
Chapter Two

Photonic crystal fiber

2.1 Introduction 

    The concept of photonic crystals is founded on an analogy with crystalline

solids which are composed of a periodic array of atoms or molecules that can

modeled  as  a  periodic  potential  (Joannopoulos,  Meade  and  Winn  1995).

Photonic crystals are formed by arranging dielectric materials in a periodic

array or lattice spacing on the order of the light wavelength. Photonic crystals

are formed in one, two or three dimensions as shown in figure (2.1):

         Figure (2.1): One, two, and three dimensional photonic crystal, different

colors represent materials with different dielectric constants (Reichenbach 2007).

Photonic Crystal fibers (PCFs) are called sometime microstructured fibers or

holy  fibers,  are  the  new  ways  provided  to  control  and  guide  lights,  not

obtainable in conventional optical fibers. Proposed for the first time in early

90’s,  recently  PCFs  are  used  in  the  scientific  researches  starting  in  the

telecommunication  field  and  then  touching  metrology,  spectroscopy,

microscopy,  astronomy,  biology  and  sensing  (Poli,  Cucinotta,  and  Selleri,

2007).
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       Nowadays photonic crystal fibers (PCFs) are of much attention all around

the world. It consists of central defect region surrounded by multiple air-holes,

which run along entire fiber length. Main difference between a PCF and the

conventional  one is  the index profile  of  core/cladding.PCF can offer  more

flexibility  than  conventional  fibers  in  design  of  optical  properties  such  as

birefringence, dispersion and confinement loss. PCF with low and flattened

dispersion are useful for improving optical fiber communication capabilities.

It has achieved increased attention because of its novel optical characteristics

(Amir et al 2013, Oh, K. et al 2005, Feng et al 2003, Saitoh et al. 2010). An

important feature of PCF is that it can be made of a single material, in contrast

to all other types of optical fibers, which are manufactured with two or more

materials (Al Falah, 2009). The design of PCFs is very flexible. There are

several parameters to manipulate: lattice pitch, air hole shape and diameter,

refractive index of the glass, and type of lattice. Freedom of design allows one

to obtain endlessly single mode fibers, which are single mode in all optical

range and a cut-off wavelength does not exist (Buczynski, 2004).

Standard (step index)  optical  fibers  guide light  by total  internal  reflection,

which  operates  only  if  the  core  has  a  higher  refractive  index  than  the

encircling cladding. Rays of light in the core, striking the interface with the

cladding,  are  completely  reflected.  The  wave  nature  of  light  dictates  that

guidance  occurs  only  at  certain  angles,  i.e.,  that  only  a  small  number  of

discrete “modes” can form. If only one mode exists,  the fiber is known as

single mode (Russell, 2003). In 1991 Philip Russell emerged idea that the light

could trapped a hollow fiber core by creating a periodic wavelength – scale

lattice of microscopic holes in cladding glass (Photonic Crystal).  The basic

principle is the same which is the origin of the color in butterfly wings and
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peacock  feathers,  that  is  all  wavelength-scale  periodic  structures  exhibit

ranges of angle and color, stop bands, where incident light is strongly reflected

(Poli, Cucinotta, and Selleri, 2007, Russell, 2003). In 1995 the first fiber with

photonic crystal  was reported by Russell and his colleagues,  this  fiber  are

manufactured  with  a  periodic  arrangement  of  low-index  material  in  a

background with higher refractive index. The background material in PCFs is

usually  undoped  silica  and  the  low-index  region  is  typically  provided  by

air-holes running along their entire length. The core of this fiber is solid core

as shown in figure (2.2).

     Figure (2.2): shows the cross section of the first solid core photonic crystal

fiber (Poli, Cucinotta, and Selleri, 2007).

 In 1999 the first hollow core photonic crystal fiber was reported by Russell 

and his coworkers as shown in figure (2.3).

 Figure (2.3):  Schematic of the cross-section of the first hollow-core PCF 
(Poli, Cucinotta, and Selleri, 2007).
PCFs have a periodic array of microholes that run along the entire fiber length.

They typically have two kinds of cross sections: The first type is  an air–silica

cladding surrounding a solid silica core( solid – core photonic crystal fibers)
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and the second type  an air–silica cladding surrounding a hollow core(hollow

core photonic crystal fibers)or (HC-PCFs). The light-guiding mechanism of

the former is provided by means of a modified total internal reflection (index

guiding),  while  the  light-guiding  mechanism of  the  latter  is  based  on  the

photonic band gap effect (PBG guiding) (Roberts et al. 2006). The number,

size, shape, and the separation between the air-holes as well as the air-hole

arrangement  are  what  confer  PCFs  unique  guiding  mechanism and  modal

properties.  This  gives  PCF  many  unique  properties  such  as  single  mode

operation over a wide wavelength range, very large mode area, and unusual

dispersion.  Because  of  their  freedom  in  design  and  novel  wave-guiding

properties, PCFs have been used for a number of novel fiber-optic devices and

fiber-sensing  applications  that  are  difficult  to  be  realized  by  the  use  of

conventional fibers (Massaro, 2012).

2.2 Guiding Mechanism

    The guiding mechanism in the photonic crystal fibers depend on the core

and cladding refractive index which introduce by the propagation constant β.

The highest β value that can exist in an infinite homogeneous medium with

refractive index n is β=nk 0 , k0 being the free-space propagation constant.

All the smaller values of β are allowed. A two-dimensional photonic crystal,

like any other material, is characterized by a maximum value of β which can

propagate. This β value defines the effective refractive index of the material

(Poli, Cucinotta, and Selleri, 2007).There are two guiding mechanisms in PCFs:

2.2.1 Modified Total Internal Reflection (MTIR)

 It is possible to use a two-dimensional photonic crystal as a fiber cladding, by

choosing  a  core  material  with  a  higher  refractive  index  than  the  cladding
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effective index. An example of this kind of structures is the PCF with a silica

solid core surrounded by a photonic crystal cladding with a triangular lattice

of air- holes, this type guide light through a form of total internal reflection

(TIR),  called  modified  total  internal  reflection  (MTIR).The  guiding

mechanism is defined as (modified) because the cladding refractive index is

not a constant value, as in standard optical fibers, but it changes significantly

with the wavelength, and the refractive index of the cladding can be varied by

changing the hole pitch and the hole diameter . This offers a number of unique

properties that cannot be achieved in conventional fibers.  For example, the

effective  value  (normalized  frequency)  is  saturated  against,  where  is  the

wavelength, resulting in single-mode operation over an ultrawide bandwidth

(Poli,  Cucinotta,  and  Selleri,  2007, Hirooka  and  Nakazawa,  2004).  This

mechanism is shown in figure (2.4).

    Figure (2.4): light guided by: (a) total internal reflection in conventional 

fiber (b) modified total internal reflection in photonic crystal fiber (Al Falah, 

2009). 

    In a solid-core PCF, the pattern of air holes acts like a model sieve. In

Figure (2.5 a), the fundamental mode is unable to escape because it cannot fit

in the gaps between the air holes, (Al Falah, 2009), the air holes blocking the

zero-order  mode  whose  transverse  effective  wavelength  (the  component
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perpendicular to the direction of propagation is too large to escape between

the holes (Russell, 2003). whilst the higher order modes are able to leak away

because their transverse effective wavelength is smaller (Antonpoulos, G. et

al. 2006). This is shown in figure (2.5 b, c ), that is why it is called modified

total internal reflection (Babu, S. G. et al. 2005). If the diameter of the air

holes is increased, the gaps between them shrink and more and more higher

order modes become trapped in the sieve (Babu, S. G. et al. 2005).     

  Figure (2.5): the pattern of air – holes acts like a model sieve (a) zero-order 

mode cannot squeeze  between air holes (b) and (c) ) higher-order modes can 

escape in the cladding(Russell, 2003) .

2.2.2 Photonic bandgap guidance (PBG)

   One of the most interesting PCFs, with no counterpart in conventional fiber,

when the PCF core region has a lower refractive index than the surrounding

photonic crystal cladding (Ren, G. et al. 2007), light is guided by a mechanism

different from total internal reflection that is, by exploiting the presence of the

photonic bandgap (PBG) (Poli,  Cucinotta,  and Selleri,  2007, Roberts  et  al.

2006, Benabid, F. 2006). A photonic band gap (PBG) crystal is a structure that

could  manipulate  beams  of  light  in  the  same way  semiconductors  control

electric currents (Buczynski, 2004. The band structure of semiconductors is

the outcome of the interactions between electrons and the periodic variations

in potential created by the crystal lattice. By solving the Schrodinger’s wave
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equation for a periodic potential, electron energy states separated by forbidden

bands are obtained. PBGs can be obtained in photonic crystals, where periodic

variations in dielectric constant that is in refractive index substitute variations

in electric potential, as well as the classical wave equation for the magnetic

field replaces the Schrodinger’s equation. In a PBG fiber, periodic holes act as

core and an introduced defect (an extra air hole) act as cladding. Since light

cannot  propagate  in  the  cladding  due  to  the  photonic  bandgap,  they  get

confined to the core, even if it has a lower refractive index. PBG formation

can be regarded as the synergetic interplay between two distinct  resonance

scattering mechanisms. The first is the “macroscopic” Bragg resonance from a

periodic array of scatterers. This leads to electromagnetic stop gaps when the

wave  propagates  in  the  direction  of  periodic  modulation  when  an  integer

number, m=1, 2, 3…, of half wavelengths coincides with the lattice spacing,

L, of the dielectric microstructure. The second is a “microscopic” scattering

resonance  from  a  single  unit  cell  of  the  material.  In  the  illustration,  this

(maximum  backscattering)  occurs  when  precisely  one  quarter  of  the

wavelength  coincides  with  the  diameter,  2a,  of  a  single  dielectric  well  of

refractive  index  n.  PBG formation  is  enhanced  by  choosing  the  materials

parameters  a,  L,  and  n  such  that  both  the  macroscopic  and  microscopic

resonances occur at the same frequency.

2.3 Guiding characteristics

  The guiding characteristics of conventional fibers and the photonic crystal

fibers are presented in the form of propagation diagram figure (2.6), whose

axes are the dimensionless quantities βΛ  and
ωΛ
C , where Λ  is the inter
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hole spacing and c is the speed of light in vacuum, This diagram indicates the

ranges of frequency and axial wave vector component β  where the light is

evanescent (unable to propagate) (Russell, 2003).

 Figure (2.6): Propagation diagram of:  (A) a conventional single-mode fiber, 

(B) Propagation diagram for a triangular lattice of air holes in silica glass 

(Russell, 2003)

    At fixed optical frequency, the maximum possible value of  β  is set by

kn=
ωn
C , where n is the refractive index of the region under consideration.

For β<kn ,  light  is  free  to  propagate;  for β>kn ,  it  is  evanescent.  For

conventional  fiber  (core  and  cladding  refractive  indices  n1 and, n2

respectively),  guided modes  appear  when light  is  free  to  propagate  in  the
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doped  core  but  is  evanescent  in  the  cladding  (Fig.  2.6A)  shows  the

propagation diagram for conventional single mode fiber (the schematic is in

the top left-hand corner of the figure) with a germanium (Ge) doped silica

core and a pure silica cladding. The guided modes at points like R, where light

is  free  to  propagate  in  the  doped  core,  but  is  evanescent  in  the  cladding

(because total internal reflection operates there). The narrow red strip is where

the whole of optical communications operates.     

   The same diagram for PCF is sometimes known as a band-edge or (finger)

plot as shown in (Fig 2.6B). In a triangular lattice of circular air holes with an

air filling fraction of 45%, light is free to propagate in every region of the fiber

[air, photonic crystal (PC), and silica], this is shown in region (1) of the same

figure. In region (2) propagation is turned off in the air but not in the PC and

silica, and in (3), it is turned off in the air and the PC. In region (4), light is

evanescent in every region. The black fingers represent the regions where full

two-dimensional photonic band gaps exist, some of these fingers extend into

β<k  where light is free to propagate in vacuum (Philip, R. 2001). Guided

modes of a solid core PCF form at points such as Q, where light is free to

travel in the core but unable to penetrate the PC. At point P, light is free to

propagate in air but blocked from penetrating the cladding by the PBG, these

are the conditions required for a hollow-core mode (Philip, R. 2001, Cregan,

F. R. et al.  1999). This result  indicates the hollow-core guidance is indeed

possible in the silica-air systems. It is thought-provoking that the entire optical

telecommunications  revolution  happened  within  the  narrow  strip

k n2 Λ<β Λ<k n1 Λ  in fig 2.6 A (Roberts et al. 2006). The rich variety of new
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features on the diagram for PCF explains in part why microstructuring extends

the possibilities of fibers so greatly (Russell, 2003).

2.4 Fabrication procedure

    The manufacturing of the conventional optical fibers involves two stages. In

the first stage the preform with desired refractive index profile and the relative

core – cladding dimensions is made by using a vapor deposition method. A

typical  preform is  1  m  with  a  20  mm diameter. In  the  second  stage,  the

preform is drawn into a fiber using a precision-feed mechanism that feeds it

into a furnace at a proper speed.

During this process, the relative core-cladding dimensions are preserved. Both

stages preform fabrication and fiber drawing; involve sophisticated technology

to ensure the uniformity of the core size and the index profile. For making the

preform there are several alternative ways. There are three commonly used

methods,  Outside  Vapor  Deposition  (OVD),  Modified  Chemical  Vapor

Deposition  (MCVD)  and  Vapor  phase  Axial  Deposition  (VAD)  (Agrawal,

2007, Agrawal, G., 2001, Mitschke, F. 2009).  

In  the  drawing  process  in  conventional  fibers  the  viscosity  is  the  only

important parameter, but in the case of the PCFs there are several important

parameters such as viscosity, gravity and surface tension. The choice of the

base material strongly influences the technological issues and applications in

the PCF fabrication process. By using the stack and drawing technique which

introduced by Birks et al in 1996 to  fabricate  PCF a preform with the interest
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structure but on a macroscopic scale firstly is create, it is possible to drilling

several tens to hundred of holes in periodic arrangement into on final preform.

The PCF preform is realized by stacking by hand a number of capillary silica

tubes and rods to form the desired air–silica structure as shown in figure (2.7).

This realizing preform allows the high flexibility design, since the core size

and shape as well as the index profile throughout the cladding region can be

controlled, then the capillaries and rods held together by thin wires and fused

together during an intermediate drawing process into preform canes. Then the

preform  is  drawn  down  on  a  conventional  fibers  drawing  tower,  greatly

extending it is length, while reducing it is cross section from a few mm's to a

few µm's (Poli, Cucinotta, and Selleri, 2007).  

Figure (2.7): Scheme of the PCF fabrication process (Poli, Cucinotta, and

Selleri, 2007).

    The fabrication of a HC- PCFs, independently of their cladding structure,

follows common core-procedure. It is based on drawing a tube (usually made
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of silica) with a chosen wall thickness to hundreds of approximately 1 m long

and approximately  1  mm diameter  capillaries.then  stacked  by  hand to  the

desired structure (stack). The stack is then fused and drawn to approximately 1

m long and a few millimeters diameter (canes). Finally, each cane is fused and

drawn into a fiber (Benabid, F. 2006) . As shown in figure (2.8).

Figure (2.8): Schematic of the fabrication procedure of HC-PCFs (Benabid, F.

2006).

2.5 PCF Design Geometry properties 

    PCFs designed with different air – hole pattern have many properties which

dependent on the design details some of them are (Mogilevtsev,  Birks and

Russell,  1998, Knight et al  1998, Nielse,  Folkenberg and Mortensen,  2003

Nielsen et al. 2004).  

 1. Endlessly single-mode guidance over very wide wavelength regions.

 2. Extremely small or extremely large mode areas than a conventional fiber,

leading to very strong or weak optical nonlinearities
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 3. Low sensitivity to bend losses even for large mode areas. 

 4. The possibility to fill gases or liquids into the holes and make extremely

strong birefringence for polarization-maintaining fibers. 

  5. The feasibility of multi-core designs, e.g. with a regular pattern of core

structures in a single fiber, where there are some coupling between the cores. 

 6.  Very  unusual  and  engineerable  chromatic  dispersion  properties,  e.g.

anomalous dispersion in the visible wavelength region.

We  discuss  the  first  two  properties  above  in  short  details  in  the  sub

subsections.

2.5.1 Endlessly single mode fibers

    PCF can be designed so that they are single mode for a large range of the

spectrum, in other words the PFC designed to be endlessly single mode (no

higher modes are supported regardless of the wave length). In conventional

Single Mode Fiber (SMF) for the both types step index or graded index there

are always a cut – off frequency above which the fibers starts to be multimode

(Mortensen et al 2003). The V parameter plays a central role in the description

of the number of guided modes in SMFs. V is defined as (Mortensen et al

2003):

V (λ)=
2π
λ

a√n1
2
−n2

2

                                                     (2. 1)

Where: a is the core radius, n1
❑

 and n2
❑

 are refractive indexes of the core

and the cladding respectively. 

In  the  convention  fibers  the  cladding  refractive  index  is  wavelength

independent and the V parameter is inverse dependence on the wavelength
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(λ) for  this  relation  the  V parameter  is  often  referred  to  as  normalized

frequency (Nielsen et al 2003). 

 The V parameter for PCF is given by (Lin C. and Stolen 1976):

V (λ)=
2π
λ

Λ√n1
2
(λ)−n2

2
(λ)                                                                 (2. 2)

Where:  nc (λ)=
Cβ
ω  : core refractive index associate with effective index of

the fundamental modes and nc (λ)  is the effective index of the fundamental

space – filling mode.

  Figure (2.9): illustrated the air hole diameter (d) and the air- hole pitch ( Λ ) 

(Lin C. and Stolen 1976)  

     For PCF a value of the effective refractive index of photonic cladding

depends strongly on wavelength, while in conventional fibers it was almost

constant.

   The normalized frequency tends to a stationary value for short wavelengths. 

A refractive  index  of  photonic  cladding  and  therefore  stationary  value  of

normalized frequency is defined by the cladding structure, namely by the fill

factor (the ratio of the hole diameter d to the period of the lattice Λ ¿ . Any
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PCF fulfill this condition is usually called endlessly single mode. The cut - off

normalized frequency for PCF estimated as 2.5  (Buczynski, 2004).

2.5.2 Large mode area

     In single mode regime the conventional fibers have a strong limit on the

core  size  and  numerical  aperture  (NA).  There  is  a  maximum  numerical

aperture for any wavelength and core diameter makes the operation in single

mode regime is possible. The difference between the core and the cladding

refractive index is  used to control  the NA value.  The mode field diameter

(MFD) is limits by fabrication the conventional fiber with large mode area

using appropriate method such as chemical vapor deposition (CVD).

 In photonic crystal fiber the mode field diameter can vary in a single mode

regime, depending on requirements. Large mode areas can be engineered by

increasing the lattice pitch of the photonic cladding, decreasing the air hole

diameter or increasing the size of the defect in photonic cladding (removal of

more than one of the central air holes) (Buczynski, 2004).

2.6 Applications of PCF

   The PCFs unique properties make it  very attractive for a wide range of

application like (Vokovic, N. 2010). 

  1. Fiber lasers and amplifiers, including high-power devices, mode-locked

fiber lasers, etc. 

 2. Nonlinear devices such as suppercontinum generation (frequency combs),

Raman conversion, parametric amplification, or pulse compression is possible

by using PCF because both weak and strong nonlinearity can be achieved in

PCF by proper design. 

 3. Telecom components, such as dispersion controller, filter and all optical

switches. 
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 4. Fiber-optic sensors. 

 5.  Application in  quantum optics  such as generation of  correlated photon

pairs, electromagnetically induced transparency, etc.

2.7 pulse propagation in PCFs

    All electromagnetic effects are governed by the four Maxwell equations in

PCFs which is dielectric medium (no free charges or currents are present in

the entre domain) is (Agrawal, 2007):

∇× E=
−∂ B

∂t                                                                               (2.3)

∇× H=
∂ D
∂t                                                                                  (2.4)

∇ . B=0                                                                                       (2.5)

∇ . D=0                                                                                      (2.6)

Where E and H are the electric and magnetic fields respectively, both fields

are functions is space and time, B and D the magnetic induction field and

electric displacement. For a nonmagnetic isotropic medium such as PCFs, the

flux densities B and D are related to E and H by the equations (Agrawal,

2007):

D=ε0 E+P                                                                              (2.7)

B=μ0 H                                                                                     (2.8)

Where: ε0  is vacuum permittivity,  μ0 is vacuum permeability and P  is

the induced electric polarization (Reichenbach 2007). 
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By applying the operator curl on the equation (2.3) and using equations (2.4),

(2.7) and (2.8) into the result, we obtained the wave equation that describes

the pulse propagation in PCFs as (Agrawal, 2007):

∇×∇× E=
1
C2

∂2 E
∂ t2 −μ0

∂2 P
∂ t 2                                                       (2.9)

Where the induced electric polarization  P  is  related to the electric field

E (r ,t )  (far from medium resonance) is given by:

P=ε0( χ1 ∙E+ χ 2: EE+ χ3 ⋮EEE+…)                                      (2.10)

The  electric  field  E (r ,t ) can  be  expressed  in  terms  of  slowly  varying

envelope approximation as:

E (r ,t )=
1
2

x̂ [E (r ,t ) exp (iω0 t )+c.c.]                                        (2.11)

Where E (r ,t )  is a slowly varying complex envelope, x̂  is the polarization

unit  vector, c.c.  stands  for  complex  conjugate  and   ω0  is  an  angular

optical frequency.

By  using  Fourier  analysis  the  wave  equation  (2.9)  in  frequency  domain

becomes:

∇2 Ẽ+ε (ω) Ẽ k0
2
=0                                                                      (2.12)

Where k0 free space wave number is defined as:

k0=
ω
C

=
2π
λ                                                                                      (2.13)

And ε (ω )  is frequency dependent dielectric constant is expressed as:
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ε (ω )=1+ χ̃ ( 1) ( ω)+ε NL                                                               (2.14)

Where  ε NL the  nonlinear  contribution  of  dielectric  constant  is  treated  as

constant during the pulse propagation and defined as:

ε NL=
3
4

χ xxxx
(3 ) ∣E(r , t)∣

2

                                                                      (2.15)

And χ̃ (1 ) (ω )  is Fourier transform of χ (1 )
(t ) . It is real and imaginary parts are

related to the refractive index  ñ(ω)  and the attenuation coefficient α (ω)

by the equation: 

ε=( ñ+
iαc
2ω )

2

                                                                                    (2.16)

 ñ(ω)  is given by:

ñ (ω ,∣E∣
2 )=n (ω)+n2∣E∣

2

                                                             (2.17)

Then  the  following  equations  are  obtained  from  equations  2.16  and  2.17

n (ω )  and α (ω )  are related to χ (1 )

 by the relations:

n (ω )=1+
1
2

ℜ[ χ̃ (1 )(ω)]                                                                      (2.18)

α (ω )=
ω
nC

ℑ[ χ̃ (1)(ω )]                                                                           (2.19)

Where ℜ  and ℑ  are real and imaginary parts. Due to low losses in fiber

the imaginary part of ε (ω )  is negligible in comparison to the real part, then

the ε (ω )  can be replaced by  ñ2
(ω)  so that equation 2.12 becomes:
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∇2 Ẽ+ ñ2
(ω) Ẽ k0

2
=0                                                                               (2.20)

Ẽ  is defined as:

iwtdt
E (r ,t ) exp  ¿

Ẽ (r ,ω)=∫
−∞

∞

¿
                                                           (2.21)

By using the method of separation variables for solution the optical field, the

envelope is in a form:

E (r ,t )=F ( x , y ) A ( z , t ) exp  (i β0 z)                                                        (2.22)

Where  F ( x , y )  is  transverse mode distribution,  A ( z , t ) is  slowly varying

function  of  z  and  β0=β (ω0)  is  the  wave  number  at  carrier  frequency

(Agrawal, 2007). 

In order to be able to observe different nonlinear effects in PCFs, the solution

of equation (2.20) can be assumed as the following form:

i β0 z
Ẽ (r , ω−ω0 )=F ( x , y ) Ã ( z ,ω−ω0 ) exp  ¿                                   (2.23) 

 Where Ã ( z , ω ) is slowly varying function of z, β0 is the wave number and

F ( x , y ) corresponds  to  the  modal  distribution  in  the  fiber.  Equation  1.30

leads to the following two equations for F ( x , y )  and Ã ( z , ω ) :

∂2 F
∂ x2 +

∂2 F
∂ y2 + [ε (ω ) k0

2
− β̃2 ] F=0                                                            (2.24)

2i β0
∂ Ã
∂ z

+( β̃2
−β0

2 ) Ã=0                                                                     (2.25)
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Where  the  second  order  derivative
∂2 Ã
∂ z2   is  ignored,  since  Ã ( z , ω )  is

assumed to be slowly varying function of z. the eigenvalu β̃ can be written

by β̃ (ω)=β (ω )+∆ β

Where:

∆ β=k0

∬
−∞

∞

∆ n∣F(x , y)∣
2
dxdy

∬
−∞

∞

∣F (x , y )∣
2

                                                             (2.26)

Where: x∧ y  are the transverse coordinates.

Equation  (2.25)  can  be  approximate  by  replacing   ( β̃2
−β0

2 )  with

2β0( β̃−β0)  as:

∂ Ã
∂ z

−i [ β (ω)+∆ β−β0 ] Ã=0                                                         (2.27)          

By transforming the equation above back to  time domain,  the propagation

equation of A(z,t) can be obtained. However, as an exact functional form of

β (ω )  is rarely known, note that  β (ω )  can be expand in Tyler series about

the center frequency ( ω0 ) as: 

β (ω )=β0+( ω−ω0 ) β1+
1
2

( ω−ω0 )
2 β2+

1
6

(ω−ω0 )
3 β3+¿          (2.28)

Where βm  is mth order dispersion coefficient defined as:
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βm=( dm β
dωm )ω=ω0         m = 1, 2, 3, …

By  substituted  equation  2.27  in  2.28  and  after  taking  the  inverse  Fourier

transform, during the transform (ω−ω0 )  is replaced by i( ∂
∂t )   we get:

∂ A
∂ z

=−β1
∂ A
∂t

−
i
2

β2
∂2 A
∂ t 2 +

1
6

β3
∂3 A
∂ t3 +…+ i∆ βA                                     (2.29)

Where ∆ β  is  evaluated  by  using  equations  2.20  and  2.25,  so  that  the

following equation is defined:

∂ A
∂ z

+β1
∂ A
∂ t

+
i
2

β2
∂2 A
∂ t2 −

1
6

β2
∂3 A
∂ t3 +…+

α
2

A=iγ∣A∣
2
A                       (2.30)

Equation2.30 is called the nonlinear Schrodinger equation (NLSE) describes

the pulse propagation in optical fiber. Its includes the effect of the fiber losses

through  the  parameter  α,  the  effect  of  fiber  nonlinearity  through   γ

coefficient and fiber dispersion through βm .

The nonlinearity coefficient γ  is given by:

γ=

n2 ω∫
−∞

∞

∫
−∞

∞

∣F(x , y)∣
4
dxdy

c (∫
−∞

∞

∫
−∞

∞

∣F (x , y )∣
2
dxdy)

2                                                                    (2.31)

Equation 2.49 is equivalent to:

γ=
2π n2

λ Aeff
                                                                                               (2.32)
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Where  Aeff  is  the effective area,  introduced to estimate the optical  field

concentration inside the fiber and defined as:

Aeff =
(∫
−∞

∞

∫
−∞

∞

∣F( x , y)∣
2
dxdy )

2

∫
−∞

∞

∫
−∞

∞

∣F (x , y )∣
4
dxdy

                                                                 (2.33)

2.8 Different propagation regimes

    The nonlinear Schrödinger equation governs propagation of optical pulse

inside PCFs. For pulse width greater than 5 picoseconds the NLSE becomes

(Agrawal, 2007):

i
∂ A
∂ z

=
−iα

2
A+

1
2

β2
∂2 A
∂ T 2 −γ∣A∣

2
A                                                           (2.34)

Where  A is  the  slowly  varying amplitude  of  the  pulse  envelope  and  T is

measured in a frame of reference moving with the pulse at the group velocity

v g  (
T=t−

z
vg

¿

Equation (1.43) the terms in left hand side represent respectively, the effects of

fiber  losses,  dispersion and nonlinearity of  pulse  propagation inside fibers.

Depending on the initial width T 0  and the peak power P0 of the incident

pulse, either dispersive or nonlinear effect may dominate along the fiber. Two

length  scales  overs  which  the  dispersion  or  nonlinearity  effects  become

important  for  pulse  propagation,  known  as  the  dispersion  length  LD  (
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LD=
T 0

2

∣β2∣ )  and  nonlinear  length  LNL  (
LNL=

1
γ P0 ),  where γ  is

nonlinearity coefficient and β2 is Group velocity dispersion (GVD).

By introduce a time scale normalized to the input pulse width T 0 as:

τ=
T
T 0

=

t−
z
vg

T0

                                                                                      (2.35)

At the same time, we introduce a normalized amplitude U as:

A ( z , τ , )=√P0exp (−αz
2 )U (z , τ )                                                 (2.36)

Where:  P0  is  the peak power of  the incident pulse,  the fiber  losses can

appear by the exponential in the equation. By using Equations 2.34 and 2.36

U (z , τ )  is found to satisfy:

i
∂ U
∂ z

=
sgn( β2)

2 LD

∂2U

∂ τ2 −
exp  (−αz)

LNL

∣U∣
2
U                                                         (2.37)

Where sgn (β2)  = +1 when β0>0  and sgn (β2)  = -1 when β0<0

Depending on the relative magnitudes of L ,  LD , LNL ,  the propagation

behavior can be classified in four categories.

When  fiber  length  is  such  that   ≪LNL∧L≪ LD  ,  neither  dispersive  nor

nonlinear effects dominate, pulse evolution and pulse propagates maintaining

it  is  shape  during  the  propagation.  As  pulses  becomes  shorter  and  more

intense. If the fiber length is such that L≪ LNL∧L LD  the pulse evolution is
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then governed by GVD and the nonlinear effects is minority. The dispersion

dominant regime is applicable whenever:

LD

LNL

=
γP0 T 0

2

∣β2∣
≪1

(2.38)

 When the fiber length is such that  L≪ LD∧L LNL  the pulse evolution is

governed by SPM that produce change in the pulse spectrum, the nonlinearity

dominant regime is applicable whenever:

LD

LNL

=
γP0 T 0

2

∣β2∣
≫1

(2.39)

When  fiber  length  L  is  longer  or  comparable  to  both  LD  and LNL ,

dispersion  and  nonlinearity  act  together  as  the  pulse  propagates  along  the

fiber,  these  interplay  of  dispersion  and  nonlinearity  effects  can  lead  to  a

qualitatively different  behavior compared with that  expected from GVD or

SPM alone(Agrawal, 2007).

For  ultrashort  optical  pulse  higher  order  nonlinear  effects  are  included  in

account then the normalized Schrödinger equation write as:

∣U∣

(¿¿2U )−τ RU
∂∣U∣

2

∂ τ

∣U∣
2
U+is

∂
∂ τ

¿

∂U
∂ z

+i
sgn(β2)

2LD

∂2 U
∂ τ2 =

sgn (β3)

6 L̀D

∂3 U
∂τ3 +i

e−αz

LNL

¿

 (2.40)

Where L̀D is defined as:

24



 L̀D=
T 0

3

∣β3∣

The  parameter  s  and  τ R  govern  the  effect  of  self  –  steeping  and

intrapulse Raman scattering and are expressed as:

                
s=

1
ω0T 0   ,                                       τ R=

T R

T 0

(2.41)  

2.9 literature review 

   The amplification of femtosecond laser has been experimentally investigated

around 1.060 μ m wavelength through an optical fiber based on stimulated

Raman  scattering  (SRS)the  results  showed that  the  self  phase

modulation (SPM) leads to compress the laser spectral width

from 6.96 nm to  5  nm with  small  effect  on  the  maximum

nonlinear  phase  shift  (Kbashi, J.  H.  et  al  2009). The  self  phase

modulation  leads  to  broaden  the  spectral  width  from  5nm  to  38nm  after

simulated picoseconds pulse propagation in monomode optical fiber (Kbashi

and Abdl  Daim 2012).  Femtosecond laser  pulse propagation in  monomode

optical fibers is demonstrated and investigated numerically (by simulations)

and experimentally the results showed that self phase modulation (SPM) leads

to compression of the spectral width from 5 nm to 2.1nm after propagation of

different  optical  powers  in  fibers  of  different  length  The  varying  optical

powers  produced  a  varying  phase  shift.  The  output  spectral  width  also
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changed with the fiber length at a given peak power (Kbashi, J. H. et al. 2010).

Quantum  dot  nanocoatings  have  been  deposited  by  means  of  the

Layer-by-Layer  technique  on  the  inner  holes  of  Photonic  Crystal  Fibers

(PCFs) for the fabrication of temperature sensors. The optical properties of

these  sensors  including  absorbance,  intensity  emission,  wavelength  of  the

emission  band,  and  the  full  width  at  half  maximum  (FWHM)  have  been

experimentally  studied  for  a  temperature  range  from  −400 to  700C.

Omnichrome laser tuned at 470 nm was used in this experiment. The results

showed  that  the  maximum peak  of  the  laser  curve  was  changes  with  the

temperature. Also the wavelength and the width of this peak are increased as

far as the temperature rises (Larrion, B. et al. 2009). Cross phase modulation

(XPM) and induced focusing due to optical nonlinearities in optical fibers and

bulk  materials.  The  results  showed  that  the  XPM causes  pulse  spectra  to

broaden more than with the Self phase modulation (SPM), when the spectrum

of 527 nm with 80 μJ picoseconds pass in BK7 glass at 9 cm length is used

(Nielse,  Folkenberg  and  Mortensen,  2003).  Self  Phase  Modulation  and

Spectral  Broadening of  Optical  Pulses  in  Semiconductor  Laser  Amplifiers,

was  studied  theoretically  and  experimentally.   The  results  related  to  the

amplification of short optical pulses in semiconductor amplifiers. The SPM

lead to broadening the spectral as a result of gain saturation that is responsible

for  time  dependent  variations  in  carrier  density  (Mogilevtsev,  Birks  and

Russell,  1998).  Generation  of  supercontinum light  in  PC fiber  is  studied.

When the fs or ps laser pulses interacts with nonlinear medium can generate

new frequencies which lead to broaden the pulse spectrum, according to Self

phase  modulation,  four  waves  maxing  and  Stimulated  Raman  scattering

(Knight et al 1998).  
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