
APPENDIX A
 Parallel port is a simple and inexpensive tool for building computer

controlled devices and projects. The simplicity and ease of programming makes

parallel port popular in electronics hobbyist world. The parallel port is often used

in Computer controlled robots, Atmel/PIC programmers, home automation ..etc..

 Everybody knows what is parallel port, where it can be found, and for what it is

being used. The primary use of parallel port is to connect printers to computer

and is specifically designed for this purpose. Thus it is often called as printer

Port or Getronics port (this name came from a popular printer manufacturing

company 'Getronics' who devised some standards for parallel port). You can see

the parallel port connector in the rear panel of your PC. It is a 25 pin female

(DB25) connector (to which printer is connected). On almost all the PCs only

one parallel port is present, but you can add more by buying and inserting

ISA/PCI parallel port cards.

Parallel port modes

 The IEEE 1284 Standard which has been published in 1994 defines five
modes of data transfer for parallel port. They are,

1. Compatibility mode
2. Nibble mode
3. Byte mode
4. EPP
 5. ECP

 The programs, circuits and other information found in this tutorial are

compatible to almost all types of parallel ports and can be used without any

problems (Not tested, just because of confidence!). More information on parallel

port operating modes can be found here.

A1

Hardware

 The pin outs of DB25 connector is shown in the picture below

Figure A.1: Parallel Port hardware

The lines in DB25 connector are divided in to three groups:

 1. Data lines (data bus)
 2. Control lines
 3. Status lines

 As the name refers, data is transferred over data lines, control lines are used

to control the peripheral and of course, the peripheral returns status signals back

computer through Status lines. These lines are connected to data, control and

status registers internally. The details of parallel port signal lines are given in the

next page.

A2

Pin No. Signal name Direction Register bit Inverted

1 nStrobe Out Control-0 Yes

2 Data 0 In/Out Data-0 No

3 Data 1 In/Out Data-1 No

4 Data 2 In/Out Data-2 No

5 Data 3 In/Out Data-3 No

6 Data 4 In/Out Data-4 No

7 Data 5 In/Out Data-5 No

8 Data 6 In/Out Data-6 No

9 Data 7 In/Out Data-7 No

10 nAck In Status-6 No

11 Busy In Status-7 Yes

12 Paper out In Status-5 No

13 Select In Status4 No

14 Linefeed Out Control-1 Yes

15 nEror In Status-3 No

16 nIntialize Out Control-2 No

17 nSelect Printer Out Control-3 Yes

18-25 Ground - - -

Parallel port registers

 As we know, the Data, Control and status lines are connected to their

corresponding registers inside the computer. So by manipulating these registers

in program, one can easily read or write to parallel port with programming

languages like VC++.

A3

The registers found in standard parallel port are:

 1. Data register
 2. Status register
 3. Control register

 As their names specifies, Data register is connected to Data lines, Control

register is connected to control lines and Status register is connected to Status

lines. (Here the word connection does not mean that there is some physical

connection between data/control/status lines. The registers are virtually

connected to the corresponding lines.). So whatever you write to these registers,

will appear in corresponding lines as voltages, Of course, you can measure it

with a multi meter. And whatever you give to Parallel port as voltages can be

read from these registers (with some restrictions). For example, if we write '1' to

Data register, the line Data0 will be driven to +5v. Just like this, we can

programmatically turn on and off any of the data lines and Control lines

Location of registers

Register LPT1 LPT2

Data register r(Base address+ 0) 0x378 0x278

Status register (Base address+ 1) 0x379 0x279

Control register (Base address + 2) 0x37a 0x27a

A4

Figure A.2: Printer port

Data Register:
 Data port has 8 (D0-D7) pins. We can output 8 bit data from here. If we

don’t send any data to data port, the value is default 00000000.

Status Register
 With status register, we can get 5 bit input. (15, 13,12,11,10 pins) The

default value of these pins is “1” (+5V). With some buttons we can ground these

pins and make them “0”.

But as an exception, the pin S7 is default “0” and if we ground it, it will be “1”.

INP &h378+1

A5

Control Register

 We can use the control register for output and also input. These 4 pins have

the default value of “1”. If status and data ports are not enough for us then we

can use control port. Usage is same as above.

A6

APPENDIX B
For Information Regarding the Windows NT/2000/XP/Windows 7

 Kernel Solutions it is recommended to refer to the website:

 Http://www.logix4u.net which has plenty of information about this title, which

was avoided to not be included in this project for the sake of not rectifying the

main subject and to limit the diversity of topics.

-Parallel Port Programming
 Visual C++ Parallel Port Programming: Visual C++ Output to the parallel

port can be accomplished in Visual C++ with the help of the header library

"conio.h". This library contains a function, _outp, which can write data to a

given port. The code below takes an input from the user and writes it to the

parallel port.

#include <conio.h>

#include <stdio.h>

int _outp(unsigned short port, int databyte);

// this program accepts an input from the user

// in decimal and outputs that number as an 8-bit

// binary number to the port at 378 hex, usually

// LPT1

int main () {

int inval = 0;

while (inval < 256) {

printf("Enter a value in decimal (256 to quit)>");

scanf("%d", &inval);

B1

_outp(0x378, inval);

}

_outp(0x378, 0);

return 0;

}

B2

