-order operator, the general solution of (3.5) must contain 

four independent constants. We must substitute    given by (3.9) and    given 

by(3.11) into the equations of the system (3.5) to determine the relations that 
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must exist among the constants                      and    in order that the 

pair (3.9) and (3.11). Substituting, we find that  

                      
 

 
         

 

 
  . 

Thus the general solution ofthe system (3.5) is given by  

                      √        √                       (3.12) 

                   
 

 
     √   

 

 
     √   

We now apply the initial conditions (3.6). Applying the conditions                          

       
   

  
   at t = 0 to the first of the pair (3.12), we find  

                                                                               (3.13) 

     √                                                                                        

 Applying the conditions       
   

  
   at t = 0 to the second of the pair 

(3.12), we obtain 

      
 

 
  ,                                                                (3.14) 

      
√ 

 
                                                                               

 From Equations (3.13) and (3.14), we find that  

         
 

 
            

 

 
 

Thus the particular solution of the specific problem consisting of the system 

(3.5) and the conditions (3.6) is  

   
 

 
     

 

 
   √    
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   √    

B. Applications to Electric Circuits  

consider the network shown in Figure 3.4.  

This network consists of the three loops ABMNA, BJKMB, and ABJKMNA. 

Points such as B and M at which two or more circuits join are called junction 

points or branch points. The direction of current flow has been arbitrarily 

assigned and indicated by arrows.  

 

Figure 3.4 

in order to solve problems involving multiple loop networks we shall need two 

fundaniental laws of circuit theory. One of these is Kirchhoff’s voltage law, The 

other basic law that we shall employ is the following:  

Kirchhoff’s Current Law. In an electrical network the total current flowing into 

a junction point is equal to the total current flowing away from the junction 

point.  

As an applying of these laws we consider the following problem dealing with 

the circuit of Figure 3.4.  
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Example 3.2 

Determine the currents in the electrical network of Figure 3.4, if E is an 

electromotive force of 30 V,    is a resistor of 10  ,    is a resistor of 20  ,    

is an inductor of 0.02 H,    is an inductor of 0.04 H, and the currents are 

initially zero.  

 Formulation. The current flowing in the branch MNAB is denoted by i, that 

flowing on the branch BM by   , and that flowing on the branch BJKM by   .  

. We now apply Kirchhoff’s voltage law to each of the three loops 

 ABMNA, BJKMB, and ABJKMNA. 

For the loop ABMNA the voltage drops are as follows:  

1. Across the resistor   : l0 i.  

2. Across the inductor    : 0.02 
   

  
. 

Thus applying the voltage law to the loop ABMNA, we have the equation  

0.02
   

  
                                                                    (3.15) 

  For the loop BJKMB, the voltage drops are as follows: 

  

1. Across the resistor    : 20   .  

2.Across the inductor    : 0.04 
   

  
.  

3. Across the inductor    : 0.02 
   

  
. 

The minus sign enters into 3 since we traverse the branch MB in the direction 

opposite to that of the current    as we complete the loop BJKMB. Since the 

loop BJKMB contains no electromotive force, upon applying the voltage law to 

this loop we obtain the equation  

      
   

  
     

   

  
                                                                (3.16) 

For the Joop ABJKMNA, the voltage drops are as follows: 
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 1. Across the resistor    : 10 i.  

2.Across the resistor   : 20   .  

3. Across the inductor    : 0.04 
   

  
.  

Applying the voltage law to this ioop, we obtain the equation 

         
   

  
                                                                     (3.17) 

We observe that the three equations (3.15), (3.16), and (3.17) are not all 

independent. For example, we note that (3.16) may be obtained by subtracting 

(3.15) from (3.17). Thus we need to retain only the two equations (3.15) and 

(3.17).  

We now apply Kirchhoff’s current law to the junction point B. From this we see 

at once that 

                                                                                            (3.18) 

In accordance with this we replace i by       in (3.15) and (3.17) and thus 

obtain the linear system  

    
   

  
                                                               (3.19) 

         
   
  

                                                                             

Since the currents are initially zero, we have the initial conditions 

                               ( )                ( )                                    (3.20) 

Solution.  

We introduce operator notation and write the system (3.19)  

(        )                                                            (3.21) 

     (        )                                                                            

We apply the operator (0.04D + 30) to the first equation of (3.21), multiply the 

second by 10, and subtract to obtain 
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 (        )(        )         (        )       

Or 

(              )        

Or finally 

(              )                                          (3.22) 

We now solve the differential equation (3.22) for   . The auxiliary equation is  

                  

(     )(      )     
Thus the complementary function of Equation (3.22) is 

        
         

        

And a particular integral is obviously      = 3. Hence the general solution of the 

differential equation (3.22) is 

      
         

        .                                    (3.23) 

Now returning to the system (3.21), we multiply the first equation of the system 

by 10; apply the operator (0.02 + 10) to the second equation. After 

Simplifications we obtain the differential equation  

(               )     

For    the general solution of this differential equation is clearly  

      
         

                                                      (3.24) 

Since the determinant of the operator “coefficients” in the system (3.21) is a 

second- order operator, the general solution of the system (3.19) must contain 

two independent constants. We must substitute    given by (3.24) and    given 

by (3.24) into the equations of the system (3.19) to determine the relations that 

must exist among the constants             in order that the pair (3.23) and 

(3.24) represent the general solution of (3.19). Substituting, we find that  
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                                                             (3.25) 

Thus the general solution of the system (3.19) is given by 

      
         

                                                (3.26) 

    
 

 
   

         
                                                              

Now applying the initial conditions(3.20), we find that           and 

 
 

 
        and hence       and      . Thus the solution of the linear 

system (3.19) that satisfies the conditions (3.20) is  

                       

                   

 Finally, using (3.18) we find that  

                     

 We observe that the current    rapidly approaches zero. On the other hand, the 

currents,    and         rapidly approach the value 3.  

C.Application To Mixture Problems: 

Example 3.3 

 Two tanks X and Y are interconnected (see Figure 3.5). Tank X initially 

contains 100 liters of brine in which there is dissolved 5 kg of salt, and tank Y 

initially contains 100 liters of brine in which there is dissolved 2 kg of salt. 

Starting at time t = 0, (1) pure water flows into tank X at the rate of 6 liters/min, 

(2) brine flows from tank X into tank y at the rate of 8 liters/min, (3) brine is 

pumped from tank Y back into tank X at the rate of 2 liters/min, and (4) brine 

flows out of tank Y and away from the system at the rate of 6 liters/min. The 

mixture in each tank is kept uniform by stirring. How much salt is in each tank 

at any time t > 0?  
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     Figure 3.5 

Formulation. Let x = the amount of salt in tank X at time t, and let y = the 

amount of salt in tank Y at time t, each measured in kilograms. Each of these 

tanks initially contains 100 liters of fluid, and fluid flows both in and out of each 

tank at the same rate, 8 liters/min, so each tank always contains 100 liters of 

fluid. Thus the concentration of salt at time t in tank X is x/100 (kg/liter) and 

that in tank Y is y/l00 (kg/liters). 

 The only salt entering tank X is in the brine that is pumped from tank Y back 

into tank X. Since this enters at the rate of 2 liters/min and contains y/100 

kg/liter, the rate at which salt enters tank X is 2y/100. Similarly, the only salt 

leaving tank X is in the brine that flows from tank X into tank Y. Since this 

leaves at the rate of 8 liters/min and contains x/100 kg/liter, the rate at which salt 

leaves tank X is 8x/100. Thus we obtain 

 the differential equation(see section 3.3C in Book No.4)  

  

  
 

  

   
 

  

   
                                                                              (    ) 

for the amount of salt in tank X at time t. in a similar way, we obtain the 

differential equation 

  

  
 

  

   
 

  

   
                                                                           (    ) 

for the amount of salt in tank Y at time t. Since initially there was 5 kg of salt in 

tank X and 2 kg in tank Y, we have the initial conditions  
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 ( )       ( )                                                              (    ) 

Thus we have the linear system consisting of differential equations (3.27) and 

(3.28) and initial conditions (3.29).  

Solution.  

We introduce operator notation and write the differential equations (3.27) and 

 (3.28) in the forms  

(  
 

   
)  

 

   
                                                                (    ) 

 
 

   
  (  

 

   
)                                                                         

We apply the operator (  
 

   
)to the first equation of (3.30), multiply the 

second equation by 
 

   
, and add to obtain  

[(  
 

   
) (  

 

   
)  

  

(   ) 
]     

which quickly reduces to 

[   
  

   
  

  

(   ) 
]                                                               (    ) 

 We now solve the homogeneous differential equation (3.31) for x. The auxiliary  

equation is 

   
  

   
  

  

(   ) 
    

Or 

(  
 

   
) (  

  

   
)     

with real distinct roots 
(  )

  
⁄  and ,

(  )
  

⁄ . Thus the general solution of 

equation (3.31) is  
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 (   ⁄ )     

 (   ⁄ )                                                     (    ) 

Now applying the so-called alternative procedure of Section 2.1C(see Book 

No.4), we obtain from system (3.30) a relation that involves the unknown y but 

not the derivative Dy. The system (3.30) is so especially simple that the first 

equation of this system is itself such a relation. Solving this for y, we at once 

obtain  

                                                                                      (    ) 

From (3.32), we find 

    
  

  
  (   ⁄ )  

   

  
  (   ⁄ )  

Substituting into (3.33), we get 

      
 (   ⁄ )      

 (   ⁄ )  

 Thus the general solution of the system (3.30) is 

     
 (   ⁄ )     

 (   ⁄ )                                                    (    ) 

      
 (   ⁄ )      

 (   ⁄ )                                                           

We now apply the initial conditions (3.29). We at once obtain  

         

           
from which we find  

                    

Thus the solution of the linear system (3.30) that satisfies the initial conditions 

(3.29) is 

     (   ⁄ )     (   ⁄ )        

     (   ⁄ )     (   ⁄ )  

These expressions give the amount of salt x in tank X, and the amount y in tank 
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Y, respectively, each measured in kilograms, at any time t (min) > 0. Thus, for 

example, after 25 min, we find  

                  (  )  

                  (  )  

Note that as    , both x and y   . Thus is in accordance with the fact that 

 no salt at all (but only pure water) flows into the system from outside. 
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