DEDICATION

To my parents,

Wife and daughter,

Brothers,

Sisters

and colleagues

With love and respect

Hamza

ACKNOWLEDGEMENTS

All praise belongs to Allah, the Almighty for his unlimited support. Peace and blessings of Allah be on his prophet and messenger Mohammed and his pious companions and followers.

Thanks and gratitude to Dr. Ahmed Khalil Ahmed for his keen supervision, patience and valuable packing throughout the course of this study.

Iam grateful to Dr. Kamal Abd Albagi, my co-supervisor for his continual help. My thanks also go to Dr. Fageri, Dr. Mohammed Taj Aldin, Ustaz Mohammed Omer and Ustaz Ibrahim Ali for their appreciable help.

Iam really indebted to University of Western Kordofan, Animal Resources Bank, Sudanese Sugar Company, Arab company for Agricultural investment and development, Sudanese air force and Dr.Bradbury without whom the present work would remain in dim.

Aim grateful to the staff of Animal production department for their warm welcoming and acceptance.

My deep thanks are extended to honorable Umda Murgani Gafar for his hospitality and sincere help in obtaining cassava leaves from Umshouka, and Mr. El Fadil Mukhtar and Abdelhamed A. for their efficient typing of the manuscript.

Lastly and not leastly Iam thankful to my family for their moral and financial support.

My great thanks are first to Almighty Allah, who supported me to finish this work successfully.

ABSTRACT

The present study was conducted to investigate the effect of feeding cassava leaves at different inclusion levels and their utilization as a natural milk preservative for Sudanese Nubian goats. The study also included the effect of feeding cassava leaves on some productive characters of Sudanese Nubian goats. A total of 25 Sudanese Nubian goats were used as experimental animals. Initially 12 lactating does were divided into three groups based on matchability in live body weight, age and parity number, and assigned to three cassava leaves inclusion levels (0.0, 15 and 20%) as a preliminary experiment.

The results of the preliminary experiment revealed that titratable acidity percentage of the milk of goats fed on 20% cassava leaves was lower than those fed on 0.0% and 15% cassava at 5th ,6th and 7th hour post-milking. Also, it was found that fewer milk samples from the group maintained on 20% cassava showed positive results(spoiled) at the 7th hour after milking, compared to the other two groups (0.0, 15 and 20%). The results of the preliminary experiment suggested that cassava leaves inclusions didn't affect the keeping quality of goats raw milk, and there is a possibility of preservative effects if the cassava leaves inclusion increase. Accordingly, cassava leaves inclusion rate (15%) was doubled (0.0%, 20%, 30%).

The results of the new inclusion level indicated that titratable acidity percentage of raw milk of goat fed on 30% cassava leaves was significantly (P< 0.05) lower than those raised on 0.0% and 20% cassava leaves at 5th, 6th and 7th hour post-milking. Also, the clot-on boiling results elucidated that milk samples of goats offered 30% cassava leaves was significantly (P< 0.05) better than those fed on 0.0% and 20% cassava leaves at the 7th hour. However, the resazurin reduction test

revealed that all samples from the three groups showed disc reading below 4.

The results indicated that does fed on 20% cassava leaves produced significantly (P< 0.05) more average daily and total milk yield than the other two groups (0.0% and 20% cassava leaves). Moreover, does fed on 30% cassava leaves were found to be more persistent and tended to reach their peak yield later than the other two groups.

Milk fat, protein, total solids, solids not fat and ash% were not significantly (P> 0.05) affected by cassava inclusion levels.

Dry matter intake recorded during lactation period revealed that goats maintained on 20% cassava leaves consumed more dry matter (DM), crude protein (CP) and metabolizable energy (ME) than those raised on 0.0% and 30% cassava leaves levels. When dry matter intake was expressed as percentage of live body weight, both does fed on 20% and 30% cassava leaves consumed more DM than those maintained on the control ration (2.3, 2.7, 2.7%).

It was observed that goats fed on 30 % cassava leaves gained weight(.5 kg) during the lactation period while those offered 0.0 and 20% cassava leaves lost weights (3.3±1.2 and 2.0±0.4 kg respectively).

The same cassava leaves inclusion levels were used to investigate their effects on goats performance during the last 4 weeks of gestation. The results showed that goats maintained on 20% cassava leaves tended to eat insignificantly (P> 0.05) more DM, CP and ME, and also it secured higher daily weight gain (225/g) than those fed on the control ration and 30% cassava leaves.

The present results disclosed that, cassava leaves inclusions increased total dry matter intake, and inclusion up to 20% exerted better

performance. No deleterious effects were observed when the two cassava leaves inclusions fed during this period (4 weeks prior to kidding).

Cassava leaves inclusion levels secured insignificant (P> 0.05) effects on birth weight, the respective recorded averages birth weight for kids in the three groups were 2.3 ± 0.37 , 2.3 ± 0.03 and 2.54 ± 0.12 kg for the does fed (0.0 ,20 and 30% cassava leaves respectively. Does fed on 30% cassava leaves born slightly heavier kids than those raised on 0.0 and 20% cassava.

13 kids born to the present does were used to investigate the effect of cassava leaves inclusions on kids post-weaning performance (8 weeks post-weaning). The kids were divided into three groups and then assigned to the cassava inclusions (0.0%, 20%, 30%). The results indicated that weaning weights were not affected by the three cassava leaves inclusions. (8.8 \pm 1.42, 7.8 \pm 0.95 and 8.0 \pm 1.0 kg for the three groups respectively).

It was observed that kids raised on control ration consumed insignificantly (P> 0.05) more DM, CP and ME than those fed on either 20% or 30% cassava leaves. But, kids maintained on 30% cassava leaves secured the highest daily weight gain (45.3 g) compared to those fed on the control ration (24.4g) and 20% cassava leaves (32.5g) in the same period (8 weeks post-weaning).

From the results of the current study, it can possibly concluded that cassava leaves can be safely incorporated into goats rations at a level of 30% without adverse effects on production performance. 20% cassava leaves inclusion gave a better production performance, whereas, 30% level, maintained longer milk shelf-life.

بسم الله الرحمن الرحيم

ملخص الدراسة

أجريت هذه الدراسة لمعرفة اثر تغذية الماعز النوبي السوداني بمستويات مختلفة من أوراق نبات الكسافا بغرض زيادة محتويات عنصر (الثابوثيانيت) في كتب وباتالى تنشيط نظام (اللاكتوبيروكسيدز) الطبيعي في اللبن الخام المنتج ومن ثم زيادة مدة حفظة . وقد شملت الدراسة اثر هذه المستويات على الادارء الإنتاجي التركيب الكيميائي للبن.

تم استخدام مجموعة مكونة من ٢٥ ماعز نوبي، في بداية التجربة استخدمت ١٢ ماعز حلوب قسمت إلي ثلاثة مجموعات وغذيت علي ثلاثة علائق تشمل ٣ مستويات من أوراق نبات الكسافا (٥% ٠ ٥١% و ٢٠%) كتجربة أولية.

أوضحت نتائج التجربة الأولية ، أن نسبة الحموضة المعايرة بلبن المجموعة التي غزيت على ،% و ١٥% أوراق كسافا في الساعات ٥، ٦ ، ٧ بعد الحلب على التوالي.

اختيار التجبن عند الغليان لعينات اللبن من المجموعة التي عذبت على ٢٠% أوراق كسافا أعطى نتائج سالبة اى لم يتخثر) بعد ٧ ساعات من الحليب أكثر من عينات اللبن من المجموعة التي غذيت على % و ١٥% او ورقة كسافا على التوالي .

خلصت التجربة الأولية علي أن تغذية المستويات المختلفة من أوراق بنات الكسافا ليست لها اثر معنوي علي زيادة مدة حفظ اللبن الخام المنتج لكن إذا ما عدلت هذا المستويات قد يظهر الأثر الحافظ علي اللبن المنتج. وفقا لذلك تم تضعيف المستوى (١٥%) ليصبح المستوي الجديد (0% ، ٢٠% ، ٣٠%).

او ضحت النتائج بعد هذا التعديل أن نسبة الحموضة في لبن المجموعة التي أعطيت ٣٠% أوراق كسافا كانت معنويا اقل من أ< 0.05) من نسبة الحموضة في لبن المجموعات التي غذيت علي ٥% و ٢٠% أوراق الكسافا في الساعة ٥، ٦، ٧ بعد الحلب علي التوالي.

أيضا بينت نتائج اختبار التجبن عند الغليان في الساعة السابعة بعد الحلب. أن اللبن الخام المنتج من مجموعة الماعز التي غذيت علي ٣٠% أوراق كسافا كانت معنويا أ

٠٠٠٠) أفضل من لبن المجموعتين الأخيرتين (٥% و ٢٠%) في نفس الساعة بينما أوضحت نتائج اختبار الرزاز ورين المختزل في الساعة السابعة بعد الحلب أن اللبن الخام من كل المجموعات أعطى قراءه اقل من ٤.

المجموعات التي عذبت علي مستوى ٢٠% أوراق كسافا استهلكت كمية اكبر من المادة الجافة والبروتين الخام والطاقة الممثلة في فترة الادلرر مقارنة بالمجموعتين التين غذيتا على ٥٥%و ٣٠٠٠).

عندما عبر عن كمية المادة الجافة المستهلكة كنسبة من الوزن الحي وجدان المجموعتين (٢٠%و ٣٠٠) استهلكتا كحمية اكبر من المادة الجافة مقارنة بالمجموعة التي عذبت على العليقة القياسية.

أشارت نتائج الدراسة إلي أن المجموعات التي غذيت على ٢٠% أوراق كسافا أعطت متوسط إنتاج لبن يومي وكلى أكثر معنويا (أ < ٠٠٠٠) من المجموعتين الأخريتين . كما وجد أن المجموعة التي غذيت على ٣٠% أوراق كسافا كانت أكثر مثابرة (٠٠٨٩).

من تلك التي غذيت على ٢٠% أوراق كسافا (٤٠٠) والتي غذيت على العليقة القياسية (٣٠٠)، كما أنها وصلت إلى قمة انتاجها في نهاية الأسبوع الثالث (٣٠٧) بينما تلك التي غذيت على ٢٠% كسافا وصلت إلى خمس انتاجها في بداية الأسبوع الثالث (٣٠١) المجموعة التي أعطيت عليت عليقة قياسية وصلت إلى خمسة انتاجها في نهاية الأسبوع الثاني (١٠٩).

لم تؤثر مستويات لوراق الكسافا علي أي من مكونات اللبن الكيميائية والدهن – البروتين – المواد الصلبة الكدهنية والرماد).

لوحظ أن مجموعة الماعز التي غذيت علي ٣٠% كسافا قد إلى اكتسبت وزن (٥٠.كلم) خلال فترة الإدرار بينما تلك التي غذيت علي ٥% و٢٠% فقدتا جزء من أوزانها(٣.٣و ٢كلم) علي التوالي .

استخدمت نفس هذه المستويات (٥% و٢٠% و٣٠٠) مثل ٤ أسابيع من غابة الحمل لمعرفة اثر هذه المستويات على بعض الخواص الإنتاجية خلال هذه الفترة.

أو ضحت النتائج أن المجموعة التي غذيت على ٢٠% كسافا أستهلكت كمية اكبر من المادة الجافة والبروتين الخام والطاقة المتمثلة وكان معدل الزيادة اليومي في الوزن اعلي (٢٠٥ جرام/يوم) مقارنة بالمجموعتين الأخريتين (١٠٠ و ١٠٠ جرام/يوم) كسافا علي التوالي. واستنتج أن مستوى ٢٠% كسافا أعطى أداء أفضل من باقي المستويات. كما لوحظ أنة ليس لأوراق الكسافا اى اثر طار على صحة الماعز هذا الفترة.

لم تؤثر مستويات الكسافا معنويا (أ < ٠٠٠٠) على وزن السخلان عند الولادة، ولوحظ أن المجموعة التي غذيت على ٣٠% كسافا أعطت سخلان أثقل بقليل من سخلان المجموعتين الأخيرتين.

تم اختيار ١٣ سخلا ولدت للمجموعة السابقة لدراسة اثر هزة المستويات (٠، ٠٠، ٠٠ ، ٣٠%) على أداء السخلان في مرحلة بعد الفطام (٨ أسابيع بعد الفطام)

أوضحت النتائج أن المستويات الثلاث لم تؤثر معنويا علي وزن السخلان عند الفطام. بالرغم من أن مجموعة السخلان التي غذيت علي المجموعة القياسية (٠% كسافا) قد استهلكت كميه اكبر من المادة الجافة والبرتين الخام والطاقة الممثلة، إلى أن السخلان في المجموعة التي غذيت علي ٣٠٠ أوراق كسافا كان لها اعلي معدل كسب يومي (٣٠٠٠ جرام) مقارنة بالمجموعة القياسية (٢٤٠٠ جرام) والمجموعة التي غذيت علي ٢٠% أوراق كسافا (٣٢٠٠ جرام) ، خلال الفترة ٨ أسابيع بعد الفطام.

خلصت التجربة على انه يمكن إدخال أوراق نبات الكسافا إلى علايق الماعز النوبي السوداني حتى ٣٠% بأمان دون التأثير على الخواص الإنتاجية ومكونات اللبن.

استخدام مستوى ٢٠% أوراق كسافا أعطى اثر أفضل علي الأداء الانتاجى للماعز في مرحلة الإدرار والأسابيع الأخيرة من الحمل ، بينما مستوى ٣٠% أوراق كسافا أوضح إمكانية إطالة مدة حفظ اللبن الخام عند تغذية الماعز الحلوب بهذا المستوى.

LIST OF CONTENTS

	Page
Dedication	i
Acknowledgements	ii
English Abstract	iii
Arabic Abstract	iv
List of Contents	V
List of Tables	xiv
List of Figures	xvi
List of Plates	xviii
CHAPTER ONE: INTRODUCTION	1
CHAPTER TWO: LITERATURE REVIEW	4
2.1 Cassava plant	4
2.2 Cassava-origin and distribution	4
2.3 Cassava in the Sudan	5
2.4 Cassava-cultivation	5
2.5 Cassava toxicity	6
2.6 Cassava as food and feed	8
2.7 Cassava-nutritive value	10
2.8 Cyanogenic glycosides metabolism	11
2.9 Cassava processing	12
2.9.1 Hydrolysis	13
2.9.2 Dehydration	13

2-10 Methods of milk preservation	15
2.10.1 Chemical preservation	15
2.10.2 Physical methods	19
2.10.3 Effect of Reactivation of Lactoperoxidase system on raw	
milk keeping quality	20
2-11 Thiocyante in Cassava leaves as a natural milk preservative	21
2.12 Effect of feeding cassava leaves on productive performance of	
Nubian goats	22
1.12.1 Feed intake	22
2-13 Milk yield and persistency of lactation	23
2-14 Milk composition	25
2-15 Birth weight	26
CHAPTER THREE: MATERIALS AND METHODS	27
3.1 Study area	27
3.2 Experimental animals	27
3.3.3 Housing.	27
3.4 Experimental diets	29
3.5 Determination of total cyanide in cassava leaves	29
3.5.1 The spectrophotometric method	33
3.5.2 Preparation of buffer and picrate papers	33
3.5.3 Preparation of picrate paper	34
3.6 Feeding	34
3.7 Data collection	38

3.7.1 Performance traits.	38
3.7.2 Milk-quality assessment	39
3.7.3 Milk chemical composition	41
3.8 Kids performance	41
3.8.1 Birth weight	41
3.8.2 Post weaning performance	41
3.8.3 Feed intake	41
3.8.4 Feed intake	42
3.8.5 Live weight changes	42
3.9 Statistical analysis	42
CHAPTER FOUR: RESULTS	43
4. Preliminary Experiment.	43
4.1 Milk preservation	43
4.1.1 Titratable acidity (TA)	43
4.1.2 Clot-on boiling (COB)	43
4.2 Preservation of raw milk	47
4.2.1 Titratable acidity (TA)	47
4.2.2 Clot-on boiling (COB)	47
4.2.3 Resazurin test	47
4.2.4 Thiocyanate (SCN) level	52
4.2.5 Dry matter intake (DMI) during lactation period	52
4.3 Milk yield	62
4.4 Persistency of lactation	62

4.5 Milk composition	62
4.7 Live weight changes	73
4.8 Pregnancy performance	75
4.8.1 Dry matter intake (DMI)	75
4.8.2 Changes in live weight during last 4 weeks of pregnancy	82
3.8.3 General observation on health	82
3.9 Kids performance	84
3.9.1 Birth weight	84
4.9.2 Weaning weight	84
4.9.3 Dry matter intake	84
4.9.4 Crude protein intake	87
4.9.5 Average daily gain	87
CHAPTER FIVE: DISCUSSION	95
5.1 MILK PRESERVATION	95
5.1.1 Titratable acidity	95
5.1.2 Clot-on boiling.	95
5.2 The effect of cassava leaves increment on milk shelf-life	96
5.2.1 Titratable acidity	96
5.2.2 Clot-on boiling.	97
5.2.3 Resazurin reduction test.	97
5.2.4 Thiocyanate	98
5.5 Dry matter intake	99
5.4 Milk yield	100
5.5 Persistency of lactation	101

REFERENCES	109
CONCLUSION AND RECOMMENDATIONS	108
5.8.4 Daily weight gain	106
5.8.3 Daily dry matter intake	105
5.8.2 Weaning weight.	105
5.8.1 Birth weight	104
5.8 Kids performance	104
5.7 Pregnancy performance	103
5.6 Milk composition	102

LIST OF TABLES

Table	Title
2.1	Edible plants containing cyanogens
2.2	Proximate composition(%)of Cassava leaf, Amaranth
	leaves Soybean and Yellow maize grains
2.3	The effect of some processing methods on cyanogens
	content
3.1	Proximate analysis of cassava leaves
3.2	Ingredients inclusion rates: preliminary experiment (on as
	fed basis)
3.3	Ingredients inclusion rates: whole experimental periods.
	(on as fed basis)
4.3	The chemical composition of concentrate mixture
4.1	The effect of cassava inclusions on milk shelf-life
	(acidity % and clot-on boiling)
4.2	The effect of cassava levels on goats raw milk shelf-life
	(acidity (%) and thiocyanate ppm)
4.3	The effect of cassava inclusions on milk-shelf-life 7
	hours post-milking.
4.4	Lactation performance of Sudanese Nubian goats fed
	different cassava levels
4.5	Average daily dry matter intake/g during lactation period
4.6	Average daily crude protein intake/g during lactation
	period
4.7	Average daily metabolizable energy intake (MJ) during
	lactation period.
4.8	The effect of cassava levels on fat content

4.9	The effect of cassava levels on total protein	64
4.10	The effect of cassava levels on milk total solids	65
4.11	The effect of cassava levels on milk solids not fat	65
4.12	The effect of cassava levels on milk ash	66
4.13	Live body weight during lactation period	74
4.14	The effect of cassava levels on goats' performance during	
	last 4 weeks of pregnancy	76
4.15	Daily dry matter intake/g during last 4 weeks of	
	pregnancy	76
4.16	Daily crude protein intake (g) during last 4weeks of	
	pregnancy	77
4.17	Metabolizable energy (MJ) during last 4weeks of	
	pregnancy	77
4.18	Live weight during last 4 weeks of pregnancy	83
4.19	The effect of cassava levels on birth weight of kids	85
4.20	Kids performance 8 weeks post-weaning	86
4.21	Average daily dry matter intake(g) 8 weeks post-weaning	88
4.22	Average daily crude protein (g) intake 8 weeks post-	
	weaning	89
4.23	Average daily metabolizable energy intake (MJ) 8 weeks	
	post-weaning	90
4.24	Kids live body weight 8 weeks post-weaning	91

LIST OF FIGURES

Fig.	Title	No
4.1	The effect of cassava levels on goats raw milk	46
4.2	The effect of cassava inclusions on clot – on boiling test 7 hrs post – milking	47
4.3	The effect of cassava levels on goats raw milk developing acidity	51
4.4	The effect of cassava inclusions on resazurin test	52
4.5	The effect of cassava leaves inclusions on milk thiocyanate	58
4.6	Average daily dry matter intake (g) during lactation period.	59
4.7	Crude protein (g) during lactation period	60
4.8	Metabolizable energy intake (MJ) during lactation period	61
4.9	Live weight change during lactation period	62
4.10	Lactation curve	68
4.11	Milk fat content during lactation period	69
4.12	Milk protein content during lactation period	70
4.13	Milk total solids during lactation period	71
4.14	Milk solids not fat (SNF) during lactation period	72

4.15	Milk ash content during lactation period	73
4.16	Dry matter intake (g) during last 4 weeks of pregnancy	79
4.17	Crude protein intake (g) during last 4 weeks of pregnancy	80
4.18	Metabolizable energy during last 4 weeks of pregnancy	81
4.19	Dry matter intake (g) 8 weeks post – weaning	84
4.20	Crude protein intake (g) 8 weeks post – weaning	93
4.21	Metabolizable energy intake (MJ) 8 weeks post– weaning	94

LIST OF PLATES

Plate	Title	No.
3.1	Housing of experimental animals	28
3.2	Sun- drying of cassava leaves	31
3.3	Preparation of cassava leaves diets	32