
 الرحيم الرحمن الله بسم

Sudan University of Science and Technology

College of Postgraduate Studies

Active Cancellation Algorithm for Radar

Cross Section Reduction

المقطع لتخفيض نشط الغاء خوارزمية

 الرادري

Thesis Submitted for the Partial Fulfillment of the Requirement for the
Award of the Degree of Ph. D. in Computer Engineering

Prepared by:

 Isam Abdel Nabi Osman Mohammed

Ali

Supervised by:

 Associate prof. Dr. Abdelrasol Jabar

Alzobidy

March 2014

2

الرحيم الرحمن الله بسم

: تعالى قال

 الذي ربك باسم إقرأ
من النسسان خلق خلق
الكررم وربك أقرأ علق

بالقلم علم الذي علم
 يعلم مالم النسسان

العظيم الله صدق

 1-5اليات العلق سورة

ACKNOWLEDGEMENT

I like to acknowledge the contributions

of my supervisor Dr. Abdelrasol Jabar

Alzobidy who helps brilliant creativity

 -I-

support, and have guided this project from

its conception to its completion, and I

would like to send my special thanks to

him.

I thank the teaching staff of the

department of electronic engineering, who

gave me their considerations and were

always behind me helping and

encouraging.

Special thanks for my family for their

usual supports without limitations, to

accomplish this work and standing behind

me.

 -II-

DEDICATION

Thank you god, for giving me

the courage, ability and

strength to accomplish this

work.

I dedicate this deepest love and

affection to my parents, my wife

and my sons. Their love,

vulnerability and wisdom have

inspired me to do the best I can.

To my friends, thanks for the

endearing friendship, for the joy

I have always shared, for the

days filled with humor and

laughter and for bond of endless

understanding.

 -III-

To all the people who helped me

to accomplish this work.

With my greater love

 Isam …

ABSTRACT
Modern components for signal processing and high speed computers

make it possible to achieve radar visibility reduction (Stealth Technology),

that requires reduce the radar cross section (RCS) of an aircraft or the

fighting's systems because it seems to be on the enemy's radar detection

capabilities. To achieve this goal, this research proposed an Active

cancellation algorithm for radar cross section reduction using MATLAB,

digital radio-frequency memory (DRFM), and phased array technology to

generate the desired signal to cancel the reflected radar returns. The

algorithm depends on a pre calculation approach in which an omni direction

RCS, clutter, and noise databases generated in advance. Signal processing

system function analysis parameter of the measured radar signal, and then

find the corresponding echo data (amplitude and phase etc …) in the target

RCS database through real-time amendment to generate out of phase echo.

Through the establishment of a target scattering field with the abolition of a

coherent signal in the direction of the radar system detection, the radar

receiver stays in empty pattern synthesis. The result achieved by the proposed

method improves visibility reduction by 50%.

 -IV-

مستخلص
المكونسات الحديثة لمعالجة الشاارات وحاسبات السرعة العالية تجعل

بالمكان تحقيق خفض الروية للرادار (تكنولوجيا التخفي) والتي تطلب إنسقاص

) للطائرة او النسظمة القتالية لنسها تمثل مقدرةRCSمقطع الرادار العرضي (

رادار العدو من الكشف. لتحقيق هذا الهدف، اقترح هذ البحث خوارزمية اللغاء

النشط لتخفيض مقطع الرادار العرضي باستخدام الماتلب ، ذواكرر الشاارة

) وتقنية الصف المرحلية لتوليد الشاارة المطلوبةDRFMالراديوية الرقمية (

للغاء عائدات الرادار المنعكسة. الخوارزمية تعتمد علي مبدأ تكوين

اا قواعدبيانسات المقطع العرضى متعدد التجاه، البيئة المحيطة، والضجيج مسبق

وتقوم وحدة معالجة الشاارة بتحليل اشاارة الرادار المستقبلة ومن ثم ايجاد

معاملت الرتداد (المطال والطور الخ...) المطابقة لها في قاعدة بيانسات

الهدف من خلل الضبط والتعديل الفوري يتم توليد اشاارة معاكرسة الطور

وارسالها في اتجاه الرادر المكتشف ليظل شاكل الشاارة لمستقبل الرادار

اا. النتيجة المحققة بواسطة الخوارزمية المقترحة تحسن خفض الروية بـ خالي

50.%

 -V-

TABLE OF CONTENTS
 Acknowledgement...I

 Dedication...III

 Abstract...IV

V...مستخلص

 Table of Contents..VI

1. List of Abbreviations..IX

 List OF Figures...X

2. Chapter One: Introduction..12

2.1 Overview:...12

2.1.1 RCS is a function of:...

2.1.2 RCS Prediction Techniques:..

2.1.3 RCS Reduction Techniques:..

2.2 Problem statement:...18

2.3 Objectives:..18

2.4 Methodology:...18

2.5 Organization of the Thesis...19

3. Chapter Two: Radar and Radar Cross Section (RCS)..21

3.1 Introduction:...21

3.2 Radar:...21

3.3 Radar Block Diagram...22

3.3.1 Transmitter:...

3.3.2 Duplexer:...

3.3.3 Antenna:..

3.3.4 Receiver:...

3.3.5 Video amplifier:...

3.3.6 Signal Processing:...

3.3.7 Data Processing:..

3.3.8 Displays:..

3.4 Radar Operation:..24

3.5 Radar Classifications..25

3.6 Radar Equation:..25

 -VI-

3.7 Radar Cross Section (RCS):...27

3.8 RCS Definition...27

3.9 RCS is a function of:..27

4. Chapter Three: Radar Cross Section Prediction techniques...32

4.1 Introduction:...32

4.2 Geometric Optics (GO):...32

4.3 Physical Optics (PO):...34

4.4 Geometric Theory of Diffraction (GTD):..35

4.5 Physical Theory of Diffraction (PTD):..37

4.6 Fast Multipole Method (FFM):..38

4.7 Finite-Difference Time Domain (FDTD):..38

4.8 Method of Moments (MoM):...39

5. Chapter four: Radar Cross Section Reduction (RCSR)...42

5.1 Introduction:...42

5.2 The four method of RCSR...42

5.2.1 Shaping..

5.2.2 Radar Absorbing Materials:..

5.2.3 Passive Cancellation..

5.2.4 Active Cancellation...

5.3 The Penalties of RCSR...48

5.4 Limitations...49

6. Chapter five: System Model Simulation..51

6.1 RADAR Simulation...51

6.1.1 Introduction...

6.1.2 Main Files and Functions..

6.1.3 The Radar Simulation Graphical User Interface...

6.1.4 Main RADAR display...

6.1.5 Radar Controls..

6.1.6 Simulation Controls..

6.2 Aircraft Simulation...56

6.2.1 Introduction...

6.2.2 Main Files and Functions..

6.2.3 The Aircraft Simulation GUI...

6.2.4 Main Aircraft display..

 -VII-

6.2.5 Simulation Controls..

7. Chapter Six: Methodolgy...61

7.1 Introduction:...61

7.2 Flowchart:...64

7.3 Code:..65

7.3.1 Signal processing and control function (SPC):...

7.3.2 Blind Velocity and Doppler Effect function (BVDE):..

7.3.3 Power synthesis and beam forming function (PSBF):..

8. Chapter Seven: Test and Results..74

9. Chapter Eight: Conclusion...79

9.1 Conclusion:...79

9.2 Future Work:...79

 Refrences:..81

10. Appendixes:..83

A. Radar Simulation Graphical user interface:..83

B. Aircraft Simulation Graphical user interface:..95

C. runAircraftSim_v2...108

D. Target return:...114

E. Plot Target:...115

F. Analyze Buffer:..115

G. Create Target:...116

H. Place Cluture:..116

I. Publications:..117

 -VIII-

1. LIST OF ABBREVIATIONS
Radar Cross SectionRCS
Digital Radio Frequency MemoryDRFM
Geometric OpticsGO
Physical OpticsPO
Geometric Theory of DiffractionGTD
Physical Theory of DiffractionPTD
Radar Absorbent MaterialRAM
RAdio Detection And Ranging RADAR
Intermediate FrequencyIF
Continous WaveCW
Moving Target IndicationMTI
Constant False Alarm RateCFAR
Automatic Detector and TrackerADT
Pulsed RadarPR
Pulse Repition FrequencyPRF
Pulse Repition IntervalPRI
Principle PolarizatonPP
Orthognal PolarizatonOP
High Frequency AsympticHFA
Fast Multiple MethodFMM
Finite – Difference Time DomainFTDT
Method of MomentsMoM
Perfectly Electric ConductorPEC
Electric Field Integral EquationEFIE
Radar Cross Section ReductionRCSR
Radio FrequencyRF
Low Pass FilterLPF
Band WidthBW
Graphical User InterfaceGUI
Signal Processing and ControlSPC
Blind Velocity and Doppler EffectBVDE
Power Syntheis and Beam FormingPSBF
Pulse Repition TimePRT

 -IX-

LIST OF FIGURES

 -X-

Chapter One

2. CHAPTER ONE: INTRODUCTION

2.1 Overview:

Radar cross section (RCS) is the measure of a target's ability to reflect radar signals

in the direction of the radar receiver, i.e. it is a measure of the ratio of backscatter power

per unit solid angle in the direction of the radar (from the target) to the power density that

is intercepted by the target. The RCS of a target can be viewed as a comparison of the

strength of the reflected signal from a target to the reflected signal from a perfectly smooth

sphere of cross sectional area of 1 m2 as shown in Figure 1.1[1].

Figure 1.1: Concept of Radar Cross Section

RCS, denoted by the Greek letter σ and measured in m², is defined as:

i

s

P

P
Π= 4σ …. 1.1

Pi: = power density, or intensity, of a plane wave striking the target.

Ps: = power per unit solid angle reflected by the target.

RCS has a wide spread ranging from 10-5 for small insects to 106 for large ships.

Hence, RCS is often stated in the logarithmic decibel scale:






=

2.1
log10

mdb

σσ …. 1.2

2.1.1 RCS is a function of:

• Position of transmitter/receiver relative to target.

• Target geometry and material composition.

• Angular orientation of target relative to transmitter/receiver.

• Frequency or wavelength.

• Antenna polarization.

The conceptual definition of RCS includes the fact that not all of the radiated

energy falls on the target. A target’s RCS (σ) is most easily visualized as the product of

three factors [5]:

σ = Projected cross section x Reflectivity x Directivity.

RCS (σ) is used above for an equation representing power reradiated from the target.

• Reflectivity:

The re-radiated fraction of intesrcepted power.

• Directivity:

The ratio ratio of the maximum intensity of the radiator to the intensity of an

isotropic source.

Figure 1.2 and 1.3 shows that RCS does not equal geometric area. For a sphere, the

RCS, σ = Πr2, where r is the radius of the sphere.

The RCS of a sphere is independent of frequency if operating at sufficiently high

frequencies where λ<<Range, and λ << radius (r). Experimentally, radar return reflected

from a target is compared to the Radar return reflected from a sphere which has a frontal or

projected area of one square meter. Using the spherical shape aids in field or laboratory

measurements since orientation or positioning of the sphere will not affect radar reflection

intensity measurements as a flat plate would. If calibrated, other sources (cylinder, flat

plate, or corner reflector, etc.) could be used for comparative measurements [1],[5].

F
i
g
u
r
e
1
.
2:
R
C
S
v
e
r
s
u
s
P
h
y
s
i
c
al
G
e

ometry

Figure 1.3: Backscatter from Shapes

In Figure 1.4, RCS patterns are shown as objects are rotated about their vertical

axes (the arrows indicate the direction of the radar reflections).

The sphere is essentially the same in all directions. The flat plate has almost no

RCS except when aligned directly toward the radar.

The corner reflector has an RCS almost as high as the flat plate but over a wider

angle, i.e., over ±60E. The return from a corner reflector is analogous to that of a flat plate

always being perpendicular to your collocated transmitter and receiver. Targets such as

ships and aircraft often have many effective corners. Corners are sometimes used as

calibration targets or as decoys, i.e. corner reflectors. An aircraft target is very complex. It

has a great many reflecting elements and shapes. The RCS of real aircraft must be

measured. It varies significantly depending upon the direction of the illuminating radar [5].

Figure 1.4: RCS Patterns

2.1.2 RCS Prediction Techniques:

Most radar systems use RCS as a means of discrimination.

Therefore, accurate prediction of target RCS is critical in order to design

and develop strong discrimination algorithms. Additionally, measuring

and identifying the scattering centers (sources) for a given target aid in

developing RCS reduction techniques. Another reason of lesser

importance is that RCS calculations require broad and extensive

technical knowledge, thus many scientists and scholars find the subject

challenging and intellectually motivating there are two categories of

RCS prediction methods are available [2]:

• Exact prediction methods.

• Approximate prediction methods.

Exact methods of RCS prediction are very complex even for simple shape objects.

This is because they require solving either differential or integral equations that describe

the scattered waves from an object under the proper set of boundary conditions. Such

boundary conditions are governed by Maxwell’s equations. Even when exact solutions are

achievable, they are often difficult to interpret and to program using digital computers. Due

to the difficulties associated with the exact RCS prediction, approximate methods become

the viable alternative. The majority of the approximate methods are valid in the optical

region, and each has its own strengths and limitations. Most approximate methods can

predict RCS within few decibels of the truth. In general, such a variation is quite

acceptable by radar engineers and designers. Approximate methods are usually the main

source for predicting RCS of complex and extended targets such as aircrafts, ships, and

missiles. When experimental results are available, they can be used to validate and verify

the approximations. Some of the most commonly used prediction methods are Geometrical

Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD), Physical

Theory of Diffraction (PTD).

2.1.3 RCS Reduction Techniques:

In many military and civilian applications it is desirable to reduce the RCS of a

target. In general, there are four basic ways to reduce the RCS [5]:

1. Target shaping:

Target shaping refers to the special selection of target surface shapes to

minimize the amount of energy scattered back to the radar, typically at the cost of

redirection of the scattered energy from the direction of interest to another region of

little or no interest. Intake cavities make it impossible to reduce the radar reflections

from the object inside of the cavity as shown in Figure 1.5.

Figure 1.5: Straight Cavity

With respect to the engine, these cavities make highly reflective turbine

blades visible to radar which causes a significant increase in the RCS of the

aircraft. Often, engine intakes incorporate an S-shaped duct as seen in Figure 1.6

so that the turbine blades are not visible to radar.

Figure 1.6: S-Shaped Cavity
2. Radar Absorbent Material

Radar absorbent material (RAM) is probably the most common technology

used to reduce an aircraft's RCS. An equivalent optical example would be black

paint. An object that is painted black absorbs all the light that hits it (i.e., black is

the absence of reflected light hitting your eyes). The idea behind RAM paint is to

absorb the energy of the radio waves transmitted by the radar antenna. RAM

contains carbonyl iron ferrite as the active ingredient. When radar waves hit the

RAM coating, a magnetic field is produced in the metallic elements of the coating.

The magnetic field has alternating polarity and dissipates the energy of the signal

3. Passive Cancellation (Discrete loading)

Passive cancellation methods require the loading of the target with discrete

antenna-like elements (e.g., slots or dipoles) to reduce the overall cross section.

These techniques are rather difficult to implement in practice, are severely limited

in bandwidth, require the control of possible self-oscillations, and in some cases

may even revert to reinforcement when some parameters differ from the nominal

values for which the loads were designed.

4. Active Cancellation System

Active cancellation is a way of creating a new waveform which will cancel

the original radar signal reflected from the airframe. This method is very similar to

active jamming techniques. However, active cancellation methods require

transmission of very low power levels compared to conventional EW jamming

techniques. Here, the main purpose is reducing the RCS while canceling the

reflected radar signal by a process of modifying and retransmitting the incident

radar waves, rather than having the radar jammed. The method is also called “active

loading”. The active cancellation platform must radiate counter signals, which have

the same amplitude but reversed phase from the radar. Moreover the radiation must

be towards the same reflected direction to cancel the bounced signal.

Using such a process requires some data, including angle of arrival,

intensity, waveform and the frequency of the received signal. Obviously, the

emission must coincide in time with the incident pulse. Thus, this kind of a

replication is very complex; moreover, it requires smart systems to calculate the

airframe’s own echo characteristics in order to generate the exact pulses for

cancellation.

2.2 Problem statement:

There are two active cancellation levels; fully active and semi active. Fully active

systems are those that receive, amplify the threat signal and retransmit the required

cancellation signal which is out of phase. Here, the transmitted wave parameters, such as

signal intensity, phase, frequency and polarization, must be carefully adjusted to

compensate for the changes. The second one is semi active cancellation, by which limited

changes in threat signal parameters are met to compensate.

The challenge of this study is to design a fully active RCS reduction algorithm using

MATLAB R2013a with aid of hardware controlled by onboard computer.

2.3 Objectives:

The main objective is to design a fully active RCS reduction algorithm that does

the flowing tasks:

• Receive a radar signal and analyzes it to extract signal information like Frequency,

amplitude, phase etc…

• Search in database for corresponding echo signal.

• Generate out of phase signal with the extracted information.

• Calculate the Blind velocity to avoid aircraft movement detection.

• Transmit the generated out of phase signal in the direction of the received one.

Due to the cost and security problems, the second objective is to design a radar and

aircraft simulation to evaluate the proposed algorithm.

2.4 Methodology:

The methodology used in the research has been started with literature survey for the

radar cross section and the technologies used to reduce it. Analyze the requirement to

achieve an active cancellation for RCS and design an active cancellation algorithm for

radar cross section reduction to analysis the radar received signal and generate equi out of

phase of the normal return echo. The proposed algorithm has been evaluated by creating a

simulation for radar and aircraft using tow computers running MTLAB as shown in figure

1.7.

Figure 1.7: Shows the implementation of the algorithm.

2.5 Organization of the Thesis

This thesis consists of eight chapters including a conclusion. These chapters are

organized into the following: An introductory chapter that contains an overview about RCS

and its prediction and reduction techniques in addition to the objectives, problem

statement, methodology, and organization of the thesis.

The second chapter is about Radar, radar operation, radar classification and the definition

of radar cross section and its specifications.

The third chapter is about the challenges in the area of RCS computation or measurement

of large targets and the approximate and exact methods used for RCS prediction or

calculation.

Chapter four is to examine methods of controlling RCS and the tradeoffs involved in

implementing these methods. Radar cross section reduction techniques and their categories

(Target shaping, Materials selection and coatings, Passive cancellation and Active

cancellation).

Chapter five is about the simulation that used to evaluate the proposed algorithm.

Chapter six illustrates the novel algorithms proposed by this thesis for radar cross section

reduction.

Chapter seven discusses the results of the thesis which gained from simulations.

Chapter eight displays the conclusion and future work.

Radar Station

Aircraft

Radar transmitted signal
Normal target return (echo)

Cancellation Signal

Chapter Two

3. CHAPTER TWO: RADAR AND RADAR CROSS
SECTION (RCS)

3.1 Introduction:
Radar was originally developed to satisfy the needs of the military for surveillance

and weapon control. Military applications have funded much of the development of its

technology. However, radar has seen significant civil applications for the safe travel of

aircraft, ships, and spacecraft; the remote sensing of the environment, especially the

weather; and law enforcement and many other applications.

3.2 Radar:

Radar is an electromagnetic sensor for the detection and location of reflecting

object. The word radar is an abbreviation for RAdio Detection And Ranging. In general,

radar systems use modulated waveforms and directive antennas to transmit electromagnetic

energy into a specific volume in space to search for targets. Objects (targets) within a

search volume will reflect portions of this energy (radar returns or echoes) back to the

radar. These echoes are then processed by the radar receiver to extract target information

such as range, velocity, angular position, and other target identifying characteristics[2] [3].

Radar operates by radiating electromagnetic energy and detecting the echo returned from

reflecting objects (targets). The nature of the echo signal provides information about the

target.

The range, or distance, to the target is found from the time it takes for the radiated

energy to travel to the target and back. The angular location of the target is found with a

directive antenna (one with a narrow beam width) to sense the angle of arrival of the echo

signal. If the target is moving, radar can derive its track, or trajectory, and predict the future

location. The shift in frequency of the received echo signal due to the Doppler Effect

caused by a moving target allows radar to separate desired moving targets (such as aircraft)

from undesired stationary targets (such as land and sea clutter). With sufficiently high

resolution, radar can discern something about the nature of a target's size and shape. Radar

resolution may be obtained in range or angle, or both. Range resolution requires large

bandwidth. Angle resolution requires (electrically) large antennas.

Radar is an active device in that it carries its own transmitter and does not depend

on ambient radiation, as do most optical and infrared sensors. Radar can detect relatively

small targets at near or far distances and can measure their range with precision in all

weather, which is its chief advantage when compared with other sensors.

The principle of radar has been applied from frequencies of a few megahertz (HF, or

high-frequency region of the electromagnetic spectrum) to well beyond the optical region

(laser radar).

3.3 Radar Block Diagram

The basic parts of a radar system are illustrated in the simple block diagram of

Figure 2.1 [6].

Figure 2.1 Block diagram of simple radar with power amplifier and superheterodyne

3.3.1 Transmitter:

The transmitter is shown as a power amplifier and power oscillator to

generate a high power with stable waveforms, and must often operate over a wide

bandwidth, with high efficiency.

3.3.2 Duplexer:

The duplexer acts as a rapid switch to protect the receiver from damage

when the high power transmitter is on. On reception, with the transmitter off, the

duplexer directs the weak received signal to the receiver rather than to the

transmitter.

3.3.3 Antenna:

The transmitter power is radiated into space by a directive antenna which

concentrates the energy into a narrow beam. Mechanically steered parabolic

reflector antennas and planar phased arrays both find wide application in radar. The

narrow, directive beam that is characteristic of most radar antennas not only

Local
Oscillator

Mixer IF
Amplifier

Matched
Filter

Second
Detector

Video
Amplifier

Display

Power
Amplifier

Duplexer Wave
Generator

Low noise
Amplifier

concentrates the energy on target but also permits a measurement of the direction to

the target.

3.3.4 Receiver:

The signal collected by the antenna is sent to the receiver, which is almost

super heterodyne type. The receiver serves to:

• separate the desired signal from the ever-present noise and other

interfering signals

• Amplify the signal sufficiently to actuate a display, such as a cathode

ray tube, or to allow automatic processing by some form of digital

device.

The mixer of the super heterodyne receiver translates the receiver RF signal

to an intermediate frequency. The gain of the intermediate-frequency (IF) amplifier

results in an increase of the receiver signal level. The IF amplifier also includes the

function of the matched filter: one which maximizes the output signal-to-noise

ratio. Maximizing the signal-to-noise ratio at the output of the IF maximizes the

detectability of the signal. Almost all radars have a receiver which closely

approximates the matched filter. The second detector in the receiver is an envelope

detector which eliminates the IF carrier and passes the modulation envelope. When

Doppler processing is employed, as it is in CW (continuous-wave), MTI, and pulse

Doppler radars, the envelope detector is replaced by a phase detector which extracts

the doppler frequency by comparison with a reference signal at the transmitted

frequency. There must also be included filters for rejecting the stationary clutter and

passing the doppler-frequency-shifted signals from moving targets.

3.3.5 Video amplifier:

The video amplifier raises the signal power to a level where it is convenient

to display the information it contains. As long as the video bandwidth is not less

than half of the IF bandwidth, there is no adverse effect on signal detectability. A

threshold is established at the output of the video amplifier to allow the detection

decision to be made. If the receiver output crosses the threshold, a target is said to

be present. The decision may be made by an operator, or it might be done with an

automatic detector without operator intervention.

3.3.6 Signal Processing:

There has not always been general agreement as to what constitutes the

signal-processing portion of the radar, but it is usually considered to be the

processing whose purpose is to reject undesired signals (such as clutter) and pass

desired signals due to targets. It is performed prior to the threshold detector where

the detection decision is made. Signal processing includes the matched filter and

the doppler filters in MTI and pulse doppler radar. Pulse compression, which is

performed before the detection decision is made, is sometimes considered to be

signal processing, although it does not fit the definition precisely.

3.3.7 Data Processing:

This is the processing done after the detection decision has been made.

Automatic tracking is the chief example of data processing. Target recognition is

another example. It is best to use automatic tracking with good radar that eliminates

most of the unwanted signals so that the automatic tracker only has to deal with

desired target detections and not undesired clutter. When a radar cannot eliminate

all nuisance echoes, a means to maintain a constant false-alarm rate (CFAR) at the

input to the tracker is necessary.

3.3.8 Displays:

The display for a surveillance radar is usually a cathode-ray tube with a PPI

(plan position indicator) format. A PPI is an intensity-modulated, map-like

presentation that provides the target's location in polar coordinates (range and

angle). Older radars presented the video output of the receiver (called raw video)

directly to the display, but more modern radars generally display processed video,

that is, after processing by the automatic detector or the automatic detector and

tracker (ADT). These are sometimes called cleaned-up displays since the noise and

background clutter is removed.

3.4 Radar Operation:

Radar operation can be summarized as, the radar signal, usually a repetitive train of

short pulses, is generated by the transmitter and radiated into space by the antenna. The

duplexer permits a single antenna to be time-shared for both transmission and reception.

Reflecting objects (targets) intercept and reradiate a portion of the radar signal, a small

amount of which is returned in the direction of the radar. The returned echo signal is

collected by the radar antenna and amplified by the receiver. If the output of the radar

receiver is sufficiently large, detection of a target is said to occur. Radar generally

determines the location of a target in range and angle, but the echo signal also can provide

information about the nature of the target. The output of the receiver may be presented on a

display to an operator who makes the decision as to whether or not a target is present, or

the receiver output can be processed by electronic means to automatically recognize the

presence of a target and to establish a track of the target from detections made over a

period of time. With automatic detection and track (ADT) the operator usually is presented

with the processed target track rather than the raw radar detections [13].

3.5 Radar Classifications

Radars can be classified as ground based, airborne, or ship based radar systems.

They can also be classified into numerous categories based on the specific radar

characteristics, such as the frequency band, antenna type, and waveforms utilized. Another

classification is concerned with the mission and/or the functionality of the radar. This

includes: weather, acquisition and search, tracking, track-while-scan, fire control, early

warning.

Radars are most often classified by the types of waveforms they use, or by their

operating frequency. Considering the waveforms first, radars can be Continuous Wave

(CW) or Pulsed Radars (PR). CW radars are those that continuously emit electromagnetic

energy, and use separate transmit and receive antennas. None modulated CW radars can

accurately measure target radial velocity (Doppler shift) and angular position. Target range

information cannot be extracted without utilizing some form of modulation. The primary

use of non modulated CW radars is in target velocity search and track, and in missile

guidance. Pulsed radars use a train of pulsed waveforms (mainly with modulation). In this

category, radar systems can be classified on the basis of the Pulse Repetition Frequency

(PRF), as low PRF, medium PRF, and high PRF radars. Low PRF radars are primarily used

for ranging where target velocity (Doppler shift) is not of interest. High PRF radars are

mainly used to measure target velocity. Continuous wave as well as pulsed radars can

measure both target range and radial velocity by utilizing different modulation schemes [2].

3.6 Radar Equation:

The single most useful description of the factors influencing radar performance is

the radar equation which gives the range of a radar in terms of the radar characteristics.

One form of this equation gives the received signal power Pr as:

e
tt

r A
RR

GP
P ××

×
=

22 44 π
σ

π
 . . . 2.1

The right-hand side has been written as the product of three factors to represent the

physical processes taking place. The first factor is the power density at a distance R meters

from a radar that radiates a power of Pt watts from an antenna of gain Gt. The numerator of

the second factor is the target cross section σ in square meters. The denominator accounts

for the divergence on the return path of the electromagnetic radiation with range and is the

same as the denominator of the first factor, which accounts for the divergence on the

outward path. The product of the first two terms represents the power per square meter

returned to the radar. The antenna of effective aperture area Ae intercepts a portion of this

power in an amount given by the product of the three factors. If the maximum radar range

Rmax is defined as that which results in the received power Pr being equal to the receiver

minimum detectable signal Smin, the radar equation may be written:

() min
2

4
max

4 S

AGP
R ett

π
σ

= . . . 2.2

When the same antenna is used for both transmitting and receiving, the transmitting gain

Gt and the effective receiving aperture Ae are related by Gt = 4πAe/λ2, where λ is the

wavelength of the radar electromagnetic energy. Substituting into Eq. (2.2) gives two other

forms of the radar equation:

() min
3

22
4

4 S

GP
R tt

mx π
σλ

= . . . 2.3

The minimum detectable signal Smin, which appears in the radar equation, is a statistical

quantity and must be described in terms of the probability of detection and the probability

of a false alarm. This signal to be reliably detected it must be larger than noise (generally

by 10 to 20 dB) at the point in the receiver where the detection decision is made. The

minimum detectable signal can be expressed as the signal-to-noise ratio (S/N) required for

reliable detection times the receiver noise. The receiver noise is expressed relative to the

thermal noise that would be produced by an ideal receiver. The thermal noise is equal to

kTB, where k is Boltzmann's constant, T is the temperature, and B is the receiver

bandwidth. The receiver noise is the thermal noise multiplied by the factor Fn, the receiver

noise figure. The receiver noise figure is measured relative to a reference temperature T0 =

290 K (approximately room temperature), and the factor kT0 becomes 4x 10-21 W/Hz. The

minimum detectable signal in the radar equation can be written [13]:

N

S
BFkTS n0min = . . . 2.4

3.7 Radar Cross Section (RCS):

Radar detects or tracks a target, and sometimes can identify it, only because there is

an echo signal. It is therefore critical in the design and operation of radars to be able to

quantify or otherwise describe the echo, especially in terms of such target characteristics as

size, shape, and orientation. For that purpose the target is ascribed an effective area called

the radar cross section (RCS). It is the projected area of a metal sphere which would return

the same echo signal as the target had the sphere been substituted for the target [4].

3.8 RCS Definition

Electromagnetic waves, with any specified polarization, are normally diffracted or

scattered in all directions when incident on a target. These scattered waves are broken

down into two parts. The first part is made of waves that have the same polarization as the

receiving antenna. The other portion of the scattered waves will have a different

polarization to which the receiving antenna does not respond. The two polarizations are

orthogonal and are referred to as the Principle Polarization (PP) and Orthogonal

Polarization (OP), respectively. The intensity of the backscattered energy that has the same

polarization as the radar’s receiving antenna is used to define the target radar cross section

(RCS).

Radar cross section (RCS) is the measure of a target's ability to reflect radar signals in the

direction of the radar receiver, i.e. it is a measure of the ratio of backscatter power per unit

solid angle in the direction of the radar (from the target) to the power density that is

intercepted by the target. RCS, denoted by the Greek letter σ and measured in m², is

defined as [5]:

i

S

P

Pπσ 4= . . . 2.5

Where Pi: power density, or intensity, of a plane wave striking the target. Ps: power per unit

solid angle reflected by the target.

3.9 RCS is a function of:

• Position of transmitter/receiver relative to target.

• Target geometry and material composition.

• Angular orientation of target relative to transmitter/receiver.

• Frequency or wavelength.

• Antenna polarization.

Assume the power density of a wave incident on a target located at range R away from the

radar is PDi . The amount of reflected power from the target is [5]:

Dir PP σ= . . . 2.6

σ denotes the target cross section. Define PDr as the power density of

the scattered waves at the receiving antenna. It follows that:

24 R

P
P r

Dr π
= . . . 2.7

Equating Eqs. (2.6) and (2.7) yields:







=

Di

Dr

P

P
R 24πσ . . . 2.8

and in order to ensure that the radar receiving antenna is in the far field (i.e., scattered

waves received by the antenna are planar), Eq. (2.8) is modified:







=

∞→ Di

Dr

R P

P
R lim24πσ . . . 2.9

The RCS defined by Eq. (2.9) is often referred to as either the monostatic

RCS, the backscattered RCS, or simply target RCS. The backscattered

RCS is measured from all waves scattered in the direction of the radar

and has the same polarization as the receiving antenna. It represents a

portion of the total scattered target RCS σt, where σt > σ. Assuming

spherical coordinate system defined by (ρ,θ,φ), then at range ρ the

target scattered cross section is a function of (θ,φ). Let the angles (θi,φi)

define the direction of propagation of the incident waves. Also, let the

angles (θs,φs) define the direction of propagation of the scattered waves.

The special case, when θs = θi and φs = φi, defines the monostatic RCS.

The RCS measured by the radar at angles θs ≠ θi and φs ≠ φi is called the

bistatic RCS. The total target scattered RCS is given by:

()∫ ∫
= =

=
π

ϕ

π

θ

ϕθθϕθσ
π

σ
2

0 0

sin,
4

1

S S

ddSSSt . . . 2.10

The amount of backscattered waves from a target is proportional to the

ratio of the target extent (size) to the wavelength, λ, of the incident

waves. In fact, a radar will not be able to detect targets much smaller

than its operating wavelength. For example, if weather radars use

L-band frequency, rain drops become nearly invisible to the radar since

they are much smaller than the wavelength. RCS measurements in the

frequency region, where the target extent and the wavelength are

comparable, are referred to as the Rayleigh region. Alternatively, the

frequency region where the target extent is much larger than the radar

operating wavelength is referred to as the optical region. In practice, the

majority of radar applications fall within the optical region. Figures 2.2

and 2.3 show that RCS does not equal geometric area. For a sphere, the

RCS, σ = πr2, where r is the radius of the sphere. The RCS of a sphere is

independent of frequency if operating at sufficiently high frequencies

where λ<<Range, and λ << radius (r). Experimentally, radar return

reflected from a target is compared to the Radar return reflected from a

sphere which has a frontal or projected area of one square meter.

Using the spherical shape aids in field or laboratory measurements since

orientation or positioning of the sphere will not affect radar reflection

intensity measurements as a flat plate would. If calibrated, other

sources (cylinder, flat plate, or corner reflector, etc.) could be used for

comparative measurements [1],[5].

Figure 2.2: RCS versus Physical Geometry

Figure 2.3: Backscatter from Shapes

Chapter Three

4. CHAPTER THREE: RADAR CROSS SECTION

PREDICTION TECHNIQUES

4.1 Introduction:

The challenges in the area of RCS computation or measurement of large targets, such

as, aircrafts, tankers, and tanks of modern design are obvious. The Rayleigh region is of no

interest in terms of RCS modeling since every target acts like a point scatterer and the RCS

contribution is almost negligible. High frequency asymptotic (HFA) techniques, such as

Geometric Optics (GO), Physical Optics (PO), Geometric Theory of Diffraction (GTD) and

Physical Theory of Diffraction (PTD) have been successfully applied to RCS modeling in

optical region. Pure numerical methods, such as Fast Multipole Method (FMM),

Finite-Difference Time Domain (FDTD) and Method of Moments (MoM), techniques are

powerful RCS simulators applicable in resonance region where the target contributes its RCS

as a whole [1].

4.2 Geometric Optics (GO):

The theory of geometric optics was used for many years by astronomers and lens

makers in designing and building optical systems. It accounts not only for the way light rays

are reflected from smooth surfaces, but for the change in the angle of the transmitted ray

when light passes from one medium to another. This was of considerable importance in the

design of lenses, because the bending of the transmitted ray depends not only on the

wavelength of the light, but on the refractive index of the lens materials, which itself varies

with the wavelength. When used to predict the scattering of radar waves from objects of

practical interest, the body surfaces are usually assumed to be perfectly conducting, although

this is not necessarily a restriction.

Geometric optics is a ray-tracing procedure in which the wavelength is allowed to become

infinitesimally small. This being the case, energy propagates along slender tubes according to

the formula.
ikSPeu = . . . 3.1

where the amplitude P represents the intensity of either the magnetic or electric field

transverse to the direction of propagation. The amplitude P and the phase factor S are both

functions of position in space and may be complex numbers. Propagation is in the direction

given by AS, hence surfaces of constant S are surfaces of constant phase. Eq.3.1 is a solution

of the wave equation in the limit of vanishing wavelength, and because the field components

are transverse to the direction of propagation, the solution is not valid near discontinuities

such as edges.

When a ray strikes a smooth flat surface separating two media of different refractive

index, part of the energy is reflected and part is transmitted across the boundary into the

second medium. When the electromagnetic boundary conditions are invoked, we find that

the transmitted ray propagates in a direction different from that of the incident ray

(refraction), and the angle of the reflected ray, as measured from the surface normal, is equal

to the angle of the incident ray. The effect is known as Snell's law, and the amplitude and

phase of both the reflected and transmitted rays can be calculated.

The reflection coefficient for a perfectly conducting surface is - 1, implying a 180° phase

shift and no reduction of the intensity of the reflected wave. This is true only at the point of

reflection (the specular point), and if the ray is due to a point source of energy some finite

distance from the surface, the reflected ray decays in intensity as it travels away from the

specular point. The decay in intensity is due, of course, to the spreading of energy, and the

effect can be accentuated if the reflecting surface is curved. It is also possible for the energy

in a ray bundle to increase, which is precisely the effect desired of focused mirrors. In this

case, a caustic may be formed when an infinity of rays converge at a point or a line.

The decay or increase in energy can be calculated by invoking the principle of

conservation of energy along a ray tube. By demanding that all the energy entering the tube

at one end be transmitted to the other, we will find that the ratio of the power density at the

output to that at the input is

))(()(

)(

21

21
2

2

psps

pp

oA

sA

++
= . . . 3.2

The curvature of the reflected wavefront is given by p1 and p2 and that of the reflecting

surface is a1 and a2 In general, the planes containing a1 and a2 are neither parallel nor

perpendicular to the plane of incidence. The radii p1 and p2 are measured at the caustics

(here below the actual surface) formed by extending the reflected ray tube backward until the

rays meet. where A(o) and A(s) are the field intensities at the input and output, respectively, s is the

distance along the tube between the two ends, and p1 and p2 are the principal radii of curvature of the

wavefront at the output of the tube.

If the body is illuminated by a spherical wave due to a point source located a finite distance away, we

can find the image of the source in the surface by extending the reflected ray tube backward until the

sides of the tube intersect. Because of the differences in the surface radii of curvature, the two sides

of the tube will intersect along a line that does not necessarily coincide with the intersection of the

top and bottom of the tube, hence the image of a point source in a curved surface does not generally

yield another point. The effect is called astigmatism, and the result is a blurred image.

The radii of curvature of the reflected wavefront at the specular point can be related to the

radii of curvature of the incident wavefront and the radii of curvature of the body there. The

relationship is not a simple one, and it involves not only the angle of arrival of the incident ray, but

also the angle by which the principal planes of the body curvature are rotated out of the plane of

Incidence. This relationship may be inserted in Eq. 3.2, and the distance s may be measured from the

specular point to the point of observation. If the direction of observation is now taken to be back

toward the source, s becomes the distance R. If R is forced to infinity, as required by the formula, the

angular dependence on the local angle of arrival of the incident ray disappears. In addition, the

angular rotation of the principal planes of the body radii of curvature out of the plane of incidence

also drops out of the expression. The results of the calculation are simply [1]:

21aaπσ = . . . 3.3

where a1 and a2 are the principal radii of curvature of the body at the specular point.

4.3 Physical Optics (PO):

The theory of physical optics overcomes the catastrophe of the infinities of flat and

singly curved surfaces by approximating the induced surface fields and integrating them to

obtain the scattered field. Because the induced fields remain finite, the scattered fields are

finite as well. The beginning point is the Stratton-Chu integral equations. These expressions

hold for a closed scattering surface, and Stratton has demonstrated that, if the surface is not

closed, additional terms must be added (line integrals around the edge bounding the open

surface) to account for the edge discontinuity. Two simplifications can be made immediately

in the integrals. One is the far-field approximation, in which the distance R from an origin in

or near the obstacle to the far-field observation point is much larger than any obstacle

dimension. This allows the gradient of the Green's function to be well approximated by [1]:

Ψ≈∇ sikˆψ . . . 3.4

where ŝ is a unit vector aligned along the scattering direction. Under far-field conditions,

the line integrals can be represented as surface integrals, and when combined with the other

terms, another simplification results. It will be found that there can be no component of the

surface field distribution along the scattering direction, whence the Stratton-Chu integrals

can be written as:

()[] () dseHnsZEnsikE sirik

s

s
ˆˆ

00 ˆˆˆˆ −∫ ××−××= ψ . . . 3.4

()[] () dseEnsYEnsikH sirik

s

s
ˆˆ

00 ˆˆˆˆ −∫ ××+××= ψ . . . 3.5

where î is a unit vector along the direction of incidence, r̂ is now the position vector from

the local origin to the surface patch dS, Y0 =1/Z0 is the admittance of free space, and

() RikRe π4/=Ψ is the farfield Green's function. Note that the scattered fields are represented in

terms of the tangential components of the total fields on the surface; hence the desired

scattered fields appear on both sides of the equation. Either of the two equations can be used

to calculate the far scattered field because of the relationship:

ss EYH ×= 0 . . . 3.6

We can approximate the total fields within the integrals by making the tangent plane

approximation. That is, we assign the surface fields the values they would have had if the

body had been perfectly smooth and flat at the surface patch of integration dS. This

approximation can be made for any body material, but we shall assume the body to be

perfectly conducting. In this case, the tangential components of the total fields are:

iHnHn

En

×=×
=×

ˆ2ˆ

0ˆ
. . . 3.7

where iH is the incident magnetic field strength at the surface path. If the incident wave

propagates in a direction given by the unit vector î , with a magnetic intensity H0 and a

magnetic polarization along the unit vector ĥ , (3.4) becomes the physical optics integral:

() () dsehnsHkZiE sirik

s

is
ˆˆˆ

000]ˆˆˆ[2 −∫ ××−= ψ . . . 3.8

where the surface S is now the illuminated portion of the body. In other words, the tangential

fields on shaded portions of the body are assumed to be precisely zero. Despite the fact that

implicitly contains phase information, we would like to eliminate the range dependence in

the phase factor as well as in the amplitude we can fined [1]:

ikRrs

R

e
E

eE
R

0

ˆ.ˆ
2lim πσ

∞→
= . . . 3.9

When Eq. 3.8 is substituted into Eq. 3.9, we have the physical optics expression for the

square root of the RCS:

()∫ −×−=
s

sirik
i dsehen

k
i ˆˆˆˆˆ.ˆ

π
σ . . . 3.10

4.4 Geometric Theory of Diffraction (GTD):

Keller was well aware of the wide-angle failure of physical optics and introduced his

classic geometrical theory of diffraction as a way of computing scattered fields well away

from the specular directions. It was shown earlier that when a ray or electromagnetic wave

impinges on a flat infinite surface, part of the wave or ray is reflected and part is transmitted

through the surface. Whether the surface is dielectric or perfectly conducting, the reflected

ray can propagate in only one direction in space; that direction is in the plane of incidence

containing the incident ray and the surface normal, and it subtends the same angle with

respect to the surface normal as does the incident ray. This unique specular direction of the

reflected ray is a consequence of the doubly infinite size of the surface [1].

If the doubly infinite surface is now halved, thereby generating an edge, we may think of the

reflected (or scattered) fields as arising from two sources, one being a surface contribution,

as before, plus an edge contribution. Ignoring for the moment the surface contribution, let us

consider the edge and the components of an incident ray parallel and perpendicular to it. We

would expect reflected ray components along the edge to be constrained to a unique direction

because that dimension of the edge is infinite. However, we would expect the transverse

components of reflected rays to propagate in all directions perpendicular to the edge because

the transverse dimension of the edge is zero. Thus, in contrast to the single, unique direction

taken by the ray reflected by a surface, an edge-reflected ray can lie anywhere along a

forward cone whose half-angle is precisely that subtended by the edge and the incident ray.

In Sommerfeld's two-dimensional problem, the incident ray impinges on the edge at right

angles, and Sommerfeld represented the diffracted rays as a spectrum of plane waves. His

solution amounts to finding the coefficients of each of the elementary plane waves diffracted

by the edge. Hence, for any scattering direction, the strength of the diffracted ray can be

calculated. The Sommerfeld two-dimensional solution for diffracted rays can be applied to

Keller's three-dimensional problem by adjusting Sommerfeld's propagation constants to

match the transverse propagation components of Keller's problem. The direction-dependent

amplitudes of Sommerfeld's solution then make it possible to estimate the amplitude and

phase of a diffracted ray anywhere on the Keller cone. This yielded the key ingredient of the

theory: the diffraction coefficients, which depend on the polarization of the incident ray. The

other ingredients of Keller's GTD include the decay in field intensity away from the

diffracting edge and the phase of the ray along its propagation path. The intensity of the

diffracted ray thus has the form [1]:

Ψ





 


 +

= ik
iks

eA

p
ss

eD
u

2
1

1
1

. . . 3.11

where D is a diffraction coefficient depending on the polarization and angle of arrival of the

incident ray and the direction of the scattered ray, s is the distance along the ray from the

edge element to a far-field observation point, A and Ψ are the amplitude and phase of the

incident ray, respectively, and pi is the distance from the edge element to a caustic of the

diffracted ray. When Eq. 3.11 is applied to the components of the far diffracted electric field,

the diffracted field can be expressed as:

()() () ()()[]tsYXHtZtssYXEt
e

E ii

iks

d
ˆˆ.ˆˆˆˆ.ˆ

sin 03
×++××−Γ−=

β . . . 3.12

where Γ is a divergence factor accounting for the nature of the edge excitation (plane wave,

spherical wave, …) and the spreading of energy away from the edge, and β is the angle

subtended by the edge and the incident ray. In this expression, t̂ is a unit vector aligned

along the edge, and the diffraction coefficients are given by:

() ()
() 



 Ψ−Ψ−

=

n
i

n

nnX
scoscos

sin1

π

π
. . . 3.13

() ()
() 



 Ψ+Ψ−

=

n
i

n

nnY
scoscos

sin1

π

π
. . . 3.14

where n is the exterior wedge angle normalized with respect to π, and Ψ i and Ψs are the

angles of the transverse components of the incident and diffracted directions with respect to

one of the surfaces meeting at the edge. It should be noted that (3.12) and (3.13) are the form

of the diffraction coefficients as suggested by Ufimtsev, although Ufimtsev did not

specifically label them X and Y. We use the difference in the coefficients for those

components of the incident magnetic polarizations along the edge. To obtain the RCS due to

an edge, we need only substitute the field of Eq. 3.12 into Eq. 3.9.

4.5 Physical Theory of Diffraction (PTD):

Like Keller, Ufimtsev sought a more accurate representation of the scattered fields

than yielded by physical optics and he relied on the canonical solution of the scattering by a

wedge for his diffraction coefficients, but, unlike Keller, he retained in his solution the

approximate physical optics result and sought instead a correction by which to improve the

physical optics approximation. He therefore represented the scattered field as the sum of the

physical optics contribution and an edge contribution, using the exact solution of the

two-dimensional wedge problem to extract the latter. That is, if we have in hand the exact

solution and subtracts from it the physical optics (surface) contribution, what remains must

be the contribution from the edge itself, there being no other scattering features present

except the surface and the edge [1].

In developing his PTD, Ufimtsev claims to have considered the "non-uniform" induced edge

currents in addition to the "uniform" induced surface currents of physical optics, but nowhere

in his work will the reader find an explicit representation of the edge currents. He considered

instead the scattered fields, not the surface currents, of the exact solution for a wedge.

Nevertheless, we are seldom interested in the surface field, except as a means by which to

compute the scattered field, hence his approach is defensible.

As in most two-dimensional problems, Ufimtsev recognized two distinct cases depending on

whether the incident field is polarized parallel or perpendicular to the edge. Arbitrary

polarizations, of course, can be handled as linear combinations of the two cases. He

represented the total fields (incident plus scattered fields)

() ()[]isisozz ruruEE Ψ+Ψ−Ψ−Ψ= ,, . . . 3.15

() ()[]isisozz ruruHH Ψ+Ψ+Ψ−Ψ= ,, . . . 3.16

Where

() ∫ +−
=Ψ

−

c

ikr

d
i

e
ru β

αψβπα

β

]/)(exp[12

1
,

cos

. . . 3.17

where r is the distance from the edge to the point of observation, Ψs is the angular coordinate

of that point above one face of the wedge, Ψs is the direction of arrival of the incident wave,

similarly measured, α is the external wedge angle, and C is the Sommerfeld contour in the

complex plane [1].

4.6 Fast Multipole Method (FFM):

The fast multipole method (FMM) is a mathematical technique that was developed to

speed up the calculation of long-ranged forces in the n-body problem. It does this by

expanding the system Green's function using a multipole expansion, which allows one to

group sources that lie close together and treat them as if they are a single source.

The FMM has also been applied in accelerating the iterative solver in the method of

moments (MOM) as applied to computational electromagnetics problems. The FMM was

first introduced in this manner by Greengard and Rokhlin and is based on the multipole

expansion of the vector Helmholtz equation. By treating the interactions between far-away

basis functions using the FMM, the corresponding matrix elements do not need to be

explicitly stored, resulting in a significant reduction in required memory. If the FMM is then

applied in a hierarchical manner, it can improve the complexity of matrix-vector products in

an iterative solver from O(N 2) to O(N). This has expanded the area of applicability of the

MOM to far greater problems than were previously possible.

4.7 Finite-Difference Time Domain (FDTD):

Finite-difference time-domain (FDTD) is a numerical analysis technique used for

modeling computational electrodynamics (finding approximate solutions to the associated

system of differential equations). Since it is a time-domain method, FDTD solutions can

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Time_domain

cover a wide frequency range with a single simulation run, and treat nonlinear material

properties in a natural way. The FDTD method belongs in the general class of grid-based

differential numerical modeling methods (finite difference methods). The

time-dependent Maxwell's equations (in partial differential form) are discretized

using central-difference approximations to the space and time partial derivatives. The

resulting finite-difference equations are solved in either software or hardware in

a leapfrog manner: the electric field vector components in a volume of space are solved at a

given instant in time; then the magnetic field vector components in the same spatial volume

are solved at the next instant in time; and the process is repeated over and over again until

the desired transient or steady-state electromagnetic field behavior is fully evolved [1].

4.8 Method of Moments (MoM):

The Method of moments (MoM) is an integral based algorithm used for estimation of

RCS of a Perfectly Electric Conductor (PEC) by using the Electric Field Integral Equation

(EFIE). Consider an arbitrarily shaped perfect electric conductor shown in Figure 3.1, the

PEC surface has divided into triangular sub-domains using surface batch model. The

simultaneous equations have been generated over the sub-domains and added together to

form a global matrix equation. The solution of the matrix gives electric current distribution in

the surface of the PEC objects.

Figure 3.1: Aircraft surface modeled by triangular patches
Let S denotes the surface of an open or closed perfectly conducting object with unit

normal n̂ . An electric field, defined to be the field due to an impressed source in the absence

of the object, is incident on and induces surface currents J on S.

The scattering electric field Es can be computed from the surface current by [7]

1 Φ−−= VAjEs ω . . . (3.18)

With the magnetic vector potential defined as,

http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Frequency

∫
−

Π
=

S

jkR

dS
R

e
JrA '

4
)(

µ
. . . (3.19)

And the electric scalar potential as,

∫
−

Π
=Φ

S

jkR

dS
R

e
r '

4

1
)(σ

ε . . . (3.20)

Where, k is wave number and R = |r – r`| is the distance between an arbitrarily located

observation point r and a source point r` on S. Both r and r` are defined with respect to a

global coordinate origin O. The surface charge density σ is related to surface divergence of J

through the equation of continuity,

ωσjJs −=∇ (3.21)

An integro-differential equation for J has been derived by enforcing the boundary condition,

()
()

() SonrAjE

SonrAjnEn

EEn

i

i

is

,

,ˆˆEn̂

obtain S,On 0ˆ

tantan

s

Φ∇−−=−
Φ∇−−×=×−=×

=+×

ω
ω . . . (3.22)

The above equation is the so-called electric field equation [8].

The radiated magnetic and electric fields of an infinitesimal dipole located at the origin is

expressed at a point r in terms of vector notations as,

()

impedancespacefreetheis

rr
r

rmr
M

where

eMCC
r

jk
mMrE

jkrr
CCerm

jk
rH

jkr

jkr

Ω==

==





 +



 +−

Π
=









+=×

Π
=

−

−

377

).(

,

2
4

)(

1
1

1
,)(

4
)(

2

2

ε
µη

η

. . . (3.23)

The total electric and magnetic field at a point r are obtained as a sum over all edge elements.

()

()−+

=

−+

=

+−=

+−=

∑

∑
c

m
c

m

M

m
m

c
m

c
m

M

m
m

rrHrH

rrErE

2

1
)(

2

1
)(

1

1
. . . (3.24)

From the incident electric and the estimated electric fields, the Radar Cross Section

can be calculated as [9].

Chapter Four

5. CHAPTER FOUR: RADAR CROSS SECTION

REDUCTION (RCSR)

5.1 Introduction:

It has been apparent for some time that the development of increasingly

sophisticated detection systems threatens to reduce the mission effectiveness of many types

of weapons platforms. Strong attention is now being given to methods of increasing

survivability by reducing detectability. Because the specific configuration of any platform

is determined by many factors involved in its mission, the final design represents a

compromise between conflicting requirements. The purpose of this chapter is to survey

some of the radar cross section reduction (RCSR) options available.

5.2 The four method of RCSR

There are only four basic techniques for reducing radar cross section:

• Shaping.

• Radar absorbing materials.

• Passive cancellation.

• Active cancellation.

Each method has advantages and disadvantages. The remainder of this section provides a

brief overview of the four techniques. The two most practical and most often applied

RCSR techniques are listed first, shaping and radar absorbing materials. In current RCS

designs, shaping techniques are first employed to create a planform design with inherently

low RCS in the primary threat sectors. Radar absorbing materials are then used to treat

areas whose shape could not be optimized or to reduce the effects of creeping waves or

traveling waves on the signature [1].

5.2.1 Shaping

Target shaping refers to the special selection of target surface shapes to minimize

the amount of energy scattered back to the radar, typically at the cost of redirection of the

scattered energy from the direction of interest to another region of little or no interest.

Intake cavities make it impossible to reduce the radar reflections from the object inside of

the cavity as shown in Figure 4.1.

Figure 4.1: Straight Cavity
With respect to the engine, these cavities make highly reflective turbine blades visible to

radar which causes a significant increase in the RCS of the aircraft. Often, engine intakes

incorporate an S-shaped duct as seen in Figure 4.2 so that the turbine blades are not visible

to radar.

Figure 4.2: S-Shaped Cavity

The objective of shaping is to orient the target surfaces and edges to deflect the scattered

energy in directions away from the radar. This cannot be done for all viewing angles within

the entire sphere of solid angles because there will always be viewing angles at which

surfaces are seen at normal incidence, and there the echoes will be high. The success of

shaping depends on the existence of angular sectors over which low radar cross section is

less important than over others.

Typically, a forward cone of angles is of primary interest for RCSR, hence, we normally

want to "shift" large cross sections out of the forward sector and toward broadside. This

can be accomplished by sweeping airfoils back at sharper angles, for example. The forward

sector includes the elevation plane as well as the azimuth plane, and if a target is hardly

ever seen from above, echo sources, such as engine intakes, can be placed on the top side

of the target where they may be hidden by the forward portion of the body when viewed

from below. Similarly, for a low flyer whose major threats might be look-down radars,

engine inlets might instead be placed on the underside of the fuselage.

For more "boxy" structures, such as ships and ground vehicles, internal dihedral and

trihedral corner and "top hat" (right circular cylinder with its axis perpendicular to a flat

plate) returns are the major RCS contributors, and those can be avoided by bringing

intersecting surfaces together at acute or obtuse angles. Because of the presence of the sea

surface, vertical bulkheads and masts on ships, in particular, form efficient corners, and the

effect can be reduced by tilting the bulkheads away from the vertical. However, this is

virtually impossible to do with existing vessels and therefore is a real consideration only in

new designs. Even in the case of a new design, the amount of bulkhead tilt is a trade-off

between RCSR performance and cost.

Shaping Examples:

All modern military air and surface platform incorporate some aspect of shaping. Obvious

examples are F-117A fighter and B-2 bomber, shown in figure 4.3 and 4.4 respectively. In

plan view, it is clear that edges lie at a few common angles. Many stealth aircraft shapes

are aerodynamic unstable; they achieve their high performance and stability through

computer control. Shaping principles have been applied to the ships as well [1].

Figure 4.3: Lockheed Martin F-117

Figure 4.4: Northrop Grumman B-2

5.2.2 Radar Absorbing Materials:

As the name implies, radar absorbing materials reduce the energy reflected back to

the radar by means of absorption. Radar energy is absorbed through one or more of several

loss mechanisms, which may involve the dielectric or magnetic properties of the material.

The loss is actually the conversion of radio frequency energy into heat, and although most

absorbers do not dissipate enough energy to become even detectably warm when

illuminated by radar, this is nevertheless the mechanism by which they operate.

When radar waves hit the RAM coating, a magnetic field is produced in the metallic

elements of the coating. The magnetic field has alternating polarity and dissipates the

energy of the signal. The energy that is not dissipated by the individual carbonyl iron

ferrite elements is reflected to other elements as shown in Figure 4.5.

Figure 4.5: Incident Radar Beam Dissipated in RAM Coating

Underlying the operation of RAM is the fact that substances either exist or can be

fabricated whose indices of refraction are complex numbers. In the index of refraction,

which includes magnetic as well as electrical effects, the imaginary part accounts for the

loss? At microwave frequencies, the loss is due to the finite conductivity of the material, as

well as a kind of molecular friction experienced by molecules in attempting to follow the

alternating fields of an impressed wave. It is customary to lump the effects of all loss

mechanisms into the permittivity and permeability of the material because the engineer is

usually interested in only the cumulative effect. Carbon was the basic material used in the

fabrication of early absorbers because of its imperfect conductivity, and it continues to be

important today. In fact, many commercial carbon-based materials now being marketed

have designs that have not changed substantially for more than 20 years. Most are intended

for experimental and diagnostic work, including the construction of indoor microwave

anechoic chambers, but these materials are not easily applied to operational weapons

platforms. They are usually too bulky and fragile in operational environments. Instead,

magnetic absorbers are used more widely for operational systems [1].

The loss mechanism is primarily due to a magnetic dipole moment, and compounds of iron

are the basic ingredients. Carbonyl iron has been used extensively, as have oxides of iron

(ferrites). Magnetic materials offer the advantage of compactness because they are

typically a fraction of the thickness of dielectric absorbers. However, magnetic absorbers

are heavy because of their iron content and are inherently more narrowband than their

dielectric counterparts. The basic lossy material is usually embedded in a matrix or binder

such that the composite structure has the electromagnetic characteristics appropriate to a

given range of frequencies.

5.2.3 Passive Cancellation

Passive cancellation, one form of which is known as impedance loading, received a

great deal of attention in the 1960s, but the method is severely limited. The basic concept is

to introduce an echo source whose amplitude and phase can be adjusted to cancel another

echo source. This can be accomplished for relatively simple objects, provided that a

loading point can be identified on the body. A port can be machined in the body, and the

size and shape of the interior cavity can be designed to present optimum impedance at the

aperture. Unfortunately, even for simple bodies, it is extremely difficult to generate the

required frequency dependence for this built-in impedance, and the reduction obtained for

one frequency in the spectrum rapidly disappears as the frequency changes.

Furthermore, typical weapons platforms are hundreds of wavelengths in size and have

dozens, if not hundreds, of echo sources. Clearly, it is not practical to devise a passive

cancellation treatment for each of these sources. In addition, the cancellation can revert to

reinforcement with a small change in frequency or viewing angle. Consequently, passive

cancellation has for the most part been discarded as a useful RCS reduction technique as

shown in figure 4.6 [1].

Figure 4.6: Passive Cancellation system.

5.2.4 Active Cancellation

Also known as active loading, active cancellation is even more ambitious than

passive loading. In essence, the target must emit radiation in time coincidence with the

incoming pulse whose amplitude and phase cancel the reflected energy. This implies that

the target must be "smart" enough to sense the angle of arrival, intensity, frequency, and

waveform of the incident wave. It must also be smart enough to know its own echo

characteristics for that particular wave length and angle of arrival rapidly enough to

generate the proper waveform and frequency. Such a system must also be versatile enough

to adjust and radiate a pulse of the proper amplitude and phase at the proper time. Clearly,

the relative difficulty of active cancellation increases with increasing frequency, as

scattering centers go in and out of phase with smaller aspect changes and where scattering

patterns become more complex. Thus, if it has a place at all, active cancellation appears

most suitable for low-frequency RCSR, where use of absorber and shaping become very

difficult and scattering patterns xhibit broader lobes. Research on the technique is likely to

continue because other practical means of RCSR are also difficult to apply for low

frequencies. Figure 4.7 illustrate the active cancellation model [1].

Figure 4.7: Active Cancellation system.

5.3 The Penalties of RCSR

Most of the time, the requirement for reduced radar echo conflicts with

conventional or traditional requirements for structures. As a result, the final system design

is a compromise that inevitably increases the cost of the overall system, from initial

engineering through production. Cost is only one penalty of RCSR; others are [1]

• Reduced payload;

• Reduced range;

• Added weight;

• Increased maintenance.

The relative importance of each factor depends on the mission of the particular platform

involved, of course, and these factors change from one system to another. Not surprisingly,

radar cross section reduction cannot always be justified, at least in terms of improved

detection ranges. In one study, for example, Georgia Tech calculated the detection range

for a hypothetical sea target ingressing against shore-based radars. The detection range was

decreased less than 10% despite drastic changes in the target to reduce its radar echo. One

reason for this was that the assumed threats were very sensitive and the target was detected

as it came over the horizon, treated or not. On the other hand, although unsupportable on

the basis of detection, RCSR for that platform may well have been justified when

considered in concert with electronic countermeasures. In any event, the radar signature is

simply one part of a platform specification. Trade-offs will always have to be made with

respect to a large number of operational characteristics. Only when all of the characteristics

are jointly considered in light of the platform mission can a truly optimum solution to

maximize survivability and mission effectiveness be devised [1].

5.4 Limitations

• Aerodynamic Performance

Stealth designs sacrifice parts of aircrafts’ aerodynamic performance for stealth.

Extreme examples such as F-117 and B-2 are unstable on 3 axes, poor in maneuvability

and unable to perform supersonic flight.

• Costs

High costs incur in designing, manufacturing and operating. Stealth aircrafts’ designs

are much more complicated than normal aircrafts. Heavy financing is required to

developing computer programs to analyze RCS and aerodynamic performance. The

special materials used small quantity of final products and attempts to keep secrecy

dramatically rise the price of each aircraft. For example, 21 B-2 bombers, in total, cost

the United States about 45 billion US dollars. Radar stealth aircrafts also have high

maintenance requirement for their specially coated skin. Not mentioning the budget

spent on short-lasting RAM, the specially built and air-conditioned hangars, and the

maintenance team alone need a large amount of money to operate.

• Intensifying Other Aspects of Detection

Purpose shaping usually aims to reduce RCS in one direction. It directs radar waves to

other directions and intensifies radar echoes in those directions. For example, F-117

has an intensified radar echo in the direction of the cone above the horizontal plane,

which makes it more observable in that direction. Non-resonant RAM transfer

electromagnetic energy into heat, which increase the surface temperature and make

aircrafts more vulnerable to infra-red detectors.

Chapter Five

6. CHAPTER FIVE: SYSTEM MODEL
SIMULATION

6.1 RADAR Simulation

6.1.1 Introduction
It is a simulation of an early warning radar. The simulation works at the

Intermediate Frequency (IF) level and calculates the return pulses to extract target

information (coordinates, velocity, acceleration and Radar Cross Section (RCS)).

For each radar pulse the simulation calculates the returns that the radar will receive from

all the targets according to the radar formula (taking into account transmission power,

antenna gain, targets distance and targets RCS). The simulation calculates the amplitude

and phase of the return signal (according to the IF frequency).

The radar builds a vector of its samples as complex signals (representing amplitude

and phase delay) and adds it to complex random RF noise. The vector goes through a LPF

representing the receiver BW and then I add another complex random noise representing

the radar's thermal noise (in the digitizer).

The radar saves several reception periods to a buffer and then processes the entire

buffer. The radar can perform a match filter over the received signal. The radar analyzes

each range cell in the buffer in search of a target.

Detection threshold can be fixed or dynamic according to the buffer statistics (a sort of

Constant False Alarm Rate (CFAR)). A simple CFAR mechanism was added.

In case Moving Target Indicator (MTI) is used the target detection is done in the

frequency plane of the complex signal. Massive profiler work was done to improve

real-time performance (in 50 kHz sampling rate and no analog feedback the simulation

time is correlated to real-time).

Each detected target is plotted on the main radar display. In case MTI is used a

representation of the target’s velocity is also plotted (stationery targets are plotted as

mountains).

6.1.2 Main Files and Functions

• radarSimulation.m – GUIDE file, handles all the GUI callbacks. The simulation is

handled in “run_Callback” function.

• runRadarSim.m – Main simulation handling function. Basically this function is a

while loop which keep transmitting pulses and processing them. The function main

parts are transmitting, adding noise and processing the radar buffer.

 -51-

6.1.3 The Radar Simulation Graphical User Interface

1. Main Simulation Controls

a. Start\Pause\Continue – Starts and stops the simulation

b. Buffer Analyze – Collects pulses into the radar buffer and then stops the

simulation to display the buffer content in separate graphs. In case the “find

target” is checked the simulation will only stop when it will find a target in

the buffer.

c. Enable Transmission – Configure the Network interface card to work as

radar antenna to enable wave propagation.

d. Reset – Resets all the simulation parameters (sets time back to zero and

deletes all existing targets, new simulation targets are created on “Start”).

2. Mini Display – Displays real position of the simulation targets (for reference).

3. The main radar controls (see bellow).

4. The main simulation controls (see bellow).

5. The main radar display (see bellow).

Figure 5.1: Radar Simulation graphical user interface

 -52-

1

2

3
4

5

6.1.4 Main RADAR display

Figure 5.2: Main Radar display

1. The radar found targets.

a. Red X - target with no velocity estimation (MTI is off)

b. Red Arrow – a moving target with velocity estimation.

c. Black Triangle – a stationary target (clutter).

2. The antenna point of direction.

 -53-

1

2

6.1.5 Radar Controls

Figure 5.3: Radar Controls

1. Pulse Repetition Interval and the
number of different intervals used
(stagger). The PRI is the average time
spent between each radar pulse
transmission. The PRI defines the
radar maximum range and the overall
energy hitting a target.

2. Pulse Width – defined as a fraction of
the PRI and sets the transmission duty
cycle.

3. Transmitted Amplitude – The radar
transmission power.

4. Antenna Velocity – The antenna turn
velocity in radians.

5. The radar sampling rate – Defines the
radar range cell size and directly
affects the simulation real-time
performance.

6. Radar Band Width – The reception
Band Width, determines the shape of
the received signal and the amount of
electromagnetic noise in the receiver.

7. Number of pulses in the radar’s buffer,
the radar analyzes reception every
number of pulses.

8. Moving Target Indicator – Activate
phase analysis in frequency plane to
distinguish moving targets from
stationary ones (and estimate its
relative velocity to the radar).

9. Use a Match filter on received signal.
10. Which type of antenna is connected

(disconnect the antenna to estimate the
digitizer noise).

11. The radar displays update time.
12. When using Persistent display

previous detected targets are not
erased from the radar display (helps
tracking the planes path).

 -54-

1

4
5

7

2
3

9

6

8
10

11
12

6.1.6 Simulation Controls

Figure 5.4: Radar Simulation Controls

1. Controlling the simulation culture.
The mountains are created
randomly on “Start” according to
number of mountains.

2. The noise level simulated in the
system. This is a normal distribution
noise. The RF noise is multiplied by
the radar BW and added before the
applying of the BW. Digitizer noise
is added after the BW.

3. Place Mountains – Enables you to
place mountains in the simulation,
click on the main radar display to
place the mountains, when finished
repress the “Place Mountains”.
These mountains will be added to
the simulation targets.

4. Display Targets – Opens a separate
figure displaying the real position of
the targets.

 -55-

1

2

3

4 5

6.2 Aircraft Simulation

6.2.1 Introduction

1 It is a simulation of an active cancellation algorithm for radar cross section reduction

which consists of two elements:

1A. Hardware components:

• Receiving antenna, used to receive a radar signal.

• Transmitting antenna, used to transmit a cancellation signal.

• Reconnaissance receiver used to stores a precision copy a received signal.

1B. Software(MATLAB/C functions and databases):

• Signal processing and control function (SPC), used to storing a received signal,

database searches, signal analysis, processing, and control of other elements.

• Blind Velocity and Doppler Effect function (BVDE), used to calculate the blind

velocity according to the radar PRF and Doppler Effect.

• Power synthesis and beam forming function (PSBF), used to form the modified beam

to transmit.

• Target RCS database, is related to frequency, direction, and polarization, power, for

incident signal.

• Noise database, is related to the effective noise temperature, input noise power, etc.

• Clutter database, is related to aircraft speed, airborne, carrier frequency, radar point,

altitude radar, distance to target and radar pulse repetition frequency (PRF).

6.2.2 Main Files and Functions

• AircraftSimulation.m – GUIDE file, handles all the GUI callbacks. The simulation is

handled in “run_Callback” function.

• runAircraftSim.m – Main simulation handling function. Basically this function is a

while loop which keep receiving pulses and processing them to extract phase,

amplitude and frequency of the received pulses. The function main parts are

transmitting an anti phase pulses, adding noise to that pulses.

Network Card
and Memory

Figure 5.5: Aircraft Simulation graphical user interface

6.2.3 The Aircraft Simulation GUI

1. Main Simulation Controls

a. Start\Pause\Continue – Starts and stops the simulation

b. Analyze Received signal – Collects pulses into the buffer, processing them and

then stops the simulation to display the buffer content in separate graphs.

c. Enable Transmission – Configure the Network interface card to work as radar

antenna to enable wave propagation.

d. Enable/Disable Stealth – Transmit an anti phase pulses which generated

according to received pulses.

e. Reset – Resets all the simulation parameters (sets time back to zero and deletes

all existing targets, new simulation targets are created on “Start”).

2. Mini Display – Displays real position of the radar (for reference).

3. The main simulation controls (see bellow).

4. The main aircraft display (see bellow).

5. Received Signal – Display one received pulse.

6. Stealth State – Shows whiter the aircraft in visible mode or not.

1

2

6
3 4

5

6.2.4 Main Aircraft display

Figure 5.6: Main Aircraft display

1. The radar found Radar.

a. Red X – radar.

b. Black Triangle – a stationary target (clutter).

2. The antenna point of direction.

1

2

6.2.5 Simulation Controls

Figure 5.7: Aircraft Simulation Controls

1. Controlling the simulation culture.

The mountains are created

randomly on “Start” according to

number of mountains.

2. The noise level simulated in the

system. This is a normal distribution

noise. The RF noise is multiplied by

the radar BW and added before the

applying of the BW. Digitizer noise

is added after the BW.

3. Place Mountains – Enables you to

place mountains in the simulation,

click on the main radar display to

place the mountains, when finished

repress the “Place Mountains”.

These mountains will be added to

the simulation targets.

4. Display Radar – Opens a separate

figure displaying the real position of

the radar.

1

2

3

4 5

Chapter Six

7. CHAPTER SIX: METHODOLGY

7.1 Introduction:
The algorithm based on generation an anti phase electromagnetic signal to a target’s

scattered signal. The effectiveness of this algorithm depends on the knowledge of its

real-time characteristics, the measurement precision of the radar signal, and the accuracy of

the generated cancellation signal, among other factors. Figures 6.1 and 6.2 respectively

show the principle and flowchart of an active cancellation algorithm for radar cross section

reduction. The incident radar phase, amplitude, frequency, polarization, radar space

position and waveform characteristics are accurately and quickly measured on the Aircraft

by SPC function, and a reconnaissance receiver. The characteristics of target reflection that

correspond to the incident radar waveform will be extracted from the target's RCS database

controlled by the computer processing system. By generating a signal (waveform) with the

appropriate parameters, including phase, intensity, polarization and frequency, the target's

echo can be cancelled when the wave returns to the radar receiving antenna. If we can

solve the target to separate N scattering centers, then a radar return on a specific frequency

is Eq.6.1:

2

1

5.0 .)(nj
N

n
n e ϕσσ ∑

=

= . . . 6.1

Where σn is the Nth scatter RCS and φn is the phase due to the physical location of

scatterer’s.

Figure 6.1: The principle of an active cancellation algorithm for radar cross section
reduction process.

A target with a huge number of scattering centers, several controlling scattering centers

will exist for a specific incident signal angle and operating radar frequency. Reduction of

the radar returns from these centers can reduce the target's RCS. If the original RCS of the

target is denoted as σ0, an active cancellation system for RCS reduction can produced an

equivalent RCS scattering center denoted by σ1. The phases are φ0 and φ1, respectively of

scattering centers. The superposition σ0 and σ1 is given by Eq. 6.2:

2
5.0

1
5.0

0
10)()(

ϕϕ σσσ jj ee += . . . 6.2

By analyzing Eq. 6.2, Eq. 6.3 will get as following:

)][cos()/(2/1 01
5.0

01010 ϕϕσσσσσσ −++= . . . 6.3

R
ad

ar T
ra

n
ss

. .
/R

ec
.

A
n

te
n

n
a

R
ec

ei
vi

n
g

A
n

te
n

n
a

T
ra

n
sm

it
ti

n
g

A
n

te
n

n
a

R
ec

on
n

ai
ss

an
ce

R

ec
ei

ve
r

Si
gn

al
 P

ro
ce

ss
i n

g
an

d
 C

on
tr

ol

P
ow

er
 s

yn
th

es
i s

an

d
 b

ea
m

fo

rm
in

g

B
li

n
d

 v
el

oc
it

y
an

d
 D

op
p

le
r

F
re

q
. c

al
cu

la
ti

o n

N
oi

se

D
at

ab
as

e

T
ar

ge
t

R
C

S

D
at

ab
as

e
C

u
lt

u
re

D

at
ab

as
e

Radar Site

Aircraft Site

Computer Processing System

Controlling σ1 and φ1 can optimize those parameters to get Eq. 6.4:





+=−

=

)()12(01

01

Integeriskwherek πϕϕ

σσ
. . . 6.4

When σ = 0, this indicates that stealth in the direction of the enemy's radar has been

achieved.

Compiling the target's RCS database is an important step in designing an active

cancellation algorithm for RCS reduction. The RCS entry is a function, rather than just

varied number with different frequency, direction, and polarization for incident signal. It is

necessary to establish an RCS database due to different frequencies, polarizations, and

directions, according to real-time measurements for frequency, direction, power, and

polarization of incident signal. This database must support real-time modification for the

parameter of the transmitter to produce an effective cancellation signal for transmission.

The reconnaissance receiver is used for reception and reconnaissance signals from enemy's

radar transmitters. A received radar signal is applied to SPC function which stores a

precision copy a received signal and alternately, it analyzed for amplitude and phase

adjustment to generate anti phase signal with same amplitude. By comparing the stored

signal with the wave signal generated by SPC function, the result from this comparison is

checked to obtain a minimum output value (zero balance if possible), when this happen,

the SPC function will send the radar signal to the BVDP function, with coherent

superposition of clutter and noise to calculate the blind velocity an Doppler effect. The

transmitting antenna and PSBF function are used to form and transmit the active

cancellation signal. The system’s memory is used for storing the databases, including the

noise database, target echo database, and the clutter database. The system work with the

assumption that an echo signal consists of three parts: noise, clutter, and target echo so a

radar echo can be as follows Eq. 6.5:

))()()()(tCtNtStX ++= . . . 6.5

Where S(t) is target's echo signal, N(t) is the noise signal, and C(t) is the clutter signal.

Due to a great deal of calculation and processing power that required to determine the

radar's cancellation signal; it is difficult to achieve calculations in real-time without

pipeline delays. For this, an offline calculation is used to build a target RCS database.

Numerical prediction method is the based method for obtaining a complex target RCS [1],

[13].The database for noise and clutter usually uses a distribution of Gaussian for White

noise, which can be produced by the Monte Carlo method [10],[11],[12]. Clutter data is related

to aircraft speed, carrier frequency, radar point, altitude radar, distance to target and radar

pulse repetition frequency (PRF). When clutter data are calculated, reduction of large

amount of data is done because the speed, radar frequency, and aircraft altitude are fixed,

and only PRF and radar point are changed.

Yes

Store a precision copy a received signal

Receive radar
signal

Add stored signal to
generated one

Analyze signal extract amplitude, phase and Freq.
search databases for other wave parameters.

Addition
result =

zero

Adjusts signal parameters
to generate anti phase

signal

Start

Send the radar signal to the BVDE
function

 Calculate the Blind Velocity and
Doppler effect

Send the radar signal to the power
synthesis and beam forming function

Superimposes the clutter and noise
signal to the cancellation signal

Transmits the modified signal by
transmitting antenna

Blind Velocity and
Doppler Effect

calculation function

 Signal processing
 and control function

Power synthesis and
beam forming function

End

No

7.2 Flowchart:

Figure 6.2: An active cancellation algorithm for radar cross section reduction flowchart.

7.3 Code:
The code consists of three main functions and three databases as follow:

• Signal processing and control function (SPC), used to storing a received signal,

database searches, signal analysis, processing, and control of other elements.

• Blind Velocity function (BVDE), used to calculate the blind velocity – Blind

velocity is defined as radial velocity at which the target appears stationary and

echoes from it are canceled by the MTI action [14] - and Doppler Effect to avoid

MTI system.

• Power synthesis and beam forming function (PSBF), used to form the modified

beam to transmit.

• Target RCS database, is related to frequency, direction, and polarization, power, for

incident signal.

• Noise database, is related to the effective noise temperature, input noise power, etc.

• Clutter database, is related to aircraft speed, carrier frequency, radar point, altitude

radar, distance to target and radar pulse repetition frequency (PRF).

7.3.1 Signal processing and control function (SPC):

function spc (handles,NPB,PRIA,SR,DZN,EN,PWA,STA,AMP,g)

 warning off all

 while get(handles.run,'value')

 if get(handles.CFAR,'value')

 useCFAR = true;

 CFAR = get(handles.Th,'value');

 else

 useCFAR = false;

 Th = 10^(get(handles.Th,'value'));

 End

get(handles.Amp,'value');

currentTime = currentTime+PRI;

radarAngle = mod(antenaTurnVelocity*currentTime,2*pi);

% -------------------------------- Receiving radar pulses --

targets = [handles.Targets ; handles.mountains];

curentReturnPulses = zeros(bufferSize,1);

 if ~isempty(targets)

 [t a phi] = targetsReturn(targets,antenaGain,Amp, currentTime,antenaTurnVelocity,

targetsTime,handles.IF_Freq);

tIn = round(t*Fs);

tIn = max(tIn,1); tIn = min(tIn,bufferSize);

 for n=1:length(t)

curentReturnPulses(tIn(n):tIn(n)+PWn-1) = curentReturnPulses(tIn(n):tIn(n)+PWn-1) +

a(n)*exp(i*phi(n));

 end

 end

transmitInd = pulseTransmitionPoints(mod(pulseNum-1,nPRI)+1);

index = transmitInd : transmitInd + bufferSize-1;

index(bufferSize-transmitInd + 2 : bufferSize) = 1:transmitInd-1;

returnPulses(index) = returnPulses(index)+curentReturnPulses;

% --------------------------------- Processing Buffer --

if ~mod(pulseNum,nPRI) %Only processing every N number of pulses

 recievedSignal = returnPulses;

 n = get(handles.RadarBW,'value');

 radarBW=radarBWOptions(n) * 1e6;

%----------------------------------- Culture Noise---

 n = get(handles.digitizerNoiseLevel,'value');

 temp = get(handles.digitizerNoiseLevel,'string');

 if strcmp(temp{n},'off')

 digitizerNoiseLevel = 0;

 else

 n=str2double(temp{n});

 digitizerNoiseLevel = 10^n;

 end

% --------------------------------------- Creating RF noise --

 if RFnoiseLevel

 RFnoise = fastSemiRandn(length(returnPulses))* RFnoiseLevel *[1 ; i]*radarBW;

 recievedSignal = recievedSignal+RFnoise;

 end

a = -pi^2*radarBW^2/log(0.5)*log(exp(1));

responseStart = sqrt(-log(0.1)/log(exp(1))/a);

t = -responseStart : 1/Fs : responseStart;

response = exp(-t'.^2*a);

response = response/sum(response);

recievedSignal = conv2(recievedSignal,response,'same');

 if get(handles.useMatchFilter,'value');

 if length(response) > PWn

 matchFilter = response;

 else

 matchFilter = ones(PWn,1)/PWn;

 end

 processedRecivedSignal = conv2(recievedSignal,matchFilter,'same');

 else

 processedRecivedSignal = recievedSignal;

 end

% --- Was there a radar ---

 signalInRangeCells = processedRecivedSignal(rangeCellInd);

 isMTIused = get(handles.useMTI,'value');

 if isMTIused

 freqInRangeCells = fft(signalInRangeCells,freqRes,2);

 energyInFreqRangeCells = abs(freqInRangeCells(:,freqInd)).^2;

 if useCFAR

 noiseLevel = median(energyInFreqRangeCells(:)); % Th is per frequency

 freqTh = noiseLevel * CFAR * nPRI;

 else

 freqTh = Th * nPRI;

 end

 [maxFreq maxFreqInd] = max(energyInFreqRangeCells,[],2);

 localMaxEnergy = imdilate(maxFreq , dilateKer);

 rangeCell = find(localMaxEnergy == maxFreq & maxFreq > freqTh);

 targetInd = sub2ind([numSamplesInPRI freqRes], rangeCell, maxFreqInd(rangeCell));

 else

 energyInRangeCells = sum(abs(signalInRangeCells).^2,2);

 if useCFAR

 noiseLevel = median(energyInRangeCells);

 Th = noiseLevel * CFAR;

 end

 localMaxEnergy = imdilate(energyInRangeCells,dilateKer);

 targetInd = find (energyInRangeCells == localMaxEnergy & energyInRangeCells > Th);

 end

 if ~isempty(targetInd)

 foundTargetInBuffer = 1;

 if isMTIused

 [rangeCell ans] = ind2sub(size(energyInFreqRangeCells),targetInd(:));

 RCS = energyInFreqRangeCells(targetInd(:));

 else

 rangeCell = targetInd;

 RCS = energyInRangeCells(targetInd);

 end

 targetRange = (rangeCell -PWn/2) / Fs / 2 * 3e8;

 targetV = ones(length(targetInd),1)*12345;

 for Rind = 1:length(targetInd)

 %Processing each Target

 pos = targetRange(Rind)*[cos(radarAngle) sin(radarAngle)];

 if isMTIused

 targetV(Rind) =

MTIcalcVelocityFromFourier(energyInFreqRangeCells,targetInd(Rind),freqRes,handles.IF_Freq,PR

I);

 end

 if isempty(handles.foundTargets)

 handles.foundTargets(end+1) = ...

 createTargetObj(pos, RCS(Rind), targetRange(Rind), targetV(Rind),

radarAngle,0, radarAngle,radarAngle,[],numRadarTurn);

h = plotTarget(handles.foundTargets(end), handles);

handles.foundTargets(end).hPlot = h;

 else

% ---------------- Checking if this radar was already detected ------------------------------

 M = length(handles.foundTargets);

 dAngle = zeros(M,1);

 dRange = zeros(M,1);

 dV = zeros(M,1);

 for mm=1:M

 d1 = calcDiffAngle(handles.foundTargets(mm).counterClockWise, radarAngle);

 d2 = pi;

 dAngle(mm) = min (d1, d2)/angleRes;

 dRange(mm) = abs(handles.foundTargets(mm).R - targetRange(Rind))/rangeRes;

 dV(mm) = abs(handles.foundTargets(mm).v - targetV(Rind))/velocityRes ;

 end

 [sameTargetScore sameTargetInd] = min(dAngle.^2 + dRange.^2 + dV.^2);

 if sameTargetScore < 1

 if handles.foundTargets(sameTargetInd).RCS < RCS(Rind)

 %------------------------------ Keeping the parameters of the better received pulses;

 handles.foundTargets(sameTargetInd).pos = pos;

 handles.foundTargets(sameTargetInd).RCS = RCS(Rind);

 handles.foundTargets(sameTargetInd).R = targetRange(Rind);

 handles.foundTargets(sameTargetInd).v = targetV(Rind);

 handles.foundTargets(sameTargetInd).angle = radarAngle;

 delete(handles.foundTargets(sameTargetInd).hPlot);

 h = plotTarget(handles.foundTargets(sameTargetInd), handles);

 handles.foundTargets(sameTargetInd).hPlot = h;

 end

 if d1 < d2

 handles.foundTargets(sameTargetInd).counterClockWise = radarAngle;

 else

 handles.foundTargets(sameTargetInd).clockWise = radarAngle;

 end

 else

 handles.foundTargets(end+1) = ...

 createTargetObj(pos, RCS(Rind), targetRange(Rind), targetV(Rind), radarAngle,0,

radarAngle,radarAngle,[],numRadarTurn);

 h = plotTarget(handles.foundTargets(end), handles);

 handles.foundTargets(end).hPlot = h;

 end

 end

 end

 end

 dt = currentTime-lastUpdate ;

 if dt > updateRate %Is it time to update the display

 lastUpdate = currentTime;

 currentRealTime = toc;

 delay = dt - (currentRealTime - lastUpdateRealTime); % syncronizing to real time

 lastUpdateRealTime = currentRealTime;

 if delay > 0

 pause(delay);

 end

 isPersistentDisplay = get(handles.persistentDisplay,'value');

 handles =

plotFOV(handles,currentTime,antenaTurnVelocity,radarSector,maxDist,isPersistentDisplay);

 updatedDisplay = true;

 % updating the mini-map display every 5 seconds

 if currentTime > miniDisplayUpdateTime + 5

 if ~get(handles.scopeDisplay,'value')

 miniDisplayUpdateTime = currentTime;

 displayTargets(handles,'in radar display')

 numRadarTurn = ceil(currentTime*antenaTurnVelocity/2/pi);

 end

 if isPersistentDisplay

 if length(handles.persistentPlotHandle) > 1000

 temp = handles.persistentPlotHandle;

 delete(temp(1:end-1000));

 handles.persistentPlotHandle = temp(end-999:end);

 end

 end

 end

 % Updating targets position, velocity & accelaration

 targetsTime = currentTime; % the time in which the target position was updated

 for n =1:length(handles.Targets)

 handles.Targets(n).XY = handles.Targets(n).XY +

dt*handles.Targets(n).v+dt^2*handles.Targets(n).a;

 handles.Targets(n).v = handles.Targets(n).v + dt*handles.Targets(n).a;

 handles.Targets(n).a = handles.Targets(n).a * 0.95^dt;

 targetsManuv = handles.Targets(n).maneuverability;

 if (1-exp(-dt/targetsManuv)) > rand(1)

 phi = atan(handles.Targets(n).v(2)/handles.Targets(n).v(1));

 phi = phi + 2*pi*(rand(1)-0.5);

 handles.Targets(n).a = randn(1)*20*[cos(phi) sin(phi)] -

handles.Targets(n).v/targetsManuv/2;

 end

 end end

 if isAnalyzeBufferMode

 if get(handles.waitForTarget,'value')

 if foundTargetInBuffer

 if isMTIused

analyzBufferWithMTI(handles,recievedSignal,processedRecivedSignal,energyInFreqRangeCells,P

Wn,freqTh,freqInRangeCells,numSamplesInPRI,rangeCellInd);

 else

analyzBuffer(handles,recievedSignal,processedRecivedSignal,energyInRangeCells,PWn,Th,range

CellInd,localMaxEnergy,g,PRI,Fs,nPRI);

 end

set(handles.run,'string','Pause');

AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));

 end

 else

 if isMTIused

analyzBufferWithMTI(handles,recievedSignal,processedRecivedSignal,energyInFreqRangeCells,P

Wn,freqTh,freqInRangeCells,numSamplesInPRI,rangeCellInd);

 else

analyzBuffer(handles,recievedSignal,processedRecivedSignal,energyInRangeCells,PWn,Th,range

CellInd,localMaxEnergy,g,PRI,Fs,nPRI);

 set(handles.run,'string','Pause');

 AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));

 end

 set(handles.run,'string','Pause');

 AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));

 end

 end

 % Display analog scope !!!!!

 if get(handles.scopeDisplay,'value')

 hold(handles.miniDisplay,'off');

 sig = abs(processedRecivedSignal(rangeCellInd));

 plot(handles.miniDisplay,log(sig(PWn+1:end,:)),'color',[239 255 250]/256,'linewidth',1);

 set(handles.miniDisplay,'color',[118 219 237]/256);

 ylim(handles.miniDisplay,[-22 -8]);

 xlim(handles.miniDisplay,[1 numSamplesInPRI-PWn]);

 grid(handles.miniDisplay,'on');

 if ~updatedDisplay

 drawnow;

 updatedDisplay = false;

 end

 end

end

pulseNum = pulseNum+1;

end

7.3.2 Blind Velocity and Doppler Effect function (BVDE):

function bede = DFSMFromFourier(freqRes,intermidateFreq,PRI)

 temp=3e8/[2*PRI*freqRes];

 vel=temp*3600; %velocity in "m/h"

 de=(2* freqRes*vel)/ 3e8;

 freqRes= freqRes+de;

end

7.3.3 Power synthesis and beam forming function (PSBF):

function PSBF

(handles,recievedSignal,processedRecivedSignal,energyInFreqRangeCells,PWn,Th,…

freqInRangeCells,PRIn,rangeCellInd);

% --build Antenna ---

n=get(handles.antenaMode,'value');

antenaMode = get(handles.antenaMode,'string');

switch antenaMode{n}

 case 'Antena Connected'

 reqVector = [1 1.25].*1e9; % Frequency range for element pattern

 sAnt = phased.CustomAntennaElement('FrequencyVector',freqVector,...

 'AzimuthAngles',az,...

 'ElevationAngles',el,...

 'RadiationPattern',pattern_azel);

 fmax = freqVector(end);

 plotResponse(sAnt,fmax,'Format','polar','RespCut','3d');

 view(3)

 c = 3e8;

 lambda = c/fmax;

 wsURA = warning('off', 'phased:system:array:SizeConventionWarning');

 sArray = phased.URA('Element',sAnt,'Size',10,'ElementSpacing',lambda/2)

 animcustantdemopattern(sArray)

 el_ang = -90:90;

 sArrayResponse = phased.ArrayResponse('SensorArray',sArray,'PropagationSpeed',c);

 el_pat = abs(step(sArrayResponse,fmax,el_ang)); % elevation pattern

 freespace_rng = 100; % in km

 ant_height = 20; % in m

 radarvcd(fmax,freespace_rng,ant_height, 'HeightUnit','m','RangeUnit','km',...

 'AntennaPattern',el_pat/max(el_pat),'PatternAngles',el_ang.');

 antenaGain = sinc(-1:0.001:1).^500;

 s = trapz(antenaGain)*2*pi/length(antenaGain); %integral over antenna gain

 antenaGain = antenaGain/s;

 case 'Antena with Side Lobes'

 antenaGain = sinc(-2.5:0.001:2.5).^4;

 s = trapz(antenaGain)*2*pi/length(antenaGain); %integral over antenna gain

 antenaGain = antenaGain/s;

 case 'Omni'

 antenaGain = [1/2/pi 1/2/pi];

 case 'Antena Disconnected'

 antenaGain = 0;

% ---Transmitting Cancellation signal --

transmisionInd(1:PWn) = (1:PWn);

options = get(handles.stagger,'string');

stagger = str2double(options{temp});

ratio = 2*PW / PRI;

ratio = max(ratio, 0.05);

intervals = (1+((0:stagger-1)-(stagger-1)/2)*ratio)*PRI;

numSamplesInInterval = round(intervals*Fs);

numSamplesInInterval(end)=round(numSamplesInInterval(end)-

mod(sum(numSamplesInInterval),PRISize));

numIntervals = length(intervals);

numSamplesInPRI = round(sum(intervals)*Fs);

maxDist = numSamplesInPRI*150/Fs*1e6;

for n=2:nPRI

 interval = numSamplesInInterval(mod(n-1,numIntervals)+1);

 transmisionInd((n-1)*PWn+1:n*PWn) = transmisionInd((n-2)*PWn+1:(n-1)*PWn) + interval;

 pulseTransmitionPoints(n) = transmisionInd((n-1)*PWn+1);

 end

rangeCellInd = zeros(nPRI,numSamplesInPRI);

 for n = 1 : nPRI

 rangeCellInd(n,:) = transmisionInd((n-1)*PWn+1);

 end

temp = repmat(0:numSamplesInPRI-1,nPRI, 1);

rangeCellInd = rangeCellInd + temp;

rangeCellInd = mod(rangeCellInd-1,bufferSize) + 1;

rangeCellInd = rangeCellInd';

end

Chapter Seven

8. CHAPTER SEVEN: TEST AND RESULTS

For the purpose of evaluation, the active cancellation algorithm for radar cross

section reduction was simulated using MATLAB R2013a software and the following

conditions:

1. A coherent pulse train with 5 MHz modulation rate for radar transmit signal.

2. The signal has PRF of 1.25 kHz and a pulse width of 16 μs.

3. Uniform speed for the target movement with 60 km initial distance away from the

radar transmitter, 500 m/s initial radial velocity, 0 deg of both azimuth and elevation

angles and 2 m2 target's RCS.

4. The reference pattern function for reconnaissance is described by Eq. 7.1







>±

≤
=

1022

101

)]2/(/)([

])2/(/[
)(

akaaBSa

akaASa
F

θθθ

θθθ
θ . . . 7.1

Where κ0 = (cosθ0)0.5 is the control factor for phased-array antenna modified beam

gain with variation of scanning angle, θ0 is the beam of scanning angle, θ1 is the

unbiased-beam main-lobe beam width of 3 dB, θ2 is the unbiased-beam first side-lobe 3-dB

beam width, AS is the unbiased-beam main-lobe gain value, BS is the unbiased-beam first

side-lobe gain value, a = 2.783, (a1 = πθ1/a) is first zero unbiased-beam (in rads), and (a2 =

π(θ1 + θ2/a) is the unbiased-beam first side-lobe peak point of view (in rads).The 3D

Electromagnetic pattern can be simplified into an elevation and azimuth multiplication

pattern result as shown in Eq. 7.2.

)()(),(ϕθϕθ ϕθ FFF = . . . 7.2

Where Fφ(φ) is the elevation pattern and Fθ(θ) is the azimuth pattern. Assuming that the

radar antenna vertical main-lobe beam-width is 2 degree, the main-lobe gain is 40 dB, the

gain is 9 dB, and the first side-lobe-width is 1 degree. The algorithm can used for (ECM)

Electronic countermeasures function using rectangular array antenna M x N pattern

function described below as Eq. 7.3 [15]:

),(),(),(),(ϕθϕθϕθϕθ eEGg = . . . 7.3

Where g(θ, φ) is the pattern of the antenna, G(θ, φ) is the factor of the directivity, E(θ, φ) is

the array factor for the beam shape determines, e(θ, φ) is the factor of the array element

with (e(θ, φ) ≈ 1), φ is the elevation angle on spherical coordinates array, θ is the azimuth

angle on spherical coordinates array, (φ [0, π/2]), and(θ [0, 2π]). Adjacent-array ∈ ∈

element spacing of d = λ/2 can be described in the x and y directions, E(θ, φ) as Eq. 7.4

∑ ∑
= =

=
M

m

N

n
yxmn nmjkdIE

1 1

])([exp),(ττϕθ . . . 7.4

Where k = 2π/λ is the wave number and Imn is the weighting coefficient.





−=
−=

00

00

cossincossin

cossincossin

ϕθϕθτ
ϕθϕθτ

Y

x
. . . 7.5

Where (θ0, φ0) is a beam pointing vector. If M = 51, N = 21, θ0 = 30 deg., φ0 = 20 deg, the

(51 x 21) will result array antenna pattern shown in Figure 7.1.

Figure 7.1: Pattern from multiple-element array antenna.
Below figures, shows the result obtained from the algorithm, Figure 7.2, shows an

amplitude and phase of the received signal, Figure 7.3, shows superimposed of coherent

pulse train on the noise and clutter waveform, with completely target signal submerged

under noise and clutter, and Figure 7.4, shows the contrast before (top) the cancellation

signal and (bottom) after the cancellation signal has been added to radar return.

The return signal can be described as Eq. 7.6:

x
x

E
E

E
S 




 ∆= max . . . 7.6

xc EEE +=∆ max . . . 7.8

Where ΔEmax is the cancellation residual field, Ec Cancellation field and Ex is the target's

scattering field. Complete stealth is realized when S = 0. From Figure 7.4, it can be seen

that corresponding return signal, S to ΔEmax (2 dB) is 5 dB, so the reduction of radar

detection maximum range is 50% of original value.

Figure 7.2: shows (top) an amplitude and (bottom) phase of the received signal

Figure 7.3: shows superimposed of coherent pulse train on the noise and clutter waveform

Figure 7.4: shows the contrast before (top) the cancellation signal and (bottom) after the
cancellation signal has been added to radar return.

After Appling RCSR Algorithm

Chapter Eight

9. CHAPTER EIGHT: CONCLUSION

9.1 Conclusion:

The world orientation after World War II to develop its Combat system in an

attempt to hit the fortifications of the enemy in a surprise way using fighter jets, but the

radar systems and anti aircraft weapons were an obstacle without realizing it, which

encouraged researchers and scientists in the field of military systems to search for ways to

hide these fighter systems from enemy's radar, which known by (Stealth Technology) by

reducing the radar cross section of the target and upon which the regulations radar to detect

targets.

The researchers was able to development group of methods or techniques to hide

Combat Systems, which are categorizes in Target shaping, Radar Absorbent Material,

Passive Cancellation (Discrete loading) and Active Cancellation System, the first three

types are widely use and the latter one faced some difficulties in its implementation for

many reasons including the cost of economic and difficulty processing radio signals.

Due to the modern components for signal processing and rapid increase in

computer speed make it possible to achieve radar visibility reduction, that requires reduce

the radar cross section (RCS) of an aircraft or a system because it seems to be on the

enemy's radar detection capabilities .

To achieve this goal, this research proposed an Active cancellation algorithm for

radar cross section reduction using MATLAB 8.1.0.604 (R2013a), digital radio-frequency

memory (DRFM), and phased array technology to generate the desired signal to cancel the

reflected radar returns.

The main result of the thesis showed the possibilities of enhancing reduce the

reflecting power from the target.

This approach can be used with different number of others radio echo scenarios.

Radar and stealth technologies have become significantly more advanced in the last

fifty years and this trend will continue because the two technologies are against each other.

It is somewhat of an arms race except it isn’t between specific countries.

9.2 Future Work:

The proposed algorithm is based on the recording time between radar pulses to

calculate the pulse repetition frequency, so it may not work probably if radar constantly

changing of the pulse repetition time (Staggered PRT).

The proposed algorithm is dedicated to pulsed radar, so it may not work probably if

radar is Continuous Wave radar.

The proposed algorithm works on the analysis of the received pulses and make sure

they have the same frequency to be handled as a signal received from the same radar, so it

may not work probably if radar constantly changing of the transmitter - frequency

(Frequency-Diversity).

The proposed algorithm is based on transmitting the cancellation signal in the

direction of the radar transmitter, so it may not work probably in case of bistatic radar.

REFRENCES:
1. Eugene F. Knott, John F. Shaeffer, Michael T. Tuley, Radar Cross Section, SciTech

Publishing Inc., 2004.

2. Bassem R. Mahafza, Radar Systems Analysis and Design using MATLAB, Chapman&

Hall/CRC, 2005.

3. Bassem R. Mahafza, Atef Elsherbeni, MATLAB Simulations for Radar Systems

Design, Chapman& Hall/CRC, 2004.

4. Merrill I. Skolnik, Radar Handbook, Third Edition, McGmw-Hill, 2008.

5. Electronic Warfare and Radar Systems Engineering Handbook, NAVAIR Electronic

Warfare/Combat Systems, 2012.

6. Merrill I. Skolnik, Radar Handbook, First Edition, McGmw-Hill, 1990.

7. S.M. Rao, D.R. Wilton, and A.W. Glisson, “Electromagnetic scattering by surfaces of

arbitrary shape”, IEEE Transactions on Antenna and Propagation, Vol. 30, No. 3, pp.

409-418, 1982.

8. Virga K.L and Rahmat-Sami Y, “RCS characterization of a finite ground plane with

perforated apertures: simulations and measurements”, IEEE Transactions on Antennas

and wave propagation, Vol. 42, No. 11, pp. 1491-1501, 1994.

9. E.F. Knott, J.F. Shaffer and M.T. Tuley, “Radar Cross Section”, 2nd Edition, Artech

House Radar Library, 1993.

10. Paolo Brandimarte, Handbook in Monte Carlo Simulation, John Wiley & Sons, Inc.,

2014.

11. http://www.mathworks.com/discovery/monte-carlo-simulation.html, Last Visit

12/12/2014.

12. Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev, Handbook of Monte Carlo Methods,

John Wiley & Sons, Inc., 2011.

13. M. Madheswaran, P. Suresh Kumar, “Estimation of Wide Band Radar Cross Section

(RCS) of regular shaped objects using Method of Moments (MoM)”, in ICTACT

Journal on Communication Technology Vol. 3, No. 2, pp 536-541, 2012.

14. G.S.N. Raju, Radar Engineering and Fundamental of Navigation Aids, I.K.

International publishing house Pvt. Ltd, 2012.

15. K. Barton, Sergey A. Leonov, Radar Technology Encyclopedia, David Artech House,

1998.

http://www.mathworks.com/discovery/monte-carlo-simulation.html
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Atef+Elsherbeni%22

Appendixes

10. APPENDIXES:
A.Radar Simulation Graphical user interface:
function varargout = radarSimulation(varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @radarSimulation_OpeningFcn, ...
 'gui_OutputFcn', @radarSimulation_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before radarSimulation is made visible.
function radarSimulation_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to radarSimulation (see VARARGIN)
global r; r=0; global i; i=0; global inputdata; global z; z=0; global p; p=0; global rang;
% Choose default command line output for radarSimulation
handles.output = hObject;
handles.FOV = [];
handles.mountains = [];
handles.IF_Freq = 3e7;
handles.currentTime = 0;
handles.targetsFigure = [];
handles.Targets = [];
handles.pulseNum = 0;
handles.plotedTargets = [];
plotDistLines(handles.radarDisplay,10);
PW_Callback(handles.PW, eventdata, handles); % updating the current PW value
% Update handles structure
guidata(hObject, handles);
reset_Callback(hObject, eventdata, handles)
% UIWAIT makes radarSimulation wait for user response (see UIRESUME)
% uiwait(handles.figure1);
 % --- Outputs from this function are returned to the command line.
function varargout = radarSimulation_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on key press with focus on figure1 and none of its controls.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata structure with the following fields (see FIGURE)
% Key: name of the key that was pressed, in lower case

% Character: character interpretation of the key(s) that was pressed
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
% handles structure with handles and user data (see GUIDATA)
tcpipClient = tcpip('127.0.0.1',500,'NetworkRole','Client');%10.1.1.2 is the Aircraft IP
set(tcpipClient,'InputBufferSize',100);
set(tcpipClient,'Timeout',30);
fopen(tcpipClient);
rawData = fread (tcpipClient,1,'double');
fclose (tcpipClient);
delete (tcpipClient);
clear tcpipClient
global i; global z; global r;global p; global rang;
isMTIused = get(handles.useMTI,'value');
 switch (rawData)
 case 1
 if isMTIused
 i = rang;
 handles = createTargets1(hObject,handles,i)
 r=1;
 p=1;
 else
 handles = createTargets1(hObject,handles,i)
 r=1;
 p=1;
 end
 case 0
 handles = createTargets1(hObject,handles,i);
 r=0;
 p=0;
 end
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
plotDistLines(handles.radarDisplay,10);
handles.numRadarTurn = 0;
handles.currentTime = 0;
set(handles.bufferAnalyze,'value',0);
switch p
 case 1
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v2(handles,p,i);
 case 0
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v3(handles,p,i);
end

function PRI_Callback(hObject, eventdata, handles)
% hObject handle to PRI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of PRI as text
% str2double(get(hObject,'String')) returns contents of PRI as a double
% --- Executes during object creation, after setting all properties.
function PRI_CreateFcn(hObject, eventdata, handles)
% hObject handle to PRI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function ZSA_Callback(hObject, eventdata, handles)

% hObject handle to ZSA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ZSA as text
% str2double(get(hObject,'String')) returns contents of ZSA as a double
% --- Executes during object creation, after setting all properties.
function ZSA_CreateFcn(hObject, eventdata, handles)
% hObject handle to ZSA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
 % Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on slider movement.
function PW_Callback(hObject, eventdata, handles)
 percent = get(hObject,'value');
 str = ['PW = ' num2str(percent*100) '% of the PRI'];
 set(handles.PWstr,'string',str);
% hObject handle to PW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function PW_CreateFcn(hObject, eventdata, handles)
% hObject handle to PW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
 % Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
 set(hObject,'BackgroundColor',[.9 .9 .9]);
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in run.

function run_Callback(hObject, eventdata, handles)
global i; global r; global inputdata; global z; global p;
switch get(hObject,'string')
 case 'Pause'
 set(hObject,'string', 'Continue','value',0);
 return;
 case 'Start'
 if p==1
 i;
 handles = createTargets1(hObject,handles,i);
 else
 %handles = createTargets0(hObject,handles);
 handles = createTargets1(hObject,handles,i);
end
set(handles.pushbutton12,'enable','on');
set(handles.bufferAnalyze,'value',0);
handles.currentTime = 0;
set(hObject,'string', 'Pause');
handles.FOV = [];
handles.persistentPlotHandle = [];
handles.pulseNum = 1;
guidata(hObject, handles);

plotDistLines(handles.radarDisplay,10);
set(handles.nTargets,'enable','off');
set(handles.nMountains,'enable','off');
set(handles.RCS,'enable','off');
handles.numRadarTurn = 0;
 case 'Continue'
 set(hObject,'string', 'Pause','value',1);
 end
switch p
 case 1
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v2(handles,p,i);
 case 0
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v3(handles,p,i);
end
inputdata = [NPB PRIA SR DZN EN PWA STA AMP];
function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as a double
% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes during object creation, after setting all properties.
function bufferSize_CreateFcn(hObject, eventdata, handles)
% hObject handle to bufferSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function Amp_Callback(hObject, eventdata, handles)
% hObject handle to Amp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Amp as text
% str2double(get(hObject,'String')) returns contents of Amp as a double
% --- Executes during object creation, after setting all properties.
function Amp_CreateFcn(hObject, eventdata, handles)
% hObject handle to Amp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function Th_Callback(hObject, eventdata, handles)
 Th = get(hObject,'value');
if get(handles.CFAR,'value')
 str = ['Relative Th = ' num2str(Th)];
else
 str = ['Absolute Th = ' num2str(10^(Th))];
end
set(handles.ThStr,'string',str);
% hObject handle to Th (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Th as text
% str2double(get(hObject,'String')) returns contents of Th as a double
% --- Executes during object creation, after setting all properties.
function Th_CreateFcn(hObject, eventdata, handles)
% hObject handle to Th (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function updateRate_Callback(hObject, eventdata, handles)
% hObject handle to updateRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of updateRate as text
% str2double(get(hObject,'String')) returns contents of updateRate as a double
% --- Executes during object creation, after setting all properties.
function updateRate_CreateFcn(hObject, eventdata, handles)
% hObject handle to updateRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in recieveChannelBWType.
function recieveChannelBWType_Callback(hObject, eventdata, handles)
% hObject handle to recieveChannelBWType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns recieveChannelBWType contents as cell array
% contents{get(hObject,'Value')} returns selected item from recieveChannelBWType
% --- Executes during object creation, after setting all properties.
function recieveChannelBWType_CreateFcn(hObject, eventdata, handles)
% hObject handle to recieveChannelBWType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function RadarBW_Callback(hObject, eventdata, handles)

% hObject handle to RadarBW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of RadarBW as text
% str2double(get(hObject,'String')) returns contents of RadarBW as a double
% --- Executes during object creation, after setting all properties.
function RadarBW_CreateFcn(hObject, eventdata, handles)
% hObject handle to RadarBW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function samplingRate_Callback(hObject, eventdata, handles)
% hObject handle to samplingRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of samplingRate as text
% str2double(get(hObject,'String')) returns contents of samplingRate as a double
% --- Executes during object creation, after setting all properties.
function samplingRate_CreateFcn(hObject, eventdata, handles)
% hObject handle to samplingRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function antenaAperture_Callback(hObject, eventdata, handles)
% hObject handle to antenaAperture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of antenaAperture as text
% str2double(get(hObject,'String')) returns contents of antenaAperture as a double
% --- Executes during object creation, after setting all properties.
function antenaAperture_CreateFcn(hObject, eventdata, handles)
% hObject handle to antenaAperture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function antenaMode_Callback(hObject, eventdata, handles)
% hObject handle to antenaMode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of antenaMode as text
% str2double(get(hObject,'String')) returns contents of antenaMode as a double
% --- Executes during object creation, after setting all properties.
function antenaMode_CreateFcn(hObject, eventdata, handles)
% hObject handle to antenaMode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function edit9_CreateFcn(hObject, eventdata, handles)
% --- Executes on button press in reset.
function reset_Callback(hObject, eventdata, handles)
set(handles.run,'value',0);
global p; p=0;global i; i=0;
set(handles.pushbutton12,'value',0);
set(handles.run,'string','Start');
set(handles.pushbutton12,'string','Enable Transmission');
set(handles.pushbutton12,'enable','off');
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
handles.mountains = [];
handles.foundTargets = createTargetObj({},{},{},{},{},{},{},{},{},{}); % creating an empty object
guidata(hObject,handles);
handleRadarControlls(handles,'on');
set(handles.nTargets,'enable','on');
set(handles.nMountains,'enable','on');
set(handles.bufferAnalyze,'enable','off');
set(handles.bufferAnalyze,'value',0);
set(handles.RCS,'enable','on');
set(handles.scopeDisplay,'value',1);
scopeDisplay_Callback(handles.scopeDisplay, eventdata, handles)
set(gca,'xlim',[-100 100]*1e3, 'ylim', [-100 100]*1e3);
grid on;
plotDistLines(handles.radarDisplay,10);
% hObject handle to reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function nTargets_Callback(hObject, eventdata, handles)
% hObject handle to nTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nTargets as text
% str2double(get(hObject,'String')) returns contents of nTargets as a double
% --- Executes during object creation, after setting all properties.
function nTargets_CreateFcn(hObject, eventdata, handles)
% hObject handle to nTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in RCS.
function RCS_Callback(hObject, eventdata, handles)
% hObject handle to RCS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns RCS contents as cell array
% contents{get(hObject,'Value')} returns selected item from RCS
% --- Executes during object creation, after setting all properties.
function RCS_CreateFcn(hObject, eventdata, handles)

% hObject handle to RCS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in useMatchFilter.
function useMatchFilter_Callback(hObject, eventdata, handles)
% hObject handle to useMatchFilter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of useMatchFilter
% --- Executes during object creation, after setting all properties.
function useMatchFilter_CreateFcn(hObject, eventdata, handles)
% hObject handle to useMatchFilter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes during object creation, after setting all properties.
function radarDisplay_CreateFcn(hObject, eventdata, handles)
grid on;
% hObject handle to radarDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate radarDisplay
% --- Executes on button press in placeMaountins.
function placeMaountins_Callback(hObject, eventdata, handles)
if get(hObject,'value') %placing mountains
set(handles.run,'visible','off');
set(handles.bufferAnalyze,'visible','off');
set(hObject,'FontWeight','bold','FontSize',10);
title(handles.radarDisplay,'click on display to place mountains');
hold on;
set(gcf,'userdata',handles);
str = ['temp = get(gca,''CurrentPoint''); h=placeClutter(get(gcf,''userdata''),temp(1,1:2)); ' ...
 'set(gcf,''userdata'',h); plot(temp(1,1),temp(1,2),''*k'',''MarkerSize'',10,''tag'',''mountain'');'];
set(handles.radarDisplay,'buttondownfcn',str);
else % finished placing mountains
set(handles.run,'visible','on');
set(handles.bufferAnalyze,'visible','on');
hold off;
set(hObject,'FontWeight','normal','FontSize',8);
title(handles.radarDisplay,[]);
h = findobj(handles.radarDisplay,'tag','mountain');
delete(h);
set(handles.radarDisplay,'buttondownfcn',[]);
guidata(hObject, handles);
end
% hObject handle to placeMaountins (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of placeMaountins
% --- Executes on button press in useMTI.
function useMTI_Callback(hObject, eventdata, handles)
% --- Executes on button press in displayTargets.
function displayTargets_Callback(hObject, eventdata, handles)
displayTargets(handles,'in diffrent figure')
% hObject handle to displayTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of displayTargets

function digitizerNoiseLevel_Callback(hObject, eventdata, handles)
% hObject handle to digitizerNoiseLevel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of digitizerNoiseLevel as text
% str2double(get(hObject,'String')) returns contents of digitizerNoiseLevel as a double
% --- Executes during object creation, after setting all properties.
function digitizerNoiseLevel_CreateFcn(hObject, eventdata, handles)
% hObject handle to digitizerNoiseLevel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in bufferAnalyze.
function bufferAnalyze_Callback(hObject, eventdata, handles)
set(handles.run,'value',1);
global r; global i;global rang; global p;
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
plotDistLines(handles.radarDisplay,10);
handles.currentTime = 0 ;
if p==1
isMTIused = get(handles.useMTI,'value');
if isMTIused
i = rang
end
handles = createTargets1(hObject,handles,i);
else
handles = createTargets1(hObject,handles,i);
end
if p==1
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v2(handles,p,i);
else
 [NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v3(handles,p,i);
end
% hObject handle to bufferAnalyze (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in waitForTarget.
function waitForTarget_Callback(hObject, eventdata, handles)
% hObject handle to waitForTarget (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of waitForTarget
% --- Executes on selection change in backgrundColor.
function backgrundColor_Callback(hObject, eventdata, handles)
% hObject handle to backgrundColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns backgrundColor contents as cell array
% contents{get(hObject,'Value')} returns selected item from backgrundColor
% --- Executes during object creation, after setting all properties.
function backgrundColor_CreateFcn(hObject, eventdata, handles)
% hObject handle to backgrundColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in RFnoise.
function RFnoise_Callback(hObject, eventdata, handles)
% hObject handle to RFnoise (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns RFnoise contents as cell array
% contents{get(hObject,'Value')} returns selected item from RFnoise
% --- Executes during object creation, after setting all properties.
function RFnoise_CreateFcn(hObject, eventdata, handles)
% hObject handle to RFnoise (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in CFAR.
function CFAR_Callback(hObject, eventdata, handles)
 if get(hObject,'value')
 % using relative threshold
 set(handles.Th,'min',1.1,'max',10,'value',2);
 Th_Callback(handles.Th, eventdata, handles);
 else
 % using absolute threshold
 set(handles.Th,'min',-20,'max',-1,'value',-9);
 Th_Callback(handles.Th, eventdata, handles);
 end
% --- Executes on selection change in nMountains.
function nMountains_Callback(hObject, eventdata, handles)
% hObject handle to nMountains (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns nMountains contents as cell array
% contents{get(hObject,'Value')} returns selected item from nMountains
% --- Executes during object creation, after setting all properties.
function nMountains_CreateFcn(hObject, eventdata, handles)
% hObject handle to nMountains (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in stagger.
function stagger_Callback(hObject, eventdata, handles)
% hObject handle to stagger (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns stagger contents as cell array
% contents{get(hObject,'Value')} returns selected item from stagger
% --- Executes during object creation, after setting all properties.
function stagger_CreateFcn(hObject, eventdata, handles)

% hObject handle to stagger (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in playSound.
function playSound_Callback(hObject, eventdata, handles)
% hObject handle to playSound (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of playSound
% --- Executes on button press in soundOn.
function soundOn_Callback(hObject, eventdata, handles)
val = get(hObject,'value');
if val
 field = 'soundOnIcon';
else
 field = 'soundOffIcon';
end
icon = getappdata(hObject,field);
set(hObject,'units','pixels');
pos = get(hObject,'position');
set(hObject,'units','normalized');
icon = imresize(icon,[pos(4) pos(3)]);
set(hObject,'cdata',icon);
% hObject handle to soundOn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of soundOn
% --- Executes during object creation, after setting all properties.
function soundOn_CreateFcn(hObject, eventdata, handles)
if exist('soundOn.jpg','file') & exist('soundOff.jpg','file'); % both icon files exist
soundOnIcon = imread('soundOn.jpg');
soundOffIcon = imread('soundOff.jpg');
setappdata(hObject,'soundOnIcon',soundOnIcon);
setappdata(hObject,'soundOffIcon',soundOffIcon);
set(hObject,'cdata',soundOffIcon, 'value',0);
soundOn_Callback(hObject, eventdata, handles)
else
 set(hObject,'enable','off');
end
% hObject handle to soundOn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in scopeDisplay.
function scopeDisplay_Callback(hObject, eventdata, handles)
val = get(hObject,'value');
 if val
 field = 'scopeOnIcon';
 else
 field = 'scopeOffIcon';
 end
icon = getappdata(hObject,field);
set(hObject,'units','pixels');
pos = get(hObject,'position');
set(hObject,'units','normalized');
icon = imresize(icon,[pos(4) pos(3)]);
set(hObject,'cdata',icon);
% hObject handle to scopeDisplay (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of scopeDisplay
% --- Executes during object creation, after setting all properties.
function scopeDisplay_CreateFcn(hObject, eventdata, handles)
if exist('ociloscopeOn.jpg','file') & exist('ociloscopeOff.jpg','file'); % both icon files exist
scopeOnIcon = imread('ociloscopeOn.jpg');
scopeOffIcon = imread('ociloscopeOff.jpg');
setappdata(hObject,'scopeOnIcon',scopeOnIcon);
setappdata(hObject,'scopeOffIcon',scopeOffIcon);
set(hObject,'cdata',scopeOffIcon, 'value',0);
scopeDisplay_Callback(hObject, eventdata, handles)
else
set(hObject,'enable','off');
end
% hObject handle to scopeDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in persistentDisplay.
function persistentDisplay_Callback(hObject, eventdata, handles)
% hObject handle to persistentDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of persistentDisplay
% --- Executes when figure1 is resized.
function figure1_ResizeFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on key press with focus on run and none of its controls.
function run_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata structure with the following fields (see UICONTROL)
% Key: name of the key that was pressed, in lower case
% Character: character interpretation of the key(s) that was pressed
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over run.
function run_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in togglebutton4.
function togglebutton4_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of togglebutton4
% --- Executes on button press in pushbutton12.
function pushbutton12_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
guidata(hObject, handles);
global r;global z;global p;
switch get(hObject,'string')
case 'Disable Transmission'
set(hObject,'string', 'Enable Transmission','value',1)

return;
case 'Enable Transmission'
z=1; r=1; p=1;
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
plotDistLines(handles.radarDisplay,10);
handles.numRadarTurn = 0;
handles.currentTime = 0;
set(handles.pushbutton12,'enable','off');
set(hObject,'string', 'Disable Transmission','value',1);
global i; global inputdata;
s = whos('inputdata'); s.size; s.bytes;
tcpipServer = tcpip('0.0.0.0',180,'NetworkRole','Server');
set(tcpipServer,'OutputBufferSize',500);
fopen(tcpipServer);
fwrite(tcpipServer,inputdata(:),'double');
fclose(tcpipServer);
delete (tcpipServer);
clear tcpipServer
tcpipClient = tcpip('127.0.0.1',180,'NetworkRole','Client');%10.1.1.2 is the Radar IP
set(tcpipClient,'InputBufferSize',500);
set(tcpipClient,'Timeout',30);
fopen(tcpipClient);
rawData = fread (tcpipClient,1,'double');
fclose (tcpipClient);
delete (tcpipClient);
clear tcpipClient;
i= rawData;
handles = createTargets1(hObject,handles,i);
end
set(handles.run,'value',1)
[NPB,PRIA,SR,DZN,EN,PWA,STA,AMP]=runRadarSim_v2(handles,z,i);
% --- Executes during object creation, after setting all properties.
function pushbutton12_CreateFcn(hObject, eventdata, handles)
% hObject handle to pushbutton12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes during object creation, after setting all properties.
function run_CreateFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes during object deletion, before destroying properties.
function run_DeleteFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

B.Aircraft Simulation Graphical user interface:
function varargout = AirecraftSimulation(varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @AirecraftSimulation_OpeningFcn, ...
 'gui_OutputFcn', @AirecraftSimulation_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before AirecraftSimulation is made visible.
function AirecraftSimulation_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to AirecraftSimulation (see VARARGIN)
global r; r = 0; global i; i = 60000; global NPB;global PRIA; global SR; global DZN; global EN;
global PWA; global STA; global AMP; NPB = 32; PRIA = 8.0000e-04; SR = 50000; DZN = 9; EN =
13; PWA = 1.6000e-05; STA = 1; AMP = 1.0000e+10; global g; g=1;
% Choose default command line output for AirecraftSimulation
handles.output = hObject;
handles.FOV = []; handles.mountains = []; handles.IF_Freq = 3e7; handles.currentTime = 0;
handles.targetsFigure = []; handles.Targets = []; handles.pulseNum = 0; handles.plotedTargets = [];
plotDistLines(handles.radarDisplay,10);
PW_Callback(handles.PW, eventdata, handles);
guidata(hObject, handles);
reset_Callback(hObject, eventdata, handles)
% --- Outputs from this function are returned to the command line.
function varargout = AirecraftSimulation_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function PRI_Callback(hObject, eventdata, handles)
% hObject handle to PRI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of PRI as text
% str2double(get(hObject,'String')) returns contents of PRI as a double
% --- Executes during object creation, after setting all properties.
function PRI_CreateFcn(hObject, eventdata, handles)
% hObject handle to PRI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function ZSA_Callback(hObject, eventdata, handles)
% hObject handle to ZSA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ZSA as text
% str2double(get(hObject,'String')) returns contents of ZSA as a double
% --- Executes during object creation, after setting all properties.
function ZSA_CreateFcn(hObject, eventdata, handles)
% hObject handle to ZSA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on slider movement.
function PW_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function PW_CreateFcn(hObject, eventdata, handles)
% hObject handle to PW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
 set(hObject,'BackgroundColor',[.9 .9 .9]);
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in run.
function run_Callback(hObject, eventdata, handles)
global i; global r; global NPB;global PRIA; global SR; global DZN; global EN; global PWA; global
STA; global AMP; global g;
switch get(hObject,'string')
case 'Pause'
set(hObject,'string', 'Continue','value',0);
return;
case 'Start'
if r==1
i;
handles = createTargets1(hObject,handles,i);
else
handles = createTargets0(hObject,handles);
end
handles.currentTime = 0;
set(hObject,'string', 'Pause');
set(handles.pushbutton12,'enable','on');
handles.FOV = [];
handles.persistentPlotHandle = [];
handles.pulseNum = 1;
guidata(hObject, handles);
plotDistLines(handles.radarDisplay,10);
set(handles.nTargets,'enable','off');
set(handles.nMountains,'enable','off');
set(handles.RCS,'enable','off');
handles.numRadarTurn = 0;
case 'Continue'
set(hObject,'string', 'Pause','value',1);
end
runAircraftSim_v2(handles,NPB,PRIA,SR,DZN,EN,PWA,STA,AMP,i);
function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as a double
% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes during object creation, after setting all properties.
function bufferSize_CreateFcn(hObject, eventdata, handles)
% hObject handle to bufferSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function Amp_Callback(hObject, eventdata, handles)
% hObject handle to Amp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Amp as text
% str2double(get(hObject,'String')) returns contents of Amp as a double
% --- Executes during object creation, after setting all properties.
function Amp_CreateFcn(hObject, eventdata, handles)
% hObject handle to Amp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function Th_Callback(hObject, eventdata, handles)
Th = get(hObject,'value');
if get(handles.CFAR,'value')
 str = ['Relative Th = ' num2str(Th)];
else
 str = ['Absolute Th = ' num2str(10^(Th))];
end
set(handles.ThStr,'string',str);
% hObject handle to Th (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Th as text
% str2double(get(hObject,'String')) returns contents of Th as a double
% --- Executes during object creation, after setting all properties.
function Th_CreateFcn(hObject, eventdata, handles)
% hObject handle to Th (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function updateRate_Callback(hObject, eventdata, handles)
% hObject handle to updateRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of updateRate as text
% str2double(get(hObject,'String')) returns contents of updateRate as a double
% --- Executes during object creation, after setting all properties.
function updateRate_CreateFcn(hObject, eventdata, handles)
% hObject handle to updateRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in recieveChannelBWType.
function recieveChannelBWType_Callback(hObject, eventdata, handles)
% hObject handle to recieveChannelBWType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns recieveChannelBWType contents as cell array
% contents{get(hObject,'Value')} returns selected item from recieveChannelBWType
% --- Executes during object creation, after setting all properties.
function recieveChannelBWType_CreateFcn(hObject, eventdata, handles)
% hObject handle to recieveChannelBWType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function RadarBW_Callback(hObject, eventdata, handles)
% hObject handle to RadarBW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of RadarBW as text
% str2double(get(hObject,'String')) returns contents of RadarBW as a double
% --- Executes during object creation, after setting all properties.
function RadarBW_CreateFcn(hObject, eventdata, handles)
% hObject handle to RadarBW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function samplingRate_Callback(hObject, eventdata, handles)
% hObject handle to samplingRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of samplingRate as text
% str2double(get(hObject,'String')) returns contents of samplingRate as a double
% --- Executes during object creation, after setting all properties.
function samplingRate_CreateFcn(hObject, eventdata, handles)
% hObject handle to samplingRate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function antenaAperture_Callback(hObject, eventdata, handles)
% hObject handle to antenaAperture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of antenaAperture as text
% str2double(get(hObject,'String')) returns contents of antenaAperture as a double
% --- Executes during object creation, after setting all properties.
function antenaAperture_CreateFcn(hObject, eventdata, handles)
% hObject handle to antenaAperture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function antenaMode_Callback(hObject, eventdata, handles)
% hObject handle to antenaMode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of antenaMode as text
% str2double(get(hObject,'String')) returns contents of antenaMode as a double
% --- Executes during object creation, after setting all properties.
function antenaMode_CreateFcn(hObject, eventdata, handles)
% hObject handle to antenaMode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function edit9_CreateFcn(hObject, eventdata, handles)
% --- Executes on button press in reset.
function reset_Callback(hObject, eventdata, handles)
set(handles.run,'value',0);
set(handles.pushbutton12,'value',0);
set(handles.run,'string','Start');
set(handles.pushbutton12,'string','Enable Transmission');
set(handles.pushbutton12,'enable','off');
set(handles.stealth,'string', 'Enable Stealth')
set(handles.pushbutton14,'enable','off');
set(handles.stealth,'enable','off');
set(handles.togglebutton4,'value',0);
togglebutton4_Callback(handles.togglebutton4, eventdata, handles)
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
handles.mountains = [];
handles.foundTargets = createTargetObj({},{},{},{},{},{},{},{},{},{});
guidata(hObject,handles);
handleRadarControlls(handles,'on');
set(handles.nTargets,'enable','on');

set(handles.nMountains,'enable','on');
set(handles.bufferAnalyze,'value',0);
set(handles.bufferAnalyze,'enable','off');
set(handles.RCS,'enable','on');
set(handles.scopeDisplay,'value',1);
scopeDisplay_Callback(handles.scopeDisplay, eventdata, handles)
set(gca,'xlim',[-100 100]*1e3, 'ylim', [-100 100]*1e3);
grid on;
plotDistLines(handles.radarDisplay,10);
% hObject handle to reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function nTargets_Callback(hObject, eventdata, handles)
% hObject handle to nTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nTargets as text
% str2double(get(hObject,'String')) returns contents of nTargets as a double
% --- Executes during object creation, after setting all properties.
function nTargets_CreateFcn(hObject, eventdata, handles)
% hObject handle to nTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in RCS.
function RCS_Callback(hObject, eventdata, handles)
% hObject handle to RCS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns RCS contents as cell array
% contents{get(hObject,'Value')} returns selected item from RCS
% --- Executes during object creation, after setting all properties.
function RCS_CreateFcn(hObject, eventdata, handles)
% hObject handle to RCS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in useMatchFilter.
function useMatchFilter_Callback(hObject, eventdata, handles)
% hObject handle to useMatchFilter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of useMatchFilter
% --- Executes during object creation, after setting all properties.
function useMatchFilter_CreateFcn(hObject, eventdata, handles)
% hObject handle to useMatchFilter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes during object creation, after setting all properties.
function radarDisplay_CreateFcn(hObject, eventdata, handles)
grid on;
% hObject handle to radarDisplay (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate radarDisplay
% --- Executes on button press in placeMaountins.
function placeMaountins_Callback(hObject, eventdata, handles)
if get(hObject,'value') %placing mountains
set(handles.run,'visible','off');
set(handles.bufferAnalyze,'visible','off');
set(hObject,'FontWeight','bold','FontSize',10);
title(handles.radarDisplay,'click on display to place mountains');
hold on;
set(gcf,'userdata',handles);
str = ['temp = get(gca,''CurrentPoint''); h=placeClutter(get(gcf,''userdata''),temp(1,1:2)); ' ...
 'set(gcf,''userdata'',h); plot(temp(1,1),temp(1,2),''*k'',''MarkerSize'',10,''tag'',''mountain'');'];
set(handles.radarDisplay,'buttondownfcn',str);
else % finished placing mountains
set(handles.run,'visible','on');
set(handles.bufferAnalyze,'visible','on');
hold off;
set(hObject,'FontWeight','normal','FontSize',8);
title(handles.radarDisplay,[]);
h = findobj(handles.radarDisplay,'tag','mountain');
delete(h);
set(handles.radarDisplay,'buttondownfcn',[]);
guidata(hObject, handles);
end
% hObject handle to placeMaountins (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of placeMaountins
% --- Executes on button press in useMTI.
function useMTI_Callback(hObject, eventdata, handles)
% --- Executes on button press in displayTargets.
function displayTargets_Callback(hObject, eventdata, handles)
displayTargets(handles,'in diffrent figure')
% hObject handle to displayTargets (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of displayTargets
function digitizerNoiseLevel_Callback(hObject, eventdata, handles)
% hObject handle to digitizerNoiseLevel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of digitizerNoiseLevel as text
% str2double(get(hObject,'String')) returns contents of digitizerNoiseLevel as a double
% --- Executes during object creation, after setting all properties.
function digitizerNoiseLevel_CreateFcn(hObject, eventdata, handles)
% hObject handle to digitizerNoiseLevel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in bufferAnalyze.
function bufferAnalyze_Callback(hObject, eventdata, handles)
%set(handles.run,'value',0);
set(handles.run,'value',1);
global r; global g; g=1; r=1; global i;
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end

h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
plotDistLines(handles.radarDisplay,10);
handles.currentTime = 0 ;
handles = createTargets1(hObject,handles,i);
run_Callback(handles.run, eventdata, handles)
% hObject handle to bufferAnalyze (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in waitForTarget.
function waitForTarget_Callback(hObject, eventdata, handles)
% hObject handle to waitForTarget (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of waitForTarget
% --- Executes on selection change in backgrundColor.
function backgrundColor_Callback(hObject, eventdata, handles)
% hObject handle to backgrundColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns backgrundColor contents as cell array
% contents{get(hObject,'Value')} returns selected item from backgrundColor
% --- Executes during object creation, after setting all properties.
function backgrundColor_CreateFcn(hObject, eventdata, handles)
% hObject handle to backgrundColor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in RFnoise.
function RFnoise_Callback(hObject, eventdata, handles)
% hObject handle to RFnoise (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns RFnoise contents as cell array
% contents{get(hObject,'Value')} returns selected item from RFnoise
% --- Executes during object creation, after setting all properties.
function RFnoise_CreateFcn(hObject, eventdata, handles)
% hObject handle to RFnoise (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in CFAR.
function CFAR_Callback(hObject, eventdata, handles)
if get(hObject,'value')
set(handles.Th,'min',1.1,'max',10,'value',2);
Th_Callback(handles.Th, eventdata, handles);
else
set(handles.Th,'min',-20,'max',-1,'value',-9);
Th_Callback(handles.Th, eventdata, handles);
end
% --- Executes on selection change in nMountains.
function nMountains_Callback(hObject, eventdata, handles)

% hObject handle to nMountains (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns nMountains contents as cell array
% contents{get(hObject,'Value')} returns selected item from nMountains
% --- Executes during object creation, after setting all properties.
function nMountains_CreateFcn(hObject, eventdata, handles)
% hObject handle to nMountains (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on selection change in stagger.
function stagger_Callback(hObject, eventdata, handles)
% hObject handle to stagger (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns stagger contents as cell array
% contents{get(hObject,'Value')} returns selected item from stagger
% --- Executes during object creation, after setting all properties.
function stagger_CreateFcn(hObject, eventdata, handles)
% hObject handle to stagger (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes on button press in playSound.
function playSound_Callback(hObject, eventdata, handles)
% hObject handle to playSound (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of playSound
% --- Executes on button press in soundOn.
function soundOn_Callback(hObject, eventdata, handles)
val = get(hObject,'value');
if val
field = 'soundOnIcon';
else
field = 'soundOffIcon';
end
icon = getappdata(hObject,field);
set(hObject,'units','pixels');
pos = get(hObject,'position');
set(hObject,'units','normalized');
icon = imresize(icon,[pos(4) pos(3)]);
set(hObject,'cdata',icon);
% hObject handle to soundOn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of soundOn
% --- Executes during object creation, after setting all properties.
function soundOn_CreateFcn(hObject, eventdata, handles)
if exist('soundOn.jpg','file') & exist('soundOff.jpg','file'); % both icon files exist
soundOnIcon = imread('soundOn.jpg');

soundOffIcon = imread('soundOff.jpg');
setappdata(hObject,'soundOnIcon',soundOnIcon);
setappdata(hObject,'soundOffIcon',soundOffIcon);
set(hObject,'cdata',soundOffIcon, 'value',0);
soundOn_Callback(hObject, eventdata, handles)
else
 set(hObject,'enable','off');
end
% hObject handle to soundOn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in scopeDisplay.
function scopeDisplay_Callback(hObject, eventdata, handles)
% hObject handle to scopeDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of scopeDisplay
val = get(hObject,'value');
if val
field = 'scopeOnIcon';
else
field = 'scopeOffIcon';
end
icon = getappdata(hObject,field);
set(hObject,'units','pixels');
pos = get(hObject,'position');
set(hObject,'units','normalized');
icon = imresize(icon,[pos(4) pos(3)]);
set(hObject,'cdata',icon);
% --- Executes during object creation, after setting all properties.
function scopeDisplay_CreateFcn(hObject, eventdata, handles)
if exist('ociloscopeOn.jpg','file') & exist('ociloscopeOff.jpg','file'); % both icon files exist
scopeOnIcon = imread('ociloscopeOn.jpg');
scopeOffIcon = imread('ociloscopeOff.jpg');
setappdata(hObject,'scopeOnIcon',scopeOnIcon);
setappdata(hObject,'scopeOffIcon',scopeOffIcon);
set(hObject,'cdata',scopeOffIcon, 'value',0);
scopeDisplay_Callback(hObject, eventdata, handles)
else
set(hObject,'enable','off');
end
% hObject handle to scopeDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in persistentDisplay.
function persistentDisplay_Callback(hObject, eventdata, handles)
% hObject handle to persistentDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of persistentDisplay
% --- Executes when figure1 is resized.
function figure1_ResizeFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on key press with focus on run and none of its controls.
function run_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata structure with the following fields (see UICONTROL)
% Key: name of the key that was pressed, in lower case
% Character: character interpretation of the key(s) that was pressed
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton7.

function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over run.
function run_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in togglebutton4.
function togglebutton4_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
valtest = get(hObject,'value');
if valtest
field = 'EnableIcon';
else
field = 'DisableIcon';
end
icon = getappdata(hObject,field);
set(hObject,'units','pixels');
pos = get(hObject,'position');
set(hObject,'units','normalized');
icon = imresize(icon,[pos(4) pos(3)]);
set(hObject,'cdata',icon);
set(hObject,'cdata',icon);
% Hint: get(hObject,'Value') returns toggle state of togglebutton4
% --- Executes on button press in pushbutton12.
function pushbutton12_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global NPB;global PRIA; global SR; global DZN; global EN; global PWA; global STA; global AMP;
switch get(hObject,'string')
case 'Disable Transmission'
set(hObject,'string', 'Enable Transmission','value',1)
set(handles.pushbutton14,'enable','off');
set(handles.stealth,'enable','off');
return;
case 'Enable Transmission'
open('AIRCRAFT.EXE');
set(handles.pushbutton14,'enable','on');
set(handles.stealth,'enable','on');
h = findobj(handles.radarDisplay,'type','line');
if ishandle(h) delete(h); end
h = findobj(handles.radarDisplay,'type','text');
if ishandle(h) delete(h); end
plotDistLines(handles.radarDisplay,10);
handles.numRadarTurn = 0;
handles.currentTime = 0;
set(handles.pushbutton12,'enable','off');
tcpipClient = tcpip('127.0.0.1',180,'NetworkRole','Client');%127.0.0.1 is the Radar IP
set(tcpipClient,'InputBufferSize',500);
set(tcpipClient,'Timeout',100);
fopen(tcpipClient);
rawData = fread (tcpipClient,8,'double');
fclose (tcpipClient);
delete (tcpipClient);
clear tcpipClient;
NPB = rawData(1);PRIA = rawData(2); SR = rawData(3); DZN = rawData(4); EN = rawData(5);
PWA = rawData(6); STA = rawData(7); AMP = rawData(8); global i;
tcpipServer = tcpip('0.0.0.0',180,'NetworkRole','Server');

set(tcpipServer,'OutputBufferSize',500);
fopen(tcpipServer);
fwrite(tcpipServer,i(:),'double');
fclose(tcpipServer);
delete (tcpipServer);
clear tcpipServer
handles = createTargets1(hObject,handles,i);
guidata(hObject, handles);
axes(handles.axes4);
h = phased.LinearFMWaveform;
% Set the values of the properties
h.SampleRate = 5e7;
h.PulseWidth = 1.6e-05;
h.PRF = 1/PRIA;
h.SweepBandwidth = 5e6;
h.NumPulses = 3;
Fs = h.SampleRate;
x = step(h);
l = (0:length(x)-1)/Fs;
plot(l,log10(AMP)*x);
ylabel('Amplitude (dB)');xlabel('[Sec]');
end
set(handles.bufferAnalyze,'enable','off');
runAircraftSim_v2(handles,NPB,PRIA,SR,DZN,EN,PWA,STA,AMP,i);
% --- Executes during object creation, after setting all properties.
function pushbutton12_CreateFcn(hObject, eventdata, handles)
% hObject handle to pushbutton12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes during object creation, after setting all properties.
function run_CreateFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in pushbutton14.
function pushbutton14_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.bufferAnalyze,'value',1);
global g; g=0;
bufferAnalyze_Callback(handles.bufferAnalyze, eventdata, handles);

% --- Executes during object creation, after setting all properties.
function togglebutton4_CreateFcn(hObject, eventdata, handles)
% hObject handle to togglebutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
if exist('Enable.jpg','file') & exist('Disable.jpg','file'); % both icon files exist
EnableIcon = imread('Enable.jpg');
DisableIcon = imread('Disable.jpg');
setappdata(hObject,'EnableIcon',EnableIcon);
setappdata(hObject,'DisableIcon',DisableIcon);
set(hObject,'cdata',DisableIcon, 'value',0)
togglebutton4_Callback(hObject, eventdata, handles)
else
set(hObject,'enable','off');
end
% --- Executes on button press in stealth.
function stealth_Callback(hObject, eventdata, handles)
% hObject handle to stealth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

switch get(hObject,'string')
case 'Disable Stealth'
set(hObject,'string', 'Enable Stealth','value',1);
set(handles.togglebutton4,'value',0);
togglebutton4_Callback(handles.togglebutton4, eventdata, handles)
data =1;
tcpipServer = tcpip('0.0.0.0',500,'NetworkRole','Server');
set(tcpipServer,'OutputBufferSize',100);
fopen(tcpipServer);
fwrite(tcpipServer,data(:),'double');
fclose(tcpipServer);
delete (tcpipServer);
clear tcpipServer
case 'Enable Stealth'
set(hObject,'string', 'Disable Stealth','value',1);
set(handles.togglebutton4,'value',1);
togglebutton4_Callback(handles.togglebutton4, eventdata, handles)
data = 0;
tcpipServer = tcpip('0.0.0.0',500,'NetworkRole','Server');
set(tcpipServer,'OutputBufferSize',100);
fopen(tcpipServer);
fwrite(tcpipServer,data(:),'double');
fclose(tcpipServer);
delete (tcpipServer);
clear tcpipServer
end
% --- Executes during object creation, after setting all properties.
function miniDisplay_CreateFcn(hObject, eventdata, handles)
% hObject handle to miniDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate miniDisplay
% --- Executes during object creation, after setting all properties.
function axes4_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes4
% --- Executes during object deletion, before destroying properties.
function run_DeleteFcn(hObject, eventdata, handles)
% hObject handle to run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on key press with focus on figure1 and none of its controls.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata structure with the following fields (see FIGURE)
% Key: name of the key that was pressed, in lower case
% Character: character interpretation of the key(s) that was pressed
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
% handles structure with handles and user data (see GUIDATA)
global i;i = 60000;
% --- Executes on button press in togglebutton5.
function togglebutton5_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of togglebutton5

C.runAircraftSim_v2
function runAircraftSim_v2(handles,NPB,PRIA,SR,DZN,EN,PWA,STA,AMP,k)
warning off all
displayTargets(handles,'in Aire craft radar display')

isAnalyzeBufferMode = get(handles.bufferAnalyze,'value');
nPRI = NPB;
freqRes = nPRI * 2;
freqInd = fftshift(1:freqRes);
handles.antenaGain = buildAntenaGain(handles);
figure(handles.figure1);
currentTime = handles.currentTime;
miniDisplayUpdateTime = 0;
pulseNum = handles.pulseNum;
PRI = PRIA; PRI was entered in msec
temp = get(handles.ZSA,'string');
ind = get(handles.ZSA,'value');
antenaTurnVelocity = str2num(temp{ind}) ;
temp = get(handles.updateRate,'string');
ind = get(handles.updateRate,'value');
updateRate = str2double(temp{ind});
Fs = SR; % Sampling rate
lastUpdate = currentTime;
antenaGain = handles.antenaGain;
temp = get(handles.RadarBW,'string');
radarBWOptions = zeros(length(temp),1);
for n=1 :length(temp)
 radarBWOptions(n) = str2double(temp(n));
end
PRISize = PRI*Fs; %number of samples in PRI
bufferSize = round(PRISize*nPRI); %number of samples in buffer
if bufferSize > 1e5
set(handles.run,'string','Pause');
radarSimulation('run_Callback',handles.run,[],guidata(handles.run));
ERRORDLG('requested PRI, buffer size & sampling rate require too large a vector for
simulation !!!');
end
returnPulses = zeros(bufferSize,1);
numRadarTurn = handles.numRadarTurn;
randVecLength = 1e6;
randVec = randn(randVecLength,1);
if Fs > 44e3
soundFs = 11e3;
sound2SampleRatio = round(Fs/soundFs);
else
soundFs = 11e3;
sound2SampleRatio = 1;
end
player = audioplayer(0, soundFs);
% Digitizer Noise
n = DZN; % Digitizer Noise
temp = get(handles.digitizerNoiseLevel,'string');
if strcmp(temp{n},'off')
digitizerNoiseLevel = 0;
else
n=str2double(temp{n});
digitizerNoiseLevel = 10^n;
end
% RF noise
n = EN; %Elecromagnatic Noise
temp = get(handles.RFnoise,'string');
if strcmp(temp{n},'off')
RFnoiseLevel = 0;
else
n=str2double(temp{n});
RFnoiseLevel = 10^n;
end
hold on;
PW = PWA; % Pule width

PWn = round(PW*Fs); PWn = max(1,PWn);
transmisionInd = zeros(PWn*nPRI,1);
pulseTransmitionPoints = ones(nPRI,1);
transmisionInd(1:PWn) = (1:PWn);
temp = STA;
options = get(handles.stagger,'string');
stagger = str2double(options{temp});
ratio = 2*PW / PRI;
ratio = max(ratio, 0.05);
intervals = (1+((0:stagger-1)-(stagger-1)/2)*ratio)*PRI;
numSamplesInInterval = round(intervals*Fs);
numSamplesInInterval(end) = round(numSamplesInInterval(end)-
mod(sum(numSamplesInInterval),PRISize));
numIntervals = length(intervals);
numSamplesInPRI = round(sum(intervals)*Fs);
maxDist = numSamplesInPRI*150/Fs*1e6;
for n=2:nPRI
interval = numSamplesInInterval(mod(n-1,numIntervals)+1);
transmisionInd((n-1)*PWn+1:n*PWn) = transmisionInd((n-2)*PWn+1:(n-1)*PWn) + interval;
pulseTransmitionPoints(n) = transmisionInd((n-1)*PWn+1);
end
rangeCellInd = zeros(nPRI,numSamplesInPRI);
for n = 1 : nPRI
rangeCellInd(n,:) = transmisionInd((n-1)*PWn+1);
end
temp = repmat(0:numSamplesInPRI-1,nPRI, 1);
rangeCellInd = rangeCellInd + temp;
rangeCellInd = mod(rangeCellInd-1,bufferSize) + 1;
rangeCellInd = rangeCellInd';
targetsTime = 0;
rangeRes = PWn; rangeRes = rangeRes + ~mod(rangeRes,2);
dilateKer = zeros(max(numSamplesInInterval)+rangeRes-1,1);
dilateKer(1:rangeRes) = 1;
dilateKer(1:3) = 1; %In case PWn == 1
stagger = length(numSamplesInInterval);
for n=1:stagger-1
for m = 1:stagger
ind = mod(m:m+n-1, stagger)+1;
offset = numSamplesInPRI - sum(numSamplesInInterval(ind));
dilateKer(offset:offset+PWn) = 1;
end
end
dilateKer = [dilateKer(end:-1:rangeRes+1) ; dilateKer];
angleRes = 1.1*2*pi*(nPRI*PRI)*(antenaTurnVelocity/2/pi);
rangeRes = PW*3e8/2;
velocityRes = 3e8/(handles.IF_Freq)/ nPRI*1000/2;
foundTargetInBuffer = 0;
radarSector = antenaTurnVelocity*updateRate; % a buffer sector
updatedDisplay = false;
tic;
lastUpdateRealTime = toc;
% ----------------------------- Start the Aircraft radar scan ---------------------------------
while get(handles.run,'value')
if get(handles.CFAR,'value')
useCFAR = true;
CFAR = get(handles.Th,'value');
else
useCFAR = false;
Th = 10^(get(handles.Th,'value'));
end
Amp = AMP;
currentTime = currentTime+PRI;
radarAngle = mod(antenaTurnVelocity*currentTime,2*pi); %radar angle in the middle of the buffer
% -------------------------------- Finding the return pulses --

targets = [handles.Targets ; handles.mountains];
curentReturnPulses = zeros(bufferSize,1);
if ~isempty(targets)
[t a phi] = targetsReturn(targets,antenaGain,Amp, currentTime,antenaTurnVelocity,
targetsTime,handles.IF_Freq);
tIn = round(t*Fs);
tIn = max(tIn,1); tIn = min(tIn,bufferSize);
for n=1:length(t)
curentReturnPulses(tIn(n):tIn(n)+PWn-1) = curentReturnPulses(tIn(n):tIn(n)+PWn-1) +
a(n)*exp(i*phi(n));
end
end
transmitInd = pulseTransmitionPoints(mod(pulseNum-1,nPRI)+1);
index = transmitInd : transmitInd + bufferSize-1;
index(bufferSize-transmitInd + 2 : bufferSize) = 1:transmitInd-1;
returnPulses(index) = returnPulses(index)+curentReturnPulses;
% --------------------------------- Processing Buffer --
if ~mod(pulseNum,nPRI) %Only processing every N number of pulses
recievedSignal = returnPulses;
n = get(handles.RadarBW,'value');
radarBW=radarBWOptions(n) * 1e6;
% -------------------------- Creating RF noise --
if RFnoiseLevel
RFnoise=wgn(length(returnPulses),1,0);
recievedSignal = recievedSignal+1e-8*RFnoise;
end
a = -pi^2*radarBW^2/log(0.5)*log(exp(1));
responseStart = sqrt(-log(0.1)/log(exp(1))/a);
t = -responseStart : 1/Fs : responseStart;
response = exp(-t'.^2*a);
response = response/sum(response);
recievedSignal = conv2(recievedSignal,response,'same');
% -------------------------- Creating Digitizer noise --
if digitizerNoiseLevel
DigiNoise = fastSemiRandn(bufferSize)* digitizerNoiseLevel * [1 ; i];
end
recievedSignal(transmisionInd) = 0;
returnPulses = zeros(bufferSize,1); % Cleaning the pulses buffer
if get(handles.useMatchFilter,'value');
if length(response) > PWn
matchFilter = response;
else
matchFilter = ones(PWn,1)/PWn;
end
processedRecivedSignal = conv2(recievedSignal,matchFilter,'same');
else
processedRecivedSignal = recievedSignal;
end
% ------------------------------- Was there a target ---
signalInRangeCells = processedRecivedSignal(rangeCellInd);
isMTIused = get(handles.useMTI,'value');
if isMTIused
freqInRangeCells = fft(signalInRangeCells,freqRes,2);
energyInFreqRangeCells = abs(freqInRangeCells(:,freqInd)).^2;
if useCFAR
noiseLevel = median(energyInFreqRangeCells(:)); % Th is per frequency
freqTh = noiseLevel * CFAR * nPRI;
else
freqTh = Th * nPRI;
end
% Find in each range cell the maximum frequency (I only allow one target per range cell)
[maxFreq maxFreqInd] = max(energyInFreqRangeCells,[],2);
localMaxEnergy = imdilate(maxFreq , dilateKer);
rangeCell = find(localMaxEnergy == maxFreq & maxFreq > freqTh);

targetInd = sub2ind([numSamplesInPRI freqRes], rangeCell, maxFreqInd(rangeCell));
else
energyInRangeCells = sum(abs(signalInRangeCells).^2,2);
if useCFAR
noiseLevel = median(energyInRangeCells);
Th = noiseLevel * CFAR;
end
% Thresholding to find targets
localMaxEnergy = imdilate(energyInRangeCells,dilateKer);
targetInd = find (energyInRangeCells == localMaxEnergy & energyInRangeCells > Th);
end
 if ~isempty(targetInd)
 foundTargetInBuffer = 1;
 if isMTIused
[rangeCell ans] = ind2sub(size(energyInFreqRangeCells),targetInd(:));
RCS = energyInFreqRangeCells(targetInd(:));
else
rangeCell = targetInd;
RCS = energyInRangeCells(targetInd);
end
targetRange = (rangeCell -PWn/2) / Fs / 2 * 3e8; %target ranges
targetV = ones(length(targetInd),1)*12345;
for Rind = 1:length(targetInd)
%Processing each Target
pos = [k 0];
if isMTIused
% Calculating the targets velocity acording to its dopler frequency
targetV(Rind)
=TIcalcVelocityFromFourier(energyInFreqRangeCells,targetInd(Rind),freqRes,handles.IF_Freq,PRI
);
end
if isempty(handles.foundTargets)
% adding the new target to the foundTargets structure
handles.foundTargets(end+1) = ...
 createTargetObj(pos, RCS(Rind), targetRange(Rind), targetV(Rind),
radarAngle,0, radarAngle,radarAngle,[],numRadarTurn);
h = plotTarget(handles.foundTargets(end), handles);
handles.foundTargets(end).hPlot = h;
else
M = length(handles.foundTargets);
dAngle = zeros(M,1);
dRange = zeros(M,1);
dV = zeros(M,1);
for mm=1:M
d1 = calcDiffAngle(handles.foundTargets(mm).counterClockWise, radarAngle);
d2 = pi;
dAngle(mm) = min (d1, d2)/angleRes;
dRange(mm) = abs(handles.foundTargets(mm).R - targetRange(Rind))/rangeRes;
dV(mm) = abs(handles.foundTargets(mm).v - targetV(Rind))/velocityRes ;
end
 [sameTargetScore sameTargetInd] = min(dAngle.^2 + dRange.^2 + dV.^2);
if sameTargetScore < 1
if handles.foundTargets(sameTargetInd).RCS < RCS(Rind)
handles.foundTargets(sameTargetInd).pos = pos;
handles.foundTargets(sameTargetInd).RCS = RCS(Rind);
handles.foundTargets(sameTargetInd).R = targetRange(Rind);
handles.foundTargets(sameTargetInd).v = targetV(Rind);
handles.foundTargets(sameTargetInd).angle = radarAngle;
delete(handles.foundTargets(sameTargetInd).hPlot);
h = plotTarget(handles.foundTargets(sameTargetInd), handles);
handles.foundTargets(sameTargetInd).hPlot = h;
end
if d1 < d2 % new target is before old target
handles.foundTargets(sameTargetInd).counterClockWise = radarAngle;

else
handles.foundTargets(sameTargetInd).clockWise = radarAngle;
end
else
handles.foundTargets(end+1) = ...
createTargetObj(pos, RCS(Rind), targetRange(Rind), targetV(Rind), radarAngle,0,
radarAngle,radarAngle,[],numRadarTurn);
h = plotTarget(handles.foundTargets(end), handles);
handles.foundTargets(end).hPlot = h;
end
end
end
end
dt = currentTime-lastUpdate ;
if dt > updateRate %Is it time to update the display
lastUpdate = currentTime;
currentRealTime = toc;
delay = dt - (currentRealTime - lastUpdateRealTime); % syncronizing to real time
lastUpdateRealTime = currentRealTime;
if delay > 0
pause(delay);
end
isPersistentDisplay = get(handles.persistentDisplay,'value');
handles =
plotFOV(handles,currentTime,antenaTurnVelocity,radarSector,maxDist,isPersistentDisplay);
updatedDisplay = true;
% updating the mini-map display every 5 seconds
if currentTime > miniDisplayUpdateTime + 5
if ~get(handles.scopeDisplay,'value')
miniDisplayUpdateTime = currentTime;
displayTargets(handles,'in radar display')
numRadarTurn = ceil(currentTime*antenaTurnVelocity/2/pi);
end
if isPersistentDisplay
if length(handles.persistentPlotHandle) > 1000
temp = handles.persistentPlotHandle;
delete(temp(1:end-1000));
handles.persistentPlotHandle = temp(end-999:end);
end
end
end
targetsTime = currentTime;
for n =1:length(handles.Targets)
handles.Targets(n).XY = handles.Targets(n).XY +
dt*handles.Targets(n).v+dt^2*handles.Targets(n).a;
handles.Targets(n).v = handles.Targets(n).v + dt*handles.Targets(n).a;
handles.Targets(n).a = handles.Targets(n).a * 0.95^dt;
targetsManuv = handles.Targets(n).maneuverability;
if (1-exp(-dt/targetsManuv)) > rand(1)
phi = atan(handles.Targets(n).v(2)/handles.Targets(n).v(1));
phi = phi + 2*pi*(rand(1)-0.5);
handles.Targets(n).a = randn(1)*20*[cos(phi) sin(phi)] - handles.Targets(n).v/targetsManuv/2;
end
end
end % if dt > updateRate %Is it time to update the display
if isAnalyzeBufferMode
if get(handles.waitForTarget,'value')
if foundTargetInBuffer
if isMTIused
analyzBufferWithMTI(handles,recievedSignal,processedRecivedSignal,energyInFreqRangeCells,P
Wn,freqTh,freqInRangeCells,numSamplesInPRI,rangeCellInd);
else
analyzBuffer(handles,recievedSignal,processedRecivedSignal,energyInRangeCells,PWn,Th,range
CellInd,localMaxEnergy,NPB,PRIA,SR);

end
set(handles.run,'string','Pause');
AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));
end
else
if isMTIused
analyzBufferWithMTI(handles,recievedSignal,processedRecivedSignal,energyInFreqRangeCells,P
Wn,freqTh,freqInRangeCells,numSamplesInPRI,rangeCellInd);
else
analyzBuffer(handles,recievedSignal,processedRecivedSignal,energyInRangeCells,PWn,Th,range
CellInd,localMaxEnergy,NPB,PRIA,SR);
set(handles.run,'string','Pause');
AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));
end
set(handles.run,'string','Pause');
AirecraftSimulation('run_Callback',handles.run,[],guidata(handles.run));
end
end
if get(handles.soundOn,'value')
soundSig = tanh(abs(processedRecivedSignal));
soundSig = soundSig / max(soundSig);
soundSamples = decimate(soundSig,sound2SampleRatio);
player.stop;
player = audioplayer(soundSamples, soundFs);
play(player);
end
% Display analog scope !!!!!
if get(handles.scopeDisplay,'value')
hold(handles.miniDisplay,'off');
sig = abs(processedRecivedSignal(rangeCellInd));
plot(handles.miniDisplay,log(sig(PWn+1:end,:)),'color',[239 255 250]/256,'linewidth',1);
set(handles.miniDisplay,'color',[118 219 237]/256);
ylim(handles.miniDisplay,[-22 -8]);
xlim(handles.miniDisplay,[1 numSamplesInPRI-PWn]);
grid(handles.miniDisplay,'on');
if ~updatedDisplay
drawnow;
updatedDisplay = false;
end
end
end %if ~mod(pulseNum,nPRI) %Only processing every N number of pulses
pulseNum = pulseNum+1;
end % while get(handles.run,'value')
handles.numRadarTurn = numRadarTurn;
handles.pulseNum = pulseNum;
handles.currentTime = currentTime;
guidata(handles.run,handles);
handleRadarControlls(handles,'on');
set(handles.PW,'value',PW/PRI);
function x = fastSemiRandn(N)
% this nested function recives the number of elements to return
% it allways returns an N by 2 matrix of random numbers samppled
% from the vector randVec
vInd = ceil(rand(2)* (randVecLength-N));
x = [randVec(vInd(1):vInd(1)+N-1) randVec(vInd(2):vInd(2)+N-1)];
end
end

D.Target return:
function [t a phi] = targetsReturn(targets, antenaGain,Amp,currTime,w,targetsTime,IF_Freq)
% This function returns the time phase and amplitude of the return signal from existing targets.
dt = targetsTime-currTime;
radarAngle = currTime*w;

if length(antenaGain)==1 && ~antenaGain %order of comparison is important for performance
% antena is diconected
t = [];
a = [];
phi = [];
return
end
N = length(antenaGain);
M = length(targets);
meterPerSec = 2/3e8; %I multiply by two as the distance travelled is doubled then targets
distance (pulse has to come back as well)
RCS = [targets.RCS];
v = [targets(:).v];
v = reshape(v,2,M)';
cor = [targets(:).XY];
cor = reshape(cor,2,M)';
acc = [targets(:).a];
acc = reshape(acc,2,M)';
cor = cor + v*dt+acc/2*dt^2;
distSquer = sum(cor.^2, 2)';
t = sqrt(distSquer) * meterPerSec;
targetsRelAngle = atan2(cor(:,2) , cor(:,1));
targetsRelAngle = mod(targetsRelAngle-radarAngle+pi,2*pi);
in = round((targetsRelAngle)/2/pi*N); %finding the antena gain in this angle
in = min(in,N(ones(M,1)));
in = max(in,ones(M,1));
a = RCS .* (antenaGain(in).^2) ./ (distSquer.^2) * Amp ; % here should come the radar formula
(dist2 - is already the distance squared)
phi = mod(IF_Freq*2*pi*t,2*pi)';
t = t';
a = a';

E.Plot Target:
function h = plotTarget(target,handles)
% This function plots a target in the radar display
x = target.pos(1);
y = target.pos(2);
targetsAngle = atan2(y,x);
v = target.v;
switch v
case 12345
% This target was detected without MTI so it isn't known if it is clutter or plane...
c = 'r';
h = plot(handles.radarDisplay, x,y,'X','MarkerSize',8,'linewidth',2,'tag','foundTarget','color',c);
case 0
% this is clutter (mountain)
h = plot(handles.radarDisplay, x,y,'X','MarkerSize',8,'linewidth',2,'tag','foundTarget','color','r');
otherwise
yDir = -sign(y);
xDir = -1;
h = quiver(handles.radarDisplay,x,y,xDir*v*cos(targetsAngle),yDir*v*abs(sin(targetsAngle)),20,...
 'color','r','linewidth',2,'marker','<','MarkerSize',8,'tag','foundTarget');
end

F. Analyze Buffer:
function
analyzBuffer(handles,recievedSignal,processedRecivedSignal,energyInRangeCells,PWn,Th,range
CellInd,localMaxEnergy)
temp = get(handles.samplingRate,'string');
ind = get(handles.samplingRate,'value');
Fs = str2num(temp{ind})*1e3 ;

temp = get(handles.bufferSize,'string');
ind = get(handles.bufferSize,'value');
nPRI = str2num(temp{ind}) ;
temp = get(handles.PRI,'string');
ind = get(handles.PRI,'value');
PRI = str2num(temp{ind})/1e3 ;
isMatchFilterUsed = get(handles.useMatchFilter,'value');
axes(handles.axes4);
N = length(recievedSignal);
plot([0:N-1]/Fs,(recievedSignal));
if isMatchFilterUsed
hold on;
semilogy([0:N-1]/Fs,abs(processedRecivedSignal),'g');
legend({'Recived Signal' ; 'Signal after match Filter'});
else
end
grid on
xlabel('[Sec]'); ylabel('Volt (log scale)');
nRangeCells = length(energyInRangeCells);
set(handles.bufferAnalyze,'value',0);

G. Create Target:
function targetObj = createTargetObj(pos, RCS, R, v, angle, plotted, clockWise, counterClockWise,
hPlot, foundInTurn)
% function target = createTargetObj(pos, RCS, range, plotted, v, angle, clockWise,minAgnel)
% pos - target cordinate
% RCS - Radar Cross Section of the target
% R - target range (from radar)
% v - target velocity
% angle - target angle (to the radar)
% plotted - was this target plotted (new target wasn't plotted yet)
% max & min Agnle are the limits of angles in which the target was detected
targetObj = struct('pos' , pos, ...
 'RCS' , RCS, ...
 'R' , R , ...
 'plotted',plotted , ...
 'v' , v , 'angle' , angle, ...
 'clockWise', clockWise, 'counterClockWise',...
 counterClockWise, 'hPlot' , hPlot, 'foundInTurn', foundInTurn);

H. Place Cluture:
function h=placeClutter(h,XY)
% h=placeClutter(h,XY)
% This function adds a mountain (clutter) at cordinate XY
mountains = h.mountains;
RCS = 1e4;
mountains(end+1).RCS =RCS;
mountains(end).XY = XY;
mountains(end).v = [0 0];
mountains(end).a = [0 0];
mountains(end).maneuverability = 0;
h.mountains = mountains(:);
guidata(h.radarDisplay,h);

I. Publications:

1. Isam Abdelnabi Osman, Mustafa Osman Ali, Abdelrasoul Jabar Alzebaidi. “Active

Cancellation Algorithm for Radar Cross Section Reduction”. Published in International

Journal of Computational Engineering Research (IJCER) Volume 3, Issue 7, p.p. 19-24,

July 2013.

2. Mustafa Osman Ali, Isam Abdelnabi Osman, Rameshwar Rao. “Invisible Watermark

Algorithm Embedded in VLSI Chip for Authenticating Digital Image”. Published in

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 2, Issue 4, p.p. 72-79, July 2013.

Isam Abdelnabi Osman, Abdelrasoul Jabar Alzebaidi. “Active Cancellation System for
Radar Cross Section Reduction”. Published in International Journal of Education and
Research (IJER) Volume 1, Issue 7, p.p. 141- 146, July 2013.

	Acknowledgement
	Dedication
	Abstract
	مستخلص
	Table of Contents
	1. List of Abbreviations
	List OF Figures
	2. Chapter One: Introduction
	2.1 Overview:
	2.1.1 RCS is a function of:
	2.1.2 RCS Prediction Techniques:
	2.1.3 RCS Reduction Techniques:

	2.2 Problem statement:
	2.3 Objectives:
	2.4 Methodology:
	2.5 Organization of the Thesis

	3. Chapter Two: Radar and Radar Cross Section (RCS)
	3.1 Introduction:
	3.2 Radar:
	3.3 Radar Block Diagram
	3.3.1 Transmitter:
	3.3.2 Duplexer:
	3.3.3 Antenna:
	3.3.4 Receiver:
	3.3.5 Video amplifier:
	3.3.6 Signal Processing:
	3.3.7 Data Processing:
	3.3.8 Displays:

	3.4 Radar Operation:
	3.5 Radar Classifications
	3.6 Radar Equation:
	3.7 Radar Cross Section (RCS):
	3.8 RCS Definition
	3.9 RCS is a function of:

	4. Chapter Three: Radar Cross Section Prediction techniques
	4.1 Introduction:
	4.2 Geometric Optics (GO):
	4.3 Physical Optics (PO):
	4.4 Geometric Theory of Diffraction (GTD):
	4.5 Physical Theory of Diffraction (PTD):
	4.6 Fast Multipole Method (FFM):
	4.7 Finite-Difference Time Domain (FDTD):
	4.8 Method of Moments (MoM):

	5. Chapter four: Radar Cross Section Reduction (RCSR)
	5.1 Introduction:
	5.2 The four method of RCSR
	5.2.1 Shaping
	5.2.2 Radar Absorbing Materials:
	5.2.3 Passive Cancellation
	5.2.4 Active Cancellation

	5.3 The Penalties of RCSR
	5.4 Limitations

	6. Chapter five: System Model Simulation
	6.1 RADAR Simulation
	6.1.1 Introduction
	6.1.2 Main Files and Functions
	6.1.3 The Radar Simulation Graphical User Interface
	6.1.4 Main RADAR display
	6.1.5 Radar Controls
	6.1.6 Simulation Controls

	6.2 Aircraft Simulation
	6.2.1 Introduction
	6.2.2 Main Files and Functions
	6.2.3 The Aircraft Simulation GUI
	6.2.4 Main Aircraft display
	6.2.5 Simulation Controls

	7. Chapter Six: Methodolgy
	7.1 Introduction:
	7.2 Flowchart:
	7.3 Code:
	7.3.1 Signal processing and control function (SPC):
	7.3.2 Blind Velocity and Doppler Effect function (BVDE):
	7.3.3 Power synthesis and beam forming function (PSBF):

	8. Chapter Seven: Test and Results
	9. Chapter Eight: Conclusion
	9.1 Conclusion:
	9.2 Future Work:

	Refrences:
	10. Appendixes:
	A. Radar Simulation Graphical user interface:
	B. Aircraft Simulation Graphical user interface:
	C. runAircraftSim_v2
	D. Target return:
	E. Plot Target:
	F. Analyze Buffer:
	G. Create Target:
	H. Place Cluture:
	I. Publications:

