Table of contents

Table of	of contents	i
List of	tables	v
List of	figures	vii
List of	abbreviations	ix
Acknov	wledgements	хi
Abstrac	et	xiii
Arabic	abstract	xvi
Introdu	ction	1
Chapte	er one: Literature Review	
1	Ivermectin	4
1.1	Identity	4
1.1.1	Chemical composition	4
1.1.2	Chemical Name	5
1.1.3	Molecular Formulae	5
1.1.4	Molecular Weight	5
1.1.5	Appearance	5
1.1.6	Molecular structure	5
1.2	Mode of action	5
1.3	Toxicology	7
1.3.1	Genotoxicity studies	7
1.3.2	Acute toxicity of Ivermectin	9
1.3.3	Reproductive Toxicity	10
1.3.4	Adverse Effects	11
1.4	Pharmacokinetics of Ivermectin in Animals and Human	14
1.4.1	Horses	15

1.4.2	Camels	17
1.4.3	Cattle	18
1.4.4	Goats	19
1.4.5	Dogs	20
1.4.6	Sheep	20
1.4.7	Humans	21
1.5	Interaction of Ivermectin with Other Drugs	21
1.6	Metabolism and Tissue Residues	22
1.7	Use of Ivermectin in Animals and humans	24
1.7.1	Use of ivermectin in horses.	24
1.7.2	Use of ivermectin in camels	25
1.7.3	Use of ivermectin in cattle	25
1.7.4	Use of ivermectin in goats	26
1.7.5	Use of ivermectin in sheep	26
1.7.6	Use of ivermectin in humans	27
Chapter	two: Materials and Methods	
2.1	Study Site	28
2.2	Experimental animals	28
2.3	Experimental drug	28
2.4	Experimental design	28
2.4.1	Experiment I	28
2.4.2	Experiment II	29
2.5	Collection of Blood samples	29
2.6	Sampling schedule	32
2.7	Haematological parameters	32
2.7.1	Haemoglobin concentration	32

2.7.2	Packed cell volume	33
2.7.3	Total erythrocytes (RBCs) count	33
2.7.4	Total leucocytes count	33
2.8	Blood Biochemical parameters	34
2.8.1	Albumin	34
2.8.2	Alanine aminotransferase (ALT)	34
2.8.3	Aspartate aminotransferase (AST)	35
2.8.4	Urea	36
2.8.5	Triglycerides	36
2.8.6	Cholesterol	37
2.8.7	Phosphorus	37
2.8.8	Sodium	38
2.8.9	Potassium	38
2.9	Necropsy and post mortem examination	39
2.10	Histopathological sections and staining	39
2.11	Statistical analysis	39
Chapter	three: Results	
3.1	Experiment I	40
3.1.1	Side and /or adverse effects	40
3.1.2	Gross lesions	40
3.1.3	Histopathological changes	43
3.1.4	Haematological changes	49
3.1.5	Blood biochemical parameters	54
3.2	Experiment II	65
3.2.1	Side and/or adverse effects	65
3.2.2	Haematological changes	65

3.2.2	Blood biochemical changes	67
Chap	oter four: Discussion	
4.1	Experiment I	74
4.2	Experiment II	80
Chap	oter five: Conclusion and recommendations	
5.1	Conclusion	83
5.2	Recommendations	83
Refe	rences	84

List of Tables

No.	Table	Page
3.1	Haemoglobin (g/dl) concentration in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	50
3.2	Packed cell volume (%) in donkeys treated with ivermectin	
	injection at different dose levels for seven successive days	51
3.3	Total Erythrocytes (x10 ⁶ cell/µl) count in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	52
4	Total Leucocytes ($x10^3$ cell/ μ l) count in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	53
3.5	Albumin (g/l) concentration in donkeys treated with ivermectin	
	injection at different dose levels for seven successive days	56
3.6	Alanine aminotransferase (IU) activity in donkeys treated with	
	ivermectin injection for seven successive days at different dose	
	levels	57
3.7	Aspartate aminotransferase (IU) activity in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	58
3.8	Urea (mmol/l) concentration in donkeys treated with ivermectin	
	injection at different dose levels for seven successive days	59
3.9	Triglycerides (mmol/l) concentration in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	50

3.10	Cholesterol (mmol/l) concentration in donkeys treated with	
	ivermectin injection at different dose levels for seven successive	
	days	61
3.11	Phosphorous (mmol/l) level in donkeys treated with ivermectin	
	injection at different dose levels for seven successive days	62
3.12	Sodium (mEq/l) level in donkeys treated with ivermectin injection	
	at different dose levels for seven successive days	63
3.13	Potassium (mEq/l) level in donkeys treated with ivermectin	
	injection at different dose level for seven successive days	64
3.14	Effect of ivermectin Hb (g/dl) and PCV (%) in the blood of	
	donkeys treated with ivermectin injection at 10 times the	
	recommended dose compared to a baseline value	66
3.15	Total protein (g/l) and albumin (g/l) concentration in donkeys	
	treated with ivermectin injection at 10 times the recommended	
	dose	68
3.16	ALT and AST (IU) activity in donkeys treated with ivermectin	
	injection at 10 times the recommended dose	69
3.17	Urea (mmol/l) concentration in donkeys treated with ivermectin	
	injection at 10 times the recommended dose	70
3.18	Triglycerides and cholesterol (mmol/l) concentration in donkeys	
	treated with ivermectin injection at 10 times the recommended	
	dose	71
3.19	Phosphorus (mmol/l) level in donkeys treated with ivermectin	
	injection at 10 times the recommended dose	72
3.20	Sodium and potassium (meq) level in donkeys treated with	
	ivermectin injection at 10 times the recommended dose	73

List of figures

No.	Figure	Page
1.1	Ivermectin structure	6
2.1	Location of Khartoum, in the center of Sudan	30
2.2	Experimental animals housed in pens in the college farm	31
3.1	Congestion in the internal organs in donkeys treated with	
	different doses of	41
3.2	Liver necrosis in donkey treated with ivermectin	42
3.3	Thick trabeculations in the spleen of donkey treated with	
	ivermectin	42
3.4	Liver tissue: Fine and large hepatocyte cytoplasmic	
	vaculation. Congection in centeral vein and siunsodial	
	dilatation in animal treated with ivermectin at five times the	
	recommended dose for seven successive days (H&E 40)	44
3.5	Kidney tissue: hypercellular glomeruli in animal treated with	
	ivermectin at five times the recommended dose for seven	
	successive days (H&E 100)	44
3.6	Kidney tissue showing: glomeruli appear hyper cellular tufi,	
	pinkish deposits seen Bowman space in animal treated with	
	ivermectin at five times the recommended dose for seven	
	successive days (H&E 400)	45
3.7	Lung tissue: Collapse and emphysema around a bronchus in	
	animal treated with ivermectin at five times the	
	recommended dose for seven successive days (H&E	
	400)	45
3.8	Lung tissue: Alveoler Collapes and emphysema with in	

	animal treated with ivermectin at five times the	
	recommended dose for seven successive days (H&E 100)	46
3.9	lung tissue: Sever congestion and alveolar odema, thickening	
	of interstitium at certain area with dense cellularity in animal	
	treated with ivermectin at five times the recommended dose	
	for seven successive days (H&E 40)	46
3.10	Pulmonary artery tissue: mural thickening and large	
	neutrophils seen blood vessels in animal treated with	
	ivermectin at five times the recommended dose for seven	
	successive days (H&E100)	47
3.11	lung tissue: Large neutrophil seen blood vessels in animal	
	treated with ivermectin at five times the recommended dose	
	for seven successive days (H&E 100)	47
3.11	Spleen tissue: Congection of red pulp ,with dense dark	
	brown deposits (haemosiderin) in animal treated with	
	ivermectin at five times the recommended dose for seven	
	successive days (H&E 400)	48

List of Abbreviations

ALT Alanine aminotransferase

ANOVA Analysis of variance

AST Aspartate aminotransferase

AUC Area under the plasma concentration time curve

AVM Avermectins

BCG Bromocresol green

C_{max} The maximum plasma concentration

GABA Gamma amino butyric acid

GGT Υ -glutamate – transferase

GOT Glutamic – Oxaloacetic Transaminase

GPT Glutamic – Pyruvic Transaminase

Hb Haemoglobin

IVM Ivermectin

LD₅₀ Lethal dose 50

MRT Mean residence time

No. Number

PCV Packed cell volume

RBCs Red Blood Corpuscles

s.e.m Standard error of mean

SD Standard deviation

t_{max} Time to reach maximum concentration

 $t^{1/2}\alpha$ Half life (distribution)

 $t\frac{1}{2}\beta$ Half life (terminal, elimination)

t½a Half life (absorption)

UV Ultra violet

WBC White blood cells

Acknowledgements

I would like to express my sincere thanks and due appreciation to several individuals who have contributed to this accomplishment. First and foremost I am indebted to Dr. Hisham Ismail Seri for his close supervision and diligent help and guidance in all the study phases; and Dr. Siham Elias Suliman Mohamed, Department of Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology; for their unfailing guidance, constructive criticism, provision of facilities, encouragement and for their considerable assistance throughout this work.

Special thanks are due to Prof. Ahmed Abdel Rahim Gameel, department of Pathology, Faculty of Veterinary Medicine, University of Khartoum; and to Dr. Ahmed Gaffer Ahmed Bulldan and Dr. Suleima Mohammed Ali and Dr. Yassir Adam Shuaib.

My thanks are also due to all staff members of the Department of Animal health and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, and the Department of Biochemistry, Nutrition and Toxicology, Central Veterinary Research Laboratories (CVRL), Soba.

The drugs used in this study were generously offered by Dr. Mohammed Salih Musa. The financial support offered by the Scientific Research Deanship was kindly appreciated. Special thanks also go to Mr. Bakheet Nugd Allah for looking after the experimental animals.

Above all, praise is to Allah, the Compassionate, and the most Merciful for giving me the health and strength to carry out this work.

Special thanks to my parents, brothers and sisters for their unwavering encouragement and moral support. I also extend my thanks and appreciation

to all professors, doctors and colleagues for their persistent efforts, encouragement and practical advice. My friends, my soul mates, thank you for your invaluable friendship and inspiration.

Abstract

Two studies were conducted to evaluate the toxicity of ivermectin in donkeys. In the first experiment two groups of donkeys each of six animals were subjected to fasting for 48 hours as stress and then were either treated with ivermectin injection at the recommended dose i.e. 200 µg/kg (T1) or five times the recommended dose i.e. 1 mg/kg (T2) body weight for seven successive days. Animals were monitored for 15 days to evaluate any change that may occur following each treatment. Selected haematological and blood biochemical parameters were evaluated to determine any changes that may occur.

In the second experiment a group of six male donkeys was subjected to a 48 hours fasting period and then animals were treated with a single subcutaneous dose of ivermectin equal to 10 times the recommended dose once and then animals were evaluated for haematological and biochemical changes, if any.

In the first experiment, immediately following injection of the drug signs of intoxication appeared in animals in treatment group (T2), such as: animal fell down, roll in the ground with prominent tremors at the peripheral muscles approximately for 3 minutes, then the animal stood up and continued to feed and drink normally, before death animals refused to eat or drink for a whole day or more. Four animals out of six in T2 group died following treatment with five times the recommended dose at days 6, 8, 10 and day 11 following the first treatment.

At necropsy, congestion in the main visceral organs was the prominent feature in animals. Necrosis in the liver and trabeculations in the spleen, viscous yellow fluids were also observed in kidneys and pericardium. The liver was pale yellow and the kidneys were also pale with

sticky yellowish fluid inside. The pericardium contained large amount of yellowish fluid. Haematomas were observed at the injection site in all animals.

Histopathological changes were observed in all selected organs of ivermectin-treated animals viz: lungs, liver, kidneys, spleen and heart. Ivermectin was found to pose risks of renal and hepato-toxicity in donkeys, since the biochemical parameters of liver function (i.e. aspartate aminotransferase activity, alanine aminotransferase activity) and kidney function (urea concentration) were severely affected. Changes in biochemical parameters were more intense in donkeys from group T2 than those reported in group T1. Four animals out of six died following treatment in group T2. The level of ALT, AST, and urea were significantly elevated in donkeys from group T2 when compared to the pretreatment values. Postmortem and Histopathological examination ensured biochemical alterations of liver and kidneys. Likewise, some haematological indices (i.e. erythrocyte count, leukocyte count and haemoglobin concentration and PCV) were also influenced. It is to be concluded that repeated administration of ivermectin injection formulation at five times the recommended dose is fatal.

In the second experiment, iimmediately following treatment animals tend to be ataxic and start to circle and within 48 hours of treatment signs of intoxication started to appear viz: inability to move, salivation, and food rejection. Two animals died in the 3rd and 13th day following treatment during such period the animal tends to be ataxic, with tremors in all muscles.

Non-significant increase in Hb concentration and PCV started immediately following fasting and treatment and continued up to the end of the experiment.

No significant (P>0.05) change in total proteins, albumin, triglycerides and cholesterol concentration was observed following fasting and treatment. The Increase in ALT and AST concentration started following treatment to reach significance level at the 4th day of treatment, and continued to be higher up to the end of the experiment. While only significant (P<0.05) increase in urea concentration was observed during the fasting period, no significant (P>0.05) increase in urea concentration was observed in treated animals during the whole period of the experiment.

No significant fluctuation in phosphorus concentration was observed during the course of the experiment. No significant change was observed in sodium and potassium concentration following treatment, while slight non-significant decrease was the only change during the course of the experiment.

The results of this study demonstrate that sub-acute administration of ivermectin at five times the recommended dose for seven successive days induces toxic effects on biochemical functions which correlate well with the histopathological changes in the lung, liver, kidneys, spleen and heart of donkeys. Although the data on donkeys cannot be directly applied to horses, it may be concluded that use of ivermectin may cause hazardous effects at various levels to equine species.

بسم الله الرحمن الرحيم المستخلص

تم أجراء دراستين لتقويم سمية الايفرمكتين في الحمير. في التجربة الأولى تم استخدام مجموعتين من الحمير كل منها مكون من ستة حيوانات. تم اخضاع الحيوانات للصيام لمدة 48 ساعة و ذلك لاحداث إجهاد ومن ثم تم حقن الإيفرمكتين اما بالجرعة الموصى بما 200 ميكروجرام / كجم (T1) أو خمسة أضعاف الجرعة الموصى بما أي 1 مغ / كغ (T2) من وزن الجسم لمدة سبعة أيام متتالية. تم مراقبة الحيوانات لمدة 15 يوما لتقييم أي تغييرات قد تحدث عقب كل معاملة. واجرى تقييم بعض مكونات الدم الماخوذ و القياسات الكيموحيوية في الدم وذلك لتقييم وتحديد أي تغييرات قد تحدث.

في التجربة الثانية تم استخدام مجموعة واحدة من الحمير مكونة من سته من ذكور من الحمير ، تم تصويم الحيوانات للجهاد و من ثم عولجت الحيوانات بجرعة واحدة تحت الجلد من الإيفرمكتين تعادل 10 أضعاف الجرعة الموصى بحا مرة واحدة ثم احرى تقويم لتغييرات الدم و المقياسات الكيموحيوية, ان وجدت .

في التجربة الاولى: بعد الحقن مباشرة ظهرت علامات التسمم بالدواء في الحيوانات في مجموعة العلاج (T2)، مثل :سقوط الحيوان, و تدحرجه على الأرض مع ارتعاش واضح في العضلات الطرفية لفترة تقارب 3 دقائق، بعدها يقف الحيوان ثم يواصل الاكل والشراب بصورة عادية. قبل الموت رفضت الحيوانات تناول الطعام أو الشراب لمدة يوم كامل أو أكثر .أربعة حيوانات من أصل ستة في مجموعة T2 ماتت بعد المعالجة بخمسة أضعاف الجرعة الموصى بما في الأيام 6, 8, 10و11 عقب اعطاء اول جرعه من العلاج.

عند اجراء الصفة التشريحية كان هنالك احتقان في الأجهزة الحشوية الرئيسية السمية واضحه في الحيوانات . نخر في الكبد وتربيق في الطحال ، لوحظ وجود سوائل لزجة صفراء اللون في الكلى والتأمور . لون الكيد كان مصفرا شاحبا وكانت الكلى شاحبه مع وجود السوائل اللزجة الصفراء في الداخل . لوحظت الأورام الدموية في موقع الحقن في جميع الحيوانات .

تمت ملاحظة التغيرات التشريحية المرضية في جميع الاعضاء المختارة من الحيوانات المعالجة بالإيفرمكتين وهي :الرئتين والكبد والكلى والطحال والقلب .النتائج اظهرت ان الإيفرمكتين يشكل مخاطر علي وظائف الكلي و الكبد وسمية في الحمير. حيث أن ان القياسات الكيموحيوية لوظائف الكبد (أي نشاط AST و ALT) ووظائف الكلى (تركيز اليوريا) تأثرت بشدة .وكانت التغيرات في القياسات الكيموحيوية أكثر وضوحا في الحمير من مجموعة T2 مقارنه مع تلك التي ذكرت في مجموعة IT. ماتت أربعة حيوانات من أصل ستة بعد العلاج في المجموعة T2. مستوبات AST، ALT واليوريا كانت مرتفعة بشكل ملحوظ في مجموعة من الحمير T2 بالمقارنة مع قيم المعالجة الأوليه IT.عند فحص الصفه التشريحيه المرضية أكدت التغييرات النسيحية الخلل الحادث في القياسات الكيموحيوية للكبد والكلى . كذلك، تأثرت أيضا بعض مؤشرات الدم (مثل عدد كرات الدم الحمراء) عدد الكريات البيض وتركيز الهيموغلوبين والحجم المتكدس لكريات الدم الحمراء). بذلك نستنتج أن الحقن المتكرر للإيفرمكتين بخمسة أضعاف الجرعة الموصى بما هو قاتل للحمير.

في التجربة الثانية: بعد حقن العلاج مباشرة للحيوانات اظهرت الحيوانات الرنح ثم بدات تدور في دوران حلقي, وخلال 48 ساعة من العلاج بدات تظهر علامات التسمم وهي عدم القدرة على التحرك، سيلان اللعاب، ورفض الطعام .مات اثنان من الحيوانات في اليوم الثالث و الثالث عشر بعد إعطائها العلاج أثناء تلك الفترة تكون الحيوان مترنحه ، مع ارتعاش في جميع العضلات.

كانت هنالك زيادة غير معنوية في تركيز الهيموجلوبين والحجم المتكدس لكريات الدم الحمراء بدأت مباشرة بعد الصيام واعطاء العلاج واستمرت حتى نهاية التجربة. لم يلاحظ أي تغيير معنوي في إجمالي تركيز كلا من البروتينات والابيومين والدهون الثلاثية والكوليسترول بعد الصيام والعلاج,بدأت الزيادة في تركيز كلا من البروتينات والابيومين والدهون الثلاثية والكوليسترول بعد الصيام والعلاج واستمر تركيز العداج عدى العلاج لتصل إلى مستوى معنوي في اليوم الرابع من العلاج واستمر لتكون أعلى حتى نهاية التجربة, في حين لوحظت زيادة في تركيز اليوريا خلال فترة الصيام، لوحظت زياده لامعنويه كبيره في تركيز اليوريا في الحيوانات المعالجة طوال فترة التجربة.

وقد لوحظت زياده غير واضحه مع حدوث تذبذب كبير في تركيز الفسفور أثناء التجربة . لم يلاحظ أي تغيير كبير في تركيز الصوديوم والبوتاسيوم بعد إعطاء العلاج، في حين كان الانخفاض الطفيف غير الواضح هو التغيير الملاحظ فقط أثناء التجربة.

نتائج هذه الدراسة تثبت أن الاعطاء المتكرر للإيفرمكتين في خمسة أضعاف الجرعة الموصى بها لمدة سبعة أيام متتالية يؤدي الي آثار سامة على الوظائف الكيموحيوية التي تتطابق جيدا مع التغيرات التشريحية المرضية في الرئة, الكبد,الكلى,الطحال والقلب في الحمير على الرغم من أن المعلومات في الحمير يتعذر تطبيقها مباشرة على الخيول، يستنتج أن استخدام آلايفرمكتين قد يسبب آثارا خطرة على كافة المستويات لأنواع الخيول.