
 

Sudan University of Science and Technology 

College of Graduated Studies 

 

 

 

A Versatile Encryption Scheme for Cloud Computing Security 

 نظام تشفير متعدد الأغراض لأمن بيئة الحوسبة السحابية

A Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. in Computer Science 

(Information Security Track) 

 
 

By 

Amel SalahEldein Hassan 

 

Supervisor  

Dr. Awad Mohamed Awadelkarim 

2014 

  



ii 

 

DEDICATION  

 

I dedicate this research to person whose prayer helps me my mother 

To person whose encourage me to the way of success my father 

My brothers and sisters for their support 

My friends and my colleagues the people whom I love and respect 

Everyone from him I learned. 

  



iii 

 

ACKNOWLEDGEMENT 

 

I would like to express my special thanks and gratitude to my supervisor Dr. Awad 

Mohamed Awadelkarim for constructive guidance. 

 It is great pleasure to thank my best friends and colleagues for their cooperation. 

  



iv 

 

ABSTRACT  

Although the cloud computing model is considered to be a very promising 

computing platform in world,  because of its advantages such as flexibility and 

cost-effectiveness, but it leads to loss of control over the cloud-hosted assets in 

terms of data confidentiality, integrity, availability and access control, which 

increases the complexity of the loss of control. The data are stored in a computing 

environment owned by the party ,store in another party and processing may be a 

third party and all these parties may be assigned tasks to other parties means that 

the assignments of control is a transitive . 

To retaining control of data we need to encrypt all data in cloud computing 

environment. The problem of traditional encryption limits the use of data. As a 

solution to this problem the cryptographers have recently invented new type of 

encryption fits the requirements of cloud computing environment called a versatile 

encryption schemes which distinct it, the versatile encryption allows processing 

data in ciphertext.  

Thus, in this research, the adopted versatile encryption algorithm has been 

implemented and evaluated to study that such type of encryption is effectual and 

useful for cloud computing environment. 

  



v 

 

 المستخلص

مثل  لما له من مزاياحوسبة للعلى الرغم من أن نموذج الحوسبة السحابية يعتبر منصة واعدة جدا في العالم 

الحوسبه أنه يؤدي إلى فقدان السيطرة الأمنية على الأصول التي تستضيفها  الا ، المرونة وفعالية التكلفة 

مما يزيد تعقيد فقدان و  احيتها والتحكم في الوصول لهامن ناحية سرية البيانات وتكامليتها ومدى ات ةيالسحاب

رف آخر ومعالجتها قد طن في بيئة الحوسبة يملكها طرف ويقوم بتخزينها ز التحكم أن هذه البيانات التي تخ

 .أي أن إسناد التحكم يكون متعديا  تتم بطرف ثالث وكل هذه الأطراف قد تسند مهامها إلى أطراف أخري 

ومشكلة التشفير السحابية  الحوسبةبيئة م على البيانات نحتاج لتشفير جميع بيانات ولنبقي على التحك

وع جديد من إخترع مؤخرا  خبراء التشفير نوكحل لهذه المشكلة .  يحد من إستخدام البياناتأنه التقليدي 

يسمح بمعالجة  يسمى التشفير متعدد الأغراض ومايميزه انهالسحابية فير يلائم متطلبات بيئة الحوسبة شالت

 . البيانات وهي مشفرة

أن مثل هذا  لدراسةالمتعدد التي تم اعتمادها  خوارزمية التشفير تطبيق وتقييموبالتالي في هذا البحث، تم 

 .النوع من التشفير فعاال ومفيد في بيئة الحوسبة السحابية

 

  

  



vi 

 

LIST OF FIGURES 

Figure ‎2.1: Service delivery models [1] ......................................................................... 10 

Figure ‎2.2 Differences in Scope and Control among Cloud Service Models [7] ............. 10 

Figure ‎3.1: Protocol for Provable Data Possession [17]. ................................................ 39 

Figure ‎3.2: The Proposed Multi-Owner, Multi-Authority, and Multi-User Framework for 

access control of PHR in cloud computing. [21] ............................................................ 47 

Figure ‎3.3: Working Process of Proposed Scheme [22] ................................................. 49 

Figure ‎3.4: Framework of Patient Centric Model [23] .................................................... 50 

Figure ‎3.5: Block Diagram [24] ..................................................................................... 51 

Figure ‎3.6: System Model for multi-owner data outsourcing in cloud computing [26] ... 53 

Figure ‎3.7: The Enhanced Framework for APKS+ that preserves query privacy [26]..... 54 

Figure ‎3.8: the Proposed Architecture [27] .................................................................... 56 

Figure ‎4.1: Research Process ......................................................................................... 62 

Figure ‎5.1: Flow Chart of Adopted Algorithm ............................................................... 72 

Figure ‎5.2: Flow Chart for generate cipher in Adopted Algorithm ................................. 73 

Figure ‎5.3: Flowchart of Search Scenario ...................................................................... 74 

Figure ‎5.4: implementation of versatile Encryption algorithm ....................................... 75 

Figure ‎5.5: Browse File ................................................................................................. 75 

Figure ‎5.6: Chose File.................................................................................................... 76 

Figure ‎5.7: First Step of the Adopted Algorithm (splits file to words) ............................ 77 

Figure ‎5.8: Last Step of the Adopted Algorithm (generates cipher) ................................ 78 

Figure ‎5.9: Ciphertext for chosen file............................................................................. 79 

Figure ‎5.10: Enter Search Word ..................................................................................... 79 

Figure ‎5.11: The Result of the Search Operation............................................................ 80 



vii 

 

LIST OF TABLES 

Table ‎5.1: Security Risk & Security Requirment with Adopted Algorithm .................... 81 

  



viii 

 

Table of Contents 

DEDICATION ............................................................................................................. ii 

ACKNOWLEDGEMENT ........................................................................................... iii 

ABSTRACT ................................................................................................................ iv 

 v ........................................................................................................................ المستخلص

LIST OF FIGURES ..................................................................................................... vi 

LIST OF TABLES ..................................................................................................... vii 

CHAPTER 1 .................................................................................................................... 1 

Introduction .................................................................................................................. 1 

1.1 Introduction ............................................................................................................ 1 

1.2 Challenges in the Cloud .......................................................................................... 3 

1.3 Research Problem ................................................................................................... 4 

1.4 Research Objective ................................................................................................. 4 

1.5 Research Methodology ........................................................................................... 5 

1.6 Structure of Research.............................................................................................. 5 

CHAPTER 2 .................................................................................................................... 6 

The Literature Review .................................................................................................. 6 

2.1 Introduction ............................................................................................................ 6 

2.2 Literature Review, Background and Definition ....................................................... 7 

2.2.1 Cloud Computing ............................................................................................. 7 

2.2.2 Information Security ...................................................................................... 15 



ix 

 

2.2.3 Security in the cloud Computing .................................................................... 19 

2.3 Summery .............................................................................................................. 21 

CHAPTER 3 .................................................................................................................. 22 

The Versatile Encryption Approach............................................................................ 22 

3.1 Introduction .......................................................................................................... 22 

3.2 Categories of a Versatile Encryption..................................................................... 23 

3.2.1 Searchable Encryption .................................................................................... 23 

3.2.2 Private Information Retrieval ......................................................................... 36 

3.2.3 Proofs of Retrievability .................................................................................. 37 

3.3 The adopted Algorithm ......................................................................................... 44 

3.4 Related Work ....................................................................................................... 46 

3.4.1 Related Work in Cloud Computing ................................................................ 46 

3.5 Summery .............................................................................................................. 59 

CHAPTER 4 .................................................................................................................. 60 

Research Methodology ............................................................................................... 60 

4.1 Introduction .......................................................................................................... 60 

4.2 Research Process .................................................................................................. 60 

4.2.1 Security requirements definition and determination ........................................ 60 

4.2.2 Implementation of the adopted algorithm ....................................................... 61 

4.2.3 Validation and evaluation phase ..................................................................... 61 

4.3 Summary .............................................................................................................. 61 



x 

 

CHAPTER 5 .................................................................................................................. 63 

Implementation & Evaluation of the Adopted Algorithm ........................................... 63 

5.1 Introduction .......................................................................................................... 63 

5.2 Security requirements definition and determination .............................................. 63 

5.2.1 Risk Analysis ................................................................................................. 63 

5.2.2 Security Services ............................................................................................ 66 

5.2.3 Security mechanisms ...................................................................................... 67 

5.3 Implementation of the Adopted Algorithm ........................................................... 67 

5.3.1 The Pseudocode of Proposed Adopted Algorithm .......................................... 68 

5.3.2 The Flow Chart of Adopted Algorithm ........................................................... 72 

5.3.3 Flow Chart for generate cipher in Adopted algorithm ..................................... 73 

5.3.4 Snapshot of Implementation ........................................................................... 75 

5.4 Validation and evaluation phase (including the case study implementation) ......... 80 

5.5 Background and Definitions ................................................................................. 82 

5.6 Proof of Security .................................................................................................. 84 

5.7 Summery .............................................................................................................. 93 

CHAPTER 6 .................................................................................................................. 94 

Conclusions & Future work ........................................................................................ 94 

6.1 Conclusions .......................................................................................................... 94 

6.2 Future work .......................................................................................................... 94 

6.3 Obstacles in this Research .................................................................................... 95 



xi 

 

Appendices .................................................................................................................. 100 



 

1 

CHAPTER 1  

Introduction 

1.1 Introduction 

Cloud computing, in general terms, is anything that delivers hosted IT services 

over the Internet, and allows consumers to access services and data via any device 

with Internet access
 
[1]. 

 Cisco‎defines‎ cloud‎ computing‎ as‎ “IT‎ resources‎ and‎ services‎ that‎ are abstracted 

from‎ the‎ underlying‎ infrastructure‎and‎provided‎“on-demand”‎and‎“at‎ scale”‎ in‎a‎

“multitenant‎environment”.‎On-demand means the resource available to customer 

when needed and pays cost when used it, at scale means the resource size are not 

limited, and a multitenant environment means the environment of cloud shared 

between multiple customers. 

Cloud computing stockholder are cloud provider, cloud consumer and service 

provider. Cloud provider owned the infrastructure of cloud, service provider put 

his service in the infrastructure of cloud provider, and the cloud consumer uses this 

service.  

Cloud has three service models [2,3] this three service model represent the shape 

of provided service by provider, first model cloud software as services (SaaS) in 

this model the service provided to the consumer is application running in cloud 

infrastructure application such as collaboration, Customer Relationship 

Management (CRM)/ Enterprise Resource Planning(ERP)/ Human Resource(HR), 

industry application .in this model the consumer have not control to underling 



 

2 

infrastructure like servers, operating system, sometimes they have controlled 

access to application configuration settings. Salesforce CRM is an example of this 

model [1]. 

Second model is platform as services (PaaS) in this model the consumer have 

application deploy it in the cloud infrastructure or acquired application, this 

application to build it used language or tools supported by provider. Example of 

(PaaS) is java runtime, middleware, Database. The control in this model is like 

(SaaS) in addition to the consumer can changes of application hosting environment 

configuration. GoogleApps and MicrosoftAzure are examples of PaaS
 
[1]. 

Third model is infrastructure as services (Iaas) in this model the services provided 

to consumer such as servers, networking, and storage. The consumer have not 

control the underling cloud infrastructure but has control to servers, operating 

system, and deployed application. Amazon Web Services is an example of IaaS 

[1]. 

 The cloud has four deployment model [1]
 
public cloud, private cloud, community 

cloud and hybrid cloud. Public cloud the infrastructure of cloud is public and 

owned by organization selling cloud services. Infrastructure in private cloud is 

owned by single organization, Intel, Hewlett Packard (HP) and Microsoft have 

their own internal private clouds. Although this model reduces the risk to data 

owned by organization this model is costly because the organization builds the 

cloud infrastructure from scratch. In the community cloud the infrastructure shared 

by several organization, Google Gov example of this model. Hybrid model the 

infrastructure consist public, private, community cloud. This model found when 

multiple organizations make agreement to use specific standards or technology to 

make their application or data portable. 



 

3 

1.2 Challenges in the Cloud  

Security in the cloud inherited all challenges in secure IT System and open new 

challenges because in cloud computing the data hosted in third party. The 

transition to cloud need to degree of maturity of the organization, If the 

organization has not experience in the cloud infrastructure, need to increase the 

internal experience or search external helps to ensure the success  [1, 2]. 

The main challenges in the cloud computing is management of cloud environment, 

the organization must defines and implements suitable organizational structure, 

processes, polices, laws and controls to maintain effective governance and 

compliance it. 

Cloud environment is not permanent, all parties must be adaptable to these 

changes, we need monitoring, testing and evaluation to ensure the privacy 

required, security criteria used and operation, polices is followed, in addition to the 

continuous change in the regularity, new attack appear and new laws must 

compliance it. 

Security of data is the key issues of all systems and applications, cloud computing 

environment add new challenges to data such as multiple clients puts their data in 

the cloud environment, and the client have abstracted control to their data. Cloud 

provider must protect the data of clients from each other. 

Client access to their data specified by Service Level Agreement between client, 

cloud provider and service provider, if the attack is found in cloud environment the 

client can not apply any tool to detect the attacker in the cloud environment 

because the client may disclose data owned by another client. That tools needs 

access to the hardware in cloud environment. 



 

4 

Cloud provider may resort to encrypt the data of clients in cloud environment to 

store it in protected manner. Although the encryption is effective method to 

prevent data from unauthorized client but is hinders the availability and uses of the 

data. 

Cloud computing is very complex environment and need to standards to managed 

the relationship between cloud stakeholder in optimal manner, standards are 

determined the rights and obligations for stakeholder. 

Interaction between the stakeholder in the cloud environment depends on the 

internet connection, cloud computing be impossible without internet connection or 

may face problem in environment that has internet connection unreliable. 

1.3   Research Problem  

    Cloud computing environment is shared between multiple clients, where their 

data are manipulated. The data owned by (CCs), stored in other party (CPs), and 

may manipulate or processing by third party (CSs) which mean there are many 

problems in cloud environment from security viewpoint :loss of governance, cheap 

data and data analysis, transitive nature, (CPs) espionage, contractual obligation, 

management interface compromise, data protection, insecure or ineffective 

deletion of data, malicious insider 

1.4   Research Objective 

   The main aim of this research is try to prove the versatile encryption scheme is 

have effective, useful and rational contribution to solve security problem in cloud 

computing environment. 



 

5 

1.5   Research Methodology 

- Security requirements definition and determination  

- Implementation of the adopted algorithm 

- Validation and evaluation phase. 

1.6   Structure of Research 

    Chapter 2 investigates literature review and related work. Chapter 3 displays 

background and definition of a versatile encryption schema.. Chapter 4 explains 

the research methodology to conduct this research. Chapter 5 explains and 

evaluates and discusses the implementation of the adopted algorithm. Chapter 6 

shows the conclusion, future work and obstacles of this research.  



 

6 

CHAPTER 2  

The Literature Review 

2.1 Introduction 

      Nowadays there is a lot of information in business such as proprietary customer 

data, billing information, client orders, and supplier schedules need to protect from 

competitor’s‎hand,‎ thieves‎and‎hackers.‎Protecting‎business means enabling them 

to survive and grow. Because the data is a key element in the business you must 

store it in secure manner, encryption is the most popular techniques of security 

used. The challenge of protecting your data becomes more complex with the 

adoption of new business models such as cloud computing.  

      Cloud computing are services providing through the internet from the first 

party which is the service provider to the consumer which is the second party who 

benefits from this service. To use cloud resources by consumer needs to put their 

data in cloud infrastructure which mean transfer the control to cloud provider. To 

protect the data in cloud infrastructure, cloud consumer may apply encryption 

mechanism to it. Encryption researchers have recently invented versatile 

encryption schemes sufficiently practical for the cloud computing infrastructure. 

In this chapter we introduce to literature review of cloud computing technology by 

defines architecture, operating and governance of it. Then show main points in 

information security related to it with concentrate in encryption techniques as most 

popular information security techniques. 



 

7 

2.2 Literature Review, Background and Definition 

2.2.1 Cloud Computing  

There are two basic assets supported by cloud computing data and applications. In 

the cloud computing may not need to reside data and application in the same 

location. Organization may transfer part of function to the cloud computing. As 

mentioned in [2] cloud computing can be divided into three aspects: cloud 

architecture, governing the cloud computing and operating in the cloud computing: 

2.2.1.1 Cloud Architecture  

 According to National Institute of Standards and Technology (NIST) cloud 

computing defined as‎ “a‎ model‎ for‎ enabling‎ convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction”. 

 Cloud computing model composed of five essential characteristics which define in 

[3, 4] as:  

o On-demand Self Service: Means the resources can be provisioned immediately 

when needed without requiring human interaction with each service provider, 

released when no longer required, and billed only when used. 

o Broad Network Access: Services of cloud computing is available on the network 

and access through multiple devices such as mobile phones, laptops, and PDAs. 

o Resource Pooling: Resources in the infrastructure of cloud are shared between 

multiple clients this knows as multi-tenant model, the resources assigns or 

reassigns depends on consumer demand. Consumer has no control and not knows 

the exact location of provided resource. 



 

8 

o Rapid Elasticity: Resources can be rapidly expanding, shrinking and available at 

any time. Resources often appear to be unlimited. 

o Measured Service: Resource usage can be monitored, controlled, and reported 

providing transparency for both the provider and consumer of the utilized service. 

      Cloud stakeholders including: cloud providers (CPs) which are owned the 

cloud infrastructure, service providers (SPs) which have a service, rent resources 

from cloud provider (CPs)   and put their service in infrastructure owned by (CPs) 

and pay the cost of provided resource, and cloud consumers (CCs) which 

consumed the service and pay fees to (CPs) or (SPs) when used resources or 

services. 

      Although the cloud model is designed to reap uncountable benefits for all cloud 

stakeholders including (CPs), (CCs), and (SPs), the model still has a number of 

open issues that impact its credibility. 

    There are three models to deliver the services on the cloud computing with 

various ways of exposing the underlying infrastructure of cloud computing to 

(CCs) .The degree of controlling and management to (CCs) on the underlying 

cloud infrastructure various depends on the service models which define in[1, 4, 5, 

6, 7] as :  

o Software as a Service (SaaS): The (CPs) provides an application to (CCs) as a 

service on demand. The (CCs) can access to applications through various devices 

such as PC, and mobile. Most of the responsibility for security management 

depends on (CPs). (CCs) have some management operation such as management 

user identities to determine which user access to their application, configuration 

level to their application, and restrict their application access to specific IPs. 

Salesforce CRM is an example of this model. 



 

9 

o Platform as a Service (PaaS): The (CCs) can rent platform from (CPs) such as 

middleware, database software and application run-time environments. Instead of 

the (CCs) building platform from scratch, they can used it like they owned it. 

(CCs) may deploy onto the cloud infrastructure consumer-created or acquired 

applications created using programming languages and tools supported by the 

(CPs).  

The (CCs) have more responsibilities for managing the configuration and security 

for the platform in the cloud infrastructure. In this model (CCs) have more control 

than (SaaS). The consumer does not controls the cloud infrastructure but has 

control over operating systems, storage, deployed applications, and possibly 

limited control of select networking components (e.g., host firewalls). 

GoogleApps and Microsoft Azure are examples of PaaS. 

o Infrastructure as a Service (IaaS): The (CCs) can rents hardware from (CPs) such 

as operating system, storage, and virtualized servers. Instead of the (CCs) 

purchasing that hardware, they can used it as they owned it. Most control and 

responsibility for security transfer from the (CPs) to the (CCs). Security provisions 

beyond the basic infrastructure are carried out mainly by the (CCs). Amazon Web 

Services is an example of IaaS. 

In Figure ‎2.1 show the relation between resources, service delivery models, 

subscriber of service (CCs) and provider of service (SPs). 

Some times (CPs) play the role of the (SPs). The cloud provider can obtain the 

services such as (IaaS, PaaS, or SaaS) from (SPs) and deploy it on their cloud 

infrastructure and then can provide the service to (CCs) with fees. Figure ‎2.2 show 

the differences in scope and control among cloud service models.  



 

10 

 

Figure ‎2.1: Service delivery models [1] 

 

Figure ‎2.2 Differences in Scope and Control among Cloud Service Models [3] 

      There are four primary cloud deployment models define in [1, 4, 7]: public, 

community, private, and hybrid deployment. The different of deployment models 

affect‎an‎organization’s‎scope‎and‎control‎over‎the‎computational‎environment‎of‎a‎

cloud, the service model supported by the cloud affect the deployment model. (1)  

In the public deployment the cloud infrastructure is made available to the general 

public or a large industry group and is owned by an organization selling cloud 



 

11 

services. Amazon Web Services (AWS) and Microsoft Azure are two examples of 

public deployment, (2) Private deployment means the underlying infrastructure of 

cloud computing is owned by organization. It may be managed by the organization 

or a third party and may exist on premise or off premise. In this case the 

organization plays three role of cloud stakeholder (CCs), (SPs), and (CP), 

organization owned infrastructure, services on it and used this services. A private 

cloud gives the organization greater control over the infrastructure and 

computational resources than does a public cloud. Intel, Hewlett Packard (HP) and 

Microsoft have their own internal private clouds. (3)  Community cloud: The cloud 

infrastructure is shared by several organizations and supports a specific 

community, which are shared concerns (e.g., mission, security requirements, 

policy, and compliance considerations). 

      A community cloud is somewhat similar to a private cloud, but the 

infrastructure and computational resources are shared by several organizations that 

have common privacy, security, and regulatory considerations, rather than for the 

exclusive use of a single organization, an example of it is Google Gov. (4)  Hybrid 

cloud: The cloud infrastructure is a composition of two or more clouds (private, 

community, or public) that remain unique entities but are bound together by 

standardized or proprietary technology that enables data or application portability. 

2.2.1.2 Governing the Cloud Computing 

      This aspect defines the governance and enterprise risk management which 

means the ability of organization to governs and measures enterprise risk 

introduced by cloud computing. The ability of (CCs) to adequately measure risk of 

(CPs) and (SPs). 



 

12 

      The organization to maintain effective information security governance, risk 

management and compliance they must identifies and implements appropriate 

organizational structure, process, policy and control. Major element in governance 

is agreement and negotiated about any things related to services between 

stakeholders in the cloud. 

The organization also must define legal issue related to cloud computing with all 

stakeholders; stakeholder must discuss security breach disclosure laws, regulatory 

requirements, privacy requirements, and international laws that related to security 

of data when moved it from (CCs) environment to the (CPs) infrastructure. 

When the organization migrate from traditional environment to cloud computing 

they faces new challenges. Stakeholder must defines issues dealing with evaluating 

how cloud computing affects compliance with internal security policies, as well as 

various compliance requirements (regulatory, legislative, and otherwise) and 

proving compliance during an audit. 

The data is key elements in business. When the organization transition to the cloud, 

the traditional techniques of securing data are challenged by cloud computing 

because in the cloud there are new physical and logical architecture need new 

security strategies. The organization must classified the data to determines which 

data is sensitive to put polices to dealing with it. Polices such as what data can 

access, the user who accesses to data, at any time and from anywhere. Security of 

data in this aspect negotiates three movements important to data. Firstly protect 

data when move it the first time to cloud environment .Secondly protect data when 

transfer it between stakeholder (CPs) and (CSs) in the cloud infrastructure. Thirdly 

protecting data when store it within the cloud infrastructure. 



 

13 

 Organization when adopts the cloud computing must understanding that they may 

have to be changes providers in the future. Gaining the benefits of this more elastic 

environment requires both portability and interoperability to be the design goals in 

any application in the cloud infrastructure. 

2.2.1.3 Operations in the Cloud Computing 

      The evolution of cloud computing as new technologies, cloud services has 

enabled business entities do more with less, fewer resource and better operating 

efficiency but inherit new security risk not found in traditional security. In cloud 

computing, clients usually outsource their data to the cloud storage servers to 

reduce the management costs. While those data may contain sensitive personal 

information, the cloud servers cannot be fully trusted in protecting them. Manager 

should knowledge that is no measure hundred percent secure. This leads manager 

to implements security as layers of measure.  

The (CCs) should conduct critical evaluation of (CPs) infrastructure, review the 

documentation about services and ensure that (CPs) are compliant with global 

standards of security like ISO 27001 ISMS, assessing security facilities of (CSs), 

(CPs) from various parameter, ensure that (CPs) and (SPs) can commits to service 

level agreement (SLA) which contains the profile of service provision by the cloud 

computing. 

The (CCs) should ensure how (CPs) and (SPs) dealing with disaster recovery and 

backup, both are influences on the availability of the data which is most important 

element in the business. The (CPs) evolve cloud computing they must advance the 

enterprise data center which is considered as long-term cloud success.  



 

14 

Organization should define proper and adequate incident detection, response, 

notification, and remediation. This attempts to address items that should be in 

place at both provider and user levels to enable proper incident handling and 

forensics. Incident response is one of the cornerstones of information security 

management. Also they must discuss how they securing the application software 

that is running on or being developed in the cloud. This guidance is for all cloud 

stakeholders in the designing cloud computing application. Application must be 

monitoring in the cloud infrastructure, monitoring such as log, performance, 

malicious use and monitoring the access control to application.   

Encryption is a promising way to protect the confidentiality of the outsourced data, 

but it also introduces much difficulty to performing effective searches over 

encrypted information. 

When organization applies encryption to their data they must identify proper and 

scalable key management because the encryption is mainly depends on the keys. 

The organization discusses how they managing identities and leveraging directory 

services to provide access control. The identity management is more complex in 

the cloud computing because the infrastructure is shared between customers which 

may conflict in their concerns. Virtualization is one of key elements of (IaaS) and 

also used in the back-end of the (SaaS) and (PaaS). This means all services in the 

cloud depend mainly or partially on the virtualization of resource. The benefits of 

the virtualization are multi-tenancy and server utilization. 

In this aspect the organization discuss the security issues surrounding 

system/hardware virtualization, rather than a more general survey of all forms of 

virtualization. 



 

15 

Organization may benefit from other organization that provides security as a 

service which means delegation of detection, remediation, and governance of 

security to trusted third party with proper tools and expertise. 

 

2.2.2 Information Security 

 

      The NIST Computer Security Handbook [NIST95] defines the term computer 

security‎as‎follows:‎“The‎protection‎afforded‎to‎an‎automated‎ information‎system‎

in order to attain the applicable objectives of preserving the integrity, availability, 

and confidentiality of information system resources (includes hardware, software, 

firmware,‎information/data,‎and‎telecommunications)”‎[4]. 

This definition contains three key objectives in computer security: (1) 

confidentiality: this term contains two means data confidentiality and privacy. The 

data confidentiality assures that private or confidential information is not disclosed 

by unauthorized person, while privacy means the person control the information 

related to him and by whom and to whom that information may be disclosed.(2)  

integrity: this terms also contains two means data integrity which means prevent 

the changes of information from unauthorized person. Another mean of it system 

integrity which means a system performs its intended function in correct manner 

free from deliberate or inadvertent unauthorized manipulation of the system.(3) 

availability: assures that systems work promptly and service is not denied to the 

authorized users. 

To apply security in organization determines security needs of organization and 

search to security products and polices satisfy the need with specific speed, cost, 



 

16 

performance. The Open System Interconnections (OSI) model security architecture 

is defines such a systematic approach that organizing the task of providing security 

[4]. The OSI security architecture concentrates on security attacks, mechanisms, 

and services. 

security service defines as any process that enhance the security of information by 

using one or more security mechanisms which are any process  designed to detect, 

prevent, or recover from a security attack which defines as any action that 

compromises the security of information. 

There are two types of security attack: active attack and passive attack: The aims 

of the attacker in the active attack are disclose the information that is being 

transmitted. The aims of the attacker in the passive attack not just disclose the 

information that is being transmitted but also changes the content of the message 

[4]. 

The security services can be divided into five categories: 

o  Authentication: the assurance that the communicating entity is the one that it 

claims to be. 

o  Access control: allow the use of resources to just authorized users.  

o  Data Confidentiality: prevent the data from person who unauthorized. 

o  Data Integrity:  the assurance that data received as sent by an authorized entity.  

o  Non Repudiation: provides protection against repudiation of message from sender 

who claims  that message is not send by him, or receiver who claims that message 

is not received by him [4]. 

      The security mechanisms such as encipherment (encryption), which converts 

the data from readable form (plaintext) to unreadable form (ciphertext) using 



 

17 

mathematical algorithm with zero or more secret keys. The reverse operation of 

encipherment is decipherment (decryption) which converts unreadable form 

(ciphertext) to readable form (plaintext) using mathematical algorithm with zero or 

more secret keys [4]. 

There are many techniques used for encipherment such as: 

o  Encryption: this method used one or more keys with encryption algorithm to 

convert plaintext to ciphertext the common types of it are substitution and 

transposition in substitution to apply encryption they replace the character of 

plaintext by another character or numbers or symbols. While when used 

transposition they changes the places of character in plaintext by some sort of 

permutation. 

o  Steganography:  area of study encipherment achieved by conceals the existence of 

message [4]. 

      In enciphering operation the message is not hiding this area of study known as 

cryptography. Techniques used for deciphering a message without any knowledge 

of the enciphering details such as algorithm fall into the area of study known as 

cryptanalysis. Cryptography with cryptanalysis area of study knows as cryptology.   

There are two types of encryption: symmetric and asymmetric encryption: in the 

symmetric encryption they used mathematical algorithm with one key to encrypt 

and decrypt, while they used mathematical algorithm with two keys one for 

encrypt and other for decrypt in asymmetric encryption which called public key 

encryption.  

 

 



 

18 

Definition of algorithm mentioned in this research [4]: 

 Advanced Encryption Standard (AES) 
 The Advanced Encryption Standard (AES) was published by the National Institute of 

Standards and Technology (NIST) in 2001. AES is a symmetric block cipher. The cipher 

takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or 32 

bytes (128, 192, or 256 bits). The algorithm is referred to as AES-128, AES-192, or AES-

256, depending on the key length. 

 Cipher Block Chaining (CBC)  
In this mode the input to the encryption algorithm is the XOR of the current plaintext 

block and the preceding ciphertext block; the same key is used for each block. 

 Electronic Codebook (CBC)  
The simplest mode in which plaintext is handled one block at a time and each block of 

plaintext is encrypted using the same key. 

Definitions [4] 

 Pseudorandom Number 

a sequence of numbers which is algorithmically produced and not really Random. It can 

be fully repeated if the initial conditions and algorithm are known. 

 Pseudorandom Function  

A pseudorandom function is a family of functions with the property that the input-output 

behavior of‎a‎random‎instance‎of‎the‎family‎is‎“computationally‎indistinguishable”‎from‎

that of a random function. 

A PRF is used to produce a pseudorandom string of bits of some fixed length. Examples 

are symmetric encryption keys and nonces. Typically, the PRF takes as input a seed plus 

some context specific values, such as a user ID or an application ID. 



 

19 

 

 

 Pseudorandom number generator 

An algorithm that is used to produce an open-ended sequence of bits is referred to as a 

(PRNG). A common application for an open-ended sequence of bits is as input to a 

symmetric stream cipher. 

2.2.3 Security in the cloud Computing 

      In cloud computing, clients usually outsource their data to the cloud storage 

servers to reduce the management costs. While those data may contain sensitive 

personal information, the cloud servers cannot be fully trusted in protecting them. 

Encryption is a promising way to protect the confidentiality of the outsourced data, 

but it also introduces much difficulty to performing effective searches over 

encrypted information. Most existing works do not support efficient searches with 

complex query conditions, and care needs to be taken when using them because of 

the potential privacy leakages about the data owners to the data users or the cloud 

server. 

2.2.3.1  Challenges of Security in the Cloud Computing: 

      The majority of (CPs) surveyed do not believe their organization views the 

security of their cloud services as a competitive advantage, they do not consider 

cloud computing security as one of their most important responsibilities and 

believe‎it‎is‎customer’s‎responsibility [5]. 

The (CPs) are allocate ten  percent or less of their operational resources to security, 

also they believe the primary reason why customers purchase cloud resources are 

lower cost and faster deployment of applications not improved security or 



 

20 

compliance with regulations but see this unlikely reason. Some (CPs) do not have 

dedicated security personnel to oversee the security of cloud applications, 

infrastructure or platforms. In addition, (CCs) admit they are not vigilant in 

conducting audits or assessments of cloud computing providers before deployment 

[5]. 

To benefits stakeholder of cloud computing in proper way they must negotiate any 

attributes related to security of data and operations, also they must believe the 

responsibility of security is shared between them. [5].    

2.2.3.2 Encryption in the Cloud Computing 

       Encryption techniques are most techniques used in cloud environment to 

protect sensitive data from unauthorized user by store the data in unreadable form 

which discuss in [2, 6, 8]. 

 Data in cloud computing technologies must be encrypted in motion when transfer 

between cloud computing stakeholders, data in processing must also not disclosure 

and data when stored either in owner repositories or in cloud infrastructure.  

The encryption of mobile media and the ability to securely share those encryption 

keys between the cloud service provider and consumer is an important and often 

overlooked need. Because moving large volumes of data quickly and cheaply over 

the internet is still not practical in many situations, many organizations must send 

mobile media, such as an archive tape, to the cloud provider. It is critical that the 

data is encrypted and that only the cloud provider and client have access to the 

encryption keys.  



 

21 

Encryption techniques in the few year ago when used it to protect data from 

unauthorized access are scarified the functionality and reduce the system 

performance because they need to decrypt and then used the data. 

Cryptographers have recently invented versatile encryption schemes that allow 

operation and computation on the ciphertext. A versatile encryption schemes 

allows the data owner (CCs) to compute a capability from his secret key. A 

capability encodes a search query, and the cloud provider (CPs) can use this 

capability to decide which documents match the search query, without learning any 

additional information. Other cryptographic primitives such as homomorphic 

encryption and private information retrieval (PIR) this schema can enable cloud 

users‎ (CCs)‎ to‎ benefit‎ from‎ one‎ another’s‎ data‎ in‎ a‎ controlled‎ manner‎ such‎ as‎

detecting user activities outside of the norm) and better data loss prevention [6]. 

When these cryptographic techniques mature, they may open up new possibilities 

for cloud computing security. 

2.3 Summery 

In this chapter we displayed the literature review, background and definition of cloud 

computing environment by demonstrated the architecture, governing and operating cloud 

computing. Then we defined the main points in information security. Then we presented 

security in cloud computing by determined challenges of cloud environment with 

encryption as better solution to most challenges. 

 

 

 

 



 

22 

 

CHAPTER 3  

The Versatile Encryption Approach 

3.1 Introduction  

A versatile encryption schema in the origin are encryption techniques with new 

properties added to cope with the requirements of new technologies such as cloud 

computing. 

Years ago when the organization encrypts its data the primary purpose is to protect 

it in their repositories in a confidential manner or sometimes data may transfer 

from one branch to another within the organization. This means the data is 

transferred in different places but them all ultimately under the control of the 

organization. In order to used the data by organization they need just to decrypt it. 

Now, with the emergence of new technologies, notably the technology of cloud 

computing, if any organization adopts cloud technologies for benefits from 

services they will convey their data and store it in cloud environment in encrypted 

form. In this case if the organization encrypts data with traditional encryption 

techniques, they are need to bring the data from a third party (cloud computing) 

and then apply decryption operation to retrieve the data in readable form, apply 

desired operations, then are encrypts the data again and returns it to the cloud 

environment, that is, if it can conduct operations on the enterprise data in their 

environment rather than the environment of cloud computing.  



 

23 

Sometimes there are services require applications which exist only in a cloud 

environment. The organization if are decrypted the data in cloud environment this 

is means the data are disclose by the cloud owner, a versatile encryption schema 

emerged from this problem.  

The organization when apply a versatile encryption schema  they can conducting 

searches for information in their data on cloud environment and retrieve results 

without disclose the contents of their data to cloud provider. 

A versatile encryption schemes allows customer to apply operations and 

computations on the encrypted data and return the result without decrypts the data. 

3.2  Categories of a Versatile Encryption 

There are three categories falls in a versatile encryption schema [6] which discuss 

in the following sections: 

3.2.1 Searchable Encryption  

This category allows the data owner to compute a capability from his secret key. A 

capability encodes a search query, and the cloud provider can use this capability to 

decide which documents match the search query, without learning any additional 

information. The secret key in this type may be the session key if the algorithm is 

symmetric, or it may be the private key in the case that the algorithm is asymmetric 

uses the public key for encryption. 

Many research recently invented encryption schemes in this category which 

defines in the following section: 



 

24 

3.2.1.1 Public Key Encryption with keyword Search 

In paper [7] build algorithm called a non-interactive searchable encryption scheme 

(PEKS) that allow the mail client to search for specific words on server mail that 

client stores mail on it in encrypted format. The goal on this paper is to enable 

client of mail to send a short secret key (trapdoor) wT  to the mail server that will 

enable the server to locate all messages containing the keyword (W ), but learn 

nothing else. Client produces this trapdoor ( wT ) using his private key. The server 

simply sends the relevant emails back to client. 

And this scheme consists of the following polynomial time randomized algorithms: 

 KeyGen( s ): takes a security parameter s and generates a public private key pair

pubC , privC . 

 PEKS ( pubC , W ): for a public key pubC and a word W produces a searchable 

encryption ofW . 

 Trapdoor ( privC ,W ): given Client's private key and a word W produces a trapdoor

wT . 

 Test ( pubC , S, wT ): given Client's public key, a searchable encryption

);( WCPEKSS pub
 , and a trapdoor wT = Trapdoor ( privC ;W ),‎outputs‎‘yes’‎if‎W =

W   
and‎‘no’‎otherwise. 

The scenario of this algorithm client runs the KeyGen algorithm to generate his 

public/private key pair. He uses Trapdoor algorithm to generate trapdoors wT   for 

any keywords W that he wants the mail server or mail gateway to search for. The 

mail server uses the given trapdoors as input to the Test algorithm to determine 

whether a given email contains one of the keywords W specified by client or no. 

 There are two constructions for (PEKS) algorithm:     



 

25 

o Construction is based on a variant of the computational Diffie-Hellman problem: 

Abstractly, they use two groups 1G , 2G of prime order p  and a bilinear map 

211: GGGe  between them.  

The map satisfies the following properties:  

 Computable: given 1, Ghg  ; there is a polynomial time algorithms to compute

  2, Ghge  .  

 Bilinear: for any integers   pyx ,1,   we have xyyx ggegge ),(),(  . 

 Non-degenerate: if g  is a generator of 1G  then  gg,  is a generator of 2G . 

The size of 1G ; 2G  is determined by the security parameter. 

They will need hash functions   1

*

1 1,0: GH   and   p
GH

log

22 1,0:  . 

The PEKS works with first construction as follows: 

 KeyGen: The input security parameter determines the size, p  of the groups 1G

and 2G .  

 The algorithm picks a random *

pZ  and a generator g  of 1G . It outputs 

 ghgC pup  ,  and pivA . 

 PEKS ( pubC ,W ): First compute    21 , GhWHet r  for random *

pZr . 

Output of PEKS     tHgWA r

pub 2,, 
 
. 

 Trapdoor ( privC ,W ): output   11 GWHTw 


. 

 Test ( pubC , S, wT ): let  BAS , . Test if    BATeH w ,2 . 

If so, output yes; if not, output no. 

They prove that this system is a non-interactive searchable encryption 

scheme semantically secure against a chosen keyword attack in the random 

oracle model. 



 

26 

o Another construction is based on general trapdoor permutations, assuming that the 

total number of keywords that the user wishes to search for is bounded by some 

polynomial function in the security parameter.  

 

3.2.1.2 Practical Techniques for Searches on Encrypted Data 

Paper [8] presents cryptographic schemes with symmetric key that enable 

searching on encrypted data without leaking any information to the un-trusted 

server. This scheme has number of crucial advantages: Firstly provably secure for 

encryption which means that the un-trusted server cannot learn anything about the 

plaintext when only given the ciphertext. Secondly they provide query isolation for 

searches meaning that the un-trusted server cannot learn anything more about the 

plaintext than the search result; thirdly they provide controlled searching, so that 

the un-trusted‎ server‎ cannot‎ search‎ for‎ an‎ arbitrary‎ word‎ without‎ the‎ user’s‎

authorization; fourthly support hidden query so that the user may ask the un trusted 

server to search for a secret word without revealing the word to the server. 

The algorithm that implements this schema is efficient and practical, for a 

document of length n the encryption and search algorithms only need  number 

of stream cipher and block cipher operations. Their schemes introduce essentially 

no space and communication overhead. Also flexible and can be easily extended to 

support more advanced searches. 

Client has set of mails stored in un-trusted server on encrypted form, because client 

may have only a low-bandwidth network connection to the un-trusted server, he 

wishes to only retrieve the documents which contain the word W . There are two 

types of approaches: one of them is to build up an index that, for each word W of 

interest, lists the documents that containW . 

)(n



 

27 

 An alternative approach is to perform a sequential scan without an index. The 

advantage of using an index is that it may be faster than the sequential scan when 

the documents are large. The disadvantage of using an index is that storing and 

updating the index can be of substantial overhead. So the approach of using an 

index is more suitable for mostly-read-only data.  

When using the sequential scan this paper proposed basic algorithm which are 

containing the following encryption scenario: client is generate pseudorandom 

value lSS ,.......,1 using pseudorandom generator G and apply pseudorandom function 

F with iK  chosen by client to calculate pseudorandom stream  )(, ikii WFST
i

 .
 iT  is 

pseudorandom stream only client can generate it so, no one else can decrypt it. 

Then the client calculates ciphertext  iii TWC   and stores it on service provider. 

The basic scheme supports searches over the ciphertext by this scenario: if client 

wants to search about W he can tell the service provider and send to it W  and iK  

corresponding to each location which W  occur. Service provider can then search 

for W  in the ciphertext by checking whether ii WC   is of the form of  sFs
iK,  for 

some s .At the positions where service provider does not know iK , he does not 

learns nothing about the plaintext. The basic scheme provides provable secrecy if 

the pseudorandom function F and pseudorandom generator G  are secure. 

If the client wants from un-trusted server to search for W either client must reveal 

all the  iK  (which may reveal the entire document), or client must know in advance 

which locations may appear at.  

Another schema provides controlled searching: In this schema the researcher add 

additional pseudorandom function f  which will be keyed independently of F . 



 

28 

The main idea is to choose keys as  iki Wfk  .   require that k   be chosen 

uniformly randomly by client and never be revealed. Then if client wish to allow 

un trusted server to search for the word W , client reveals  Wf k  and W  to server. 

This allows server to identify all the locations where W might occur, but reveals 

absolutely nothing on the locations i  where WWi  . This attains their desired goal 

of controlled searching. If the document to be encrypted consists of a series of 

chapters, an alternative approach is to generate the key ik for the word W in chapter

C as )),(( WCfk ki  This allows client to control which chapters server may search 

in as well as controlling which words server may search for. 

Scheme three provides hidden searches: suppose client would now like to ask 

server to search for a word W but he is not willing to reveal W  to server. They 

proposed a simple extension to the above scheme to support this goal. Client 

should merely pre-encrypt each word of the clear text separately using a 

deterministic encryption algorithm. So they may think of this pre-encryption step 

as ECB (Electronic Code-Book) encryption of the words of the document using 

some block cipher.  if the word is very long, internally the map kE   may be 

implemented by CBC (Cipher Block Chaning ) encrypting iW with a constant IV , 

or some such, but the point is that this process must be the same at every position 

of the document. they  let )( iki WEX  . 

After the pre-encryption phase, client has a sequence of E-encrypted words 

lXX ,...,1 Now he post-encrypts that sequence using the stream cipher construction 

described above to obtain iii TXC   where )( iki WEX   and  )(, ikii XFST
i

 .To 

search for a word W ,client compute )(WEX k  and )(Xfk k  and sends  Xk,  to 

server. Note that this allows server to search for W  without revealing W itself. It is 



 

29 

easy to see that this scheme satisfies the hidden search property as long as the pre-

encryption E  is secure. 

scheme three actually suffers from a small inadequacy: client can no longer 

recover the plaintext from just the ciphertext if client generates keys )( iki WEk 

then client can no longer recover the plaintext from just the ciphertext because he 

would need to know )( ik WE  This defeats the purpose of an encryption scheme, 

because even legitimate principals with access to the decryption keys will be 

unable to decrypt. In this paper they show a simple fix for this problem. In the 

fixed scheme,which arefinal schema they split the pre-encrypted word )( iki WEX 

into two parts, ),( iii RLX  , where iL  (respetivly iR ). Instead of generating 

))(( iki WEfk  , client should generate ))(( iki LEfk  . 

To decrypt, client can generate iS using the pseudorandom generator (since client 

knows the seed), and with iS  he can recover iL  by XORing iS  against the first 

mn   bits of  iC  .  Finally, knowledge of iL allows client to compute ik  and thus 

finish the decryption. 

Alernative approch to sequantial scan is searching with an encrypted index, 

sequential scan may not be efficient enough when the data size is large. An index 

contains a list of key words; with each key word is a list of pointers to documents 

where the key word appears. The key words are words of interest that client may 

want to search for later. client can certainly build the index of his clear text 

documents and then encrypt the clear text and the index and store the ciphertext on 

server.  



 

30 

There are many aproaches to encrypt the index, one of them is encrypt the key 

words in the index and leave the lists of positions in clear. This approach makes it 

easy‎for‎server‎to‎perform‎search‎queries‎on‎client’s‎behalf,‎but‎also‎leaks‎a‎lot‎of‎

information to server and hence may allow him to apply various statistical attacks. 

Therefore, this naive approach is inefficient. 

Another way is to also encrypt the document pointers in each list in the index. 

Consequently, when the server searches for encrypted word and finds a match, he 

returns to client the encrypted list of matching positions from the index. client may 

decrypt the encrypted entries and send to server another request to retrieve the 

relevant documents. One possible advantage for  this scheme is that the request 

could be embedded in other retrievals so that server might have uncertainty about 

the correlation of the search request and the retrieval request for ciphertext. The 

disadvantage is that client has to spend an extra round-trip time to retrieve the 

documents. The server merge the results of several search queries for client to 

solve problem of wasted time. 

 Note that a general disadvantage for index search is that whenever client changes 

his documents, he must update the index. There is a trade-off between how much 

index client updates and how much information server might be able to learn. 

 

3.2.1.3   Multi-dimensional Range Query over Encrypted Data 

in paper [9] design an encryption scheme called Multi-dimensional Range Query 

over Encrypted Data (MRQED), to address the privacy concerns related to the 

sharing of network audit logs and various other applications. the scheme allows a 

network gateway to encrypt summaries of network flows before submitting them to 

an un-trusted repository. When network intrusions are suspected, an authority can 



 

31 

release a key to an auditor, allowing the auditor to decrypt flows whose attributes 

(e.g., source and destination addresses, port numbers, etc.) fall within specific 

ranges. Apart from network audit logs, their scheme also has interesting 

applications for financial audit logs, medical privacy, untrusted remote storage, etc. 

Recently, the network intrusion detection community has made large-scale efforts 

to collect network audit logs from different sites. In this application, a network 

gateway or an Internet Service Provider (ISP) can submit network traces to an 

audit log repository. However, due to the presence of privacy sensitive information 

in the network traces, the gateway will allow only authorized parties to search their 

audit logs. They consider the following four types of entities: a gateway, an 

untrusted repository, an authority, and an auditor. they design a cryptographic 

primitive that allows the gateway to submit encrypted audit logs to the untrusted 

repository. Normally, no one is able to decrypt these audit logs. 

This paper mentioned application example of (MRQED) such as Financial audit 

logs contain sensitive information about financial transactions. scheme (MRQED) 

allows financial institutions to release audit logs in encrypted format. When 

necessary, an authorized auditor can obtain a decryption key from a trusted 

authority. With this decryption key, the auditor can decrypt certain transactions 

that may be suspected of fraudulent activities. However, the privacy of all other 

transactions are preserved. Scheme provides the following properties: 

Range query on attributes. An authority can issue a decryption key for all flows 

whose ),,( pat where t  is time stamp, a  is a source address and p is destination port 

number falls within a certain range:  21,ttt  and  21,aaa  and  21, ppp . 



 

32 

A MRQED scheme consists of four (randomized) polynomial-time algorithms: 

Setup, Encrypt, DeriveKey and QueryDecrypt.  

In the network audit log example, an authority runs setup to generate public 

parameters and a master private key; a gateway runs the encrypt algorithm to 

encrypt a flow. Encryption is performed on a pair  XMsg, . The message Msg is an 

arbitrary string, and X  is a point in multi-dimensional space, representing the 

attributes. 

Whenever necessary, the authority can run the DeriveKey algorithm, and compute 

a decryption key allowing the decryption of flows whose attributes fall within a 

certain range. Given this decryption key, an auditor runs the QueryDecrypt 

algorithm over the encrypted data to decrypt the relevant flows. Suppose that 

during time  21, tt , there is an outbreak of a  worm characteristic by the port number 

1p . Now the trusted authority issues a key for the range  21,ttt  and 1pp  to a 

research group who has been asked to study the worm behavior. With this key, the 

research group should be able to decrypt only flows whose time-stamp and port 

number fall within the given range. The privacy of all other flows should still be 

preserved. 

An  (MRQED) scheme consists of the followingpolynomial-time randomized 

algorithms. 

 Setup(  , L  ): Takes a security parameter   and D-dimensional lattice L and 

outputs public key PK and master private key SK . 

 Encrypt( PK , X , Msg ): Takes a public key PK , apoint X , and a message Msg  

from the message space M  and outputs a ciphertext C . 



 

33 

 DeriveKey( PK , SK , B ): Takes a public key PK , a master private key SK , and a 

hyper-rectangle B  and outputs decryption key for hyper-rectangle B . 

 QueryDecrypt( PK , DK , C ): Takes a public key PK , a decryption key DK , and a 

ciphertext C  and outputs either a plaintext Msg or  , signaling decryption failure. 

For each message MMsg  hyper-rectangle  LB  and point LX , the above 

algorithms must satisfy the following consistency constraints: 

QueryDecrypt ( PK , DK ,C ) is equal Msg  if BX   Otherwise is equal  .  

 

 

3.2.1.4  Predicate Privacy in Encryption Systems 

In paper [10] the researcher proposed new encryption paradigm called predicate 

privacy in encryption systems which allows for such fine-grained control over 

access to encrypted data. 

In a predicate encryption scheme, the owner of a master secret key can create and 

issue secret key tokens to other users. Tokens are associated with predicates which 

can be evaluated over encrypted data. Specifically, an encryption of a data x  can 

be evaluated using a token fTK associated with a predicate f to learn whether

  1xf . 

In this work, the researcher consider a different dimension of predicate encryption 

predicate privacy. 

In addition to protecting the privacy of plaintexts, they also protect the description 

of the predicates encoded by tokens. 

Unfortunately, predicate privacy is inherently impossible to achieve in the public-

key setting. Since encryption does not require a secret key, an adversary can 



 

34 

encrypt any plaintext of his choice and evaluate a token on the resulting ciphertext 

to learn whether the plaintext satisfies the predicate associated with the token. In 

this way, an adversary can gain information about the predicate encoded in a token. 

Therefore, it does not make sense to consider the notion of predicate privacy for 

predicate encryption in the public-key setting. 

In this paper they consider predicate privacy in the symmetric-key setting, in 

applications where you want to hide information about the predicate being tested 

from the party evaluating a token. 

The researcher discussion details of Symmetric-Key Predicate-Only Encryption 

schema for the class of predicates f  over the set of attributes consists of the 

following probabilistic polynomial time algorithms: 

 Setup( 1 ): Takes as input a security parameter 1  and outputs a secret key SK . 

 Encrypt( SK , x ): Takes as input a secret key SK  and a plaintext x and outputs 

a ciphertextCT  . 

 GenToken( SK , f ): Takes as input a secret key SK and a description of a predicate 

Ff   and outputs a token fTK . 

 Query( fTK , CT ): Takes as input a token fTK
 
for a predicate f  and a ciphertext 

CT . It outputs either 0 or 1, indicating the value of the predicate f  evaluated on 

the underlying plaintext. Correctness. For correctness, the researcher used the 

following condition.For all  , all x ,and all Ff   

 If   1xf , then Query( fTK ,CT ) = 1. 

 If   1xf , then    )(10,Pr  CTTKQuery f  where    is a negligible 

function. 



 

35 

In this paper also prove the security for a symmetric-key predicate-only encryption 

scheme. 

3.2.1.5 Conjunctive, Subset, and Range Queries on Encrypted Data 

Paper in [7] developed a mechanism for equality tests in the public-key settings. In 

paper [8] developed a mechanism for equality tests on data encrypted with a 

symmetric key system. 

While in this paper [11] support query of equality conjunction, comparison 

conjunction, subset conjunction which mean extended the paper in [7]. Let   be a 

set of predicates over  .  

A searchable public-key systems in this paper comprises of the following 

algorithms: 

 Setup(  ) : a probabilistic algorithm that takes as input a security parameter and 

outputs a public key PK and secret key SK . 

 Encrypt( PK , I , M ):encrypts the plaintext pair  MI , using the public key PK . 

They veiw I  as the searchable field, called an index, and MM  as the data.. 

 GenToken ( SK ,  P ) : takes as input a secret key SK  and the description of a 

predicate P . It outputs a token pTK . 

 Query(TK , C ) algorithm takes a token TK for some predicate P  as input and 

a ciphertext C . It outputs a message MM  or   . If C the ciphertext of  MI ,  

then the algorithm outputs M when   1IP  and outputs   otherwise. 

 

In this paper introduce the concept of Hidden Vector Encryption (HVE) system 

which leads to complexity of query (comparison and subset queries) then proof the 



 

36 

security of both public-key systems without (HVE) system and public-key systems 

with (HVE) system. 

This paper in construct public-key systems that support queries on encrypted data a 

secret key can produce tokens for testing any supported query predicate. The token 

lets anyone test the predicate on a given ciphertext without learning any other 

information about the plaintext. 

3.2.2   Private Information Retrieval 

 In this category we can perform computations on encrypted data without 

decrypting. 

3.2.2.1 Private Information Retrieval 

Another  paper in [12] proposed schema called Private Information Retrieval (PIR) 

this paper view the database as a binary string nxxx ,...,1 of length n . Identical 

copies of this string are stored by 2K servers. The user has some index i , and he 

is interested in obtaining the value of the bit ix . To achieve this goal, the user 

queries each of the servers and gets replies from which the desired bit ix  can be 

computed. The query to each server is distributed independently of i and therefore 

each server gains no information about i . 

Schemes are based on exclusive-or (linear summations, or sum) queries; this type 

of‎ queries‎ is‎ very‎ common‎ and‎ is‎ actually‎ implemented‎ in‎ several‎ “real-world”‎

databases. 

In this paper they consider a randomized strategy for the user, which on input an 

index i    nn ,...,1
  and random input r (of length , rndl ), produce k  queries(of 

length ql each), ),,(),...,.(1 riQriQ k one per server.  



 

37 

The servers respond according to strategies kAA ,...,1 with replies (of length al ) that 

depend on the contents of the database, denoted x, and the corresponding query. 

The user reconstructs the desired bit ix  from these k  replies, together with i  and r . 

The privacy requirement is that each individual query is distributed independently 

of i and thus the server gains no information about the identity of the desired item. 

A k  server Private Information Retrieval (PIR) scheme for database length n 

consists of 

o k  query functions     ;1,01,0][:,...,1
qrnd ll

k nQQ   

o k  answer functions,       ;1,01,01,0:,...,1
aq lln

kAA   

o a  reconstruction function,         ;1,01,01,0: 
kll arndnR   

 

These functions should satisfy correctness and privcy. 

This schema has proprites such as perfect privacy, memoryless protocol, 

deterministic server strategeis, noncllousion and coalition. 

 

3.2.3  Proofs of Retrievability 

Apart from ensuring privacy, applied cryptography may also offer tools to address 

other security problems related to cloud computing. For example, in proofs of 

retrievability. The storage server can show a compact proof that it is correctly 

storing‎all‎of‎the‎client’s‎data. 

In the following section we mentioned an example of algorithm in the proofs of 

retrievability category. 



 

38 

3.2.3.1 Provable Data Possession 

Researcher in [13] introduce model for provable data possession (PDP) that allows 

a client that has stored data at an un-trusted server to verify that the server 

possesses the original data without retrieving it. The model generates probabilistic 

proofs of possession by sampling random sets of blocks from the server, which 

drastically reduces I/O costs. The client maintains a constant amount of metadata 

to verify the proof. The paper present two provably-secure PDP . The overhead at 

the server is low (or even constant), as opposed to linear in the size of the data. 

Experiments using their implementation verify the practicality of PDP and reveal 

that the performance of PDP is bounded by disk I/O and not by cryptographic 

computation. 

The model is allows the server to access small portions of the file in generating the 

proof; all other techniques must access the entire file. Within this model, they give 

the first provably-secure scheme for remote data checking. The client stores a 

small  1  amount‎of‎metadata‎ to‎verify‎ the‎server’s‎proof.‎Also,‎ the‎scheme‎uses‎

 1  bandwidth. The challenge and the response are each slightly more than 1 

Kilobit. they also present a more efficient version of this scheme that proves data 

possession using a single modular exponentiation at the server, even though it 

provides a weaker guarantee. 

A PDP schemes has multiple featuers such as provide data format independence 

and put no restriction on the number of times the client can challenge the server to 

prove data possession. Also, a variant of their main PDP scheme offers public 

verifiability this feature allows anyone, not just the data owner, to challenge the 

server for data possession. 



 

39 

Figure ‎3.1 demostrate the senario of a PDP protocol .In the a PDP protocol the 

client C (data owner) pre-processes the file, generating a piece of metadata that is 

stored locally, transmits the file to the server S , and may delete its local copy. The 

server stores the file and responds to challenges issued by the client. Storage at the 

server is in  n and storage at the client is in  1 , conforming to their  notion of an 

outsourced storage relationship. 

 

Figure ‎3.1: Protocol for Provable Data Possession [13]. 

       

 As part of pre-processing, the client may alter the file to be stored at the server. 

The client may expand the file or include additional metadata to be stored at the 

server. Before deleting its local copy of the file, the client may execute a data 

possession challenge to make sure the server has successfully stored the file. 

Clients may encrypt a file prior to out-sourcing the storage. For their purposes, 

encryption‎is‎an‎orthogonal‎issue;‎the‎“file”‎may‎consist‎of‎encrypted‎data‎and‎our‎

metadata does not include encryption keys. 

 

 At a later time, the client issues a challenge to the server to establish that the 

server has retained the file. The client requests that the server compute a function 



 

40 

of the stored file, which it sends back to the client. Using its local metadata, the 

client verifies the response. The goal of a PDP scheme that achieves probabilistic 

proof of data possession is to detect server misbehavior when the server has 

deleted a fraction of the file. 

The importance parameter of PDP schema is computation complexity which is the 

computational cost to pre-process a file at client, to generate a proof of possession 

at server and to verify such a proof at client; another parameter is block access 

complexity which is the number of file blocks accessed to generate a proof of 

possession, and last parameter is communication complexity which is the amount 

of data transferred between client and server.  

 Any process in this schema relevant to the server, the schema try to minimized 

because the server concurently serve multiple clients and the overhead 

computation in the client is not important. 

 In this paper to meet requirment to minimized the computation in the server, client 

try to access random subset of the blocks. In this paper they introduce new concept 

of a homomorphic verifiable tags (HVTs) that will be used as a building block for 

their PDP schemes. The (HVTs) act as verification metadata for the file blocks 

and, besides being unforgeable they have other properites dicuss in details in [13]. 

Key components of this  scheme are the homomorphic verifiable tags. They allow 

to verify data possession without having access to the actual data file. 

A PDP scheme is a collection of four polynomial-time algorithms: 

 KeyGen( k1 ) is a probabilistic key generation algorithm that is run by the client to 

setup the scheme. It takes a security parameter k as input, and returns a pair of 

matching public and secret keys( pk , sk ). 



 

41 

 TagBlock ( pk , sk , m ) is a (possibly probabilistic) algorithm run by the client to 

generate the verification metadata. It takes as inputs a public key pk , a secret key 

sk and a file block m , and returns the verification metadataV  . 

 GenProof ( pk , F , chal ,  )   algorithm is run by the server in order to generate a 

proof of possession. It takes as inputs a public key pk , an ordered collection F  of 

blocks, a challenge chal and an ordered collection  which the verification 

metadata corresponding to the blocks in F . It returns a proof of possession V for 

the blocks in F , that are determined by the challenge chal . 

 CheckProof( pk , sk , chal  ,V ) algorithm is run by the client in order to validate a 

proof of possession. It takes as inputs a public key pk , a secret key sk , a 

challenge chal and a proof of possession V . It returns whether V is a correct proof 

of possession for the blocks determined by chal . 

 

Th researcher measure the performance of E-PDP and the benefits of sampling 

based on their implementation of E-PDP in Linux and discussion the results by 

concrete example.  

3.2.3.2 Compact Proofs of Retrievability  

Researcher in [14] they are give the first proof-of-retrievability (POR)schemes 

with full proofs of security against arbitrary adversaries. 

Their first scheme has the shortest query and response of any proof-of-

retrievability with public verifiability and is secure in the random oracle model. 

The second scheme has the shortest response of any proof-of-retrievability scheme 

with private verifiability (but a longer query), and is secure in the standard model. 

Both schemes rely on homomorphic properties to aggregate a proof into one small 

authenticator value. The scenario of the first schema: the client breaks an erasure 

encoded file into n  blocks pn Zmmm ...,, 21  for some large prime p . The user 



 

42 

authenticates each block as follows. He  chooses a random 
pZ  and PRF key k  

for function f . These values serve as his secret key. he calculates an authentication 

value for each block i  as: piki Zmif   )( . The blocks and authenticators are 

stored on the server. The proof of retrievability protocol is as follows. The verifier 

chooses a random challenge set I  of l  indices along with l  random coeficients in 

pZ
 
Let Q  be the set of   ivi,  of challenge index of coefficient pair. The verifier 

sends Q
 
to the prover. 

The prover then calculates the response, a pair (  , ), as: 

i

Qvi

i

i

v  .
),(






 

and i

Qvi

i mv
i

.
),(




   .Now verifier can check that the response was 

correctly formed by checking that  ifv k

Qvi

i

i

 
),(

 . 

The second scheme is publicly verifiable. It follows the same framework as the 

first, but instead uses The Boneh, Lynn, Shacham (BLS) scheme in paper [15] 

which called as BLS signatures for authentication values that can be publicly 

verified. The structure of these signatures allows for them to be aggregated into 

linear combinations as above. 

They prove the security of this scheme under the computational Diffie-Hellman 

assumption over bilinear groups in the random oracle model. 

Let tGGGe :  be a computable bilinear map with group G  support being pZ . 

A user's private key is pZx  and his public key is Ggv x   along with another 

generator Gu . The signature on block i  is   xmi

i uiH . 



 

43 

On receiving query   iviQ , , the  prover computes and sends back 



Qvi

v

i

i

i

),(

  

and i

Qvi

i mv
i

.
),(




  The verification equation is:

 

),)((),(
),(

vuiHege
Qvi

v

i

i


 

 

This scheme has public verifiability: the private key i  is required for generating the 

authenticators  i  but the public key v  is sufficient for the verifier in the proof-of-

retrievability protocol. 

Proof-of-retrievability protocol. 

3.2.3.3 Zero-knowledge proofs of retrievability  

Another proofs of retrievability schema introduce in [16] the verification process 

of this scheme requires a low, constant amount of overhead, which minimizes 

communication complexity. 

proofs of retrievability is a cryptographic proof technique for a storage provider to 

prove that clients’‎data‎remain‎intact.‎It‎is‎necessary‎for‎cloud‎service‎providers‎to‎

make use of the (POR) technique to provide a secure management of their storage 

services. In this paper they introduce the first formal definition of interactive 

proofs of retrievability (IPOR) on the standard model of interactive proof systems. 

In terms of this  definition, they provide a practical zero-knowledge POR (ZK-

POR) solution to prevent data leakage in the public verification process. Also they 

prove the soundness and zero-knowledge propertis of this scheme by constructing 

a polynomial-time knowledge Extractor, having rewindable black-box access to 

the prover, under the computational Diffie-Hellman (CDH) assumption.  

Construction of ((Interactive-POR schema) 



 

44 

An interactive proof of retrievability scheme S is a collection of two algorithms 

and an interactive proof system, ),,( PTKS  . 

o KeyGen( k1 ) : It takes a security parameter k as input, and returns a pair of 

matching public and secret keys( pk , sk ). 

o TagBlock ( sk , F ): It takes as inputs a secret key sk and a file F , and returns the 

triples   ,, , where   denotes the secret used to generate the verification tags, 

  is the set of public verification parameters u  and index information X , i.e., 

 Xu,  = (u, χ);   denotes the set of verification tags; 

 

Proof ( P ,V )   It is a protocol of proof of retrievability between a prover ( P ) and a 

verifier (V ). At the end of the protocol run, V  returns,  1|0V where 1 means the 

file is correctly stored on the server. It includes two cases: 

      ,,, skVFP  is a private proof, where P  takes as input a file F and a set of 

tags  , and V  takes as input a secret key sk  and a secret of tags  .  

       ,,,, pkVFP  is a public proof, where P  takes as input a file F  and a set 

of tags  , and a public key pk and a set of public parameters   are the common 

input between P  and V , where  xP  denotes the subject P  holds the secret x

and   xVP, denotes both parties P and V  share a common data x  in a protocol. 

An IPOR is called zero-knowledge proof of retrievability (ZK-POR) if the 

completeness, knowledge soundness, and zero-knowledge property hold. 

3.3 The adopted Algorithm 

After discuss in section ‎3.2 the general categories of a versatile encryption scheme. 

Then ‎3.2.1.2displayed the algorithms. In section 3.2.1.2 shows literature of the 

adopted algorithm. 



 

45 

 In this section discuss the chosen verification of adopted algorithm as points of 

strengths in the adopted algorithm which as reported in [8]: 

o Provably Secure: the un-trusted server (CPs) cannot learn anything about the 

plaintext given only the ciphertext. The algorithm achieved this property by 

ensures that pseudorandom function )(F and the pseudorandom generator )(G

which generate iT are secure. Also that only (CCs) generate the pseudorandom 

stream  li TT ,......., and no one else can decrypt. 

o Controlled Searching: the un-trusted server (CPs) cannot search for a word 

without the user’s (CCs) authorization. 

To choose keys as )(2 ikii LfK   requires that 2Ki  be chosen uniformly randomly 

by (CCs) and never be revealed.  

If the (CCs) want to allow (CPs) to search for the wordW , he reveals )(2 iki Lf  and 

W to (CPs). This allows (CPs) to identify all the locations where W might occur, 

but reveals absolutely nothing on the locations i  where  WWi    . This attains the 

controlled searching.  

o Hidden Queries: the (CCs) may ask the un-trusted server to search for a secret 

word without revealing the word to the server.  

This property achieved by pre-encrypt to all words. Also encrypts search word.  

     The (CCs) to search about word iW  send to (CPs) just  ii KX ,  calculates by 

equation    ))(),((
23 ikiiki XfKWEX  .  

o Query Isolation: meaning that the un-trusted server (CPs) learns nothing more 

than the search result about the plaintext. 

The algorithm provides query isolation, meaning that even when a single key _ *  is 

revealed, no extra information is leaked beyond the ability to identify the positions 

where the corresponding word _ *  iW  occurs. 



 

46 

This property mean the algorithm is prevents the (CPs) from disclosed any 

information than the search result.  

As the result of these discussions the algorithm presents cryptographic schemes 

that enable searching on encrypted data without leaking any information to the un-

trusted server (CPs). 

The algorithm described in [8] also are simple and fast (More specifically, for a 

document of length n , the encryption and search algorithms only need )(n stream 

cipher and block cipher operations); and they introduce almost no space and 

communication overhead. 

The schemes take the form of probabilistic searching: a search for the word W  returns all 

the positions where W occurs in the plaintext, as well as possibly some other erroneous 

positions. They may control the number of errors by adjusting a parameter _ in the 

encryption algorithm; each wrong position will be returned with probability about m21 so 

for a   -word document, they expect to see about m2 false matches. The user will be 

able to eliminate all the false matches (by decrypting), so in remote searching 

applications, false matches should not be a problem so long as they are not so common 

that they overwhelm the communication channel between the user and the server. 

3.4 Related Work 

in this section we discuss some related work to this research. 

3.4.1 Related Work in Cloud Computing 

In this paper [17], Ming et al proposed a novel and practical framework for fine-

grained data access control to personal health record (PHR) data in cloud 

computing environments, under multi owner settings.  



 

47 

The framework divides the users in the whole PHR system into multiple security 

domains (SDs), and for each SD they introduced one or more authorities which 

govern attribute-based credentials for users within that SD.  

There are two categories of SDs: public domains (PUDs) and personal domains 

(PSDs). A PUD usually contains a large number of professional users, and multiple 

public attribute authorities (PAA) that distributive govern a disjoint subset of 

attributes to remove key. 

 

Figure ‎3.2: The Proposed Multi-Owner, Multi-Authority, and Multi-User Framework for 

access control of PHR in cloud computing. [17] 

The scenario of the framework is: step 1) In Figure ‎3.2 key distribution. Users first 

obtain attribute-based keys from their AAs. In Step 2) the AAs distribute write 

keys‎that‎permit‎users‎in‎their‎SD‎to‎write‎to‎some‎patients’‎PHR. 



 

48 

PHR Access illustrated in step 3) first, the owners upload ABE-encrypted PHR 

files to the cloud server. Step 5) the readers download PHR files from the server, 

and they can decrypt the files only if they have suitable attribute-based keys. Step 

4) the writers‎ will‎ be‎ granted‎ write‎ access‎ to‎ someone’s‎ PHR,‎ if‎ they‎ present‎

proper write keys. 

Step 8) shows user revocation, when an emergency happens, the regular access 

policies may no longer be applicable. To handle this situation, break-glass access is 

needed‎ to‎ access‎ the‎ victim’s‎ PHR.‎ In‎ their‎ framework,‎ each‎ owner’s‎ PHR’s‎

access right is also delegated to an emergency department (ED, step 6). To prevent 

from abuse of break-glass option, the emergency staff needs to contact the ED to 

verify her identity and the emergency situation, and obtain temporary read keys 

step 7). After the emergency is over, the patient can revoke the emergent access via 

the ED. 

The framework addresses the unique challenges brought by multiple PHR owners 

and users, in that we greatly reduce the complexity of key management when the 

number of owners and users in the system is large. 

In this paper [18], Remya proposed an efficient, secure and privacy preserving 

keyword search scheme which supports multiple users with low computation cost 

and flexible key management. The proposed model called efficient and privacy 

preserving multi user keyword search for cloud storage services. 

The system consists of four different entities: data owner, data user, key server and 

the cloud server .Proposed scheme works as shown in Figure ‎3.3. 



 

49 

 

Figure ‎3.3: Working Process of Proposed Scheme [18] 

It has the following advantages: 1) it supports keyword search in encrypted form. 

The cloud server could determine which all documents contain the specified 

keyword without revealing anything about the contents of document or the 

keyword searched. 2) In this scheme, the service provider will participate in the 

partial decipherment of the cipher text, thus reducing the computational overhead 

of the user. 3) In this scheme, same keywords are encrypted to different cipher text 

for different documents thus reducing redundancy and avoiding the chance of 

statistical attack on keyword cipher text. 4) The scheme also supports multiple 

users. The user who searches for document may be different from the users who 

encrypt and store it in cloud. User authorization is also provided. 

Gowri et al [19] proposed a patient-centric model for data access control to PHRs 

stored in semi-trusted servers. Figure ‎3.4 show the framework of this model.  



 

50 

 

Figure ‎3.4: Framework of Patient Centric Model [19] 

 

The advantages of proposed system are:  

1) There is policy management for file access, data access member can able to 

access the files which they have rights set by the policy. 2) Files stored in the semi-

trusted cloud are in encrypted form and there is no chance of others to view the file 

content. 3) There is a structured way to access the file for personal & professional 

purpose through attribute policies and attribute based encryption and decryption.  

Their main design goal of this model is to help the data owner achieve fine-grained 

access control on files stored by cloud servers. Also prevent cloud servers from 

being able to learn both the data file contents and user access privilege 

information. 



 

51 

In [20] Shaheen et al proposed system model called A Novel Method for Patient 

Centric Secure and Scalable sharing of PHR in Cloud Computing using 

Encryption. The block diagram of PHR system is shown in Figure ‎3.5. 

 

Figure ‎3.5: Block Diagram [20] 

Algorithm for proposed system: Step 1) PHR owner will input the files he/she 

wants to share. Step 2) Encryption of input files is done using DES algorithm. Step 

3) Encrypted files uploaded into the cloud server. Step 4) User or data access 

member input the attributed key. Step 5) verification of the key for its validity. 

Step 6) if the key is invalid, files will not decrypt. Step 7) if the key is valid, files 

will‎be‎decrypted.‎Step‎8)‎Decrypted‎files‎will‎be‎downloaded‎into‎the‎user’s‎local‎

system. 

Josh et al [21] proposed a design that they refer to as Patient Controlled Encryption 

(PCE) as a solution to secure and private storage of patients' medical records. PCE 



 

52 

allows the patient to selectively share records among doctors and healthcare 

providers. The design of the system is based on a hierarchical encryption system. 

The design prevents unauthorized access to patients' medical data by data storage 

providers, healthcare providers, pharmaceutical companies, insurance companies, 

or others who have not been given the appropriate decryption keys. 

The goals of PCE are: 1) the patient should have confidence that the administrators 

of the health data server will not learn anything about the patient's record. 2) 

Guarantee security in the case of server compromise: even if the server is 

compromised or stolen, the patient should be certain that his data has not been 

leaked and 3) guarantee correctness of the health record: the patient should be able 

to verify that no one has tampered with his record. 4) Efficient access to patient 

health records, 5) easy sharing of parts of the record, and 6) efficient searching 

over records. 

In paper [22] Ming et al they address the problem of authorized private keyword 

searches (APKS) over encrypted data in cloud computing, where multiple data 

owners encrypt their records along with a keyword index to allow searches by 

multiple users. Figure ‎3.6 show the multiple owner.  

To limit the exposure of sensitive information due to unrestricted query 

capabilities, They propose a scalable, fine-grained authorization framework called 

authorized private keyword searches over encrypted Personal Health Records in 

cloud computing where users obtain their search capabilities from local trusted 

authorities according to their attributes.  

Then they propose two novel solutions for APKS over encrypted data based on a 

recent cryptographic primitive, hierarchical predicate encryption (HPE), where in 



 

53 

the first one they enhance the search efficiency using attribute hierarchy, and in the 

second they enhance the query privacy via the help of proxy servers which is 

shown in Figure ‎3.7. 

Their solutions also support efficient multi-dimensional range query, search 

capability delegation and revocation. In addition, They implement their solution on 

a modern workstation; the results show that APKS achieves reasonable search 

performance. Figure ‎3.7 show APKS schema. 

 
 

Figure ‎3.6: System Model for multi-owner data outsourcing in cloud computing [22] 

 

 

 



 

54 

 
 

Figure ‎3.7: The Enhanced Framework for APKS+ that preserves query privacy [22] 

Ahmed et al in paper [23], they address the challenge of data management in 

wireless sensor networks for patient supervision. They proposed a secure and 

scalable architecture for collecting and accessing large amount of data generated 

by medical sensor networks. They leverage cloud computing technology to 

dynamically scale storage resources via on demand provisioning. 

Their contributions in this work are many folds: First, They proposed a new cloud 

based architecture for medical wireless sensor networks. Second, they showed how 

they guarantee the confidentiality and the integrity of outsourced medical data 

without involving patients or doctors interventions. Third, they proposed an 

innovative access control which allows implementing complex and dynamic 

security policies necessary to medical application while reducing the management 

and processing overhead. More specifically, they combine Cipher text Policy 

Attribute Based Encryption (CPABE) and symmetric encryption to achieve fine 

grained access with low computation overhead. 



 

55 

Unlike existing patient-centric systems, security configuration and key 

management in their solution are totally transparent to users (patients and doctors) 

and do not require their interventions. 

The proposed architecture described in Figure ‎3.1Figure ‎3.8. This architecture 

considers two categories of users, healthcare professionals and patients, and is 

composed of the following components: (1) the wireless Sensor Network (WSN) 

which collects health information from patients, (2) the monitoring applications 

which allow healthcare professionals to access to stored data, (3) the Healthcare 

Authority (HA) which specifies and enforces the security policies of the healthcare 

institution and (4) the cloud servers which ensure data storage. By storing data on 

the cloud, their architecture offers virtually infinite storage capacity and high 

scalability. 

 



 

56 

 

Figure ‎3.8: the Proposed Architecture [23] 

 

Mehmet in paper [24], consider the problem of searching on encrypted data. He 

presents an extensive literature survey on this subject and provides detailed 

analyses for the existing solutions; keyword and non-keyword based approaches. 

He identify memory overhead as one of the problems and suggest some practical 

modifications for reducing it. He proposes to extend the existing non-keyword 

based scheme by using a keyed hashing function. Furthermore, he shows that we 

can substantially reduce the memory overhead by combing the non-keywords in 



 

57 

the document. These improvements are motivated by the practical applications and 

optimally combine the advantages of both the keyword and non-keyword based 

techniques. He implements the proposed improvements on the ENRON Email 

Corpus and show that the effectiveness of the proposed scheme is greater than the 

existing schemes, especially in terms of the memory overhead and encryption time. 

In paper [25], Seny et al discuss how to build Cryptographic Cloud Storage. They 

consider the problem of building a secure cloud storage service on top of a public 

cloud infrastructure where the service provider is not completely trusted by the 

customer. They describe at a high level, several architectures that combine recent 

and non-standard cryptographic primitives in order to achieve their goal. They 

survey the benefits such architecture would provide to both customers and service 

providers and give an overview of recent advances in cryptography motivated 

specifically by cloud storage. To address the concerns outlined above and increase 

the adoption of cloud storage, they discuss designing a virtual private storage 

service based on recently developed cryptographic techniques. Such a service 

should aim to achieve the best of both worlds by providing the security of a private 

cloud and the functionality and cost savings of a public cloud. More precisely, such 

a service should provide (at least): confidentiality: the cloud storage provider does 

not learn any information about customer data and integrity: any unauthorized 

modification of customer data by the cloud storage provider can be detected by the 

customer while retaining the main benefits of a public storage service: availability, 

reliability, efficient retrieval and data sharing. 

Seny et al in paper [26], they focus on the problem of constructing practical SSE 

schemes for the purpose of designing practical searchable cryptographic cloud 

storage systems [25].  



 

58 

Searchable symmetric encryption (SSE) allows a client to encrypt its data in such a 

way that this data can still be searched. The most immediate application of SSE is 

to cloud storage, where it enables a client to securely outsource its data to an un-

trusted cloud provider without sacrificing the ability to search over it.  

Any practical SSE scheme, however, should (at a minimum) satisfy the following 

properties: sub linear search time, security against adaptive chosen keyword 

attacks, compact indexes and the ability to add and delete files efficiently. 

Unfortunately, none of the previously-known SSE constructions achieve all these 

properties at the same time. This severely limits the practical value of SSE and 

decreases its chance of deployment in real-world cloud storage systems. To 

address this, they propose the first SSE scheme to satisfy all the properties outlined 

above. 

Mehmet et al, in paper [27], proposed an efficient similarity searchable symmetric 

encryption scheme to search over encrypted data. To do so, they utilized locality 

sensitive hashing (LSH) which is widely used for fast similarity search in high 

dimensional spaces for plain data. They proposed LSH based secure index and a 

search scheme to enable fast similarity search in the context of encrypted data. The 

basic idea of LSH is to use a set of hash functions to map objects into several 

buckets such that similar objects share a bucket with high probability, while 

dissimilar ones do not. LSH uses locality sensitive function families to achieve this 

goal. In addition, they provide a real world application of the proposed scheme and 

verify the theoretical results with empirical observations on a real dataset.  

The performance analysis shows that our commitment/challenge/response protocol 

transmits a small, constant amount of data, which minimize network 

communication. 



 

59 

3.5 Summery 

This chapter defined a versatile encryption schema, categories and some algorithm 

for each category as example. Then display the strength points of adopted 

algorithm as chosen verification. Then discuss and displayed related work. 

 

  



 

60 

CHAPTER 4  

Research Methodology 

4.1 Introduction 

This chapter presents and lists down all the steps that associated and embraced in 

order to   conduct this research. 

4.2 Research Process  

This research divides the work into three main steps as shown in Figure ‎4.1: starts 

by determines security requirements in cloud computing environments. Step two 

discusses the implementation of versatile encryption algorithm. Step three 

validates and evaluates versatile encryption algorithm. These steps sometimes may 

be interleaved. We will discuss these steps in the following sections.  

4.2.1 Security requirements definition and determination  

In this step, investigates the information available to the literature view of the 

cloud computing environment and finds out the details in section ‎2.2. The greatest 

challenge facing institutions to maintain the confidentiality of the data and the data 

is the key to investment. This challenge limits the adoption of cloud computing 

technology in spite of the consensus of institutions on the benefits of them. In this 

research we will try to resolve this problem by uses a versatile encryption scheme 

which we discussed in ‎CHAPTER 3. Then we have presented the related work in 

section ‎3.4‎3.4. 

Before discusses how to use a versatile encryption scheme in this research must 

firstly defines the security requirements accurately for the cloud computing 



 

61 

environment that we will need to achieve them through an analysis of the expected 

risk which will be introduced in section ‎5.2.1.  

4.2.2 Implementation of the adopted algorithm  

This step explains the implementation of versatile encryption algorithms to solve 

the problem mentioned in previously step. The output of this step program used 

this type of encryption. This implementation will present their components and 

discuss in detail in section ‎5.3. 

4.2.3 Validation and evaluation phase 

In this step validates and evaluates the effectiveness of versatile encryption 

algorithms with cloud computing environment. Assessment is based on the 

requirements discussed in the first step. From this discussion we will come out of 

the results which will be displayed in the section ‎5.4. 

4.3 Summary  

In this chapter we demonstrate how the research process was carried out in three 

steps: Security requirements definition and determination, Develop the proposed 

scheme and third step is validation and evaluation (including the case study 

implementation). 

 

 

 



 

62 

 

Figure ‎4.1: Research Process 

 

 

 

 



 

63 

CHAPTER 5  

Implementation & Evaluation of the Adopted Algorithm 

5.1 Introduction 

In this chapter we determine security requirements in cloud computing 

environments by introduces risk analysis in this environment .Then we discuss the 

implementation of versatile encryption algorithm as effective solution to risk in 

cloud environment which achieved the security requirement. 

5.2 Security requirements definition and determination  

In this section we determine security requirement by three steps: first step analyze 

expected risk of data in cloud environment. Second step we determine security 

services to avoid the expected risk. Third step we list down security mechanisms 

which achieves through them the security services.  

5.2.1 Risk Analysis 

To determine the security requirements for the cloud computing environment first 

we need to analyze the potential risks to see what the vulnerabilities. Top security 

risks in cloud environment are [10, 32]: 

5.2.1.1 Loss of Governance 

In using cloud infrastructures, the (CCs) necessarily cedes control to the (CPs) on a 

number of issues which may affect security. At the same time, SLAs may not offer 

a commitment to provide such services on the part of the cloud provider, thus 

leaving a gap in security defenses.  



 

64 

5.2.1.2 Cheap Data and Data Analysis 

The (CCs) to benefit from the services provided by the (CPs), the (CCs) is 

compelled to store their data in the cloud environment. The rise of cloud 

computing has created enormous data sets that can be monetized by applications 

such as advertising. The (CPs) may use the (CCs) data for the purposes of data 

mining without the (CCs) permission. 

 Google, for instance, leverages its cloud infrastructure to collect and analyze 

consumer data for its advertising network [6].  

5.2.1.3 Transitive Nature   

Another possible concern is that the contracted (CPs) might itself use 

subcontractors, over whom the (CCs) has even less control, and who also must be 

trusted.  

5.2.1.4 (CPs) Espionage  

The (CCs) are worried from theft the company proprietary information by the 

(CPs). Corporate users of these services are concerned about confidentiality and 

availability of their data 

5.2.1.5 Contractual Obligations 

One problem with using another company's infrastructure besides the uncertain 

alignment of interests is that there might be legal implications. The (CPs) cannot 

provide evidence of their compliance with the relevant requirements. 

5.2.1.6 Management Interface Compromise:  

Customer management interfaces of a public cloud provider are accessible through 

the internet and mediate access to larger sets of resources (than traditional hosting 



 

65 

providers) and therefore pose an increased risk, especially when combined with 

remote access and web browser vulnerabilities. 

5.2.1.7 Data Protection 

Because the data is a key element in the business you must store it in secure 

manner. Cloud computing poses several data protection risks for (CCs), (CPs) and 

(SPs). In some cases, it may be difficult for the cloud customer to be sure that the 

data is handled in a lawful way. This problem is exacerbated due to multiple 

reasons are as follows 

First reason, the (CCs) in a cloud computing environment participates the 

resources with other (CCs), making (CCs) data stores in the same place. (CPs) 

must be a secure (CCs) data and not to allow the (CCs) access to other (CCs) data. 

second reason, the (CCs) how to make sure that the (CPs) who adopted are applied 

the requirements in the contract and the problem is that the even if (CPs) applied 

requirements the (CCs) does not guarantee that the data kept safe the (CCs) need 

monitoring of their data in (CPs). 

Third reason, The (CCs) must be adopt (CPs) to achieve the required 

confidentiality requirements to data in addition to that, the (CCs) also secures its 

data because as we mentioned in the first problem that the (CPs) is himself 

considered the risk to the (CCs) should be bench him. 

Fourth reason, the (SPs) in the cloud computing may be another party other than 

the (CPs) and thus we have three different entities that must secure each side than 

the other. The (CCs) became addition to securing data from the (CPs) and other 

(CCs) it secured data also from the (SPs) in an environment of cloud computing, 



 

66 

(SPs) it may be several various parties provided the services to (CPs) which 

increases the risk of (CCs) data. 

And also a (CPs) in addition to securing the environment of computing from (CCs) 

and then securing the (CCs) data from each other, try to securing the environment 

of computing and (CCs) data from the (SPs) as well as the (SPs) must securing 

environment from (CCs) and the (CPs). 

Fifth reason, environment of cloud combines between different parties, where large 

amounts of data, making it vulnerable to hacker. 

5.2.1.8 Insecure or Ineffective Deletion of Data  

In the case of multiple tenancies and the reuse of hardware resources, this 

represents a higher risk to the customer than with dedicated hardware. 

5.2.1.9 Malicious Insider 

Examples include (CPs) system administrators and managed security service 

providers. 

5.2.2 Security Services 

The second step after we analyze the potential risks in the above section we show 

the services that we want to achieve. The main services solve most of risk: 1) 

Confidentiality this service means assures that private or confidential information 

owned by (CCs) is not made available or disclosed to unauthorized individuals 

such as (CPs), (SPs) or other (CCs) in environment of cloud computing. 

2) Integrity is another service which means assures that data and programs owned 

by (CCs) are change only in a specified and authorized manner in cloud 

computing. 



 

67 

There are many security mechanisms in each security service which solve one or 

more security risk.   

5.2.3 Security mechanisms 

In this research we proposed a versatile encryption schema highlights 

in ‎CHAPTER 2 as mechanism to achieve the services mentioned in the above 

section which to solve all risk mentioned in section ‎5.2.1.  

5.3 Implementation of the Adopted Algorithm 

After review the researches in a versatile encryption schema in ‎CHAPTER 3, this 

section describe the implementation of the adopted algorithm which are described 

in paper [8].  

Scenario to explain the steps of algorithm: client when he wants to store his data in 

secure manner, try to dealing with the (CPs) which applies a versatile encryption 

algorithms to achieve this goal. In this research has been applied one of them 

which are mentioned in the paper [8]. When apply this algorithm there are steps to 

be implemented by the (CCs) and part of the steps are performed at the (CPs).  

Primary objective of the (CCs) is secure data in (CPs) in this case; the service 

provided by (SPs) to the client is a storage space. As example assume the (CCs) 

wants to store his email in this storage space.  

In the following sections we display and describe the adopted algorithm in more 

details with standards: firstly we display pseudocode of algorithm with show the 

key part of algorithm in source code. Secondly we demonstrate the steps of 

algorithm by using flow chart. Lastly we show snapshot of implementation. 



 

68 

5.3.1 The Pseudocode of Proposed Adopted Algorithm 

The adopted algorithm has four schemes, starts by basic scheme, and then each of 

them improvements to the previous scheme. 

The following steps describe the pseudocode of the final scheme: 

  The (CCs) performs the following steps to encrypt documents by using adopted 

algorithm and then stores the encrypted document in server: 

1. The (CCs) dealing with documents as series of L words  lWW ,.......,1 . The length of 

each word is n  bits. Method called EnterWords() splits the document into words ; 

2. The (CCs) generate L  pseudorandom values  lSS ,.......,1  with length 16 bytes.  

In our implementation used algorithm SHA1PRNG to generates pseudorandom 

values: Method called GenerateSi() do this. Part of method: 

SecureRandom secureRandom = SecureRandom.getInstance("SHA1PRNG"); 

byte[] si = new byte[16]; 

secureRandom.nextBytes(si); 

3. The (CCs) generate L 3iK  lKiKi 3,.......,31  with length 16 bytes.  

Method called GenerateKi3Scheme3 () do this. Part of method : 

KeyGenerator keygen = KeyGenerator.getInstance("AES"); 

keygen.init(128);   

byte[] key = keygen.generateKey().getEncoded();  

Ki3Bytes[g]=key; 

4. The (CCs) encrypt each word by 3iK  to generate iX  with length 16 bytes. 

 Using this equation )(3 ikii WEX  . 

Method called Encrypt_Wi_Using_Ki3_Scheme3 () do this. Part of method: 

SecretKeySpec skeySpec = new SecretKeySpec(Ki3Bytes[g], "AES"); 

byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

IvParameterSpec ivspec = new IvParameterSpec(iv); 

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); 



 

69 

cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

XiBytes[g] = cipher.doFinal(WiBytes[g]); 

5. The (CCs) split iX  into two parts ii RL ,  with length  bytes for each part. 

Method called Split_Xi() do this. 

6. The (CCs) generate L  2iK  lKiKi 2,.......,21  with length 16 bytes. 

Method called GenerateKi2Scheme2() do this. 

7. The (CCs) generate L  iK  lKiKi ,.......,1  with length 16 bytes , by encrypts iL  

using 2iK .Using this equation )(2 ikii LfK  . 

 Method called Encrypt_Li_Using_Ki2_Scheme2() do this. 

8. The (CCs) encrypt iS  using iK  with length 16 bytes. 

Using this equation )( ikii SFencryptedS  . 

Method Encrypt_Si_Using_Ki () do this.   

9. Then generates L  iT  li TT ,......., object with length 32 bytes by concatenates the 

original iS with encrypted iS . Using this equation ))(,( ikiii SFST  . 

Method PrepareTi_Scheme3 () do this. Part of method: 

for(int k=0;k<SiBytes[g].length;k++){ 

 Ti[k]=SiBytes[g][j1]; 

  j1++; 

 } 

 for(int k=SiBytes[g].length;k<Ti.length;k++){ 

  Ti[k]=encryptedSi[g][j2]; 

  j2++; 

 } 

10. Then generate cipher object iC  with length 32 bytes by XOR between iT and iX

.Using this equation iii TWC  .Method GenerateCi () do this. Part of method: 

for(int o=0;o<wordsindex;o++){ 

       CiBytes[o]=XOR(Ti2Bytes[o],XiBytes[o]); 

} 



 

70 

as we mentioned earlier these 10 steps are executed by the (CCs) when they want 

to store their a document in a (CPs) . 

In (CCs) side, when the (CCs) in any time want to search about W they can tell the 

(CPs) and send to it W  and iK  corresponding to each location which W  occur. The 

(CPs) can then search for W  in the ciphertext by checking whether ii WC   is of the 

form of  sFs
iK,  for some s . 

The following steps demonstrate the search operation in the (CPs):  

Method called Search_Scheme3() do this. 

1. When the (CCs) wants to search about W  sends to server W  and iK . 

2. The (CPs) to search about W in the cipher documents recalculates iT  for each iC  

with search word W using this equation WCT ii  . Part of search method: 

Ti2[i]=XOR(CiBytes[i],searchword); 

3. Then the (CPs) split each iT  into two parts: iS and encrypted iS )( ik SF
i

. Part of 

search method: 

Ti2Half1=new byte[SiBytes[i].length]; 

Ti2Half2=new byte[Ti2Bytes[i].length-SiBytes[i].length]; 

for(int b=0;b<SiBytes[i].length;b++) 

 Ti2Half1[b]=Ti2[i][b]; 

int y=0; 

for(int b2=SiBytes[i].length;b2<Ti2Bytes[i].length;b2++){ 

 Ti2Half2[y]=Ti2[i][b2]; 

 y++; 

}//for 

4.  Each iT  calculated and split then decrypts iS using iK which send by (CCs). 

Method called Decrypt_Si_Using_Ki() do this. Part of method: 

SecretKeySpec skeySpec = new SecretKeySpec(K, "AES"); 



 

71 

byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

IvParameterSpec ivspec = new IvParameterSpec(iv); 

Cipher cipher=null; 

 cipher = Cipher.getInstance("AES/CBC/NoPadding"); 

cipher.init(Cipher.DECRYPT_MODE, skeySpec, ivspec); 

decryptedS= cipher.doFinal(encryptedS); 

5. The (CPs) test whether the iS equals decrypted iS or no. if the test return yes the 

word found and otherwise the word is not found after test all the  iC . Part of 

search method: 

decryptedS=Decrypt_Si_Using_Ki(key,encryptedS); 

if(new String(Ti2Half1).equals(new String(decryptedS))){ 

          foundword=i; 

         Search=true; 

         break; 

} 

  



 

72 

5.3.2 The Flow Chart of Adopted Algorithm  

Steps of algorithm describes by flow chart as shown in Figure ‎5.2 which 

demonstrates the steps in details. 

 

Figure ‎5.1: Flow Chart of Adopted Algorithm 



 

73 

5.3.3 Flow Chart for generate cipher in Adopted algorithm 

This flow chart displays the steps which generate cipher in the Adopted algorithm 

in details. 

 

Figure ‎5.2: Flow Chart for generate cipher in Adopted Algorithm 



 

74 

 

Figure ‎5.3: Flowchart of Search Scenario 

 

 

 

 

 



 

75 

5.3.4 Snapshot of Implementation   

In this section we display snapshot of implementation. 

1. When the (CCs) have file wants to store it in (CPs) executes this program as 

shown in Figure ‎5.4 

 

Figure ‎5.4: implementation of versatile Encryption algorithm 

2. Then click browse file to select the file from his computer this is shown in the 

Figure ‎5.5.  

 

Figure ‎5.5: Browse File 



 

76 

3. After the (CCs) choose the file as shown in Figure ‎5.6. Chose file is named 

inbox.txt.  

 

Figure ‎5.6: Chose File 

 

 

4. Then after select file (CCs) click button Encryption & Upload File to apply the 

algorithm in file. Figure ‎5.7 shows the first step of adopted algorithm (splits file to 

words). Figure ‎5.8 last step of adopted algorithm (generates cipher).Figure ‎5.9 shows 

ciphertext for chosen file. 



 

77 

 

Figure ‎5.7: First Step of the Adopted Algorithm (splits file to words) 

 



 

78 

 

Figure ‎5.8: Last Step of the Adopted Algorithm (generates cipher) 

 



 

79 

 

Figure ‎5.9: Ciphertext for chosen file 

5. The (CCs) to search about specific word in cipher document. The word enters as 

shown in Figure ‎5.10 . 

 

Figure ‎5.10: Enter Search Word 

6. After the (CCs) click button ok, the (CPs) search about word in cipher then return 

the result of search operation to (CCs). Figure ‎5.11 shows the result of search about 

word (Thank). 



 

80 

 

 

Figure ‎5.11: The Result of the Search Operation 

 

 

 

5.4 Validation and evaluation phase (including the case study 

implementation) 

The following table discusses the security risk with security requirement from the 

viewpoint of data only not consider the rest of the cloud computing environment: 

Security risk and security services and security mechanism discussed in 

section ‎5.2. 



 

81 

Table ‎5.1: Security Risk & Security Requirment with Adopted Algorithm 

Security Risk Security Requirement  
Security Mechanism Adoption 

Algorithm 

1. Loss of Governance 

The (CCs) control access 

to their data 

The (CCs) control accesses to 

their data by encrypt it and no one 

can access to it. This makes (CCs) 

not loss governance of data and 

prevents the (CPs) to analysis data 

or espionage. Also any level of 

transitive the (CCs) ensure no one 

can access to their data in all 

level. 

2. Cheap data and data 

analysis 

3. Transitive nature  

4. (CPs) Espionage  

5. Contractual 

obligations 

The (CCs) secure their 

data before export it to 

(CPs). 

The (CCs) apply encryption to 

their data to solve contractual 

obligations problem by (CPs). The 

(CCs) ensure the data protects 

because it encrypts by himself not 

depends on obligates of contract 

from (CPs). 

6. Management 

interface 

compromise 

The (CCs) reduce the risk 

of their data in (CPs). 

The (CCs) reduce the risk 

(interface compromise) when 

apply encryption on their data. 

7. Data protection The (CCs) ensure the data 

cannot be changed or 

disclosed by (CPs) 

The (CCs) protect their data by 

encrypts it this mean no one can 

change or disclose. 

8. Insecure or 

Ineffective Deletion 

The (CCs) ensure the data 

secure when (CPs) reuse 

The (CCs) secure their data by 

encrypts this means reduce the 



 

82 

of Data  of hardware resources. risk of resource reusability in 

(CPs). Also the ineffective 

deletion is not problem because 

the data is encrypts this mean the 

data is not useful. 

9. Malicious Insider 

 

The (CCs) prevent their d 

data from malicious 

insider. 

  

The (CCs) manipulate with data in 

encryption form which protects 

the data from malicious insider  

 

  

As the result from the implementation and evaluation of a versatile encryption algorithm 

we found it protects the data from security risk which chives security features. 

5.5 Background and Definitions 

This section contains the background and definitions as mentioned in [8] . These 

definitions needed for proof of security to adopted algorithm. 

The scheme requires several fundamental primitives from classical symmetric-key 

cryptography. Because they will prove their scheme secure, they use only primitives with 

a well-defined notion of security. They will list here the required primitives, as well as 

reviewing the standard definitions of security for them. 

They measure the strength of the cryptographic primitives in terms of the resources 

needed to break them. They will say that an attack R -breaks a cryptographic primitive if 

the attack algorithm succeeds in breaking the primitive with resources specified by R , 

and they say that a crypto primitive is R -secure if there is no algorithm that can R -break 

it. Let    1,01,0: 
n

A be an arbitrary algorithm and let X and Y be random variables 



 

83 

distributed on  n
1,0  .The distinguishing probability of A -sometimes called the advantage 

of A—for X and Y  is 

Adv      1Pr1Pr  YAXAA  With this background, the list of required primitives is 

as follows: 

Definitions 

1. A pseudorandom generator G , i.e., a stream cipher. 

They say that SG G : is a  et, -secure pseudorandom generator if every algorithm A  

with running time at most t has advantage Adv eA   .The advantage of an adversary A  

is defined as Adv       1Pr1Pr  SUAUGAA
G

 where SUU
G

,  are random variables 

distributed uniformly on sG , . 

2. A  pseudorandom function F .They say that  FF : is a  eqt ,, -secure 

pseudorandom function if every oracle algorithm A  making at most q  oracle queries 

and with running time at most t  has advantage Adv eA  The advantage is defined as 

Adv    1Pr1Pr  RF
AAA k

 where R represents a random function selected 

uniformly from the set of all maps from  to  , and where the probabilities are taken 

over the choice of k and R . 

3. A pseudorandom permutation E , i.e., a block cipher. They say  that EE : is a

 eqt ,, -secure pseudorandom function if every oracle algorithm A making at most q

oracle queries and with running time at most t 7 has advantage Adv eA  the advantage 

is defined as Adv     1Pr1Pr
11

,,



AAA kk EE

 where  represents a random 

permutation selected uniformly from the set of all bijections on   , and where the 

probabilities are taken over the choice of k and  . 



 

84 

Notice that the adversary is given an oracle for encryption as well as for decryption; this 

corresponds to the adaptive chosen-plaintext/ciphertext attack model. 

In general, the intuition is that  eqt ,, -security represents resistance to attacks that use at 

most t  offline work and at most q  adaptive chosen-text queries. 

There is of course no fundamental need for three separate primitives, since in practice all 

three may be built out of just one off-the-shelf primitive. For instance, given any block 

cipher, they may build a pseudorandom generator using the counter mode or a 

pseudorandom function using the CBC-MAC. 

They rely on the following notation. If  :f represents a pseudorandom function 

or permutation, they write  xf k  for the result of applying f  to input x with key k . 

They write a yx, for the concatenation of x  and y , and yx for the bitwise XOR of x  

and y . Let  GG :  be a pseudorandom generator for some   ,  FF : be a 

pseudorandom function, and EE : be a pseudorandom permutation. Typically 

they will have    mmn
1,0,1,0 


  and  n

1,0  . 

5.6 Proof of Security 

This section displays proof of security to adopted algorithms as mentioned in  [8] . 

 Define   
GFH :  by     )(,,...,,, 11  sFssFsH kkG   where js as 

shorthand for the j-th block of )( GG  .  

_Lemma A.1 

 If F is a ),,( Fet  -secure pseudorandom function and G is a ),( Get -secure pseudorandom 

generator, then H 
 (defined as above) is a ),,( Het  -secure pseudorandom generator, 

where )2()1(  GFH eee and the constant  is negligible compared to t . 



 

85 

Proof. Define ))(,),...,(,()( 11  uFuuFuK kk where uu ,...,1  are   independent random 

variables each drawn from the uniform distribution on  . Also, let U  be a random variable 

with the uniform distribution on )(   . Where UH ,,  written for the random variables 

obtained by choosing Gkk, uniformly at random from GF   . 

The goal is to show that H 
 and U  are indistinguishable to any computationally-bounded 

adversary. The proof will proceed by showing first that H and  are indistinguishable, 

and second that  and  U are indistinguishable. 

First, they show that no algorithm with running time t can distinguish between H 
 and

with advantage better than Ge suppose not, i.e., there exists an algorithm A with 

running time at most t 6 and Adv     GeAHAA  1)(Pr1)(Pr . 

Then they exhibit an algorithm B with running time at most t which distinguishes the 

output of G from a truly random bit string with advantage at least Ge .The algorithm B  

works in the following way: on input 
  sss ,...,1 , it runs A on input 

  )(,,...,, 11  sFssFsI kk and halts with the output )(IA from A . Note that 

    1Pr1))((Pr  HAkGB G and    1)(Pr1)(Pr  AUB , where U  is a uniformly-

distributed random variable on  .Thus they calculate 

Adv           1Pr1Pr1)(Pr1))((Pr AHAUBkGBB G Adv GeA  , which 

contradicts our assumption that Adv A was large. 

Second, they show that no algorithm with running time t can distinguish between 

and  U  with advantage better than )2()1(  Fe .Suppose not, i.e., there exists an 

algorithm A  with Adv    
 
2

1
1)(Pr1)(Pr





FeUAAA  



 

86 

Then they construct an oracle algorithm B which distinguishes F K from a truly random 

function, as follows: 

B chooses uu ,...,1  " uniformly and independently at random, queries its oracle f a total of 

  times with the inputs iu to receive the outputs  iuf ,  runs A  on the string 

))(,),...,(,( 11  ufuufuI  and halts with  IA as its output. They want to show that Adv B

is large. Of course,    1)(Pr1Pr  AB kF
', so it remains only to characterize  1Pr RB  

where R  is a truly random function selected uniformly from the set of all maps   . 

Let   denote the event that the values uu ,...,1  are all distinct. Also, write   for the 

complementary event, i.e., the case where there exist ji, with   ji1   such that 

ji uu  Now they may compute 

     

   

      
    

      

  
 
2

1
1Pr

PrPr.)1Pr

Pr.1Pr

PrPr.1Pr

Pr1Pr

Pr1Pr1Pr















UA

UA

UA

UA

B

BB

R

RR

 

Without loss of generality, they may assume    1Pr1Pr  RF
BB k  Thus, Adv B  

   
     

   

    F

RF

eAdvA

UAA

BB k









||21

||21

1Pr1Pr

|1Pr1Pr








_ 

which contradicts our assumption that Adv A was large. 



 

87 

Next, they note that the above two results suffice to show that no algorithm with running 

time t can distinguish between H  and U with advantage better than

)2()1(  GF ee Consider any algorithm _ that attempts to distinguish H  from U  ; 

then Adv A  

     
     
     
     
     

 
2

1

1Pr1Pr|

1Pr1Pr|

1Pr1Pr|

1Pr1Pr|

1Pr1Pr|















 FG ee

UAA

AHA

UAA

AHA

UAHA

 

where the final line follows by applying the previous two parts of the proof. 

Next define    
  GFH : by     )(,,...,,, 11  sFssFsH kkG  where js is 

defined as before. This is an independently keyed version of the construction H    

analyzed in Lemma A.1. In other words, the key  kkk ,...,1   is a vector of    

independent random variables that are uniformly distributed on F . 

Lemma A.2 

 If F  is a  FeIt ,, -secure pseudorandom function and G  is a  Get, -secure pseudorandom 

generator, then H (defined as above, with independent keys) is a  Het ,  

-secure pseudorandom generator, where GFH eee   and the constant  is negligible 

compared to t .  

Proof. The outline of the proof is as in Lemma A.1, except the second part (the treatment 

of the indistinguishability of  and U  ) must be modified slightly. They define 

 nii  0  by        wuwuuFuuFuk iijkiki i
,,...,,,,,...,, 1111 1  where they 



 

88 

www ii ,...,, 21  are independent, uniformly distributed random variables on   and the iu _ *  

are as above (i.e., uniform on  and independent of everything else). 

Note, for example, that U0 and  . Now they show that each pair of neighbors 

in the sequence  ,...,, 10  are  Fet , -indistinguishable. 

Suppose not, i.e., there exists some i ,    and some algorithm A  distinguishing i  from 1i

with advantage Adv FeA   .Then they construct an oracle algorithm B that distinguishes 

F from a truly random function, as follows: B chooses Fikkuu   111 ,...,,,...,  , and 

 wwi ,...,1  independently and uniformly at random; B uses its own key material to 

compute    11 11
,...,  ikk uFuF

i
 uses its oracle f to compute  iuf ; then B runs A on the 

string        wuwuufuuFuuFuI iiiiikik i
,,...,,,,,,,...,, 111111 11  

 and finally halts with  IA  

as its output. By the definition of B , they have     1Pr1Pr  i

F
AB k Also, they see 

easily that     1Pr1Pr 1  i

R AB , since the output of a random function R  that is 

invoked only once is uniform and independent of everything else in sight. Therefore, they 

find that Adv B  

   
     

F

ii

RF

eAdvA

AA

BB k







 |1Pr1Pr

|1Pr1Pr

1  

which contradicts our assumption that Adv A  was large. 

Now a simple application of the triangle inequality suffices to show that no algorithm can 

 Fet ., -distinguish  from U0 : if A is any such algorithm, then Adv A  



 

89 

     

     

..

|1Pr1Pr

1Pr1Pr

1

1

0

F

i

i

i

e

AA

AA

















  

This suffices to complete the proof, since the rest of the proof of Lemma A.1 now carries 

through. 

They are, at last, ready to consider the construction H above where now the keys ik  are 

not necessarily chosen independently, but instead are chosen according to some 

distribution D on )(   .They require D  to have the following property: 

Definition 1. They say that a distribution _ on the keys lkk ,...,1  has the twining property 

if, for all j  either (a) there ji   exists such that !+   1Pr  ijD kk  or (b) D  selects jk  

uniformly at random from F  independently of  11,..., jkk . 

Proof of Security –Scheme 1 

Theorem A.3 

If  F  is a  Felt ,, -secure pseudorandom function and G is a  Get, -secure 

pseudorandom generator, and if the key  n

Fk   is chosen according to a 

distribution  D  with the twining property, then H I a  Het , -secure 

pseudorandom generator, where    2/1.   GFH eee  and the constant   is 

negligible compared to t . 

Proof. First observe that they may, without loss of generality, reorder the keys so that, for 

all j  , either  

a)   1Pr 1  jjD kk  or  

b) jk is selected uniformly and independently of 11,.., jkk . Thus, they obtain a sequence 

of keys of the form mm kkkkkk  ,...,,...,,...,,,..., 2211 where the mkkk  ,...,, 21   are all 



 

90 

independent. Let i denote the number of times that key ik   is repeated in k  , and let    

be a function which associates to each i , the first j such that   1Pr  ijD kk . 

Now they simply combine the techniques used in the proofs of Lemma A.1 and Lemma 

A.2. They use a hybrid argument as in Lemma A.2, this time defining i  *  by 

 

      lljjjkjki wuwuuFuuFuk
j

,,...,,,,,...,, 11111 1  
  Where they define  1 ij   . They 

can see (using the arguments presented in the first part of the proof of Lemma A.1) that 

 Gm et , -indistinguishable from H . 

� 

To obtain the desired result, they next show that each pair of neighbors ii   ,1 in the 

sequence m ,...,, 10 is )2()1(,  iiFet  -indistinguishable. 

Suppose not, i.e., there exists some i  and some algorithm A distinguishing_ *  i from_  1i

with advantage Adv |2)( 1 iiFeA  . Let )(ij  and )1(  ij  Then they 

construct an oracle algorithm B that distinguishes F from a truly random function, as 

follows: 

 

B chooses Fikkuu   111 ,...,,,...,  and  ww j ,..., independently and uniformly at 

random; B uses its own key material to compute   )(,..., 11 11  jkk sFsF
j

 and uses its oracle f  

to compute      11 ,...,,  jjj sfsfsf ; then B runs A on the string 

         wuwuufuufuuFuuFuI jjjjjjjjjk ,,...,,,,,...,,,,,...,, 1111111 1  and finally 

halts with  IA  as its output. They have     1Pr1Pr  i

F
AB k Also, using the 

argument $in th e second part of the proof of Lemma A.1, they obtain the bound 

        211Pr1Pr 1   iii

R AB  , from which they may conclude that Adv B  

Adv     Fii eA  21 ; and this contradicts our assumption that Adv A was large. 



 

91 

Finally, using the triangle inequality, and noting that 
   

 2

1

2

1

1










mi

ii  they obtain 

the desired result. 

Next, they consider the security of H when the key material is chosen using a 

pseudorandom function   FFf  


1,0:  instead of using truly random bits. They will 

require  Ffk  to be chosen uniformly at random, independent of everything else. 

Proof of Security –scheme II 

Theorem A.4 

Suppose F  is a  Fet ,, -secure pseudorandom function, f  is a 
 

fet ,,
-secure 

pseudorandom function, and G  is a  Get, -secure pseudorandom generator. 

Suppose moreover that they choose the keys ik  as )( iki Wfk
f

 . Then H  will be a 

 Het , -secure pseudorandom generator, where    2/1.   GfFH eeee . 

Proof. They will show that the resulting distribution D on the keys‎has‎an‎‘approximate‎

twining‎ property’,‎ in‎ the‎ sense that D is computationally indistinguishable from a 

distribution with the twining property. In particular, the latter distribution is given by the 

random variables  i

R

i WRk  , where R is a truly random function selected uniformly from 

the set of all maps from  1,0  to F . 

A straightforward simulation argument shows that the random variables  GkkH , and 

 G

R kkH , are  fet , -indistinguishable. Suppose not, so that there exists an algorithm 

A that distinguishes those two random variables with running time at most  t 6 and 

advantage Adv feA  .Then they show that they can construct an adversary B which 

 fet ,, -breaks f .The oracle algorithm works as follows: B picks GGk  uniformly at 



 

92 

random; B computes  ii Wgk  using its oracle g and computes  GkGss ,...,1 ; then B

runs A  on the string     
sFssFsI kk ,,...,, 11 1

 and finally halts with  IA as its output. 

They have    1,Pr1Pr 




  GkkHAB

fkf

and      1,Pr1Pr  G

RR kkHAB   

Thus Adv B = Adv feA  , which contradicts our assumption that Adv A  is large. 

Finally, they note that Rk as the twining property, so by Theorem A.3, the random variable 

 G

R kkH ,  and U are      2/1.,   GF eet indistinguishable. 

Applying the triangle inequality completes the proof. 

A final goal is to show that the final scheme is secure even after they reveal one key ik so 

that a server may perform a search on our behalf. Let  :  be a projection onto 

the first component, so that   xyx , . 

Proof of Security –Final Scheme 

Theorem A.5 

Suppose E is a  Eet ,, -secure pseudorandom permutation, F is a  Fet ,, -secure 

pseudorandom function, f  is a  fet ,, -secure pseudorandom function, G  is a  Get,  

-secure pseudorandom generator and they choose the keys ik *  as  iki Lfk
f

  where

  iki WEL   . Then will be a  Het , -secure pseudorandom generator, where

   2/1.   GfFH eeee . 

Moreover, if they disclose one ik and consider the projection of H where they discard all 

outputs at positions j  where ij WW   then they obtain a  Het  , -secure pseudorandom 

generator, where  2/
EHH eee . 



 

93 

Proof. The techniques used in the proof of Theorem A.4 apply directly (replacing the iW

’s‎ with‎ iL *’s),‎ and‎ one may readily see that H is a  Het , -secure pseudorandom 

generator. 

Now, suppose they disclose ik Let E  denote the event that there exists some j with 

ij WW  but ij LL  .They may observe that    EeEPr . Let D  be the distribution D

modified by projecting away all keys at positions j where ij WW  . Note that D  

represents the distribution of key material for the projected version of H  Also, when 

conditioned on the event E , the distribution Dhas‎ the‎ ‘approximate twining‎ property’‎

used in the proof of Theorem A.4, and thus those results apply to the projected version of 

H . 

� 

5.7 Summery 

This chapter determined the security requirement by identified security risk, 

security services and security mechanism. It discussed the implementation with 

specific standards: pseudocode, flowchart and snapshot of implementation. In the 

end of this chapter we validated and evaluated the versatile encryption algorithm 

by table show security features with versatile encryption algorithm. 

  



 

94 

CHAPTER 6  

Conclusions & Future work 

6.1 Conclusions 

At the conclusion of the work the main contribution can be abbreviated as follows: 

At first we investigated the challenges in cloud computing environment. Then the 

research discussed a versatile encryption scheme. And also this research identified 

security risk associated with data in cloud computing environment and selected one 

of a versatile encryption scheme as mechanism to achieve security requirement. 

Then we implemented the adoption algorithm using java language. The details of 

adoption algorithm mentioned in section ‎5.3 with standards such pseudocode, key 

points in source code, flowchart and snapshot of implementation and also we 

identified some of the related work in section ‎3.4.  

Finally in this research the versatile algorithm was evaluated and discussed through 

table in section ‎5.4 shows to what extent the versatile encryption scheme is useful 

and effective in cloud computing environment. 

6.2 Future work   

A number of issues could be done in future paper:  

1. Build cloud computing environment adopts this versatile encryption schema. 

2. Enable the (CCs) to change setting of algorithm such as algorithms which generating 

key, pseudorandom function, length of pseudorandom value and schedule to change 

key. 

3. Improve the adopted algorithm to process complex query not just equality query. 



 

95 

4. Make output of this algorithm more useful to (CCs) by return information such as 

document contains the word. 

5. Try to implements this algorithm using public keys algorithm to encrypt the key 

which increased the security. 

6. Implements of all versatile algorithms and try to assemble strengths point for each 

algorithm and build new algorithm combines the strengths points. 

6.3 Obstacles in this Research 

The problem we faced on this research how we find real environment to test the 

implementation and evaluate it using real data. Also the algorithm is complex in 

search operation and not described in clear form. 

Another problem we try to implements another versatile algorithm using 

asymmetric key but found the equation is complex. 

 

 

 

 

 

 

 

 

  

 



 

96 

 

References 

 

[1]  G. Conway, "Introduction Cloud Computing," 2011. 

[2]  C. S. Alliance, "Security Guidance for Critical Areas of Focucs on Cloud 

Computing," 2011. 

[3]  J. Wayne and G. Timothy, "Guidelines on Security and Privacy in Public Cloud 

Computing," 2011. 

[4]  W. Stallings, Cryptography and Network Security principles and practice, Pearson 

Education, Inc., publishing as Prentice Hall, 2011.  

[5]  P. Institute, "Security of Cloud Computing Providers Study," 2010. 

[6]  C. Richard, G. Philippe, J. Markus, S. Elaine, S. Jessica, M. Ryusuke and M. Jesus, 

"Controlling Data in the Cloud: Outsourcing Computation without Outsourcing 

Control," ACM, November 2009.  

[7]  D. Boneh, D. Giovanni, O. Rafail and P. Giuseppe, "Public Key Encryption with 

keyword Search," 2004. 

[8]  X. Dawn, W. David and P. Adrian, "Practical Techniques for Searches on Encrypted 

Data," 2000. 

[9]  S. Elaine, B. John, H. C. T-H, S. Dawn and P. Adrian, "Multi-Dimensional Range 

Query over Encrypted Data," 2007. 



 

97 

[10]  S. Emily, S. Elaine and W. Brent, "Predicate Privacy in Encryption Systems," 2008. 

[11]  B. Dan and W. Brent, "Conjunctive, Subset, and Range Queries on Encrypted Data," 

2007. 

[12]  C. Benny, G. Oded, K. Eyal and S. Madhu, "Private Information Retrieval," Journal 

of the ACM, vol. 45, no. 6, p. 965–982, November 1998.  

[13]  A. Giuseppe, B. Randal and C. Reza, "Provable Data Possession at Untrusted 

Stores," in ACM Conference on Computer and, 2007.  

[14]  S. Hovav and W. Brent, "Compact Proofs of Retrievability," 2008. 

[15]  B. Dan, L. Ben and S. Hovav, "Short Signatures from the Weil Pairing," in 

Asiacrypt, 2001.  

[16]  Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn and H. Hu, "Zero-knowledge proofs of 

retrievability," SCIENCE CHINA, December 2010.  

[17]  S. Y. a. K. R. a. W. L. Ming Li, "Securing Personal Health Records in Cloud 

Computing: Patient-centric and Fine-grained Data Access Control in Multi-owner 

Settings," SecureComm, vol. 10, pp. 98-106, Septemper 2010.  

[18]  R. Rajan, "efficient and privacy preserving multi user keyword search for cloud 

storage services," International Journal of Advanced Technology & Engineering 

Research (IJATER) , vol. 2, no. 4, pp. 48-51, July 2012.  

[19]  S. M. B. Gowri. N. Dixit, "Patient Centric Frame Work For Data Access Control 

Using Key Management In Cloud," International Journal of Engineering Research 

& Technology (IJERT), vol. 2, no. 4, pp. 1869-1872, April 2013.  



 

98 

[20]  P. K. E. Shaheen Taj S.A, "a novel method for patient centric secure and scalable 

sharing of PHR in cloud computing using encryption," International Journal of Soft 

Computing and Engineering (IJSCE), vol. 3, no. 4, pp. 226-232, may 2013.  

[21]  M. C. E. H. a. K. L. Josh Benaloh, "Patient Controlled Encryption: Ensuring Privacy 

of Electronic Medical Records," Chicago, Illinois, USA., 2009. 

[22]  L. Ming, Y. Shucheng, C. Ning and L. Wenjing, "Authorized Private Keyword 

Search over Encrypted Data in Cloud Computing," 2011. 

[23]  A. H. A. B. a. Y. C. Ahmed Lounis, "Secure and Scalable Cloud-based Architecture 

for e-Health Wireless sensor networks," Compi`egne Cedex, 2011. 

[24]  M. Ucal, "Searching on Encrypted Data," 2005. 

[25]  K. L. Seny Kamara, "Cryptographic Cloud Storage," in Workshop Real-Life 

Cryptographic Protocols and Standardization (RLCPS), 2010.  

[26]  C. P. T. R. Seny Kamara, "Dynamic Searchable Symmetric Encryption," 2012. 

[27]  M. S. I. M. K. Mehmet Kuzu, "Efficient Similarity Search over Encrypted Data," 

USA, 2011. 

[28]  I. Cisco Systems, "Cisco Cloud Computing - Data Center Strategy, Architecture,and 

Solution," 2009. 

[29]  G. Corp, "Cloud Computing," 2009. 

[30]  V. Kundra, " Federal Cloud Computing Strategy," 2011. 

[31]  I. Corporation, "IBM Point of View:," United States of America, 2009. 



 

99 

[32]  G. H. Daniele Catteddu, "Cloud Computing Benefits, risks and recommendations for 

information security," Europe, 2009. 

 

 

  



 

100 

Appendices 

 

import javax.crypto.*; 

import javax.crypto.spec.SecretKeySpec; 

//import java.util.Random; 

import java.security.*; 

import javax.crypto.spec.IvParameterSpec; 

//import java.io.UnsupportedEncodingException; 

import java.util.*; 

import java.io.*; 

/** 

 * 

 * @author Amal 

 */ 

 

public class Symmetric_Algorithm { 

  String Wi; // String Ti; 

  byte WiBytes[][]; 

  byte TiBytes[][]; 

  byte Ti2Bytes[][]; 

  byte KiBytes[][]; 

  byte CiBytes[][]; 

  String CiString[]; 

  byte SiBytes[][]; 

  byte encryptedSi[][]; 

  byte Ki2Bytes[][]; 

  byte Ki3Bytes[][]; 

  byte encryptedXi[][]; 

  byte XiBytes[][]; 

  byte LiBytes[][]; 

  byte RiBytes[][]; 

  StringBuffer AllCipher=new StringBuffer(9999); 



 

101 

  Scanner sc=new Scanner(System.in); 

  int flageSchema=0,wordsindex=0; 

  Amaltransaction f; 

  protected  Symmetric_Algorithm(){ 

  flageSchema=1; 

     f=new Amaltransaction("Symmetric Algorithm"); 

     f.setVisible(true); 

    } 

  protected  void EnterWords(){ 

     f.setData("\n********   Enter Words Method    *******"); 

     File file1=null,fil=null; 

     try{ 

       fil=new File(MyFrame.fileChooser.getSelectedFile().toString()); 

       file1=new File("inbox.txt"); 

       Scanner inFile = new Scanner(fil); 

       String line;int i=0; 

       while (inFile.hasNextLine()) 

          { 

   line = inFile.nextLine(); 

   Scanner words = new Scanner(line); 

   while (words.hasNext()) 

     { 

    String word = words.next(); 

    f.setData("Word  "+i+" in file : "+word); 

    //f.setData(word); 

    wordsindex++; 

    i++; 

     } 

          } 

          //fil.close();file1.close(); 

 

  WiBytes=new byte[wordsindex][]; 

  TiBytes=new byte[wordsindex][]; 



 

102 

  Ti2Bytes=new byte[wordsindex][]; 

  KiBytes=new byte[wordsindex][]; 

  CiBytes=new byte[wordsindex][]; 

  SiBytes=new byte[wordsindex][]; 

  encryptedSi=new byte[wordsindex][]; 

  CiString=new String[wordsindex]; 

       }catch(FileNotFoundException e){ 

            f.setData("File " + file1.getName() + " not found."); 

       } 

        /*catch(IOException e){ 

         f.setData("Error reading from file " + file.getName()); 

         }*/ 

      File file=null; 

      try{ 

   file=new File(MyFrame.fileChooser.getSelectedFile().toString()); 

   //file=new File("inbox.txt"); 

   Scanner inFile = new Scanner(file); 

   String line;int i=0; 

   while (inFile.hasNextLine()) 

     { 

    line = inFile.nextLine(); 

    Scanner words = new Scanner(line); 

    while (words.hasNext()) 

      { 

     String word = words.next(); 

     WiBytes[i]=word.getBytes(); 

     f.setData("Length of Word  "+i+" as Bytes "+WiBytes[i].length); 

                 f.setData("Word  "+i+" as Bytes : "); 

     printValue(WiBytes[i]); 

     f.setData(" "); 

     i++; 

    } 

     } 



 

103 

     //file.close(); 

   }catch(FileNotFoundException e){ 

   //f2.setData("File " + file.getName() + " not found."); 

   } 

   /*catch(IOException e){ 

            f2.setData("Error reading from file " + file.getName()); 

        }*/ 

        f.setData("\n********   word    *******"+WiBytes[0]); 

 }//End of EnterWords 

 

//___________________________________________________________________________________

____ 

 

  protected  void GenerateSi(){ 

     //int randomInt = randomGenerator.nextInt(100); 

  //log("Generated : " + randomInt); 

  f.setData("\n********   Generate Si Method    *******"); 

  try{ 

    for(int g=0;g<wordsindex;g++){ 

 

   SecureRandom secureRandom = SecureRandom.getInstance("SHA1PRNG"); 

   f.setData("seed Number : "+g); 

   printValue(SecureRandom.getSeed(1)); 

   f.setData(" "); 

   // Method 1 - Calling nextBytes method to generate Random Bytes 

   byte[] si = new byte[16]; 

   secureRandom.nextBytes(si); 

 

 

 /** Converts Si to array of bytes  */ 

   SiBytes[g] = si; 

         f.setData("Length of Pseudorandom S  "+g+" as Bytes "+SiBytes[g].length); 

         f.setData("Pseudorandom S "+g+" as Bytes : "); 



 

104 

         printValue(SiBytes[g]); 

         f.setData(" "); 

         //Integer Si=new Integer(randomInt); 

         }//for 

     }catch(NoSuchAlgorithmException e){ 

            f.setData(e.toString()); 

    } 

 }//End of GenerateSi 

 

 

//___________________________________________________________________________________

_____ 

 

protected  void GenerateKi3Scheme3(){ 

    f.setData("\n********   Call Generate Ki3 in Scheme III Method    *******"); 

    try{ 

       Ki3Bytes=new byte[wordsindex][]; 

       for(int g=0;g<wordsindex;g++){ 

   KeyGenerator keygen = KeyGenerator.getInstance("AES"); 

   keygen.init(128);  // To use 256 bit keys, you need the "unlimited strength" 

encryption policy files from Sun. 

   byte[] key = keygen.generateKey().getEncoded(); 

   Ki3Bytes[g]=key; 

   f.setData("Length of K''3 "+g+" in Scheme II as Bytes "+Ki3Bytes[g].length); 

   f.setData("K''3 "+g+" as Bytes : "); 

   printValue(Ki3Bytes[g]); 

   f.setData(" "); 

 

        } 

     }catch (NoSuchAlgorithmException e) { 

            f.setData("Exception in Catch Block "+e.toString()); 

      } 

}//End of GenerateKi3Scheme3 



 

105 

 

//___________________________________________________________________________________

_____ 

 

protected  void Encrypt_Wi_Using_Ki3_Scheme3(){ 

   f.setData("\n********   Call Encrypt Wi Using Ki2 Method  in Schema III  *******"); 

   // build the initialization vector.  This example is all zeros, but it 

   // could be any value or generated using a random number generator. 

   try{ 

       XiBytes=new byte[wordsindex][]; 

       for(int g=0;g<wordsindex;g++){ 

   SecretKeySpec skeySpec = new SecretKeySpec(Ki3Bytes[g], "AES"); 

   byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

   IvParameterSpec ivspec = new IvParameterSpec(iv); 

 

  /** Steps of Encrypt Si */ 

 

    //String SiString=Integer.toBinaryString(Si); 

   Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

   cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

   XiBytes[g] = cipher.doFinal(WiBytes[g]); 

   f.setData("Length of X "+ g+" in Scheme III as Bytes "+XiBytes[g].length); 

   f.setData("Encrpted W Which are called X"+g+" as Bytes : "); 

   printValue(XiBytes[g]); 

   f.setData(" "); 

   //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

        } 

    }catch (NoSuchAlgorithmException e) { 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(NoSuchPaddingException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(IllegalBlockSizeException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 



 

106 

    }catch (InvalidKeyException e) { 

        f.setData("Exception in Catch Block "+e.toString()); 

    } //catch (UnsupportedEncodingException e) {//} 

    catch(InvalidAlgorithmParameterException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(BadPaddingException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

   } 

  }//End of Encrypt_Wi_Using_Ki3_Scheme3 

//___________________________________________________________________________________

_____ 

 

protected  void Split_Xi(){ 

   LiBytes=new byte[wordsindex][]; 

   RiBytes=new byte[wordsindex][]; 

   byte Ti2Half1[]; 

   byte Ti2Half2[]; 

   //StringBuffer Ti2String=new StringBuffer(); 

   for(int i=0;i<wordsindex;i++){ 

   Ti2Half1=new byte[XiBytes[i].length/2]; 

   Ti2Half2=new byte[XiBytes[i].length/2]; 

   //String s=new String(Ti2[i]); 

   //f.setData("Ti2 in s "+s.length()); 

  for(int b=0;b<Ti2Half1.length;b++){ 

  //f.setData("b in search "+b); 

  Ti2Half1[b]=XiBytes[i][b]; 

  }//for 

  int y=0; 

  for(int b2=Ti2Half1.length;b2<XiBytes[i].length;b2++){ 

  Ti2Half2[y]=XiBytes[i][b2]; 

  y++; 

  }//for 

  LiBytes[i]=Ti2Half1; 



 

107 

  RiBytes[i]=Ti2Half2; 

  f.setData("Half1 of T equals Pseudorandom S "+LiBytes.length); 

  f.setData("half2 of T equals Encrypted Pseudorandom S "+RiBytes.length); 

  } 

 }//End of Split_Xi 

 

//___________________________________________________________________________________

_____ 

protected void GenerateKi2Scheme2(){ 

   f.setData("\n********   Call Generate Ki2 in Scheme II Method    *******"); 

   try{ 

    Ki2Bytes=new byte[wordsindex][]; 

       for(int g=0;g<wordsindex;g++){ 

   KeyGenerator keygen = KeyGenerator.getInstance("AES"); 

   keygen.init(128);  // To use 256 bit keys, you need the "unlimited strength" 

encryption policy files from Sun. 

   byte[] key = keygen.generateKey().getEncoded(); 

   Ki2Bytes[g]=key; 

   f.setData("Length of K'2 "+g+" in Scheme II as Bytes "+Ki2Bytes[g].length); 

   f.setData("K "+g+" as Bytes : "); 

   printValue(Ki2Bytes[g]); 

   f.setData(" "); 

 

       } 

    }catch (NoSuchAlgorithmException e) { 

       f.setData("Exception in Catch Block "+e.toString()); 

    } 

}//End of GenerateKi2Scheme2 

 

//___________________________________________________________________________________

_____ 

 

protected void Encrypt_Li_Using_Ki2_Scheme2(){ 



 

108 

    f.setData("\n********   Call Encrypt Li Using Ki2 Method  in Schema III *******"); 

    // build the initialization vector.  This example is all zeros, but it 

    // could be any value or generated using a random number generator. 

    Cipher cipher=null; 

    try{ 

       for(int g=0;g<wordsindex;g++){ 

   SecretKeySpec skeySpec = new SecretKeySpec(Ki2Bytes[g], "AES"); 

   byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

   IvParameterSpec ivspec = new IvParameterSpec(iv); 

 

         /** Steps of Encrypt Si */ 

    cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

    cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

    KiBytes[g] = cipher.doFinal(LiBytes[g]); 

 

   f.setData("Length of K1 "+ g+" in Scheme II as Bytes "+KiBytes[g].length); 

   f.setData("Encrpted L "+g+" as Bytes : "); 

   printValue(KiBytes[g]); 

   f.setData(" "); 

   //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

       } 

    }catch (NoSuchAlgorithmException e) { 

       f.setData("Exception in Catch Block "+e.toString()); 

    }catch(NoSuchPaddingException e){ 

       f.setData("Exception in Catch Block "+e.toString()); 

    }catch(IllegalBlockSizeException e){ 

       f.setData("Exception in Catch Block "+e.toString()); 

    } 

 catch (InvalidKeyException e) { 

 f.setData("Exception in Catch Block "+e.toString()); 

 } //catch (UnsupportedEncodingException e) {//} 

 catch(InvalidAlgorithmParameterException e){ 

       f.setData("Exception in Catch Block "+e.toString()); 



 

109 

    } 

    catch(BadPaddingException e){ 

       f.setData("Exception in Catch Block "+e.toString()); 

    } 

}//End of Encrypt_Li_Using_Ki2_Scheme2 

 

//___________________________________________________________________________________

_____ 

 

protected void Encrypt_Si_Using_Ki(){ 

   f.setData("\n********   Call Encrypt Si Using Ki Method  in Scheme III  *******"); 

   // build the initialization vector.  This example is all zeros, but it 

   // could be any value or generated using a random number generator. 

   try{ 

    encryptedSi=new byte[wordsindex][]; 

       for(int g=0;g<wordsindex;g++){ 

      SecretKeySpec skeySpec = new SecretKeySpec(KiBytes[g], "AES"); 

   byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

   IvParameterSpec ivspec = new IvParameterSpec(iv); 

   Cipher cipher=null; 

         /** Steps of Encrypt Xi */ 

 

            //String SiString=Integer.toBinaryString(Si); 

 

            //PKCS5Padding 

            cipher = Cipher.getInstance("AES/CBC/NoPadding"); 

            //f.setData("Length of Ki   "+ g+" as Bytes "+KiBytes[g].length); 

            cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

            encryptedSi[g] = cipher.doFinal(SiBytes[g]); 

            f.setData("Length of Encrypted S  "+ g+" as Bytes "+encryptedSi[g].length); 

            f.setData("Encrypted S "+g+" as Bytes : "); 

            printValue(encryptedSi[g]); 

            f.setData(" "); 



 

110 

            //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

       } 

    }catch (NoSuchAlgorithmException e) { 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(NoSuchPaddingException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(IllegalBlockSizeException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch (InvalidKeyException e) { 

        f.setData("Exception in Catch Block "+e.toString()); 

    } //catch (UnsupportedEncodingException e) {//} 

    catch(InvalidAlgorithmParameterException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    }catch(BadPaddingException e){ 

        f.setData("Exception in Catch Block "+e.toString()); 

    } 

}//End of Encrypt_Si_Using_Ki 

//___________________________________________________________________________________

_____ 

 

protected  void PrepareTi_Scheme3(){ 

 f.setData("\n********   Call Prepare Ti Method in Scheme III    *******"); 

 for(int g=0;g<wordsindex;g++){ 

 // Ti=new String(newSi).concat(new String(result)); 

  byte Ti[]=new byte[SiBytes[g].length+encryptedSi[g].length]; 

  int j1=0,j2=0; 

 

  for(int k=0;k<SiBytes[g].length;k++){ 

    Ti[k]=SiBytes[g][j1]; 

    j1++; 

  } 

  for(int k=SiBytes[g].length;k<Ti.length;k++){ 

    Ti[k]=encryptedSi[g][j2]; 



 

111 

    j2++; 

  } 

  Ti2Bytes[g]=Ti; 

  f.setData("Length of T 2 "+g+" in Scheme III as Bytes "+Ti2Bytes[g].length); 

  f.setData("T 2  "+g+" in Scheme III as Bytes : "); 

  printValue(Ti2Bytes[g]); 

  f.setData(" "); 

 }//for 

 }//End of PrepareTi_Scheme3 

//___________________________________________________________________________________

_____ 

 

protected  void GenerateCi(){ 

 try{ 

 //FileOutputStream fi=new FileOutputStream("E://Cipher.txt"); 

 //PrintWriter fid=new PrintWriter(fi); 

 PrintWriter fid=new PrintWriter("E://Cipher.txt"); 

 f.setData("\n********   Call Generate Ci Method    *******"); 

 for(int o=0;o<wordsindex;o++){ 

  CiBytes[o]=XOR(Ti2Bytes[o],XiBytes[o]); 

  /*outFile.write(CiBytes[o],0,CiBytes[o].length);*/ 

  f.setData("Length of Cipher Ci "+o+" as Bytes "+CiBytes[o].length); 

  f.setData("Cipher C  "+o+" as Bytes : "); 

  printValue(CiBytes[o]); 

  f.setData(" "); 

  //fid.write(CiBytes[o]); 

  CiString[o]=new String(CiBytes[o]); 

  fid.println(CiString[o]); 

  //AllCipher.append(CiString[o]+"\n"); 

 }//for 

 fid.close(); 

 }catch (IOException ex) { 

     System.err.println(ex); 



 

112 

} 

 

  //========================================================================= 

    /* byte CiBytesserver[][]; 

     Scanner sc=null; 

    try { 

      sc = new Scanner("E://Cipher.txt"); 

      CiBytesserver = new byte[lineNumber][]; 

      while (sc.hasNext()) 

      { 

     CiBytesserver[lineNumber]=line.nextToken().getBytes(); 

      } 

    sc.close(); 

    System.out.println("in symmetric first   "+token); 

      stream2 = new FileInputStream("E://Cipher.txt"); 

      BufferedReader buf2 = new BufferedReader(new InputStreamReader(new 

DataInputStream(stream2))); 

      lineNumber = 0; 

      while ((line = buf2.readLine()) != null)   { 

    // StringTokenizer lin=new StringTokenizer(line); 

    // while (lin.hasMoreTokens()) 

          //CiBytesserver[lineNumber]=line.nextToken().getBytes(); 

                        CiBytesserver[lineNumber]=line.getBytes(); 

 

                 lineNumber++; 

      } 

     System.out.println("in symmetric  line number is  "+lineNumber); 

     System.out.println("in symmetric  word index  "+wordsindex); 

 

      stream.close(); 

      //stream.read(CipherArray); 

     // CiBytes=CipherArray; 

     } catch (Exception e) { 



 

113 

      e.printStackTrace(); 

      }*/ 

 

  //========================================================================= 

}//End of GenerateCi 

//___________________________________________________________________________________

_____ 

 

protected  byte[] Encrypt_W_Using_Ki3_Scheme3(byte searchWord[],int pos){ 

 f.setData("\n********   Call Encrypt Wi Using Ki2 Method  in Schema II  *******"); 

 // build the initialization vector.  This example is all zeros, but it 

 // could be any value or generated using a random number generator. 

  byte encryptedSearchWord []=null; 

  try{ 

    //for(int g=0;g<3;g++){ 

     SecretKeySpec skeySpec = new SecretKeySpec(Ki3Bytes[pos], "AES"); 

   byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

   IvParameterSpec ivspec = new IvParameterSpec(iv); 

 

  /** Steps of Encrypt Si */ 

 

    //String SiString=Integer.toBinaryString(Si); 

   Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

   cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

   encryptedSearchWord = cipher.doFinal(searchWord); 

   f.setData("Length of Search Word in Scheme III as Bytes "+searchWord.length); 

   f.setData("Search Word in Scheme III  as Bytes : "); 

   printValue(searchWord); 

   f.setData(" "); 

   f.setData("Length of Encrypted Search Word in Scheme III as Bytes 

"+encryptedSearchWord.length); 

   f.setData("Encrypted Search Word in Scheme III Which are called X as Bytes : 

"); 



 

114 

   printValue(encryptedSearchWord); 

   f.setData(" "); 

   //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

  //   } 

  }catch (NoSuchAlgorithmException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  }  catch(NoSuchPaddingException e){ 

  f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch(IllegalBlockSizeException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch (InvalidKeyException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  } //catch (UnsupportedEncodingException e) {//} 

   catch(InvalidAlgorithmParameterException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch(BadPaddingException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  return encryptedSearchWord; 

 }//End of Encrypt_W_Using_Ki3_Scheme3 

//___________________________________________________________________________________

_____ 

 

protected byte[] Encrypt_Li_Using_Ki2(byte Li[],int pos){ 

 f.setData("\n********   Call Encrypt Xi Using Ki Method  in Scheme III  *******"); 

 // build the initialization vector.  This example is all zeros, but it 

 // could be any value or generated using a random number generator. 

    byte encryptedLi[]=null; 

  try{ 

    //for(int g=0;g<3;g++){ 



 

115 

     SecretKeySpec skeySpec = new SecretKeySpec(Ki2Bytes[pos], "AES"); 

   byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

   IvParameterSpec ivspec = new IvParameterSpec(iv); 

   Cipher cipher=null; 

  /** Steps of Encrypt Li */ 

 

    //String SiString=Integer.toBinaryString(Si); 

 

  //PKCS5Padding 

     cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

   //f.setData("Length of Ki   "+ g+" as Bytes "+KiBytes[g].length); 

   cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivspec); 

   encryptedLi = cipher.doFinal(LiBytes[pos]); 

   f.setData("Length of Encrypted Li  as Bytes "+encryptedLi.length); 

   f.setData("Encrypted Li as Bytes : "); 

   printValue(encryptedLi); 

   f.setData(" "); 

   //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

    // } 

  }catch (NoSuchAlgorithmException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  }  catch(NoSuchPaddingException e){ 

  f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch(IllegalBlockSizeException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch (InvalidKeyException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  } //catch (UnsupportedEncodingException e) {//} 

   catch(InvalidAlgorithmParameterException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 



 

116 

  catch(BadPaddingException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

    return encryptedLi; 

}//End of Encrypt_Li_Using_Ki2 

//___________________________________________________________________________________

_____ 

 

public  void printValue(byte b[]){ 

   //f.setData("Print Value Method "); 

   for(int i=0;i<b.length;i++) 

          f.setDataInLine(" "+b[i]); 

          //f.setData(" "); 

          //for*/ 

          /* String s=""; 

    for(int i=0;i<b.length;i++){ 

     byte byteVal=b[i]; 

              int intVal=new Byte(byteVal).intValue(); 

              s=s.concat(Integer.toBinaryString(new Integer(intVal))); 

              f.setData(" "+s); 

          }//for*/ 

    //f.setData("\n length as binary "+s.length()); 

}//End of printValue 

//___________________________________________________________________________________

_____ 

 

protected  byte[] XOR(byte [] Ti,byte [] Wi) { 

 f.setData("\n********   Call XOR Method    *******"); 

 //f.setData("Word "+Wi.length); 

 //f.setData("Ti  "+Ti.length); 

 int u=0,maxlength=0; 

 byte [] XOR_out,Tixor,Wixor; 

 int lenWi = Wi.length; 



 

117 

 int lenTi = Ti.length; 

 

 int j1=0,j2=0; 

 // For each character in our string, encrypt it... 

 if(lenWi>lenTi){ 

   maxlength=lenWi; 

   Tixor =new byte [lenWi]; 

   for(int k=0;k<lenTi;k++){ 

    Tixor[k]=Ti[j1]; 

    j1++; 

   } 

   for(int k=lenTi;k<lenWi;k++){ 

    Tixor[k]=0; 

   } 

   Wixor=Wi; 

 }//if 

 else if(lenTi>lenWi){ 

   Wixor =new byte [lenTi]; 

   maxlength=lenTi; 

   for(int k=0;k<lenWi;k++){ 

    Wixor[k]=Wi[j1]; 

    j1++; 

   } 

   for(int k=lenWi;k<lenTi;k++){ 

    Wixor[k]=0; 

   } 

  Tixor=Ti; 

 }//if 

  else{ 

   maxlength=lenWi; 

   Wixor=Wi; 

   Tixor=Ti; 

  } 



 

118 

   XOR_out =new byte [maxlength]; 

 for ( int i = 0, j = 0; i < maxlength; i++, j++ ) 

 { 

    //f.setData("Word byte "+Wixor[i]); 

    //f.setData("Ti byte "+Tixor[i]); 

 

    XOR_out[u]=(byte)(Wixor[i] ^ Tixor[j]); 

    u++; 

 } 

 

 return XOR_out; 

}//End of XOR 

//___________________________________________________________________________________

_____ 

 

protected boolean Search_Scheme3(byte key[],byte [] searchword) { 

  f.setData("\n********   Call Search Method    *******"); 

  boolean Search=false; 

  //String S=""; 

  byte encryptedS[]; 

  byte decryptedS[]; 

  byte Ti2[][]=new byte[wordsindex][]; 

  byte Ti2Half1[]; 

  byte Ti2Half2[]; 

  int foundword=0; 

  //StringBuffer Ti2String=new StringBuffer(); 

   for(int i=0;i<wordsindex;i++){ 

    Ti2Half1=new byte[SiBytes[i].length]; 

    Ti2Half2=new byte[Ti2Bytes[i].length-SiBytes[i].length]; 

    Ti2[i]=XOR(CiBytes[i],searchword); 

    f.setData("Length of Calculated T "+i+" in Search Method in Scheme III 

"+Ti2[i].length); 

    f.setData("Calculated T "+i+" in Search Method in Scheme III as Bytes"); 



 

119 

    printValue(Ti2[i]); 

    f.setData(" "); 

    f.setData("Length of Pseudorandom S in serach "+SiBytes[i].length); 

 

    //String s=new String(Ti2[i]); 

    //f.setData("Ti2 in s "+s.length()); 

    for(int b=0;b<SiBytes[i].length;b++){ 

   //f.setData("b in search "+b); 

   Ti2Half1[b]=Ti2[i][b]; 

  }//for 

    int y=0; 

    for(int b2=SiBytes[i].length;b2<Ti2Bytes[i].length;b2++){ 

   Ti2Half2[y]=Ti2[i][b2]; 

   y++; 

  }//for 

    f.setData("Half1 of T equals Pseudorandom S "+Ti2Half1.length); 

    f.setData("half2 of T equals Encrypted W = X "+Ti2Half2.length); 

    //f.setData("Encrypted S "+i+" in Search"+Ti2Half2.length); 

    //f.setData("Si length in serach "+SiBytes[i].length); 

    encryptedS=Ti2Half2; 

    decryptedS=Decrypt_Si_Using_Ki(key,encryptedS); 

    f.setData("Decrypted S "+decryptedS.length); 

    if(new String(Ti2Half1).equals(new String(decryptedS))){ 

     foundword=i; 

     Search=true; 

     break; 

    } 

    decryptedS=new byte[8]; 

  }//for 

     if(Search==true) 

    f.setData("Search Word Found in Position "+foundword); 

     else 

    f.setData("Search Word is Not Found "); 



 

120 

 

  return Search; 

}//End of Search_Scheme3 

//___________________________________________________________________________________

_____ 

 

protected  byte[] Decrypt_Si_Using_Ki(byte K[],byte encryptedS[]){ 

  f.setData("\n********   Decrypt Si Using Ki Method    *******"); 

 // build the initialization vector.  This example is all zeros, but it 

 // could be any value or generated using a random number generator. 

  byte decryptedS[]=new byte[8]; 

  try{ 

 

  SecretKeySpec skeySpec = new SecretKeySpec(K, "AES"); 

  byte[] iv = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

  IvParameterSpec ivspec = new IvParameterSpec(iv); 

  Cipher cipher=null; 

  /** Steps of Decrypt Si */ 

 

    //String SiString=Integer.toBinaryString(Si); 

  /*if(flageSchema==1){ 

      cipher =Cipher.getInstance("AES/CBC/NoPadding"); 

   } 

  else if(flageSchema==2) 

     cipher = Cipher.getInstance("AES/CBC/NoPadding"); 

  else if(flageSchema==3)*/ 

     cipher = Cipher.getInstance("AES/CBC/NoPadding"); 

  cipher.init(Cipher.DECRYPT_MODE, skeySpec, ivspec); 

 

  decryptedS= cipher.doFinal(encryptedS); 

  //f.setData("Block Size "+cipher.getBlockSize()); 

  //f.setData("Output Size "+cipher.getOutputSize(8)); 

  //f.setData(" Dycryyyyyyyyyypt "+K.length); 



 

121 

  //f.setData(" Dycryyyyyyyyyypt "+S.length); 

  f.setData("Length of Decrypted S  as Bytes "+decryptedS.length); 

  f.setData("Decrypted S as Bytes : "); 

  printValue(decryptedS); 

  f.setData(" "); 

   //f.setData("Ciphertext: " + hexEncode(encrypted) + "\n"); 

 

  }catch (NoSuchAlgorithmException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  }  catch(NoSuchPaddingException e){ 

  f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch(IllegalBlockSizeException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch (InvalidKeyException e) { 

  f.setData("Exception in Catch Block "+e.toString()); 

  } //catch (UnsupportedEncodingException e) {//} 

   catch(InvalidAlgorithmParameterException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  catch(BadPaddingException e){ 

   f.setData("Exception in Catch Block "+e.toString()); 

  } 

  return decryptedS; 

 }//End of Decrypt_Si_Using_Ki 

//___________________________________________________________________________________

_____ 

 

protected int get_word_position(byte word[]){ 

 boolean found=false; 

 int i=0; 

 for(i=0;i<wordsindex;i++){ 



 

122 

  if((new String(word)).equals(new String(WiBytes[i]))){ 

   found=true; 

   System.out.println("gggg  "+new String(word)); 

   System.out.println("gggg4  "+new String(WiBytes[i])); 

   break; 

  } 

 } 

 System.out.println("found  "+found); 

 if(found==true) 

  return i; 

 else 

  return -1; 

}//End of get_word_position 

//___________________________________________________________________________________

_____ 

} 

 


