بسم لله الرحمن الرحيم

صدق الله العظيم

طه: ٿ

Dedication

To my father and my mother

To my brothers and sisters

To the spirit of my teacher Khalid Abdul Aziz

To my friends and colleagues

To all who is help me

Acknowledgment

At first my great thank and love to Allah who helps me to prepare this research.

I would like to pass my great thank to my supervisor: Prof: Mubarak Dirrar.

Also thanks to A: Ahmed Hamza (Khartoum University – Faculty of Science, Department of Chemistry – Department of glass formation) to assist me in the preparation of glass.

Also thanks to A: Ahmed Abdel Azim (Sudan University – Faculty of Science, Department of Chemistry) to assist me in the preparation of dyes.

Also thanks to A: Abdelsakhi Suleiman (Alneelain University – Department of physics) for assistance given to do the experimental work.

Also thanks to any teacher help me and my colleagues for this advice to help my master degree.

Abstract

The Solar cells are fabricated from (fluoride Tyne oxide (FTO) glass / polymer /dye / Copper) was used in each cell of a different types of dyes, natural dye (Chrolorpheel - Helba) and chemical dye (Ecerchrom -Dry Ink). And studied the efficiency and fill factor for all samples produced also studied the relationship between intensity of ligh and efficiency of the cell and found that the intensity of ligh does not affect efficiency of the cell. Also, for these samples it's found that the efficiency of cell using Ecerchrom is 6%, fill factor is 0.95. The efficiency of cell using Dray Ink is 11%, fill factor is 0.87. And the efficiency of cell using Chrolorpheel is 19%, fill factor is 0.90. And the efficiency of cell using Helba is 14%, fill factor is 0.88. The efficiency and fill factor were different with use different types of dyes. It also found that natural dyes (Chrolorpheel - Helba) has more voltage and efficiency than chemical dyes (Ecerchrom - Dry Ink).

المستخلص

تم تصنيع خلايا شمسية من (زجاج االفلوريد تاين اوكسايد FTO)) / البوليمر / الصبغة /االنحاس) حيث استخدم في كل خلية صبغة مختلفة عن الخلية الأخري وكانت الصبغة مقسمة الي نوعين طبيعية(الكلوروفيل - الحلبة)والاخرى كيميائية (الإكروكروم - الحبر الجاف) ودرست الكفاءة وعامل الملء لكل العينات المنتجةكمادرست العلاقة بين شدة الاستضاءة وكفاءة الخلية ووجد ان شدة الاستضاءة لا تؤثر علي كفاءة الخلية . وايضا وجد ان كفاءة الخلية المصنوعة من صبغة الإكروكروم تساوي 6% وعامل الملء 0.95 والمصنوعة من الحبر الجاف 11% وعامل الملء 0.87 والمصنوعة من الكلوروفيل 19% وعامل الملء 0.90 والمصنوعة من الحلبة 14% وعامل الملء 0.88. ووجد أن الكفاءة وعامل الملء وفولتية الدائرة المفتوحة تختلف بإختلاف الصبغاتكما وجد ان الصبغات الطبيعية (الكلوروفيل - الحلبة) اكثر كفاءة من الصبغات الكيميائية (الإكروكروم - الحبر الجاف).

Contents

N	Contents	Pag
0		е
1	Verse	1
2	Dedication	II
3	Acknowledgement	III
4	Abstract	IV
5	Abstract in Arabic	V
6	Contents	Vii
7	Table and Figures	Viii
	Chapter One	
7	1.1 Introduction	1
8	1.2 Research Problem	3
9	1.3 Research Significance	4
10	1.4 Research objective	4
11	1.5 Research Layout	4
	Chapter two	
12	2.1 Introduction	5
13	2.2 silicon solar cell	6

14	2.3 organic solar cell	13
15	2.3.1 Basic processes in an organic solar	14
	cell	
16	2.4 Types of Organic solar cells	14
17	2.4.1 Dye sensitized solar cells	15
18	2.4.2 Polymer solar cells	17
19	2.5 polymer solar cells work	18
20	2.6 Consist of Polymer Solar Cell	20
21	2.6.1 Geometries	21
22	2.6.2 Active layer	22
23	2.6.2.1 Polymer (MEH -PPV)	22
24	2.6.2.2 Dyes	23
25	2.6.3 Transport layers	26
26	2.6.4 Electrodes	26
27	2.6.5 Substrates	27
	Chapter Three	
28	3.1 Introduction	28
29	3.2 Sample preparation	28
30	3.3 Apparatus	28
31	3.4 Theory	28
32	3.5 Setup	31

33	3.6 Carrying out of the experiment	32
	Chapter Four	
34	4.1 Introduction	34
35	4.2 Results	34
36	4.3 Discussion	41
37	4.4 Conclusion	42
38	4.5 Suggested Future Work	43
39	References	46

N Figures Page Chapter One 1 1.1 solar radiation spectrum Chapter two 2 2.1 p-n junction 7 3 2.2 charge generation by light

4	2.3 charge separation at p-n junction by ions	8
5	2.4 Diffusion of charge	9
6	2.5PN junction is connected with external circuit	9
7	2.6Dye-Sensitized solar cell	16
8	2.7 Polymer solar cells	18
9	2.8 How do polymer solar cells work	19
10	2.9 Consist of Polymer Solar Cell	20
11	2.10 Energy levels for normal and inverted geometry solar cells	21
12	2.11Ecerchrom structure	23
13	2.12 Dray Ink	24
14	2.13Chloropheel structure	25
15	2.14 Fenugreek (Helba)	26
	Chapter Three	
16	3.1 spin coating	32
17	3.1 Principle of operation of A Solar Cell	33
18	3.2 Current-Voltage characteristic of a solar Cell	33
	Chapter Four	
19	4.1 Current-Voltage characteristic of (FTO/Ecerchrom, MEH-PPV/CU) solar Cell	38

20	4.2 Current-Voltage characteristic of (FTO/Dry Ink, MEH-PPV/CU) solar Cell	38		
21	4.3 Current-Voltage characteristic of (FTO/Chrolorpheel, MEH-PPV/CU) solar Cell	39		
22	4.4 Current-Voltage characteristic of (FTO/Helba, MEH-PPV/CU) solar Cell	39		
Table				
23	4.1 Table	34		
24	4.2 Table	35		
25	4.3 Table	36		
26	4.4 Table	37		
27	4.5 Table	40		