1.1 MATRICES AND VECTORS
A. Linear Independence and Dependence

Before proceeding, we state without proof the following two theorems from
algebra.

THEOREM A

A system of n homogeneous linear algebraic equations in n unknowns has a
nontrivial solution if and only if the determinant of coefficients of the system is
equal to zero.

THEOREM B

A system of n linear algebraic equations in n unknowns has a unique solution if
and only if the determinant of coefficients of the system is unequal to zero,

DEFINTION:

A set of m constant vectors v,, vy, ..., U, IS linearly dependent if there exist a set
of m numbers c¢y,c,,..,c,;, not all of which are zero, such that
C1V1 + Uy + -+ vy, =0

Example 1.1.

The set of three constant vectors

2 1 7

1 2 8
Is linearly dependent, since there exists the set of three numbers 2, 3, and —1,
none of which are zero, such that

2171 + 3772 + (—1)173 - 0
DEFINITION:

A set of m constant vectors is linearly independent if and only if the set is not
linearly dependent. That is, a set of m constant vectors v,, v, ..., v, IS linearly
independent if the relation



V1 + vy + -+, =0 =¢c, =-=¢,, =0
Example 1.2.

The set of three constant vectors

1 -1 0
v1=<1>,v2=<2> ,andv3=<2>
1 0 1

Is liner independent. For where
1 ”"q + Cy Uy + C3 V3 = O, (11)

i) (z)r= ()0

is linearly independent. For we have

that is,

c1—C, =0, ¢; +2¢y +2¢c3 =0, ct+c3=0. (1.2)

of three homogeneous linear algebraic equations in the three unknowns
1, C2, C3. The determinant of coefficients of this system is

1 -1 0
1 2 2(=1+#0
1 0 1

Thus by Theorem A, with n = 3, the system (1.2) has only the trivial solution
¢, = ¢, = c3 = 0. Thus for the three given constant vectors, the relation (1.1)
impliesc; =c, =c3 =0 ; and so these three vectors are indeed linearly
independent.

DEFINITION:

The set of m vector functions ¢+, ¢, ..., ¢, is linearly dependent on an interval
a<t < b if there exists a set of m numbers c,,c,, ..., c,, numbers not all zero,
such that

C1P1 () + 202 (t) + -+ + P (£) = 0

forallt € [a, b].



Example 1.3.

Consider the set of three vector functions ¢, ¢, and ¢, defined for all t by

eZt eZt eZt
¢1(t) = <2€2t> ) ¢, () = ( 42t ) and ¢5(t) = ( e?t >
5e?t 11e2t 22t

Respectively. This set of vector functions is linearly dependent on any interval a
<t < b. To see this, note that

o2t o2t o2t 0
3 <2e2t> +(-1) ( 4e?t ) +(=2) ( e?t ) = (0)
Se?t 11e?t 2e?t 0

and hence there exists the set of three numbers 3, —1, and —2, none of which
are zero, such that

3¢1(t) + (=12 () + (=2)¢3(t) =0
forall t € [a, b]
DEFI NIT10ON:

A set of m vector functions is linearly independent on an interval if and only if
the set is not linearly dependent on that interval. That is, a set of m vector
functions ¢4, ¢,, ..., ¢, is linearly independent on an interval a < t < b if the
relation

C11(8) + 20, (1) + - + cpdr (£) = 0
For all t € [a, b] implies that

C1=C==¢,=0
Example 1.4.

Consider the set of two vector functions ¢, (t), and ¢, (t). Defined for all t

t 2t
$:10) = (%) and $® = (5 2)
Respectively. We shall show that ¢, and ¢, are linearly independent on any
interval a < t < b. To do this, we assume the contrary; that is, we assume that
¢, and¢, are linear dependent on [a, b]. Then there exist numbers c¢; and c,,
not both zero, such that



c1h1(t) + c29,(t) =0
forallt € [a, b]. Then

ciet + ce?t =0,

ciet + 2c,e?t =0,

and multiplying each equation through by e ¢, we have
¢, + cet =0,
c; + 2c,et =0,

for all t € [a, b]. This implies that c;e® + c,e?t = ¢;et + 2c,e?t and hence 1 =
2, which is an obvious contradiction. Thus the assumption that ¢, and ¢, are
linearly dependent on [a, b] is false, and so these two vector functions are
linearly independent on that interval.

Note: If a set of m vector functions ¢, ¢,, ..., ¢,,, is linearly dependent on an
interval a < t < b, then it readily follows that for each fixed t, € [a, b], the
corresponding set of m constant vectors ¢, (ty), 9 (to), ..., dm (to) is linearly
independent.

Indeed the corresponding set of constant vectors ¢ (ty), ®2(to), ..., Pm(to)
may be linearly dependent for each t, € [a, b]. See Exercise 6 at the end of this
section.

B. Characteristic Values and Characteristic VVectors

Let A be a given n x n square matrix of real numbers, and let S denote the set of
all n x 1 column vectors of numbers. Now consider the equation

Ax = Ax (1.3)

In the unknown vector x € S, where A is a number. Clearly the zero vector O is a
solution of this equation for every number A. We investigate the possibility of
finding nonzero vectors x € S which are solutions of (1.3) for some choice of
the number A. In other words, we seek numbers A. Corresponding to which there
exist nonzero vectors x which satisfy (1.3). These desired values of 1 and the
corresponding desired nonzero vectors are designated in the following.



DEFINITION:
A characteristic value (or eigenvalue) of the matrix A is a number 2 for which
the equation Ax = Ax has a nonzero vector solution x.

A characteristic vector (or eigenvector) of A is a nonzero vector x such that
Ax = Ax for some number A.

We proceed to solve this problem. Suppose

all a12 o alTL
a a o Uop
A= |t 0 T
An1 Qpz " Aan

Is the given n x n square matrix of real numbers, and let

X1
X2
x=| .
xn
Then Equation (1.3) may be written
ay1 Az 7 Qan X1 X1
Az1 Qzy 7 Q2n X2 1 1 X2
Apn1 QApz " Gan Xn Xn
and hence, multiplying the indicated entities,
allxl + alzxz + b + alnxn /1x1
alel + azzxz + e + az-nxn _ /‘lxz
Ap1Xq1 + Xy + -+ AppXy Axy,

Equating corresponding components of these two equal vectors, we have

allxl + alzxz + -4 alnxn == /1X1
alel + azzxz + -+ aann - sz

Ap1X1 + ApaXy + o+ Xy = Ax,
and rewriting this, we obtain

(a11 - /1)x1 + a12x2 + -+ alnxn - O
alel + (a,zz - A)xZ + -+ aann = 0 (14)



An1X1 + ApaXy + -+ (A — Vx, =0
Thus we see that (1.3) holds if and only if (1.4) does. Now we are seeking
nonzero vectors X that satisfy (1.3). Thus a nonzero vector x satisfies (1.3) if and
only if its set of components x;, x,, ..., x,, is a nontrivial solution of (1.4). By
Theorem A of Section (1.1)B, the system (1.4) has nontrivial solutions if and
only if its determinant of coefficients is equal to zero, that is, if and only if

aiq aqo o Qan
G dn | (15)
An1 Qpz " Aan

It is easy to see that (1.5) is a polynomial equation of the nth degree in the
unknown 2. In matrix notation it is written

|A—AIl =0
where | is the n x n identity matrix (see Section 1.1A). Thus Equation (1.3) has a
nonzero vector solution x for a certain value of A if and only if A satisfies the
nth-degree polynomial equation (1.5). That is, the number A is a characteristic
value of the matrix A if and only if it satisfies this polynomial equation. We now
designate this equation and also state the alternative definition of characteristic
value that we have thus obtained.

DEFINITION:
Let A = (a;;) be an n x n square matrix of real numbers. The characteristic

equation of A is the nth-degree polynomial equation

a11 a12 al?’l
R (15)
Ap1 Apz 7 Onn

in the unknown A4; and the characteristic values of A are the roots of this
equation.

Since the characteristic equation (1.5) of A is a polynomial equation of the nth
degree, it has n roots. These roots may be real or complex, but of course they
may or may not all be distinct. Then we say that that root has multiplicity m. If
we count each no repeated root once and each repeated root according to its
multiplicity, Then we can say that the n x n matrix A has precisely n
characteristic values, say 1,,4,, ..., 4,,.



Corresponding to each characteristic value A, of A there is a characteristic
vector x;, (k = 1, 2,..., n). Further, if x, is a characteristic vector of A
corresponding to characteristic value A, then so is cx,, for any nonzero number
c. We shall be concerned with the linear independence of the various
characteristic vectors of A. Concerning this, we state the following two results
without proof.

Result C. Each of the n characteristic values 14, 4,, ..., 4,,. of the n x n square
matrix A is distinct (that is, nonrepeated); and let x,, x,, ..., x,, be a set of n
respective corresponding characteristic vectors of A. Then the set of these n
characteristic vectors is linearly independent.

Result D. Suppose the n x n square matrix A has a characteristic value of
multiplicity m, where 1 < m < n. Then this repeated characteristic value having
multiplicity m has p linearly independent characteristic vectors corresponding to
it, where 1<p <n.

Now suppose A has at least one characteristic value of multiplicity m, where 1 <
m < n; and further suppose that for this repeated characteristic value, the
number p of Result D is strictly less than m; that is, p is such that 1 < p < m.
Then corresponding to this characteristic value of multiplicity m, there are less
than m linearly independent characteristic vectors. It follows at once that the
matrix A must then have less than n linearly independent characteristic vectors.
Thus we are led to the following result:

Result E. If the n x n matrix A has one or more repeated characteristic values,
then there may exist less than n linearly independent characteristic vectors of A.

Before giving an example of finding the characteristic values and corresponding
characteristic vectors of a matrix, we introduce a very special class of matrices
whose characteristic values and vectors have some interesting special properties.
This is the class of so-called real symmetric matrices, which we shall now define
below. First, however we give a preliminary definition.

DIFINITION:
A square matrix A of real numbers is called a real symmetric matrix ifAT = A.

For example, the 3x3 square matrix

2 -1 4
A= (—1 0 3)
4 3 1



Is a real symmetric matrix since AT = A

Concerning real symmetric matrices, we state without proof the following
interesting results:

Result F. All of the characteristic values of a real symmetric matrix are real
numbers.

Result G. If A is an n x n real symmetric square matrix, then there exist n
linearly independent characteristic vectors of A, whether the n characteristic
values of A are all distinct or whether one or more of these characteristic values
IS repeated.

Example 1.5.
Find the characteristic values and characteristic vectors of the matrix
7 -1 6
A=|1-10 4 -12
. L =2 1 -1
Solution. The characteristic equation of A is

7—4 -1 6
-10 4-4 -12
-2 1 -1-1

=0

Evaluating the determinant in the left member, we find that this equation may be
written in the form

A3 —10A2+311-30=0
Or
1-2)(A-3)(1—-5)=0.
Thus the characteristic values of A are
A=2, A=3, and A =5

The characteristic vectors corresponding to A = 2 are the nonzero vectors



Such that

7 -1 6 X1 X1
(—10 4 —12) (xz> =2 (x2>
-2 1 -1 X3 X3

Thus x4, x,, x5 must be non trivial solution of the system
7xy — X, + 6x3 = 2x;
—10x; + 4x, — 12x5 = 2x,
-2x1 + X — X3 = 2X3
That is
o9x; — X, +6x3 =0
—10x; + 2x, — 12x3 =0
2% +x, —3x3=0

Note that the second of these three equations is merely a constant multiple of the
first thus we seek nonzero numbers x;, x,, x5 which satisfy the first and third of
these equations. Writing these two as equations in the unknowns x, and x;, we
have

—Xy + 6x3 = —5x4,

xz - 3X3 == 2x1.
Solving for x, and x5, we find
X, =—x; and X3 = —Xx;

We see at once that x; = k, x, = —k, x3 = —k is a solution of this for every
real k. Hence the characteristic vectors corresponding to the characteristic value

A =2 are the vectors
k
—k

where k is an arbitrary nonzero number. In particular, letting k = 1, we obtain
the particular characteristic vector



1
(—1
- - - _1
corresponding to the characteristic value A = 2.

Proceeding in like manner, one can find the characteristic vectors corresponding
to A = 3 and those corresponding to 4 = 5. We find that the components
X1,X,,%5 Of the characteristic vectors corresponding to A = 3 must be a
nontrivial solution of the system

dx; — x5 + 6x3 = 0,
-10x; + x5, — 12x5 = 0,
-2x1 + x, —4x5 = 0.
From these we find that
X, =—2x; and X3 = —Xx;

and hence x; =k, x, = — 2k, x3 = —k is a solution for every real k. Hence the
characteristic vectors corresponding to the characteristic value A = 3 are the

vectors
k
X = (—2k>
—k

where K is an arbitrary nonzero number. In particular, letting k = 1, we obtain
the particular characteristic vector
1
-2
-1

corresponding to the characteristic value A = 3.

Finally, we proceed to find the characteristic vectors corresponding to A = 5. We
find that the components x;, x,, x5 Of these vectors must be a nontrivial solution
of the system

2x; — x5 + 6x3 =0,
-10x; — x5 — 12x5 = 0,
-2x1 + x5, —4x3 = 0.
From these we find that

10



X, = —2x,and 3x; = —2x,.

We find that x; = 3k, x, = —6k, x5 = —2k satisfies this for every real k. Hence
the characteristic vectors corresponding to the characteristic value A = 5 are the

vectors
3k
x = (—6k>
—2k

where K is an arbitrary nonzero number. In particular, letting k = 1, we obtain
the particular characteristic vector

3

—6

-2

corresponding to the characteristic value A = 5.

11



2.1 DIFFERENTIAL OPERATORS AND AN OPERATOR METHOD
A. Types of Linear Systems

We shall consider the general linear system of two first-order differential
equations in two unknown functions x and y is of the form

a1 () S+ ay () 2 + a3 (D)x + ay()y = Fi(1).
(2.1)
by(t) =+ by(t) 2+ ba(t) x + by(t) y = Fy(0).

An example of such a system which have constant coefficients is

dx a
— - d—Jt’ +3x +4y =et.

d d
2= +32 2x +y =¢t% |
dt dt dt

We shall say that a solution of system (2.1) is an ordered pair of real functions
(f.9)

suchthatx = f(t),y = g(t) simultaneously satisfy both equations of the
system (2.1) on some real intervala < t < b.

The general linear system of three first-order differential equations in three
unknown functions x, y and z and of the form

0 (6) 57 + aa(D) o + a3(t) 57 + A (Dx + as(©)y + ag(t)z = Fy(1)
dx dy dz
b, (t) — b () x bs(t) i by(t)x + bs(t)y + bs(t)z = F,(1). (2.2)
e (6) 4 e () 2+ e3(0) o+ ca(O)x + ()Y + c6(D)2 = Fa(0).
As in the case of system of the form

Z+ 22T 2x-3y+z=t,

dt dt d
dx d dz .

p R A Vg x+4y-5z = sint,
dt dt dt

dx d dz
—+2—y+—-3x+2y-z = cost .
dt dt  dt

12



A solution of this system is an ordered triple of real functions (f, g, h) such that
x = f(t), y = g(t), z = h(t) simultaneously satisfy all three equations of the
system (2.2) on some real interval a <t <b.

System of the form (2.1) and (2.2) contained only first derivatives, and we not
consider the basic linear system involving higher derivatives. This is the general
linear system of two second-order differential equations in two unknown
functions x and y and is a system of the form

2 d2
ay () 5+ ay () 3+ as () T+ au ()2 + as(t) X+ ag(t) y = Fi (D).
(2.3)
2 dZ
by(£) 5 + by (£) S5 + b3 (£) =+ by() % + bi(t) X + b (t) y = Fy(0).

We shall be concerned with systems having constant coefficients in this case
also an example is provided by

d%x d? dx d
2 2+52+7Z+32 +2y=3t+1.
dt? dt? dt dt
d%x d? d
32 2+22 .22 +4x+y = 0.
dt? dt? dt

For given fixed positive integers m and n, we could proceed, in like manner, to
exhibit other general linear systems of n nth-order differential equations in n
unknown functions.

We consider special type of linear system (2.1) which is of the form

dx P

_dt = all(t)x + alz(t)y + 1(t)

dy

E = aZl(t)x + azz(t)y + Fz(t) (24)

This is the so-called normal form in the case of two linear differential equations
in two unknown functions. The characteristic feature of such a system is
apparent from the manner in which the derivatives appear in it. An example of
such a system with variable coefficients is

13



d

—’t‘ =t2x + (t+ Dy + t3,
d

_3t’ =telx + t2y - et,

While one with constant coefficients is

B By + 7y + t2,
dt
L =9y -3y +2t.
dt

The normal form in the case of a linear system of three differential equations in
three unknown functions x, y, and z is

2= 4y (O) X+ agp () y + ags(t) 2+ Fy (1),

d—y = ap (1) X+ az(t) y + axs(t) 2+ Fy(1),

% = a31(t) X + a32(t) y+ agg(t) Z+ FB(t)

An example of such a system is the constant coefficient system

=3x+2y+z+t¢,

ax
dt
da
—r=2x-4y+5z- ¢
az
dat

=4x+y-3z+2t+ 1.
The normal form in the general case of a linear system of n differential
equations in n unknown functionsx,, x,, =, x,, IS

dx
d_t1 = a1 (1) x1 + aga(t) x5 + -+ agn (1) X, + Fi(1)

dxz

—2=ap1(1) X1 + aga(t) Xz + 0 + agn(t) Xy + Fa(t) (2.5)

dx
d_tl = anl(t) Xyt anz(t) Xyt t ann(t) Xn t Fn(t)

14



An important fundamental property of a normal linear system (2.5) is its
relationship to a single nth-order linear differential equation in one unknown
function. Specifically, consider the so-called normalized (meaning, the
coefficient of the highest derivative is one) nth-order linear differential equation

d™x d"1x

FroReUres

4ot g (5 + a(t) X = F(D) (2.6)

in the one unknown function x. Let

dx _d?%x _d"2%x _d"lx

X=X Xy S X3 T —= o X T Xy T (2.7)
From (2.7), we have

dx _dx,; d?x _ dx, d"1x _dxp_; d"™x _ dx, 2.8)

dt dt 'dtz2 dt '’ "dtn-1 dt 'dth  dt ' '

Then using both (2.7) and (2.8), the single nth-order equation (2.6) can be
transformed into

dx,
dat
d
2= x (2.9)
dXxp—1 — 5
dt "
dxn _
—2=-an(t) X1 - a1 (£) Xz - - @y () X + F (2)

Which is a special case of the normal linear system (2.5) of n equations in n
unknown functions. Thus we see that a single nth-order linear differential
equation of form (2.6) is one unknown function is indeed intimately related to a

normal linear system (2.5) of n first-order differential equation in n unknown
functions.

B. Differential Operators

Let x be an n-times differentiable function of the independent variable t. We
denote the operation of differentiation with respect to t by the symbol D and call

15



D a differential operator. In terms of this differential operator the derivative %
is. Denoted by Dx. That is,

dx

Dx = )
dt

In like manner, we denote the second derivative of x with respect to t by D?x.
Extending this, we denote the nth derivative of x with respect to t by D"x. That
IS,

n, —ad"x o _
Dx—dtn(n—l,z, ).

Further extending this operator notation, we write

dx
(D + c) x to denote It + cx

and

" m d"x d™x
(aD™ + bD™ ) x to denote aw + bdt_m

where a, b, and ¢ are constants.

In this notation the general linear differential expression with constant
coefficients

ao, al, °ty an_l, an .

a d™x a dn1x
0 g¢n 1 g¢n-1

d
+oeee an_ld—f +a,x
Is written as

(apD™+ a;D™"" 1 + - + a,_D +a,)x

The operators D™, D™ 1,..-, D are to be carried out upon this function. The
expression

aO D‘I’l + al Dn_1 + b + an_l D + an

By itself, where ay, a,, -, a,_1 a, are constants, is called a linear differential
operator with constant coefficients.

16



Example 2.1.
Consider the linear differential operator.

3D*+ 5D —2
If X is a twice differentiable function of t, then

2 _ x  dx
(3D*+ 5D 2)xdenote53dt2+5dt 2x.

For example, if x = 3, we have

2
3D* +5D —2)t3 = 3d— t3 +5i t3) — 2 (t3
( ) dtz( ) dt( ) (t>)

=18t + 15 t2 - 2t3.

We shall now discuss certain useful properties of the linear differential operator
with constant coefficients. In order to facilitate our discussion, we shall let L
denote this operator. That is,

L =aD"+a, D" 1+ -+a,_1D+a,

where ay, aq, -+, a,—1 a, are constants. Now suppose that f; and f, are both n-

times differentiable functions of t and c¢; and c, are constants. Then it can be
shown that

Llic, fi + cofo]l = alLlfi]l + ;. LIf2]-
For example, if the operator L = 3D? + 5D — 2 is applied to 3t% + 2sint, then

L [3t? + 2sint] = 3L [t*] + 2L [sint]

Or
(3D? + 5D — 2)(3t? + 2sint)
= 3(3D%*+ 5D — 2)t? + 2(3D? + 5D — 2)sint.
Now let
L= aD"+a; D" +--+a,_,D+a,
And

17



L, = byD™+b, D" 1+.--+b,_,D+b,
Be two linear differential operators with constant
Coefficients a,, a4, -+, ayy—1, @,y andby, by, -+, by,_1, b, respectively. Let
L, = agr™+a, r™ 1+ ta,,_r+a,,
And L, = byr™+b;r" 1+---+b,_ 1+b,
Be the two polynomials in the quantity r obtained from the operators L, andL,,

Respectively, by formally replacing D by r, D? byr?,---, D* by r*. Let us denote
the product of the polynomials L, (r) and L, (r) by L(r) that is,

L(r) =Ly (r) Ly ().
Then, if fis a function possessing n + m derivatives, it can be shown that
LiLyof = LyLyf = LA

Where L is the operator obtained from the “product polynomial” L(r) by
formally replacing r by D, r? by D2,..., y™*" by D™+ Equation (2.10)
indicates two important properties of linear differential operators with constant
coefficients. First, it states the effect of first operating on f by L, and then
operating on the resulting function by L, is the same as that which results from
first operating on f by L, and then operating on this resulting function byL,.
Second Equation (2.10) states that the effect of first operating on f by either L,
or L, and then operating on the resulting function by the other is the same as that
which results from operating on f by the “product operator” L.

We illustrate these important properties in the following example.
Example 2.2
Let L, =D? + 1, L, = 3D + 2, f(t) = t3.Then

LiL,f = (D? + 1)(3D + 2)t3 = (D? + 1)(9t? + 2t3)
= 9(D? + Dt? + 2(D? + D3

=9(2+t?) +2(6t +t3) = 2t3+ 9t* + 12t + 18

and

18



L, Lif = (3D + 2)(D%+ Dt3 = (3D + 2)(6t + t3)
6(3D + 2)t + (3D + 2)t3
= 6(3 + 2t) + (9t?2+2t3) = 2t3 + 9t% + 12t + 18.
Finally, L=3D3+2D?+3D+2 and
Lf = (3D3 +2D? + 3D + 2)t3 = 3(6) + 2(6t) + 3(3t?) + 2¢t3
=2t3 +9t% + 12t + 18,
Now let L = ayD"+a, D" '+--- + a,_,D+a, , where ay, a,, -+, a,_, a, are

Constants, and let L(r) = aqr™+a,;r" 1+--+a,_;r+a, be the polynomial in r
obtained from L by formally replacing D by r, D? byr?2,--, D™ by r™ let
1,0, Ty, 1, De the roots of the polynomial equation L(r) = 0. Then L(r) may be
written in the factored form

L(r) = aog(r — 1) (r —13) = (r — 1.

Now formally replacing r by D in the right member of this identity, we may
express the operator L = a,D™+a; D" '+ + a,,_;D+a,, in the factored form

L=ae(D — 1)(D —15) (D — 1y

We thus observe that linear differential operators with constant coefficients can
be formally multiplied and factored exactly as if they were polynomials in the
algebraic quantity.

C. an Operator Method for linear Systems with Constant Coefficients
We consider a linear system of the form
Lix + Ly = fi(¢)
(2.11)
Lyx + Lyy = fo(x)

Where L,,L,,L; and L, are linear differential operators with constant
coefficients.

Thatis, L, L,, L3, and L, are operators of the forms
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L, = ayD™+a; D™ M+ + apy_ Day,
L, = byD™+b, D" *+--- + b,,_,D+b,
Ly =y DP+o¢; DP 71+ foc,, g Do,
Ly = BoDI+p, DI - + B, _1 D+,
Where the a’s, b’s, «’s, and 8’s are constants.

A simple example of a system which may be expressed in the form (2.11) is
provided by

iy, SN NES
dt dt
2% 1 2% 4 3x +8y = 2
dt dt
Introducing operator notation this system takes the form
(2D — 3)x- 2Dy = t,
(2D + 3)x + (2D + 8)y = 2.

This is clearly of the form (2.11), where L, = 2D - 3, L, = -2D, L; = 2D + 3,
and L, = 2D + 8.

Returning now to the general system (2.11), we apply the operator L, to the first
equation of (2.11) and the operator L, to the second equation of (2.11),
obtaining

LyLix + LyLyy = Lufy
LoLsx + LyLyy = Lof,

We now subtract the second of these equations from the first. Since L,L,y =
LyLyy

we obtain
LyLix - LyLyx = Lyfy - Lyf;
Or (2.12)

(LyLy - LyL3)x = Lyf; - Lo f;
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The expression L,L, - L, L5 in the left member of this equation is itself a linear
differential operator with constant coefficients. We assume that it is neither zero
nor a nonzero constant and denote it by Lc. If we further assume that the
functions f; and f, are such that the right member L,f; - L,f, of (2.12) exists,
then this member is some function, say g,, of t. Then Equation (2.12) may be
written

Lsx = g;. (2.13)

Equation (2.13) is a linear differential equation with constant coefficients in the
single dependent variable x. We thus observe that our procedure has eliminated
the other dependent variable y. We now solve the differential equation (2.13) for
X using the methods developed in Chapter 4[in book 1]. Suppose Equation
(2.13) is of order N. Then the general solution of (2.13) is of the form

X=cCiUy + Couy + oo+ cyuy + Uy, (2.14)

Where u,,u,, -, uy are N linearly independent solutions of the homogeneous
linear equation L<x = 0,c¢;, c,, ‘-, ¢, are arbitrary constants, and U; is a
particular solution of Lgx = g;.

We again return to the system (2.11) and this time apply the operators L; and
L, to the first and second equations, respectively, of the system. We obtain

L3Lyx + L3Lyy = Lsfy

LiLsx + LiLyy = L1 f
Subtracting the first of these from the second, we obtain
(L1Ly - LoL3)y = L1 f; - L fi.

Assuming that f; and f, are such that the right member L,f, - Lsf; of this
equation exists, we may express it as some function, say g,, of t. Then this
equation may be written

Lsy = g», (2.15)

Where Lg denotes the operator L,L, - L,Ls;. Equation (2.15) is a linear
differential equation with constant coefficients in the single dependent variable
y. This time we have eliminated the dependent variable x. solving the
differential equation (2.15) for y, we obtain its general solution in the form

y:k1u1+k2u2 +"'+kNuN+U2, (216)
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Where uy,u,, -+, uy are the N linearly independent solutions of Lgy = O(or
Lsx=0) that already appear in (2.14), k,, k,, -+, k) are arbitrary constants, and
U, is a particular solution of Lgy = g,.

We thus see that if x and y satisfy the linear system (2.11), then x satisfies the
single linear differential equation (2.13) and y satisfies the single linear
differential equation (2.15). Thus if x and y satisfy the system (2.11), then x is of
the form (2.14) and y is of the form (2.16). However, the pairs of functions
given by (2.14) and (2.16) do not satisfy the given system (2.11) for all choices
of the constantscy, c,, -+, cy, k1, ko, -+, ky. That is these pairs (2.14) and (2.16)
do not simultaneously satisfy both equations of the given system (2.11) for
arbitrary choices of the 2N constantsc,, ¢, -+, cn, k1, ko, -, k.

In other words, in order for x given by (2.14) and y given by (2.16) to satisfy the
given system (2.11), the 2N constantsc,, ¢y, ***, cy, k1, k2, -+, k. Cannot all be
independent but rather certain of them must be dependent on the others. It can
be shown that the number of independent constants in the so-called general
solution of the linear system(2.11) is equal to the order of the operator L,L, -
L, L+ obtained from the determinant

Ly L
Ly L4

of the operator “coefficients” of x and y in (2.11), provided that this determinant
IS not zero. We have assumed that this operator is of order N Thus in order for
the pair (2.14) and (2.16) to satisfy the system (2.11) only N of the 2N constants
in this pair can be independent. The remaining N constants must depend upon
the N that are independent. In order to determine which of these 2N constants
may be chosen as independent and how the remaining N then relate to the N so
chosen, we must substitute x as given by (2.14) and y as given by (2.16) Into the
system (2.11).

This determines the relations that must exist among the constants
C1,Cp 5 Cny k1, ko, o+, ky N Order that the pair (2.14) and (2.16) constitute the
so-called general solution of (2.11). Once this has been done, appropriate
substitutions based on these relations are made in (2.14) and/or (2.16) and then
the resulting pair (2.14) and (2.16) contain the required number N of arbitrary
constants and so does indeed constitute the so-called general solution of system
(2.112).

We now illustrate the above procedure with an example.
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Example 2.3.

Solve the system
2% 2P _3x = ¢
dt dt
2% 42 4 3x + 8y = 2 2.17
dt dt x y = (2.17)
We introduce operator notation and write this system in the form
(2D - 3)x — 2Dy = t,
(2D + 3)x + (2D + 8)y = 2. (2.18)

We apply the operator (2D + 8) to the first equation of (2.18) and the operator
2D to the second equation of (2.18), obtaining

(2D + 8)(2D — 3)x — (2D + 8)2Dy = (2D + 8)t,
2D(2D + 3)x + 2D(2D + 8)y = (2D)2.
Adding these two equations, we obtain
[(2D + 8)(2D — 3) + 2D(2D + 3)]x = (2D + 8)t + (2D)2
Or (8D%+ 16D —24)x =2+ 8t+0 (2.19)
or, finally (D? + 2D —3)x=t+ i.

The general solution of the differential equation (2.19) is

1t 11 2.20
3 36° (220)

x = et + ce 3t

We now return to the system (2.18) and apply the operator (2D + 3) to the first

equation of (2.18) and the operator (2D — 3) to the second equation of (2.18).
We obtain

(2D + 3)(2D — 3)x — (2D + 3)2Dy = (2D + 3)t,
(2D — 3)(2D + 3)x + (2D — 3)(2D + 8)y = (2D — 3)2.

Subtracting the first of these equations from the second, we have
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[(2D — 3)(2D + 8) + (2D + 3)2D]y = (2D — 3)2 — (2D + 3)t
Or
(8D? + 16D—24)y=0 —6 — 2 — 3t (2.21)

Or, finally

3
(D*+ 2D =3)y= —ot 1

The general solution of the differential equation (2.21) is

ket + kye 3t + 1t+i
y= K 2 3 12 °
Thus if x and y satisfy the system (2.17), then x must be of the form(2.20) and y
must be of the form(2.22) for some choice of the constants ¢y, ¢, k;, k,.The
determinate of the operator "coefficients" of x and y in (2.18) is

2D -3

2 -
2D +3 2D+8 = 8D“ + 16D — 24.

Since this of order two, the number of independent contents in the general
solution of the system (2.17) must also be two. Thus in order for the pair (2.20)
and (2.22) to the satisfy the system (2.17) must also be two of the four constants
1, C2, ky and k, can be independent. In order to determine the necessary
relations which must exist among these constants, we substitute x as given by
(2.20) and y as given by (2.22) into the system (2.17). substituting into the first
equation of (2.17), we have

2 1
[chet — 6cye 3t — §] — [Zklet — 6k,e73t + Z]

—[30 et +3c,e 3t —t—E] =t
1 2 12
Or
(_Cl - Zkl)et + (_9C2 + 6k2)e_3t - 0

Thus in order that the pair (2.20) and (2.22) satisfy the first equation of the
system (2.17) we must have
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—C1 — 2k1 = O,

Substituting of x and y into the second equation of the system (2.17) will lead to
relations equivalent to (2.23). Hence in order for the pair (2.20) and (2.22) to
satisfy the system (2.17) , the relations (2.23) must be satisfied. Two of the four
constants in (2.23) must be chosen as independent. If we chose c¢; and c, as
independent, then we have

k1 - _Ecl al’ld kz - ECZ.
Using these values for k; and k, in (2.22), the resulting pair (2.20) and (2.22)
constitute the general solution of the system (2.17). that is, the general solution
of (2.17) is given by

1 11
x=clet+cze‘3t—§t—£,
1, 3 51 5
y=—§cle +§cze +§t+ﬁ'

Where c; and c, are arbitrary constants. If we had chosen k, and k. as the
independent constants in (2.23), then the general solution of the system (2.17)
would have been written

x = —2k,et + Ekze‘“ — 1t — E
3 3 36

1 5
— t —3t 4
y=kje" +kye +8t+12.

An Alternative Procedure

Here we present an alternative procedure for solving a linear system of the form
Lix + Ly = f1(b),
Lyx + L,y = f,(t), (2.11)

Where L4, L,, L5 and L, are linear differential operators with constant
coefficient this alternative procedure beings in exactly the same way as the
procedure already described. That is, we first apply the operator L, to the first
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equation of (2.11) and the operator L, to the second equation of (2.11),
obtaining

LoLyx + LaLoy = Lufs,
L2L3x + L2L4y = szz.
We next subtract the second from the first, obtaining

(LiLy — LyLa)x = Lyfy — Lof; (2.12)

Which, under the same assumptions as we previously made at this point, may be
written

Lsx = g;. (2.13)

Then we solve tis single linear differential equation with constant coefficients in
the single dependent variable x. Assuming its order is , we obtain its general
solution in the form

X = C1u1 + Czuz + -4 CNuN + U1 (214)

Where u,, u,, ..., uy are N linearly independent solutions of the homogenous
linear equation Lsx = 0, ¢y, ¢y, ..., Cy are N arbitrary constants, and U, is
particular solution of Lgx = g;.

Up to this point, we have indeed proceeded just exactly as before. However we
now return to system (2.11) and attempt to eliminate from it all terms which
involve the derivatives of the other dependent variable y. In other words, we
attempt to obtain from system (2.11) a relation R which involves the still
unknown y but none the derivatives of y. This relation R will involve x and/or
certain of the derivatives of x; but x is given by (2.14) and its derivatives can
readily be found from (2.14). Finding these derivatives of x and substituting
them and the know x itself the relation R, we see that the result is merely a
single linear algebraic equation in the one unknown y. Solving it, we thus
determine y without the need to find (2.15) and (2.16) or to relate the arbitrary
constants.

As we shall see, this alternative procedure always applies in an easy straight
for wean manner if the operators L,, L,, L3 and L, are all of the first order.
However, for system involving one or more higher-order operators, it is
generally difficult it eliminate all the derivatives of y.
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We now give an explicit presentation of the procedure for finding y when
L,,L,,Ls,and L, are all first-order operators.

Specifically, suppose

Li =ayD + a4,
L, = byD + b4,
Ly = agD + a4,
Ly = BoD + By,

Then (2.11) is
(agD + ay)x + (boD + by)y = f1(t),

(apD + a)x + (BoD + B1)y = f(t)

Multiplying the first equation of (2.24) by 3, and the second by —b, and adding,
we obtain

[(apBo — boao)D + (aofo — boar)]x + (b1 — bof1)y = Bof1(t) — bof2(t)

Note that this involves y but none of the derivatives of y. From this, we at once
obtain

_ (boag — apBo)Dx + (boary — a1 Bo)x + Bof1(t) — by f>(t)
- b.fo — boPs |

Assuming b, By — bof1 # 0. Now x is given by (2.14) and Dx may be

found from (2.14)by strightforword differentiation. Then substituting these
known expressions for x and Dx into (2.25) , we at once obtain y without the
need of obtaining (2.15) and (2.16) and hence without having to determine any
relations between constants c; and k;(i = 1,2, ..., N), as in the original
procedure.

(2.25)

We illustrate the alternative procedure by applying it to the system of Example
2.3.
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Example 2.4.

Solve the system

dx dy
ZE—ZE—3x= t,
dx dy

Of example 2.3 by the alternative procedure which we have just described.

Following this alternative procedure, we introduce operator notation and write
the system (2.17) in the form

(2D —3)x — 2Dy = t,
(2D +3)x + (2D + 8)y = 2. (2.18)
Now we eliminate y, obtain the differential equation
D>+2D—-3)x=t+1/4 (2.19)
For x and find its general solution

1 11
x =cret +ce 3t — 3t~ 3¢ (2.20)

Exactly as in Example 2.3.

We now proceed using the alternative method. We first obtain from (2.18) a
relation which involves the known y but not derivative Dy. The system (2.18) of
this example is so very simple that we do so by merely adding the equation
(2.18). doing so, we at once obtain

4Dx +8y =t + 2,

Which dose indeed involve y but not the derivative Dy, as desired. From this,
we at once find

y =1/8(t + 2 — 4Dx). (2.26)
From (2.20), we find

— ot -3t
Dx = cye" — 3c,e™ " — 3
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Substituting into (2.26), we get
1 t -3t 4
y=§(t+2—4c1e + 12¢,e +§>
1 3 1 5
Tt 2 -3t
2cle +2c2e +8t+12.

Thus the general solution of the system may be written

1 11

— t —3t__t_ :

X =ce +cye 3 36
1 .. 3 5.1 5
y=—§cle +§cze +§t+E,

Where c; and c, are arbitrary constants.
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2.2 BASIC THEORY OF LINEAR SYSTEMS IN NORMAI FORM:
TWO EQUATIONS IN TWO UNKNOWN FUNCTIONS

A. Introduction:

We shall begin by considering a basic type of system of two linear differential
equations in two unknown functions. This system is of the form,

dx

— = an(®x+ a;p Oy + Fi(t),

(2.27)

dy

—= = a(Ox+ an )y + F(D).

We shall assume that the functionsa,,, as,, F; , a,;, a,,, and F, are all
continuous on a real interval a < t < b. If F;(t) and F,(t) are zero for all t, then
the system (2.27) is called homogeneous; otherwise, the system is said to be non
homogeneous.

Example 2.6.
The system
dx
E =2x — vV,
2 = 3x + 6. (2.28)

Is homogeneous; the system

dx
E—Zx—y—St,

2 = 3x+6y—4. (2.29)
Is non homogeneous.
DEFINITION:

By a solution of the system (2.27) we shall mean an ordered pair of real
functions (f, g), (2.30)

Each having a continuous derivative on the real interval a <t < b, such that
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O = 4, (OF () + a,(0)g(®) + F(D),

WO _ 0, (OF(0) + an(®g() + Fy(0),

For all t such that a < t < b. In other words,

x = f (1),

y = g () (2.31)
Simultaneously satisfy both equations of the system (2.27) identically for
a < t<b.

Notation. W shall use the notation

x = f (1),
y =g @. (2.31)
to denote a solution of the system (2.27) and shall speak of “the solution
x = f (),
y = g (b

Whenever we do this, we must remember that the solution thus referred to is
really the ordered pair of functions (f, g ) such that (2.31) simultaneously satisfy
both equations of the system (2.27) identicallyona <t <b.

Example 2.7.

The ordered pair of functions defined for all t by (e®t , —3e5t), which we denote
by

y = —3e°t, (2.32)

is a solution of the system (2.24). That is,
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y = —3e°t, (2.32)

Simultaneously satisfy both equations of the system (2.28). Let us verify this by
directly substituting (2.32) into (2.28). We have

d
E (eSt) — Z(eSt) _ (—3€5t),
£ (~3e5%) =3(e%) + 6(~3¢°*)
Or
5e°t = 2e° 4+ 3et

—15e5t = 3¢5t — 18e5t

Hence (2.32) is indeed a solution of the system (2.28). Theorem 2.1 is the basic
existence theorem dealing with the system (2.27).

THEOREM (2.1).

Hypothesis. Let the functions a,, a,,, F;, a1, a,, and F, in the system (2.27)
all be continuous on the interval a <t < b. Let t, be any point of the interval a
<t <bandlet c; and c, be two arbitrary constants.

Conclusion. There exists a unique solution
x = f(t)
y = g(@),
of the system (2.27) such that
f(to) = ciand g(tp) = ¢,
and this solution is defined on the entire interval a <t < b.
Example 2.8.

Let us consider the system (2.29). The continuity requirements of the hypothesis
of Theorem (2.1) are satisfied on every closed interval a <t < b. Hence, given
any point t, and any two constants c; and c,, there exists a unique solution
x = f(t),y = g(t) of the system (2.29) that satisfies the conditions f(t,) =
c1,9(ty) = c,. For example, there exists one and only one solution x =

f(t),y = g(t)suchthat f(2) = 5,9g(2) = —7.
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B. Homogeneous Linear Systems

We shall now assume that F; (t) and F,(t) in the system (2.27) are both zero for
all and consider the basic theory of the resulting homogeneous lineal system

dx

Pl a;;(O)x + a(t)y

% = a1 (t)x + ax(t)y (2.33)

We shall see that this theory is analoous to that of the single nth-order
homogeneous linear differential equation presented in Section 4.1B[in book b1]
Our first result concerning the system (2.33) is the following.

THEOREM (2.2)

Let
x = f1(t) : x = f>(¢) (2.34)
Y =91(t) : Y = g2(t)

Be two solutions of the homogeneous linear system (2.33). Let ¢; and ¢, be two
arbitrary constants.

Then
x=cif1(t) + c,f5(t)
Y =c191() + ¢292(t) (2.35)
is also a solution of the system (2.33).
DEFINITION:

The solution (2.35) is called a linear combination of the solutions (2.34). This
definition enables us to express Theorem 2.2 in the following alternative form.

THEOREM (2.2) RESTATED

Any linear combination of two solutions of the homogeneous linear system
(2.33) is itself a solution of the system (2.33).

33



Example 2.9.
We have already observed that
X =e
and
y=—365t y=—e3t
Are solutions of the homogeneous linear system (2.28). Theorem 2.2 tells us that
x =ce’t + c,edt
y = —3c,e> — c,edt

Where ¢, and c, are arbitrary constants, is also a solution of the system (2.28).
For example, if c; = 4 and ¢, = —2 we have the solution

x = 4e>t — 2e3t,

y =—12e>t + 2e3t,

DEFINITION:
Let

x = fi (1) X =f(t)
and

y=9:() y=92(1)

Be two solutions of the homogeneous linear system (2.33). These two solutions
are linearly dependent on the interval a <t < b if there exist constants c; and c,,
not both zero, such that

c1f1(t) + cof2(t) = 0

c191(t) + c9,(t) =0 (2.37)

Foralltsuchthata < t < b.
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DEFINITION:
Let
x = fi(t) x = fo(t)
and
y=9:(1) y=92(1)

Be two solutions of the homogeneous linear system (2.33). These two solutions
are linearly independent on a < t < b if they are not linearly dependentona <t
<b. That is, the solutions x = f;(t), y = g.(t) and x = £,(t), y = g,(t) are
linearly independentona<t<b

afi®) + cof,() =0
c191(t) + ¢c,g,(t) =0 (2.37)
For all t such that a <t < b implies that
c; = ¢, =0.
Example 2.10.

The solutions

and

5t 5t

y:—3e y:—6€

Of the system (2.28) are linearly dependent on every interval a <t < b. For in
this case the conditions (2.36) become

c,et + 2c,e’t
—3c,et —6c,e’t =0 (2.38)

And dearly there exist constants c¢; and c,, not both zero, such that the
conditions (2.38) hold ona <t < b. For example, letc;, =2 and ¢, = —1.
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On the other hand, the solutions

x =e%t

and

5t 3t

y=—3e y=e

Of system (2.28) are linearly independent on a < t < b. For in this case the
conditions (2.37) are

cie’t + ce3t =0
—3c,e’t — c,e3t = 0.

If these conditions hold for all t such that a < t < b, then we must have
cg =c¢, =0.

We now state the following basic theorem concerning sets of linearly
independent solutions of the homogeneous linear system (2.33).

THEOREM (2.3).

There exist sets of two linearly independent solutions of the homogeneous linear
system (2.33).Every solution of the system (2.33) can be written as a linear
combination of any two linearly independent solutions of (2.33).

Example 2.11.
We have seen that
xX=e

and

5t 3t

y=-3e y=-—e

Constitute a pair of linearly independent solutions of the system (2.28). This
illustrates the first part of Theorem (2.3). The second part of the theorem tells us
that every solution of the system (2.28) can be written in the form
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Where ¢, and c, are suitably chosen constants.

We now give an analogous definition of general solution for the homogeneous
linear system (2.33).

DEFINITION:
Let

x = f1(t) x = f(t)
amd

y=01(t) Y = 92(t)

Be two linearly independent solutions of the homogeneous linear system (2.33).
Let c; and ¢, be two arbitrary constants. Then the solution

x = c1f1(t) + cf2(0)

y = ¢19:(t) + c9,(t)

Is called a general solution of the system (2.33).

Example 2.12.
Since
x =e°t x =e3t
and
y:—BeSt y:—e3t

Are linearly independent solutions of the system (2.28), we may write the
general solution of (2.28) in the form

x = c;e’t + cedt
y = —3c,et — cyedt
Where c,, and c, are arbitrary constants.
THEOREM ( 2.4).

Two solutions
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x=fi() ,x=f2(0)
and
y=g1(t) , y=9.(t)

Be two solutions of the homogeneous linear system (2.33). A necessary and
sufficient condition that these two solutions be linearly independent on a < t<b.

Is that is determinant

i) f2(0)
g1(t)  g2(t)

be different from zero for all t such thata <t <b.

A(t) =

Concerning this determinant, we also state the following result.
THEOREM (2.5).

The determinant A(t) of theorem (2.4) either is identically zero or vanishes for
notontheintervala<t<bh.

Example 2.13.

Let us employ Theorem 2.4 to verify the linear independence of the solutions

5t 3t

xX=e xX=e
and
y:_3e5t y:_eBt
of the system (2.28). We have
5t 3t
A(t) = |—6365t _eegt =2e8% 0.

on every closed Interval a <t < b. Thus by Theorem 2.4 the two solutions are
indeed linearly independentona <t <b.

C. Nonhomogeneous linear Systems

Let us now return briefly to the nonhomogeneous system (2.27). A theorem and
a definition, illustrated by a simple example, will suffice for our purposes here.
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THEOREM (2.6).
Let

x = fo(t)

Yy = go(t)
be any solution of the nonhomogeneous system (2.27), and let

x = f(t),

y=g(t),
be any solution of the corresponding homogeneous system (2.33)
Then

x=f(t) + fo(t)
y=g() + go(t)

Is also a solution of the nonhomogeneous system (2.27).
DEFINITION:
Let

x = fo(t)

Yy = go(t)
be any solution of the nonhomogeneous system (2.27), and let

x=fi(t) , x=f2(t)
and
y=01(t) , ¥y =g.(t)

Be two linearly independent solutions of the corresponding homogeneous
system (2.33), let c; and ¢, be two arbitrary constants. Then the solution

x = c1f1(t) + c2f2() + fo(b)
y = c191() + ¢c292(t) + go(t)
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will be called a general solution of the nonhomogeneous system (2.27).
Example 2.14.
We have the system (2.29),and
x=2t+1
y= —t

Is a solution of the nonhomogeneous system (2.29). The corresponding
homogeneous system is the system (2.28), and we have already seen that

5t

x=e’t  x=e3t

and

5t

y=-3e> , y=-—g3t

are Linearly independent solutions of this homogeneous system. Theorem 2.6
tells us for example, that

x= e+ 2t+1
y= —3e’—t

Is a solution of the nonhomogeneous system (2.29). From the preceding
definition we see that the general solution of (2.29) may be written in the form

x = et + ce3t+ 2t+1
y = —3c,e’t — c,e3t — ¢t

Where ¢, and c, are arbitrary constants.
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2.3 HOMOGENEOUS LINEAR SYSTEMS WITH CONSTANT
COEFFICIENTS: TWO EQUATIONS IN TWO UNKNOWN
FUNCTIONS:

A. Introduction

In this section we shall be concerned with the homogeneous linear system
dx
- - X + by ,

=a,x + b,y (2.40)

Where the coefficientsa,, by, a,, b, are real constants. We seek solutions of this
system.Remembering the analogy that exists between linear systems and single
higher-order linear equations, we might now attempt to find exponential
solutions of the system (2.40). Let us therefore attempt to determine a solution
of the form

x = AeM
y = Be™ (2.41)
where A, B, and A are constants. If we substitute (2.41) into (2.40), we obtain
Ale? = q,Ae? + b,Be™
Ble*t = a,Ae* + b,Be™
These equations lead at once to the system
(aq— VA+b,B=0
a,A+ (b, — 1)B=0 (2.42)

in the unknowns A and B. This system obviously has the trivial solution A=B =
0.

But this would only lead to the trivial solution x = 0, y = 0 of the system (2.40).
Thus we seek nontrivial solutions of the system (2.42). A necessary and
sufficient condition that this system have a nontrivial solution that the
determinant

41



al - /1 b1 _

a b, — A~ 0 (2.43)

Expanding this determinant we are led at once to the quadratic equation
/12 - (a1 + bz) A + (a1b2 - azbl) = 0 (244)

In the unknown A. This equation is called the characteristic equation associated
with the system (2.40). Its roots A, and A, are called the characteristic roots. If
the part (2.41) is to be a solution of the system (2.40), then A in (2.41) must be
one of these roots. Suppose

A = A;. Then substituting 4 = A, into the algebraic system (2.42), we may
obtain a nontrivial solution A;, B, of this algebraic system. With these values
A1, B; we obtain the nontrivial solution

x = AeM
y = BjeM
of the given system (2.40).
Three cases must now be considered:
1. The roots A, and A, are real and distinct.
2. The roots A, and A, are real and equal.
3. The roots A, and A, are conjugate complex.

B. Case 1. The Roots of the Characteristic Equations (2.44) are Real and
Distinct

If the roots A, and A, of the characteristic equation (2.44) are real and distinct, it
appears that we should expect two distinct solutions of the form (2.41), one
corresponding to each of the two distinct roots. This is indeed the case.
Furthermore, these two distinct solutions are linearly independent. We
summarize this case in the following theorem.

THEOREM 2.7.

Let the roots 1, and A, , of the characteristic equation (2.44) associated with the
system (2.40) are real and distinct.
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Then the system (2.40) has two nontrivial linearly independent solutions of
the form

x = AjeMt x = A,et2t
and

it Aot

y = Bje y = Bye

where A,,B;,A, and B, are definite constants. The general solution of the
system (2.40) may thus be written

x = ¢ AeMt + ¢, Aetet

y =c;BeMt + ¢, Bye2t
Where c; and c, are arbitrary constants.
Example 2.15.
dx _ .
o 6x — 3y
dy _
s 2x +y (2.45)
We assume a solution of the form (2.41):
x = AeM
y = Be™ (2.46)

Substituting (2.46) into (2.45) we obtain
Ade* = 6Ae’t — 3Be™
Ble? = 24e?t + Bett
and this leads at once to the algebraic system
(6— DA—3B =0
24+ (11— A)B=0 (2.47)

in the unknown A. For nontrivial solutions of this system we must have
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6—1 =3 _
2 1—1'0

Expanding this we obtain the characteristic equation
A2—T71+12=0
Solving this, we find the roots 1; =3, 1, = 4.
Setting 1, =4, =3in (2.47), we obtain
34 — 3B =0,
2A — 2B = 0.

A simple nontrivial solution of this system is obviously A = B = 1. With these
values of A, B, and A we find the nontrivial solution

x = e3t
y = et (2.48)

Now setting A = 4 in (2.47), we find

2A — 3B =0,

2A — 3B = 0.

A simple nontrivial solution of this system is A = 3, B = 2. Using these values of
A, B and A we find the nontrivial solution

x = 3e?t, ,
y = 2e*t, (2.49)

By Theorem 2.7 the solutions (2.48) and (2.49) are linearly independent (one
may check this using Theorem 2.4) and the general solution of the system (2.45)
may be written

x = ce3t + 3e*t,

y = ce3t + 2e*
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Where c,and c,are arbitrary constants.
C. Case 2 The Roots of the Characteristic Equation (2.44) are Real and
Equal

If the two roots of the characteristic equation (2.44) are real and equal, it would
appear that we could find only one solution of the form (2.41). Except in the
special sub case in which a; = b, # 0,a, = b; = 0. this is indeed true. In
general, how shall we then proceed to find a second, linearly independent
solution? Recall the analogous situation in which the auxiliary equation
corresponding to a single nth-order linear equation has a double root. This
would lead us to expect a second solution of the form

x = Ate™
y = Bte’

However, the situation here is not quite so simple .We must actually seek a
second solution of the form

x = (At + Ay)et

We shall illustrate this in Example 2.17. We first summarize Case 2 in the
following theorem.

THEOREM 2.9.

If the roots A, and A, of the characteristic equation (2.44) associated with the
system (2.40) are real and equal. Let A denote their common value. Further
assume that system (2.40) is not such that a; = b, # 0,a, = b; = 0.

Then the system (2.40) has two linearly independent solutions of the form
x = Ae™ x = (At + Ay)et
and

y = Bte* y = (B;t + By)e’t
where ,B,A, , B, , A, ,and B, are definite constants,A, and B, are not both

zero, and Bl/A1 = B/A. The general solution of the system (2.40) may thus be

written
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x = c;Ate™ + ¢, (At + Ay)e?t

y = ¢;Bte* + ¢, (Bt + B,)e™

Example 2.16.
dx _4
e XY
dy
It =x+2y (2.51)
We assume a solution of the form (2.41):
x = Ae?t
y = Be’t, (2.52)

Substituting (2.52) into (2.51) we obtain
AleM = 44e?t — Belt,
Ble? = Ae? + 2Be’t.
And this leads at once to the algebraic system
4-0)A-B =0,
A+ (R2—-A)B=0. (2.53)
In the unknown A. For nontrivial solutions of this system we must have
* 1 ! 2_—1/1 =0
Expanding this we obtain the characteristic equation
A2—61+9=0,

(A—3)2 =0. (2.54)
thus the characteristic equation (2.54) has the real and equal roots 3, 3. Setting 4
=3in (2.53), we obtain
A—B =0,
A—B=0.
A simple nontrivial solution of this system beingA = B = 1, we obtain the
nontrivial solution
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of the given system (2.50).

Since the roots of the characteristic equation are both equal to 3, we must seek a
second solution of the form (2.50), withA = 3. That is, we must determine A;,
A,, B;, and B, (with A; and B; not both zero) such that

x = (At + Ay)e3t,

y = (Blt + Bz)egt. (256)

Is a solution of the system (2.51). Substituting (2.56) into (2.51), we obtain
(3A;t + 34, + A)e3t = 4(At + A))e3t — (Bt+B,)e3!
(3Bt + 3B, + By)e3t = (At + Ay)e3t + 2(B t+B,)e3t
These equations reduce at once to,
(A4, —BDt+ (A, — A1 —B;) =0

(A —B)t+ (A4, =By —B;) =0
In order for these equations to be identities, we must have
(4, —By) =0, A, —A;—B, =0

(Al - Bl) = 0, AZ - Bl - BZ =0 (2.57)
Thus in order for (2.56) to be a solution of the system (2.51), the constants A,
A,,

B,, and B, must be chosen to satisfy the equations (2.57). From the equations
A; — B; = 0, we see that A; = B;. The other two equations of (2.57) show that
A, and B, must satisfy

AZ - BZ - A1 ES Bl' (258)

we may choose any convenient nonzero values for A; and B,. We choose A, =
B; =1 . Then (2.58) reduces to A, —B, =1, and we can choose any
convenient values for A, and B, that will satisfy this equation. We choose
A, =1, B, = 0. We are thus led to the solution
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x = (t+ 1)e3t,
y = te3t, (2.59)

By Theorem 2.9 the solutions (2.55) and (2.59) are linearly independent. We
may thus write the general solution of the system (2.51) in the form

x = ce3t + ¢, (t + 1)e3t,
y = ¢ e3t + c,tedt.
where ¢, and c, are arbitrary constants.

D. Case 3. The Roots of the Characteristic Equation (2.44)are Conjugate
Complex

If the roots A; and A, of the characteristic equation (2.44) are the conjugate
complex numbers a + bi and a - bi, then we still obtain two distinct solutions

x = A*l e(a+bi)t , x = A*Z e(a—bi)t
y = B*l e(a+bi)t , y = B*Z e(a—bi)t (2.60)

Of the form (2.41), one is corresponding to each of the complex roots. However,
the solutions (2.60) are complex solutions. In order to obtain real solutions in
this case we consider the first of the two solutions (2.60) and proceed as follows:
We first express the complex constants A*; and B*; in this solution in the forms
A*1=A; +iA, and B*; = B, + iB, , whereA,, A,, B, and B, are real. We then
apply Euler’s formula e’® = cos @ + i sin @ and express the first solution (2.60)
in the form

x = (A, + i4,) e*(cos bt + isinbt).
y = (B; + iB,) e%(cos bt + isinbt)
Rewriting this, we have
x = e%[(A4; cosht — A,sinbt) + i(4, cosbht + A, sinbt)],
y = e*[(Bycosht — B,sinbt) + i(B,cosbt + B;sinbt)]. (2.59)

It can be shown that a pair [f;(t) + if,(t), g,(t) + ig,(t)] of complex functions is
a solution of the system (2.40) if and only if both the pair [f;(t), g4 (t)] consisting

48



of their real parts and the pair [f5(t), g,(t)] consisting of their imaginary parts
are solutions of (2.40). Thus both the real part

x = e*(A; cosbt — A, sinbt)
y = e% (B, cos bt — B, sinbt). (2.62)
And the imaginary part
x = e (A, cosbt + A sinbt),
y = e (B, cosbt + B, sinbt). (2.63)

of the solution (2.61) of the system (2.40) are also solutions of (2.40).
Furthermore, the solutions (2.62) and (2.63) are linearly independent. We verify
this by evaluating the determinant (2.39) for these solutions. We find

e (A, cosbt — A,sinbt) e%(A,cosbt+ A, sinbt)

A(t) =
(©) e*(B; cosht — B,sinbt) e% (B, cosbt + Bjsinbt)

(2.64)

=e?at (A1B; — A3B;)

Now, the constant B*; is a normal multiple of the constant A*,. If we assume
that

A;B, — A,B; =0, then it follows that B*; is a real multiple of A*;. , which
contradicts the result stated in the previous sentence. Thus A;B, — A,B; # 0
and - determinant At in (2.64) is unequal to zero. Thus by Theorem 2.4 the
solutions (2.62) and (2.63) are indeed linearly independent. Hence a linear
combinationof these two real solutions provides the general solution of the
system (2.40) in this case. There is no need to consider the second of the two
solutions (2.60). We summarize the above results in the following theorem;

THEOREM 2.9.

If the roots A, and A, of the characteristic equation (2.44) associated with the
system (2.40) are the conjugate complex numbers a + bi.

Then the system (2.40) has two real linearly independent solutions of the form
x =e*(A,cosbt — A,sinbt) , x = e%*(A,cosht + A, sinbt)

And
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y =e% (B, cosbht — B,sinbt), y= e*(B,cosbt+ Bjsinbt)

where A,, A,, B; and B, are definite real constants. The general solution of the
system (2.40) may thus be written

x = e*[c;(A; cosht — A, sinbt) + c,(A, cosht + A, sinbt)]
y = e*[c,(B; cosbt — B,sinbt) + c¢,(B, cosbt + B sinbt)]

where ¢, and c, are arbitrary constanis.

Example 2.17.
dx
ol 3x + 2y
Y- _5x+y (2.65)

dat

We assume a solution of the form (2.41)
x = Ae’t,
y = Be’t, (2.66)
Substituting (2.66) into (2.65) we obtain
Ade? = 3Ae?t + 2Be?t
Ble? = —54e?t + Bekt
and this leads at once to the algebraic system
(3—MVMNA+2B =0
—54+(1—- A)B=0 (2.67)
in the unknown A.For nontrivial solutions of this system we must have
B-1 2 -0
-5 1-2
Expanding this, we obtain the characteristic equation

A2 —41+13 =0.
The roots of this equation are the conjugate complex numbers 2 + 3i.
Setting A = 2 + 3i in (2.67), we obtain
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(1-30DA+2B=0,
—54+ (-1—3{)B = 0.

A simple nontrivial solution of this system is A = 2,B = —1 + 3i. Using these
values we obtain the complex solution

x = 26(2+3i)t
y = (=14 3i)e@*30D¢,
of the given system (2.65). Using Euler’s formula this takes the form
x = e?'[(2 cos 3t) + i(2sin 3t)]
y = e?[(—cos3t — 3sin3t) + i(3 cos 3t — sin 3t)].

Since both the real and imaginary parts of this solution of system (2.65) are
themselves solutions of (2.65), we thus obtain the two real solutions

x = 2e?t cos 3t,
y = —e?t(cos 3t + 3 sin 3t), (2.68)

and

x = 2e?!sin 3,
y = e?!(3 cos 3t — sin 3t). (2.69)

Finally, since the two solutions (2.68) and (2.69) are linearly independent we
may write the general solution of the system (2.63) in the form

x = 2e*t[c, cos 3t + ¢, sin 3t],
y = e?![c;(—cos 3t — 3sin3t) + ¢, (3 cos 3t — sin 3t)].

where ¢, and c, are arbitrary constants.
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2.4 BASIC THEORY OF LINEAR SYSTEMS IN NORMAL FORM: N
EQUATIONS IN N UNKNOWN FUNCTIONS.

A. Introduction

We consider the normal form of the system of n first-order differential equation
in n unknown functions x,, x,, ..., x,,. As noted in section 2.1 A[in book No.1],
this system is of the form

dx
d_tl = ay1(t)x; + a(t)x; + -+ a, (Ox, + Fi(0),
dx,
- az1(0)%1 + Az ()X + -+ + azp (Ox, + F2(2), (2.70)
dx,

E = Ap1(O)x1 + ana(O)xp + -+ app (D) x, + E,(8).
We shall assume that all of the functions defined by a;;(t),i = 1,2,..,n,j =

1,2,...,nand F;(t),i = 1,2, ..., n. are continuous on a real interval a < t < b. If
all F(t)=0,i=1,2,..,n for all t, then the system(2.70) is -called
homogeneous. Otherwise, the system is called nonhomogeneous.

Example 2.18.
The system
dx,
E = 7x1 — X2 + 6x3,
dx,
E == —10x1 + 4x2 - 12.X3,
dx
e —2x1 + x5 — x3.

Is a homogeneous linear system of the type (2.70)with n=3 and having constant
coefficient. The system
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dx;
- - 7xl_x2+6X3_5t_6,

dt

de

dxs 2x; + +2
= — Xy — X .

at X1 2 3

Is a nonhomogeneous linear system of the type (2.70) which n=3, the
homogeneous terms being —5t — 6, —4t + 23 and 2, respectively we note the

i

system (2.70)can be written more compactly as ‘Z—xt— i=1a()x; +
Fi(t), (l = 1,2, ...,n).

We shall now proceed to express the system in an even more compact manner
using vectors and matrices. We introduce the matrix A defined by

aj;; Az 7 Qan
A =| %1 2 T Om (2.73)
An1 QApz - Qnn
And the vectors F and x defined respectively by
Fi(®) X1
F(t) = F2 :(t) and x = x2 (2.74)
Fu(t) Xn

Then first by definition of the derivative of vector, and second by multiplication
of matrix by a vector followed by addition of vectors, we have respectively

/dxl

dx de
T dt

dxn /

And
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a;1(t) ap(t) - ap(®)\ /x Fi(t)
A@x+F(@e) = | 9210 a2(® G ) 2 [ ()

an® an® ~ am®) \x) \E®

a1 (t)x1 + a;(O)x, + -+ ag, (O x, + Fi(t)
= | az1()x1 + a(O)xy + - + A (£)x, + F,(t)
anl(t)xl + ) (t)xz + ot ann(t)xn + Fn(t)

Comparing the components of % with the left members of (2.73), we see that

system (2.70) can be expressed as the linear vector differential equation
dx

-~ = A(t)x + F(t) (2.74)
conversely, if A(t) is given by (2.73) and F(t) and x are given by (2.74), then we
see that the vector differential equation(2.74) can be expressed as the system

(2.73).

Thus, the system (2.73) and the vector differential equation (2.74) both express
the same relations and so are equivalent to one another. We refer to (2.74) as the
vector differential equation corresponding to the system (2.73), and we shall
sometimes call the system (2.73) the sealar from the vector differential equation
(2.74). hence forth throughout this section, we shall usually write the system
(2.73) as the corresponding vector differential equation(2.74).

Example 2.19.

The vector differential equation corresponding to the nonhomogeneous
system(2.74) of example 2.26 is

dx _ A(t)x + F(t
7r =~ AOx+F ()
7 -1 6 X1 —5t+6
A(t) = (—10 4 —12>,x = (xz>,and F(t) = (—4t + 23)
-2 1 -1 X3 2

Thus we can write this vector deferential equation as

i (7 -1 6 ~5t +6
—=|-10 4 12 )x+|—4c+23
-2 1 -1 2
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Where X is the vector with components x;,, x,, x5 as given above
DIFINITION:

By a solution of the vector deferential equation (2.74)we mean as nx1 column
vector function

b1
¢ = ¢2 (2.73)
bn

Whose components ¢4, ¢, ..., ¢, each have a continuous derivative on the real
interval a < t < b, which is such that

de(t)

ST A(t)p(t) + F(t) (2.74)
For all t such that a <t < b. In other words, x = ¢(t) satisfies the vector
deferential equation (2.72) identically on a <t < b. That is, the components

b1, s, ..., P, Of ¢ are such that

X1 = ¢1(t),
%2 = $2(0), (2.75)
Xn = .qbn(t)-

Simultaneously satisfy all n equation of the scalar form (2.70) of the vector
differential equation (2.72) for a <t < b. Hence we say that a solution of the
system (2.70) is an order of n real function ¢4, ¢,,...,¢,, each having
continuous ona < t < b, such that

x1 = P1(8),
Xy = .qbz(t); (275)
Xn = .an(t).

Simultaneously satisfy all n equation of the system (2.70) fora <t < b.
Example 2.20.
The vector differential equation corresponding to the homogeneous linear

system
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—Z = —10x; + 4x, — 12x3, (2.68)

— = —2x1 + X, — X3.

. 7 -1 6 X1
d_’: — (—10 4 —12) x, where x = (x2> (2.76)
—2 1 -1 X3

The column vector function ¢ is defined by

o3t
(t) = (—283t>
_edt

Is a solution of the vector differential equation (2.76) on every real interval
a <t <b,forx = ¢(t) satisfies (2.76) identically ona < t < b, that is

(—6e3t> = (—10 4 —12) (—Ze“)

x, = e3t
x, = —2e3t (2.77)
3t
x3 = —e

Simultaneously satisfy all three equation of the system (2.71) fora <t < b, and
so we call (2.77) a solution of the system.

THEOREM (2.10).

Consider the vector differential equation
dx
Frin A(t)x + F(t) (2.72)

Corresponding to the linear system (2.70) of n equation in n unknown functions.
Let the components a;;(t), i = 1,2,...,n, j = 1,2,..,n, of the matrix A(t) and
the components F;(t), i = 1,2, ...,n, of the vector F(t) all be continuous on the
real interval a < t < b. Let to be any point of the interval a < t < b, and let
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Be an nx1 column vector of any n numbers c,,c,, ..., c,. Then there exists a
unique solution

b1
o=
$n
Of the vector differential equation (2.72) such that
¢(to) = ¢ (2.78)
That is
$1(to) = ¢4,
¢2(t0). = Cy, (279)
¢n(t0) = Cp.

And this solution is defined on the entire interval a < t < b. Interpreting this
theorem in terms of the scalar form of the vector differential equation (2.72),
that is, the system (2.70), we state the following : under the stated continuity
hypotheses on the functions a;; and F;, given any point to in the interval
a < t < b and any n numbers c;, c,, ..., ¢,;, then there exist a unique solution

x; = ¢q(0),
Xy = .Cbz(t),
Xn = ;pbn(t)-
Such that
$1(to) = ¢4,
(Pz(to? = €2, (2.79)
¢n(t0j = Cn-

And this solution is defined for all t such thata < t < b.
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B.HOMOGENEOUS LINEAR SYSTEM

We now assume that all F;(t) =0, i =1,2,...,n, for all t in the linear system
(2.67) and consider the resulting homogeneous linear system

dx

d_tl = all(t)xl + aqo (t)xz + -t aln(t)xn'

dx,

E = a21(t)x1 + azz(t)xz + o+ aZTL(t)xn' (280)
Cdxy,
dt an1(0)x1 + A (X2 + -+ + App (D) 2.

The corresponding homogeneous equation in equation of the form (2.72) for
which F(t) = 0 for all t and hence is

dx A 2.81

— = AlDx (2.81)
Throughout reminder of section 2.6[in book No.1] we shall always make the
following assumption whenever we write or refer to the homogeneous vector
differential equations (2.81) : we shall assume that (2.81) is the vector
differential equation corresponding to the homogeneous linear system (2.80) of
n equation in n unknown function and the components a;;(t),i = 1,2,...,n,j =
1,2, ...,n, of the nxn matrix A(t) are all continuous on the real interval a < t <
b. Our first result corresponding equation (2.81) is an immediate consequence of
theorem 2.10

COROLLARY TO THEOREM (2.10)

Consider the homogeneous vector differential equation

dx—A 2.81
— = AO)x (281)

Let t, be any pointof a <t < b; and let

o
b

P

(p:
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Be a solution of (2.81) such that ¢(t,) = 0, that is, such that

h1(to) = Po(tg) = - = ¢pp(ty) =0 (2.83)
Then ¢(t,) = 0foralltona <t < b; that s,
$1(to) = Pa(tg) =+ = Pp(ty) =0

Foralltona <t <b.
Proof .

Obviously ¢ defined by ¢(t,) =0 for all t on a <t < b is a solution of the
vector differential equation (2.81) which satisfies conditions (2.83). These
conditions are of the form (2.79), where ¢; = ¢, = -+ = ¢,, = 0; and by theorem
2.10, there is a unique solution of the differential equation satisfying such a set
of conditions thus ¢ such that ¢(t) =0 for all t on a <t < b is the only
solution of (2.81) such that ¢(t,) = 0.

THEOREM (2.11)

A linear combination of m solutions of the homogeneous vector differential
equation

X—A 2.81
— = AO)x (281)

Is also a solution of (2.81). that is, if the vector functions ¢,, ¢, ..., ¢,,, are
solutions of (2.81) and ¢4, c,, ..., ¢, are m numbers, then the vector function

¢ = kzj;ck(,bk

Is also a solution of (2.81).
Proof.

We have

%[i Ck‘l-')k(t)] = i [ Ck¢k(t)] z [dd)k(t)
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Now since each ¢, is a solution of (2.81)

d¢;t(t) = A(t)¢,(t) fork = 1,2,...,m.

Thus we have

d m m
- [Z ckcpk(t)] = ) GA©®
k=1 k=1

We now use results A and B of section 1.1 A. First applying result B to each
term in the right member above, and then applying result A(m-1) times , we
obtain

k=1 A (8) = Xiey A [crPr ()] = A(t) Xy CrePr (1),

Thus we have

d m m
i [Z cPr(D)| = A(t) z CkPx (t)] ;
k=1 k=1
That is,
dp(t)
BT A(t)p(t)

Forall ton a < t < b thus the linear combination

b= cui®
k=1

is a solution of (2.81).

In each of the next four theorem we shall be concerned with n vector functions,
and we shall use the following combination for the n vector function for each of
the theorems. We let ¢4, ¢,, ..., @, be the n vector functions respectively by
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$11(t) $12(t) $1n(£)
o) = [ P20 ) 9,0 = | P20 | g0 = [ 920D | (283)
¢n1 (t) ¢n2 (t) ¢nn (t)

Carefully observe the notation scheme. For each vector, the first subscript of a
component indicates the row of the component in the vector, where as the
second subscript indicates the vector of which the component is an element. For
instance, ¢3< would be the component occupying the third row of the vector ¢-.

DEFINITION:

The nxn determinant

¢11 ¢12 ¢1n
¢:21 ¢:22 ¢:2n (2.84)
¢n1 ¢n2 ¢nn

Is called the Wronskian of the n vector function ¢4, ¢,, ..., ¢,, defined by
(2.83). we will denote it by W(¢,,¢,,...,¢,) and its value at t by

W((Pll ¢21 e ¢n)(t)
Theorem (2.12)

If the n vector functions ¢, ¢,, ..., ¢,,, defined by (2.83) are linearly dependent
on a <t < b, then their Wronskian W(¢,, ¢, ..., ¢,,)(t) equals zero for all t on
a<t<b

Proof.

We begin by employing the definition of linear dependence of vector functions
on an interval: since ¢4, ¢, ..., ¢,, are linearly dependent on the

interval a < t < b, there exist n numbers c,, c,, ..., ¢,,, not all zero, such that

C1P1 () + 20, (t) + -+ + ¢, Pp () =0

For all t € [a, b], now using the definition (2.83) of ¢4, ¢, ..., $,, and writing
the proceeding vector relation in the form of the n equivalent relation
corresponding components, we have
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C1P11(t) + c2¢p12(t) + -+ + ¢ Pp1(£) = 0,

C1P21(t) + C2P22(8) + -+ + cppan(t) = 0,

C1¢n1(t) + C2¢n2(t) + et Cn¢nn(t) = 0.

For all t € [a,b],thus, in particular, these must hold in an arbitrary point
ty € [a,b]

Thus , letting t = t, in the preceding n relations, we obtain the homogeneous
linear algebraic system

h11(to)cr + Pr2(to)cy + -+ + Pp1n(to)cn, =0,

$21(Eo)cy + Paa(to)cy + -+ Pan(to)cy, =0,

¢n1(t0)C1 + ¢n2(t0)C2 + -+ ¢nn(t0)cn = 0.

In n unknown ¢y, c,, ... ¢, Since ¢4, c,, ... ¢, are not all zero, the determinant of
coefficients of the preceding system must be zero, by Theorem A of( section
1.1B) the A is, we must have

$11(to)  P12(to) $1n(to)
¢21.(t0) ¢22.(t0) ¢2n.(t0) —0

Pui(to) buz(te) - bunlto)

But the left member of this is the Wronskian W (¢4, ¢,, ..., ;) (t,) thus we
have

W (¢1; ¢2, e ¢n)(t0) =0

Since to is an arbitrary point of [a,b], we must have

W (1, P2, s ) () = 0

Foralltona <t <b.
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Example 2.21.

In Example 1.3 of section 1.1B we saw that the three vector function
b1, P, and ¢ defined respectively by

eZt eZt eZt
¢1(t) = <2€2t> ) ¢, (t) = ( 42t ) and ¢5(t) = ( e?t >
5e?t 11e2t 22t

Are linearly dependent on any interval a < t < b. Therefore, by theorem 2.12,
their Wronskian must equal zero forall t on a < t < b. Indeed, we fined

2t 2t 2t

e e e
ZeZt 4‘32t eZt
et 11e2t 2e2t

W(d)li ¢21 "'rd)n)(t) = = 0 for all ¢t.

Theorem 2.13.

Let the vector function ¢, ¢, ..., d, defined by (2.83) be n solution of the
homogeneous linear vector differential equation

dx—A 2.81
— = A(®)x (281)

If the wronskian W (¢4, @5, ..., ¢,)(t, ) = 0 at some t, € [a, b], then
b1, Oy, ..., P, are linearly dependentona <t < b.
Proof.

Consider the linear algebraic system
C1¢11() + C2p12(t) + - + 1 (t) = 0,

C1P21 () + C2P22(8) + -+ + o (t) =0,

C1Pn1 () + 202 (8) + -+ + ey (£) = 0.

In the n unknown ¢, c,, ..., ¢, Since the determinant of the coefficients is

W (1, P2, ..., Pr) (to) and W (¢4, @, ..., ) (t) = 0 by hypothesis, this system
has a non trivial solution by A of section 1.1 B that is, there exist numbers
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1, Co, ..., Cn, NOt all zero, which satisfy all n equations of system (2.85). these n
equations are the n corresponding component relation equivalent to the one
vector relation

c11(to) + 292 () + -+ + Cppp(tp) =0 (2.86)
Thus there exist numbers c,, c,, ..., c,, Not all zero, such that (2.86) holds.
Now consider the vector function ¢ defined by

¢(t) = c1p1(t) + c2p2(8) + -+ + cnpn(t) = 0. (2.87)
Forall t € [a, b].

Since ¢4, ¢,, ..., ¢,, are solution of the differential equation (2.81), by theorem
2.11, the linear combination ¢ defined by (2.87) is also a solution of (2.81).
Now from (2.86), we see that this solution ¢ is such that ¢(t,) = 0 thus by the
corollary to theorem 2.10, we must have ¢(t) = 0 for all t € [a, b]. That is,
using the definition (2.87),

C1P1 () + 20, (t) + -+ + ¢ pp () =0

For all t € [a,b], where c¢,,c,,...,c,, are not all zero. Thus by definition
b1, Py, ..., P, are linearly dependentona <t < b.

Example 2.22.
Consider the vector functions ¢, ¢, and ¢ defined respectively by
e3t ZeBt _393t
¢, (t) = (—2€3t> ) ¢, (t) = (—4€3t> and ¢5(t) = ( 6e3t >
_e3t _2e3t 363t

It is easy to verify that ¢,, ¢, and ¢ are all solution of the homogeneous linear
vector differential equation

dx 7 -1 6 X1
2t (-10 4 —12) x, where x = (xz> (2.76)
-2 1 -1 X3

On every real interval a <t <b. Thus, in particular, ¢, ¢, and ¢; are
solutions of (2.76) on every interval [a,b] containing t, = 0. It is easy to see that
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1 2 =3
W (¢1l ¢21 ;¢n)(0) =|-2 -4 61=0
-1 -2 3

Thus by theorem 2.13, ¢, ¢, and ¢ are linearly dependent on every [a,b]
containing 0. Indeed, note that

h1(t) + o (t) + Pp3(t) =0

For all t on every interval [a,b], and recall the definition of linear dependence.

Theorem 2.14.

Let the vector function ¢,, ¢,, ..., ¢,, defined by (2.83) be n solutions of the
homogeneous linear vector differential equation

gy 2.81
77 = Ax (2.81)

On the real interval [a, b]. Then
Either W (¢4, @5, ..., ) (t) = 0 forall t € [a, b],
OrwW (¢4, ¢5, ..., 0,,)(t) = 0fornot € [a, b].
Proof.
Either W (¢4, ¢, ..., ¢,,) (t) = 0 for some t € [a, b],
OrwW (¢4, ¢5, ..., p,,)(t) = 0fornot € [a, b].

If W (¢, d,,...,0,)(t) =0 for some t € [a,b], then by theorem 2.13, the
solutions ¢4, ¢, ..., ¢, are linearly dependent on [a, b]; and then by theorem
2.12 W (¢4, ¢, ..., ) () =0 for all t €[a,b]. Thus the Wronskian of
b1, G2, .., P, either equals zero for all t € [a, b] or equals zero for no t € [a, b].

Theorem 2.15.

Let the vector function ¢4, ¢, ..., ¢, defined by (2.83) be n solutions of the
homogeneous linear vector differential equation
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dx—A 2.81
- (Ox  (2.81)

On the real interval [a, b]. These n solutions ¢4, ¢, ..., ¢, of (2.81) are linearly
independent on [a, b] if and only if

W (1, ¢z, ., $)(8) # 0

Forall t € [a, b].

Proof .

By theorem 2.12 and 2.13, the solutions ¢, ¢, ..., ¢,, are linearly dependent on
[a, b] if and only if W (¢1,¢,,...,0,)() =0 for all t € [a,b]. Hence,
b1, by, ..., ¢, are linearly independent on [a, b] if and only if
W (¢4, b2, ..., D) (ty) # 0 for some ¢, € [a,b]. Then by theorem 2.14
W (¢4, P2, -, Pr) (ty) # 0 for some t, € [a, b] if and only if

W (¢4, b3, ..., P,)(t) = 0forall t € [a,b].
Example 2.23.
Consider the vector function ¢,, ¢, and ¢ defined respectively by
eZt eBt BeSt
$1(t) = (—62t> ) ¢, (t) = (—2e3t) and ¢3(t) = (—665t>
_eZt _e3t _zeSt

It is easy to verify that ¢, ¢, and ¢5 are all solutions of the homogeneous linear
vector differential equation

dx 7 -1 6 X1
= (—10 4 —12) x, where x = <x2> (2.76)

ac \_, 1 1 X3

On every real interval a < t < b. We calculate
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eZt e3t 3eSt

W (1, Pa P3) () = |—e2t —2e3t —peSt| = —e0t £ 0
_e2t  _p3t _ppS5t

e
For all real t. Thus by theorem 2.15, the solutions ¢, ¢, and ¢; of (2.76)
defined by (2.88) are linearly independent on every real interval [a, b].

DEFINITION:

Consider the homogeneous linear vector differential equation

dx—A 2.81
o = AWx (281)

Where x is an n x1colmun vector.

1. A set of n linearly independent solutions of (2.81) is called a fundamental
set of solutions of (2.81).

2. A matrix whose individual columns of fundamental set of solutions of
(2.81),is called a fundamental matrix of (2.81), that is, if the vector
functions ¢4, ¢, ..., p,, defined by (2.83) make up a fundamental of
solutions of (2.81), then the nxn square matrix

b1 P12 b1n
¢g1 ¢g2 ¢?n
bri rz -~ bun

Is a fundamental matrix of (2.81).
Example 2.24.

In Example 2.31 we saw that the three vector functions ¢, ¢, and ¢ defined
respectively by

eZt e3t 3e5t
() = <—€2t) ) ¢, (t) = <—Ze3t> and ¢5(t) = (—665t) (2.78)
—e2t —e3t —2p5t
Are linearly independent solutions of the differential equation
dx 7 -1 6 X1
— = (—10 4 —12) x, where x = (xz (2.76)
—2 1 -1 X3
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On every real interval [a, b]. Thus these three solutions ¢,, ¢, and ¢5 from a
fundamental set of differential equation (2.76), and a fundamental matrix of the

differential equation is
eZt eBt 385t
_e2t _263t _665t
—e2t —e3t —2e5t

We know that the differential equation (2.76) of example 2.31 and 2.32 has the
fundamental set of solutions ¢, ¢,, ¢5 defined by (2.88). We now show that
every vector differential equation (2.81) has fundamental sets of solutions.

Theorem 2.16.

There exist fundamental sets of solutions of the homogeneous linear vector
differential equation

W A0 2.81
Proof.

We begin by defining a special set of constant vectors u,, u,, ..., u,, defined

1 0 0
u1 == (E) ,uZ == :!h ,...,un == ?
0 0 1

That is, in general, for each i = 1,2, ...,n, has ith component one and all other
components zero. Now let ¢4, ¢, ..., ¢,, be the n solution of (2.81) which satisfy
the conditions

(tbi(tO) = Uu; (l = 1,2, ...,Tl),

That is ¢, (ty) = uq, P, (ty) = Uy, ..., P, (ty) = u,, Where t, is an arbitrary (but
fixed) point of [a, b] not that these solutions exist and are unique by theorem
2.10. we now find

1 0 0
_ _ 0O 1 --- 0 _
W (¢1; ¢2! "'J¢n)(t0) =W (u1;u2; ...,un) - =1+0,
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Then by theorem 2.14 W (¢4, ¢, ..., ) (t) # 0 for all t € [a, b], and so by
theorem 2.15, solutions ¢4, ¢, ..., d, from fundamental set of differential
equation(2.81).

Theorem 2.17.

Let ¢4, @5, ..., P, defined by (2.83) be a fundamental set of solutions of the
homogeneous linear vector differential equation

dx—A 2.81
— = AO)x (2.81)

And let ¢ be an arbitrary solution of (2.81) on the real interval [a, b]. Then ¢
can be represented as a suitable linear combination of ¢, @, ..., ¢d,; that is,
there exist number ¢y, c,, ..., ¢, such that

b =cip; + ¢+ -+ iy on [a, b]
Proof.

Suppose ¢(t,) = u, Where t, € [a, b] and

unO

A constant vector. Consider the linear algebraic system

C1P11(to) + C2P12(t) + -+ + cnd1n(to) = Uy,

C1¢21(to) + C2P22(Eg) + -+ + Crepan (Ep) = Uso, (2.89)

C1Pn1(to) + C2Pn2(tg) + -+ + CrPpn(to) = Uno.

n equation in n unknowns ¢, ¢y, ..., ¢, SINCe ¢4, P, ..., P, IS a fundamental set
of functions on [a, b] and hence by theorem 2.15 W (¢4, ¢5, ..., $,) (ty) # 0.

Now observe that W (¢4, ¢, ..., ) (t,) is the determinant of coefficients of
system (2.89), and so this determinant of coefficients is unequal to zero. Thus by
theorem B of section 7.5 B, the system (2.89) has a unique solution for
1, Cy, ..., Cn. That is, there exists a unique set of numbers ¢, ¢, ..., ¢, such that
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c1¢1(Eo) + 292 () + -+ + crpp (o) = Uy,

And hence such that

n

B(to) = ug = ) cupilto).

k=1

Now consider the vector function y defined by

n

WO = ) cudlto).

k=1

By theorem 2.11, the vector function i is also a solution of the vector
differential equation (2.81). now note that

n

Wito) = ) ci®)

k=1
For all t € [a, b]. Thus ¢ is expressed as the linear combination
¢ =c1¢1 + 29, + -+ iy
Of ¢4, @5, ..., P, Where ¢4, ¢y, ..., c;, 1S the unique solution of system (2.89)
As a result of theorem 2.17, we are led to make the following definition.
DEFINITION:

Consider the homogeneous linear vector differential equation

dx —A®
dt X

Where x is an nx1 column vector. By a general solution of (2.81), we mean
solution of the form

11 + oy + -+ oy

Where c;, ¢y, ..., ¢, are n arbitrary number and ¢4, ¢, ..., ¢, is a fundamental
set of solutions of (2.81).

Example 2.25.
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Consider the differential equation
dx 7 -1 6 X1
i (—10 4 —12) x, where x = (xz>
-2 1 -1 X3

In example 2.32 we saw that the three vector function ¢,, ¢, and ¢, defined
respectively by

eZt e3t 3€5t
¢.(t) = <—6’2t> ) ¢, (t) = <—2€3t) and ¢5(t) = (—665t>
—€2t —e3t _ZeSt

From a fundamental set of differential equation(2.76). Thus by theorem 2.17 if
¢ is an arbitrary solution of (2.76), then ¢ can be represented as a suitable linear
combination of these three linearly independent solutions ¢, ¢, and ¢; of
(2.76).

Further, if c;,c, and c5 are arbitrary numbers, we see from the definition that
191 + c, ¢, + c3¢5 is ageneral solution of (2.76) is defined by

eZt e3t 3€5t
Cl (_82t> + CZ (_263t> + C3 (_6est>
_eZt _e3t —2€5t

And can be written as
x; = cie?t + ¢ e3t + 3cze’t,
x, = —c,e?t — 2c,e3t — 6c5e”t,
x3 = —c,e?t — c,e3t — 2¢zedt .
Where ¢, c,, and c5 are arbitrary numbers.
C. Non homogeneous Linear Systems

We return briefly to the non homogeneous linear vector differential equation

dx
dt
Where A(t) is given by (2.70) and F(t) and x are given by (2.71).

A)x + F(t) (2.72)

We shall see corresponding homogeneous equation
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x_ 2.81
7 = A (2.81)

Theorem 2.18.
Let ¢, be any solution of the non homogeneous linear differential equation

dx—A F(t); 2.72
— = A +F () (2.72)

Let ¢, ¢,,...,¢,, be a fundamental set of solution of the corresponding
homogeneous differential equation

dx—A 2.81
E— (t)x ( . )

And let ¢y, ¢y, ..., ¢, be n numbers.

Then: (1) the vector function

bo+ ) cudr (291)
k=1

Is also a solution of the non homogeneous differential equation (2.72) for every
choice of ¢y, c5, ..., c,; and

(2) an arbitrary solution ¢ of the non homogeneous differential equation (2.72)
of the form (2.91) for suitable choice of ¢,, ¢y, ..., ¢,

Proof.

(1) We show that (2.91) satisfies (2.72) for all choices of ¢y, cy,...,c, We
d doo d
have == [0 (£) + Xoy cer (D] = 22+ S [0, ey (8)]
Now since ¢, satisfies (2.72), we have

o0 A©go® + F0);
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And since by theorem 2.11)7_, A, ¢, satisfies (2.81), we also have

zn: Credr (1) i CkPr (t)]
k=1

k=1

d =A
pr = A(t)

Thus

= A()po(t) + F(t) + A1)

d n
= g0+ ;cm (®)

i CkPr (t)]
k=1

= A0 |bo(O)+ ) e (O] +F(O).
k=1
That is
WO _ 4o +FO
dt
Where
Y =+ Crk Pk ;
k=1
And so
Y =+ Crk Pk ;
k=1

Is a solution of (2.72) for every choice of ¢y, c5, ..., c,.

(2) Now consider an arbitrary solution ¢ of (2.72) and evaluate the
derivative of the difference ¢ — ¢,. We have

dp(t)  deo(t)
dt dt

d
—[B() — po(®)] =
Since both ¢ and ¢, satisfy (2.72), we have respectively

W — awp© +F ),
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deo(t)
dt

= A()¢o(t) + F(1).

Thus we obtain

d
—Z[9(0) = ¢l = [ADOB®) + FO)] - [AD$o(©) + F(©)].

Which at once reduces to

d
72 [(0) = do (D] = A(O[P() = ¢o (D]

Thus ¢ — ¢, satisfies the homogeneous equation (2.81). Hence by theorem
2.17, there exist a suitable choice of numbers c,, c,, ..., ¢, such that

n

b—do= ) cudbr

k=1

Thus the arbitrary solution ¢ of (2.72) is of the form

b=do+ ) cudy (291)
k=1

For a suitable choice of ¢4, c,, ..., Cj,.
DEFINITION:

Consider the non homogeneous linear vector differential equation (2.72) and the
corresponding homogeneous linear differential equation (2.81). by a general
solution of (2.72), we mean a solution of the form

C1¢p1 + ¢y + -+ iy + Py,

Where ¢4, ¢y, ..., c,,n arbitrary numbers are ¢4, ¢,, ..., ¢,, is a fundamental set of
solutions of (2.81), and ¢, is any solution of (2.72).

Example 2.26.

Consider the non homogeneous differential equation
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dx 7 -1 6 —5t—6
=10 4 —12)x+ (-4t +23 (2.72)
—2 1 -1 2
And the corresponding homogeneous differential equation
dx 7 -1 6 X1
— = (—10 4 —12) x, where x = (x2> (2.71)
-2 1 -1 X3

These were introduced in example 2.26, where they were written out in
component form , and (2.71) has been used in example 2.33 and other examples
as well.

In example 2.33 we observed that ¢, ¢,, ¢ defined respectively by
eZt eBt 385t

¢1(t) = (—e2t> , o ¢2() = (—2e3t) and ¢3(t) = (—6e5f>

_eZt _e3t _zeSt

From a fundamental set of the homogeneous differential equation (2.71)[ or
(2.76) as it is numbered there]. Now observe that the vector function ¢, defined

by
2t
$o(t) = (3t — 2)
—t+1

As a solution of the non homogeneous differential equation (2.72) .

Thus a general solution of (2.72) is given by

X = 11 (8) + c202(8) + c395(t) + (D),

eZt e3t 3€5t 2t
X = C1 (—62t> + Cz <—2€3t> + C3 (—685t> + <3t - 2),
_eZt _e3t _ZeSt —t+1

Where c,, c,,and c; are arbitrary numbers . Thus a general solution of (2.72)
can be written as

That is

x; = cre?t + c,e3t + 3c3e’t + 2t,
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x, = —cie?t — 2c,e3t — 6c5e5t + 3t — 2,
x3 = —cie?t —c,e3t — 2cze”t —t + 1.

Where c;, c,, and c5 are arbitrary numbers.
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2.5 HOMOGENEOUS LINEAR SYSTEMS WITH CONSTANT
COEFFICIENTS: N EQUATIONS IN N UNKNOWN FUNCTIONS

A. Introduction

We now consider the normal form of homogeneous linear system of n first-
order differential equations in n unknown functions x,, x,, ..., x,, where all of the
coefficient constants. To be more specific we shall discuss the case in which
each coefficient is a real number. Hence the system to be considered is of the
form

dx
d_tl = all(t)xl + ai» (t)xz + ot aln(t)xn’
dx, dx,

= anl(t)x1'+'an2(t)x2'+"'+'ann(t)xn-

Where all of the a;;,i = 1,2,..,n,j = 1,2, ...,n, are real numbers, introducing

the nxn constant matrix of real numbers
aj;; Az 7 %an
a a o Qap
A=| "% "2 (2.93)
An1 Qpz *° Ann
and the vector
X1
X2
x=|" (2.94)
xn

The system (2.92) can be expressed as the homogeneous linear vector
differential equation

dx—A 2.95
T (2.95)

The real constant matrix A that appears in (2.95) and is defined by (2.93) is
called the coefficient matrix of (2.95).

We seek solutions of the system (2.92), that is, of the corresponding vector
differential equation (2.95), we shall proceed by analogy with the presentation in
Section 2.4 A. Doing this, we seek nontrivial solutions of system (2.92) of the
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form

x; = a;e’t

— o oAt
X2 = Az€ (2.96)
x, = a,e’

where a4, a5, ..., a, and A are numbers . Letting

a=|"? (2.97)

an
and using (2.94) we see that the vector form of the desired solution (2.96) is

X = ae

Thus we seek solutions of the vector differential equation (7. 1 29) which are of
the form

x = ae’t (2.98)
where « is a constant vector and A is a number.

Now substituting (2.98) into (2.95), we obtain

Aae?t = Aqe?t
which reduces at once to

Aa = Aa (2.99)
and hence to
A-ADa=0

Where | is the n x n identity matrix . Written pt in terms of components, this is
the system of n homogeneous linear algebraic equations

(a11 - /1)“1 + alzaz + + alnan - 0,
az101 + (A — Aay + -+ azpay
=0, (2100)a,a; +apa,+ -+ (ap, —AVa, =0.

in the n unknowns a4, a,, ..., @, By Theorem A of Section 7.5 B, this system has
a nontrivial solution if and only if
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1 O =4 G 1, (2.101)
An1 a;zz Ann — A
that is, in matrix notation,
|A—AIl = 0.

Looking back at Section 7.5 C, we recognize Equation (2.101) as the
characteristic equation of the coefficient matrix A = (a;;) of the vector
differential equation (2.95). We know that this is an nth-degree polynomial
equation in A, and we recall that its roots A, 4,, ...,4,, are the characteristic
values of A. Substituting each characteristic value A;(i = 1,2, . . ., n), into
system (2.100), we obtain the corresponding nontrivial solution
Ay = A4, Ay = A, -, Ay = Ay

(i=1,2,..,n), of system (7. 134). Since (2.100) is merely the component form of
(2.99), we recognize that the vector defined by

aqj

. A>;
a® =" G(=12..,n) (2.102)

Ani
Is a characteristic vector corresponding to the characteristic value 4;(i=1, 2, ...,
n). Thus we see that if the vector differential equation

dx
-~ = Ax (2.95)
has a solution of the form

x = ae’t (2.98)
then the number A must be a characteristic value A; of the coefficient matrix A
and the vector a must be a characteristic vector a® corresponding to this
characteristic value 4;.

B. Case of n Distinct Characteristic VValues

Suppose that each of the ii characteristic values 44, 4,, ..., 4, of the n x n square
coefficient matrix A of the vector differential equation is distinct (that is non
repeated); and let @ , a®@ ..., a™ be a set of n respective corresponding
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characteristic vectors of A. Then the n distinct vector functions x;, x,, ..., x,,
defined respectively by

x;(t) = a®ettt x,(t) = aPet2t, . x,(t) = aMernt (2.103)

are solutions of the vector differential equation (2.95) on every real interval [a,
b]. This is readily seen as follows: From (2.99), foreachi=1, 2, ..., n, we have
1a® = 4q®

and using this and the definition (2.103) of x;(t), we obtain

dx;(t ; ]
CEE ) = LaWetit = AgWelit = Ax,(t)

which states that x;(t) satisfies the vector differential equation

dx _
dt
on [a, b].

Ax (2.95)

Now consider the Wronskian of the n solutions x;, x5, ..., x,, defined by (2.103)
we find

alle/llt a126/12t alne;{nt
A1t Ayt Ant
a e 1 a e 2 n
W (x1, X2, -y X)) () = [ 721, 22, T @ant
a et et @, e’nt
(Xll alz ©tT aln
_ pUutdpttty) [F21 @22 77 Gan
An1 Anz -+ Qnn
By Result C of Section 1.1 C, the n characteristic vectors a® |, a@® ..., a™ are
linearly Independent. Therefore
a11 alz aln
a a o Qop
R
Un1 Un2 e App

Further, It is clear that

e (/11+/12+"'+/1n) i O.

For all t. Thus W (x4, x5, ..., x,,)(t) # 0 for all t on [a,b]. Hence by Theorem 7.
15, the solutions x4, x,, ..., x,,, Of vector differential equation (2.95) defined by
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(2.103), are linearly independent on [a,b] and so form a fundamental set of
solutions of (2.95) on [a,b]. Thus a general solution of (2.95) is given by
C1x1 + szz + + Cnxn,

Where ¢4, ¢y, ..., ¢, are n arbitrary numbers. We summarize the results obtained
in the following theorem:

THEOREM 2.19.
Consider the vector differential equation

dx_

— = Ax (2.95)

Where A is an nxn real constant matrix. Suppose each of the n characteristic
value t A4, 1,,...,4,, of A is distinct; and let @, a®@, ...,a™ be a set of n
respective corresponding characteristic vectors of A. Then on every real interval
[a, b] the n functions defined by

aWelit q@Delat g(M)eint
From a linearly independent set (fundamental set) of solution of (2.95)
x = qaWett + c,a@et2t + ... + coaMelnt,
Where ¢y, c,, ..., C, @re n arbitrary numbers, is a general solution of (2.95) on
[a, b]
Example 2.27.

Consider the homogeneous linear system

dx,
E = 7X1 Xy + 6X3,
dx,
- —10x; + 4x, — 12x5,
dx,
ar = —2x1 + x5 — X3.
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Or in matrix form

. 7 -1 6 X1
ax _ <_10 4 —12> x,where x = (xz) (2.105)

dt
-2 1 -1 X3

We assume the solution of the form

x = ael,
x; = ae’,
x, = aye’t,
x3 = aze’t.

Substituting (2.106) into (2.104) and dividing through by et # 0, we obtain
A =70, —a, + 6as,
azll == —106(1 + 4‘“2 - 12a3,

azA = —2a; + a; — as.

(7 - A)al — + 6a3 = 0,
—10ay + (4 — Da, — 12a; = 0, (2.107)
_Zal + az + (_1 - /1)0(3 = 0.

This homogeneous linear algebraic system in a4, a,, @3 has a non trivial solution
if and only if the determinant of its coefficients equals zero, that is, if and only if

7-1 -1 6
—10 4-21 -12 [=0 (2.108)
2 1 -1-2

Clearly this is the characteristic equation of the coefficient matrix
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7 -1 6
A= (—10 4 —12) (2.109)
—2 1 -1

Of the given system (2.104) [or (2.105)]. It’s a cubic equation in A; and its roots
that is, the vector differential equation A,, 4,, A5 are the characteristic values of
the matrix A given by (2.109) expanding the determinant involved, we see that
the characteristic equation (2.108) of A may be written

A3 —10A2+311-30=0
Or in factored form
1-2)(A-3)(1—-5)=0
Thus the roots of the characteristic equation (2.108) are
AM=2,A,=3and 13 =5 (2.110)

A characteristic vector corresponding to 4, = 2 is a non zero vector

aq
(“2) (2.111)
as

Whose component are a non trivial solution a;,a,,as of algebraic system
(2.107) when A = 2 equivalent it’s a non zero vector given by (2.111) such that

7 -1 6 a1 241
(10 4 —12) (“2) =2 <a2>
-2 1 -1 as as

Starting in either of this completely equivalent ways, we at once find that
aq, a, , a3 must be anon trivial solution of the system

S5a; —a, +6a; =0,
—10a1 + 2“2 - 12“3 == O,

—2a1 + a, — 3a3 == O,
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We have already solved this algebra problem in example (2.25) (except for the
notational difference of having used a’s here) looking back at the example, we
found that a characteristic vector corresponding to @; = 2 is given by

1
a(l) = (-1)
1

Likewise reference to example (2.25) shows that characteristic vector
correspondingto A, =3andA; =5

1 3
a® = (—2) And a® = <—6)
-1 -2

Respectively thus around mental set of solutions of (2.104) [or (2.105)] is

a@ et @ elet R)eist thatis

1 1 3
(—1) e?t (—2) e3tand (—6) g5t
1 -1 -2

Or rewriting these slightly

eZt eSt 365t
_eZt , _2e3t and _685t
p2t _e3t — 25t

Respectively. A general solution of the system may thus be expressed as
x; = ¢ et + ce3t + 3 czedt
X, = —cq 2t —c et — 6 cze’t

t— c,e3t — 2 czedt

X3 = —cq €2
Where c;, c,and c5 are arbitrary numbers.

We return to the vector differential equation,
& = Ax, (2.95)

dt
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Where A is an n x n real constant matrix and reconsider the result started in
theorem (2.19) in that theorem we stated that if each of the n characteristic
values A, A,, ... of A is distinct; and if a®,a®@), ..., a™ is a set of n respective
corresponding characteristic vectors of A, Then the n functions defined by

aWehit g@elat oM eint
Form a fundamental set of solution of (2.95) note that although we assume that

Ay, Ay, ..o, A, Are distinct, we do not require that they be real. Thus complex
characteristic values may be present however, since A is a real matrix, any
complex characteristic values must suppose 1; = a + bi and A, = a — bi form
such a pair. Te the corresponding solutions are

a @bt pAnd (@ ga-bdt

And these solutions are complex solutions. Thus if one or more conjugate
complex of characteristic values occur, the fundamental set defined by a®e?it
= 1,2,...n, contains complex function. However, in such a case, this
fundamental maybe replaced by another fundamental set, all of whose members
are real functions this is a accomplished exactly as explained in section 2.4 D
and illustrated in example 2.18 C.

We again consider the vector differential equation

dx

Where A is an n x n real constant matrix; but here we given a brief introduction
the case in which A has a repeated characteristic value to be definite we suppose
that A has a real characteristic value A, of multiplicity m, wherel < m < n, and
they are the other characteristic value A,,,1, 4,42, ..., 45, (if there are any) are
distinct. B result D of section 7.5 C, we know that the repeated characteristic
value A;, of multiplicity m has p linearly independent characteristic vectors
wherel < p < m, now consider two sub case (1), p=m, and (2) p < m. In sub
case (1), there are m linearly independent characteristic vectora,a®, ..., a™
corresponding 4, then the n functions defined by

(X(l)e/llt, a(Z)ellzt’ . a(m)elllt’

a(m+1)elm+1t' . a(n)eant
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Form a linearly independent set of n solutions of deferential equation (2.95), and
general solution of (2.95) is a linear combination of these n solutions having
arbitrary numbers as the “constant of combination”

Example 2.28.

Consider the homogeneous linear system

dx,

E == 3X1 + Xy X3,

dx,

E = X1 + 3x2 - 3x?,, (214‘)
dx,

E - 3x1 + 3X2 X3

Or in matrix form,

dx 3 1 -1 X1
i (1 3 —1]x, where x = | X2 (2.14)
3 3 -1 X3

We assume a solution of the form.

x = q.e’t
That is

x; = a;e’,

x, = a,e’t,

x; = aze’t,

Substituting (2.114) into (2.112) and dividing through by et # 0, we obtain
ad=3a; +a, —as,
A =a; +3a, — as,

ag)l. = 3“1 + a, —as,
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or
B—-—NVDa;+a,—a3 =0,
a+(B—-NVa, —az =0,
3a; +a, + (=1 —A)a; = 0.

This homogenous linear algebraic system in a4, a,, a3 has anon trivial solution
if and only if the determinate of its coefficients equals zero, that is if and only if

3—1 1 -1
1 3—41 -1
3 3 -1-2

=0 (2.116)

Of course this is the characteristic equation of the coefficients matrix
3 1 -1
A= (1 3 —1) (2.117)
3 3 -1

Of the given system (2.112) [or (2.113)]. It’s a cubic equation in A; and its roots
Ay, A5, A5 are the characteristic values of the matrix A is given by (2.117)
expanding the determinant involved, we see that the characteristic equation
(2.116) of A maybe written

A3 — 52+ 81—-4=0,
Or in factored form
1-1DA1-2)1-2)=0.
Thus the roots of the characteristic equation (2.116) are
=1 1,=2 1;=2 (2.118)

Note that the real number 1 is a distinct characteristic value of the coefficient
matrix (2.117) of the given system (2.112) but the real number 2 is a repeated
characteristic value of this coefficient matrix.

We first consider the distinct characteristic value A, = 1, a characteristic vector
corresponding to A; = 1 is a non zero vector
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aq
(“2) (2.119)
as

Whose components are a non trivial solution a; a,, a3 of the algabric system
(2.115), when A = 1 equivalently it’s a non zero vector or given by (2.119) such

that
3 1 -1\ /% a,
(1 ] _1)()1()
3 3 -1/ \as a3

Starting in either of these completely equivalent ways, we at once find that
a1 @z, a3 Must be non trivial solutions of the system

2a1+a2_a3=0,
a, +2a, —az =0,
3a1+3a2_2a3 =0,

Note that a; = k,a, = k, a3 = 3k is a solution of this system for every real k.
hear the characteristic vectors corresponding to the characteristic value 1 =1,

are the vectors
k
a=\| k )
3k

Where Kk is an arbitrary non zero number. In particular, letting k = 1 , we obtain
the particular characteristic vector

1
3

Corresponding to A = 1. Thus the corresponding solution of the form

That is
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1
(1) et (2.120)
3

We now turn to the repeated characteristic value 1, = A; = 2. To be more
specific this characteristic value 2 has multiplicity m = 2 < 3 = n,

Where n of course denotes the common number of rows and column of the
coefficient matrix (2.117) of the given system (2.112).

A characteristic vector corresponding to this double characteristic value
A, = A3 = 2 anon zero vector

a;
(“2) (2.121)
as

Whose components are a non trivial solution a; a,, as of algebraic system (2.14
a) when A = 2 equivelantly. It’s a non zero vector given by (2.121) such that

3 1 -1\ /% aq
(1 ] _1> () _ z()
3 3 -1/ \as as

Starting in either of these completely equivalent ways, we at once find that
a1 @5, a3 Must be a non trivial solution of the system

a1+0(2—0(3=0,
a1+a2_a3=0,
3a; +3a; —3a3 =0,

Note the each of these three relations is equivalent to both of the other two and
only relationship among a; a,, a3 is that given most simply by

a1+a2_a3=0,

Clear there exist two linearly independent of the form (2.121) whose
components satisfy this relation (2.122) for example if a; =1,a, =
land a3 =0

We obtain the vector
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1
a(z) = (-1)
0

Andifa; =1,a, =1 and as = 0, we obtain the vector

1
1

First note that the component of each of these two vectors a® and a® do
satisfy (2.122) and hence each is characteristic vector corresponding to the
double root A, = A; = 2, next note that these vectors a® and a® are indeed
linear independent (use the definition of linear independence of a set of constant
vectors) thus the characteristic value A = 2 of multiplicity m = 2 has the p = 2
linearly independent characteristic vectors

1 1
a® = (—1) and a® = (0)
0 1

Corresponding to it hence this is illustration of sub case (1) of the discussion
preceding this example those corresponding to the two fold characteristic value
A = 2, there are two linearly independent solution of the form a®e?t of the
given system these are

a@e?tand a®e?t

1 1
(—1) e?t and (0) e?t (2.123)
0 1

Respectively, hence a fundamental set of solutions of the given system (2.112)
[or 2.113)] consist of the

Or rewriting these slightly
1 1 1
(1) el (—1) et and (O) e?t
3 0 1
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ot o2t o2t
3et 0 e?t

x; = ¢ et + (¢ +¢3)e?t
x, = ¢, et — et
x3 = 3¢y et + cze?t
Where c,, ¢, and c5 are arbitrary numbers.

One type of vector differential equation (2.95) which always leads to sub case
one p = m, in the case of repeated characteristic value A, is that in which n x n
coefficient matrix A of (2.95) is real symmetric matrix for then by result G of
section (7.5) c there always exist n linearly independent characteristic vectors of
A regard less of whether the n characteristic values of A are all distinct or not.
We now turn to a very brief consideration of sub case (2), p < n in this case
there are less than m linearly independent solutions of differential equation
(2.95) of the form a®Me*1t corresponding to A,; and so there is not a
fundamental set of solutions of the form a®e?«t where 1, is a characteristic
value of A and a™ is a characteristic vector corresponding to A, clearly we
must seek linearly independent solutions of another form.

To discover what other forms of solution to seek we look back at the analogous
situation in section (2.4) C. the result there suggest the following: if 1; is a
characteristic value of multiplicity n =2 and p = 1 < m, then we seek linearly
independent solution of the form

ae’1t and aett + Bett;
Where « is a characteristic vector corresponding to A, that is « satisfies
(A—2A1) a=0;
And g is a vector which satisfies the equation
A-MD)PB=«a

If A, is a characteristic value of multiplicity m > 2, and p < m then the forms of
the m linearly independent solutions corresponding to A; depend upon whether
p=12,...,orm—1

91



3.1 APPLICATIONS

There are many Physical Problems that involve a number of separate elements
linked together in some manner. For example electrical networks have this
chapter and in other fields. In these and similar Case, the corresponding
mathematical problems consists of a system of two or more differential
equations, which can always be written as first order equations.

A.Applications to Mechanics

Systems of linear differential equations originate in the mathematical
formulation of numerous problems in mechanics. We consider one such problem
in the following example. Another mechanics problem leading to a linear system
in given in.

Example 3.1

On a smooth horizontal plane BC (for example, a smooth table top) an object A,
Is connected to a fixed point P by a mass less spring S; of natural length L,. An
object A, is then connected to A; by a mass less spring S, of natural length L, in
such a way that the fixed point P and the centers of gravity A, and A, all liein a
straight line (Figure 3.1).

The object A; is then displaced a distance a, to the right or left of its
equilibrium

position 0, the object A, is displaced a distance a, to the right or left of its
equilibrium position 0, and at time t = 0 the two objects are released (Figure
3.2). What are the positions of the two objects at any time t > 0.

Formulation. We assume first that the plane BC is so smooth that frictional
forces may be neglected. We also assume that no external forces act upon the
system. Suppose object A; has mass m; and object A, has mass m,. Further
suppose spring S; has spring constant k; and spring S, has spring constant k,.
Let x; denote the displacement of A, from its equilibrium position 0, at time t
> 0 and assume that x, is positive when A, is to the right of
0, (Figure 3.3).Consider the forces acting on A; at time t > 0. There are two
such forces, F; and F,, where F; is exerted by spring S; and F, is exerted by
spring S,. By Hooke’s law
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Figure 3.3

(Section 5.1): the force F; is of magnitudek,|x,|. Since this force is exerted
toward the left when A, is to the right of O, and toward the right when A, is to
the left of 0,, we have F1 = —k,x;. Again using Hooke’s law, the force F, is of
magnitude k,S, where s is the elongation of S, at time t. Since s = |x, — x|, we
see that the magnitude of F, isk,|x, — x;|. Further, since this force is exerted
toward the left when x, — x; <0 and toward the right when x, — x; > 0, we see
that F, = k,(x, — x1).

Now applying Newton’s law (Section 3.2) to the object A;, we obtain the
differential equation
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2
1 ddle = —kyxq + k(x5 — xq) (3.1)

We now turn to the object A, and consider the forces that act upon it at time t >
0. There is one such force, F;, and this is exerted by magnitude k,s = k,|x, —
X4/, since F; is exerted toward the left when x, — x; > 0 and toward the right
when x, — x; <0, we see that F, = —k,(x, — x;). Applying Newton’s second

law to the object A,, we obtain the differential equation

dzxZ
2 ge2

= —k;(x; — x1) (3.2)

In addition to the differential equations (3.1) and (3.2), we see from the
statement of the problem that the initial conditions are given by
x(0)=a;, % (0)=0, x0)=a,, x,(0) =0 (3.3)

The mathematical formulation of the problem thus consists. of the differential
equations (3.1) and (3.2) and the initial conditions (3.3). Writing the differential
equations in the form

d?x,
m1 dtz + (kl + kz)xl - kzXz == 0
d?x,
mz W - kle + kzxz == O (34)

We see that they form a system of homogeneous linear differential equations
with constant coefficients.

Solution of a specific case. Rather than solve the general problem consisting of
the system (3.4) and conditions (3.3), we shall carry through the solution in a
particular case that was chosen to facilitate the work. Suppose the two objects
A; and A, are each of unit mass, so that m,; = m, = 1. Further, suppose that the
springs S; and S, have spring constants k; = 3 and k, = 2, respectively. Also,
we shall take a; = —1 and a, = 2. Then the system (3.4) reduces to

d?x,
dtz + 5x1 - 2x2 == 0
d?x,
Tz 2x, +2x, =0 (3.5)

and the initial conditions (3.3) become
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x(0)=-1,x0)=0, x0)=2, x(0)=0 (3.6)
Writing the system (3.5) in operator notation, we have
(D?+5)x; —2x, =0
—2x;,+(D?+2)x, =0 (3.7)

We apply the operator (D? + 2) to the first equation of (3.7), multiply the second
equation of (3.7) by 2, and add the two equations to obtain

(D2 +2)(D*+5)—4)x; =0
or

(D* +7D? + 6)x, = 0. (3.8)

The auxiliary equation corresponding to the fourth-order differential equation
(3.8) is

m*+7Tm?+6=00r(m?+6)(m?>+1)=0
Thus the general solution of the differential equation (3.8) is
x; = c;sint + ¢, cost + c3 sin V6t + ¢, cos V6t (3.9

We now multiply the first equation of (3.7) by 2, apply the operator (D? + 5) to
the second equation of (3.7), and add to obtain the differential equation

(D*+7D?+6)x, =0 (3.10)
for x,. The general solution of (3.10) is clearly

x, = ky sint + k, cost + ks sinv6t + k, cos /6t . (3.11)
The determinant of the operator “coefficients” in the system (3.7) is

D? +5 -2

— N4 2
57 pryo|=Dt+7D 46

Since this is a fourth-order operator, the general solution of (3.5) must contain
four independent constants. We must substitute x; given by (3.9) and x, given
by(3.11) into the equations of the system (3.5) to determine the relations that
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must exist among the constants c,, c,, c3, C4, k1, k2, k3 and k, in order that the
pair (3.9) and (3.11). Substituting, we find that

kl = 2C1 ) kz == 2C2 ) k3 == _%C3 ) k4_ = _%C4_.
Thus the general solution ofthe system (3.5) is given by

x; = ¢y sint + ¢, cost + c3 sinV6t + ¢, cos V6t (3.12)
. 1 1
X, = 2c¢ySint + 2¢, cost — §c3 sin V6t — 504 cos V6t

We now apply the initial conditions (3.6). Applying the conditions

X, = — ,ﬁ = 0 at t = 0 to the first of the pair (3.12), we find
dt

_1 B CZ + C4, (313)

0 =c; +V6cs.

dX2

Applying the conditions x, = 2 = 0 at t = 0 to the second of the pair
(3.12), we obtain

V6
0= 2C1 - 76‘3.

From Equations (3.13) and (3.14), we find that

Thus the particular solution of the specific problem consisting of the system
(3.5) and the conditions (3.6) is

3 8
X1 = gCOSt —ECOS\/gt,
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6 4
Xy = gcost+§c05\/€t.

B. Applications to Electric Circuits
consider the network shown in Figure 3.4.

This network consists of the three loops ABMNA, BJKMB, and ABJKMNA.
Points such as B and M at which two or more circuits join are called junction
points or branch points. The direction of current flow has been arbitrarily
assigned and indicated by arrows.

R; R?
AW : ;
—_— —
i ! i2
i
L[ L2

hl
| ! -2
N K

M

Figure 3.4

in order to solve problems involving multiple loop networks we shall need two
fundaniental laws of circuit theory. One of these is Kirchhoff’s voltage law, The
other basic law that we shall employ is the following:

Kirchhoff’s Current Law. In an electrical network the total current flowing into
a junction point is equal to the total current flowing away from the junction
point.

As an applying of these laws we consider the following problem dealing with
the circuit of Figure 3.4.
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Example 3.2

Determine the currents in the electrical network of Figure 3.4, if E is an
electromotive force of 30 V, R, is a resistor of 10 Q, R, is a resistor of 20 Q, L,
Is an inductor of 0.02 H, L, is an inductor of 0.04 H, and the currents are
initially zero.

Formulation. The current flowing in the branch MNAB is denoted by i, that
flowing on the branch BM by i, and that flowing on the branch BJKM by i,.
. We now apply Kirchhoff’s voltage law to each of the three loops

ABMNA, BJKMB, and ABJKMNA.
For the loop ABMNA the voltage drops are as follows:

1. Across the resistor R;: 10 1.

2. Across the inductor L, : 0.02 =2 d”

Thus applying the voltage law to the loop ABMNA, we have the equation
0. ozd‘l +10i =30 (3.15)

For the loop BJKMB, the voltage drops are as follows:

1. Across the resistor R, : 20 i,.

2.Across the inductor L, : 0.04 dlz.

3. Across the inductor L, ; 0.02 dll.

The minus sign enters into 3 since we traverse the branch MB in the direction
opposite to that of the current i; as we complete the loop BJKMB. Since the
loop BJKMB contains no electromotive force, upon applying the voltage law to
this loop we obtain the equation

dll dlz

—0.02 <2 +0.04 52 + 20, (3.16)

For the Joop ABJKMNA, the voltage drops are as follows:
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1. Across the resistor Ry : 10 1.

2.Across the resistor R,: 20 i,.

3. Across the inductor L, : 0.04 Z—i;.

Applying the voltage law to this ioop, we obtain the equation

10§ + 00452 + 201, = 30 (3.17)
We observe that the three equations (3.15), (3.16), and (3.17) are not all
independent. For example, we note that (3.16) may be obtained by subtracting
(3.15) from (3.17). Thus we need to retain only the two equations (3.15) and
(3.17).

We now apply Kirchhoff’s current law to the junction point B. From this we see
at once that

In accordance with this we replace i by i; +i, in (3.15) and (3.17) and thus
obtain the linear system

0.0222 + 10i; + 10i, = 30, (3.19)
. di, .
10i; +0.04—" +30i, = 30.

Since the currents are initially zero, we have the initial conditions
i1(0)=0 and i,(0)=0 (3.20)
Solution.
We introduce operator notation and write the system (3.19)
(0.02D + 10)i; + 10i, = 30, (3.21)
10i; + (0.04D + 30)i, = 30.

We apply the operator (0.04D + 30) to the first equation of (3.21), multiply the
second by 10, and subtract to obtain
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[(0.04D + 30)(0.02D + 10) — 100]i; = (0.04D + 30)30 — 300
Or
(0.0008D2 + D + 200)i; = 600
Or finally
(D% + 125D + 250000)i; = 750000 (3.22)
We now solve the differential equation (3.22) for i,. The auxiliary equation is
m? + 1250m + 250000 = 0

(m+ 250)(m + 1000) = 0.
Thus the complementary function of Equation (3.22) is

i,0 = cie~250t 4 ¢,e=1000¢

And a particular integral is obviously i,, = 3. Hence the general solution of the
differential equation (3.22) is

i; = c e 250t 4 ¢, 71000t 4 3 (3.23)

Now returning to the system (3.21), we multiply the first equation of the system
by 10; apply the operator (0.02 + 10) to the second equation. After

Simplifications we obtain the differential equation

(D% + 1250D + 250000)i, = 0
For i, the general solution of this differential equation is clearly

iz = kle_ZSOt + kze_looot. (3.24)

Since the determinant of the operator “coefficients” in the system (3.21) is a
second- order operator, the general solution of the system (3.19) must contain
two independent constants. We must substitute i, given by (3.24) and i, given
by (3.24) into the equations of the system (3.19) to determine the relations that
must exist among the constants c;, c,, k4, k, in order that the pair (3.23) and
(3.24) represent the general solution of (3.19). Substituting, we find that
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1

kl == _Ecl ) kz =Cy (325)
Thus the general solution of the system (3.19) is given by

i, = e %0t 4 ¢,e7100t 4 3 (3.26)

. 1
I, =—=cqe€

—250¢t -100t
> + ce .

Now applying the initial conditions(3.20), we find that ¢; + ¢, + 3 = 0 and
_%Cl + ¢, = 0 and hence ¢; = —2 and ¢, = —1. Thus the solution of the linear
system (3.19) that satisfies the conditions (3.20) is

il — _Ze—ZSOt _ e—lOOOt + 3’

— ,—250t __

i,=e o —1000¢

Finally, using (3.18) we find that

j = —e—250t _ ,~1000t 4 3

We observe that the current i, rapidly approaches zero. On the other hand, the
currents, i; and i = i, + i, rapidly approach the value 3.

C.Application To Mixture Problems:
Example 3.3

Two tanks X and Y are interconnected (see Figure 3.5). Tank X initially
contains 100 liters of brine in which there is dissolved 5 kg of salt, and tank Y
initially contains 100 liters of brine in which there is dissolved 2 kg of salt.
Starting at time t = 0, (1) pure water flows into tank X at the rate of 6 liters/min,
(2) brine flows from tank X into tank y at the rate of 8 liters/min, (3) brine is
pumped from tank Y back into tank X at the rate of 2 liters/min, and (4) brine
flows out of tank Y and away from the system at the rate of 6 liters/min. The
mixture in each tank is kept uniform by stirring. How much salt is in each tank
atany time t > 0?
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2 liters bfing/min

6 liters H,0/min 8 liters brine/min 6 liters brine/min

Tank X Tank Y

Figure 3.5

Formulation. Let x = the amount of salt in tank X at time t, and let y = the
amount of salt in tank Y at time t, each measured in kilograms. Each of these
tanks initially contains 100 liters of fluid, and fluid flows both in and out of each
tank at the same rate, 8 liters/min, so each tank always contains 100 liters of
fluid. Thus the concentration of salt at time t in tank X is x/100 (kg/liter) and
that in tank Y is y/I00 (kg/liters).

The only salt entering tank X is in the brine that is pumped from tank Y back
into tank X. Since this enters at the rate of 2 liters/min and contains y/100
kg/liter, the rate at which salt enters tank X is 2y/100. Similarly, the only salt
leaving tank X is in the brine that flows from tank X into tank Y. Since this
leaves at the rate of 8 liters/min and contains x/100 kg/liter, the rate at which salt
leaves tank X is 8x/100. Thus we obtain

the differential equation(see section 3.3C in Book No.4)

dx 2y 8x 327
dt 100 100 (3.27)

for the amount of salt in tank X at time t. in a similar way, we obtain the
differential equation

dy 8x 8y
at - 100 100 (3.28)

for the amount of salt in tank Y at time t. Since initially there was 5 kg of salt in
tank X and 2 kg in tank Y, we have the initial conditions
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x(0)=5, y(0)=2 (3.29)

Thus we have the linear system consisting of differential equations (3.27) and
(3.28) and initial conditions (3.29).

Solution.
We introduce operator notation and write the differential equations (3.27) and
(3.28) in the forms
<D+i)x—iy=0 (3.30)
100 100

8 +<D+ 8) =0
100~ 100)Y =

We apply the operator (D +%)to the first equation of (3.30), multiply the
second equation by 1(?—0 and add to obtain

[(D + %) (D * 130) N (1(1)?))2] x=0

which quickly reduces to

16~ 48
100~ ' (100)2

[DZ + ]x =0 (3.31)

We now solve the homogeneous differential equation (3.31) for x. The auxiliary
equation is

, 16 48
m®+—m-+

— =0,
100 ' (100)2

Or

(m+155) (m +305) = ©
T 700/ \™ -

with real distinct roots (_1)/25 and ,(_3)/25. Thus the general solution of
equation (3.31) is
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X = Cle_(1/25)t + Cze—(3/25)t (332)

Now applying the so-called alternative procedure of Section 2.1C(see Book
No.4), we obtain from system (3.30) a relation that involves the unknown y but
not the derivative Dy. The system (3.30) is so especially simple that the first
equation of this system is itself such a relation. Solving this for y, we at once
obtain

y =50Dx + 4x (3.33)

From (3.32), we find

Dy = — L —a/2se _ 36

o—(3/25)t
25 25

Substituting into (3.33), we get
y = zcle—(l/ZS)t _ 2CZ€—(3/25)t
Thus the general solution of the system (3.30) is
x = Cle—(l/ZS)t + Cze—(3/25)t (3.34)
y = zcle—(l/ZS)t — Zcze—(3/25)t

We now apply the initial conditions (3.29). We at once obtain

C1 + CZ == 5,
2C1 - 2C2 = 2,
from which we find
C1 == 3 , C2 = 2

Thus the solution of the linear system (3.30) that satisfies the initial conditions
(3.29) is

x = 3e~(1/25)t 4 9,—(3/25)t

y = 6e—(1/25)t _ 4,—(3/25)t
These expressions give the amount of salt x in tank X, and the amount y in tank
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Y, respectively, each measured in kilograms, at any time t (min) > 0. Thus, for
example, after 25 min, we find

x =3e 1+ 2e3 ~1.203 (kg),
y =6e ! —4e73 =~ 2.008 (kg).
Note that as t — oo, both x and y — 0. Thus is in accordance with the fact that

no salt at all (but only pure water) flows into the system from outside.
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