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Abstract

We give characterizations of isometric shift operators and Backward shifts on
Banach spaces with linear isometries between subspaces of continuous functions. We
show the inverse spectral theory for the Ward equation and for the 2+1. Chiral model,
we also consider the isometric shifts and metric spaces. We also study the Cauchy
problem of the Ward equation. We discuss the relative Position of four subspaces in of
Hilbert space, with an indecomposable representations ofQuivers on infinite-
dimensional Hilbert spaces. We give the structure of type 1 shifts with the separability
problem for isometric shifts on the space of continuous functions. Strictly Singular
operators and the invariant subspace problems are shown. We establish the finitely

Strictly Singular operators between James spaces
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Introduction

We obtain many significiant results concerning shift operators on Banach spaces.

Using a result of Holsztynski we classify isometric shift operators on C(X) for any
compact Hausdorff space X into two (not necessarily disjoint) classes. If there exists an
isometric shift operator T: C(X) — C(X) of type Il, they show that X is necessarily
separable. In case T is of type |, we exhibit a paticular infinite countable set D =
{fp,v1(P),Yv2(p), Y 3(p), ...} of isolated points in X . Under the additional
assumption that the linear functional I carrying f € C(X) to Tf(p) € Cis identically
zero, we show that D is dense in X. We show that the Banach space C(X). of real
valued continuous functions does not admit a backward shift, if X is a compact
Hausdorff space with an infinite connected component. We say that a linear subspace A
of Co(X) is strongly separating if given any pair of distinct points x;,x, of the locally
compact space X, then there exists f € A such that |f(x;)| # |f(x2)]|. We show that a
linear isometry T of A onto such a subspace B of C,(Y) induces a homeomorphism h
between two certain singular subspaces of the Shilov boundaries of B and A, sending
the Choquet boundary of B onto the Choquet boundary of A. We also provide an
example which shows that the above result is no longer true if we do not assume A to
be strongly separating. We solve the Cauchy problem of the Ward model in light-cone
coordinates using the inverse spectral (scattering) method. Let M be a complete metric
space. If C*(M) admits an isometric shift, then M is separable. We generalize the results
of study the inverse scattering problem of the Ward equation with non-small data and
solve the Cauchy problem of the Ward equation with a non-small purely continuous
scattering data. We study the relative position of several subspaces in a separable
infinite-dimensional Hilbert space. In finite-dimensional case, Gelfand and Ponomarev
gave a complete classification of indecomposable systems of four subspaces. We
construct exotic examples of indecomposable systems of four subspaces in infinite-
dimensional Hilbert spaces. We study indecomposable representations of quivers on
separable infinite-dimensional Hilbert spaces by bounded operators. We exhibit several

concrete examples and investigate duality theorem between reflection functors. We



provide some “structure” theorems for analyzing type 1 isometric shifts by
characterizing the functions in the range of T". We provide examples of nonseparable
spaces X for which C(X) admits an isometric shift, which solves in the negative a
problem proposed by Gutek et al. Properties of strictly singular operators have recently
become of topical interest because the work of Gowers and Maurey gives Banach
spaces on which every continuous operator is of form AI + S, where S is strictly
singular. So if strictly singular operators had invariant subspaces, such spaces would
have the property that all operators on them had invariant subspaces. An operator
T : X - Y between Banach spaces is said to be finitely strictly singular if for every ¢ > 0
there exists n such that every subspace E € X with dimE > n contains a vector x such
that ||[Tx]|| < ]|x]|. We show that, for 1 < p < g < oo, the formal inclusion operator

from J, to J, is finitely strictly singular.
p 9 Jq



Chapter 1

Backward and Isometric Shifts on Banach Spaces

We give a negative answer to this question. In fact, given any integer [ > 1, we

construct an example of an isometric shift operator T: C(X) — C(X) of type | with X \D
having exactly [ elements, where D is the closure of D in X. We show that for arbitrary
infinite compact Hausdorff spaces of J. R. Holub X, C(X). does not admit a backward

shift.

Section (1.1): Operators of Isometric Shift on Continuous Function Spaces.

R. M. Crownover [200] was the first person to give a basis free definition of a
shift on a general Banach space. In [201] J. R. Holub studied isometric shift operators on
Cr(X), where Cr(X) is the real Banach space of real valued continuous functions on the
compact Hausdorff space X. One of the results proved by him asserts that if X has only
finitely many components then Cr(X) does not admit an isometric shift operator.
However his techniques do not carry over to the complex Banach space C¢(X). In [202]
Gutek et al study simultaneously the real as well as the complex case.
The convention that maps between topological spaces are necessarily
continuous. In the work of Gutek et al [202] a crucial role is played by a result of W.
Holsztynski [203] which essentially describes the form of a linear isometry T: C(X) —
C(Y) where X and Y are any two compact Hausdorff spaces. Here C(X) denotes the
complex Banach space of complex valued continuous functions on X. Using Holsztynski’s
result they classify isometric shift operators T: C(X) — C(X) into two (We denote the
range of an operator T by R(T). After proving Theorem (1.1.1) correctly remark that the
only element f € R(T) vanishing on X, (using the notation in [202]) of [202] they
further assert that when X, # X, the above observation gives the "uniqueness" of p
where X, = X \ {p}. In [202] turns out to be an isometric shift operator expressible as a
shift operator in two different ways. Also it turns out that any isometric shift operator
T:C(X) » C(X) expressible as an operator of type I in two different ways is

automatically. But the converse is not true. We will give a specific example of an



isometric shift operator which is simultaneously. But is expressible as an operator in
exactly one way.

Let T: C(X) — C(X) be an isometric shift operator of type I which is not of type

[I. Then our observation in the earlier paragraph yields a unique isolated point pin X, a

homeomorphism : X, - X where X, = X \ {p} and a map w: X, - S’ satisfying

The statement "the only element f € R(T) vanishing on X, is 0" is equivalent to
asserting that the characteristic function y,, of p is not in R(T). A natural question is
whether p is the only isolated point in X with y,, ¢ R(T). We will also see that the
answer to this question is negative. In [202] satisfies the condition that none of x4, x>
and x5 is R(T).
Let T: C(X) — C(Y) be any linear isometry. In [203] Holsztynski gives a specific
construction yielding a well determined closed subset Y, of Y and well determined maps

Y:Y, = X, w: Y, > ST with i surjective and satisfying

One of our major results is a "universal property” possessed by Holsztynski's triple
{Yy, ¥, w} (Theorem (1.1.1)). This result has some important consequences which will be
discussed.
Given any integerl > 1 we construct an isometric shift operator T: C(X) —
C(X) with X \ D having exactly [ elements. One of the results proved in [208] asserts
that if X = S™ the n-sphere or I™ the n-cube then C(X) does not admit an isometric
shift operator. We will show that if M™ is any compact topological manifold with or
without boundary then C(M™) does not admit an isometric shift operator. Actually it
turns out that some of the results proved in [202] are valid for linear isometries
T:C(X) —» C(X) with codimension of R(T) in C(X) equal to 1. T need not be a shift
operator; namely T need not satisfy the condition N,,»; R(T™) = {0}. Our exposition
will take this fact into account and clearly point out results which are valid for
codimension 1 linear isometries. Actually we show that C(M™) does not admit a

codimension 1 linear isometry when M™ is a compact manifold.
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For any compact Hausdorff space X let C(X) denote the complex Banach space

of complex valued continuous functions on X. Throughout this section X, Y will denote
compact Hausdorff spaces and T: C(X) — C(Y) a linear isometry. In [209] Holsztynski
describes a specific construction yielding a closed subset Y, of Y, well determined maps

Y:Y, » X, w: Y, > ST with i surjective and satisfying

We will refer to {Y,, ), w} obtained as above as Holsztynski's triple associated to the
linear isometry T: C(X) — C(Y). We actually need this specific construction. Hence we
briefly describe this construction.
For any x€X let S,={feCCOIIfl=1=1fC)} and Q. ={ye
Y| T(S,) €S} (where of course S, ={g € C(Y)|llgll=1=[g()|}. Holsztynski
shows that Q, # @ foranyx € X,Q, N Q,» = D if x # x" in X, Yy = Uyex Qy is closed in
Y and that y: Y, - X defined by y)(y) = x for any y € Q,, is continuous. Since Q,, # @
for each x € X, it is clear that Y is surjective. If w(y) = T1(y) where 1 € C(X) is the
constant function assigning 1 to each x € X then it is shown in [203] that Y, Y, w satisfy
(3). Also in (3) if we substitute f = 1 € C(X) we getw(y) = T1(y) for all y € Y,. This
shows that w is unique. The following theorem shows that Holsztynski's triple {Y,, ¥, w}

possesses a universal property.

Theorem (1.1.1)[199]: Let A be any subspace (not necessarily closed) of Y and
@:A > X, u: A - S maps satisfying

Then A S Yy, ¢ = Y|Aand u = wl|A.

Proof: Before taking up the proof observe that we do not assume that p: 4 — X is
surjective.

We first show that any a € A satisfies a € Q). Let f €S,

Ifll=1= |f((p(a))|. From equation (4) we get |Tf(a)| = |f((p(a))| = 1. Since T is

(a)- This means



an isometry, we get ||Tf|| = 1. Thus |||l = 1 = |Tf(a)|, showing that Tf € S,. Hence
f €Sy = Tf €S, Thisyields a € Qy(q)- Since Yy = Uyex @ we seethat A C Y.

From equation (4) we see thatu(a) = T1(a) = w(a) for alla € A, yielding
u = wlA.

Since Tf(y) =w®)f(¥()) for all yeY, and ACSY,, we get Tf(a)=
W(a)f(tp(a)). Again equation (4) yields Tf(a) = W(a)f((p(a)) = W(a)f((p(a)) since
w = w|A. From |w(a)| = 1, we get f(t/)(a)) = f((p(a)). This is valid for all f € C(X).
Since functions in C(X) separate points of X we gety(a) = ¢(a). This shows that

@ =Y|A.

Corollary (1.1.2)[199]: Let A,B be subspaces of Y,p:A—X,0:B - X,w:A — S1,

v: B > S be maps satisfying equation (4) and equation (5) below:

Then p|ANB =0|ANBand ul]ANnB =v|ANB. Moreovery:AUB - X,t: AUB -

St defined by y|A = @,y|B = 0; t|A = u, t|B = v are continuous and

Proof. From Theorem (1.1.1), ¢ = Y|A,0 = Y|B; u = w|A and v = w|B. The first part
is immediate now. Also we gety = y|AUB,t =w|AUB from which we get the
second part.

Theorem (1.1.1) can be strengthened as follows:

Theorem (1.1.3)[199]: Let A be a subspace of Y,p:A — X and v: A — C be maps

satisfying

Then A C Y, if and only if v(A) c St. Moreover when this condition is satisfied we have

@ =y|Aand v = w|A.

Proof. In view of Theorem (1.1.1) we have only to show that A € Y, = v(4) c ST

Assume A C Y,. Then for anya € A,3 an x € Awith a € Q,. This means T(S,) c S,,.



Clearly 1 €S, . Hence T1€ S, yielding 1= |T1(a)| = |v(a)| |1((p(A))| = |v(a)| .
Hence v(4) c St.

Remarks (1.1.4)[199]: (a) A bounded linear operator T on a Banach space E is defined
to be a shift by Crownover [200] if T is injective, the range R(T) of T has codimension 1
in E and N,»; R(T™) = {0}. We now observe that Theorem (1.1.1) of [202] is valid for
any codimension 1 linear isometry T: C(X) —» C(X). Hence we may introduce the
concepts of type I and type Il codimension 1 linear isometries.

(b) From Theorem (1.1.1) it follows that Y is the largest subset of Y admitting
maps Y: Y, = X,w: Y, - S satisfying equation (3). It turns out that Y, is closed and
P:Yy, — X is surjective. It can very well happen that there exists a closed set Y; & Y, and
Y:Y; = Xis surjective. This is what happens in the case of a codimension 1 linear
isometry T: C(X) - C(X) which is simultaneously of types I and II.

An immediate consequence of Corollary (1.1.2) is the following:

Proposition (1.1.5)[199]: Suppose T: C(X) — C(X) is a codimension 1 linear isometry
and there are closed subspaces X, S X,X; G X with X, # X; maps w: X, - S1,

w': X, » St and surjective maps ¥: X, — X,y": X; — X satisfying

as well as

Then T is simultaneously of types I and 1.
Definition (1.1.6)[199]: When the hypotheses of Proposition (1.1.5) are satisfied we say

that T can be expressed as an operator of type | in two different ways.

As an immediate consequence of Proposition (1.1.5) we obtain the following:

Corollary (1.1.7)[199]: Let T: C(X) — C(X) be a codimension 1 linear isometry of type I
which is not of type Il. Then there exists a unique isolated pointpin X, a unique
homeomorphism : X, = X where X, = X \ {p}, a unique map w: X, — S* satisfying

(7).

—_ Y



Using Corollary (1.1.2) we can find a necessary and sufficient condition for a

given codimension 1 linear isometry T: C(X) — C(X) of type | to be also of type II.

Proposition (1.1.8)[199]: Let T: C(X) — C(X) be a codimension 1 linear isometry of type
1. Let p be an isolated point in X,{: X, = X,w: X, = S* maps with X, = X \ {p}and ¢

homeomorphic satisfying (7).
Then T will be of type Il if and only if there exist elementsc € X and A € S?!

satisfying

Proof. If T is also of type II, ) and w admit extensions, also denoted by the same letters
Y: X - X,w: X - St satisfying (7) for all y € X. Choose ¢ = ¥(p) and 1 = w(p). Then
clearly (9) is satisfied.

Conversely, assume that there exist c € X and A € S? satisfying (9). Then
0:{p} - X,v:{p} > S* defined by 6(p) = c,v(p) = Aare clearly continuous. Taking
A =X, ¢ =1v,u=w; B={p}from Corollary (1.1.2) we immediately conclude that T
is of type II.

We will discuss methods of constructing codimension 1 linear self isometries of

C(X). Using those methods we will construct a codimension 1 linear isometry
T: C(K) - C(K) of type Il which is not of type | when K is the Cantor set. However our
methods do not yield an isometric shift operator on C(K). Since K has no isolated
points, if there is an isometric shift operator on C (K) it will be of type II which is not of

type L.

We proving the following:

Proposition (1.1.9)[199]: Let T: C(X) — C(X) be a codimension 1 linear isometry of type
I;p, Xo =X\ {p}¥: X, » X and w: X, — S* have their usual meanings. Let q € X, be
any isolated point. Then y, € R(T) © T xyq (@) = 0.

Proof. Suppose x, € R(T) say y, = Th with h € C(X). Using the equation Th(y) =
w()h(P(y)) Yy € X, we immediately see that h|(X —1(g))=0 and that



h(t/)(g)) = (; . Hence y,=Th=>h= ﬁq)xw(q) From x,(p) =0 we now get

w(q)
1 . .
v TXw@ @) = 0 yielding Ty q)(p) = 0.

Conversely, if T)(w(q)(p) = 0, straight-forward checking shows that y, =Th

1
where h = i v @

We will make use of this proposition.

Throughout X will denote a compact Hausdorff space. Let T: C(X) —» C(X) be a
codimension 1 linear isometry of type I. Then as seen already, there exist an isolated
point p in X, a homeomorphism ¥: X, = X where X, = X \ {p} and a map w: X, - S?

satisfying

Denoting the continuous linear functional f » Tf(p) on C(X) by T we see that

ITf| < lIf]l forall f € C(X).We will presently see that the converse to this is true.

Proposition (1.1.10)[199]: Let p be an isolated point and Y: X, = X a homeomorphism.
Let T be a continuous linear functional on C(X) satisfying \Tf| < |||l for all f € C(X)
and w: Xy, > S* a map. Then T: C(X) - C(X) defined by Tf(y) = w(y)f((¥)) for all

y € Xoand Tf(p) =Tf, forany f € C(X) is a codimension 1 linear isometry.

Proof. The proof given in [202] for the fact that y, € R(T) is valid here also. Still we
spell it out. If y,, = Tf, sincep & X,, we get Tf(y) = 0 for all y € X,. It follows from
the equation Tf(y) = w(®)f(¥(»)) that f =0, since ¥:X, > X is surjective and
lw(y)| = 1 for every y. This will mean y,, = 0, a contradiction. Let A;: C(X) — C(X) be
defined by A;f(x) = f(=1(x))/w(¥~1(x)). A straight-forward verification shows
that f = TAf + {f(p) — TA,f(p)}xp. This proves that C(X)/R(T) is of dimension 1,
with the class [xp] of xp in C(X)/R(T) forming a basis element. Using the facts
SUPyex, ITf ()| = supyex, If GOl = lIfIl and ITf(p)| = ITfI < lIfIl we immediately
getITfFIl = IIfIl.
Suppose T: C(X) — C(X) is a codimension 1 linear isometry of type II. Then we

gety: X - X, w: X — ST with ¥ surjective and satisfying



Moreover there exist two unique elements a # b in X with ¥(a) = ¥(b) and
Y|X —{a,b}: X — {a, b} » X — {c} bijective. Here ¥(a) = Y(b) = c. If W denotes the
quotient space obtained from X by identifying a and b, induces a map Y: W — X.
Then: W - X is a homeomorphism. The following proposition yields a converse to

this.

Proposition (1.1.11)[199]: Let Y: X — X,w: X — S be given with 1 surjective. Suppose
there exist a #b in X with ¥(a) = yY(b) and Y|X —{a,b}: X —{a,b} - X — {c}
bijective, where ¢ = Y (a) = Y (b).

Then T: C(X) — C(X) defined by

is a codimension 1 linear isometry.

Example (1.1.12)[199]: Let K denote the Cantor set. Givena # b in K it is shown in
[208] that there exists a surjection y: K — K satisfying ¥(a) = y(b) = a with the
additional property that Y|K \ {a}: K \ {a} — K is bijective. Proposition (1.1.11) yields
a codimension 1 linear isometry T: C(K) — C(K). Since K has no isolated points, it

follows that T cannot be of type 1.

Remark (1.1.13)[199]: Given an isolated point pin X, a homeomorphism y: X, = X
(where X, = X \ {p}), a map w: X, —» S and a continuous linear functional I': C(X) —
C satisfying |Tf| < ||f|l, Proposition (1.1.10) shows that T: C(X) — C(X) defined by
Tf(y) =w®)f(Y(y))Vy € X, and Tf(p) = I'f is a codimension 1 linear isometry of
type I. Let A;: C(X) » C(X) be defined as earlier, namely A,f(x) = f(t/)‘l(x))/
W(l/J_l(x)) for any x € X. Then A, is a surjective complex linear map, ||A; || = |||l and
Ker A, = Cyp. For any integern =1, let A,: C(X) — C(X) be defined by A,= (A)™;
let Ay = Id(xy. It is easy to see that f € R(T™)if and only if A;f(p) = TA;,f for

0<j<n-1. If Bj:C(X) - C denotes the continuous linear functional g;f =



Aif (p) — TAj,+f then f € R(T™) & f € N}Z) Ker ;. Thus T will be an isometric shift
(= anO Ker ﬁ] = {O}
We now give an example of a codimension 1 linear isometry T: C(X) — C(X)

which is not a shift.

Examples (1.1.14)[199]: Let A = N U {oo} the one point compactification of N. As usual
we identify C(A) with the space of convergent complex sequences ¢ = (¢, €3, C3, ... ).
Then T:C(A) -» C(A) given by T(cq,cy,C5,...) = (c1,0,¢5,C5,C4,...) is a

codimension 1 linear isometry which is not a shift.

Example (1.1.15)[199]: Consider Example in [202]. T in this example is expressible as an
isometric shift operator of typelin two different ways. Ifp =1,X, = X\ {1} and
Y:Xo - X,w: X, » St are given by Yy(n+1) =nvn € N, () =0 and w(y) =

1Vy € X, then we clearly have

Similarly setting q =2,X, =X\ {2} and defining ¢’ =X, > X,w":X; > S! by
Y'(1)=1¢9'(n+1)=n for n>2,'(c0) =co,w'(1) = -1 and w'(x) =1 for all
x € Xg \ {1} we see that

Thus T is expressible as an isometric shift operator in two different ways.
Propositions (1.1.5), (1.1.8) and Corollary (1.1.7) were proved for codimension 1

linear isometries. In particular they are valid for isometric shift operators.

Example (1.1.16)[199]: Consider Example in [202]. In this example T is an isometric shift
operator of type I which is not of type Il. Thus T is expressible as an isometric shift
operator of typelin only one way.p =1,X, =X\ {1}; ¥: X, » X,w: X, » St with
Y(n+1) =nvn € N,P(») = o and w(y) = 1Vg € X, satisfy Tf(y) = w»)f(Yp(»))vy €
X, and f € C(X). However, straight-forward checking shows that 2 and 3 are isolated
points with y, as wel as y; not in R(T). This means the only function vanishing on

either X \ {1} or X \ {2} or X \ {3} and lying in R(T) is the constant function 0.



As an immediate consequence of Proposition (1.1.10) we get the following:

Proposition (1.1.17)[199]: Let T:C(X) — C(X) be an isometric shift operator
expressible as a shift operator of type I in a unique way. Letp, X, = X\ {p}, ¥: Xy > X
and w: X, — St have their usual meanings. Let q be any isolated point in X with q # p.

Then the following are equivalent:
(i) fERM),fIX—{g)=0=>f=0
(i) xq & R(T)
(iii) T x () (p) # 0.

Example (1.1.18)[199]: Let X = N U {0} the one point compactification of N. We
identify C(X) with the space of convergent complex sequences ¢ = (¢;, ¢y, C3, ... ) under
f © cwhere ¢, = f(n). Under this identification f (o) will correspond to lim,,_, ;.

We write C, for lim,,_,., ¢,,. Consider T: C(X) — C(X) defined by

let Y: X »> X and w: X — ST be defined by Y(n+1) =nvn € N, (1) = () =
oo; w(l) =1,w2) =i,wB)=-1,w(@4) =—i,w(n)=1 for n>5 and w(ew) =1.
Clearly ¥|X — {1,00}: X — {1,00} - X — {0} is bijective. T is the codimension (i) linear
isometry of type Il obtained from ¥ and w applying Proposition (1.1.11). Since 1 is
isolated in X we see that T is also of type I. Since o is not isolated in X from the same
remark we see that T cannot be expressed as a type I operator in two different ways.

We will show that T satisfies N,;5; R(T™) = {0}. Then it will follow that T is an
isometric shift operator simultaneously of typesIand Il but expressible as a shift
operator of type I in exactly one way.

For any a = (a;,a,,as,..) € C(X) let us denote the conventional shift
a — (0,ay,a5,as,...) by S. Given ¢ = (¢q,¢5,€3,C4,...) € C(X) let us denote the

element (—cy,icy, —ic3,Cy4,Cs, Cg, .. ) DY y(g). An easy calculation shows that

Téc :



3/terms

Denote the element (coo,icoo,—icoo,—coo, —Co, —Coo, -+,—Co,0,0,0,0, ) of C(X) by

1;(Cs). Then by induction on [ we show that

Supposes a = (ay, a,, as, ...) is in Nz R(T3HD). Then from (14) we see that there
should exist an element ¢, € C with a; = €y, Ay = iCy, A3 = —iCx, and a, = —C4 for

all k = 4. Writing A for c,, we should have

Also a=Tb for some b= (by,bybs..)ECX) . This means

a = (be, iby, —b,, —ibs, by, bs, ...) vyielding A = b, and b,, = —A for n > 4. But b being
a convergent sequence, we should have b, = lim,,_,, b, = —A. Thus we getA = —Aor
A=0. This yields a =0 € C(X) thereby showing that N,s; R(T™) = {0}. This

completes the proof that T is an isometric shift operator.

D # X. In this section, given any integer [ > 1 we construct an isometric shift

operator of type I with X\lj having exactly [ elements. Let A = N U {0} the one point
compactification of N. As usual C(A4) will be identified with the space of convergent
complex sequences ¢ = (c¢q,C5,C3,...). Let{ay,a,,...,a;} be a discrete space with [
elements and X = AU {a,, a,, ..., q;} (disjoint union). Any element of C(X) can be
uniquely written as ¢ @ Z§-=1/1j)(aj with ¢ € C(A). LetT: C(A) » C(A) be the usual

lateral shift, namely Tc = (0, ¢, ¢, C3, ... ). Let S: C(X) — C(X) be defined by

We could rewrite the formula for S as

let X, =X\ {1} =@\ {1} u{ay, .., a;}. Define Y: X, » X,w: X, - St by



Then it is clear that

We will check that S is an isometric shift operator. One can check that

Let us denote (4;, A;_q, ..., 44, 0,0,0, ...) by u then we have

From (22) and (23) we see that if

then x will not be convergent unless x = 0in C(A) and y; = -+ = yy; = 0. This proves
that N,5; R(S™) = {0}. Thus S is an isometric shift operator of type L. In this example
D=N,D=AandX\D ={a,, ..., a;}.
In this example it is easily seen that I, N R(SY) = {0}. Also I, N R(S'™1) = {0}
because if I, N R(S*™1) = {0}, we would have |[X \ D| <1 — 1, which is not the case

here.

We proved the following theorem:
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Theorem (1.1.19)[199]: Let M be any compact manifold with or without boundary. Then
C(M) does not admit a codimension 1 linear isometry. In particular C(M) does not

admit an isometric shift operator.

Proof. Any compact manifold M has only finitely many connected components. Hence
M cannot admit an infinite number of isolated points. Thus to prove Theorem (1.1.19)
we have only to show that C(M) does not admit a codimension 1 linear isometry of type
II. As remarked earlier, if there existed a codimension 1 linear isometry T: C(M) —
C(M), M would be homeomorphic to a quotient of M obtained by identifying exactly
two points. Let a # b be any two points of M. If M were of dimension 0, M would be a
finite discrete space. Hence C(M) can not admit any injective linear map which is not
surjective. Thus we may assume that dimM = n > 1.

Suppose M = 0. Let X be the quotient space obtained from M by identifying a
and b. Let ¢ € X be the point represented by a or b. Let B™ = {x € R"| ||x|| < 1} and
B™V B™ the wedge where 0 € B™ is chosen as the base point. The element ¢ € X will
have a fundamental system of neighbourhoods homeomorphic to B™ V B™ with ¢
corresponding to the base pointin B™ VV B™. But B™ VV B™ is not locally Euclidean around
the base point. Hence X cannot be homeomorphic to M™.

Suppose M # @. If a and b are both in Int M™,c € X will have a fundamental
system of neighbourhoods homeomorphic to B™ VV B™ with ¢ corresonding to the base
point of B™ V B™. Let B} = {x € R"*|x; =0, ||x|| < 1}. If one of a, bis in Int M™ and
the other is in 6M then c will admit a fundamental system of neighbourhoods
homeomorphic to B™ V B} with ¢ corresponding to the base point. If both a and b are
in M, c will admit a fundamental system of neighbourhoods homeomorphic to
B}V B}. For B® V B"™ and B™ V B} the manifold condition fails at the base point. Also
when n = 2, the manifold condition fails at the base point for B} V B}.

When n = 1, M will be a disjoint union of k copies of S* and [ copies of [0, 1] for
some integersk > 0,1l = 0and k + [ > 1. If two boundary points in M are identified,
the quotient X will have strictly less than [ copies of [0,1], hence cannot be

homeomorphic to M.



Section (1.2): Backward Shifts on Banach Space of Continuous Functions:

Unilateral shifts on infinite dimensional separable Hilbert spaces are well known
and have been studied in functional analysis, see Kato [205] and Rudin [206]. If H is a
infinite dimensional Hilbert space then an operator T : H — H is a right or simply a shift
if there is a complete orthonormal set {¢, },>1 in H such that T(¢,) = @, forn > 1,
and it is a left (backward) shift if T(¢,) =0, and T(¢,) = @p—1,n=2. The
generalization of shift operators to Banach spaces has been given by Crownover [207],
and has been the subject of investigaton recently by Holub [208]; Gutek, Hart, Jamison,
and Rajagopalan [209]; and Farid and Varadarajan [210]. In [208] Holub introduced
backward shifts on Banach spaces, thus generalizing the concept of backward shifts on
Hilbert spaces or l,-spaces, 1 < p < oo [205]. Holub discusses in [208] the problem of
existence of a backward shift on Banach spaces C(X),X compact Hausdorff, and
conjectured that C(X) does not admit a backward shift if X has an infinite connected
component. We resolve the conjecture completely by proving that the space C(X) does
not admit backward shifts, if X is an arbitrary infinite compact Hausdorff space.
Here, E is an arbitrary real Banach space unless otherwise specified. By an

operator on E, we understand a linear transformation on E into E.

Definition (1.2.1)[204]: An operator T : E — E is a backward shift if:

(i) dimKerT =1,
(ii) the induced operator T:E|KerT — Eis alinear isometry,
and

(iii) Upsq Ker T™ is dense in E.

As noted in [208] it is verified that if E is a separable Hilbert space then an

operator T : E — E is a backward shift, if and only if there is a complete orthonormal
set {@p}ns1 in E such that T(¢,) =0, and T(@,) = @,_1,n =2, thus justifying
Definition (1.2.1). Further since condition (i) in Definition (1.2.1) implies that Ker T" is

n-dimensional, condition (iii) implies that E is separable.



In the next proposition we state a known property of a backward shift in [208].

Since a proof is lacking we sketch a proof of the same here.

Proposition (1.2.2)[204]: IfT is a backward shift on an infinite dimensional Banach
space E, then the range of T is all of E. In (201, 2018, 2019, 220, 221, 222, 223].

Proof. LetT : E - E be a backward shift with Ker T = [z], the linear span of some
nonzero vector zin E. Since T : E | [z] = E is defined by T (%) = T(x), where % is the
equivalence class of x modulo [z], it follows from the condition (2) of Definition (1.2.1),
that T(E) is a closed subspace of E. We verify that z € T(E). If z & T(E), then
[z] N T(E) = {0}. Hence T~*(Ker T) = Ker T from which it follows that T~ (Ker T) =
Ker T for alln = 1. Hence condition (iii) fails to hold for T. Thus z € T(E). A repetition
of the argument and induction vyields that T™"(Ker T) c T(E). for alln > 1. Hence
Unso T ™(Ker T) c T(E). Thus it follows from (iii) of Definition (1.2.1) that T(E) = E,
as desired.

As usual we identify the dual of C(X), X compact Hausdorff with the Banach
space of regular Borel measures yon X, with the norm ||u|| = total variation of
u = |u|(X), where |u| is the variation measure associated with . If E is a Banach space,
Ext(E) is the set of extreme points of the closed unit ball of E. Thus if
E =C(X),ExtE* = {+e, | t € X}, where E* is the dual of E, and e, is the point mass u
supported by {t},t € X and u{t} = 1. It is verified that the distance between any two
points in Ext E*, E as above in [224, 225, 226, 227].

fMcEMt={f|f€E*f(x)=0,forall x € M}. As usual we identify the
dual of the quotient E |M = (E | M)* with Mt. If x € E, the linear span of x is noted as
[x].

For f € C(X), let us denote the support of f by S(f), i.e., {S(f) =t |f(t) < 0}.
If f € C(X), and {t;, t,} € S(f) we associate with the ordered pair (t,t,), the Borel
measure p = f,+,) on X defined by plt ) = F@&) /UfED] + If (DD, uft} =
—f () /Uf D]+ 1f(t2)]), and u(B) = 0 for all Borel sets B € X' = X ~ {t;,t,}. It'is



VerIfIEd that ||f(t1 rt2)|| = 1'f(t2,t1) = _f(tptz)' and if(tptz) E [f]l, i.e., ffdﬂ = O, |f

M = if(tlrtz)'

Lemma (1.2.3)[204]): If f € C(X) and {t;,t,} € S(f), then f,, +.), fit,t,) Qre extreme
points of the unit ball of [f]*.

Proof. Let us denote the measure of f;, ). by it. Assume, if possible, there are Borel
measures u;, 4; € [f14 lw;ll = 1,i = 1,2 such that u = (uy + p3)/2, 1y # py. It is now

verified that the support of y; = {t;, t,}, for i = 1, 2. Since the support of u = {t, t,},

Thus it is verified that |u;{t;}| + | {t;}| = 1, fori = 1,2. From the definition of the
norm of a measure it follows that the support of the measures y; is {t;, t,} fori =1, 2.
Since the support of u={t;, t,},u = (u; +uy)/2, 44 # u, it follows from the

proceding observation that there are nonzero real numbers §;, §, such that

U
Now since u, iy, ft, € [f]*, ie., [, fdu = [, fdu; =0,i =1,2, by evaluating
these integrals it follows that &, f (t;) + 8,f (t;) = 0. Thus if A = §,/3,, then
From the properties of u;, noted above,
|l

A similar computation yields



Since ||uq |l = lluzll, and uft,} # 0, it follows that §, =0, a contradiction. Thus
fetot,) € Ext [f]+, which in turn implies f,, ..y € Ext [f]*.

Lemma (1.2.4)[204): If f € C(X), and card S(f) = 3, then C(X) |[f]is not linearly
isometric with C(X). Thus in particular if T : C(X) - C(X) is a backward shift, X infinite
compact, and Ker T = [f], then card S(f) < 2.

Proof. Since (C(X) | [f]) is linearly congruent with [f]+, it is enough to verify that [f]+
is not linearly isometric with (C(X))* if card S(f) = 3. Further since linear isometries
preserve extreme points and the distance between any pair of extreme points of C(X)*
is 2, it is enough to exhibit two extreme points a, 8, of [f]+, such that ||la — B]| < 2, to
complete the desired verification.
Let {ty,t5, t3} < S(f). It is assumed that f(t;) > 0fori = 1,3, if necessary by
relabelling the t’s, and passing to the function —f. With this set up consider a@ = f(;, +,),
and B = fi¢,+,)- From Lemma (1.2.3) it follows that @, 8 are in Ext [f]*. Let us denote

IF@&D1 + |£ ()| by €y if {ti, t;} © X. With this notation,

Thus

or

In either case it follows that ||la — B|| < 2, noting that f(¢t;) >0, fori=1,3 and

recalling that C; ; = |f (t)| + | (t;)| if {t;, t;} < X.

lla = B



We continue to assume that X is an infinite compact Hansdorff space [212, 213,

214, 215, 216]. We denote the Banach space C(X)byE. Iff €E,f #0, letg : E -
E | [f] be the canonical quotient map where ¢(g) = g, the equivalence class of g
modulo [f]. If T : E | [f] = E is a linear isometry onto E, then the conjugate map T* is
a surjective linear isometry on E* onto (E | [f])*. As usual we identify (E | [f])* with

[f1+ by the map o : (E | [f])* onto [f]t, where a(l)(g) = 1(g) for alll € (E | [f])*
andg € E.

Lemma (1.2.5)[204]: Let f € E,0 < card S(f) <2, and T : E | [f] = E be a surjective
linear isometry. If T : E — E is the operator defined by T(g) = T(§), then the subspace

Uns1 T ™[f] is not dense in E.

Proof. The proof is accomplished by showing that if 8 € C(X),S(6) containing an

accumulation point of X, then inf||6 — g|| > 0 where the infimum is taken over
g € Up>1 T7[f].

It is verified that if T(g) = f, f as in the proposition, then S(g)is finite as
follows.

Let P = {s | (a o T*)(et) € {ies}} with t € S(f) where e, is evaluation at x.
Since S(f) is finite, P as well as P U S(f) is finite. If & & S(f), then since e; € Ext [f]*,
and s ¢ o T*is a linear isometry on E* onto [f]*, it follows that there is a t, € X such
that (o o T*)(eto) € {ief}. If further & € P U S(f), it follows from the definition of P,

that (o o T*)(eto) € {ief} for some t, & S(f).

Now (0 o 7*)(e,,)(9) = T (e, )(@) = er, (T(®)) = T(9)(er,) = f(to) . Thus

f(ty) = g(&)or—g(&). Sincety & S(f),g(é) =0. Thus S(g) € P U S(f). Hence S(g)
is a finite set.

More generally it follows by induction that if T"(g) = f, for some n > 2 then

S(g) is finite. Let T™(g) = f for some m = 1imply S(g) is finite. Let now g € C(X) be

such that T™*1(g) = f. Since T™*1(g) = T™(T(g)), it follows by the induction

hypothesis that if T(@g)=h , then  S(h) is finite. Let

P = {s | (a ° T*)(et) € {+e,}witht € S(h)}. P thus defined is a finite set since S(h) is



finite. Then proceeding as in the preceding paragraph if £ is not € P U S(h) U S(f),

then thereis a t, € X, such that

Thus evaluating both sides at g, noting T(g) = h, it follows that g(¢) = h(ty) or

—h(ty) =0, since ty & S(h). Thus S(g) € P U S(h) U S(f). Hence S(g) is finite since
P U S(h) US(f) is finite.

Now to complete the proof let us note that since S(g) is open if g € C(X),S(g)

finite implies S(g) consists of isolated points. Let t, be an accumulation point of X, and

u € C(X) be such that 8(ty) # 0. Since if g € T™™[f] implies S(g) is finite as shown

earlier in the proof, it follows that g(t,) = 0. Thus ||8 — g|| = 18(t)| > 0. Hence the

subspace U1 T "[f] is not dense in C(X) as claimed.

Now we deduce the main result, stated as a theorem, from the preceding
lemmas.
Theorem (1.2.6)[204]: If X is an infinite compact Hausdorff space, then C(X) does not

admit backward shifts.

Proof. Let T : C(X) - C(X) be a backward shift if possible, and [f] = Ker T. It follows
from Lemma (1.2.4), that 0 < card S(f) < 2. Hence from Lemma (1.2.5), it follows that
Uns1 Ker T™is not dense in C(X), contradicting that T is a backward shift. This

completes the proof of the theorem.

We conclude with a remark and a corollary of the preceding theorem. Let C be
the Banach space of real convergent sequences, with the supremum norm, and C, be
the subspace of null sequences. Let e,, be the unit sequence {a;};>; such that a; = 0, if

i#n,anda, = 1.



Chapter 2
Inverse Spectral Theory on Ward Equation and Isometric Shifts on Meteric

Spaces.

We obtain the following multiplicative representation of T:(Tf)(y) =
a(y)f(h(y)) for all y € B and all f € A, where a is a unimodular scalar-valued
continuous function on dB. These results contain and extend some others by Amir and
Arbel, Holsztynski, Myers and Novinger. Some applications to isometries involving
commutative Banach algebras without unit are announced.

In particular we show that the solution can be constructed by solving a 2 X 2
local matrix Riemann-Hilbert problem which is uniquely defined in terms of the initial

data. These results are also directly applicable to the 2 + 1 Chiral model.
Section (2.1): Linear Isometries Between Subspaces:

Let K denote the field of real or complex numbers. For a locally compact

Hausdorff space X, we denote by C,(X) the Banach space of all continuous K-valued

functions defined on X which vanish at infinity, equipped with its usual supremum

norm. If X is compact, we write C(X) instead of Cy(X).X U {0} denotes the Alexandroff
compactification of X.

Let A be a linear subspace of C,(X). We will denote by g4 the set of all x, € X

such that for each neighborhood U of x,, there is a function f in A such that |f(x)| <

If]| for all x € X — U. Let us define the set

If it exists, we will denote by dA the Shilov boundary of A, that is, the minimal

closed subset of X with the property that each function in A assumes its maximum on
dA. On the other hand, it is said that x, € X is a strong boundary point of A if for each
neighborhood U of x,, there is a function f in A such that ||f(xo)|l = IIfll and
|f(x)| < |f| for allx € X —U. We will denote by 74 the set of all strong boundary

points of A.
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We will denote by Ch A the Choquet boundary of A. Let us recall that each
extreme point of the unit ball V of the dual space of A has the form pe,, where pis a
complex number of modulus 1 and e, is the evaluation map at the point x € X, e, (f) =
f(x) (f € CO(X)). The Choquet boundary for Ais defined as {x € X : e, is an extreme
V}. Recall that although the Choquet boundary is usually defined in the case point of
when X is compact and A separates points and contains the constants, both definitions
agree in this case.

We say that a linear subspace A of Cy(X) is separating (resp. strongly separating)
if given any pair of distinct points x;,x, of X, then there exists f € A such that
fxy) # f(xy) (resp. |f(x1)| # |f(x2)]). 1t is well-known that the Shilov boundary of a
separating subalgebra of C,(X) always exists.

A separating (resp. strongly separating) linear subspace A of Cy(X) is said to be a
separating (resp. strongly separating) function subspace if for all x € X, there exists
f € Asuchthat f(x) # 0.

The source of this article is the classical Banach-Stone theorem. In its present
form it states as follows: if there exists a linear isometry T of Cy(X) onto Cy(Y), then
there are a homeomorphism h of Y onto X and a continuous mapa:Y - K |a| = 1,

such that T can be written as a weighted composition map, that is,

This well-known theorem has been generalized in several directions, for

instance, by considering injective (not necessarily surjective) linear isometries. Perhaps
the most important result of this type is due to Holsztynski [15]: if there exists a linear
isometry T of C(X) into C(Y), then we can find a closed subset Y, of Y and a continuous

map h of Y; onto X and a continuous map a : Y, — K, |a| = 1, such that

Some years before, Geba and Semadeni [230] had obtained an analogue of

Holsztynski's theorem though for isotonic injective linear isometries. Also a number of

(T



applications of Holsztynski's theorem can be found. Recently, for instance, it has played
a crucial role in the classification of isometric shift operators on C(X) ([231] and [232]).

Generalizations of a similar type are provided by replacing Cy(X) by its
subspaces or subalgebras. Indeed, in [233] proved that, if K = R, then a sufficient
condition for X and Y to be homeomorphic is that a completely regular linear subspace
of C(X) and such a subspace of C(Y) be isometrically isomorphic. Let us recall that a
closed linear subspace A of Cy(X) is said to be completely regular if every x € X is a
strong boundary point of 4, i.e., TA = X.

In [234] (see also [235]) is extended the Banach-Stone theorem for function
algebras, that is, closed separating subalgebras with unit of C(X)-spaces. He proved that
two function algebras are isomorphic as algebras if and only if they are isometric as
Banach spaces.

In [236] went a step further and extended some of the above generalizations: if
there exists a linear isometry T from a linear subspace A of C(X) which is separating
and contains the constants into C,(Y), then there are a continuous map h of the
Choquet boundary of T(A4),Ch T(A), onto Ch A and a continuous map a : Ch T(4) —

K, |a| = 1, such that

Similar extensions of the Banach-Stone theorem have been given for subspaces
of Co(X) equipped with different norms. Among these subspaces we point out the
following: spaces of differentiable functions (in [237]); spaces of absolutely continuous
functions ([238]); spaces of Lipschitz functions ([239]).
If we weaken the geometric bond between Cy(X) and Cy(Y) , the
homeomorphism between X and Y may wither: Milutin [240] proved that if X is any
uncountable compact metric space (for instance, X = [0,1] U {2}), then C(X) is linearly
homeomorphic to C([0,1]). However, if the isometry is not weakened too much, good
results can still be accomplished: Amir [241] and Cambern [242] proved that if Cy(X)
and C,(Y) are isomorphic under an isomorphim T satisfying ||T|| - ||T || < 2, which is

the best constant, then X and Y must also be homeomorphic. This theorem has been
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extended to cover various subspaces of C,(X)-spaces, for instance, extremely regular
subspaces ([243], [244], [245] or [246]) and function algebras ([247]).

The corresponding Banach-Stone theorem for E-valued continuous functions is
not true even when the Banach space E is the two dimensional space R? and X, Y are
compact metric spaces (in[248]). Thus, the main concern in this line is to determine the
geometric properties of E which allow analogues of the Banach-Stone theorem. A
systematic account of many of the generalizations in this and the above directions can
be found in [249] or [250].

We deal with some of these generalizations. Indeed we focus on Holsztynski and
Novinger's directions. Namely we study linear isometries of a strongly separating linear
subspace A of C,(X) into Cy(Y) or onto such a subspace B of C,(Y). We show that such
isometries can be written as weighted composition maps on some subspaces of Y (g,B
for the onto case). Furthermore, under the onto assumption, we prove that g,4 and
ooB are homeomorphic. As straightforward consequences of this result we first show
that the set of strong boundary points of A and B are homeomorphic. Also dA and dB
are homeomorphic if A and B are assumed to be strongly separating function
subspaces. We also provide an example which shows that this latter result may fail if the
hypothesis “A is strongly separating” is replaced by the weaker one “A is separating”.

Next we extend some results by Amir and Arbel [251], Holsztyrsky [252], Myers
[233] and Novinger [236]. We also apply our main results to study the isometries
between separating function subalgebras of Cy(X) and C,(Y) or, more generally,
between semisimple commutative Banach algebras without unit and their Shilov
boundaries.

Finally, we would like to remark that our techniques are not based on the usual
concepts, such as extreme points of the unit ball of the dual of Cy(X), T -sets or M-
ideals, used to prove the Banach-Stone theorem and their generalizations. We only use

straightforward concepts instead.

In the sequel we will assume that every linear subspace A of C,(X) has nonvoid

Shilov boundary. Anyway, let us note that the Shilov boundary of a strongly separating



linear subspace of Cy(X) is nonvoid and coincides with the closure of its Choquet

boundary ([253]).

Lemma (2.1.1)[229]: Let A be a linear subspace of Cy(X). Then 0A = cA.
Proof. Let x, € dA. Given an open neighborhood U of x, the closed set X — U cannot
be a boundary for A since it does not contain dA. Consequently, there exists a function
f € A which does not attain its maximum value on X — U, thatis, |f(x)| < ||f]| for all x
outside U.

Conversely, let x, € dA. If x, € 0A, then there exists an open neighborhood U
of xy such that dA N U = @. Hence, there exists a function f € A not attaining its

maximum value on dA, which contradicts the definition of boundary.

Lemma (2.1.2)[229]: Let A be a linear subspace of Cy(X). Let T be a linear isometry from
Ainto Cy(Y). Let x € X such that there exists f € A with ||f]| = |f(x)]. Let

Forany f € A, let

and let I, == Nfec, L(f). Then I, is a nonempty subset of Y.

Proof. For any f € C,, we have

and My is compact because Tf € C,(Y). Hence, we only need to prove that if f;, ..., f,
belong to Cy, then NIL, L(f;) # @. We have that 1 = ||f;|| = |f;(x)| for alli =1, ..., n.
Let f € A be defined as

Clearly |[f(x)] =n = ||f||. Since T is an isometry, ||[Tf|| = nand there isy € Y such

that



As |ITf;|| < 1foralli =1,..,n, we deduce that |(Tf;)(y)| = 1for alli =1,...,n, that
is,y € N, L(f).

Remark (2.1.3)[229]: Let A be a linear subspace of C,(X) and let x, € dA. We then

define the following subset of Y:

Lemma (2.1.4)[229]: Let A be a linear subspace of C,(X) and let x, € a,A. Then V,,, + @.

Proof. Let f, € A such that |f;(x,)| = 1. Given e > 0, let

Let U be an open neighborhood of x,. We will assume that U < Uy, .. Since x, € gp4
and U is an open neighborhood of x,, there exists a function g, € A such that ||g,l| = 1

and |go(x)| < 1 for all x outside U. Since (X U {c0}) — U is compact, we can consider

Then there exists M > 0 such that || ;|| + Ms < 1 + € + M. Take x € U. Then

If x € U, then

As a consequence, ||fo + Mgoll <1+ €+ M. Hence, |IT(fy + Mgy)ll <1+e+ M.

Furthermore, since

we can choose M in such a way that |f, + Mg,| attains its maximum value inside U.

Otherwise,

which is a contradiction. Thus, let x; € U such that ||f, + Mgl = |(fo + Mgy) (x1)].



Let x, € U such that ||goll = |go(x2)| = 1. Itis clear that we can choose g, such

that [(fo + Mgo) (x2)| = |fo(x2)| + M|go(x2)|. Thus,

Consequently,

From the definition of I, (Lemma (2.1.2)), we infer that

for all y; € I,. Since |(Tgo)(y)| < 1forally € Y, we deduce that [(Tfo)(y,)| = 1—¢€
forall y; € I, .
Next we shall show that (T'f,)(y;) <1+ efor ally, € . Let us define the

function

Hence |g;(x;)| =1 = |lg1]l and |g;| < 1 outside U. Since (X U {c0}) — U is compact,

we can consider

Arguing as above, we find a number N € K such that |f; + Ng,| attains its maximum
value inside U and |fy + Ng;| < 1 + € + |N|. Furthermore, we can choose N in such a

way that

As a consequence, since |(Tg,)(y1)| = 1, we have

that is, (Tfo)(y1) <1+ ¢€for all y; €1, . Gathering up the information we have
obtained so far, it is clear that we can find a net (x,) in X converging to x, and a net
(¥e) inY such that y, € I, for all @ and such that there exists a subnet (yﬁ) of (v,)
converging to some y, € Y U {oo} with |(Tfy)(y,)| = 1. This latter fact shows that

Yo # 1. Furthermore, it is apparent, from the above arguments, that, for any open

IN|+1+¢€



neighborhood V of x,, there exist a term xg of the net (xﬁ) and a function gg € A
such that |g30(x30)| =1= ||g30|| and |g30| < 1 outside V.

On the other hand, let g € A such that g(x,) =0. We shall show that
(Tg)(yy) = 0.Givene > 0, let

Let V be an open neighborhood of x, such that V < U, .. Hence, as mentioned above,
there exist a term xg_ of the net (xﬁ) and a function gg € A such that gg (xﬁo) =1=
||g30|| and |g30| < 1 outside VV. Arguing as above, we find a number P € K such that
the function |g + Pg30| attains its maximum value inside V and ||g + PgBOH <€+ |P|.

Furthermore, we can choose P in such a way that

As a consequence, since (T g, )(v,) = 1, we have

that is, (Tg)(yp,) < €. Therefore, since the net (yz) converges toy,, we infer that
(Tg)(yo) = 0.

Let us now consider [ € A such that |I(x,)| = 1. Let us define the function

and let g € Asuch thatl' = f; + g. It is clear that g(x,) = 0. Consequently, by the
above paragraph, (Tg)(y,) = 0 and, since ' (x,) = 1,

and, thus, [(TD(y,)| = 1.

Finally, if f € A, then we define f' = f/|f(x,)|. Hence |[f'(xo)| =1. As a
consequence, by the previous paragraph, we infer that |(Tf")(yy)| = 1, i.e., |f(xo)| =
|(Tf)(yy)|. The proof is complete.

|P| + € >



Lemma (2.1.5)[229]: Let A be a strongly separating linear subspace of Co(X) and let T
be a linear isometry from Ainto Cy(Y). If xqis a strong boundary point of A, then

Vo = Ly,

Proof. It suffices to check that I,/ < V, since the other inclusion is apparent.

We will first show that, if f € A satisfies f(xy) = 0, then (Tf)(y) = 0 for all

y €L, . Let us suppose that there exists y, € I, such that (Tf)(y,) # 0 and

f(xo) = 0 for some f € A. We will assume, without loss of generality, that ||f|| = 1 and
(TH(yy) = a > 0. Let

Since x( is a strong boundary point of Aand y, € I, there exists g € A such that,

multiplying by a constant if necessary, |g(xy)| =1 = |lgll,|g(x)| < 1for all x € U and

(Tg)(y,) = 1. Since, from the definition of C,(X), U is a compact set, we can consider

Thus there is a real number M > 0 such that 1 + Ms < a + M. We will distinguish two

cases: If x € U, then

If x € U, then

That is, we have that ||f + Mg|| < @ + M, but

which is absurd since T is an isometry.
Finally, let us suppose that there exists y' € I, such that [(Tf)(y")| # |f (xo)|
for some f € A. Since x is a strong boundary point of A, there will exist a function

k € A such that k(x,) = 1 = ||k||. Hence it is straightforward to check that the function

belongs to A and, furthermore,



and

since (Tk)(y') = 1. This fact contradicts the paragraph above.

Theorem (2.1.6)[229]: Let T be a linear isometry of a strongly separating linear subspace
A of Cy(X) into Cy(Y). Then there are a subset Y, of Y, which is a boundary for T(A), a
continuous map h from Y, onto o,A and a continuous map a : Yy = K, such that

la(y)| = 1forall y €Y,, and

(1

Furthermore, if 6yA is compact, then Y is closed.

Proof. LetY, be the set UyegyaVx. That Yy is nonvoid. In order to prove thatY,is a

boundary for T(A), let us suppose that there exists f € A such that

forall y € Y. Then we can find x, € gyA such that

Let y, € V;,. Then y, € ¥; and

which contradicts the above assumptions.

Next, we define the map h of Y, onto 0,4 as h(y) :==x if y € V,. Since A is
strongly separating, given x, x" € A with x # x,, it is easy to check thatV, NV, = @.
Thus the map h is well-defined. Moreover, since V, # @ for every x € g,4, h is onto.

In order to prove the continuity of h, suppose that h(y,) = x, for some y, € Y,.
Let f € A such that f(x,) =1. Hence, |(Tf)(yo)|=1. Let (y,) be a net inY,
converging to y, and let h(y,) = x, for all @. Since |(Tf)(y,)| = 1, we can assume,
without loss of generality, that ||(Tf)(ya)| — 1| < 1/2 for all @. Then, from the

definition of V., |f(x,)| > 1/2for all a. Let (xﬁ) be a subnet of (x,) converging to



X1 € X U {}. Consequently, |f(x;)| = 1/2. Hence, x; # 1. If x; # x,, then we take

g € A such that

Take a subnet (y) of (yﬁ) such that

Hence

and (|g(xy)|) does not converge to |g(x;)|, which is a contradiction. Hence every
subnet of (x,) has a subnet that converges to x, and then we have that (x,) converges
to x,.

Now, let us define a map a of ¥, into K as follows: giveny €Y, let f be any
function in A such that f(h(y)) = 1. Hence, we define a(y) = (Tf)(y) for ally € Y.
This is a well-defined map because if we take another function g in A such that
g(h(y)) =1, then (f — g)(h(y)) = 0 and by the definition of h, (Tf)(y) = (Tg)(y).

On the other hand, it is clear that |a(y)| = 1 forally € Y,,.

Next we prove both that T can be written as a weighted composition map and,
as a consequence, the continuity of a. We have already proved that if f(h(y)) =0,
then (Tf)(y) = Ofor ally € Yy and all f € A. If f(h(y)) # 0 for some f € Aand some

y €Yy, then let

k being any function in A such that k(h(y)) = 1. Clearly g(h(y)) = 0. Thus, (Tg)(y) = 0,

that is,

In order to prove the continuity of a, we will show that for each y € Y,, there
exists an open neighborhood of y where a is continuous. Let us consider any f € A such

that f(h(y)) # 0 and let



It is clear that h~1(W) is an open neighborhood of y. Moreover the map Tf/(f o h) is
continuous on h™1 (W), and @ and Tf /(f o h) coincide on h=1(W).

Finally, assume that gyA is compact and let y, € Y such that there exists a net

(¥a) in Y, converging to y,. For all a,y, belongs to some V, (see remark preceding

Lemma (2.1.4)) with h(y,) = x, € g,A. Hence the net above has a subnet (xz) which

converges to some x, € g,A. Since

forall f and all f € A, we deduce, by the continuity of f and Tf, that

forall f € A, thatis, y, €V, € ¥,.

Corollary (2.1.7)[229]: In the same conditions as in Theorem (2.1.6), h sends ChT(A)
onto ChA.

Proof. By [253], we know that the Choquet boundary of A is contained in dA. On the
other hand, for every point x of ChA, there exists f € A such that f(x) # 0, so
ChA c gy,A. SinceT™1:T(A) - Ais a linear surjective isometry, we have that its
adjoint (T71)' : A’ > (T(A))’ sends the extreme points of the unit ball of A’ onto such
points of (T(A))’. So, if x € ChA,(T™")'e, = pe,, wherey € K,|ul =1landy €Y. If

fEA,

We conclude that y € V, and, consequently, that ChA < h(ChT(A)).
The other inclusion follows from the same arguments since (T~1)" is bijective

(see [242]).



Theorem (2.1.8)[229]: Let T be a linear isometry of a strongly separating linear subspace
Aof Co(X) into Cy(Y). ThenTf = E(a-f o h), where his a continuous map defined
from a subset Y, of Y onto gy,A,a : Y, » Kis a continuous map such that |a| = 1 and

E : Z - Cy(Y) is a norm-preserving linear extension with Z = {a- f o h : f € A}.

Theorem (2.1.9)[229]: Let T be a linear isometry of a strongly separating linear subspace
A of Cy(X) onto such a subspace B of Cy(Y). Then there exist a homeomorphism h of
0°B onto 6°A and a continuous map a : 0yB — K, such that |a(y)| = 1 forall y € 0,B,

and

Proof. Let h and Y, be as in Theorem (2.1.6). To prove the injectivity of h, we shall check
that the sets I, are singletons. Suppose that y,,y; € V, for some x € gyA and y, # y;.

Consequently

forall f € A, which contradicts the strongly separating property of B.

We now show that Y, = gyB. Let y, € Y. There exists x, € 0yA such that

Let U be any open neighborhood of y,. It falls out of the way we obtain y, in Lemma
(2.1.4) that there exists a set I,,, for some x € X, contained in U. This means, according

to the definition of I, (Lemma (2.1.1)), that

that is,

Thus we have an intersection of closed subsets whose intersection with the compact set
(X U {0})\U is empty. Hence, there exist finitely many functions {f, ..., fn} < C, such

that

(T,



We can assume, with no loss of generality, that

Then the function f = Y7, f; satisfies f (x) = n. As a consequence,

forall y € U, which implies that y, € g,B.
Conversely, to prove that g,B € Y,, take y, € g,B. We now consider the inverse
of T, which is an isometry of B onto A. By Theorem (2.1.6), there exists a continuous
map k from a subset X, of X, defined as Uyeq,5V,, Onto g,B. As above, we can prove
that X, € gyA. Let us consider x, € X, such that k(x,) = y,. It just remains to prove

that y, € V. We know that, for all g € B,

thatis, forall f € A,

Consequently, h(y,) = xo. Hence, his a homeomorphism of g,A onto o,B. Finally, by

Theorem (2.1.6), T is a weighted composition map.

Now the following corollary holds because of Theorem (2.1.11) and Corollary
(2.1.8).
Corollary (2.1.10)[229]: In the same conditions as in Theorem (2.1.11), his a

homeomorphism of ChB onto ChA.

Remarks (2.1.11)[229]: (i) Let T be the isometric embedding of C,(N) into C(N U {o0}).
This example shows both that, in Theorem (2.1.6), Y, may not be closed and that, in
Theorem (2.1.8), the Shilov boundaries of A and B are not homeomorphic in general.
However, if A and B are assumed to be strongly separating function subspaces, then it is
straightforward, from the definition of gyA (resp. oyB) and by Lemma (2.1.1), that their

Shilov boundaries are homeomorphic.



(ii) The following example shows that this latter assertion may fail if we replace

the hypothesis “A is strongly separating” by “A is separating”: Let us define the compact
set

and let A’ be the set of all functions f,, € C(X),n = 2,3,4, ..., defined as follows: if n is

even,

If nis odd,

Given x € X (resp. x € Y), we will denote by y, the characteristic function of the

singleton {x}. Let us define the function f € C(X) in the following way:

Let A be the linear span of A" and f.

On the other hand, let us define the compact set

and let us define g € C(Y) as follows:



Let B be the linear span of the set {)(1: ne N}. and g. It is now a routine matter to
n

verify that Ais a (not strongly) separating linear subspace of C(X). Also, A is linearly

isometric to B. However,

is not homeomorphicto dB =Y.
(iii) The assertion of Theorem (2.1.9) cannot be strengthened to the effect “X
homeomorphic to Y”. A counterexample is obtained by taking the isometry T of
Co(X) = Co(0,1) into Co(Y) = Co((0,1) U (1,2)) defined to be (Tf)(x) = f(x) if
x € (0,1), and (Tf)(x) = f(x —1)/2if x € (1,2). Clearly X is not homeomorphic to Y

because Y is not connected.

Corollary (2.1.12)[229]: Let T, X,Y,A and B be as in Theorem (2.1.9). If, in addition, we

assume that either TA or TB is a nonempty set, then TA and tB are homeomorphic.

Proof. Let us define the set

By the definition of h (see the proof of Theorem (2.1.6)) and since it is injective
(Theorem (2.1.9)), we infer that h(Y,,) = TA. Hence, by virtue of Theorem (2.1.9), it
suffices to check that Yo = TB. Let y, € Y,,. There exists x, € TA such that x, = h(y,).
Let U be any open neighborhood of y,. If y € U, theny € V, since, by Lemma (2.1.5),
Ve, = Ix, Whenever x, is a strong boundary point. Thus, by Lemma (2.1.2), there is

fy € Asuch that
and

For each y € (Y U{e}) — U, we take an open neighborhood U, of y such that

|(Tfy)(y’)| <1 for all y€U,. Since (YU{oo})—U is compact, we can find



1 vyt € (Y U {o0}) — U such that (Y U{eo}) — U < UL, Uy,. Now, let us define

the map

It is clear that

and

Moreover, |(Tg)(y)| < 1 for all y outside U. Consequently, the elements of Y, are
strong boundary points for B.
Conversely, let y, € TB. Arguing as in the preceding paragraph, we prove

Xoo C TA, where

Thus, there exists x, € TA such that k(x;) = y,, where k is the inverse of h (see the
proof of Theorem (2.1.9)). That is, y, € V,,, < Yo and we are done.

The following corollary shows that Myers’ theorem ([233]) is valid also for

noncompact spaces and complex valued functions. Moreover we can write the isometry

as a weighted composition map.

Corollary (2.1.13)[229]: Let T be a linear isometry of a completely regular linear
subspace A of Cy(X) onto such a subspace B of C,(Y). Then there exist a
homeomorphism h of Y onto X and a continuous map a : Y — K, such that la(y)| =1

forally €Y, and

Corollary (2.1.14)[229]: Let T be a linear isometry of a strongly separating subspace A of

Co(X) into Cy(Y). Then o,A is homeomorphic to a quotient of a subspace Y, of Y.



Proof. With the same notation as in Theorem (2.1.6), let us define the following
equivalence in Yy: yo~y, if yo, 1 belong to the same I, for some x € gyA. If T denotes
the natural quotient map of Y, onto (Y,/~), then the map h~ = h ot~ 1 is a continuous
bijection of (Y,/~) onto g,A. To prove the continuity of (h~)~1, take a net (x,) in g,A
converging to x, € gyA. For each a, take y, € V, . Clearly there exists a subnet (yﬁ) of

(y,) converging to a point y, € Y U {o0}. Take any f € A. Then (|f(x3)|) converges to
|f (xo)| and |(Tf) ()| converges to [(Tf) (). As

for all §, we have that

for all f € 4, that is, y, € V. This implies that ((h~)‘1(xﬁ)) converges to (h™) 1 (x,).
In this way, every subnet of ((h~)‘1(xa)) has a subnet converging to (h~)"1(x,). So

((h~)‘1(xa)) converges to (h~)"1(x,). Then (h~) 1 is continuous.

Remark (2.1.15)[229]: Let us suppose that, in Corollary (2.1.14), X is compact and 1 €
A. We now consider the quotient space Y/D, where D is a decomposition of ¥ which
consists of the subsets V,, x € g,4, and the singletons {y} such thaty € Y — Y. Since
now a = T1 then ||a|| = 1 and we can define an isometry T~ of A into C,(Y/D) by the
requirement that (T~ f)(y~) = (ELTf)(n‘l(y~)) forall f € Aand all y~ € Y/D, where
a denotes the complex conjugate of the map a and  the natural quotient map of ¥’
ontoY/D. T~ is well defined because, by Theorem (2.1.6), aTf is constant on each
Ve, X € 0yA. As in Corollary (2.1.14), we prove that A4 is homeomorphic to a subspace
(Y/D), of Y/D, defined like Y /0 in Theorem (2.1.6). Moreover, with the hypothesis of
Corollary (2.1.14), there exists a norm-preserving linear extension U from the subspace
{A o h} of C(Yy) into Cy(Y) defined to be U(g) = a(Tf), where g := f oh for some

f €EA.
All these remarks show that Corollary (2.1.14) extends a result by D. Amir and B.

Arbel [251], if we assume that X is compact and A = C(X). Furthermore, this



assumption lets us claim that if T(C(X)) is a strongly separating linear subspace, then it
is complemented in Cy(Y). To prove this, we define a projection  from C,(Y) onto

T(C(X)) as follows: given f € C,(Y), let m(f) be

where h™1 is the inverse of h defined as in Theorem (2.1.11). It is easy to check that

moT =T and, consequently, 72 = .

Theorem (2.1.16)[229]: Let T be a linear isometry of a separating function of subalgebra
A of Cy(X) onto such a subspace B of Cy(Y). Then
(i) 0Ais homeomorphic to 0B.

(i) There exists a continuous map b : Y — K such that

Proof. (i) It suffices to show that A is strongly separating. Let x4, x, € X with x; # x,.
There exists f € A such that f(x;) = z; and f(x;) = z, with z; # z,. If |z1| = |z;],
then we consider the function g:=f+ f2€ A. Hence, g(x;) = z,(1 + z,) and
g(x,) = z,(1 + z,). With no loss of generality, we can assume that Re z; and Re z, are
different. Otherwise we multiply the function f by the complex number i and, since

Zq # Z,, we infer that Re iz; # Re iz,. Then

and

T(fg)(



Clearly, |g(x)| # |g(x3)|. Summing up, Ais a strongly separating linear subspace of
Co(X) and the result follows from Theorem (2.1.11).

(ii) We know, by Theorem (2.1.9), that a(y)T(fg)(y) = (Tf)(y)(Tg)(y) for all
f,g € Aand all y € dB. Consequently, if b denotes the complex conjugate of a,

forally € 9B andall f,g € A.
Let yo €Y — 0B and let f € A such that (Tf)(y,) =0. We now show that
T(fg)(y,) = 0forall g € A. Itis clear that the maps

and

coincide on 9B, for k € A such that (Tk)(y,) # 0. Thus they coincide on Y and

consequently T(fg)(y,) = 0.
To extend b from 0B to Y, take, for each y € Y — 0B, f,g in A such that

(TA)(y) # 0and (Tg)(y) # 0. Then we define

This extension of the map b to the whole Y is well defined because if we consider

k,1 € Awith (Tk)(y) # 0and (T))(y) # 0, then

and

coincide on dB and, as a consequence, onY. The continuity of b follows from the

continuity of T(fg), Tf and T g in an open neighborhood of each y.
Theorem (2.1.17)[229]: Let A, B be semisimple commutative Banach algebras (not
necessarily with unit), such that ||f||1? = ||f?|| for all f € A (resp. f € B). If T is a linear

isometry of A into (resp. onto) B, then there exists a continuous map (resp. a

homeomorphism) h of a subsetY, of the maximal ideal spaceY of B (resp. the Shilov



boundary 0B) onto the Shilov boundary, A, of Aand a continuous map a : Y, —» K

(resp. a : B - K) with la(y)| = 1forall y € Y, (resp. y € dB) and

Proof. Since ||f]|?2 = ||f?|| for all f € A (for all f € B respectively), the Gelfand
transform is an isometry of A (resp. B) into Cy(X) (resp. Cy(Y)), where X (resp. Y) is the
maximal ideal space of A (resp. B). We can, therefore, regard A and B as separating
function subalgebras of Cy(X) and C,(Y) respectively, and the result follows from

Theorem (2.1.6) and Theorem (2.1.11).

Corollary (2.1.18)[229]: (Nagasawa) Two semisimple commutative Banach algebras with
unit A and B such that ||f||?> = ||f?|| for all f € A (resp. f € B) are isometric as Banach

spaces if and only if they are isomorphic as algebras.

Proof. Let us first regard A and B as in the proof of Theorem (2.1.17) and let T be a
linear isometry of A onto B. It is clear, since both subalgebras have unit 1, that, in this
context, the continuous function a which appears in Theorem (2.1.16) is T1. That is,
a € B. Furthermore, since T is onto, there exists f € A such that Tf = 1. Finally, from
Theorem (2.1.6), we infer both that b = a™! € B and that b - T is the desired algebra

isomorphism.

The converse is clear (see [24]).
Section (2.2): Inverse Spectral Theory for the Ward Equation:

We study the Cauchy problem for the Ward model in light-cone coordinates:

where [,] denotes the usual matrix commutator, Q(x,y,t) is a traceless 2 X 2 anti-
Hermitian matrix and Qu(x,y) is a 2 X 2 anti-Hermitian traceless matrix decaying

sufficiently fast as x% + y? — oo.

TH.



We shall solve this problem using the so-called inverse spectral (scattering)
method. This method is based on the fact that equation (1) is the compatibility

condition of the following Lax pair,

where u(x, y, t, k) is a 2 X 2 matrix. The transformation

maps equation (1) to the Ward model [255] in laboratory coordinates. The Cauchy

problem in this model is defined by

Qtt

This problem can be solved by using the fact that equation (6) possess the following Lax

pair

The Cauchy problem (6), (7), was studied in [256] using the Lax pair (8), (9).

Here we study the Cauchy problem (1), (2), using the Lax pair (3), (4). We also
make some remarks about the Cauchy problem (6), (7).

We note that the transformations

and

map equations (1) and (6) to equations

and



respectively. Thus, our results are directly applicable to the solutions of the Cauchy
problem for equations (12) and (13). These equations are the 2 + 1 integrable chiral

equations in light-cone and laboratory coordinates, respectively.
In order to simplify the rigorous aspects of our formalism we first assume that

Qo (x, y) is a Schwartz function which is small in the following sense

where Q, is the Fourier transformation of Q, in the x variable. This assumption excludes
soliton solutions. We then indicate how the formalism can be extended in the case that
the above assumption is violated. In the case that Q, is sufficient small, the inverse
spectral method yields a solution of the Ward model in light-cone coordinates through

the following construction.

Theorem (2.2.1)[254]: Let Q,(x,y),x,y € R be a 2 X 2 anti-Hermitian traceless matrix
which is a Schwartz function and which is small in the sense of equation (14).

(i) Given Qu(x,y) , define u*(x,y,k),keC*={kecC:Imk=>0} and

u (x,y,k),k € C- =1{k € C: Imk < 0} as the 2 X 2 matrix valued functions which are

the unique solutions of the linear integral equations

ut(x,y, k) =1 +-

and

wy k) =1+



where [ denotes the 2 X 2 unit matrix.

(ii) Given pu* define the 2 X 2 matrix S(x + ky, k), x,y,k € R, by

I—-S=]|1 1
B 41
1
41T |
C
(iv) Given S(x + ky, k) define the sectionally holomorphic function M(x,y,t, k) =
M*(x,y,t k) fork € C*,M(x,y,t,k) = M~ (x,y,t, k) for k € C™ as the unique solution
of the following 2 X 2 Riemann-Hilbert problem
M-
det
M

(v) Given M(x,y, t, k) define Q as

Then Q solves equation (1) and Q(x,y,0) = Qy(x,y).
We now make some remarks about related work. A method for solving the
Cauchy problem for decaying initial data for integrable evolution equations in one
spatial variable was discovered in [257]. This method which we refer to as the inverse
spectral method, reduces the solution of the Cauchy problem to the solution of an
inverse scattering problem for an associated linear eigenvalue equation (namely for the
x-part of the associated Lax pair). Such an integrable evolution equation in one spatial

dimension is the chiral equation; the associated x-part of the Lax pair is



where the eigenfunction u(x,t, k) is a 2 X 2 matrix, k is the spectral parameter and
Q(x, t) is a solution of the chiral equation.

Each integrable evolution equation in one spatial dimension has several two
spatial dimensional integrable generalizations. An integrable generalization of the chiral
equation is (1). A method for solving the Cauchy problem for decaying initial data for
integrable evolution equations in two spatial variables appeared in ([258],[259]). For
some equations such as the Kadomtsev-Petviashvili | equation, this method is based on
a nonlocal Riemann-Hilbert problem, while for other equations such as the Kadomtsev-
Petviashvili II equation, this method is based on a certain generalization of the
Riemann- Hilbert problem called the d(DBAR) problem.

It is interesting that although equation (1) is an equation in two spatial variables,
the Cauchy problem can be solved by a local Riemann-Hilbert problem. This is a
consequence of the fact that the equation (3) is a first order ODE in the variable x — ky.

For integrable equations, there exist several different methods for constructing
exact solutions. Such exact solutions for the Ward model in laboratory coordinates have
been constructed in [255, 256]. In particular, Ward constructed soliton solutions using
the so-called dressing method [260]. These solutions are obtained by assuming that
M(x,y,t, k) has simple poles. In this case the corresponding solitons interact trivially,
that is they pass through each other without any phase-shift. Recently, new soliton [261,
262] and soliton-antisoliton solutions [262] were derived, by assuming that M(x, y, t, k)
has double or higher order poles. The corresponding lumps interact nontrivially, namely
they exhibit m /N scattering between N initial solitons.

The formalism presented in this section can also be used to obtain exact soliton
solutions. In particular, it is shown that if the assumption (14) is violated then
M(x,y,t, k) still satisfies the Riemann-Hilbert problem (18) but now it is generally a
meromorphic as opposed to a holomorphic function of k. The solitonic part of the
solution Q(x, y, t) is generated by the poles of M. The main advantage of this approach
is that it can be used to establish the generic role played by the soliton solutions.

Namely, it is well known [263] that the long time behaviour of the solution of a local



Riemann-Hilbert problem of the type (18) where M is a meromorphic function of k, is
dominated by the associated poles. Thus the long time behaviour of Q(x,y,t) with

arbitrary decaying initial data Q, (x, ) is given by the multisoliton solution.

In this section we prove Theorem (2.2.1).

We first consider the direct problem, i.e., we show that the spectral data
S(x + ky, k) are well defined in terms of the initial data Q,(x,y). Replacing Q(x,y, t)
by Qo (x,y) in equation (3) we find

Let a(p, v, k) denote the x-Fourier transform of u(x, y, k). Then equation (23) gives

Equations (15) and (16) are integrable forms of equation (24) with different initial
values. Under the small norm assumption (14), equations (15) and (16) are uniquely
solvable in the space of bounded continuous functions f(x,y) such that f —I has a
finite L; norm. Since the dependence on k of the kernel of the integral equations (15)

and (16) is analytic, the functions u*(x, y, k) are analytic in k for +Imk > 0.

Equations (15) and (16) can also be written in the form

where

We note that GT can be evaluated in closed form,

ut(x,y, k)



where §(y) and 6(x) denote the Dirac and the Heaviside functions, respectively.

Indeed, writing 1/k = (kg — ik;)/|k?| and using

—
U

we find

Recall that G* corresponds to k; = 0; then in this case (sgnx)0(xlk;) = 0(x)0(l) —

0(—x)68(—1), and the above equation becomes

G+
Using
we find the expression for G* given by (27). Similarly for G~.
Using equation (27) it is straightforward to compute the large k behaviour of u*:
ur(x,y, k)
et
T 2m
RZ

for k — o0. Thus

Taking the complex conjugate of equation (15), letting p = —p and using the fact

that



we find

Letting ¢ = x + ky,n = x — ky, equation (23) becomes

Thus any two solutions of this equation are related by a matrix which is a function of

x + ky and of k. Hence

Equation (37) and the symmetry relations (35), imply that I — S is a Hermitian matrix. In

particular, the determinant of I — S is real. The determinant of equation (37) yields

Taking the complex conjugate of this equation and using the symmetry relations (35),

we find

Equations (38) and (39) imply det( — S) = +1. However, equation (33) implies that

Thus equation (38) implies det(l —S) =1+ 0(1/k) as k — o, and since det(I — S) =
+1 it follows that

Equations (38) and (41) imply

Since u* are analytic in C*, equations (40) and (42) define a local Riemann-Hilbert

problem [264]. Its unique solution is



Evaluating equation (37) as y = —oo (keeping x + ky fixed) we find

which is equation (17).
We now consider the inverse problem, i.e., we show how to construct the
solution of the Cauchy problem (1), (2), starting from S(x + ky, k). Given S(x + ky +

k?t, k), we define M(x,y, t, k) as the solution of the Riemann-Hilbert problem (18). In
general, if the L, norm with respect to k of S and on—i are sufficiently small, then the

problem has a unique solution. However, in our particular case the solution exists
without a small norm assumption. This is a consequence of the fact that/ — Sis a
Hermitian matrix. Using this fact it can be shown (in [265]) that the homogeneous

problem, i.e., the problem

has only the zero solution.
Given M, we define Q(x, y, t) by equation (21). A direct computation shows that

if M* solves the Riemann-Hilbert problem (18), ie, if M satisfies

and if Q(x,y,t) is defined by equation (21) then M* satisfies equations (3) and (4).
Hence Q satisfies equation (1). Furthermore the investigation of the Riemann-Hilbert
problem (18) at t = 0, implies that Q(x,y,0) = Qu(x,y). Also since I — S is Hermitian,
M™* and M~ have the proper symmetry properties (see equations (35)), which in turn

imply that Q(x, y, t) is a traceless anti-Hermitian matrix [272].

In this section we show how the formalism can be modified to include the soliton
solutions.

Since the matrix I — S is Hermitian of determinant one, it can be represented as

M+(xlyltlk) =



where a is an arbitrary function of (x + ky + k?t, k).

Then equation (18) becomes

where M; and M; are 2-dimensional column vectors which are functions of (x,y, t, k).

In particular

Equations (15) and (16) are Fredholm integral equations of the second type; thus

they may have homogeneous solutions. These homogeneous solutions which
correspond to discrete eigenvalues are rather important since they give rise to solitons.
We assume that there exists a finite number of discrete eigenvalues and that they are all

simple. Then Fredholm theory implies that M;" admits the representation

where m{ (x,y,t, k) is analytic for k € C* and the vectors ¢;(x,y,t),1 <1 < N are
homogenous solutions of the first column vector of equation (15). Following the

arguments of [267] it can be shown that

where c; is a scalar function of the argument indicated. Hence equation (51) becomes

Substituting this equation into equation (50) solving the resulting Riemann-Hilbert

problem we find

M (x,y,tk

M;(x,y, tl



Let

In what follows, for simplicity of notion we suppress the x, y, t dependence. Using the

notation (55) together with the symmetry relation (35), equation (54) becomes

Equation (56) express the solution of the Riemann-Hilbert problem (18) in the case that

solitons are included.

Soliton solutions correspond to a = 0. In this case evaluating equation (56) at

k = k; we find

The complex conjugate of these equations yields

Equations (57) and (58) determine A(k;) and B(k;),l =1,...,N.
Equation (54) yields



Thus using equation (33) we find

In summary, the N-soliton solution is given by equations (60), where ¢; =
¢ (x + k;y + k?t) and A(k,), B(k;) are the solutions of the equations (57) and (58). In

the case of 1-soliton equations (57) and (58) yield

Thus

Figure 1 represent a snapshot of the solution of equation (1) by taking c; = x + k;y +

k%t for k; = i attimet = —3.

Here we study the Cauchy problem (6), (7) using the Lax pair (8), (9). In the case
that Q,Q, are sufficient small, the inverse spectral method yields a solution of the Ward

model in laboratory coordinates through the following construction.

Theorem (2.2.2)[254]: Let Q,(x,y),Q,(x,y),x,y € R be 2 X 2 anti-Hermitian traceless

matrices which are Schwartz functions and which satisfy the small norm conditions

Q11 =

A(k1) =

Q11 = =0z =
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Figure 1: 1-soliton solution of (1) at t = —3.

where Q j is the Fourier transformation of Q; in the x variable.

(i) Given Q.(x,y),Q,(x,y), define u*(x,y, k), k € C* ={k € C : Imk = 0} and
u (x,v,k),k € C- ={k € C:Imk < 0} as the 2 X 2 matrix valued functions which are

the unique solutions of the linear integral equations

and

2_
(i) Given u* define the 2 x 2 matrix S (x + ==y,k),x,v,k € R, by
2k

]
L

K 4
S
po=17y

1
[—S=|1-—



I -
4T
(iv) Given S (x + %y, k) define the sectionally holomorphic function M(x,y,t, k) =
M*(x,y,t,k) fork € C*,M(x,y,t,k) = M~ (x,y,t,k) fork € C™ as the unique solution
of the following 2 X 2 Riemann-Hilbert problem
M_(x:y, tl k) ;
detM
M
(v) Given M(x,y, t, k) define Q as
Then Q solves equation (6) and Q(x,y,0) = Q1 (x,y), Q:(x,y,0) = Q,(x, y).
The proof of Theorem (2.2.3).
Equations (64) and (65) can also be written in the form
ut(x, v, k)
=1+
I
where
GE
or

Substituting this equation into equation (71), it is straightforward to compute the large

k behaviour of u¥,



for k — o0. Thus

The corresponding soliton solutions of equation (6) can be derived following the method

of this section.

Section (2.3): Metric Spaces and Isometric Shifts:

Shift operators play an important role in many disciplines such as perturbation
theory, engineering mathematics, scattering theory, stochastic processes, etc. (in [269]).
Recently these operators have been applied in connection with wavelets and iteration
attractors in complex analysis (in [270]). Crownover [271] was the first to extend the
definition of shift operator from separable Hilbert spaces to arbitrary Banach spaces
without using a basis. Namely, if . /"'is a Banach space, then T : .,”— ./7is said to be an
(isometric) shift operator if
(i) T is a linear isometry,
(i) The codimension of T(. %) in. #is 1,
(iii) NS, T™( ) = {0}.
If Condition (iii) is removed, then we have a codimension (i) linear isometry.

In [272], Gutek, Hart, Jamison and Rajagopalan extended many of the results
obtained by Holub in [273] concerning isometric shift operators on the Banach space
C(X) (X compact Hausdorff). First, they classified codimension (i) linear isometries on
C(X) using the following result: let T : C(X) —» C(X) be a codimension (i) linear
isometry. Then there exists a closed subset X, of X such that either

(i) Xo = X\{p}



where p is an isolated point of X, or
and such that there exists a continuous map h of X, onto X and a function a €

C(X,), lal = 1, such that

forall x € X,.

The proof of this result is based on a well known theorem of Holsztyniski [274].
Those isometries that satisfy Condition (i). Those satisfying Condition (ii). These two
classes are not disjoint. Farid and Varadarajan [275] devoted to clarify the above
classification. Finally, [276] proposes an alternative (disjoint) classification based on the
separation properties of the range of T. Thus, T is of type Il if and only if T(C(X))
separates all the points of X except two and is of type I which is not of type Il if and only
if T(C(X)) separates all the points of X.

Codimension (i) linear isometries on arbitrary function algebras have also been
studied and classified in [277] by using the results in [278]. Recently, lzuchi [279] has
characterized Douglas algebras which admit codimension (i) linear isometries, thus
solving the conjecture settled in [277].

Another question which has also been addressed in the context of isometric
shifts is the characterization of those compact Hausdorff spaces X which admit such
operators, that is, the existence of isometric shifts on C(X). [272], proved that
nonseparable spaces without isolated points do not admit isometric shifts and even that
there is no nonseparable space which admits isometric shifts of type II. Haydon [280]
proved the existence of isometric shifts of type Il when X is either connected or the
Cantor set. However it is still an open question whether there exists a nonseparable
compact space X which admits an isometric shift. We show that no nonseparable metric
(noncompact) space admits isometric shifts. We also provide an example of an isometric

shift with several interesting features.



Let K denote the field of real or complex numbers. If X is a compact
(respectively locally compact) Hausdorff space, then C(X) (respectively C,(X)) stands
for the Banach space of all K-valued continuous functions defined on X (respectively
which vanish at infinity), equipped with its usual supremum norm. If M is a metric space,
then we shall write C*(M) to denote the normed space of all bounded K-valued
continuous functions defined on M. As usual, SM stands for the Stone-Cech

compactification of M. Given f € C(X), we shall consider that c¢(f) is its cozero set.
If U is a subset of X, then cl,(U) and inty (U) denote its closure and its interior

in X, respectively.

Let M be a complete metric space and let T : C*(M) — C*(M) be an isometric

shift. Then T induces an isometric shift (which we continue to denote by T) on C(BM).

Theorem (2.3.1)[268]: Let M be a complete metric space. If C*(M) admits an isometric

shift T, then M is separable.

Proof. Let us first assume T to be of type II which is not of type 1. According to [272], the
map h : BM — M is a surjective continuous map such that there exists x, € fM in
such a way that h™1({x}) consists of just one point for every x € SM\{x,} and
h™1({x,}) consists of two points of BM, say x;, x,. Also, since T is not of type I, then the

points x; and x, are not isolated. Furthermore, in [272], it is proven that the set

is a countable dense subset in fM. We are going to see that this set is contained in M
and in this way we give an explicit countable dense subset in M.
First we have, by [272], that if BM /R is the quotient space for the equivalence
relation defined as xRy whenever h(x) = h(y), then the map h®: M /R - M
sending each class x® into the image h(x) of any x € xR is a surjective
homeomorphism. This implies in particular that the image of a Gs-point in M /R is a
Gg-point in M and vice versa. Let us recall that the only points in fM which are G5 are

those in M.



Let us check which of the Gs-points in BM /R are. Suppose that x® € BM /R
satisfies that there exists x € M with x € x®. Clearly, if x® is the singleton {x}, then x®
is Gg. Otherwise, as we remark above, x® consists of two points, x4, x,, and is the only
point in BM /R which is not a singleton. Then it is apparent that x® is G if and only if
both x;,x, € M.

Suppose next that x® = {x,x,}, and that x; € M. Since T is not of type I, then
the points x; and x, are clearly not isolated. Thus, there exists a sequence (y,,) in
M\{x,,x,} converging to x;. Also each y, is a Gs-point, and consequently so is
h®(y,) = h(y,), that is, the sequence (h(yn)) is contained in M, and converges to x,.
But this implies in particular that x, € M [281]. Conversely, if we assume that x, € M,
then x, is a Gg-point of BM and, consequently, so is h™1({x,}) = {x;, x,}. This implies,
as stated above, that both x; and x, belong to M. Summing up, we proved that x, € M
if and only if x; € M or x, € M, and that this fact yields x;,x, € M.

Let us now assume that x, € M, which is to say that x;,x, € M. Then it is easy
to check that the restriction of the map hto M,h : M — M, is bijective and continuous,
and its inverse h™1: M —» M is also continuous. Consequently, the map T: C*(M) -
C*(M) sending each fintoa- f o h,|a| = 1, is clearly a surjective linear isometry, that
is, it is not a codimension (i) isometry, against our hypothesis. We deduce that x, must
belong to M, and consequently x;, x, belong to M. Hence, h™1({x,}) c M.

A similar reasoning leads to the fact that h*({x,}) € M for every integer k. That
is, D € M, as was to be proved.

Let us now assume thatT: C(BM) — C(BM)is of type I. Thus, there exist an
isolated point p € BM and a homeomorphism ([278]) h of BM\{p} onto M and a
function a € C(BM\{p}), |a|] = 1, such that

for all x € BM\{p}. Consider the set A= {p,h™1(p),h %(p),...}. Then Y :=
BM\clgy (A) is a locally compact space and h : Y — Y is a surjective homeomorphism.

Hence we have a surjective isometry S : C,(Y) - C,(Y) defined to be



where @ is the restriction to Y of a.
For any f € C,(Y), we can define a function f € C(BM) such that f = fonY
and 0 on SM\Y. As a consequence, a linear continuous functional u (indeed a regular

complex measure) can be defined on C,(Y) to be u(f) = (Tf)(p).

Claim (2.3.2)[268]): Assume that there is f € Co(Y) such that u(f) =0 and (u o
S™(f) =0foralln € N. Then f = 0.

Let us suppose, contrary to what we claim, that there is f € C,(Y), f # 0, such
that u(f) = 0and (u o S™™)(f) = 0 for alln € N. Let us check that f € R(T™) for all
n € N.

Since S : Cy(Y) - Co(Y) is a surjective isometry, there is g € Cy(Y) such that
S(g) =f.1fx €Y, then

Thatis, T§ = fonY.

On the other hand, (T§)(p) :== u(g) = u(S71f) = (uo S™H)(f). By assumption,
(1o S™)(f) = 0. Hence, (TG) () = 0 = f(p).

Next, from the representation of the isometric shift T, we know that
(Tg‘)(h‘”(p)) = a(h‘“(p)) . g‘(h‘““(p)), but h™"*1(p) € BM\Y, which is to say that
g™+ (p)) = 0.

Finally, it is apparent, from the above two paragraphs and from density, that
Tg = 0on fM\Y. Hence, gathering the information above, we infer that Tg = f, i.e.,
f € R(T).

Let us next check that f € R(T2). To see this, it suf®ces to prove that § € R(T).
Since S is surjective, there is g; € Cy(Y) such that S(g,) = g. Furthermore (T g,)(p) =
ulg) = u(S 2f) = (uoS2)(f) =0=g(p). Hence, as above, we deduce that
T§, = §. In a similar manner, we can obtain g, gs, ..., gn, ... to show that f € R(T™)
for all n € N. This fact contradicts the definition of isometric shift and the proof of Claim

(2.3.2)[268] is complete.

(T§)(x) =



It is well-known that every regular complex measure 8 can be written as
0=(00,—-0,)+i(0;—06,), where 0;,,i =1,2,3,4, are regular positive measures.
Hence each of the regular complex measures p, oS~ 1, uoS™2, ..., uoS™™,...can be
divided into four regular positive measures. As a consequence, we get a new sequence
of regular positive measures, which we shall denote by {i,},en. With no loss of

generality, we can assume that all these measures are normalized.
Since the space of regular measures on a locally compact space is a Banach

space, we can define a regular positive measure as follows:

Claim (2.3.3)[268]: For every nonempty open subset U of Y,n(U) > 0.

Let us suppose that there exists a nonempty open subset U of Y such that

n(U) = 0. Hence we can find f € C,(Y), f # 0, such that c(f) c U. Consequently,

for all n € N. Finally, Claim (2.3.2) yields f = 0, a contradiction.
Let us now define a (open) subset N := M\clgy ({p, h™*(p),hA~*(p),...}) of M.
Next we consider the family, say .73, of all subsets B of N which satisfy the following
property: if x,y € B, then d(x,y) = 1 or d(x,y) = 0, where d denotes the metric in N
induced from M. Let us choose a chain (4,), of elements of .77 ordered by inclusion.

Since

Zorn's lemma yields a maximal element, say M;.

Claim (2.3.4)[268]: M, is a countable set.

Assume the contrary. Then there exists an uncountable family A of indices such

that



Since N is an open subset of M, there is, for each @ € A, a constant M, > 0 such that
the open ball B(x,, M,) c N.

Next, for each a € A, take

and consider the open ball B(x,, m,). It is clear, from the definition of .77, that if

a,B €A a+pf,then

Now, for every a € A, we can define the set

It is apparent that I, N M = B(x,,m,) for eacha € Aand thatV, NV =@ if a # .
Furthermore, each V,, is contained in Y since Y is open.

Summarizing, we have found an uncountable pairwise disjoint family of open
subsets {V, : @ € A}inY.

We know, by Claim (2.3.3), that n(V,,) > 0for all « € A. Hence, there is n, € N

such that the set

is not countable since neither is A. Let us choose a countable subset {a, a3, ..., @y, ... }

of indexes in y Then,

This contradiction completes the proof of Claim (2.3.4).
As in the paragraph before Claim (2.3.4), we can define, for everyn € N, the
family .7, of all subsets B of N which satisfy the following property: if x,y € B, then
d(x,y) = 1/nord(x,y) = 0. In like manner, we obtain, for everyn € N, a maximal

element M,, of .7, which turns out to be countable.



Let us now see that the countable set

is dense in N. To this end, choose x € N\D and € > 0. Then there exists my € N such

thatmi <e¢e. Sincex € D, thenx & M,, . This fact implies the existence of y € M,
0

such that d(x,y) < 1/m,. That is, there is an element y of D in the open ball B(x, €)
and the density of D in N follows.

Finally, it is clear that the countable set

is dense in M and we are done.

In [280], Haydon presented a method to provide isometric shifts of type II.

However, the scarcity of examples of isometric shifts of type I is remarkable. In this final
section we provide an example of an isometric shift of type I, which is not of type II,
with several additional features. Indeed, [272] raised the question whether, for an
isometric shift of type I, the set D := {p, h"1(p), h"%(p), ...} was always dense in X. The
question was answered in the negative by Farid and Varadarajan [275] by providing an
example of an isometric shift of type Isuch that X\cly(D) was a (finite) nonempty
subset. Our example shows somehow that D can be far from being dense in X in the
sense that X\cly (D) is uncountable. Our X also has, contrary to what Holub conjectured

in [279], an infinite connected component (in [272]).

Example (2.3.5)[268):. Let 0D denote the unit circle in C, and let

It is clear that X is a compact metric space. Let us show that X admits an isometric shift
of type I by constructing it explicitely.
Let T : C(X) — C(X) be the following operator. Take any f € C(X) and define,

for each e’? € 9D,



It is clear that, given any e'® € aD, the sequences (ei(eﬂnﬁ) and (e"(“(zn‘l)ﬁ))

are dense in dD. Then we take in dD the point 1 = e'?.

Clearly the evaluation map &, is continuous in C(X) and its norm is equal to 1.

So, for f € C(X), we define

Next, for n = 3, we define
and

It is clear that Tf € C(X) and that T is an isometry. In fact T is a codimension 1
linear isometry of type I (being p = 1/2), which is not of type Il since the range of T
separates all the points of X (in [276]). Let us see that it is also a shift operator.

Suppose that g € C(X) satisfies g € Ny—; R(T™). We have to prove that g = 0.
First we have that (g(l/n)) must be a convergent sequence, and it converges to the
value g(0). Also, we have that g(1/2) =—(T"1g)(1)/2 — (T‘lg)(e‘iﬁ)/z, by
construction. In the same way
9(1/3) = ~(T719)(1/2) = (T29)(1)/2 + (12g)(e72) /2 = (T2 g) (e %) /2 +

(T 1g)(e~2V2)/2 and, in general, forn = 2,n € N,
g

In particular, we have that the sequence

must converge to g(0), because g is continuous.

(T)(

g(1/n) =



On the other hand, by the density of points of the form ei2mV2 p ¢ N, we have

that given any point z, € dD, there exists a sequence (n;) of even numbers such that

(e‘i”kﬁ) converges to z, as k tends to infinity. Also (e‘i(“k‘l)ﬁ) converges to
Zoe ™2, Since T™1g is continuous, this implies that ((T‘lg)(e_i”kﬁ)) goes to

(T~*g)(zy), and that (T‘lg)(e‘i(”k‘l)ﬁ) goes to (T‘lg)(zoe‘iﬁ). We deduce that

converges to

On the other hand, we know that the above sequence converges to g(0). But a similar
approach can be taken for a sequence of odd natural numbers (m;,) instead of (n;). In

this case we will obtain that

converges to

and on the other hand, it must converge to —g(0). As a consequence, we deduce that

g(0).= —g(0).= 0, and that, for every z, € dD,

In particular, this implies that for every z, € dD, (T‘lg)(zoe‘iﬁ) = (T‘lg)(zoeiﬁ).

Consequently, the sequence



is constant. By the density of points ei2nV2 p ¢ N, we conclude that T~ 1g is constant on
dD. In particular, this implies that the sequence (|g(1/n)|) is constant. Since it
converges to |g(0)| =0, we conclude that g(1/n) =0 for every n€N. As a

consequence it is easy to see that T~1g = 0 on dD. But this clearly implies that g = 0,
g g

as we wanted to prove (in [282, 283]).



Chapter 3
Cauchy Problem of the Ward Equation

We generalize the results of study the inverse scattering problem of the Ward
equation with non-small data and solve the Cauchy problem of the Ward equation with

a non-small purely continuous scattering data.

The Ward equation (or the modified 2 + 1 chiral model)

forJ : R - SU(n),0, = /0w, is obtained from a dimension reduction and a gauge
fixing of the self-dual Yang—Mills equation on R%? [32,33]. It is an integrable system

which possesses the Lax pair [34,35,36]

with & = HTy,n = t_Ty Note (2) implies that J~'0; ] = —0,Q,/~'d,] = —0,Q. Then by a

change of variables (n,x,¢) — (x,y,t), (2) is equivalent to

see [37], and the Ward equation (1) turns into

The construction of solitons, the study of the scattering properties of solitons,

and Darboux transformation of the Ward equation have been studied intensively by

solving the degenerate Riemann—Hilbert problem and studying the limiting method

[38,39,40,41,35,42,43]. In particular, Dai and Terng gave an explicit construction of all

solitons of the Ward equation by establishing a theory of Backlund transformation [44,
182, 183, 184, 185, 186, 187, 188, 189].

For the investigation of the Cauchy problem of the Ward equation, Villarroel

[50], Dai, Terng and Uhlenbeck [32] use Fourier analysis in the x, y-space to study the

spectral theory of £, = d,, — A0, in (3), while Fokas and loannidou [37] invert £, by
y

0,(J~ L



interpreting it as a 1-dimensional spectral operator with coefficients being the x-Fourier
transform of functions [196, 190, 191, 192]. In both cases, small data conditions of Q are
required to ensure the invertibility of £; and the solvability of the inverse problem.
Under the small data condition, the eigenfunctions ¥ possesses continuous scattering
data only and therefore the solutions for the Ward equation do not include the solitons
in previous study.
Nontheless, the approach of Fokas and loannidou [37] shows that after taking
the Fourier transform in the x-space, (3) looks similar to the spectral problem of the

AKNS system

where J is a constant diagonal matrix with distinct eigenvalues. The solution of the
forward and inverse scattering problem of the AKNS system is fairly complete, due to
the work of Beals, Coifman, Deift, Tomei, Zhou [45,46,47]. In particular, the inverse
scattering problem for the AKNS system and its associated nonlinear evolution
equations is rigorously solved for generic g € L, without small data condition [48].
The purpose is to remove the small data condition in solving the scattering and
inverse scattering problem of (3) and the Cauchy problem of the Ward equation (5) with

a purely continuous scattering data. We summarize principal results as follows.

Definition (3.1)[31]:

To derive Theorem (3.21), we transform the existence problem of ¥ into a
Riemann—Hilbert problem with a non-small continuous data by the translating invariant
and the derivation properties of the spectral operator £;, and an induction scheme.

Hence the scheme of [45] can be adapted to solve the Riemann—Hilbert problem. That

]POO,kl,kz = {qx(x

sup|4
y

0<
DHF = {f



is, we first approximate the solution by a piecewise rational function. Then the
correction is made by a solution of a Riemann—Hilbert problem with small data and a
solution of a finite linear system. Since the eigenfunction obtained in each induction
step consists the data of the Riemann—Hilbert problem in the next step, we need to
obtain the H?-estimate (8) of the eigenfunction. Besides, the boundary estimate (9) and
the meromorphic property are derived in each step to assure the solvability of the linear
system.
In general, the points in Z, i.e., poles of ¥ (x,y, A), will occur or accumulate on
the real line, or the limit points will accumulate themselves. Assuming higher
regularities on the potential Q and Z = Z(¥) = ¢ (there are no poles of ¥ (x, y, /1)), we

can extract the continuous scattering data:

Definition (3.2)[31]: Let S,k = 7, be the space consisting of continuous scattering

data v(x,y, 1), € R, such that v satisfies the algebraic constraints:

and the analytic constraints: fori +j < k — 4,

where L) = 0, — A0,.

The characterization of the scattering data v € G is necessary. Since the

Cauchy integral operator will play a key role in the inverse problem. The study of the
asymptotic behavior of the scattering data v (hence the asymptotic behavior of the
eigenfunctions ¥) is important. Because the Cauchy operator is bounded in L, [49], in
general, an L,-estimate of ¥ and its derivatives will be good enough. However, a formal
calculation will yield (112) if the inverse problem is solvable. Hence we provide the

estimates (9)—(11).

Lv=0, 1
6};6;,'(17 — 1) ar
0La)(w—1) -

d,v are in L, (]



The derivation of (9)—-(11) basically relies on the L,-boundedness of the Cauchy
operator and the estimates obtained in the small-data problem. In particular, both of
the 1-dimensional (Fokas and loannidou [37] or (16)) and the 2-dimensional formulation
(Villarroel [50] or (28)) of the spectral problem are crucial in the derivation of the
estimates with small data condition. That is, using (16), boundedness or integrability in
x-variable of the eigenfunctions ¥ comes first from the differentiability and integrability
of the potentials Q via the Fourier transform. Then, strong asymptote in x,y or A-
variable of the eigenfunctions ¥ can be obtained by (28) and previous estimates. We
lose some regularities in deriving strong asymptote. See the proof of Theorem (3.12) for
example.

For the inverse problem, the results are:

Definition (3.3)[31]:

where s the Fourier transform with respect to the x-variable, M, (C) is the space of

n X n matrices, and for f € M,,(C)

Theorem (3.4)[31]: Suppose Q € P,. Then for all fixed A € C%, there is uniquely a
solution ¥ of (115) and (116) such that ¥ — 1 € X. Moreover, for 2 € CZ,

Proof. Write ¥ = 1 + W. Then (20), (21) are transformed into

PR)



Taking the Fourier transform with respect to the x-variable (in distribution sense), we

obtain

Thus we are led to consider the following integral equations

where * is the convolution operator with respect to the ¢ -variable. Define

Thus (13) turns into

Wy,

If &y, A)

S



Where f_yoo e~y )g 0(&,y)dy’, fy+°° e~y )3 0(¢,y)dy’ € Xby Q € P,. Note

that

Hence

So

Hence (13) is solvable if Q € P;. Furthermore, the eigenfunction of (115), (116) is given
by

The uniqueness follows from (115), (116), (15), the definition of X, and the
contraction property of K.
The uniform boundedness of ¥ comes from Definition (3.3), (15) and Q € P,. By

(26), 0,Q * W,3,Q € L,(d¢ dy) and the Riemann-Lebesgue theorem, we obtain

| K5 f
(
(
W =
(
\
p
1
Y(x,y,A) =1
1




(., y,1) = 1as |x| = . On the other hand, (16), 3,0 * W, 3,Q € L,(d¢ dy) and the

Lebesgue convergence theorem imply that ¥ (x,;, A1) - 1 when |y| — oo.

Lemma (3.5)[31]: Suppose V¥ satisfies (115), (116). Then for A & R,

Proof. Let e, ..., e, denote the standard basis for C"*, vy, the kth column vector of the
matrix . Let A¥(C™) denote the space of alternating k forms on C". Hence {; A, A

AP, = (detW)(e; A ey A ... A e,). Taking derivatives of both sides, we derive

So

by 0,,Q € su(n). Moreover, for A € R, the equation turns into the debar equation

by the change of variables:

Therefore the Liouville’s theorem and (12) imply that det¥ = 1, for 1 € R.

Lemma (3.6)[31]: Suppose that Q € P;. Then the reality condition

holds for the eigenfunction ¥.

Proof. By Lemma (3.5), one derives

(8, — 20, )¥(:



Besides, noting |fA”| and the boundary condition of ¥, we obtain

A
Ly(d$) = |f|L1(df)

P~1 — 1 € X. Hence the lemma follows from the uniqueness property in Theorem (3.4).

The results and arguments will be applied or adapted. Denote

By the change of variables (17), we then have

with A = Az + i4;. Now let S be the set of Schwartz functions. If Q € P; N S, then the

eigenfunction ¥ obtained by Theorem (3.4) satisfies

where

The following lemma is due to R. Beals.

Lemma (3.7)[31]: Suppose ¢ € S. For |A| # 0and |1;] < 1,

where C is a constant.

(f *
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In view of (20), it is easy to see that
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This yields

Combining (21), (22), and (23), we prove the lemma.

Lemma (3.8)[31]: Suppose that Q € P; N S. Then there exists a constant Cy such that

where Cy, is a constant depending on Q.

Proof. Since

it suffices to prove §&{W € X for 0 < k < N. This can be proved by induction on k and

using the same argument as in the proof of Theorem (3.4) if |§N6’x\Q|L (& dy) < o
1

Definition (3.9)[31]: Define

Note thatIP; € P;,. For simplicity we abuse the notation a;;a;'Q,a;;a;'qf by

Qx-xy --'-y, and ¥ '- Xy y in the remaining part of this section.

x .o
N————
L j L j

Lemma (3.10)[31]: Suppose that Q € Py, k < 5. Then

]Pl,k = {axl
1§

for



Moreover, as |A| — o,

where Cy, C is a constant depending on Q.

Proof. The uniform boundedness of 3¥¥,0 < N < 4, in Lemma (3.8) will be used in the

proof. A direct computation yields

So
Q
¥, + 7"
by (24). Therefore, inverting the operator d,, — 10, in (25) and applying Lemmas (3.7),
(3.8), we have
|11| =
<

IA

IA



as |[A] — oo. Taking the x-derivatives of both the sides of (25), we derive

Here we have used (115) and Lemma (3.8).

By the same scheme as above and the following equalities:

one derives

IN

|2

INA

IN

IA

W +

C
qjxxx + =

C |
< —



Hence the estimates for ¥, and ¥,,., follow.

Lemma (3.11)[31]: Suppose that Q € Py, k < 5. Then

as |A| = oo. Here C is a constant depending on Q.

Proof. Using the formula

and Lemma (3.10), one can derive

C



where the estimate |lIf

yy| =

~ Al
(by
- C
~ 14
|22¥,, + A(Q,¥), + (quf)y| has been used. Thus (26) is
proved. On the other hand, we write
¢
Py + -
Similarly, one can verify
1| < —
I 1| —= |/1|2
I, < —
I 2| —= |/1|2
|I115] < ¢
VIE
|111,] < ¢
P
by Lemma (3.10), (26).
Theorem (3.12)[31]: If Q € Py 4,k < 5, then as |A]| — oo,
Ox

where C is a constant depending on Q.



Proof. Applying (25), Lemmas (3.10) and (3.11), we obtain

as |A] = oo. Therefore, (28) is proved.
To proved (29), we used the results of Lemmas (3.10) and (3.11) to improve the

estimates of I, I,, I1;, and I, in the proof of Lemmas (3.10), (3.11). More precisely,

L

IA

IA



Here |lIf

yy| = |/1‘Ifxy + Q¥ + qufy| and (37) have been used in the estimation of I1,.

By induction, we can generalize the results of Lemmas (3.8)—(3.10)-(3.11) and

Theorem (3.12) to

Corollary (3.13)[31]: Suppose that Q € Py;. Then fori+ h < max{k,5}— 4 and as

4] - oo,

Remark (3.14)[31]: In general, the scattering transformation is a generalized Fourier
transform. That is, it maps smooth potentials to decaying scattering data, and decaying
potentials to smooth scattering data. As is known, the asymptotic expansion of

eigenfunctions is related to the decayness of the scattering data. However, in the case

IA
1



of Ward equation, even for the Schwartz potentials, the second order asymptotic
expansion of Theorem (3.12) seems difficult to be improved. To see it, the second-order
coefficient of the asymptotic expansion ¥, and an analogue of (25) need to be

introduced. That is

and

where ¢ is a Schwartz function. Then f(x,y), c(y) are Schwartz. It can be checked that

Y, does not possess integrability in the x-variable. This causes troubles in estimating

p-(1-5+3)

while inverting (30) to derive a higher order asymptotic expansion

of ¥.
First we introduce

Definition (3.15)[31]: The Cauchy operator C and its limits C are defined as follows:

It is well known that C; are bounded operators on Lp(]R) forl1 <p < oo, and

Cif(A) =limy, Cf(A),1 € R, 1 € C*[49].



Definition (3.16)[31]: Suppose v(4) is defined on R. A function ¥ (1) is called a solution

of the Riemann—Hilbert problem (1 € R, v) if

where ¥, (1) = limy_,, ‘IJ(/T) ,1 € R,1 € C*. Moreover, the function v(1) is called the

data of the Riemann—Hilbert problem (1 € R, v).

Suppose the data v(1),1 € R satisfies 35(¥ — 1) € L,(R,dA), fori =0,1,2. It

can be seen that ¥ is a solution of the Riemann—Hilbert problem (1 € R, v) if and only if

Lemma (3.17)[31]: Suppose the data v(1), A € R, satisfies:

Then the Riemann—Hilbert problem (A € R,v) has a unique solution ¥ such that

Y — 1 € Loy (dA) N Ly(dA). Moreover, if H* = {f | 3/ f € L,(d2),0 < j < k} and

then

for some constant C in [45].

Lemma (3.18)[31]: Suppose the data v(1),A € R, is a scalar function satisfying:
(i) v(1) = 0,V4;
(i) 7, d arg v(2) = 0;
(ii) v —1,0,v € L,(dA).

Then the Riemann—Hilbert problem (1 € R, v) has a unique solution ¥. Moreover, if



then

where H*(d2) = {f | 0Lf € L,(d2),0<i < k}, and C is a constant depending on
v, 11/V] .,
Lemma (3.19)[31]: Suppose Q € Py, NIP,. Then the eigenfunction obtained in
Theorem (3.1.9) satisfies:

(@) 0L(¥ (-, ¥,4) — 1),i = 0,1, 2, are uniformly bounded in L,(dx);

(b) ¥(,y,A) — 1,0,%¥(-,y,4) = 0 uniformly in L,(dx) as A — .

Proof. By noting that the Fourier transform is an isometry on the L, spaces, to prove (a),
it suffices to show that §&{W,i = 0,1, 2, are uniformly bounded in L,(d§). We will only

treat the case of 1 € C* and ¢ > 0 for simplicity. Other cases can be handled similarly.

Note that

Denote X, = {f(f,y,/l) tRXR X C— M, (C): supy|f(&y, Dlp,ae < 00}. So

By the assumption Q € P, , o, we have

Therefore the solution W of (24) is in X N Xz- Moreover, one can derive

from (13). As a result, we have {W € XN X,, ifQ € P20 N P;. The same argument

can prove E2W € XnX,,ifQ € P20 N P;. Hence (a) is justified.



To prove (b), by the definition of X and result of (a), the function W(f, y,A) can

be approximated uniformly by g where

and g is a linear combination of step functions in & with uniformly bounded coefficients

in y,A. Hence

where y|y>n is the characteristic function of the set {|x| > N}. The above two
inequalities imply that (¥ (x,y,4) — 1) x|xj>n — O uniformly in L,(dx)as N — c. We
can prove the case of (axllf(x,y,/l)))(|x|>,\, by the similar method. Combining with

Theorem (3.12) and the Lebesgue convergence theorem, one can prove (b).

Lemma (3.20)[31]): Let x + Ay = 2,0, = %(ax +1id,), and fy ,(x,2) = lim o+ f(x,y,2). If

f(x,y, ) is the solution of the Riemann—Hilbert problem (x € R, F(x, /1)) and

F
then
Proof. For y = 0, the lemma follows from the Sobolev’s theorem, Lemma (3.17) and the
assumptionon f ., F.
For simplicity, we omit the words “for |1| > 1” in the following proof.
Decompose f(x,y, 1) into
flx,y,4) =1
=1 -

Note that f_(F — 1)(:,4) is uniformly Holder continuous by the assumption on F, f}

and the imbedding theorem of Morrey [51]. Hence one has I(x,y,4) = I, ,(x,2)



uniformly as y - 0% [52]. The uniform convergence of II(x,y,4) = Il ,(x, 1) as
y = 0% can be justified by the Hélder inequality. Moreover, one can check that this
convergence is independent of x. As a result, f(x,y,4) = fi,(x,4) uniformly as
y - 0%
Since the lemma holds on the x-axis the uniform convergence provided above
implies: for any € > 0, one can find N ,d, such that [f(x,y,4) — 1| < e for V|| =
N, ,V|y| < 8. Besides, by the Holder inequality, we can find N, such that |f(x,y, 1) —

1| < efor V[A| > N, |y| = &,. Hence for any € > 0, we obtain

Theorem (3.21)[31]: Let Q € P, . Then there is a bounded set Z c C such that
(@) Zn (C\ R)isdiscretein C\ R;
(b) For 2 € C\ (R U Z), the problem (3) has a unique solution ¥ and ¥ — 1 € DH?;
(c) For (x,y) € R X R, the eigenfunction ¥(x,y, ) is meromorphic in A € C \ R with
poles precisely at the points of Z N (C \ R);
(d) W(x,y, A) satisfies:

(e) ¥(x,0,A) satisfies:

where € = €; > 0 are any given constants, DE(A]-) denotes the disk of radius €

centered at /1j.

Here the function spaces PP, ; o, and DH? are defined as follows.

lim ¥(-

|x|—>00
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Proof. We will prove Theorem (3.1.21) by induction on the norm of

— 3\0 .
Step 1 (The case of n = 0). If|6xQ(€,y)|L1(df i) < (E) , the existence and (31) are
proved by Theorem (3.4). The conditions (32), (33) and (34) are shown by Theorem
(3.12) and Lemma (3.19). The holomorphic property comes from (16).
Step 2 (Transforming to a Riemann—Hilbert problem). Suppose Theorem (3.21) holds for
— 3\" . . .
|6xQ(§, y)|L1(dE i) < (E) . Note the eigenfunction corresponding to a y-translate of Q

is the y-translate of the eigenfunction. Thus after translation we may have

— n+1
for a potential ,,Q(x,y) with |6xQ(§,y)|L1(df i) < G) . Let y* = xT(y) < 1be

smooth real-valued functions such that

— n
So QF € Py yp and |6in(§,y)|L1(df iy < G) . By the induction hypothesis there

exist bounded sets Z* such that Z* n (C\R) are discrete in C\R and for all 1 €
C\Z%*, Q% have eigenfunctions ¥+ which fulfill the statements of Theorem (3.21). Here
we remark that the meaning of the notation ¥+ is different from that of ¥,.. The former

is a function defined in the half plane y > 0, the latter means lim; o+ ¥ (x, y,1).

Hence any eigenfunction ¥ for Q, whenever it exists, must be of the form

where for y € R¥,

for
for

for
for:



Conversely, if we can find a* such that a® satisfies (36) for y € R* and
at(a™) (x,0,4) = (W)~ ¥~(x,0,21) (the invertibility of a*, ¥+ is implied by Lemma
(3.1.5)). Then we can define ¥(x, y, 1) by (35) and prove Theorem (3.21) in case of

o 3 n+1 ]
|0,Q(¢, y)|L1(d€ iy < (E) . Therefore, we conclude this step by

Lemma (3.22)[31] (Transforming into a Riemann—Hilbert problem). To prove Theorem
(3.21), it is equivalent to solving the problem: find a bounded set Z, f(%,7,1), and
f(x,9,2) such that Z* c Z and
a) Z N (C\R) is discrete in C\R;
b) ForA e C*\ (RUZ),f is the unique solution of the Riemann—Hilbert problem
(% € RF(%,D);
c) ForAeC \(RU Z),f is the unique solution of the Riemann—Hilbert problem
(e RF L& D);
d) f,f are meromorphicin A € C\ R with poles at the points of Z N (C\ R);
e) fiz fes satisfy (33), (34),

where

and

Proof. Note that if f,fexist for Lemma (3.22), then by Lemma (3.20) f,f satisfy (31),
(88) as well. Therefore, the lemma can be proved by the change of variables (37) (or

(88)) and setting

with X,y € R where

Q o

H+

~
LY
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in the above discussion.

Step 3 (Factorization: a diagonal problem, a Riemann—Hilbert problem with small data
and a rational function). For any square matrix A we let dj} (4) denote the upper
(k X k)-principal minors. Also let B;x, i < k be the minor of A formed of the first i rows,
the first i — 1 columns, and the kth column, and y;; be the minor of A formed of the
first i columns, the firsti — 1 rows, and the kth row. The following factorization

theorem can be found in [53].

Lemma (3.23)[31]: Suppose the principal minors df (A) # 0, for 1 < k < n. Then the

matrix A can be represented as

where

From now on, we only deal with the case of 1 € C* for simplicity. The other case

can be proved in an analogous argument.

Lemma (3.24)[31]: For A € C* \ [Z* U Z~], we have a factorization



where

Proof. By the same technique of the proof of Lemma (3.5), one proves det¥* = 1 for

A & R.SodetF = 1. As a result, if df (F)(Xy, Ag) = 0 for some 1 < i < n, then F must
have a pole at (%,, 1,). By det#* = 1 and (44), we obtain 1, € [Z* U Z7].

Therefore for 1 € C*\[Z* U Z~], we obtain a factorization by Lemma (3.23). The

properties (39)—(42) are implied by

which come from the induction hypothesis.

Lemma (3.25)[31]: (A diagonal Riemann—Hilbert problem). For A € C* \[Z* U Z~], the
Riemann—Hilbert problem (3? € R, §(%, /1)) has a solution A(z, ). Moreover,
(i) Ais A-meromorphic in C* with polesat [ZT UZ~] nC™;
(i) A4, satisfies (89), (112).
Proof. For A € C*\[Z* U Z~], the matrix § is a diagonal matrix with nonvanishing
entries. So the winding number of 6(%,1) is well defined by N(1)=
—%f%arg 5(t, A)dt. By (40) and (41), N(A) is a continuous integer-valued function for

x € C*\[Z* U Z~]. Thus N(1) = 0 by (42).
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Combining with (41), and (42), Lemma (3.23) implies the existence of 4 which
satisfies the Riemann—Hilbert problem (3? € ]R{,6(9?,/1)) , (33), and (34). The

meromorphic property of ¥(x,y,) is proved by [54]

Lemma (3.26)[31]: For 1 € C* \ U/lje[z‘fuZ‘] DE(A]-), there exists

such that

Proof. By the condition (42), there exists &, such that |gu)(|l|>56| < €. Moreover,

H?(d%)
by (41), for each 4, € C*\ Uaelz+uz-) DE(A]-) |40l < 8, there exists N = N (g, A,) such

that

where

la_.(1+
|4, (1+ (&

(Re)u(Re)l)

R, can be n
R, € H*(R,
(independe
matrix wit

tendsto 0

|gu -



One can check thatp,, € H?(R, d¥) satisfies (47), (48). Hence choosing a bigger N or

8¢, there exists a z-rational function, denoted as P, ,,,

and P, satisfies (47), (48).

Consequently, using (43), (44), Lemmas (3.24), (3.25), and the off-diagonal form
of g,, one can find a z-rational function R, (z, 1) which is an approximation of g, on
z € R and satisfies (45)—(49).

The case of g; can be done in analogy.

With Lemma (3.26), one can find a solution to the small-data Riemann—Hilbert
problem (9? ERA_,(1+(R)_,)F(1+ (Re)+’z)_1A1’1z). However, it is difficult to

analyze the meromorphic property of the solution in a neighborhood of points in
[Zt UZ~]. Hence we need to improve Lemma (3.26). First of all, let us denote

Ct={1eCt |, =2¢€},and [Z*UZT]} ={A€[ZYUZ7]| A = €} for simplicity.

Lemma (3.27)[31]: For A € C*, there exist

such that

|9,

|A_’Z (1 + (R,
|A_’Z (1 + (R,

(), ((®),)
R, can be me
R, € H*(R, d:
(independen
matrix with

tends to 0 as



Proof. One can multiply g, (g; respectively) by product

so that G, = P, 9y is holomorphic in 2 € C¥. Then using (41) and the same argument
as the proof of Lemma (3.26), one can approximate G, by a piecewise z-rational
function R, ,,. Let R.,, = P IR, .

A=A\ Ki
’) to make

Next, choose k; sufficiently large in U (1) = H/lje[z+uz—]g (E

U6, U.A holomorphic in A € Ct. Hence the lemma can be proved by an adaptation of

the proof of Lemma (3.26). (Note the factors U, P, ,,, P, are cancelled out.)

Lemma (3.28)[31]: (A Riemann—Hilbert problem with small data). The Riemann—Hilbert
~ - -1

problem (9? ERA_, (1 + (Re’u)_z) F (1 + (Re’u)ﬂ) A;}Z) admits a solution

fes(2,2) for A € CE\[Z* U Z]¢. Moreover,

(i) f.sis meromorphicin A € C} with polesat [Z* U Z7]¢;

(i) (fes), , satisfies (33), (34).

Proof. By the assumption (50), (51), one can apply Lemma (3.17) to find f ; which

satisfies (33) and the Riemann-Hilbert problem (9? ER,A_, (1 + (ﬁe’u)_z)F (1 +
~ -1
(Reru)+,z) AJF}Z)'

Moreover, f, ; satisfies (34) by Lemma (3.17), (44), Lemma (3.25), and (54).

Finally, f; s is meromorphic in 2 € C{ with poles at [Z" U Z~]{ by (43), Lemma (3.25),
and (53).

We conclude this step by a characterization of Lemma (3.22).

Lemma (3.29)[31]: (Factorization of the Riemann—Hilbert problem). Suppose f(z, 1)
fulfills the statement in Lemma (3.22). Then there exist a unique function r.(z,A) and a

set Z., such that



for some integer N.,Z.  Z, and for A € C}\Z,

Conversely, suppose there are uniformly bounded sets Z., and functions {r.}

which are A-meromorphic in C} with poles at Z,. , satisfy (61)—(63), and

forA € CX\ (Z, U [Z* U Z7]}). Define f. = 1.f.A(1 + R.) for X € C} . Then we have

Hence f = f. is well defined, and f satisfies the statements in Lemma (3.22) with
Z=UZ(f)U {/1]- € R| lim sup6_>0|fG(D26(/1j) N C§)| = o}. Here Z(f.) denotes the

poles of f..
Proof. First of all, by Lemma (3.5), det f ;(z,4) = det(l + ﬁe(z,l)) =detA(z,1) = 1.

So they are invertible at regular A. Besides, f(z, 1) and f; ;(z,1)A(z, 1) (1 + R (z, /1))

are zmeromorphic, possess the same jump singularity across z € R, and tend to 1 at

infinity. Therefore

is z-rational and (55)—(57) are satisfied by Lemmas (3.25)—(3.28) and the assumption on
f. For the converse part, (60) comes immediately from the definition of f. and the
meromorphic properties ofre,A,ﬁe,fe’s implied by assumption and Lemmas (3.25)-
(3.28).
Besides, by assumption, f , fe, satisfy the same Riemann—Hilbert problem in

Lemma (3.22) forA € (Cf{l\Zel. Thus (58) follows from the Liouville’s theorem and the

feisi
fe, =



meromorphic properties. As a result, the well-defined property follows from (60) and
(61).

The conditions (33), (34) can be proved by Lemmas (3.25)—(3.28), and (55)—(57),
f=f.lie,(58),and Z = UZ. U {4 € R: limsup._o|f:(D2c(1) N CF)| = 0}.

Step 4 (Solving the Riemann—Hilbert problem). We complete the proof of Theorem

(3.21) by finding a rational function 7, in Lemma (3.29).

Lemma (3.30)[31]: (Existence of the rational function r.). There exist a function r. and a
uniformly bounded set Z such that r. is -meromorphic in C} with poles at the points of

Z. and satisfies (55)—(57), (59) for A € CI\(Z. U [ZT U Z~]}).
Proof. For simplicity, we drop € in the notation r, f;, s, R, ... in the following proof.

(a) A linear system for r(z, 1). Let {z;, = X} + iy}, k = 1, ..., N be the simple poles of R
in C* by (55). Denote

at z;. Thus

Now let

Hence at Zj,

where



We then try to find ¢;, such that r(z, 1) fs(z, 1) A(z, /1)(1 + R(z, /1)) is holomorphic at z;.

This yields the linear system for ¢;:

The properties (47), (49) imply that n; are invertible and (djnj_1 2= 0.
Therefore, it can be justified that (66) are consequences of (67). Inserting (65) into (67),
we obtain a system of Nn? linear equations in Nn? unknowns (the entries of ¢;) with

coefficients in entries of d;(4),n;(4), @;(1), B;(1). Observing that as |1| — oo,

by Lemmas (3.25)—(3.28) we have (67) are solvable as || — oo. Precisely, c; can be

written in rational forms of d;, n;, @;, 8; which are all holomorphicin 1 € CZ\ [ZT U Z~].
Therefore, (67) are solvable for € C*\ Z. where Z, are uniformly bounded sets.

Consequently, (55), (56), (57), and (59) are fulfilled.

By the same argument as the proof of Theorem (3.21), we have

Corollary (3.31)[31]: Suppose thatQ € Pu, 10,k =2, and ¥(x,y,1) is the associated

eigenfunction. Then
Y—-1lisu

In particular, if Ay is a removable singularity of ¥ (x,y, 1), then
Y—-1i
By a similar argument as that in Lemmas (3.5) and (3.6) and using the uniqueness

property in Theorem (3.21), we can derive the same algebraic characterization of the

eigenfunctions:

Lemma (3.32)[31]: Suppose that Q € P, o,k = 2. Then the eigenfunction ¥ satisfies



forA e C\ R

We define the continuous scattering data and study its algebraic and analytic

characteristics in this section. We first show that the existence of continuous scattering

data for Q € P is automatic.

Lemma (3.33)[31): IfQ € IP,, then the eigenfunction ¥(x,y, ) obtained by Theorem

(3.4) has limits ¥ on R.

Proof. Suppose {1,} € C*, and A, converge to a point of R. Write W, instead of

W, y,A,) and

f

Then (13) and (14) imply

Now write

- o -1
Note that (15) and SuPy|Wh|L1(dg) < (1 - |6xQ(§,y)|L1(df dy)) imply

and



On the other hand,

by the Lebesgue convergence theorem and Q € P;. So

Hence |Ii];, (aey = 0 as k,h — o0 by (71)-(73). A similar argument will induce

11211, a8) = |(1 —K,lk)_l(fk — fn) — 0 as well. Therefore, we have |Wk —

Ly(d§)

Whhl(df) — 0 as k, h - oo by (70). Taking the Fourier transform, we prove the lemma

when 1 € C*.

The case of A € C™ can be proved by analogy.

Lemma (3.34)[31]: Suppose that Q € P, and

Then ¥, and W_ are continuously differentiable with respect to x and y.

Lemma (3.35)[31): For Q € P, and Q satisfies (74), the eigenfunction W(x,y,") is
holomorphic in C* and has limits ¥, on R.Moreover, there exists a continuously

differentiable function v(x + Ay, A) such that

where Ly = 0,, — A0,.

11111, a)

| (Klk - th)W

11112,
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Proof. The holomorphicity has been proved in Theorem (3.21). By assumption, Lemmas

(3.33) and (3.17), ¥, is invertible. Hence Lemma (3.34) implies

We denote Z = Z(¥) = ¢ if there are no poles of ¥(x, y, 1).

Lemma (3.36)[31]: ForQ € Py, 0,k = 2, ifZ = ¢, then there exists a continuously

differentiable function v(x + Ay, A) such that

Since we are going to solve the inverse problem by the Riemann—Hilbert problem
(1 € R,v). By the scheme, we need to investigate L, (R, dA) condition on v and d,v.

Hence the A-asymptote of v and d,;v will be investigated in the remaining part of this

section.

We extend Theorem (3.21), and Corollary (3.12) as follows.

Lemma (3.37)[31]: If Q E P 0,k = 5and Z = @, thenfori+ j < k — 4,

as |A| — oo. Where C is a constant depending on Q.

We improve the boundary properties (31), (32) of Theorem (3.21) as follows.

Lemma (3.38)[31]: If Q € Py 0,k = 5,and Z = @, thenfori+ j < k — 4,

Proof. By the results of Lemma (3.37), it is sufficient to prove this lemma for |1] < ¢

where c is any fixed constant. However, for |[A| < c,i +j < k — 4,

lIJ+ (xl
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follow from (115), Corollary (3.31), and the Sobolev’s theorem. For y # 0, one can
follow the argument of Lemma (3.20) to show the uniform convergence of 6};6;,"1/ -

a;;a;'qfi,z. Then the lemma is proved by the uniform convergence and applying Holder

inequality to

Lemma (3.39)[31]: For Q € Py, 1 NPy, k = 7, we have

and C depends continuously on x,y.

Proof. By formula (16), we have

Write

Note that W € X with X defined by Definition (3.3). Therefore Theorem (3.12) implies

Now we define




B,(&,)

By (14), (15), (76), (77), and Theorem (3.12), we obtain

Differentiating both the sides of (14), we obtain

(1 —KDRW =i

:l)

for A € C*, & = 0 (other cases can be done similarly). Define

Using the definition of P,  ;, and following the way to prove (78), one can show that



if Q € Py 1 and k = 6. Combining (75), (76), (79), (80), and (15), we prove |6,1llfi| < %
as |1| = oo and C depends continuously on x, y.
Since 3, ¥ (x,y, 1) = if_oooo eB*XEW (&,y,1)dé, modifying the above argument

and letting k = 7 in P, ; 1, one can obtain the estimate for |6,16x%_r| as well.

Lemma (3.40)[31]: If Q € Py 1,k = 7, and Z = ¢, then

and C depends continuously on x,y.

Proof. Since the property we wish to justify is a local property, without loss of

generality, we need only to show

where C depends continuously on x,y, and y(x, y) is any fixed smooth function with
compact support. Now by the induction scheme as the proof of Theorem (3.21), we

have

and

By induction and applying Lemmas (3.38), and (3.39), it reduces to showing

where

By (82), one can derive the inhomogeneous Riemann—Hilbert problem

with

(x9;



Hence [55]

X0y
with x + Ay = z, and
Therefore by Lemma (3.39) and (83),
|x
as |A] = oo. Furthermore, differentiating both the sides of (83) and using Corollary
(3.31), Lemma (3.39), we obtain
Iax()(a/la)IA

Hence the lemma follows from (84), (85), and Sobolev’s theorem.



Theorem (3.41)[31]: For Q € Py 1,k =7, if Z = ¢, then there exists uniquely a

function v(x,y, 1) € & which satisfies

Where the space G is defined by
Proof. The condition (8) follows from Lemma (3.36). The identity (6) comes from (68)
and Lemma (3.36). Besides, (69) and Lemma (3.36) imply that for A € R

Therefore (7) follows.

Next note that Lemma (3.37) implies that

So (9) follows. Combining Lemma (3.38), (86), one obtains 6};6;,'(17 — 1) - 0 uniformly in
L. So condition (10) follows from (9), and the Lebesgue convergence theorem. Finally,

condition (11) is derived by applying Lemma (3.40).

Definition (3.42)[31]: For Q € Py, 1,k < 7, if the eigenfunction ¥ (x,y,-) has limits ¥
on R, then we define the continuous scattering data of Q to be v € Sc, k obtained by

Theorem (3.41). Moreover, the continuous scattering transformation Sc on Q is defined

by Sc(Q) = v.

Theorem (3.43)[31]: Given v(x,y,A) € S 4,k =7, there exists a unique solution

¥(x,y,) for the Riemann—Hilbert problem (/1 € R, v(x,y, /1)) such that

Moreover, for each fixed A € R, andi +j < k — 4,

Theorem (3.43) is proved by a Riemann-Hilbert problem with a non-small purely

continuous scattering data. Without uniform boundedness of d,v, we need to handle

separately the Riemann— Hilbert problem for [A| > M > 1and |A]| < M. For [A| > M >

v(x + Ay, 1)

9L) (,



1, the Riemann—Hilbert problem is a small-data problem and hence can be solved. For
|A] < M, the Riemann—Hilbert problem is again factorized into a diagonal problem, a
Riemann—Hilbert problem with small data, and a finite linear system. Note we obtain
the globally solvability by applying the Fredholm property and the reality condition (7).
Moreover, good estimates for ¥ can be derived only for A € R. However, it is

enough to imply satisfactory analytical properties of the potentials.

Proof. First of all, (9), (10) and Lemma (3.12) imply that there exists a constant M > 0
such that, as |x|or |y| > M — 1, the Riemann—Hilbert problem (/1 € R,v(x,y, /1)) can

be solved and

for a constant C. Hence (87) holds as |x| or |y| > M — 1. Applying Hoélder inequality,
(9), (10), and (90), we then derive:

Hence, to prove Theorem (3.43), it is sufficient to solve the Riemann—Hilbert problem
(/1 € ]R{,v(x,y,l)) and establish (87), (88) for max(|x|,|y|]) < M. The scheme in
particular Lemmas (3.24)—(3.30), can be adapted to the solving of this problem. More

precisely,

Lemma (3.44)[31]: For A, x,y € R, we have a factorization

andfori+j<k—4,

x isdia
010 (x
and the
x—1F



Lemma (3.45)[31]: (A diagonal Riemann—Hilbert problem). For max(|x|, |y|) < M, there

exists a uniquely solution £(x,y, 1) to the Riemann—Hilbert problem (A € R, ) such that

and for each fixed A € R,
Proof. Applying (92), and (93), one obtains that

Hence the winding number N(x,y) = — ifdz%(x,y,()d( is integer-valued.

2mi

Moreover, the condition (93) implies that N(x,y) = 0.
Thus for max(|x|, |y|) < M, the existence of Z, and (94) can be implied by (92),

the Sobolev’s theorem, and Lemma (3.8). By (92), (94), and the formulas

we derive (95). Finally, we obtain (96) by Holder inequality.

0;(x

E(,y, 1)

0= (x,y,1)

d,Z(x,y,1)

022 (x,y,4)



Lemma (3.46)[31]): For max(|x/|, |y|) < M, there exists a function H(x,y, A) satisfying

and
(@) H(x,y,2) € Lo, N H'(R,d), and 930,H (x,y,A) € Ly, N L, (R, dA);
(b) 1Z_(1 + HO)v(1 + H) ' 571 (0, 3, ) — Upapoany <
(c) IE_(1+ H)v(1 + H)LE7 ey, D) — 1, ||| < 15
(d) H,(H,) is strictly upper (lower) triangular;
(e) H is rational in A € CE, with only simple poles and each corresponding residue is
off diagonal, with only one non-zero entry k and 6};6;,'1( € Lo (dx dy).
Lemma (3.47)[31]): (A Riemann—Hilbert problem with small data). For max(|x|,|y|) <
M, the Riemann—Hilbert problem (A € R,E_(1+ H_)v(1+ H,) 'E:Y) admits a

solution @(x,y,A). Moreover,

and for each fixed A € R,

Lemma (3.48)[31]: (Factorization of the Riemann—Hilbert problem). Suppose ¥ (x,y, 1)

satisfies Theorem (3.43). Then for max(|x/|, |y|) < M, there exists a unique function u,

and

Conversely, if for max(|x/|, |y|) < M,3u(x,y, 1) satisfying (97), (98) and

Define ¥ = up,=Z(1 + H) for max(|x|, |y|) < M. Hence ¥ satisfies Theorem (3.43).

Ps -



We then use Lemma (3.48) to prove Theorem (3.43).

(a) A linear system for u(x, y, 1). Let

Then at /1j

with

Since 4; is a simple pole of H and ¢,Z is regular at 4;, we can write

We then try to find a, such that u(x,y, A)e(x, v, 1)Z(x, y, /1)(1 + H(x,y, /1))

is holomorphic at 4;. This yields the linear system for a;:

(b) Solving the linear system (106)—(107). Note by Lemma (3.46), one can conclude

Therefore, it can be justified that (106) is a consequence of (107). Note the off-diagonal
form of h; (h,) in Lemma (3.44) is crucial here.

Inserting (103) into (107), we obtain a system of pn? linear equations in pn?

unknowns (the entries of a; with coefficients in entries of h;(x,y),n;(x,y), a;(x, y), B; (x,y)).

Therefore, we conclude the existence problem of ¥ is Fredholm.

(c) Solving the Riemann—Hilbert problem. Using the Fredholm alternative, we need only

to show that for any fixed x, y the homogeneous problem (with limit O rather than 1 as



A —> o) has only the trivial solution. Suppose f(x,y,1) solves this homogeneous
problem. Consider g(x,y,1) = f(x,y,)f(x,y,A)*. Since f(x,y,) € L,(R,d1), we
have g(1) € L;(R,d4) and is holomorphic in CE. Thus the Cauchy’s theorem implies

Because of (7) we conclude f- = 0on R,soalso f, =0and f = 0.
Hence we prove the solvability of the Riemann—Hilbert problem in Theorem

(3.43).

Lemma (3.49)[31]: For the solution ¥ of the Riemann—Hilbert problem obtained in

Theorem (3.43), we have

Proof. By (6), det ¥(x, y,") has no jump across the real line. So applying the Liouville’s

theorem, (109) follows from the holomorphic property in C* and ¥ — 1 as || - oo.

—~*\—1
Hence ¥ (x, y, 1) is invertible for all 1 € C, limits (‘If(x,y, Z, /1) )+ for A € R exist, and

—~*k\—1
(‘If(x,y, z,/l) ) fulfills the boundary condition as |1] — .

Secondly, by (7) and ¥, = ¥_v, we obtain

So

—\xy —1
Therefore (llf(x,y,l)) satisfies the same Riemann-—Hilbert problem in Theorem

ok —1
(3.43). Consequently ‘If(x,y,/l)z(llf(x,y,/l)) by the uniqueness property of

Theorem (3.43) (the Liouville’s theorem) and (110) is established.



Theorem (3.50)[31]: Given v(x,y,A) € S,y k = 7, the eigenfunction ¥ obtained by
Theorem (3.43) satisfies (3) with

and ¥(x,,A) > 1asy » —, where 3,Q(x,y) € su(n), and fori+j<k—4,i>
0,6};6;,0,6 Q0,0 € Lw,a;;a;'Q,a Q,0 > 0asxory — .
Applying Theorems (3.41)—(3.50), we extend the results of [32,37,50] as follows.

Proof. By (89), the boundary condition (116) is satisfied. Besides, the Cauchy integral

formula, and Theorem (3.43) imply

For fixed x,y € R, applying £ = 9, — A0, to (113) and using (87), (9), we obtain

With Q (x, y) given by (112). Hence comparing (113) and (114) and using the uniqueness
result of Theorem (3.43), we obtain (115).

Besides, (9), (87), (112), and Hélder inequality show that @,0,0Q, and 0,,Q € L.
Furthermore, by (115), (88), (109), and the A-independence of Q, we derive 6};63’,0 € L,
and 6};63’,0,6 Q,Q - 0asxory > oo, fori+j<k—4,i>0.

Finally, by (110) and (115), we have



Thus 0,,Q(x,y) € su(n).

Definition (3.51)[31]: For a function v € S., we define the inverse scattering
transformation S:1 on v by S-1(v) = Q, where Q is obtained by Theorems (3.43) and

(3.50).

Theorem (3.52)[31]: If Qg € Pk 1,k = 7, and there are no poles of the eigenfunction
Y, of Qy, then the Cauchy problem of the Ward equation (5) with initial condition

Q(x,v,0) = Qo(x, y) admits a global solution satisfying: fori + j+< k — 4,i?> + j2 > 0,

In this Section, we review an existence theorem of Fokas and loannidou [37] by

an analytical treatment. Under the small-data constraint, we analyze the asymptotic

behavior of the eigenfunctions. We solve the direct problem by justifying Theorems

(3.21) and (3.41). The inverse problem is complete in this Section by proving Theorems
(3.43) and (3.50). Finally, Theorem (3.51) is proved.

Given a potential 3,Q(x,y) : R X R — su(n), and a constant A € C, we consider

the boundary value problem

To investigate the problem, we denote throughout as follows.
Proof. We can apply Theorem (3.21) to find the eigenfunction ¥(x,y,0,1). By
assumption, and Theorem (3.41), S.(Q,) € S .



Now let us define v(t) by

For each t€ R, rewriting x4+ Ay + 1%t =x+ A(y + At) = x + A? (t + %y) and
modifying the approach in proving lemmas in this one can justify that v(t) € S, (see
Definition (3.2)). So v satisfies the algebraic constraints:
(i) det(v) =1;
(i) v=v*>0,
and the analytic constraints: fori +j+ h < k — 4,
(@) Lyv=0,M,v =0;
(b) 6};6;,'6{1(17 — 1) are uniformly bounded in Lo, N L,(R, dA) N L; (R, dA);
(c) 6};6;,'6{1(17 — 1) - 0 uniformly in Ly, N Ly,(R,dA) N L;(R,dA) as |x| or |y| or
t — oo;

(d) 9,v € L,(R, dA) and the norms depend continuously on x, y,

where £ = 0, — Ad,, and M, = 0, — 10,
Now we apply Theorems (3.43) and (3.50) to show the existence of ¥(x,y,t, 1)
and Q(x, y, t) satisfying (115) and (116). More precisely,

lIJ(x' y, tl
Y, -
and foreach fixed A € R,i+j+h < k — 4,
In addition,
Q(x,

andfori+j+h<k—4,i*+j*>0,



To prove (4), we note it is equivalent to prove

Applying M, to both sides of (118) and using similar approach as that in the proof of

Theorem (3.50), we obtain

Comparing (118) and (123) and using the uniqueness result of Theorem (3.43), we
obtain (122). The smooth and decay properties of Q can be derived by an argument
similar to the proof of Theorem (3.50) and conditions (120)—(121).

Since we have obtain the differentiability of ¥(x,y,t,1) and Q(x,y,t). The
compatibility condition of (115) and (122) yields (5).

We conclude this report by a brief remark on examples of Qg € P,y 1,k = 7,
and the corresponding eigenfunction ¥, has no poles. The first class of examples is
P, NS (Sis the set of Schwartz functions and IP; is defined by Definition (3.3)). To

construct an example with large norm, we let v(x, v, 1) = v(x + Ay, 1) satisfy

and for Vi,j,h = 0,

We can solve the inverse problem and obtain ¥, € S by the argument in proving

Theorem (3.21). Note here we need to use the reality condition v = v* > 0 to show the

fR Yo, (v —1)d¢, one

obtains that Q is Schwartz and possesses purely continuous scattering data.

1
2mi

global solvability. Moreover, by using the fomula Q,(x,y) =



Chapter 4

Indecomposable System of Four Subspaces and Representations of

Quivers on Infinite-Dimensional Hilbert Spaces
We extend the Coxetor functors and defect using Fredholm index. The relative
position of subspaces has close connections with strongly irreducible operators and
transitive lattices. There exists a relation between the defect and the Jones index in a
type Il; factor setting. We also show a complement of Gabriel’s theorem. Let I" be a
finite, connected quiver. If its underlying undirected graph contains one of extended
Dynkin diagrams A,(n>0),D,,(n > 4),E,,E, and Eg , then there exists an
indecomposable representation of I' on separable infinite-dimensional Hilbert spaces.
We show a generalization of the system of four subspaces with certain considerations.
We give a projection in a Hilbert space with respect to an invertible series of projections
on a subspaces of the Hilbert space. We show a reflection function of abounded self-

adjoint operator on an orthogonal complement projection.

Section (4.1): Exotic Indecomposable System of Four Subspaces and
Coxetor Functions with a Factor Verison:

One of the main problem to attack is a classification of indecomposable systems

S = (H;E,,E,, E;3, E,) of four subspaces in a Hilbert space H. In the case when H is

finite-dimensional, Gelfand and Ponomarev completely classified indecomposable

systems and gave a complete list of them in [100]. The important numerical invariants

are dim H and the defect defined by

Theorem (4.1.1)[180]: The set of possible values of the defect p(S) for indecomposable
systems S of four subspaces in a finite-dimensional space is exactly the set

{-2,-1,0,1,2}.
The defect characterizes an essential feature of the system in the case of finite

dimension as follows: If p(S) = 0, then S is isomorphic to a bounded operator system
up to permutation of subspaces, that is, there exist a permutation o on {1,2,3,4}and a

pair of linear operators A: E - FandB :F - E such thatH =E@ F,E;q) = E ©



0,Ez2) =0 F,Ep3y) = {(x,Ax) € H; x €E} and E;u) ={(By,y) €EH; y € F}. If
p(S) = +1,S is represented up to permutation by H=E@ F,E; =E®0,E, =0
F,E; and E, are subspaces of H that are not reduced to the graphs of the operators as
in the case that p(S) = 0. A system with p(S) = +2 cannot be described in the above
forms.

Following [97, 98, 99, 100, 101, 102], we recall the canonical forms of
indecomposable systems S = (H;E,, E,,E;,E,) of four subspaces in a finite-
dimensional space H up to permutation in the following:

(A) The case when dim H = 2k for some positive integer k.

There exist no indecomposable systems S with p(S) = +2. Let H be a space with
abasis{ey,...,ex fi,---, fx )}
(@) S3(2k,—1) = (H; Ey, E,, E5, E4) with p(S) = —1

(b) S3(2k, 1) = (H; El' Ez, E3, E4_) W|th p(S) = 1

(C) 51'3(2](, 0) == (H; El' Ez, E3, E4_) W|th p(S) == 0



Every other system S;(2k,p),S; j(2k,0) can be obtained from the systems
S3(2k, p),S;3(2k,0) by a suitable permutation of the subspaces. Let og;; be the
transposition (i,j). We put S;(2k,p) = 03,;53(2k,p) for p = —1,1. We also define
S;;(2k,0) = 6,405,;S, 5(2k, 0) for i, j € {1,2,3,4}.

(B) The case dim H = 2k + 1is odd for some integer k > 0. Let H be a space
with a basis {eq, ..., ex, €xr1, fir - fic)-

(e) 51(2k + 1, _1) = (H; EllEZI E3, E4_) W|th p(S) = _1

(f) SZ(Zk + 111) = (H) Ell E21E31E4-) Wlth p(S) = 1

(8) S13(2k +1,0) = (H; Eq, E;, E3, E,) with p(S) = 0

(i) Sk + 1,2) = (H; E,, E,, E5, E,)) with p(S) = 2



We put S,k +1,-1) = 01,52k + 1,-1),5;(2k + 1,+1) = 0,,S,(2k +
1,+1),5;;(2k +1,0) = 0,05 ;S,5(2k + 1,0) for i,j € {1,2,3,4}.

Theorem (4.1.2)[180]: If a system S of four subspaces in a finite-dimensional space H is
indecomposable, then S is isomorphic to one of the following systems:

S;j(m,0), (i<j,i,j€e{1,23,4,m = 1,2,...); S(2k,0; 1), A€ CA# 0,1 #
1,k=12,..), Si(m,—-1), S;(m 1), (i€{1,2,3,4},m=1,2,...); SQk+1,-2),
SQRk+1,42), (k=0,1,...).

We shall construct uncountably many, exotic, indecomposable systems of four
subspaces, that is, indecomposable systems which are not isomorphic to any closed
operator system under any permutation of subspaces [103, 104, 105, 106, 107, 108,
109, 111].
Exotic examples: Let L = £?(N) with a standard basis {e;,e,,...}. Put K = L@ L
andH=K@®K=L®@®LDLOD L. Consider a unilateral shift S : L - L by Se,, = e,

forn =1,2,.... For a fixed parameter y € C with |y| = 1, we consider an operator

LetE, =K®O0,E,=0DK,
E;={(x,T,x) e K@®K; x € K} +C(0,0,0,e,) = graph T, + €(0,0,0,¢,) , and E, = {(x,x) EK ®
K; xeK}. Consider a system S, = (H;Ey, E,, E3, E,) . We shall show that S, is
indecomposable. If |[y| > 1, then S, is not isomorphic to any closed operator systems
under any permutation. We could regard the system S, is a one-dimensional

“deformation” of an operator system. First we start with an easy fact.



Lemma (4.1.3)[180]: Assume that a bounded operator A € B(i’2 (N)) is represented as

an upper triangular matrix A = (aij)ij by a standard basis {e;, e,,...}. If the diagonal is

constant A,i.e.,a; = Afori =1,..,and A is an idempotent, then A = 0or A = I.

Proof. Put N = A — Al. Then N is an upper triangular matrix with zero diagonal.

Comparing the diagonals for

we have 22 = 1. Hence A = 0 or 1. If 1 = 0, then N2 = N. Since N is an idempotent and
an upper triangular matrix with zero diagonal, N = 0, that is, A =0. IfA =1, then
(I — A) is an idempotent and an upper triangular matrix with zero diagonal, | — A = 0,

thatis, A =1.

Theorem (4.1.4)[180]: If |y| = 1, then the above system S, = (H;E;,E;, E3, E,) is

indecomposable.

Proof. We shall show that {V € End(Sy); V2= V} ={0,1}. LetV € End(Sy) satisfy
V2 =V.Since V(E;) C E; fori = 1,2,4, we have

We write

for some A = (aij)ij'B = (bij)ij'c = (Cif)ij'D = (dij)ij € B(L). We shall investigate

the condition that V(E3) c Ej. Since E3 = graph T, + €(0, 0,0, e,), E; is spanned by

We may write



Since (e4,0,0,0) € E3, we have

Then, for any m=1,2,..., we have ¢,;;; = 4y, = 0. Moreover 0 =yAd,41 + U =
YAm+1. Hence 4,1 = 0 because y # 0. Therefore a,,111 = Ajpy1 = 0. Thus the first
column of C is zero and the first column of A is zero except a;;. We shall show that

C = 0 and A is an upper triangular Toeplitz matrix by the induction of nth column.
The case whenn = 1 is already shown. Assume that the assertion holds for nth

column. Since (e,,41,0,ye,, 0) € E5, we have

Then Cmn+1 = Um = Vlm+1in = 0. And Yamn = Vlm+1 + Um = Vlm+1 . Since
Y #0,amn = Ant1 = Qmi1nt1- Thus we have shown that C = 0and Ais an upper

triangular Toeplitz matrix. Since V is an idempotent, so is

Hence A is also an idempotent. By Lemma (4.1.3), we have two cases A = Qor A = I.

(i) The case A = 0: we shall show that B = D = 0. This immediately implies
U=0,sothatV = 0.

(i) The case A = I: Since ] — V € End(S, ) is also an idempotent and it can be
reduced to the case (i), we have V = 1.

Hence we may assume that A = 0. Since U is an idempotent, D is also an

idempotent. Since (0,0,0,e;) € E;, we have

coaO ™

oo™

(>N N

oo W



Then, for anym = 1,2, .., we have 4,, = t,, = 0. Hence b;,, = Y441 + Uy, = 0 and
Am+1,1 = Um = 0. Thus the first column of B is zero and the first column of D is zero
except d;;. We shall show that D is an upper triangular Toeplitz matrix by the induction
of nth column. The case whenn = 1 is already shown. Assume that the assertion holds

for nth column. Since (0, e,,, e, €5,41) € E3,

We have d; 41041 = Um = dmpn- Hence D is an upper triangular Toeplitz matrix. Since D
is also an idempotent, D = 0 or D = [ by Lemma (4.1.3).

If D =0, thenU = U? = 0. Thus B = 0, and the assertion is verified. We shall

show that the case when D = I will not occur. On the contrary, suppose that D = . We

have

Then, foranym =1, 2, ..., we have i, = 4,, = 0. Hence b,,; = YA 41 + Uy, = 0. Thus
the first column of B is zero. We shall show that B should be the following form by the

induction of nth column:

thatis, b;; = y*~1ifj >iandj—i = 2k —1,and b;; = 0 if otherwise.

o O OO

oo OWw



The case when n = 1 is already shown. Assume that the assertion holds for nth

column. Since

foranym = 1,2, ..., we have y,, = ;. And
that is,

By the induction we have shown that B is the above form. But then

because |y| = 1. This contradicts the fact that B is bounded. Therefore D # I. This

finishes the proof.
Theorem (4.1.5)[180]: If || =1,|yl =1 and |B| # ly|, then the above systems

SB = (H; E1,E2,Ef,E4) and Sy = (H; E1,E2,E;/,E4) are not isomorphic.

Proof. On the contrary, suppose that there were an isomorphism V : Sp — §,,. We shall
show a contradiction. We may and do assume that |8| > |y|. Since V(E;) = E; for

i=1,2,4, we have

We write

for some A = (aij)ij'B = (bij)ij'c = (Cif)ij'D = (dij)ij € B(K). We shall investigate

the condition that V(Ef) = EY. Since Ef = graph T + C(0,0,0, 61),Ef is spanned by

o O OO

oo~

IIE



We also write

Since (e4,0,0,0) € Ef, we have

Then, for any m=1,2,..., we have ¢,y = Uy, = 0. Moreover 0 = yA,01 + Uy =
YAm+1- Hence A4 = 0 because y # 0. Therefore a,,411 = A1 = 0. Thus the first
column of C is zero and the first column of A is zero except a,;. Since Ae; # 0,a,; # 0.

We shall show that € = 0 and A is an upper triangular matrix satisfying

and a;; = 0if i > j, by the induction of nth column. The case whenn = 1is already

B

shown. Assume that the assertion holds for nth column. Since (e,+1,0,e,,0) € E;,

we have

Then we have ¢y 41 = m = BCn+1n = 0. Moreover

Sincey # 0,amy1ne1 = gam’n. This completes the induction. Then we have

Q
=

0
0
0

E] =

A
C
0+,
0
A B
C D
0 0
0 0



because a;; # 0 and |§| > 1. But this contradicts the fact that the operator A is

bounded. Therefore Sg and S, are not isomorphic.

Next we shall show that if [y| > 1, then S, is not isomorphic to any closed

operator system. We introduce a necessary criterion for the purpose.

Definition (4.1.6)[180]: Let S = (H; E,,E,, E5, E,) be a system of fours subspaces. The
intersection diagram for a system S is an undirected graph I'S = (I'?, I'}) with the set of
vertices Y and the set of edges I's defined by I'Y ={1,2,3,4} and for i #j €

{1,2,3,4}

Lemma (4.1.7)[180]: Let S = S5 = (H;Ey, E,, E3,E,) be a closed operator system.

Then the intersection diagram T'S for the system S contains

that is, E,NE; =0,E; NE, =0and E, N E3 = 0. In particular, then the intersection
diagram I'S is a connected graph.
Proposition (4.1.8)[180]: If |y| > 1, then the system S, is not isomorphic to any closed

operator system under any permutation of subspaces.

Combining the preceding two propositions, we have the existence of

uncountably many, exotic, indecomposable systems of four subspaces.

Theorem (4.1.9)[180]: There exists uncountably many, indecomposable systems of four
subspaces which are not isomorphic to any closed operator system under any

permutation of subspaces.

Proof. A family {S ;v >1,7 € ]R{} of indecomposable systems above is a desired one.

Gelfand and Ponomarev introduced an integer valued invariant p(S), called

defect, for a system S = (H; E;, E,, E5, E,) of four subspaces by



They showed that if a system of four subspaces is indecomposable, then the possible
value of the defect p(S) is one of five values {—2,—1,0,1,2}. We shall extend their

notion of defect for a certain class of systems relating with Fredholm index.
Let S = (H;E,E,, E5, E,) be a system of four subspaces. We first introduce

elementary numerical invariants

Similarly put

If S'is indecomposable and dimH = 2, then m;j;, = 0 and n;j; = 0.

If H is finite-dimensional, then

In order to make the numerical invariant unchanged under any permutation of

subspaces, counting ,C, = 6 pairs of subspaces

we have the following expression of the defect:

= dir

= dir



Definition (4.1.10)[180]: Let S = (H; E, E,, E5, E,) be a system of four subspaces. For

any distinct i,j = 1, 2, 3,4, define an adding operator

Then

and

We say S = (H; E;, E;, E3, E,) is a Fredholm system if A;; is a Fredholm operator for any
i,j =1,2,3,4withi # j. Then Im Aij =E +Ejis closed and

Kato called the number dim(Ei N Ej) —dim ((El + Ej)l) the index of the pair E;, Ej in
[114].
Definition (4.1.11)[180]: We say S = (H; E,, E,,E5,E,) is a quasi-Fredholm system if

E; N Ej and (Ei + Ej)l are finite-dimensional for any i # j. In the case we define the

defect p(S) of S by

which coincides with the Gelfand—Ponomarev original defect if H is finite-dimensional.

Moreover, if S is a Fredholm system, then it is a quasi-Fredholm system and

Proposition (4.1.12)[180]): Let S; = (H; E,,E,, E5, E,) be a bounded operator system

associated with a single operator T € B(K). Then Sy is a Fredholm system if and only if

Index AU



T and T — I are Fredholm operators. If the condition is satisfied, then the defect is given

by

Similarly St is a quasi-Fredholm system if and only if Ker T,Ker T*,Ker (T —I) and
Ker (T — I)* are finite-dimensional. If the condition is satisfied, then the defect is given

by

Proof. It is clear that E; N E; = 0 and E; + E; = H for (i,j) = (1,2),(1,4),(2,4),(2,3).
Since KerA;3 =E,NE;=KerT@®O0 and (ImA;3)t =(E; +E3)t = (K @ ImT)*,
they are finite-dimensional if and only if Ker T and (ImT)* = Ker T* are finite-

dimensional. And Im A, is closed if and only if Im T is closed. We transform E5 and E,

0
I

{(x,(T-Dx)EK®K; x€K} and R(E,) =K@ 0. Hence R(E;nE,) = Ker (T —
D@®o0andR(E; + E,) = K @ Im(T —I). Then

by an invertible operator R = (_11 ) €EB(H)=B(K®K) , then R(E;)=

Thus E; N E, and (E5 + E,)* are finite-dimensional if and only if Ker (T —1I)

and (Im(T — I))l = Ker (T —I)* are finite-dimensional. And Im A3 = E; + E, is

closed if and only if Im(T — I) is closed. It follows the desired conclusion.

We shall show that the defect could have a fractional value.

Example (4.1.13)[180]: Let S be a unilateral shift on K = £?2(N). Then the operator

system S is indecomposable. It is not a Fredholm system but a quasi-Fredholm system
and p(Ss) = —g. The operator system Ss+%1 is a Fredholm system and p <Ss+%1) = —2.

Moreover (S;iq)acc iS uncountable family of indecomposable, quasi-Fredholm

systems. Fredholm systems among them and their defect are given by

1
p(Sr) = 3 (di

dim((



Corollary (4.1.14)[180]): Let S; = (H; E,,E,, E5, E,) be a bounded operator system
associated with a single operator T € B(K). If Sy is a Fredholm system, then S;+is a
Fredholm system and p(Sy+) = —p(Sy). Similarly if Sy is a quasi-Fredholm system, then

Sr+ is a quasi-Fredholm system and p(Sy+) = —p(Sy).

Proposition (4.1.15)[180]: Let S = (H; E,, E,, E5, E,) be a system of four subspaces. If S
is a Fredholm system, then the orthogonal complement S* = (H; Eit, Ey,Ex,E}) is a
Fredholm system and p(St) = —p(S). Similarly if S is a quasi-Fredholm system, then S+

is a quasi-Fredholm system and p(S*) = —p(S).

Example (4.1.16)[180]: For y € Cwith |y| > 1, let S, = (H; Ey, E;, E3, E,) be an exotic

system of four subspaces in Theorem (4.1.4). Then S, is a quasi-Fredholm system and

In fact, E; N E; = C(e4,0,0,0),E, N E; =C(0,0,0,e,) and E, N E; = C(a,0,a,0),

where a = (y*1),, € L = £2(N). All the other terms are zeros.

Definition (4.2.17)[180]: Let S = (H; E,, E,, E5, E,) be a system of four subspaces. We
say that S is non-degenerate if E; + E; = H and E;NE; =0 fori#j. If Sis non-
degenerate, then Sis clearly a Fredholm system with the defect p(S) = 0. But the
converse is not true. We have the following example due to the referee: Let S be a
unilateral shift. Consider Sg/; s+/,. Then p(SS/Z,S*/Z) = 0 by Proposition (4.1.19) below.

Since Ker S* # 0, it is seen that E, N E, # 0.

Proposition (4.1.18)[180]: Let S = (H;E,, E,, E5,E,) be a system of four subspaces.

Then S is non-degenerate if and only if S* is non-degenerate.

(
p(SS+aI) = 4|
\

p(Sy) =



Proposition (4.1.19)[180]: Let Sy s be a bounded operator system. Then St is a
Fredholm system if and only if S,T and ST — I are Fredholm operators. And if the

condition is satisfied, then

Proof. It is clear that E; N E; = 0 and E; + E; = H for (i,j) = (1,2),(1,4),(2,3). Since
KerA;; =E,NE; =KerT@® 0 and (ImA3)*t = (E; + E3)t = (K, @ ImT)L, they
are finite-dimensional if and only if KerT and (ImT)* = Ker T* are finite-
dimensional. And Im A5 is closed if and only if Im T is closed. Similarly KerA,, = E; N
E, =06 Ker Sand (Im A,,)* = (E, + E,)* = (Im S @ K,)*. Hence they are finite-
dimensional if and only if Ker S and (Im S)* = Ker S* are finite-dimensional. And

Im A,, is closed if and only if Im S is closed. Next,

Multiplying invertible operator matrices from both sides, we have

Hence Im As, is closed if and only if In(ST — 1) is closed, and (Im A3,)* is finite-

dimensional if and only if (Im(ST - I))l is finite-dimensional. Now it is easy to see the

desired conclusions.

Let S and S’ be two quasi-Fredholm systems of four subspaces. Then it is evident

that S @ S’ is also a quasi-Fredholm system and

Therefore we should investigate the possible values of the defect for indecomposable

systems.

Theorem (4.1.20)[180]: The set of the possible values of the defect of indecomposable

systems of four subspaces is exactly 7./ 3.

KerA

Im A34 =



Proof. Let S be a unilateral shift on L = #2(N). Let K =L ® C"and H = K @ K. For a

positive integer n, put

Let S, = (H; E,,E,, E5, E,) be the operator system associated with the single operator

V. We shall show that Sy, is indecomposable. Let T = (Tif)ij € B(K) be an idempotent

which commutes with V. It is enough to show that T =0 or T = I.

Since VT =TV, we have

By the Kleinecke—Shirokov theorem, T;,, is a quasinilpotent. Since T;,, commutes with a
unilateral shift S, Ty, is a Toeplitz operator. Then ||T;,|| = r(Ty,) = 0. Thus Ty, = 0 by
Halmos [115]. Inductively we can show that T;, = T3 =+ =T;, = 0. Similar
argument shows that T is a lower triangular operator matrix, i.e., T;; = 0 for i < j. Since
T2 =T, we have TZ = T;; fori = 1,...,n. The diagonal of VT = TV shows that each T};
commutes with a unilateral shift S. This implies that T;; = 0 or I as in Lemma (4.1.3).

(i) The case that T;; =0: The 2-1th component of VT =TV shows that
T,, = 8T,; — T51S. Hence T,, cannot be I. Thus T,, = 0. Similarly we can show that
T;; = 0fori =1,...,n. Thus the diagonal of operator matrix T is zero. Furthermore T is
a lower triangular operator matrix and idempotent. Hence T = 0.

(i) The case that T;; = I : Considering I — T instead of T, we can use the case (i)
and show that T = I. Therefore S}, is indecomposable.

The defect is given by

In fact,

ST11 =

p(Sy) =



is n-dimensional.
Similarly SV* is an indecomposable system with p(Sy+) = %
For n = 0, consider an indecomposable system Sg,3; as in Example after
Proposition (4.1.12). Then p(Ss,3;) = 0.
Therefore the defect for indecomposable systems of four subspaces can take any

valuein Z/3.

Corollary (4.1.21)[180]: For any n € Z there exist uncountable family of indecomposable

n

systems S of four subspaces with the same defect p(S) = 3

Proof. For a positive integer n, consider a family (Sy+q1)ae(0,1) aNd (Sy++a1)ae(o,1) Of

bounded operator systems similarly as in the above theorem. Then any Sy, is also

indecomposable and

If @ # B, then the spectrum o(V + al) # o(V + BI). Since V + al and V + BI

are not similar, Sy, 4; and Sy 4 g; are not isomorphic each other.
We also have p(Sy+1q1) = % And they are not isomorphic each other.

Forn = 0, consider a family (Ssi374q1)aefo,1]- They are indecomposable, not

isomorphic each other and p(Sg;374+a1) = 0.

In [100] Gelfand and Ponomarev introduced two functors ®* and ®~ on the

category of systems S of n subspaces in finite-dimensional vector spaces. They used the
functors ®* and @~ to give a complete classification of indecomposable systems of four
subspaces with defect p(S) # 0 in finite-dimensional vector spaces. If the defect
p(S) <0, then there exists a positive integer £ such that (®*)*=1(S) # 0 and
(®*)¢(S) = 0. Combining the facts that indecomposable systems 7" with ®*(7) = 0

can be classified easily and that S is isomorphic to (and recovered as)

KerV* ={



(D) 1(dH)P1(S), they provided a complete classification. A similar argument holds
for systems S with defect p(S) > 0.
In their argument the finiteness of dimension is used crucially. In fact if an
indecomposable system S = (H; E,, E,, E5, E,) with dimH > 1 satisfies that the defect
p(S) <0, then ®*(S) = (H*; Ef,ES,ES, Ef) has the property that dimH* < dimH.
The property guarantees the existence of a positive integer £ such that (®*)¢(S) = 0.
Although we cannot expect such an argument anymore in the case of infinite-
dimensional space, these functors ®* and ®~ are interesting on their own right.
Therefore we shall extend these functors ®* and ®~ on infinite-dimensional Hilbert
spaces and show that the Coxeter functors preserve the defect and indecomposability

under certain conditions.

Definition (4.1.22)[180]: Let Sys™ be the category of the systems of n subspaces in
Hilbert spaces and homomorphisms. Let S = (H; E4, ..., E,) be a system of n subspaces

in a Hilbert space H. Let R :== @], E; and

Define ST = (H*; Ef,...,E}) by

let 7 = (K; Fy,...,E,) be another system of n subspaces in a Hilbert space K and
@ : S — T be a homomorphism. Since ¢ : H — K is a bounded linear operator with
@(E;) c F;, we can define a bounded linear operator ¢* : H* - K* by ¢ (x4,...,x,) =
(@(xy),...,0(x)). Since @t (E}) c Fit, " defines a homomorphism ¢* : S* - T+,

Thus we can introduce a covariant functor ®* : Sys™ — Sys™ by

Example (4.1.23)[180]: If S = (C; C, C, ©), then ST = (€?; €(1,0),€(0,1),C(1,1)).

Lemma (4.1.24)[180]: Let S = (H;E,, E,,E5,E,) be a system of four subspaces and
consider ST = (H*; E{ ,ES,E,E]). Then



In particular, we have dimE; NEy = dimE;NE,. Same formulae hold under

permutation of subspaces.

Proof. Let x = (xq,x5,x3,x4) € Ef NES, thenx; = x, = 0. Sincex € H, 7(x) = x5 +
x,=0.Thusa = x3 = —x, € ENE,and x = (0,0,a,—a). The converse inclusion is

clear.

Lemma (4.1.25)[180]: Let S = (H;E,, E,,E5, E,) be a system of four subspaces and
consider S* = (H*; E{f,ES ,Ef ,Ef). IfEsNE, =0and E; + E, = H, thenE{ + E; =

H™. Same formulae hold under permutation of subspaces.

Proof. Let z = (zy,2,, 25,2,) € H*. Puty, := z; and x, = z,. Since E5 + E, = H, there
exist y; € E3 and y, € E, such that —y; =y; +y,. Since y; +y;+y, =0,y =
(y1,0,v3,y,) € H*. Similarly there exist x5 € E5 and x, € E, such that —x, = x5 + x4,

so that x :== (0,x,,x3,x,) €E H .

Sincez € H*,z, + z, + z3 + z, = 0. Hence

Because E; N E, =0, we have z; = x3 +y;and z, = x4, +y,. Thereforez=x+y €
E}f + EF.
Example (4.1.26)[180]: Let Sg = (H; Ey, E,, E5, E,) be a bounded operator system.
Combining the preceding two Lemmas (4.1.24) and (4.1.25) with a characterization of
bounded operator systems, we have that S* = (HY;E)f,ES ,Ef,ES) is a bounded
operator system up to permutation of subspaces. More precisely, (H*; E5 ,EJ, E{ ,EY)
is a bounded operator system.

Let 0DE, DO=0D--- DODE, DP0OD---DP0cR and q; € B(R) be the
projection onto 0 @ E; @ 0. Let 1, : H* - R be a canonical embedding. Then we have

an exact sequence:

Z3 +



Furthermore we have

Ker tq;
These properties characterize S* = (H*; Ef,E5 ,E{, Ef).
In general we have
Corollary (4.1.27)[284]: Let S = (H; E,,, Ey 41, Eny2, Eny3) be a system of four subspaces
and consider S* = (HY; EXE [ Ef 5 EX ) IfEgys NEpis =0and Eyyp + Epys =
H, then E;f + E;f,, = H". The Same formular hold under permutation of subspaces.
Proof. Let z = (Z,, Zn41, Zns2 Znss) € H . Lut y, =z, and X,4q = Zp4q . Since
Eny2 + Enyz = H. Then yu,p € Enyp and 3 € Ejyz such that —y, = yuio + Yigs-
Since Vp 4 Vnyz + Vnez = 0,7 = (1,0, Vna2 Vnes) € HY . Similarly there exist
Xni2 €EEnyy, and x5 € E, 3 such that —x,,1 =Xp42 +Xu43 , SO that
x = (0,Xp41, Xn42 Xny3) € H.
Sincez € H,z, + Zy 41 + Zp42 + Zny3 = 0. Hence
Zni2 T Znyz = —Z
= ez +

Because E,,, NE,,3 =0, we have z,,2 =X, + Vpyo and Z, 13 = Xp43 + Vnis -

Thereforez=x+y € E;f + E},,.

Proposition (4.1.28)[180]: Let X, Y and Z be Hilbert spacesandT : X - Yand S :Y — Z

be bounded linear maps. Suppose that a sequence

is exact. Letpy,...,p, € B(Y) be projections with ¥;p; =1 and p;p; =0 for i # j .

Furthermore we assume that

Let E; =1Im Sp; € Z and E{ := Ker p;T c X . Define S = (Z;E;,...,E,) and S’ =
(X;E,...,E,). Then S’ = ®*(S).

Definition (4.1.29)[180]: In [100] Gelfand and Ponomarev introduced a dual functor ®~

using quotients of vector spaces. If H is a Hilbert space and K a subspace of H, then it is



convenient to identify the quotient space H/K with the orthogonal complement K+.
Therefore we shall generalize their functor @~ in terms of orthogonal complements
instead of quotients in our case of Hilbert spaces. Let S = (H; E,, ..., E,,) be a system of
n subspaces in a Hilbert space H. Let e} € B(H) be the projection onto Ej* € H. Let

Q=@ Efand

Then u* : Q - His given by u*(yq,..., ) = 2=, v;. Define H™ := Ker u* c Q. Let
1_: H™ - Q be a canonical embedding. Then g_ := 1~ : Q = H™ is the projection. Let
0OPEPO:=0D - PODEDPO---P0cQ and r; € B(Q) be the projection

onto 0 @ E* @ 0. Define S~ = (H™;Ey,...,Ey) by

We note that

We have an exact sequence

and a sequence

satisfying that Im u = Ker q_ and q_ is onto. Thus it is easy to see that our definition of
S~ =(H";Ef,...,E;) coincides with the original one by Gelfand and Ponomarev up to

isomorphism in the case of finite-dimensional spaces.

Define ®(S) :=S~ = (H;E{,...,E;). Then there is a relation between S*
and S™. We recall some elementary facts first.
Lemma (4.1.30)[180]: Let H and K be Hilbert spaces and M a closed subspace of H. Let

T : H - K be a bounded operator. Consider T* : K - H. Then T(M+) = ((T*)‘l(M))l c
K.



Lemma (4.1.31)[180]: LetL be a Hilbert space and M, K closed subspaces of L. Let
Py € B(L) be the projection onto K. Then Px(M+) = K n (K n M)*.

Proof. By the preceding lemma,

Decompose x € L such that x = x; + x, with x; € K,x, € K*. Then Pyx € M if and
only if x; € M. Therefore (PK(ML))l =(KnM)+K*+t. Thus P. (ML) =Kn(Kn

M)t
Proposition (4.1.32)[180]: LetS = (H;E,,...,E,) be a system of n subspaces in a

Hilbert space H. Then we have
Proof. Since ®1(S) = (H; E{, ..., Ei}), we have

where H' = {(yy,...,y,) € ®", Ei*; y, + - - +y,, = 0}. Therefore we have H' = H™.
Applying the preceding lemma by putting L = @™, EX,M = {(y4,...,y,) €
L; y, =0}and K = H™ C L, we have

Therefore (E;)t = (Eif)* in H. Hence ®1®~(S) = @*PL(S). This implies the
conclusion.

let S = (H;E,,...,E,) be a system of n subspaces in a Hilbert space H and

T = (K; F,,...,E,) be another system of n subspaces in a Hilbert space K. Let

@ :S > T be a homomorphism, i.e., ¢ : H—> K is a bounded linear operator with

@(E;) c F;. Define ¢~ : ®(S) » &~ (T) by

Thus we can introduce a covariant functor @~ : Sys™ — Sys™ by

<

Q



Remark (4.1.33)[180]: LetS = (H;E,,...,E,) be a system of n subspaces in a Hilbert
space H. LetR =@, E;and7: R —> His given by t(x) = X", x;. Let H® := Kert

and qo : R > H® be the canonical projection. Define EQ := qo(0 @ E; @ 0). Let
§9:= (H%EY,...,ER) and ®°(S) = S°. Then we have

Furthermore

Suppose that H is finite-dimensional. Then

In particular, if S = (H; Ey,E,, E5, E,) is an indecomposable system of four subspaces

with dim H = 2, then dim H® = Y, dim E; — dim H and the defect

We shall characterize @~ (S). The following fact is useful: Let H and K be Hilbert spaces
and T : H — K be a bounded linear operator. Then Im T is closed in K if and only if

Im T*is closed in H.

Proposition (4.1.34)[180]: Let U,V and W be Hilbert spaces and A: U — V and

B : V = W be bounded linear operators. Suppose that a sequence

is exact. Let py,...,p, € B(V) be projections with };p; =1 and p;p; =0 for i # j.

Furthermore we assume that

Let L;:==ImBp,cW and L;:=KerpAcU . Define S=(U;L,,...,L,) and
S'=W;L,...,L,). Then S’ = ®~(S).

Proof. Since Im B = W is closed, Im B* c V is also closed. Then

dim H® =



and KerB* = (Im B)* = W+ = 0. Hence the dual sequence

is exact. We shall apply Proposition (4.1.28) by putting X =W,Y =V,Z=U,T = B*

and S = A*. We can check the assumption of the proposition. In fact,

K
and Im Sp; = Im A*p; = Im(p;A)* is closed, because Im (p;A) is closed. Let
E
and
E
Then (X; Ey,...,E;) = ®*(Z; E,, ..., E,), thatis, we have
Thus (§')* = ®*(S1). Hence
Proposition (4.1.35)[180]: Let S and T be systems of n subspaces in a Hilbert space H.
Then we have @t (S @ T) = ®*(S) @ ©*(T),
P (SPT)

Definition (4.1.36)[180]: Let S = (H; E,, ..., E,,) be a system of n subspaces in a Hilbert

space H. Then S is said to be reduced from above if forany k = 1,...,n

In particular we have E;, € ;. E;. Similarly S is said to be reduced from below if for

anyk=1,...,n



In particular we have Eif € Y. E- and N, E; = 0.

It is evident that S @ T is reduced from above if and only if both S and 7 are
reduced from above. Similarly S @ T is reduced from below if and only if both S and T

are reduced from below.

Example (4.1.37)[180]: (a) Any bounded operator system is reduced from above and
reduced from below. In factE; + E, = H,E; + E, =H,E, + E, = Hand E{* + EJ =
H,E}f +Ef =H,E}f + E}f =H.

(b) The exotic examples are reduced from above and reduced from below.

We shall show a duality theorem between Coxeter functors ®* and ®~.
Theorem (4.1.38)[180]: Let S = (H;E,, ..., E,) be a system of n subspaces in a Hilbert

space H. Suppose that S is reduced from above. Then we have

Proof. Let R = @, E;. Consider a sequence

Ly T
Ht*—R—H — 0.

Since S is reduced from above, Im 7 = Y, E; = H. Thus the above sequence is exact.
Let p; € B(R) be the projection onto 0 @ E; @ 0. We shall apply Proposition (4.1.34)
by putting U = H*,V = R,W = H,A = 1, and B = 7. We can check the assumption of
the proposition. In fact, since Sis reduced from above, for any x; € Ej, there exist
x; € E;fori # k such thatx; = X,z —x;. Then X, x; =0, that is, x :== (x;); E H*.

Then

Thus ImpA = 0@ E;, @ 0 = Im p;, and Im p, A is closed. Therefore (W; L},..., L) =
&~ (U; Ly,...,L,). Since

and



we have

Similarly we have the following:

Theorem (4.1.39)[180]: Let S = H; E,,...,E,) be a system of n subspaces in a Hilbert

space H. Suppose that S is reduced from below. Then we have

Proof. If S is reduced from below, then S is reduced from above. Hence ®~®*(S1) =

St.Then

Proposition (4.1.40)[180]: Let S = (H;E,,...,E,) be a system of n subspaces in a
Hilbert space H. Then ®*(S) = O ifand only if forany k = 1,...,n

Proof. It is easy to see that ®*(S) =0 if and only if for any x; € E; with
i=1,...,n Y;x; = 0implies x; = -+ =x, = 0. The latter condition is equal to that

E. N QizkE)) =0foranyk =1,...,n.
The above condition that E;, N (3. E;) = 0for any k = 1,...,nis something

like an opposite of that S is reduced from above.

Proposition (4.1.41)[180]: Let S = (H;E,,...,E,) be a system of n subspaces in a
Hilbert space H. Then ®*(S) =0 and Y-, E; is closed in H if and only if
(H;Ey, ..., Ep, &1 E)?Y) is isomorphic to a system of direct sum decomposition, that
is, there is an orthogonal direct sum decomposition K = @™ K; of a Hilbert space K
and (H; Ey, ..., E,, O, E))1) is isomorphic to a system (K; Ky, ..., Kn41), in particular

S is isomorphic to a commutative system.
Proof. Assume that ®*(S) = 0and X, E; is closed in H. Let E, ., = QM E)L. Let
R=@M"'E andK; =0D - - DODE DOD---D0cR. Define ¢:K - H by

@((x;);) = X x;. Then the bounded operator ¢ is onto, because };I*, E; is closed in H.

IR



Since ®*(S) = 0,9 is one to one by the preceding proposition. It is clear that
¢(K;) = E;. Hence (H;E,,...,E,.1)is isomorphic to (K;Kj,...,K,+1). The converse

and the rest are trivial.

Example (4.1.42)[180]: Let T € B(K) be a positive operator with dense range and
InT#K. letH=K®K,E;, =K®0andE, =graphT. PutS = (H;E{,E;). Then
®*(S) =0and (E; + E;)t = 0. But (H;E,,E,,0) is not isomorphic to a system of

direct sum decomposition. In fact E; + E, = K @ Im T is not closed.
We also have the following:

Proposition (4.1.43)[180]: Let S = (H; E;, ..., E,) be a system of n subspaces in a Hilbert
space H. Then ®~(S) = 0ifand only if forany k = 1,...,n

Proposition (4.1.44)[180]): Let S = (H;E,,...,E,) be a system of n subspaces in a
Hilbert space H. If S is reduced from above and S # 0, then ®*(S) # 0. Similarly if S is
reduced from below and S # 0, then ®~(S) # 0.

Proof. Suppose that E; = O foranyi =1,...,n. Then H = Z?;ll E; = 0. This contradicts
the assumption that S # 0. Therefore E}, # 0 for some k. Since Y, E; = H, for a non-
zero xy € Ej, there exist x; € E, for i # k such that —x, = Y;40X; . Therefore

x = (xq,...,x,) € H* is non-zero, that is, ®*(S) # 0. The other is similarly proved.

Remark (4.1.45)[180]: By Proposition (4.1.34), if a system of n subspaces S =
(H;E,,...,E,) isindecomposable and dim H > 2, then for any distinct n — 1 subspaces

Ei,...,E;,_,, we have that

that is,



Unless H is finite-dimensional, these conditions seem to be weaker than that S is

reduced from below and above.

Remark (4.1.46)[180]: Let S = (H; E,,...,E,) be a system of n subspaces in a Hilbert
space H and consider ST = (H*; Ef,...,E}Y). Then for any distinct n — 1 subspaces

Ef,...,E}__,wehave that

In fact, for example, let (xq,...,x,) € NP1 Ef. Thenx; = x, = -+ = x,_; = 0. Since

(x1,...,x,) € H*, we have X, x;, = 0. Hence x,, = 0. Thus N}1 Ef = 0.

On the other hand the above condition implies that

This condition is a little weaker than that S* is reduced from below unless H is finite-
dimensional.

Consider S~ = ®LP*TPL(S) similarly. Then we have

The condition is a little weaker than that S~ is reduced from above unless H is finite-
dimensional.

Theorem (4.1.47)[180]): Let S = (H;E,, ..., E,) be a system of n subspaces in a Hilbert
space H. Suppose that S is reduced from above and St = ®*(S) is reduced from below.
If S is indecomposable, then ®*(S) is also indecomposable.

Example (4.1.48)[180]: Llet S, = (H;E;,E,, E5,E,) be an exotic example. Since
E;+E; =H and E; N E; = 0 for distinct i,j € {1,2,4}, we have E} +E;, = H and



Ef NE} =0 for distinct k,m € {3,4} or k,m € {1,3} or k,m € {2,3} by Lemmas
(4.1.24) and (4.1.25). Since Ef + E}, = H'is closed, (Ef)* + (Ejf)* is closed. Hence
(E)* + (Ef)*t = H. Therefore S, is reduced from above and CD*(Sy) is reduced from

below. Since S, is indecomposable, CD*(Sy) is also indecomposable.

Similarly we have the following:

Theorem (4.1.49)[180]: Let S = (H;E,, ..., E,) be a system of n subspaces in a Hilbert
space H. Suppose that S is reduced from below and S~ = ®~(S) is reduced from above.

If S is indecomposable, then ®~(S) is also indecomposable.

We shall show that the Coxeter functors ®* and @~ preserve the defect under
certain conditions.

Let S = (H; E,,..., E,) be a system of n subspaces in a Hilbert space H. Consider
St=(H%YE!, ..., Ef). LetR = @™, E; and p, € B(R) be the projection of R onto H*.
Let e; € B(H) be the projection of H onto E;. Recall that 7: R - H is given by
w(a) =Y, q;fora = (ay,...,a,) ER.
Lemma (4.1.50)[180]: Suppose that ), , e; is invertible. Then fora = (a4,...,a,) €R

we have

Proof. Recall that t* : H — R is given by t*(y) = (e;y,...,e,Yy) for y € H. Consider the
orthogonal decomposition R = H* @ (H*)*. Since Ht = Ker t, (H*)* = Im t* in R.

Define

Then

1(x) = Z

k=1



Therefore x € H* . Put y = (QX, ei)‘l(r(a)) €H. Then t*(y) = (e1y,...,e,y) €
(H*)t.Sincea=x+1*(y) € H* @ (H*)%, we have py(a) = x.

Corollary (4.1.51)[180]: Suppose that };*-, e; is invertible. Then Im ©* is closed and

Lemma (4.1.52)[180]: LetS = (H;E,,..., E,) be a system of n subspaces in a Hilbert
space H. Let e; € B(H) be the projection of H onto E;. Then

Moreover Y7, E; is closed if and only if Y., e; has a closed range.
Proof. See [116] for several facts on operator ranges. LetT = (Tif)ij € B(H™) be an

operator matrix defined by T;; =e; and T;; =0 for i # 1. Recall that ImT =
Im((T T*)l/z) for any operator T . Since ImT=QL, E)DODHODHO and
Im((T T*)1/2) = (Im((Z?zlei)l/z)) D0 D 0®O0, we have Y, E; = Im((TL, e,)2/2).

It is a known fact that Im A is closed if and only if Im A'/2is closed for any
positive operator A € B(H). This implies the rest.
Corollary (4.1.53)[180]: Let S = (H; E4,...,E,) be a system of n subspaces in a Hilbert
space H. If S is reduced from above, then f = )| e, is invertible.
Proof. Let x € Ker f. Then (e;x|x) = 0 so that e;x = 0. Since S is reduced from above,
x € N;Ef =0. ThusKer f = 0. ThenIm f = (Ker f)* = H. Since Sis reduced from
above, )., E; = H is clearly closed. By the preceding lemma, f has a closed range.

Thus Im f = H. Therefore f is invertible.

Lemma (4.1.54)[180]: Suppose that S is reduced from above. Then fork = 1,...,n

(Eg



Proof. Since S is reduced from above, we have Im pip, = 0 @ Ej, @ 0. In fact, for any

ai € Ey, there exist a; € E;, (i # k) such that —a;, = };zx ;. Then (a,,...,a,) € H*

and

Pk
The converse inclusion is trivial. Since Im ppy, = 0 @D E;, @ 0is closed, (Im pypy)* =
Im pypy is also closed. Hence

(E¥)
Therefore the conclusion follows from Lemma (4.1.49).
Proposition (4.1.55)[180]: Let S = (H; E,, E,, E5, E,) be a system of four subspaces and
St = (H* Ef,Ef ,Ef,E]). Suppose that S is reduced from above. Then f := e, + e, +
e; + e, is invertible and

(ES)*Hr

= {(e
Moreover we have
The same formulae hold under permutation of subspaces.
Proof. Letx = (xq, X, x3,x4) € (E;)1 N (ES)L. Then by the preceding lemma, there
exist a; € E; and a, € E, such that

P
Put u:=f"1(a,—a,) €EH . Then a; =eju,a, =—e,u,esu=0 and e,u=0 .
Therefore u € Ef N E; and

X =

Conversely suppose that



for some u € Ef NE;. Put a, :== e;u € E; and a, := —e,u € E,. Since ezu = 0 and

esu = 0, we have

Because f is invertible, u = f~1(a; — a,). Therefore

On the other hand, a; = e;u = e;f "1(a; — a,). Hence

Since a, = —e,u = —e,f "1(a; — a,), we have

Since e5f "1(a; —a,) = e;u =0, we have e5f 1a; = e;fla,. Similarly e,f "1a; =

e.f "la,. Therefore

Thus x € (E;H)L n (E;)L.
Moreover define T : Ef N Ef — (Ef)* n (Ef)* by

foru € E3 N E;. Then T is a bounded, surjective operator. We shall show that T is one
to one. Suppose that Tu = 0. Since e,f "te;u = 0, f ~le;u € E3. Similarly f~teju € Ey

and f~le u € E. Since S is reduced from above,

Hence e;u = 0. Similarly we have e;u = 0. Therefore fu = e;u + e;u + esu + e u =
0. Since f is invertible, u = 0. Thus T is an invertible operator. Therefore dim((E{)* n

(E¥)*) = dim(E5 n Ey).
Theorem (4.1.56)[180]): Let S = (H;E,,E,, E5,E,) be a system of four subspaces.
Suppose that S is reduced from above. If S is a quasi-Fredholm system, then ®*(S) is

also a quasi-Fredholm system and

Theorem (4.1.57)[180]): Let S = (H;E,,E,,E5,E,) be a system of four subspaces.
Suppose that S is reduced from below. If S is a quasi-Fredholm system, then ®~(S) is

also a quasi-Fredholm system and



Proof. Recall that S is reduced from below if and only if ®1(S) is reduced from above,
and Sis a quasi-Fredholm system if and only if ®1(S)is a quasi-Fredholm system.
Applying the preceding theorem, ®7(§) = ®1d+*dL(S)is a quasi-Fredholm system

and

Example (4.1.58)[180]: Let S be an operator system. Since E; =K@ 0,E, =0 K,
we have that f = Y,}_, e; > I is invertible. Moreover if S = Sy is associated with a single
bounded operator T, then E,={(x,x) € H; x €K}. Thus E;+E;=H for (i,j) =
(1,2),(1,4),(2,4) and S is reduced from above. Therefore, if Sy is a quasi-Fredholm
system, then ®*(S;) is also a quasi-Fredholm system and p(CIJ+(ST)) = p(Sy).
Similarly, let S, be an exotic example. Then S, is reduced from above and f is invertible.

Since S, is a quasi-Fredholm system, CD+(S],) is also a quasi-Fredholm system and

p ((D+(Sy)) = p(Sy).

We consider the relative position of subspaces in a factor. There exists a relation
between the defect and the Jones index [102] in a type II; factor setting.
Definition (4.1.59)[180]: Let M be a factor on a Hilbert space H. We say that
S =(M; ey,...,e,) is a system of n projections in M if e4, ..., e, are in fact n projections
in M. If M = B(H), then we can identify the system § = (M; e, ..., e,) with the system
(H;Ey,..., E,) of n subspaces in a Hilbert space H, where E; is the range of e; for
i=1,...,n. Two systemsS = (M; ey,...,e,) and S = (M; ey,...,e;,) are isomorphic

in M if there exists an invertible operator t € M such that

fori =1,...,n.
Example (4.1.60)[180]: Let M be a factor of type II; and N € M be a subfactor. Consider
n intermediate subfactors N C Kj,..., K;, C M. Let e, be the Jones projection of L*(M)

onto the subspace L?(K;) for i = 1,...,n. Since the Jones projections ek, ---, €k, are in



the basic construction < M, ey >, we have a system § = (< M, ey >; 3K1:---:3Kn) ofn

projectionsin < M, ey >.
Definition (4.1.61)[180]: Let M be a factor of type II; with the normalized trace 7. Let
S = (M; ey, e, e3,e,) be a system of four projections in M. We define the defect p(S)

of S (relative to M) by

In the setting above, we have a relation between the defect and the Jones index.
Proposition (4.1.62)[180]: Let M be a factor of typell; and N € M be a subfactor of
finite index. Let N C K, K;, K3, K, € M be intermediate subfactors. Consider the system

S = (< M, ey >; eg,, €K2:€K3:€K4) of four projections in < M, ey >. Then

Corollary (4.1.63)[284]: Suppose that Z;-l:lZ?:le] is invertible. Then for a =

i

(a,...,a,) € R, we have

Proof. Let7*: H » R is given by 7°(y) = (e{y,...,e,{y) foryeH. ForR=H"®
(HY)t.Since HY = Ker t,(H*)! = Im 7* in R. We can define

Hence x € H*. If we let y := (Z7=1Z?=1 ej)_l(r(a)) € H.Then*(y) = (ely,...,ely) €

i

(H")*.Nowsincea = x + t*(y) € H* @ (H*)*, we have pé(a) = Xx.

p(S

n

1(x) = Z

k=1



Section (4.2): Indecomposable Representations of Quivers on Hilbert
Spaces:

We studied the relative position of several subspaces in a separable infinite-
dimensional Hilbert space in [2] after Gelfand and Ponomarev [3]. We extend it to the
relative position of several subspaces along quivers. More generally we study
representations of quivers on infinite-dimensional Hilbert spaces by bounded operators.
We call them Hilbert representations for short.

Gabriel’s theorem says that a finite, connected quiver has only finitely many
indecomposable representations if and only if the underlying undirected graph is one of
Dynkin diagrams A, D,,, E¢, E;, Eg [4]. The theory of representations of quivers on finite-
dimensional vector spaces has been developed by Bernstein, Gelfand and Ponomarev
[5], Brenner [6], Donovan and Freislish [7], Dlab and Ringel [8], Gabriel and Roiter [9],
Kac [10], Nazarova [11], . . . . Infinite-dimensional representatios of quivers have also
been investigated in purely algebraic setting. See Krause and Ringel [12] and Reiten and
Ringel [13].

Locally scalar representations of quivers in the category of Hilbert spaces were
introduced by Kruglyak and Roiter [14]. They associate operators and their adjoint
operators with arrows and classify them up to the unitary equivalence. They proved an
analog of Gabriel’s theorem. Their study is connected with representations of x-algebras
generated by linearly related orthogonal projections, see for example, S. Kruglyak, V.
Rabanovich and Y. Samoilenko [15].

We study duality theorem between reflection functors and the existence of
indecomposable representations of quivers on infinite-dimensional Hilbert spaces. We
associate bounded operators with arrows but we do not associate their adjoint
operators simultaneously as in [14].

In particular if we consider a certain quiver I' whose underlying undirected graph
is the extended Dynkin diagram 54, then indecomposability of Hilbert representations
of I' is reduced to indecomposability of systems of four subspaces studied in [3] and [2].

We consider a complement of Gabriel’s theorem for Hilbert representations and prove



one direction: If the underlying undirected graph of a finite, connected quiver I’
contains one of extended Dynkin diagrams 4, (n > 0),D, (n > 4), E;, E; and Eg, then
there exists an indecomposable representation of I" on separable infinite-dimensional
Hilbert spaces. The result does not depend on the choice of orientation. But we cannot
prove the converse. In fact if the converse were true, then a long standing problem in
[16] on transitive lattices of subspaces of Hilbert spaces would be settled.
Recall that we study relative position of n subspaces in a separable infinite-
dimensional Hilbert space in [2]. See Y.P. Moskaleva and Y.S. Samoilenko [17] on a
connection with *- algebras generated by projections. Let H be a Hilbert space and
E,,...E, be n subspaces in H. Then we say thatS = (H;E,,...,E,)is a system ofn
subspaces in H or an n-subspace system in H. A system S is called indecomposable if S
cannot be decomposed into a non-trivial direct sum. For any bounded linear operator A

on a Hilbert space K, we can associate a system S, of four subspacesin H = K @ K by

In particular on a finite-dimensional space, Jordan blocks correspond to indecomposable
systems. Moreover on an infinite-dimensional Hilbert space, the above system Sy is
indecomposable if and only if A is strongly irreducible, which is an infinite-dimensional
analog of a Jordan block, see Jiang and Wang [18,19]. For example, a unilateral shift
operator is a typical example of strongly irreducible operator. Such a system of four
subspaces give an indecomposable Hilbert representation of a quiver with underlying
undirected graph 54 . We transform these representations and make up
indecomposable Hilbert representations of other quivers. In purely algebraic case many
such functors are introduced, in [7,9] and [20], for example. We follow some of their
constructions. But we have not vyet checked all such functors preserve
indecomposability in infinite-dimensional Hilbert setting in general. We need to prove
the indecomposability of the Hilbert representations in our concrete examples directly.
We have the following: Let I' be a finite, connected quiver. If its underlying
undirected graph contains one of extended Dynkin diagrams 4, (n > 0),D,,(n >

4),E,, E, and Eg, then there exists an indecomposable representation of I" on separable



infinite-dimensional Hilbert spaces. There were two difficulties which did not appear in
finite-dimensional case. Firstly we need to find indecomposable, infinite-dimensional
representations of a certain class of I'. We constructed them by studying the relative
position of several subspaces along quivers, where vertices and arrows are represented
by subspaces and natural inclusion maps. Secondly we need to change the orientation
of the quiver preserving indecomposability. Here comes reflection functors. Being
different from finite-dimensional case, we need to check the co-closedness condition at
sources to show that indecomposability is preserved under reflection functors. We
introduce a certain nice class, called positive-unitary diagonal Hilbert representations,
such that co-closedness is easily checked and preserved under reflection functors at any
source.

We believe that there exists an analogy between study of Hilbert
representations of quivers and subfactor theory invented by V. Jones [21]. In fact Dynkin
diagrams also appear in the classification of subfactors, see, for example, Goodman, de
la Harpe and Jones [22], Evans and Kawahigashi [23]. But we have not yet understood
the full relations between them.

There exists a close interplay between finite-dimensional representations of
quivers and finite-dimensional representations of path algebras in purely algebraic
sense. Any Hilbert representation of a quiver gives an operator algebra representation
of the corresponding path algebra. Therefore we expect some relation between Hilbert
representations of quivers and certain operator algebras associated with quivers. There
exist some related works. See, for example, P. Muhly [24], D.W. Kribs and S.C. Power
[25] and B. Solel [26]. But the relation is not so clear for us.

Throughout the paper a projection means an operator e with e2 = e = e* and
an idempotent means an operator p with p> = p. By a subspace we mean a closed
subspace unless otherwise stated.

In purely algebraic setting, it is known that if a finite-dimensional algebra R is not

of representation-finite type, then there exist indecomposable R-modules of infinite



length as in M. Auslander [27]. Since we consider bounded operator representations on

Hilbert spaces, the result in [27] cannot be applied directly.

A quiver I' = (V,E, s, r) is a quadruple consisting of the set V of vertices, the set

E of arrows, and two maps s,r : E = V, which associate with each arrow a € E its
support s(a) and range r(a). We sometimes denote by a : x - y an arrow with
x = s(a) and y = r(a). Thus a quiver is just a directed graph. We denote by |I'| the
underlying undirected graph of a quiver I'. A quiver I" is said to be connected if |I'| is a

connected graph. A quiver I is said to be finite if both VV and E are finite sets.

Definition (4.2.1)[1]: Let ' = (V,E,s,r) be a finite quiver. We say that (H,f) is a
Hilbert representation of I' if H = (H,,),ey is a family of Hilbert spaces and f = (f,) qek

is a family of bounded linear operators f, : Hgg) = Hy(q)-

Definition (4.2.2)[1]: Let I = (V,E,s,r) be a finite quiver. Let (H,f) and (K, g) be
Hilbert representations of I'. A homomorphism T : (H,f) - (K,g) is a family

T = (T,)pey of bounded operators T,, : H, — K, satisfying, for any arrow a € E

The composition T o S of homomorphisms T and S is defined by (T o S), =T, o S, for
v € V. Thus we have obtained a category H Rep(I") of Hilbert representations of I".

We denote by Hom((H,f),(K,g)) the set of homomorphisms T : (H, f) -

(K,g). We denote by End(H, f) = Hom((H,f),(H,f)) the set of endomorphisms.

We denote by

the set of idempotents in End(H,f). Let 0 =(0,),ey be the family of zero
endomorphisms 0,, and I = (I,,),ey be the family of identity endomorphisms I,,. The
both 0 and I are in Idem(H, f).
let I'=(V,E,s,r) be a finite quiver and (H,f),(K,g) be Hilbert
representations of I'. We say that (H,f) and (K, g) are isomorphic, denoted by
(H,f) = (K, g), if there exists an isomorphism ¢ : (H, f) - (K, g), that is, there exists



a family ¢ = (¢,)yey of bounded invertible operators ¢,, € B(H,, K,,) such that, for any

arrow a € E,

We say that (H,f) is a finite-dimensional representation if H, is finite-
dimensional for all v € V. And (H, f) is an infinite-dimensional representation if H,, is

infinite-dimensional for some v € V.

In this section we shall introduce a notion of indecomposable representation,
that is, a representation which cannot be decomposed into a direct sum of smaller
representations anymore.
Definition (4.2.3)[1): LetI’ = (V,E,s,r) be a finite quiver. Let (K, g) and (K',g") be
Hilbert representations of I'. Define the direct sum (H, f) = (K, g) & (K',g') by

We say that a Hilbert representation (H, f) is zero, denoted by (H, f) = 0, if
H,=0foranyv € V.
Definition (4.2.4)[1]: A Hilbert representation (H, f) of I' is called decomposable if
(H, f) is isomorphic to a direct sum of two non-zero Hilbert representations. A non-zero
Hilbert representation (H,f) of I' is said to be indecomposable if it is not
decomposable, thatis, if (H, f) = (K,g) @ (K',g’) then (K,g) =0or (K',g') = 0.

We start with an easy fact. Let H be a Hilbert space and K;, K, be closed
subspaces of H. Assume that K; N K, = 0 and H = K; + K,. But we do not assume that
K; and K, are orthogonal. Let T : H - H be a bounded operator with TK; c K; for
i = 1,2. Define S; = T|k,: K; = K;. Consider the (orthogonal) direct sum K; & K, and
the bounded operator S; @ S, on K; @ K,. Define a bounded invertible operator
¢ :H - K, &K, by@(h) = (hy,h,) for h = hy + h, with h; € K;, as in the proof of [2]
Thenwe have T = ¢ 1o (5; B S,) o .

The following proposition is used frequently to show the indecomposability in
concrete examples.
Proposition (4.2.5)[1]: Let (H, f) be a Hilbert representation of a quiver I'. Then the

following conditions are equivalent:



(@) (H,f) isindecomposable.
(b) Idem(H, f) = {0,1}.

Proof. 7 (a) = —(b): Assume that (H, f) is not indecomposable. Then there exist non-
zero representations (K, g) and (K', g') of I', such that (H, f) = (K,g) & (K',g'). For
any x €V, define the projection Q, € B(K, @ K)) of K, ® K, onto K, . Then

Q= (Q)reyisinEnd(K® K',g @ g'), because

for any a € E. Since there exist v,w € V such that K;, # 0 and K, # 0, we have Q, # 0

and Q, # 1. ThusQ #0and Q # 1. Let ¢ = (@, )rev : (H,f) » (K,g9) D (K',g") be

an isomorphism. Put P, = (¢,) 1Q, ¢, forx € Vand P := (P.),ey € Idem(H, f). Then
P#0andP # I

—(b) = —(a): Assume that there exists P € Idem(H, f) withP # 0and P # I.

Thus there existv € Vandw € V such that B, # 0,,P, # I,,. For anyx €V, define

closed subspaces

ThenK = (K,), # 0,K' :=(K;), # 0and H # K@ K'. For anya € E, letx = s(a)
and y =r(a). Since f,P, =P,f,, we have f,K, cK,. Similarly, f,(I —P) =
(I — Py)fa implies that f,Ky € K;,. We can define g, = fylx, : Kx = K, and g, =
falgr: Ky = K . Put g =(ga)e and g' =(gg)e - Then (K,g) and (K',g') are
representations of I' . Define ¢, : H, - K, @ K, by ¢,(§) = (P&, (I — P.)é&) for
§€H,. Then ¢ = (Q)ev : (H,f) > (K,g) ® (K',g") is an isomorphism. Since

K :=(K,),#0and K' := (K}), # 0, (H, f) is decomposable.

Remark (4.2.6)[1]: (a) The proof of the above Proposition (4.2.5) shows that (H, f) is
decomposable if and only if there exist non-zero families K = (K,) ey and K = (Ky) xer
of closed subspaces K, and K, of H, with K, N K, = 0 and K, + K; = H, such that

faKx € K, and f, Ky C K, foranyarrow a : x — y.
(b) In the statement of the above Proposition (4.2.5), we cannot replace the set

Idem(H, f) of idempotents of endomorphisms by the set of projections of



endomorphisms. For example, let Hy = C%. Fix an angle 8 with 0 < 8 < m/2. Put
H; = C(1,0) and H, = C(cos@,sin@). Then the system (H,; H,, H,) of two subspaces

is isomorphic to

Hence (H,; H,, H,) is decomposable. Now consider the following quiver I':

Define a Hilbert representation (H, f) of I' by H = (H;);=0,1, and canonical inclusion
maps f; = fo, : Hi = Hy for i = 1,2. Then the Hilbert representation (H,f) is also
decomposable, see Example (4.2.9) below in this Section. But for any P = (P;);—91, €
End(H, f), if P, € B(H;) is a projection fori =0,1,2, thenP =0or P =1. In fact
Py(H;) c H;fori =1,2. Lete, € B(H,) and e, € B(H,) be the projections of H, onto
H, and H,. Then the C* -algebra C*({es, e,}) generated by e; and e, is exactly
B(H,) = M,(C). Since P, commutes with e; and e,,P, =0 or Py =1. Because

P; = Pyly,, P; = 0 or P; = I simultaneously.

Example (4.2.7)[1]: Let I" be a loop with one vertex 1 and one arrow a : 1 = 1, that is,
the underlying undirected graph is an extended Dynkin diagram 4,. Let H; = #2(N) and
fx =S+ Hy > H; be a unilateral shift. Then the Hilbert representation (H, f) is infinite-
dimensional and indecomposable. In fact, any T € Idem(H, f) can be identified with
T € B(¢2(N)) with T? = T and TS = ST. Since T commutes with a unilateral shift S,
the operator T is a lower triangular Toeplitz matrix. Since T is an idempotent, T = 0 or
T =1. Thus (H,f) is indecomposable. Replacing S by S + Al for A € C, we obtain a
family of infinite-dimensional, indecomposable Hilbert representations (H’l,f’l) of I'.
Since (H’l,f’l) and (H#, f*) are isomorphic if and only if S + Al and S + ul is similar,
we have uncountably many infinite-dimensional, indecomposable Hilbert representa-

tions of I'.
Example (4.2.8)[1]: LetI' = (V,E, s, r) be a quiver whose underlying undirected graph
is an extended Dynkin diagram An, (n = 1). Then there exist uncountably many infinite-

dimensional, indecomposable Hilbert representations of I'. For example, consider
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Define a Hilbert representation (H,f) of I' by H, = H, = --- = H,.1£*(N),
fa = foz =" = fan,, =1 and f,, =S, the unilateral shift. Let P = (Py)rey €

Idem(H, f). Then

Since P; is an idempotent and SP; = P;S, we have P, = 0 or P; = I. This impliesP = 0
or P =1. Therefore (H,f) is indecomposable. Replacing S by S + Al for A € C, we
obtain uncountably many infinite-dimensional, indecomposable Hilbert representations

of I'.

Example (4.2.9)[1]: Let L be a Hilbert space and E},... E, be n subspaces in L. Then we
say thatS = (L;E4,...,E,) is a system of n subspaces in L. A system S is called
indecomposable if S cannot be decomposed into a non-trivial direct sum, see [2].

Consider the following quiver I, = (V,E,s, )

Define a Hilbert representation (H,f) of I, by H, == E;(k =1,...,n), Hy := L and
fx = fa, ¢ Hx = Ex = Hy = L be the inclusion map. Then the system S of n subspaces is
indecomposable if and only if the corresponding Hilbert representation (H, f) of I' is
indecomposable. In fact, assume that S is indecomposable. Let P = (P} )yey €
Idem(H, ). Then f, P, = Pyfy. This implies Py(H,) c H) for k = 1,...,n. Since P, is an
idempotent and S is indecomposable, P, = 0 or P, = I by [2]. Since fiPx = Pyfi, Px =

0 or P, = I simultaneously. Thus P =0 or P =1, that is, (H, f) is indecomposable.



Conversely assume that (H, f) is indecomposable. Let R € B(L) be an idempotent with
R(Ey) c Ey for k =1,...,n. Define P = (Py)xey by Po = R and P, = Py|y, . Then
P € Idem(H, f). Therefore P=0 or P=1. Thus R=0 or R=1. Hence S is
indecomposable.

We can also show that two systems S and S’ of n subspaces are isomorphic if
and only if the corresponding Hilbert representations (H,f) and (H',f') of I are
isomorphic.

Since there exist uncountably many, indecomposable systems of fours subspaces
in an infinite dimensional Hilbert space as in [2], there exist uncountably many infinite-
dimensional, indecomposable Hilbert representations of I, whose underlying
undirected graph is the extended Dynkin diagram 54.

In particular, let K = £?(N) and A € B(K) be a strongly irreducible operator

studied in [18,19] for example, a unilateral shift. Define

Let fx = fa,: Hx = H, be the inclusion map fork =1,2,3,4. Put H@® = (H,),ey and
D = (f)acp- Then (HW, f@)is an infinite-dimensional, indecomposable Hilbert
representation of 54. Moreover let A and B be strongly irreducible operators on £2(N).
Then two indecomposable Hilbert representations (H™®, f@) and (H®, f®) of D,

are isomorphic if and only if two operators A and B are similar.

Example (4.2.10)[1]: Consider the following quiver I' = (V, E, s, 1)

o —P» o —P o @— o, d— O,
2 1 0 1 2
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Then underlying undirected graph is an extended Dynkin diagram EG. Let K = £2(N)
and S a unilateral shift on K. We define a Hilbert representation (H, f) = ((Hy) ey,
(fo) qer) of I' as follows:

Put

Then Hyi is a closed subspace of Hy. In fact, let

converges to (a,b,c) € Hy. Then x, > c,y, > a—c and ¢+ S(a —c) = b. Define
x=candy =a—c.Then (a,b,c) = (x,x,x) + (y,Sy,0) € Hy». For any arrow a € E,
let fo : Hg(q) = Hr(q) be the canonical inclusion map. We shall show that the Hilbert
representation (H, f) is indecomposable. Take T = (T,),ey € Idem(H, f) . Since
T € End(H,f), foranyv € {1,2,1',2',1",2"}and any x € H,, we have Tox = T,x. In
particular, ToH, € H,,. Since HHNHy =K@ 0D O0,Hy =0DKD0and H, =0D
0 K, T, preserves these subspaces. Hence T, is a block diagonal operator with

T,=P®QDREBK DK DK).

Since Ty(H,) € H,n, forany x € K,

for some y € K. Therefore P=Q =R and Ty=P @ P @ P. Moreover P is an
idempotent, because so is Ty. Since T, preserves Hy N Hyr = {(y,Sy,0) € K3| y € K},

forany y € K, there exists z € K such that

Therefore PSy = Sz = SPy for any y€ K, ie., PS=SP . Since P is an
idempotent, P = 0 or P = 1. This means that T, = 0 or Ty = I. Because Tyx = T, x for
anyx € H, forv € {1,2,1',2',1",2"}, we have T, = 0 or T, = I simultaneously. Thus

T =0orT = 1I,thatis Idem(H, f) = {0, I}. Therefore (H, f) is indecomposable.

HOZI

Hyr = {(x, x,x)

(xn,



Example (4.2.11)[1]: We have a different kind of infinite-dimensional, indecomposable
Hilbert representation (L, g) = ((L,)vev, (o) aecr) Of the same I' in Example (4.2.10) as

follows: Let K = £?(N) and S a unilateral shift on K. Define

For any arrow a € E, let g, : Lsq) = Ly (o) be the canonical inclusion map. We can
similarly prove that the Hilbert representation (L, g) is indecomposable.

We shall show that two Hilbert representations in Examples (4.2.10) and (4.2.11)

are not isomorphic. In fact, on the contrary, suppose that there were an isomorphism

@ = (py)vey : (H,f) > (L,g). Since any arrow is represented by the canonical

inclusion, @ : Hy = Ly satisfies that ¢, = @o|y, : H, > L, . This implies that

po(H,) c L, for any v € V. Since ¢y (Hy) € Ly and @o(H;) € Ly, o has a form such

that

Since @o(H;) c L,, for any z € K there exists y € K such that (0,Dz,Ez) = (0,y, Sy).
Hence Ez = Sy = S5Dz, so that E=SD. Then Impy, c K@ K@D ImS # L,. This
contradicts the assumption that ¢, : Hy — L is onto. Therefore Hilbert representations
(H,f) and (L, g) of I are not isomorphic.
Reflection functors are crucially used in the proof of the classification of finite-
dimensional, indecomposable representations of tame quivers. In fact many
indecomposable representations of tame quivers can be reconstructed by iterating
reflection functors on simple indecomposable representations. We cannot expect such a
best situation in infinite-dimensional Hilbert representations. But reflection functors are
still useful to show that some property of representations of quivers on infinite-
dimensional Hilbert spaces does not depend on the choice of orientations and does
depend on the fact underlying undirected graphs are (extended) Dynkin diagrams or

not.

Ly=K®@KE¢
Ly



LetI' = (V,E,s,r) be a finite quiver. A vertex v € V is called a sink if v # s(a)
for anya € E. Put E” = {a € E |r(a) = v} .We denote by E the set of all formally

reversed new arrows @ for ¢ € E. Thusif a : x > yisanarrow, thena : x « y.

Definition (4.2.12)[1]): Let ' = (V,E,s,r) be a finite quiver. For a sink v €V, we
construct a new quiver a;f (I') = (o} (V),0.f(E),s,r) as follows: All the arrows of I'
having v as range are reversed and all the other arrows remain unchanged. More

precisely,

where EV = {a | a € E"}.

Definition (4.2.13)[1]: Let ' = (V, E, s,7) be a finite quiver. For a sink v € V, we define

a reflection functor at v

between the categories of Hilbert representations of I' and g} (I") as follows: For a
Hilbert representation (H, f) of I', we shall define a Hilbert representation (K,g) =
&f(H,f) of ot (IN). Let

be a bounded linear operator defined by

Define

Consider also the canonical inclusion map i, : K, = @gepv Hy(q). FOr u € V with u # v,
put K, = H,,.

For B € E?, let

be the canonical projection. Then define



thatis g5 ((xo) aerv) = xp.
Forf € EV,let gg = f3.
For a homomorphism T : (H, f) — (H', f'), we shall define a homomorphism
S =(Su)

If u = v, a bounded operator S, : K,, = K}, is given by

It is easy to see that S, is well-defined and we have the following commutative

diagram:

For other u € V with u # v, we put

We shall consider a dual of the above construction. A vertex v € V is called a

sourceif v # r(a) forany a € E.Put E, = {a € E|s(a) = v}.

Definition (4.2.14)[1]): Let I’ = (V,E,s,r) be a finite quiver. For a source v € V, we
construct a new quiver g, (I') = (o, (V), 0, (E),s,r) as follows: All the arrows of I'
having v as source are reversed and all the other arrows remain unchanged. More

precisely,

whereE, ={a|a € E,}.
In order to define a reflection functor at a source, it is convenient to consider the
orthogonal complement M+ of a closed subspace M of a Hilbert space H instead of the
quotient H/M . Define an isomorphism f: Mt —> H/M by f(y) =[y]l=y+ M for
y € M1 c H. Then the inverse f~1: H/M - Mt is given by f~1([x]) = Pi;(x) for



x € H, where Pj; is the projection of H onto M*. We shall use the following elementary

fact frequently:

Lemma (4.2.15)[1]: Let K and L be Hilbert spaces, M c K and N c L be closed
subspaces. Let A: K — L be a bounded operator. Assume that A(M) c N. Let
A:K/M - L/N be the induced map such that A([x]) = [Ax] for x € K. Identifying
K/M and L/N with M+ and N+, A is identified with the bounded operator S : M+ — N+

such that S(x) = Py (Ax). Then S = (A*|y1)*

Proof. Consider A*: L - K. Since A(M) c N, we have A*(N1) € M*. Hence the

restriction A*|y+ : Nt - M* has the adjoint

Foranym € M+ andn € Nt

Corollary (4.2.16)[284]: upon considering Lemma (4.2.15) and letting A : K = L be a
bounded self-adjoint operator. We assume that A*(M) c N. Let A* : K/M — L/N be
the induced map that A*([x]) = [A*x] for x € K. A* is identified with the bounded self-

adjoint operator S* : M+ — N< such that S*(x) = Py (A*x). Then S* = (A*|y1).

Proof. Consider A : L — K. Since A*(M) c N, then A(N*t) c¢ Mt. Hence A|y: : Nt -

M*. has the self-adjoint

Foranym € M+ andn € Nt

Definition (4.2.17)[1]: (Reflection functor ®; ). LetI' = (V,E, s, r) be a finite quiver. For

a source v € V, we define a reflection functor at v

((A"|y1) m

((A*|NJ.)m



between the categories of Hilbert representations of I' and g, (I") as follows: For a
Hilbert representation (H, f) of I', we shall define a Hilbert representation (K,g) =

&, (H,f) of o, (I'). Let

be a bounded linear operator defined by

Define

where A}, : @Dack, Hr(a) = Hy is given ﬁ;((xa)aEEv) =) fa(x,). Foru € V withu # v,
put K, = H,,.

Let @y : Daer, Hra) = Ky be the canonical projection. For § € E,,, let

be the canonical inclusion. Define

Ce~

Forf € E,, let gp = f5.

For a homomorphism T : (H, f) — (H', f'), we shall define a homomorphism

S = ()
recalling the above Lemma (4.2.14). Foru = v, a bounded operator S, : K,, = K, is

given by

where Qy,: @yeg, H;(a) — K, be the canonical projection.

We have the following commutative diagram:



For other u € V with u # v, we put

We shall explain a relation between two (covariant) functors @, and @, . We
need to introduce another (contravariant) functor @* in the first place.
Let I' = (V,E,s,r) be a finite quiver. We define the opposite quiver I' =

(V ,E,s,r) by reversing all the arrows, that is,

Definition (4.2.18)[1]: Let I' = (V,E,s,r) be a finite quiver and I’ = (V,E,s,r) its

opposite quiver. We introduce a contravariant functor

between the categories of Hilbert representations of I and I" as follows: For a Hilbert
representation (H, f) of I', we shall define a Hilbert representation (K, g) = @*(H, )
of I' by

For a homomorphism T : (H, f) — (H', f'), we shall define a homomorphism

by bounded operators S,, : K;, = H;, = K, = H, givenby S,, = T,.

Proposition (4.2.19)[1]: Let ' = (V,E, s,r) be a finite quiver. If v € V is a source of T,
then v is a sink of I', o, (I') = o7 (I'") and we have the following:

(i) For a Hilbert representation (H, f) of ',

(i) For a homomorphismT : (H,f) - (H',f'),

(Su.



Proof. (i) It is enough to consider around a source v. For each ¢ € E, witha : v » u =
r(a), a bounded operator f, : H, > H,, is assigned in (H, f). Taking @*, we have
®*(H,) = H,and ®*(f,) = f;: H, » H, in ®*(H, f). Let

be a bounded operator given by

Define

Then &f(®*(H,)) =W, and &;(®*(H,)) =H, in ®*(&*(H,f)). Consider the

canonical inclusion map i, : W, > @geg, Hy(o)- For f € Ey, let

be the canonical projection. Then @, ((D*(fﬁ)) = Pg o i,,. Finally take ®@* again. Since

hI*J tHy, > @aEEv Hr(ac) is given by
we have

Moreover i, = Qy, : Dger, Hra) = W, is the canonical projection. For § € E.,, we have

Therefore

o (@ (¢



(i) If u # v, then

If u = v, then, apply Lemma (4.2.3) by putting that K = @4ep, Hr(a) L = Daes, H;(a),

M is the closure of {(fa(x))aeE EK|xE€ H,,} in K, N is the closure of {(f[;(x))

€
a€E,

L|er,;} in L and A:K->L with A(0deer,) = (Trw)Va) . Then

(CD* (cb;(qb*(T))))v = (o5 (D),

Proposition (4.2.20)[1]: Let I' = (V,E, s,r) be a finite quiver. If v € V is a sink of I, then

v is a source of I', o} (I'") = g, (I') and we have the following:

(a) For a Hilbert representation (H, f) of ',

(b) For a homomorphismT : (H,f) » (H', f"),

o (T) = & (cp;(cp*(T))).

We shall show a certain duality between reflection functors, which is analogous

to Takesaki duality in operator algebras. Bernstein, Gelfand and Ponomarev [5]
introduced reflection functors and Coxeter functors and clarify a relation with the
Coxeter-Weyl group and Dynkin diagrams in the case of finite-dimensional
representations of quivers. In the case of infinite-dimensional Hilbert representations,
duality theorem between reflection functors does not hold as in the purely algebraic
setting. We need to modify and assume a certain closedness condition at a sink or a

source.

Definition (4.2.21)[1]: Let ' = (V, E, s, ) be a finite quiver and v € V a sink. Recall that
EV = {a |r(a) = v}. We say that a Hilbert representation (H, f) of I' is closed at v if
Yaepv Im f,, € H, is a closed subspace. We say that (H, f) is full at vif Y, epv Imf, =

H,.

Remark (4.2.22)[1]: Recall that a bounded operator hy, : @ 4epv Hg(a) = Hy, is given by

h, ((xg) qer?) = Dacrr fo(xs) - Then a Hilbert representation (H, f) of I' is closed at v if



and only if Imh,, is closed. A Hilbert representation (H, f) is full at v if and only if h, is

onto.

Definition (4.2.23)[1]: Let ' = (V,E, s,r) be a finite quiver and v € V a source. Recall
that E, = {a |s(a) = v}. We _ say that a Hilbert representation (H, f) of I is co-closed

at v if Ypep, Im fy € H, is a closed subspace. We say that (H,f)is co-full atuv if

ZaEEv Im fa* = Hv-
Remark (4.2.24)[1]: Recall that a bounded operator h,, : H, — Daer, Hr () is given by
h,(x) = (fa(x))aEE for x € H,. Then a Hilbert representation (H, f) of I' is co-closed

atvif and only if Im Ef, is closed. A Hilbert representation (H, f) is co-full at v if and

only if A is onto if and only if Im h,, is closed and Neeg, Ker fp = 0. In fact the latter

condition is equivalent to (Im E;)l = Ker h,, = 0. We also see that (H, f) is co-closed
atvifandonly if @;(H, f) is closed at v. And (H, f) is co-full at v if and only if &;(H, f)

is full at v.

In order to prove a duality theorem, we need to prepare a lemma.

Lemma (4.2.25)[1]: Let H and K be Hilbert spaces and T : H - K be a bounded
operator. Let T = U|T| be its polar decomposition and U a partial isometry with supp

U = Im|T| and ImU = ImT. Suppose that Im T is closed. Then we have the following:

(i) Im|T| =1ImT*is a closed subspace of H.

(i) Under the orthogonal decomposition

the restriction |T||Im —_ Im |T| - Im|T| is a bounded invertible operator.

-1
(iii) Let S = (|T||Im ITI) be its inverse. Define a bounded operator B : K - ImT* by
Bx =SU*x for x € K. Let Q: H— ImT* be the canonical projection. Then

BT = Q. Moreover Bl : ImT — Im T is a bounded invertible operator.

Proof. (i) Since Im T is closed, ImT* is also closed. Since U(|T|x) = Tx by definition of

U and Im T is closed, Im |T| is closed.



(i) Since Ker |T|* = Im|T], |T||Im - is one to one. Since |T|(H) = |T|(Im |T]) is
closed, |T||Im - is onto. Hence |T||Im - is bounded invertible.

(iii) Forany x = x; + x, € H with x; € Im|T| = Im T* and x, € Ker |T|,

It is clear that B|;,, r is a bounded invertible operator.

Theorem (4.2.26)[1]): Let I' = (V, E, s,T) be a finite quiver and v € V a sink. Assume that
a Hilbert representation (H,f) of I' is closed atv. Let h, : @4epv Hs(o) = H, be a
bounded operator defined by h,((xy)qer?) = Yacev f«(Xs) . Define a Hilbert
representation (H,f) of I' by H, = (Im h,)* € H,,H, = 0 foru # vand f = 0. Then

we have

Proof. Let (H*,f*)=¢}(H,f) and (H*~,f*") = (DJ((DJ(H,f)) . Then H =
Ker h, = {(xa)aEEv € Duer” Hs(w) | Zaerv fa(Xa) = O}, and H}Y = H, foru # v. We
have fBJ“((xa)aEEv) = xp for B € E¥, and f5" = fz for B & E”.

Let b, : Hf = @ epv Hj(q) be a bounded operator given by

Hence h, is the canonical embedding. Since (H, f) is closed at v, Imh, and Im h}, are

closed subspaces. Therefore

For any other u €V with u # v,H;~ = H, . let Q, : @qepv Hy(q) = Hy ~ be the

canonical projection. For § € EV, let

be the canonical inclusion. Then fz"™: Hyz) — Hy ™ is given by f5"™ = Q,, o j. For other
B & EV, we have f5'~ = fp.

We shall define an isomorphism

R, ((x



Apply Lemma (4.2.25) by putting T = h,,, H = @yepv Hs (o) and K = HY. Consider the

polar decomposition h,, = U|h,|. PutS = (Ih”||1m|h I) . Define a bounded operator

B : H, - Im h;, by B = SU". Then Bh, is the canonical projection Q,, of H, onto Imh,,.
We define

by ¢, (x,y) = (ma hy X y) forx € Imh,and y € (Im h,)*. By Lemma (4.2.23) (ii), ¢,
is a bounded invertible operator. For u € V with u # v, put ¢, : H, = H, @ 0 by
@y (x) = (x,0) for x € H,. Forany § € E¥ and x € Hyp),

On the other hand,
For other § & E”, we have

Hence ¢ : (H,f) » &, (& (H, 1)) ® (H, f) is an isomorphism.

If we do not assume that a Hilbert representation (H, f) of I is closed at v, then
the above Theorem (4.2.26) does not hold in general. In fact, consider the following

quiverI' = (V,E,s,1):

Let K = £?(N) with the canonical basis (e, )ncy- Define a Hilbert representation (H, f)
of TbyHy=K® K,H, =K@ 0 and H, is the closed subspace of H, spanned by
s . s _ .
{(cosmen,smmen) EKDK|nE€ N}. Then H, N H, = 0and H; + H, is a dense
subspace of Hy but not closed in Hy. Let fi, = f, : H, = H, be the inclusion map for

k =1,2. Then (H, f) is not closed at a sink v = 0. It is easy to see that Hj = Kerh, =
0,fif =0and f;* =0. Therefore Hf~ = H, @ H, and H;f~ = H;,H; ~ = H,. We have

¢y H

Py ° fﬁ(x)

(fﬁ_@o)‘

Prp) ©.



fit~:H, > H; @ H, is a canonical inclusion for k = 1, 2. Since Hy = (Im hy)* = 0, we

have (H, f) = (0,0). Therefore

is closed at a sink v = 0. But (H, f) is not closed at a sink v = 0. Therefore there exists
no isomorphism between (H, f) and @5 (@4 (H,f)) @ (H, f).

Note that (H, f) is not full at a sink v = 0and @ (®¢(H,f))is full at a sink

v = 0. Therefore this example also shows that, if we do not assume that a Hilbert

representation (H, f) of I'is full at v, then the following duality theorem (Corollary

(4.2.27)) does not hold in general.

Corollary (4.2.27)[1): Let ' = (V,E, s, r) be a finite quiver and v € V a sink. If a Hilbert

representation (H, f) of I is full at v, then

We have a dual version.

Theorem (4.2.28)[1]: Let ' = (V,E, s, ) be a finite quiver and v € V a source. Assume
that a Hilbert representation (H, f) of I' is co-closed at v. Let ﬁv t Hy, > @gep, Hra) is

a bounded operator defined by h,(x) = (fa(x))aEE for x € H,,. Define a Hilbert

representation (H, f ) of I' by

H, =0foru+ vandf = 0. Then

Proof. We see thatvis a sink in ", because vis a source inI. Since a Hilbert
representation (H, f) of I' is co-closed at v, a Hilbert representation @*(H, f) is closed

at v. By Theorem (4.2.26), there exists a Hilbert representation (H, f) of I" such that



Put (H, f) = q§*(17, f) Then

Moreover it is easy to see that

If we do not assume that a Hilbert representation (H, f) of I' is co-closed at the
source v, then the above Theorem (3.2.28) does not hold in general. In fact, consider

the following quiver I' = (V, E, s,7):

Let K = £?(N) with the canonical basis (e, )ncy- Define a Hilbert representation (H, f)
of ' by Ho=K @ K,H; =K@ 0 and H, is the closed subspace H, spanned by
{(cos%en,sinﬁen) EKDK|nE€ N}. Let fx = fq,: Ho » Hy be the canonical
projection for k = 1,2. Then (H, f) is not co-closed at a source v = 0. It is easy to see
that Hy = (Im ﬁo)l =0,/ =0 and f; =0 . Therefore Hy" =H, ® H, and
H{* = H;,H;* = H,. We have that f;,_*: H; @ H, — H, is the canonical projection for

k = 1,2.Since Hy = Ker hy = 0, we have (H,f) = (0,0). Therefore

is co-closed at a source v = 0. But (H, f) is not co-closed at a source v = 0. Therefore
there exists no isomorphism between (H, f) and @3 (@5 (H, ) @ (H, f).

Note that (H, f) is not co-full at a source v = 0 and (D{{((D;(H, f)) is co-full at a

source v = 0. Therefore this example also shows that, if we do not assume that a

Hilbert representation (H, f) of I'is co-full at v, then the following duality theorem

(Corollary (3.2.29)) does not hold in general.

(H,



Corollary (4.2.29)[1]: Let ' = (V,E,s,r) be a finite quiver and v € V a source. If a

Hilbert representation (H, f) of I is co-full at v, then

Lemma (4.2.30)[1]: Let ' = (V, E, s, 1) be a finite quiver and v € V a sink. Then for any

Hilbert representation (H, f) of I’ , ®; (H, f) is co-full at v.
Proof. Put (H,f*) =@ (H,f). Recall that h, : @gepv Hs(o) > H, is given by
h, (X)) qer?) = Yaery fa(xs), and H} = Kerh,. And for B € EY, let i,: Hf -
@Daerv Hs(o) be the canonical inclusion and Pg : @gepr Hyq) = Hs(p) the canonical

projection. We define

Therefore f7* : Hy(g) — Hy is given by fz™ = i o P;. Since Pg: Hy(py = @acp Hy(a) s

the canonical inclusion and i;;: @ qepv Hs() = Hy is the canonical projection, we have

Therefore (H*, f*) is co-full at v.

Proposition (4.2.31)[1]: Let ' = (V,E, s, ) be a finite quiver and v € V a sink. If (H, f)

is a Hilbert representation of I, then

Lemma (4.2.32)[1]): Let ' = (V,E,s,r) be a finite quiver and v € V a source. Then for
any Hilbert representation (H, f) of I', @, (H, f) is full at v.

Proof. Put (H™,f™) =&, (H,f). Recall that h,:H, — @Deack, Hr(a) is given by

~ ~ 1
h,(x) = (fa(x))aEEv for x €H, and H, =(Imh,) c Oacr, Hr(e) - Let Qy:
@Daer, Hr(e) > H, be the canonical projection. For PB€EE, , let

Jg ¢ Hrg) = Dack, Hr(«) be the canonical inclusion. Then

Therefore



Thus (H™, f7) is full at v.

Proposition (4.2.33)[1]: Let ' = (V,E,s,r) be a finite quiver and v € V a source. If

(H, f) is a Hilbert representation of I', then

We examine on which representation a reflection functor vanishes.

Lemma (4.2.34)[1]: Let ' = (V,E, s,r) be a finite quiver and v € V a sink. Then, for any

Hilbert representation (H, f) of T, the following are equivalent:

(1) @5 (H,f) = (0,0),

(2) H, = 0 forany u € V with u # v.
Furthermore if the above conditions are satisfied and (H, f) is indecomposable, then
H, = C. If the above conditions are satisfied and (H, f) is full at the sink v, then

(H,f) = (0,0).

Proof. Put (H*,f*) =@ (H,f). Recall that h, : @gepv Hs(o) = H, is given by
h, ((Xe) qer?) = Yaer fo(xs), and H} = Kerh,,. For other u € V with u # v, H;) = H,,.

(a) = (b): Assume that @; (H, f) = 0. Then, for any u € V with u # v we have
H, = H} =0.

(b) = (a): Assume that H,, = 0 for any u € V with u # v. Then H;f = 0, because
HJ = Kerh, € @gepv Hy(qy = 0. Forotheru € V withu # v, Hj = H, = 0.

Furthermore assume that the above conditions are satisfied and (H,f) is
indecomposable. Then f =0 . Suppose that dimH,>2 . Then a non-trivial
decomposition H,, = K @ L gives a non-trivial decomposition of (H, f). This contradicts
that (H, f) is indecomposable. Hence H, = C. Assume that the above conditions are
satisfied and (H,f) is full at v. Then f =0, so that H, = Y ,cgvIm f, = 0. Hence
(H,f) = (0,0).



Lemma (4.2.35)[1]: Let ' = (V,E, s, r) be a finite quiver and v € V a source. Then, for
any Hilbert representation (H, f) of T, the following condition are equivalent:
(1) @, (H,f) = (0,0),
(2) H, = 0 forany u € V with u # v.
Furthermore if the above conditions are satisfied and (H, f) is indecomposable, then

H, = C. If the above conditions are satisfied and (H, f) is co-full at the source v, then
(H,1f) = (0,0).
Proof. Put (H™,f™) =&, (H,f). Recall that h,:H, — @Dack, Hr(a) is given by
h,(x) = (fa(x))aEEv for x € H,, and H, = (Im Ev)l C @uek, Hr(a)- For otheru € V
withu # v, H,, = H,,.

(@) = (b): Assume that @, (H, f) = 0. Then, for any u € V with u # v we have
H, =H; =0.

(b) = (a): Assume that H,, = 0 for any u € VV with u # v. Then H, = 0, because
H, = (Im Ev)l C @aer, Hr(a) = 0. Forotheru € V withu # v,H;, = H, = 0.

Assume that the above conditions are satisfied and (H, f) is co-full at v. Since

fo« =0forany a € E,H, = ¥ ocg, Imfy = 0.Hence (H, f) = (0,0). The rest is clear.

We shall show that a reflection functor preserves indecomposability of a Hilbert
representation unless vanishing on it, under the assumption that the Hilbert

representation is closed (resp. coclosed) at a sink (resp. source).

Theorem (4.2.36)[1]: Let ' = (V,E,s,r) be a finite quiver and v € V a sink. Suppose
that a Hilbert representation (H, f) of I is indecomposable and closed at v. Then we
have the following:
(1) If®f(H,f) =0, then H, = C,H, = 0 for anyu € V withu # v and f,, = 0 for
anya € E.
(2) If &f(H,f)+#0, then ®f(H,f) is also indecomposable and (H,f) =
@ (@7 (H,f)).



Proof. Recall an operator h,: @qepv Hyq) = H, defined by h,((xy)ger) =

Yacre fo(xa). Since (H, f) is closed at a sink v, we have a decomposition such that

by Theorem (4.2.24), where H, = (Im h,)* € H,,H, = 0foru # vand f = 0.

Since (H, f) is indecomposable, @, (&, (H, f)) = (0,0) or (H, f) = (0,0).

Case 1. Suppose that @, (&F(H,f)) = (0,0). Then (H,f) = (H,f). Hence
H, = H, = 0 for u # v. This implies that ®; (H, f) = (0,0) by Lemma (4.2.34). Since
(H, f) isindecomposable, H,, = C.

Case 2. Suppose that (H, f) = (0,0). Then (H, f) = &, (& (H, f)). Since (H, f)
is nonzero, @} (H, f) is non-zero. We shall show that &} (H, f) is indecomposable.

Assume that @,f (H, f) = (K,g) @ (K', g'). Then

Since (H, f) is indecomposable, @, (K, g) = (0,0) or &, (K', g') = (0,0). By Lemma
(4.2.32), & (H, f) is co-full at v, so are its direct summands (K, g) and (K', g'). Then
(K,g)=1(0,0) or (K',g')=(0,0) by Lemma (4.2.35). Thus &f(H,f) is
indecomposable.

Since Cases 1 and 2 are mutually exclusive and either of them occurs, we get the
conclusion.

We have a dual version.

Theorem (4.2.37)[1]): Let ' = (V,E, s,r) be a finite quiver and v € V a source. Suppose
that a Hilbert representation (H, f) of I' is indecomposable and co-closed at v. Then we
have the following:
(1) If®, (H,f) =0, then H, = C,H, = 0 for anyu € V withu # v and f,, = 0 for
anya € E.
(2) If &, (H,f)+0, then @®,(H,f) is also indecomposable and (H,f) =
o, P, (H,1)).



Gabriel’s theorem says that a finite, connected quiver has only finitely many

indecomposable representations if and only if the underlying undirected graph is one of
Dynkin diagrams A,, D, E¢, E;, Eg. We consider a complement of Gabriel’s theorem for
Hilbert representations. We need to construct some examples of indecomposable,
infinite-dimensional representations of quivers with the underlying undirected graphs
extended Dynkin diagrams D,,(n > 4), E; and Eg. We consider the relative position of
several subspaces along the quivers, where vertices are represented by a family of

subspaces and arrows are represented by natural inclusion maps.

Lemma (4.2.38)[1]): Let = (V,E,s,r) be the following quiver with the underlying

undirected graph an extended Dynkin diagram D,, for n > 4:

02 A
o o—Pp o —p —P o —P 0 44— o
1 o 5 6 n n+1 @3 3

Then there exists an infinite-dimensional, indecomposable Hilbert representation (H, )

of I'.

Proof. Let K = £2(N) and S a unilateral shift on K. We define a Hilbert representation

(H, f) = ((HU)UEVI (fa)aEE) of I' as follows:

Define

Let fo,: Hs(ap) = Hr(ay) be the inclusion map for any a; € E for k = 1,2,3,4, and

fp = id for other arrows € E. Then we can show that (H, f) is indecomposable.

LetI' = (V,E, s, r) be the quiver of Example (4.2.10) as in Example (4.2.9) in this
Section with the underlying undirected graph an extended Dynkin diagram E,. We have
already shown that there exists an infinitedimensional, indecomposable Hilbert

representation (H, ) of I'.

H1:K‘

H,
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9)[1): LetT = (V,E,s,r) be the following quiver with the underlying 3Lemma (4.2.
undirected graph an extended Dynkin diagram E.

"

1

v

o—Ppo—Ppo—Pp 0o @— o 44— o 44— o ,
3 2 1 0 1 2 3

Then there exists an infinite-dimensional, indecomposable Hilbert representation (H, f)

of I'.

Proof. Let K = £?(N) and S a unilateral shift on K. We define a Hilbert representation

(H, f) = ((HU)UEVI (fa)aEE) of I' as follows:
Let

Hy=0

Hy =0
For any arrow a € E, let f, : Hy(q) = Hy(q) be the canonical inclusion map. We shall
show that the Hilbert representation (H, f) is indecomposable. Take T = (T,) ey €
Idem(H, f). Since T € End(H, f) and any arrow is represented by the inclusion map,
we have Tyx = T,x for any v € {1,2,3,1',2/,3’,1"} and any x € H,. In particular,
ToH, € H,. Since T, preserves H; =K@ 0D O0DO,Hy =0DKDO0DO, and
HyNH, =0 0D K D K, T is written

forsome A,B,X,Y,Z,W € B(K).
Because Hyr = {(x,y,x,y) € K* | x,y € K}is also invariant under T,, for any

x,y € K, there exist x',y' € K such that



Puttingy = 0, we have Ax = Xx and 0 = Zx for anyx € K. Hence A = Xand Z = 0.
Similarly, letting x = 0, we haveY = 0 and W = B. Therefore T, has a block diagonal

form such that

Furthermore, as T, preserves Hy N H, = {(0,0,x,x) € K* | x € K}, for any x €K
there exists y € K such that (0,0,4x,Bx) = (0,0,y,y). Hence A =B . Therefore
To=ADADADA . Moreover HiNH, ={(0,0,x,5x) € K*|x €K} is also
invariant under T,,. Hence for any x € K, there exists y € K such that (0,0, Ax, ASx) =
(0,0,y,Sy). Thus AS = SA. Since T € Idem(H, f), T, is an idempotent, so that 4 is also
an idempotent. Because AS = SAand A2 = A, we have A =0orA=1.ThusT, = 0 or
Ty, =1. Since for any v €V and any x € H,Tox = T,x, we have T, =0orT, =1
simultaneously. Thus T = (T,),ey = 0or T = I, that is, Idem(H, f) = {0,1}. Therefore

(H, f) is indecomposable.

Lemma (4.2.40)[1]): Let = (V,E,s,r) be the following quiver with the underlying
undirected graph an extended Dynkin diagram Eg:
o "
‘1
o—Ppo—Ppp o—Pp o —Pp 0o —P 0o @— o @ — o,
5 4 3 2 1 0 1 2

Then there exists an infinite-dimensional, indecomposable Hilbert representation (H, )

of I'.

Proof. Let K = £?(N) and S a unilateral shift on K. We define a Hilbert representation

(H, f) = ((HU)UEVI (fa)aEE) of I' as follows:



Let

H, =06
H,=0D0®0
Hi=K®K

For any arrow a € E, let f; : Hy(q) = Hy(q) be the canonical inclusion map. We shall
show that the Hilbert representation (H, f) is indecomposable. Take T = (T,) ey €
Idem(H, f). Since T € End(H, f) and any arrow is represented by the inclusion map,
we have Tox = T,x for anyv € Vand any x € H,,. In particular, TyH, € H,,. Since T,
preserves subspaces Hy = KO KD 0D ODODO,H, =0D0DKDKDKD

K, Ty has a form such that

forsome A€ B(K@® K)andBeE B(K ®K ® K & K).
Moreover Hn NH, =0 0D KDODOD0and H; =0D0DODK D
K @ K are invariant under T,. Furthermore H =09 0P 0P K P 0P 0 and

To(Hs) © Hs. Therefore T is written as

forsome a,b,c,d,e, f,g,h,i,j, k| € B(K).
Since Hy NH; =0 0D 0P {(v,0,y) € K3 |y € K} is invariant under T,

forany y € K, there exists y' € K such that



Therefore f + h =land j = 0. Next consider Hy NH, =0 0 {(x,y,x,y); x,y €

K}. Since Hyy N H, is invariant under T, for any x,y € K there exist x’,y" € K such that

Putting y = 0, we have

Hencee =iand g = k.
Lettingx = 0, we have fy + hy =y’ =lyforanyy € K. Hence f + h = L.
Since T, preserves Hyy N Hy = {(x,x) EK? |x €K} 0D 0D 0D 0, for any

x € K, there exists x’ € K such that

Hence ax + bx = cx + dx, forany x € K,sothata+ b = c + d.
Furthermore H,» = {(y,2,x,0,v,z) € K® | x,y,z € K} is invariant under T, .

Therefore for any x,y, z € K there exist x', y’, z' € K satisfying

Putx =z = 0. Then for anyy € K, we haveay =y’ =ey,cy =z' = gy and gy = 0.
Hence we havea =eandc =g = 0.

Lettingx =y =0, foranyz € K we have bz =y’ = 0,dz = z' = lzand hz = 0.

Therefore b = 0,d =l and h = 0. Combining these with f + h=1landa+b =c+d,

we havea = d and f = | = d. Thus T is a block diagonal such that

—



Since T, is an idempotent, a is also an idempotent.
Finally considerthat H, =0 0D 0 D K @ {(y,Sy) € K? | y € K} is invariant

under Ty. Then for any x, y € K, there exist x’,y" € K such that

Hence aSy = Sy’ = Say, so that aS = Sa. Since Sis a unilateral shift and a is an
idempotent, we have a = 0 or a = I. This implies that T, = 0 or T, = I. Since for any
veV and any x € H,Tox =T,x, we have T, =0 or T, = I simultaneously. Thus
T=(Ty)pey =0 or T=1, that is, Idem(H,f) ={0,1} . Therefore (H,f) is

indecomposable.

We shall show that the existence of indecomposable, infinite-dimensional

representations does not depend on the choice of the orientation of quivers. Suppose
that two finite, connected quivers I' and I’ have the same underlying undirected graph
and one of them, say I', has an infinite dimensional, indecomposable, Hilbert
representation. We need to prove that another quiver I'' also has an infinite-
dimensional, indecomposable, Hilbert representation. Reflection functors are useful to
show it. But we need to check the co-closedness at a source. We introduce a certain
nice class of Hilbert representations such that co-closedness is easily checked and

preserved under reflection functors at any source.

Definition (4.2.41)[1]: Let I" be a quiver whose underlying undirected graph is Dynkin
diagram A,,. We count the arrows from the left as a; : s(ay) » r(a)(k=1,...,n—1).

Let (H, f) be a Hilbert representation of I'. We denote f;, by f; for short. For example,

We say that (H, f) is positive-unitary diagonal if there exist m € N and orthogonal

decompositions (admitting zero components) of Hilbert spaces

To (0, (



and decompositions of operators

such that each fi; : Hg(q,),i = Hr(ap),i is Written as fi; = 0 or fi; = i uy,; for some
positive scalar 4, ; and onto unitary u;; € B(Hs(ak)’i, Hr(ak)’i).
It is easy to see that if (H, f) is positive-unitary diagonal, then @*(H, f) is also

positiveunitary diagonal.

Example (4.2.42)[1]: Consider the following quiver I':

Let H; be a Hilbert space and H; € H, € H; inclusions of subspaces. Define a
Hilbert representation (H,f) of I' by H = (H;);=1,3 and canonical inclusion maps

fi = fo;: H; = Hiyq for i = 1,2.Then (H, f) is positive-unitary diagonal. In fact, define

Consider orthogonal decompositions H, =@®7_; Hy; (k = 1,2,3) by

Thenfi=1@ 0B 0andf, =1 P 1 0. Hence (H, f) is positive-unitary diagonal. It

is trivial that the example can be extended to the case of inclusion of n subspaces.

Lemma (4.2.43)[1]: Let I be a quiver whose underlying undirected graph is Dynkin
diagram A,, and (H, f) be a Hilbert representation of I'. Assume that (H, f) is positive-

unitary diagonal. Then (H, f) is closed at any sink of I' and co-closed at any source of I.

Proposition (4.2.44)[1]:Let I" be a quiver whose underlying undirected graph is Dynkin
diagram A,, and (H, ) be a Hilbert representation of I'. Let v be a source of I'. Assume

that (H, f) is positive-unitary diagonal. Then &; (H, f) is also positive-unitary diagonal.

Proof. If (H,f) = (H',f) @& (H",f"), then &, (H,f) = &, (H',f") & &, (H",f").
Therefore H, =@, Hy ;. Hence it is enough to consider orthogonal components. We

may and do examine locally the following cases:

fre:

H1:K1



Case 1. A Hilbert representation (H, f) is given by

with T; = A4,U; and T, = A, U, for some positive scalars 1, 4, and onto unitaries Uy, U,.

Put (H™,f7) = &5 (H, f):

Then (a,b) € H; ® H, is in Hy = (Im ﬁo)l if and only if ((a, b)|(le, T,z)) = 0 for

any z € Hy, sothat T;ya + T, b = 0. Hence

Solving

we have

_ A2 Al "
T1x=( X 1+2 U2U1x) for x € H,.
2

Similarly we have

Let

Then U7 is an onto unitary and T; = A;U; . Similarly T, is a positive scalar times
unitary.

Case 2. A Hilbert representation (H, f) is given by

W|th T1 = O and TZ = O.

Al =



Then it is easy to see that Hy = H; @ H,,T; and T, are canonical inclusions:

Tix=(x0)€H, PH,forx e H and T, y = (0,y) € H, @ H, fory € H,. We may

write that T{ =1 0:H  G0—->H DH, and T, =0PI1: 0P H, - H ©H, .
Hence (H™, f~) is positive-unitary diagonal.

Case 3. A Hilbert representation (H, f) is given by

with T; = 4,U; and T, = 0 for some positive scalar 1; and onto unitary Uj;.
Then we see that Hy = 0@ H,,T; =0and T,y = (0,y) € 0@ H, fory € H,.
Hence (H™, f~) is positive-unitary diagonal.

Case 4. A Hilbert representation (H, f) is given by

with T; = A,U; for some positive scalar A; and onto unitary U;. Put (H™,f") =

@y (H, f):

Then we seethat Hy = 0and T; = 0.

Case 5. A Hilbert representation (H, f) is given by

W|th T1 = O.
Thenwe havethat Hy = HyandT; =1:H; - H; = H; .

We shall show that we can change the orientation of Dynkin diagram A,, using

only the iteration of g,, at sources v except the right end.

Lemma (4.2.45)[1]: Let I and I' be quivers whose underlying undirected graphs are the

same Dynkin diagram A,, for n = 2. We assume that I, is the following:

Then there exists a sequence vy, ..., U, of vertices in I, such that



(1) foreachk = 1,...,m, vy is a source in o, __ ...0y,0, (I),
(2) oy, ...0,,0, (I5) =T,

(3) foreachk =1,...,m, v, #n.

Proof. The proof is by induction on the number n of vertices. Let n = 2. Since
o1 (o;—0,) =0, «o,, the statement holds. Assume that the statement holds for n — 1. If
I’ has an arrow o,,_;—o,, then we can directly apply the assumption of the induction. If
I has an arrow o, _,—o, <o, replace only this part by o,,_,<o,_;—0, togetI'". Then
n — lisasource of I'’,and a,,_,(I'") = I'. Applying the induction assumption for I'’, we
can construct the desired iteration. Consider the case that I has an arrow o,,_,«o, ;¢
o,. If there exists a vertex u such that o,,_;—0o, and ooy, ; fork = u,...,n — 1, then
define a new quiver I'"” by putting o,,_; «o,,2,,_1—°, and other arrows unchanged with
I'. By the induction assumption, there exists a sequence vy, ..., v, of vertices in I such

thato,, ...0, 0, (Iy) =I'" and, foreachk = 1,...,m,v, # nand vy, # n — 1. Then

If all the arrows between 1 and n are of the form oo, fork=1,...,n—1,

thenao,_;...0, 07 (I;) =T.

Lemma (4.2.46)[1):Let ' = (V,E,s,r) and I'' = (V',E',s",r") be finite, connected
quivers and I'' contains I as a subgraph, thatis, V c V',E Cc E',s =s'|E andr =1'|E.
If there exists an infinite-dimensional, indecomposable, Hilbert representation of I', then

there exists an infinite dimensional, indecomposable, Hilbert representation of I''.
We prove the following theorem.

Theorem (4.2.47)[1]: Let I" be a finite, connected quiver. If the underlying undirected
graph |I'| contains one of the extended Dynkin diagrams A,,(n > 0),D,(n > 4),E,, E,
and Eg, then there exists an infinite dimensional, indecomposable, Hilbert representation

of I'.

Proof. By Lemma (4.2.46), we may assume that the underlying undirected graph |I'| is

exactly one of the extended Dynkin diagrams 4,,(n > 0),D,,(n > 4), E,, E, and Ej.



The case of extended Dynkin diagrams A, (n > 0) was already verified in
Examples (4.2.7) and (4.2.8).
Next suppose that |I'| is E¢. Let Iy be the quiver of Example (4.2.10) and we
denote here by (H(O),f(o)) the Hilbert representation constructed there. Then
IIL| = '] = E, but their orientations are different in general. Three “wings” of
I} 2—1-0,2"—1"—-0,2"—1" —0 can be regarded as Dynkin diagrams A5 .
Applying Lemma (4.3.45) for these wings locally, we can find a sequence vy,..., v, of

vertices in I such that

(1) foreach k = 1,...,m, v, isasourcein o, _ ...0, 0, (Ip),

(2) oy, ...0,,0, (Iy) =T,

(3) foreachk =1,...,m,v, # 0.
We note that co-closedness of Hilbert representations at a source can be checked locally
around the source. Since the restriction of the representation (H(O),f(o)) to each
“wing” is positive unitary diagonal and the iteration of reflection functors does not
move the vertex 0, we can apply Lemma (4.2.43) and Proposition (4.3.44) locally that

o
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Dy Dy (HO, fO) is co-closed at vy, for k =1,...,m. Therefore Theorem
(4.2.37) implies that (H, f) = @, ..., &5 (HO, f(O) is the desired indecomposable,
Hilbert representation of I'. Since the particular Hilbert space H(EO) associated with the
vertex 0 is infinite-dimensional and remains unchanged under the iteration of the
reflection functors above, (H, f) is infinite-dimensional.

The case that the |I'| is E7 or Eg is shown similarly if we apply iteration of
reflection functors on the representations in Lemma (4.2.39) or Lemma (4.2.41).

Finally consider the case that the |I'| is ﬁn. Let I be the quiver of Lemma
(4.2.38) and (H(O),f(o)) the Hilbert representation constructed there. Then || =
|I'| = ﬁn, but their orientations are different in general. Let I; be a quiver such that
|I;| = D,, and the orientation is as same as I on the path between 5 and n + 1 and as

same as [ on the rest four “wings.” Define a Hilbert representation (H(l),f(l)) of [

similarly as (H®, f®). For any arrow B in the path between 5 and n +1,f;" =



Hence the same proof as for (H®, f(©) shows that (H(V, f ) is indecomposable. By
a certain iteration of reflection functors at a source 1, 2, 3 or 4 on (H(l),f(l)) yields an
infinite-dimensional, indecomposable, Hilbert representation of I'. Here the co-
closedness at a source 1, 2, 3 or 4 on (HW, f() is easily checked, because the map is

the canonical inclusion. Thus we can apply Theorem (4.2.39) in this case too.

Corollary (4.2.48)[1]: Let I be a finite, connected quiver. If there exists no infinite-
dimensional, indecomposable, Hilbert representation of I', then the underlying
undirected graph |I'| is one of the Dynkin diagrams A,(n > 1),D,(n > 4),E¢, E, and Eg

(see [16, 28, 29, 30]).

We have a partial evidence for a certain quiver whose underlying undirected

graph is A,,. We prepare an elementary lemma. Let H be a Hilbert space. Fora,b € H
we denote by 8, , a rank one operator on H such that 8, ,(x) = (x | b)a forx € H.
Then Hé’b =60,y if and only if (a|b) =1ora=0orb =0. Moreover if dimH > 2

and (a|b) =1, then 8, is an idempotent such that 8, ;, # 0 and 6, # I.

Lemma (4.2.49)[1): Let H, and H, be Hilbert spaces and T : Hy = H, a bounded
operator. Take a,b € H; and c,d € H,. Suppose that there exists a scalar A such that

Ta=2AcandT*d = Ab. ThenT 6, ), = 6. 4T.

Proposition (4.2.50)[1]: Let I' be the following quiver whose underlying undirected

graphis A, forn = 1:

Then there exists no infinite-dimensional, indecomposable, Hilbert representation of I'.

Proof. The casen = 1is clear by a non-trivial decomposition H; = L; @ K;. We may
assume thatn = 2. Suppose that there were an infinite-dimensional, indecomposable,

Hilbert representation (H, f) of I'. Put Ty = f, : Hy = Hyyq fork =1,...,n— 1.
Case 1. Suppose that T,,_1T,_, ...T; # 0. Then there exists a; € H; such that

T,_1Typ_5...Tya; # 0. Consider non-zero vectors ay = Ty_1Tx_, ...T1a, € H for



k=1,...,n. Put b, =|la,ll"?a, € H, . Define b, =TT/, Tn_1b, € H; for

i=1,2,...,.n—1.Then

Since Tyay = ay4q1 and Ty by = by, the above Lemma (4.2.49) implies that Ty0,, 5, =

0 Ty fork =1,...,n— 1. Define the non-zero idempotents P, = 6, 5, . Since

A+ 1br+1
(H,f) is infinite-dimensional, there exists some vertex m such that H,, is infinite-
dimensional. Then B,, # I. Define P = (Py),, then P € Idem(H, f) and P # O and
P # [ . This contradicts the assumption that (H, f) is indecomposable.
Case 2. Suppose that there exists r such that T,_4T,_,...T; # 0 and
T,.T,_4...T; =0forsomer =1,...,n—1anddimH,, = 2 forsomem = 1,...,r. Then
there exists a; € H; such that T,_4T,_,...T;a; # 0. Consider non-zero vectors
ay = Ty-1Tx—p ...Tya; €EH, for k=1,...,r . Put b, =|a.l|"%a, € H. . Define
by =TT/, - T/_1br €H; for i=1,2,...,r—1 . Then we have Ty0, ), =

0 Ty fork =1,...,r — 1 as Case 1. Define non-zero idempotents P, = 8, 5, for

A+ 1br+1
k=1,...,r. PutPp=0fork=r+1,...,n. ThenT,.0, , = Orq p = 6op, =0 and
TP, = Ppy1T, =0fork =1,...,n—1. Sincedim H,, = 2, the non-zero idempotent
P, #1 . Define P = (Py)y, then P € Idem(H,f) and P # 0 and P #I. This is a
contradiction.
Case 3. Suppose that there exists r such that T,_4T,_,...T; # 0 and
T,T,_,..Ty =0 for some r=1,...,n and dimH, =1 for k =1,...,r. Therefore
T, =0. We may put P, =0fork =1,...,r. Then for anya,b € H,;; and P,; = 0,
we have TP, = Py 1T, =0 for k=1,...,7. Hence we may choose freely P, for
k =r+1,...,n. Starting form H,,;, we can repeat the argument from the beginning.

After finite steps, we can reduce to the situation of Case 1 or Case 2. And finally we

obtain a contradiction.

(a; | b)) = (a



Chapter 5

Problems for Isometric Shift of Continuous Functions on Compact Spaces

One immediate consequence is that a space which admits such a shift must be ccc
(countable chain condition). We then construct several new examples of type 1 shifts.
We provide examples of nonseparable spaces X for which C(X) admits an isometric
shift, which solves in the negative a problem proposed by Gutek et al. We show that the
operator has a shift if the sequence of the functions of all ranges of the operators is

equal to zero.

Section (5.1): Type One Shifts on Continuous Spaces:

This section is concerned with shifts on Banach spaces of the form C(X) (i.e., the
space of continuous, real or complex valued functions defined on a compact Hausdorff
space X). For motivation, consider the following simple example. Let X = w + 1 (the
one point compactification of the integers w) and identify C(X) with the space of
convergent sequences of numbers. Shift each member of C(X) one place to the right:
let T({x1,x5,...)) =(0,xq,%,,...). Note that T has the following properties:

(i) Tis alinearisometric operator (||T(f)|| = ||f]| for all f);
(ii) T is co-dimension 1 (the quotient space C(X)/ ran (T) is one-dimensional); and
(i) Ny~ ran(T™) = {0}.

Roughly, these three conditions say that T is rigid, T shifts by just one

coordinate, and that all of C(X) is shifted. Define an isometric shift [82] on C(X) to be
any T : C(X) - C(X) which satisfies these three conditions.

It is unknown whether there is a non-separable compact X for which C(X)
admits an isometric shift. We will study the structure of isometric shifts in [92, 93, 95].
We will also give examples of shifts which, while still occurring over separable spaces,
have more complex behaviors than previously known examples.

In [82], a representation theorem of Holsztynski [83] is used to divide isometric
shifts into two classes. Holsztyniski’s theorem applies to arbitrary linear isometric maps
between function spaces. For a mapping from C(X) to itself, it asserts the existence of a
closed subset X, of X, a continuous map 1 from X, onto X, and a continuous (real or

complex valued) function w such that (Tf)(x) =w(x)f(p(x)) for all x € X, .



Furthermore, w has the property that |l[w(x)|| = 1 for all x. In [82] it is shown that the
assumption that T is co-dimension 1 places severe restrictions on X, and . Either X\ X,
is just a single point and Y is 1:1, or X, = X and there is exactly one point whose inverse
image under Y has more than one point (and this inverse image consists of exactly two
points). They labeled these cases “type 1” and “type 2” shifts, respectively. For the type
2 case, it is shown in [82] that the union of the iterated inverse images of the special
point where Y is not 1:1 forms a dense subset of X. Thus, for the question of the
existence of a shift on C(X) where X is non-separable, one need only consider the type
1 case. (see [84,85,86,87]).
We will consider only the type 1 shifts. It is convenient to rephrase Holsztynski’s
theorem as follows: There is an isolated point p; of X, a homeomorphism i of X\{p;}
onto X, a continuous map w: X\{p;} — S, and a measure u on X with |u| < 1 such

that, forall f € C(X)

The measure pu is either a signed or a complex Borel measure, and |u| is its total variation of
[88]. The existence of u follows from the Rietz Theorem, and it is easily checked that |u| < 1 iff
the resulting T is isometric.

As noted in [85], any mapping T defined as in (1) will be a co-dimension 1 linear
isometric operator (assuming Y, w, and u satisfy the conditions above). We will refer to
a T defined in this way as the type 1 pre-shift generated by 1, w, and u. So, a pre-shift T
will be a shift iff N, ran(T™) = {0}. Also, if p; is the (unique) isolated point of X which
is not in the domain of ¥, thenwe let p,, denote ¥~ (p,_) for each integer n = 2, and
we let Dy, = {pp:n =1,2...}.We refer to this particular ordering of the points of Dy as
the standard listing of Dy,.

We begin by giving a characterization of the functions which are in ran(T™"),
where T is any type 1 pre-shift. This result (Theorem (5.1.1)) will be the basis for many
of our later arguments. Some easy corollaries of this theorem are that X must be ccc

(countable chain condition) if C(X) admits a shift, and that if one can find any ¥ (as



above) which makes Dy, dense in X, then C(X) does admit a shift. This second fact was
also established in [82]. All the type 1 shifts produced have did have Dy, dense, we will
refer to shifts produced in this way as “primitive” shifts. We give some very general
techniques for constructing these sorts of type 1 shifts. One can think of the non-
separability question as asking how non-primitive a shift can be—i.e., how big can X
minus the closure of Dy, be? The existence of a non-primitive shift was established in
[85]. They showed that for any finite n one can produce a type 1 shift on C(w + 1) for
which Dy, misses n of the isolated points—these points are rotated in a simple cycle by
1. Another consequence of Theorem (5.1.1) is that, for any type 1 shift, it must be that
every isolated point of X\D,, has finite order under 1. Despite this fact, we produce
examples of shifts for which X\D,, has infinitely many isolated points. These have a
somewhat complex structure, since Y must divide the isolated points of X\Dw into
infinitely many finite cycles.

As usual, the term compact space means a space which is both compact and
Hausdorff. We use the standard sup norm on C(X). When we use the symbol C(X), we
are simultaneously considering the spaces of real valued and complex valued functions
on X. When we need to distinguish between these function spaces, we use Ck(X) and
Cc(X). We will denote the unit circle in C by S1. When we are simultaneously
considering the real and complex cases, we will abuse notation somewhat and also let
S1 represent the “unit circle” {—1,1} of R, even though S® would be a more proper
notation. One should also note that the “co-dimension 1” condition in the definition of
shift means, in the complex case, that C(X)/ ran(T) = C.
Theorem (5.1.1)[81]: Let X be a compact space, let T be the type 1 pre-shift on C(X)
generated by y,w, and u, and let {p,,p,,...} be the standard listing of Dy, Define
constants a,, a,,... by letting a; = 1and a,, = a,_ w(p,) forn = 2. Define functions
Wy, Ws, ... by lettingw; = wo Y~ andw, = (w,,_{)(w o yp™") forn = 2. Then, for any

f€CX),f €ran(T™) iff



Proof. The proof is by induction onn. First, consider the case n = 1. Suppose that
f € ran(T) so that f = Tg for some g € C(X). Then f(x) = W(x)g(lp(x)) for x # pq,
f w-

and thus g = : X - X\{p.}). Thus

w—l
woyp—1’

checked that f = Tg, and thus f € ran(T).

Now suppose that f € C(X) and that f(p,) —f AL w du letg = It is easily

Note that in the previous paragraph we have actually proven the following fact:

forany f,g € C(X),

This result is essentially the same of [85].
Now, fix n = 2 and suppose that the theorem has been provenfor 1,2, ...,n — 1.
Let f € ran(T™). Since f € ran(T?) for i = 1,2,..,n—1, we know that (2)
holds for each i < n, and so we just need to show that f(p,,) = a, f du Since

f €ran(T"),f = Tg where g € ran(T“‘l). Thus,

f



Finally, suppose that f € C(X) and that f satisfies (2) for i =1,...,n. Let

_ fop

9= Then f =Tg, so to prove that f € ran(T™), we need to show that

g € ran(T™ 1), By induction, it is sufficient to show that g(p;) = q; fx g:f'_ldu for

i=1,...,n—1.Fixsuch an i, then

(Note that p~(*D(x) cannot equal p;, which justifies replacing Tg with (w)(g o ¥) in

the fourth step.)

Note that Y™ : X\{py,...,pn} = X . Thus, in condition (2) of Theorem

(5.2.1)[81], the value of each f(p;) depends only on f Ix\(,, ., 3. This gives a clear
picture of each ran(T™). Each f € C(X\{py,...,pn}) extends uniquely to a function
f € C(X) which is ran(T™), with the values of f(p,),fPn-1),...,f(p1) being
determined (in this order) by the integrals (2) from Theorem (5.1.1). Unfortunately, the

[0¢]

“picture” for N, -, ran(T™) is not as clear. But we can say that



The following important theorem from [82] follows easily from Theorem (5.1.1).

Corollary (5.1.2)[81]: If X is a compact space which admits a v for which Dy, is dense,
then there exists a type 1 shift on C(X). (More precisely, our assumption is that there

exists a homeomorphism iy : X\{p,} = X for which {t " (p,): n € w} is dense.)

Proof. Let 1 be such that Dy, is dense, letw =1, letu =0, and let T be the type 1

preshift generated by 1, w, and p. Suppose f € N;-; ran(T™). By Theorem (5.2.1)[81],
f(pn) = 0 for each n, and since D is dense, f = 0.

When a shift T is generated as in Corollary (5.1.2), we will refer toT as a
primitive type 1 shift. Obviously, a primitive shift can only occur for a separable space.
The existence of non-primitive shifts was first shown in [85]. In the remainder of this
section, we will use Theorem (5.1.1) to prove further theorems about the “structure” of
non-primitive shifts.

We first derive some relatively easy consequences of Theorem (5.1.1).

Theorem (5.1.3)[81]: Let X be a compact space, and suppose that ), w, and u generate
a type 1 shift T on C(X). Then there does not exist a non-empty open subset U of X\Dy,
such that |u|(U) = 0 and Y(U) c U.

Proof. Suppose such an open set U exists. Let f be a non-zero function whose support is

contained in U. Then the support of each f ey ™ is contained in Y™ (U) c U, so

Iy f” du = 0.But f(p,) = 0foralln,so f € Ng-, ran(T™).

w
Theorem (5.1.4)[81]: If a compact space X admits a type 1 shift, then X has the

countable chain condition (ccc).
Proof. Suppose that i,w, and u generate a type 1 shift T on C(X). Let C be an
uncountable pairwise-disjoint collection of open subsets of X. Since D, is countable, we

can assume that no member of C intersects Dy,. For each integeri =0 let ¢; =

{U € C:|ul (W(U)) > O} (as usual, we take 1° to be the identity function). Since each

f e




C; is countable, choose a set U € C\ U, C;. Then the open set U2,y (U) contradicts

the conclusion of Theorem (5.1.3).

Theorem (5.1.5)[81]: Let X be a compact space which admits a type 1 shift generated by

Y,wand pu. If u has separable support, then X is separable.

Proof. Suppose that S is separable subspace of X which contains the support of u. If
Un=o ¥™(S) is not dense in X, then the complement of the closure of this set would be

an open set which violates the conclusion of Theorem (5.1.3).

We next show that it was not really necessary to let ¢ = 0 in Corollary (5.1.2). In

fact, all that is needed is that |u| < 1.

Theorem (5.1.6)[81]: Let X be a compact space and let T be a type 1 pre-shift generated
by ¥, w, and p. If Dy, is dense in X and |u| < 1, then T is a shift.

Proof. Assume that D, is dense and that |u| = r < 1. Suppose that f € Ny, ran(T™),
and let M = sup{|f(x)|: x € X}. Let {p;,p,...} be the standard listing of Dy. By

Theorem (5.1.2), each |f(pp)| < [, If o™ du < rM. Since Dy is dense, |f(x)| <
rMforallx € X,soM <rM.Thus M = 0.

We next show that in order to prove that T is a shift, it is enough to show that
each f € Ny~ ran(T™) is zero on X\Dy,.

Theorem (5.1.7)[81]: Let X be a compact space and let T be a type 1 pre-shift generated
by ¥, w, and . Let f € Ny - ran(T™). Then if f (x) = 0 for all x € X \D,, then f = 0.

Proof. Let f € Ny_;ran(T™) be such that f(x) =0 for all x € X\ Dy . Thus

lim,_,o f(p,) = 0. Fix e > 0. Choose N such that |f(p,)| < eforalln > N. Then



Thus, |f(p,)| < eforalln = N. Thus (by induction) |f(p,)| < € for all n. Hence, f = 0.
In the example from [85], D, contains all but finitely many of the isolated points
of X, and the remaining isolated points are rotated in a cycle by Y. The next theorem

shows that this sort of behavior must happen.

Theorem (5.1.8)[81]: Let X be a compact space, and suppose that 1, w, and i generate
a type 1 shift T on C(X). Then each isolated point of X which is not in Dy, has finite order

under 1 (i.e., for each such x there is an n such that Y™ (x) = x).

Proof. Let {p;,p,,...} be the standard listing of Dy, and suppose that s is an isolated
point of X with sy & Dy, and {{p"(sp): n = 1,2,... }infinite. For each integern > 1, let
f € C(X) be the (unique) function in ran(T;,) such that f,,(s,) = 1and f,,(x) = 0 for
X & {Sg,P1,---, Pn} (see the remark following Theorem (5.1.1)). We will establish that
the functions f,, converge to a function f € C(X). Since each ran(T™) is closed (this is
easy to see because C(X) is complete and T" is a isometric), it follows that f €
Ny=q ran(T™), which contradicts the fact that T is a shift.

We will establish the convergence of the functions f,, by showing that they form
a Cauchy sequence in C(X). Lets, = Y"(sy), and letS = {s¢,s;,...}. Since s; # s; if
i #j, we have that X2 ,lu({s,})| < 1. Letn and k be integers with k < n. Then by
Theorem (5.1.1),

fa



In order to simplify the notation, let

So f,(px) = a(k) + X722, b(k, i) f,(Drsi) for k < n, and f,,(p) = 0 for k > n. We may
have noted that the above summations are actually finite, since f,(px4:;) = 0 for
i > n — k. Note also that f,,(p,,) = a(n). Our reason for leaving the summations infinite
is to simplify the induction argument below. Since },;°_;|a(n)| converges, the proof will
be complete if we establish that ||f,, — fu—1ll < la(n)|. Fixn >2. We show that
| (01) — fa—1(pi)| < la(n)| for all k by inducting “backwards” on k. If k > n, then
for) = fu-1(pr) =0, and if k =n then f,(pr) = a(n) and f,,_1(px) = 0. So let

k < n and suppose that |fn(pj) - fn_l(pj)| < |la(n)| forall j > k. Then

The next theorem uses a counting argument to put further restrictions on spaces
which can admit shifts. It eliminates, for example, C(X) where X consists of a

convergent sequence adjoined to a non-separable Cantor cube.
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Recall that for a locally compact space X, a function f € C(X) is said to vanish at
infinity if for every € > 0 there is a compact K X such that |f(x)| < € forall x € X\K.

The set of all such functions is denoted by C,(X).

Theorem (5.1.9)[81]: Let X be a non-separable compact space which satisfies the
following condition: for every countable set D of isolated points of X, |Co(X\D)| > 2%o.

Then C(X) does not admit an isometric shift.

Proof. Suppose C(X) admits a shift T. Since X non-separable, T must be type 1, so it
must be generated by some ¥, w, and p. Identify each f € |C,(X\D,,)| with the natural

extension of f to X by letting f(x) = 0 for all x € D;,. Now, for each such f, let s; be
the infinite sequence whose nth term is fx %du. By our cardinality assumption,

there are distinct functions f and g such that sy = s,. But then f — g € Ny_, ran(T™),

a contradiction.

First, consider the example of [85]. Here, X is once again w + 1. The map ¢ is a
simple cycle on a set of the form {0,...,k},Ysendsnton—1forn >k + 1, andy
fixes w. The measure uis concentrated at 0, u({0}) = 1,w(0) = —1, and w(x) = +1
otherwise.

Another interesting example is found in [87]. Start with the Cantor set C, and
construct a homeomorphism ¢ : € — C such that ¥ has a fixed point x and such that
there is also a point y whose forward orbit under i is dense in C. Now, form the space
X by adding to C a sequence {p;,p,,...} of isolated points which converges to x, and
extend Y by letting Y (p;) = p;_1. Let w = 1, and concentrate the measure at y, but let
u{yh) = -1.

Recall that a primitive type 1 shift is one of the form given by Corollary (5.1.2).
Since the wand i are, in a sense, irrelevant in this case, we will refer simply to a
homeomorphism i : X\{p,} = X for which Dy is dense as a primitive shift on X. We
give some new constructions for building primitive shifts on compact metric spaces. We

will make use in this section of the notion of a weak chain, which is a finite sequence



C = (U, U,,...,U,) of open sets such that the intersection U; N U; is nonempty

whenever |i — j| < 1.

Theorem (5.1.10)[81]: Let X be an infinite compact metric space and let D be a dense

set of isolated points. If X \D is connected, then there exists a primitive shift on X.

Proof. The set X \ D is compact. Let U, be a minimal cover of X \ D consisting of balls
of radius 1 centered at points of X \ D. Suppose we have defined minimal covers
Uy, Uy, ..., U, of X\ D. We define U,,,; to be a minimal cover of X \ D consisting of
balls of radius 5,4, which are centered at points of X \D such thatr,,,; <1/(n+ 1)
and each ball in U,,,; is a subset of some ball in U,,. (in [89, 85, 90, 88].)

Define functions ¥}, from finite sets of integers {1,2,...,k,} onto U, in such a
way that the intersection 1}, (i) N V,(j) is not empty whenever |i — j| <1 (i.e., the
functions V, define weak chains) and every V,(1) = V,, (k).

Note that the set D is countable. Order points of D in a list as follows. If there
are points in D\ U U, then place them at the start of the list in any order (note that
there are at most finitely many such points). Now add the points of D N (V;(1) \ U U,)
to the list, unless there are no such points, in which case just add any single point from
D NnV;(1). Next, add the points of D which are in V;(2) \ U U, and which have not
been picked before, or if no such points exist, add any single point from D N V;(2).
Continue this procedure for V;(j)\ U U,, where j = 3,...,k,. Then repeat the above
process beginning with I,(1) U U3, and so on. Label the resulting listing of D as
{p1,p2,-..}. Define Y from X \ {p,} onto X by

It is easy to see that i is continuous. Therefore i is a primitive shift on X.

Theorem (5.1.11)[81]: Let X be an infinite compact metric space and let D be a dense
set of isolated points. If there exists a homeomorphism f from X \ D onto X \ D such
that the set {f™(x):n =1,2,...}is dense in X \ D for some x in X \ D, then there is a

primitive shift on X.



Proof. Let x, be a point in X\D such that the set {f™(x):n =1,2,...}is dense in X\D.
Note that X \ D is dense in itself. As in Theorem (5.1.10), define minimal covers U,, of
X \ D consisting of balls of radius r,, which are centered at points of X \ D such that
1, < 1/n and each ball in U,,,, is a subset of some ball in U,,.

Note again that D is countable. Order points of D as follows. If there are points
in D\ U U,, then order them arbitrarily as py, ..., ps,. If there are no pointsin D \ U Uy,
then pick any point in D and call it p; (in that case p; = p, ). Let p; ., be a point in
D \ U U, that has not been picked before and that is in the same ball from U; to which
f (x,) belongs, if any. If none, take any point in D not picked before that is in this ball. If
we may use more than one ball, use the one that has more points from D \ U U, that
have not been picked before. Let pg, ,, be a point in D \ U U, not picked before that is
in the ball from U, that contains f2(x,), if any, If none, pick any point from D in this
ball not picked before. Continue on, choosing points from D \ U U, in the ball from U,
to which f3(x,), then f*(x,), and so on, belong, until there are no more points in
D\ UU, left. If the last point picked was pg, and it corresponds to the point FE(xo),
we let p, 41 to be a point of D \ U U3 not picked before that belongs to a ball from U,
to which f¥*1(x,) belongs, if any. If none, we pick any point of D in this ball. Continue
this process.

Define ¥ from X \ {p;} onto X by

It is easy to see that i is continuous. Therefore i is a primitive shift on X.

Theorem (5.1.12)[81]: Let X be an infinite compact metric space and let D be a dense
set of isolated points in X. If there exists a primitive shift on X then there is a primitive
shift on a disjoint union of finitely many copies of X.

Proof. Let ¢ be a primitive shift on X, and let {p;, p,, ...} be the standard listing of D,,.
Let Y be a disjoint union of finitely many copies of X, say Y = X x {1, 2,...,n}. Define y
fromY \ {(po,n)}onto Y by



It is easy to see that 1 is a primitive shift on Y.
The following example generalizes a construction from [87].

Theorem (5.1.13)[81]: Let X be an infinite compact metric space and let D be a dense
set of isolated points. If there is a primitive shift on X then there is a primitive shift on
the following compactification of X X Z. The space is Y = (X XZ) U ((X \D) %
{—o0, 00}). The topology onY is defined by a basis of open sets U X {n},((U \D) X
{—o U U x{jeZj<k}),(U\D)x{o})uUx{j€Zj>k}), whereUis an
open subset of X, and n and k are integers.

Proof. Let ¢ be a primitive shift on X, and let {py, p1, P2, ...} be the standard listing of
D,, (for this construction, it is more convenient to start the indexing at zero). Define i

fromY \ {(py, 0)} onto Y by

It is easy to see that 1 is a primitive shift on Y.

Theorem (5.1.14)[81]: Let X be an infinite compact metric space and let D be a dense
set of isolated points in X. If there exists a primitive shift on X \D then there is a
primitive shift on X.
Proof. Let ¢ be a primitive shift on X \D, and let {py, p1, P2, --- } be the standard listing of
D,. Note that D, is dense in X \D.

First, we will define a homeomorphism h on X\D such that D, = {h™(p,): n € Z}.
Let 0 <n; <n, < - be such that the points py, py,, Pn,, --- form a sequence converging

to a point x of (X' \ D) \ D,,. Define h on X \ D as follows:

Y(x
PY(x
Y(p
PY(x
PY(x

h(pnzk) = pnzk—1—
h(po) = Pn,-1
h(pnzk—a) = pnzk—



The function his one-to-one and onto X \ D. It is also continuous. Therefore it is a
homeomorphism.

Let U; be a minimal cover of X \ D consisting of balls of radius 1 centered at
points of X\D and such that a ball centered at x, is one of them. Suppose we have
defined minimal covers Uy, U,,..., U, of X\D. We define U, ,, to be a minimal cover
of X\D consisting of balls of radius 7,1 which are centered at points of X \ D such that
Tne1 < 1/(n+ 1), each ball in U,,,4 is a subset of some ball in U, and such that a ball
centered at x is one of them.

Denote a ball in U, centered at x, by U,,(x,). Let kq,k,, ... be a decreasing
sequence of negative integers and let my, m,, ... be an increasing sequence of positive
integers such that both h*2(p,) and h™(p,) are elements of U, (x,), and such that for
any ball V in U, there is j between k,, and m, such that h/(p,) is an element of V.
Denote that ball by V,(j). Assume in addition that U,, = {V,,(j) : k,, < j < m,}, where
V,(ky) = V,,(m,) = U,(x,) is a ball centered at x,,.

Let g, be any point of D. Define ¥ from D \ {q,} onto D by induction as follows.

Step 1. Lety~1(q,) be any point of D\ {qo}in V;(m; — 1) \UU,, if any. If
none, put Y~ (g,) to be any point of D \ {g,} in V;(m; — 1). Denote this point by q;.
Let ~2(qo) be any point of D\ {qo,q.} in V;(my —2) \UU,, if any. If none, put
Y~2(qy) to be any point of D\ {qy,q.}in V;(m; — 2). Denote this point by q,.
Continue in this way, choosing gs,q4, etc. Finally, lety~™1%*1(q,) be any point of
D\ {qo, q1, ...,qml_kl_l} inV, (k) \ UU,, if any. If none, put Y "™+k1(q,) to be any
point ofD\{qo,ql,...,qml_kl_l}in Vi(k1). Denote this point by gy, _k,. Also, note
that V; (kq) = Vi (my) = Uy (xo).

If there are any points of D \ {qo, qi,-- - le—kl} leftin UU; \ UTU,, we repeat
the whole procedure again. That means we puty~™1"*171(g.) to be any point of
D\ {qo, q1, ---'le—kl} inV,(my; — 1)\ U U,, if any. If none, put p~™1**171(g,) to be
any point of D \ {qo, q1,-- -, le—kl} in V;(my — 1). Denote this point by g, _,+1, and

SO on.

h(x) = ¢



Step 2. Once we exhausted points of D in U U, \ U U,, we repeat the procedure
for m,, k,, and the remaining points of D in U U, \ UU;, and so on. Extend i to
X\ {qo} by putting |x\p = h. It is fairly easy to see that 1 is continuous. It is one-to-

one and onto X. So it is a primitive shift.

Theorem (5.1.8) raises the question: can there actually be infinitely many

isolated points not in D,;,? We give two examples showing that the answer is yes. The
space for the first example is just simply w + 1. For this example, however, there is a
sharp distinction between the space of real valued functions and the space of complex

valued functions. Only the latter space admits a shift of this kind.

Theorem (5.1.15)[81]): IfT : Cr(w + 1) » Cr(w + 1) is a type 1 shift generated by

,W, and u, then Dy, contains all but finitely many points of w + 1.
)

Proof. Suppose ¥, w, and u generate a type 1 shift on w + 1 such that Dy, is co-infinite.
By Theorem (5.1.8), the isolated points of w + 1 which are not in Dy, can be written as
the disjoint union of infinitely many finite sets such that the restriction of 1 to each one
is a simple cycle. Since the function w:w + 1 — {+1,—1}is continuous, it must be
eventually constant. Hence, we can find disjoint finite subsets A and B of w, each
invariant under v, such that w(x) = w(y) for all x,y € A U B. Note that u(A) and u(B)
must be non-zero (otherwise, the characteristic function of one of these sets would be
in N;—; ran(T™) by the same argument as in Theorem (5.1.3)). So choose non-zero
a,b € Rsuch thata u(A) + b u(B) = 0. Now let f € C(w + 1) be defined by f(x) = a

forx € A, f(x) = bforx € B, and f(x) = 0 otherwise. For each n,

where W equals the common value of the function w on AUB . Thus f €
Ny=qran(T™).

In order to construct the desired shift on Cc(w + 1), we need the following

lemma. This generalizes the fact that if zis point on the unit circle whose angle is

irrational, then {z™: n € w} is dense in the circle.



Lemma (5.1.16)[81]: There exists an infinite sequence (z,, z,, ... ) of points in S (the unit
circle in C) such that lim,,_,,, z, = 1 and, for each k, the set{{z]",z},...,z}}):n € w}is
dense in (S1)*.
Theorem (5.1.17)[81]: There is a type 1 shift T on Cc(w + 1) generated by Y, w, and u
such that Dy, is co-infinite.
Proof. Partition w into two infinite sets: {p;,p,,...}and {q1,q,,...}. We use o instead
of w to denote the non-isolated point of w + 1. Define y,w, and u as follows. Let
Y(py) = pp—q forn > 1 (as usual), and let each w(p,,) = 1 and u({p,,}) = 0. Also, let
w(o) = 1and u({eo}) = 0. Let each ¥(q,) = q, and u({g,}) = 1/2™. Fix a sequence
(24, Z,...) which satisfies Lemma (5.1.16), and let each w(q,) = 1/z,. Let T be the
type 1 pre-shift generated by Y, w, and u. We will prove that T is a shift.

Let f € Ny, ran(T™). We make the convenient definition a; = f(g;)/2! in

order to simplify the notation. By Theorem (5.1.1),

for eachn > 1. Let L = },;°_,|a,| (this sum converges since f is bounded). Note that in
order to prove that f = 0, it is sufficient to show that L = 0, since this will imply that
each f(p;) = 0 and that each f(q;) = 0.

For each k, choose (by Lemma (5.1.16)) an integer n; such that Zi-;l |zl.n" a; —
la;|| < 1/k (choose ny, so that zin" is close to |a;|/a; for eachi € {1,...,k} such that
a; # 0). Then each |f(pnk) Ll < 1/k+ X204 —la; || <1/k+2X724lail.

Thus, f () = lim,_, f(p,) = L. But, if we repeat the above argument by choosing n;

so that zin" is close to —|a;|/a;, we get that f(o) = —L. Thus, L = 0.



In fact, the construction in Theorem (5.1.17) did not require that the space was
w + 1. All that was needed was that the sequence (p;, p,, ...) was convergent. Thus, we

have actually proven the following.

Theorem (5.1.18)[81]: If X is any compactification of w which contains a convergent

infinite sequence of isolated points, then C¢(X) admits a type 1 shift.

Finally, we present our most interesting example. Here, we return to considering

Cc(X) and Cr(X) simultaneously.

Theorem (5.1.19)[81]: There exists a compact space X and a type 1 shift on C(X)

generated by Y, w, and u such that infinitely many isolated points of X are in X \Dy,.

Proof. Let X be the discrete sum of w + 1 and fw (the Stone—Cech compactification of
w). Since we have two copies of w in X, we need some notation to distinguish them. List
(all of) the isolated points of w + 1 as {p;, p,,...}, and again denote the non-isolated
point of w + 1 as oo. Partition (all of) the isolated points of fw into countably many
finite sets Ay, A4, ... where each A; has exactly 2¢ points.

As before, let ¥(p,,) = pp—1 and w(p,) = 1for eachn > 1, and let () = o
and w(e) = 1. For each i > 0, choose a cyclic permutation of 4; of order 2}, and let
P 4, be this permutation. Then extend 1 to a homeomorphism of fw. Now, for each
i = 0 choose a point a; € A;—this choice of points will remain fixed for the rest of the
construction. Let each w(a;) = —1, and let w(x) = 1 for each isolated point x of fw
which is not in {a,, a,,...}. Then extend w continuously from the remainder of fw into
{—1,13}. Finally, let each u({a;}) = 1/4*1, and let u(S) = 0 for any S © X which does
not intersect {a,,a,,...}.

To show that T is shift, let f € Ny—,ran(T™). We will establish that f = 0in

several steps. Without loss of generality, assume that ||f|| < 1. For each n > 1, we have

To simplify the notation, let



so that f(p,) = 22, g(i,n). Since ||If|l <1, each |g(i,n)| < 1/4*. Note that it is
sufficient to prove that each g(i,n) = 0. For, if we can show this, then each f(p,) =0
and f(t/)‘”(ai)) = 0 for alli,n. The latter equation implies that f(x) = 0 for every

isolated point x of fw.

Now, fix some i and consider g (i, n) for various values of n. Since 1 I is a cyclic
permutation of order 2¢, we have that ™" (a;) = 1/)‘”+2i(ai). Also, exactly one of the
values w (1/)‘(““) (ai)),w (1/)‘(“”) (ai)) e, W <1/)‘(”+2i)(ai)) is —1. It follows that

g(i,n +2%) = —g(i,n). Thus, for any k,

This formula will be the main tool for the rest of the proof.
The next step is to establish that lim,,_,., f(p,) = 0. Fix i, and consider the sum

of g(i,n) for 21*1 consecutive second indices:

Thus, XX, g(i,n) = 0 for any even multiple M of 2¢. So for any k,

Thus,



So, Zflilf(pn) — 0 as k » co. But this limit would be +oo if lim,_ f(p,) >0.
Similarly, f(p,,) cannot converge to a negative number. Since the limit must converge,

we have established that lim,,_,,, f(p,) = 0.
In order to complete the proof, we use induction to establish the following

somewhat cryptic claim:
Claim (4.1.20)[81]. Suppose that € > 0 and N € w are such that |Z’i\’=0 g(i, n)| < € holds

foreveryn = 1. Then |g(i,n)| < € foreachi € {0,...,N} and everyn > 1.

Note that the claim is trivial when N = 0. Suppose the claim holds for N — 1 and

that | XN, g(i,n)| < & for all n. Now,

TNA =

Thus

so |g(N,n)| < & for all n. On the other hand,

Thus, 2|Z¥g(i,n)| < 2¢, so by induction, |g(i,n)| < e for allnand alli <N —1,
This establishes the claim.
Now, finally, fix some € > 0. Choose an integer N such that |f(p,,)| < &/2 for all

n = N and such that {2 ,, 1/4'*1 < ¢/2. Thenforanyn > N,



and

Thus, |Z, g(i,n)| < efor alln > N. But g(i,n) is periodic inn, so [T, g(i,n)| < e
for all n, and thus by our claim |g(i,n)| < e for alli € {0,..., N} and every n. Since € is

arbitrary and N can be chosen arbitrarily large, it follows that every g(i,n) = 0.

Obviously, the example of Theorem (5.1.19) is separable, but it does have some
properties not found in previous examples. Not only does Dy, fail to be dense, but no
finite F X has the property that Uy-_., ¥™(F) dense. Also, even though the isolated
points are dense, the space does not admit any i for which Dy, would be dense.
Note also that it was not really necessary to use fw in Theorem (5.1.19),
although it allowed us to easily extend both Y and w to the whole compactification. In
fact, we really showed that the discrete sum of w + 1 and Y will admit a shift provided
that Y is a compactification of w whose isolated points can be partitioned into sets A; of
size 2¢ such that there is a homeomorphism of Y which is cyclic on each A4; and such that
there is also a continuous w:Y — {—1,1} such that w(x) = —1 for exactly one x in

each A;. For our last example, we show that a metrizable such space exists.

Theorem (5.1.21)[81]: There exists a compactmetric space X and a type 1 shift on C(X)

generated by Y, w, and u such that infinitely many isolated points of X are in X \D,,.

Proof. We will define as subset Y of the plane which admits a 1) and w as mentioned
above. Then the discrete sum of w + 1 and Y will then be the desired space.
Let B denote of the subset of the x-axis consisting of those points whose x-
coordinates are either 0 or £1/n for some n € N (i.e.,, the union of two simple
sequences converging to the origin). The set B will be the non-isolated points of Y. Each

set A; will be a subset of B x {1/2!}. The set A, consists of just the point (1, —1). For



i > 0, A; consists of the points whose x-coordinates are +1/n where n € {1,...,2i‘1}.
Now let Y = B U;¢,, 4;-

Let w(p) = —1 for each point p of Y whose x -coordinate is —1, and let
w(p) = +1 otherwise. To define ) on B, fix the origin, send (—1,)0to (+1,0), and
move each other, point to the nearest point of B to its left. On Ay, is the identity. For
i > 0, define ¥ by sending (—1,1/2%) to (+1,1/2%), and also move each other point of
A; to the nearest point of 4; to its left. Note that (+1/2"%,1/2¢) goes to (—1/2""1,1/
24).

It is easily checked that w is continuous and ¥ is a homeomorphism.
Corollary (5.1.22)[284]: Let T; be a type 1 pre-shift generated by y,w, and p.
Let f; € Ny=q ran(Tj”). Then if f;(x) = 0 forall j = 1 and x € X \Dy, then f; = 0.
Proof. For f; € N5~ ran(Tj”) and f;j(x) = 0 for all x € X \ Dy,. Thuslim, ., fj(p,) =

0. For € > 0 fixed, given N such that |fj(pn)| < egforalln > N.

Therefore

Hence |fj(pn)| < gfor alln = N. By induction we get that |fj(pn)| < efor alln > N.

Hence, f; = 0.



Section (5.2): Problems for Isometric Shifts and Continuous Spaces:

The usual concept of shift operator in the Hilbert space £2 has been introduced
in the Banach spaces in the following way in [57, 58]: Given a Banach space E over K
(the field of real or complex numbers), a linear operator T : E — E is said to be an
isometric shift if
(a) T is an isometry,
(b) The codimensionof T(E) inE is 1,
(c) N&, T™(E) = {0}.
One of the main settings where isometric shifts have been studied is E = C(X),
that is, the Banach space of all K-valued continuous functions defined on a compact and
Hausdorff space X, equipped with its usual supremum norm. In this setting, major
breakthroughs were made in [59] and [60]. On the one hand, in [59], Gutek, Hart,
Jamison, and Rajagopalan studied in depth these operators. In particular, using the well-
known Holsztynski’s Theorem ([61]), they classified them into two types, called type |
and type Il. On the other hand, in [60], Haydon showed a general method for providing
isometric shifts of type Il, as well as concrete examples.
However, a very basic question has remained open since the publication in 1991
of [59]: If C(X) admits an isometric shift, must X be separable? This question is only
meaningful for type | isometric shifts since it was already proved in [59] isometric shifts
yield the separability of X. Let us recall the definitions. If T : C(X) » C(X) is an
isometric shift, then there exist a closed subset Y c X, a continuous and surjective map
¢ :Y > X, and a functiona € C(Y), |al =1, such that (Tf)(x) = a(x) -f(gb(x)) for
allx e Yand all f € C(X). T is said to be of type | if Y can be taken to be equal to X\
{p}, where p € X is an isolated point, and is said to be of type Il if Y can be taken equal
to X. Moreover, if T is of type |, then the map ¢ : X\{p} > X is indeed a
homeomorphism.
Not much is known about the possibility of finding a nonseparable space X such
that C(X) admits an isometric shift since the problem was proposed. Interesting results

in this direction say that such an X must have the countable chain condition (in [63] or



[62]). In [63], it is even proved that Co(X \ clx{p,d 1 (p),..., ¢ ™(p),...}) must have
cardinality at most equal to c, that is, the cardinality of R (where, as usual, clyA denotes
the closure of Ain X and Cy(Z) is the space of K-valued continuous functions on Z
vanishing at infinity).

From this fact, we can easily deduce that if C(X) admits an isometric shift, then
there exists a set S of cardinality at most ¢ that is dense in X. To see it, we write
CoX\cly{p, o X(p),..., " (p),...}) ={f, : @« €I cR}. For each a €I such that
fx # 0, we pick a point x, € X such that f,(x,) # 0. Obviously, given any (nonempty)
open set U c X\ cly{p, ¢~ 1(p),..., ¢ ™(p),...}, there exists f, # 0 whose support is
contained in U. This implies that the set S consisting of the union of all points x, and
{p, o7 1(p),..., ¢ "(p),...}isdensein X.

We will give an answer in the negative to the separability question: There are
indeed examples of isometric shifts on C(X), with X not separable, and even having 2¢
infinite components. The latter example can be connected with the question addressed
in [58], where it was conjectured that the space X cannot have an infinite connected
component (the only examples which appeared so far in the literature for type |
isometric shifts, both of spaces containing exactly one infinite component, can be found
in [59] and [64]; for the case of type Il isometric shifts in the complex setting, see ([60],
[61]). Related to this, one of the main results in [59] states that C(X) does not admit any
isometric shifts, whenever X has a countably infinite number of components, all of
whom are infinite.

Some other papers have recently studied questions related to isometric shifts
(also defined on other spaces of functions). Among them, we will mention for instance

(see [65, 66, 67, 68, 69, 70, 71, 62, 72, 73]).

The unit circle in C will be denoted by T. L®(T) will be the space of all Lebesgue-
measurable essentially bounded complex-valued functions on T, and It will be its

maximal ideal space. m will denote the Lebesgue measure on T.
It is well known that if pis an irrational number, then the rotation map

[p] : T = T sending each z € T to ze?™ ! satisfies that {[p]*(z) : n € N}is dense in T
p p



for every z € T (in [74]). Indeed, it is easy to see that this fact can be generalized to
separable powers of T, that is, those of the form T¥ for k < c (similarly as it is
mentioned for finite powers in [73, 65, 6]): Let A := {p, : @ € R} be a set of irrational
numbers linearly independent over Q; if P is any nonempty subset of R and [p,]ep :

TP > TP is defined as [pelacr ((Za)aep) = (z4€2™P%Y) then the set

aeP ’
{lpalacp ((z4)qep):n € N}is dense in T for every (z,) 4ep € TF.

Given two topological spaces Z and W, we denote by Z + F their topological
sum, that is, the union Z U W endowed with the topology consisting of unions of open
subsets of these spaces (on [75]).

N :={1,2,...,n,...} will be a discrete infinite countable space, and N U {0}
will denote its one-point compactification. In our examples, the point 1 will play the
same role as p in the definition of isometric shift of type I.

Throughout “homeomorphism” will be synonymous with “surjective homeom-
orphism”.

We will usually write T = T[a, ¢, A] to describe a codimension 1 linear isometry
T : C(X) - C(X), where X is compact and contains V. It means that ¢ : X\{1} - X is
a homeomorphism, satisfying in particular ¢(n + 1) = nfor alln € N. It also means
thata € C(X\{1}),|lal = 1, and that Ais a continuous linear functional on C(X) with
||A]l < 1. Finally, the description of T we have is (Tf)(x) = a(x)f(gb(x)), when x # 1,
and (Tf)(1) = A(f), forevery f € C(X).

In general, given a continuous map f defined on a space X, we also denote by f
its restrictions to subspaces of X and its extensions to other spaces containing X.

All results will be valid in the real and complex settings, unless otherwise stated.
The only exceptions are the following: Results exclusively given for K = C. The only
result valid just for the case K = R is given in Example (5.1.10). C¢(X) and Cr (X) will
denote the Banach spaces of continuous functions on X taking complex and real values,
respectively.

It is well known that 9t is extremally disconnected, that is, the closure of each

open subset is also open. In fact, each measurable subset A of T determines via the



Gelfand transform an open and closed subset G(A4) of M, and the sets obtained in this
way form a basis for its topology (see [76]). Now it is straightforward to see that M is
not separable: Let (x,) be a sequence in M, and consider a partition (a.e) of T by k
arcs of equal length, k = 3. This determines a partition of 9t into k closed and open
subsets of T. Select the arc A; such that G(4,) contains x;. Next do the same process
with k2 arcs of equal length, and pick 4, with x, € G(4,). Repeat the process infinitely
many times, in such a way that each time we take A, of length 1/k™ such that
X, € G(A,). Itis clear that if A := Us_; A,,, then m(A) < 27, so G(T\A) is a nonempty
closed and open subset of It containing no point x,,.

Notice that, since 9t is not separable, every isometric shift on C (M) must be of
type I. But there are none because 9t has no isolated points. Even more, in [59], it is
proved that no space L*(Z, Y. ,u) admits an isometric shift if u is non-atomic.

As usual, we consider T oriented counterclockwise, and denote by A(a, ) the

(open) arc of T beginning at e!* and ending at e®”.

Theorem (5.2.1)[56]: C(IM + N U {o0}) admits an isometric shift.

Once we have a first example, we can get more. For instance, the next result is
essentially different in that it provides examples with 2€ infinite connected components.
Proof. We start by defining a linear and surjective isometry on L* (T). We first consider
the rotation 1 (z) := ze' for every z € T, and then define the isometry S : L*(T) —
L®(T) as Sf := f o for every f € L*(T). On the other hand, using the Gelfand
transform we have that the Banach algebra L* (T) is isometrically isomorphic to C (M),
so S determines a linear and surjective isometry Tg : C(I) - C(M). Also, by the
Banach-Stone theorem, there exists a homeomorphism ¢ : M — DVt such that
Tsf = —f o ¢ for every f € C(M). Notice that this is valid both in the real and complex
cases (see for instance [77]).

Let X := M + IV U {}. The definition of Ts can be extended to a new isometry
T : C(X) - C(X) in three steps. First, for each f € C(X), we put (Tf)(x) = (Tsf)(x) if
x€M. In the same way (Tf)(n) = (fod)(n) if n€ N U {co}\{1} (where ¢ :



NM\{1} - N is the canonical map sending each ninto n — 1, which obviously can be

extended as ¢() = ). Finally, we put

where @ := (\/g— 1)/2 is the golden ratio conjugate. It is easy to verify thatT is a
codimension one linear isometry, so we just need to prove that ﬂf‘;lTi(C(X)) = {0}.

Suppose then that £ € N2, TH(C(X)). It is easy to check that

On the other hand, if we fix any ¢ € T, then there exist two increasing

sequences (n;) and (m;) in 2N and 2N + 1, respectively, converging to @ mod 2. An

easy application of the Dominated Convergence Theorem proves that fA(a €+ 27d) fdm =

2mlim f(ny), and fA(a wt2md) fdm = —2mlim f(m; ). By continuity, we deduce that

Obviously, this implies that fA = 0 for everya €T, and f() =0. In

(a,a+2md) fdm

particular this proves that f(n) = 0 for every n € V. As a consequence we can identify

fENZ,THC(X)) with an element f € L°(T) satisfying fA )fdm =0 for

(a,a+2md

every « € T. On the other hand, it is clear that we may assume that f takes values just

in R.
Claim (5.2.2)[56]: fA(anrzmn) fdm = (=1)"F(n—1) [ fdm for every a € T and

n € N, where F(n) denotes the nth Fibonacci number.



Let us prove the claim inductively on n. We know that it holds forn = 1. Also
notice that @ + @2 = 1,s0 @™ + "1 = p" 1 foreveryn € N.

The case n = 2 is immediate because, since

a. e, then we have fT fdm fdm forevery a € T.

= fA(ac,a+2n'cD2)
Now assume that, given k > 2, the claim is true for every n < k. Then we see

that, forany a € T,

a.e., so

and the conclusion proves the claim (5.2.2).
The claim, combined with the fact that f is essentially bounded, implies that
Jp fdm = 0, and consequently fA(ac,ac+2n'®n) fdm = 0 forevery a € T and every n € N.
Now, it is easy to see that if U is an open subset of T, then U is the union of
countably many pairwise disjoint arcs whose lengths belong to the set {2n®" : n € N}.

Now, applying again the Dominated Convergence Theorem, we see that fU fdm = 0.

Obviously, this implies that fK fdm = 0 whenever K c T is compact.
Finally take C* :={z € T: f(z) > 0}. We know that there exists a sequence of
compact subsets K,, of C*, with K, c K,,,; for every n€ N, and such that

lim,_, m(C*\K,) = 0. Clearly, the above fact and the Monotone Convergence

Theorem imply that fc+ fdm =0, and then m(C*) = 0. Now we can easily conclude

that f = 0 a. e., and consequently T is a shift.

Next we prove Theorem (5.2.3). It provides nonseparable examples with 2¢
infinite connected components, each homeomorphic to a (finite or infinite dimensional)
torus: It follows from the fact that 9t is homeomorphic to an infinite closed subset of

BN\N that its cardinality must be 2¢ (on [78] and [79]).

Ala, a + 2ndk-

(=D 1F(



Theorem (5.2.3)[56]: Let k be any cardinal such that 1 < k < c. Then C(M X TF + N U

{0}) admits an isometric shift.

Finally, we can also give examples with just one infinite component.
Proof. Write the isometric shift T : C(IR + NV U {o0}) —» C(M + NV U {o0}) given in the
proof of Theorem (5.2.1) as T = T|a, ¢, A]. Obviously, A = 0 on C(INV' U {0}), and it can
be considered as an element of C(M)’.

Consider a subset IP of R with cardinal equal to kx, and suppose that {1/2m} U
{p, : « € P}is a family of real numbers linearly independent over Q. Then put
P = [Palacp-

Define ¢, : M X T* > M X T as ¢, (x,2) = (gb(x),p,c(z)) for every x € I,
and z € T*. Select now a point v, in T¥ = T*, and consider the evaluation map
I € C(T*)'. Both A and [, are positive linear functionals, and so is the product
A X I, € C(IM x T*)', which also satisfies ||A x I} || < 1 (see [80]).

Given f € C(M x T*) and z € T*, we write f, : M — K meaning f,(x) = f(x,z)
for every x € M. Obviusly f, belongs to C(M), and (AX L, )(f) =T, (A(fvx)) =
A(fu,)-

Now, for X, =M X T* + NV U {0}, define a, € C(X,\{1}) as a, =—1 on
M x T, and a,, = 1 everywhere else, and put T, := T[aK, b, A X I},K].

Let Y:T—>Tand @ be as in the proof of Theorem (5.2.1). Given f €

N2, TH(X,), we have that for every k € N,



To continue with the proof, we need an elementary result:
Claim (5.2.4)[56]. Suppose that (z;),cp is a net in T* converging to z,. Then
timg |5, — £l =

Let us prove the claim (5.2.4). If it is not true, then there is an € > 0 such that,
for every A € D, there exists v € D,v > A, such that ||f,, — f; || = €. It is easy to see
that the set E of all v € D satisfying the above inequality is a directed set, and that
(z,),eg is a subnet of (z3),cp. Moreover there is a net (x,),cg in M such that
|f(x,,2,) — f(x,,2,)| = € for everyv € E. Since M X T* is compact, there exist a

point (xq,2,) € M X T* and a subnet (xn,zn)nEF of (x,,2,)yeg converging to (xo, ;).
Obviously (Z")nep is a subnet of (z,),eg, SO Zy = ;. Consequently both (xn,zn)nEF
and (xn,zo)nEF converge to (xy,2,) . Taking limits, this implies

|f (x0,20) — f(x0,20)| = €, which is absurd.
Now, fix (a,w) € T x T* and € > 0. We know that (@, w) belongs to the closure

of both

j = 0,1. We first consider the case j = 0, and take a net (y;)ep = (einfl,p,:n’l(v,c))/1
€D

in N, converging to (a,w). Since (ei”l)AED converges to a, there exists A; € D such

that

forevery 4 > A;.

On the other hand, by the claim, there exists A, € D such that, if A > 4,, then

”fw _fp;:n’l(vx)” < €/4m, so



for every v € D. We easily deduce that

and consequently 2rf (o) = [ dm. In a similar way, working with N;, we

A(a,a+21d) fW

see that 2rf (o) = — dm. With the same arguments as in the proof of

fA (a,a+2md) fW

Theorem (5.2.1), we conclude that f, = 0, and finally f = 0, as we wanted to prove.

Theorem (5.2.5)[56]: Let k be any cardinal such that 1 < k < c. Then C(M X TF + N U

{0}) admits an isometric shift.

Proof. Notice first that L*(T) is isometrically isomorphic to L°(T, UT,), where
T;, i = 1,2, are disjoint copies of T endowed with the Lebesgue measure. It is not hard
to see that this implies that C(9) and C(IM + M) are isometrically isomorphic, so M
and M + M are homeomorphic. Assume that T = T|a, ¢, A] is the isometric shift given
in the proof of Theorem (5.2.1). We first define a homeomorphism y : 9 x {0,1} -
M x{0,1} as y(x,i) = (¢p(x),i + 1 mod2) for every (x,i). For i=0,1, and
feCOMx{0,1}), denote by f x {i} its restriction to M X {i}, and put A;(f) =
A(f x D).
Let p, : T* - T, v,, and B, _be as in the proof of Theorem (5.2.3).
Finally consider X, :== M x {0,1} + T + N U {0}, and define T,:C(X,) —
C(X,) tobe T, := Tlay, ¢, 4,], where
(i) a, = —1on M x {0} U T*, and a,, = 1 everywhere else.
(i) = y on M x {0, 1}, and ¢, = p, on T*.
(iii) A = (A + A, + BT, )/3.
As above, if f € Ny_; T} (C(X,)), k € N, and



then

Next fix « € T,w € T*, and forj = 0,1, 2, 3, take increasing sequences (n,’c) in

. o
4N + j such that limy_,o, n;, = @ mod 27, and lim,_o, f (pK n"(v,c)> = f(w). Now put

fori = 0, 1. Taking into account that T(n,];) is constant for each j, and that 7(2) = 1 =

7(3), and 7(1) = 0 = 7(4), we have that the following equalities hold:



We deduce that X{* = 0 for everya € Tandi = 0,1, and that f = 0 on T*. As in the

proof of Theorem (5.2.1), we easily conclude that f = 0.

We show that in the complex setting, it is possible to obtain nonseparable

examples with arbitrary (finitely many) infinite connected components. For the different
behavior in the real setting, see Example (5.1.10).

The first result is indeed given for separable examples. The idea of the proof is

used in Theorem (5.2.9) to obtain nonseparable examples. In both cases T denotes the

set {0}.

Definition (5.2.6)[56]: Let X be compact and Hausdorff, and suppose that T =
Tla,¢,A] : C(X) - C(X) is an isometric shift of type I. Forn € N, we say that T is n-
generated if nis the least number with the following property: There exist n points

X1,---,Xn € X \ clyV such that the set

isdensein X \ clyV.

Notice that isometries simultaneously of types | and Il are always 1-generated (in

[59]), so the next theorem provides a way for constructing isometries that are not of

type Il

Theorem (5.2.7)[56]: Let K = C. Suppose thatn € N, and that (Kj);;l is a finite
sequence of cardinals satisfying 0 < k; < c for every j. Then there exists an n-generated

isometric shift T,, : Cc(X,,) — Cc(X,,), where X,, = T*1 + -+ + T*n + " U {o0}.

Proof. Let P,,...,IP, be any pairwise disjoint subsets of R of cardinalities k4,..., K,
respectively. Consider any family A:={p, :a € R} of real numbers linearly

independent over Q, and put g; = [pa]aeﬂ»j for each j < n (in the case whenk; =0,

thatis, P; = @, g; is the identity). Also let v; be a point in T%).



Next write X, := TFn + -+« + TF1 4 N U {0}, and define ¢, : X, = X, as g; on
each T®. For j <n, let z; € C\{0}, with |z]| < 1/2/, and {; := e/ Define a
codimension 1 linear isometry T;, on C¢(X,,) as T, == Tlay, ¢, A,], where a, = {jon
T%J for each j <n, and a, =1 on N U {0}, and where A,(f) == X%, ij(vj) for
every f.

Of course, the construction of T,, depends on our choice of the sets P; and A, the
points v;, and the numbers z;. We will prove that for any choices, the operator T,
satisfies the theorem.

We will do it inductively onn. We start atn = 1. It is easy to see thatT; :
Cc(X,) = Cc(X,) is an isometric shift (both of type | and type Il). Now let us show that if
T, is an n-generated isometric shift forn =1 € N, then T;,, is an (I + 1)-generated
isometric shift.

Suppose that f € Ny T/ (Ce(X141)). Itis easy to check that

whenever k € N.
Fixx; € TP1,..., x4, € TPi+1, Forj = 0,1, we can take increasing sequences

(n]) in 21*N and 21+1N + 21, respectively, such that the sequences

converge to (f(xy), ..., f(x141)) € C*1forj =0,1.

This means, on the one hand, that



And, on the other hand,

We deduce that f(x;,;) =0, that is, f =0 on TPi+1, and consequently
f € Ny—1 T/™(Cc(X))). Since T is a shift, we conclude that f = 0 on X, ;. It is also easy
to see that T}, is (I + 1)-generated.

Theorem (5.2.8)[56]: Let K = C. Suppose that n € N, and that (Kj);;l is a finite

sequence of cardinals satisfying 0 < k; < c for every j. Then there exists an isometric

shift T2 Ce (X2) > Ce(X}), where XT = 9t + Tt + - + T + V" U {oo}.

Proof. The proof is similar to that of Theorem (5.2.7). We consider the homeomorphism
¢ on MWt coming from the rotation Y : T — T given in the proof of Theorem (5.2.1).

Fixn € N, and assume that X,, and T,, = Tla,, ¢, A, ] are as in the proof of

Theorem (5.2.7). Take z,,, € C\ {0} such that |z,,,| < 1/2™*, and put {,,,, = e™/?".

We are going to define an isometric shift on X;>*. First put

Obviously we are assuming that 1/2m does not belong to the linear span (over Q) of
{po : @ € P U---UP,}. Let at € Cc(X) be equal to {41 on M, and equal to an on
X,,, and let p2t: X' — X pe defined as ¢, on X,,, and as ¢ on M.

We consider T2 == T[a, %, AT]. Following the same process as in the proof

of Theorem (5.2.8), we easily obtain that 0 = )fdm for every a € T. As

Zn+1 fA(a,2n¢+a
in the proof of Theorem (5.2.1), we see that f = 0 on T, which is to say that f = 0 on

M. We deduce that f € Ny, T,*(Cc(X,)) , and consequently f = 0.
The next example shows in fact that the procedure followed above is no longer

valid when dealing with K = R.



Example (5.2.9)[56]: Let K = R. Suppose that X =Y + X; + X, + X3 is compact, where

each X; is connected and nonempty, and V' c Y. LetT = Tla, ¢,A] be a codimension 1
linear isometry on Cr(X), and assume that gb(Xj) =Xj,j = 1,2, 3. Let us see that T is
not a shift. First, there are j, k,j # k, with a(Xj) = a(X,) € {—1,1}. There are also
a;, @ € Rsuch that |aj| + |ag| > 0 and A(a]fXj + a,&X,) = 0, where &, denotes the
characteristic function on A. It is easy to check that a;$X; + a;¢X) belongs to

T”(CR(X)) for every n € N, and consequently T is not a shift.
In particular, we see that neither Cx(T + T2 + T3 + NV U {o0}) nor Cx(M + T +

T? + T3 + N U {o0}) admit an isometric shift.



Chapter 6

Finite Strictly Singular Operators on James Spaces

However, we exhibit examples of strictly singular operators without nontrivial
closed invariant subspaces. So, though it may be true that operators on the spaces of
Gowers and Maurey have invariant subspaces, yet this cannot be because of a general
result about strictly singular operators. The general assertion about strictly singular
operators is false. As a consequence, we obtain that the strictly singular operator with
no invariant subspaces constructed by C. Read is actually finitely strictly singular. These
results are deduced from the following fact: if k < n then every k-dimensional subspace
of R™ contains a vector x with [[x]l,_ = 1such that x,, = (=1) for somemy < - <
my. In addition we deduce different examples of Strictly Singular operators of Cauchy
sequences. Without nontrivial closed invariant subspaces. We show that the formal
inclusion operator, in James space, is finitely Strictly Singular.
Section (6.1): Invariant subspace Problems and Strictly Singular Operators:

Operators without invariant subspaces were first found independently by P.Enflo
by ¢, and [; on an unknown Banach space. They were found on and ([164], [165]),
([166], [167]) and various extensions of the method were found ([168], [169], [170],
[171], [172]), of which the nearest to the present construction is the construction of a
in [172]. A general account of [, quasinilpotent operator without invariant subspaces on
,the theory of invariant subspaces, written before all these counterexamples were found
will J will be found in [173]. A short account of the basic properties of the James space
be found in Singer, [174]. The original article is [175].

are normed spaces, is norm F and E where T : E — F, A continuous linear map

€ > 0 such that if there is an increasing

.x € E for all
are Banach spaces, is said to F and E where A continuous linearmap T : E — F,
is T|yw W c E such that if there is no infinite dimensional subspace strictly singular be

.norm increasing



(a2, € cysuch is the set of all sequences ]p(l <p< 1) space-p The James

that

It is a fact that ], is nonreflexive, dim(];*/]p) = 1, but that every infinite

dimensional subspace of J,, contains a subspace isomorphic to L,,.

It is well known that on lp(l < p < ™) or ¢y, any strictly singular operator is compact.
On the other hand the inclusion map [,, © ]q(l < p < q < o) is strictly singular but not
compact [135, 136, 139, 140, 141]. For our purposes we want something like the
inclusion map L, © l;, but which happens between non-reflexive Banach spaces; (and
which happens, let it be said, in @ manner which has respect for the nonreflexivity, in
the sense that there is a sequence of unit vectors in the domain space with no weak -*
convergent subsequence, which is mapped to a sequence in the image space which also

has no weak-* convergent subsequence).

For such a map we look to the James p-spaces J,.
Lemma (6.1.1)[163]: The natural inclusion i : ], < J,(1 < p < q < o) is strictly singular.

Proof. If not, there is an infinite dimensional subspace E c J,, on which the norms ||-||]p

and |||, are equivalent. Taking a subspace of E as necessary, this tells us that
Jq

(E, ||-||]q) is isomorphic to I, (for every infinite dimensional subspace of ], contains a

subspace isomorphic to [, (0.5)). Taking a further subspace, we find lq embedded up to

isomorphism in L,; which is nonsense.

Definition (6.1.2)[163]: Let us choose, once and for all, a strictly increasing sequence
(pi)2, of real numbers strictly greater than 2. The Banach space X is defined as the 1,-

direct sum



It is on this Banach space X that we will construct a strictly singular operator

without invariant subspaces.

(o] (o]
We will write (fij)j=0 for the unit vector basis of J,, and (foj)j=0 for the unit
vector basis of the space [,.

[0¢]

An element x € X can be regarded as a sequence (x;)i2, with X, € [,,x; €

Jp,(i > 0). It can be shown that if (§;);2, is a sequence of scalars tending to zero, then

the “weighted shift” operator

is strictly singular. We will construct an operator on X without invariant subspaces,
which has a good deal in common with a weighted shift W.

The next few definitions follow [166].

Definition (6.1.3)[163]: Our construction will be built around a strictly increasing
sequence d = (d;){2, of positive integers.

This sequence will be required to “increase sufficiently rapidly” in the sense of

[165]. We will write a; = dy;_1(i =1,2,...) and b; = d,;. Thus, a; < b; < a, < b, <

... We definea, = 1,v, = 0,v, = n(a, + b,) (n > 0). We will use the symbol pd to

mean, “provided d increases sufficiently rapidly”, as we did in [R4]. We define

w,=1+Y"1 +v),w, = 1.

Definition (6.1.4)[163]: F will denote the dense subspace of X spanned by the unit
vectors {fij,i >0,j= O}. IfS ¢ Z* X Z*, Fg c F will denote the linear span of the set
{fij : (i,)) € S}. ms will denote the projection F — Fs such that ns(fij) = fij((i,j) €S)
or( ((i,j) & S). Tt is continuous only for certain choices of S; we shall not be using any

S for which it is discontinuous, however.

fi; will denote the norm-1 linear functional on F such that f;3(fi,) = 6y 8j.



Definition (6.1.5)[163]: Let |p| denote the sum of the absolute values of the coefficients

of the polynomial p. For a finite set S, let |S| denote the number of elements of S.

We will now define, in terms of the sequence d as in Definition (6.1.3), a

sequence (e;);2, whose linear span is the dense subspace F of X.

We shall begin by rearranging the fundamental set (fj,k);”kzo into a

fundamental sequence (f;){2,. Each f;  is equal to fyjx), where I : Z* X Z* - Z" is a
suitable bijection (see Definition (6.1.9)). We will write F, for the linear span
lin{fy, ..., f} - a special case of the subspaces F as in Definition (6.1.4). This particular

choice of S will be called S,,, the unique subset I *([0,n]) of Z* x Z* such that

We then define linear relationships of general form f; = §-=0 Aijej, with A;; #

0, for each i € Z* (this is done in Definition (6.1.10)). Because the matrix with entries

Aijis lower triangular with nonzero diagonal entries, this linear map can be inverted;

giving us an alternative vectorspace basis (e;);2, of F, given uniquely as linear
combinations of general form e; = Z§-=O Piif-

So there is a unique linear map T : F = F that acts as a right shift operator

sending each e; to e;, ;. It turns out that pd, T extends to a continuous operator X — X

that is strictly singular [148, 149, 150, 151, 152], and has no nontrivial closed invariant

subspaces,

Definition (6.1.6)[163]: Let the sequence d be given. Let Q) c Z* be the set

Provided d increases sufficiently rapidly, the union (4) is disjoint, and both Q and
Z*\Q are infinite sets. If d does indeed increase sufficiently fast for this to happen, we

make the following definitions:

Definition (6.1.7)[163]: Let y be the unique increasing bijection Z*\Q — 7.

S

s



Definition (6.1.8)[163]: (a) For each s = 0, let o, be the natural bijection from the Set
Unesiil(n —s)a,, (n — s)a,, + vg] € Z* to the set [0,v,] X Z* < Z* X Z*, that sends
the integer (n — s)a,, + i(0 < i < v,) to the pair (i,n —s — 1).
(b) Define maps xs, each with the same domain as a,, by xs(j) = a,(j) + (wg, 0), so
that the image of x, is equal to [wg, wg + vs] X ZF = [wg,we, 1) X Z* (forwg,; = wg +
vs + 1, by Definition (6.1.3)).
(c) Let the map y : Q - Z* X Z* be the unique map whose restriction to each subset
Ursiil(n — s)a,, (n — s)a,, + v of Qis equal to ;.

Now the map y is a bijection from Q onto [w,, ©) X Z™*, that is, onto N x Z™.
We may obtain a bijection Z* — Z* x Z* by making sure that Z*\( gets mapped onto
{0} X Z*, thus:
Definition (6.1.9)[163]: Let us extend y to a map Z* - Z* X Z* by defining x(i) =
(O,y‘l(i))for eachi & ). Since y is always a bijection, we may also define the map
I=y1:7" X7t > Z".

Definition (6.1.10)[163]: Let the sequence d be given, and let it increase sufficiently fast
that the maps x and I are defined. For each i then, we define f; = fj,, where
(j, k) = x(i). We shall show that, pd, there is a unique sequence (e;)i2, in F, with the

following properties. Firstly,

Secondly, if integers r,n, i satisfy 0 < r >n,i € [0,v,,_,.] + ra,, then

Thirdly, if 0 <r < n,i € (ra, + v,_,, (r + 1)a,) (respectively, if 1 < n,i € (v,,_1,a,)),

then

where h = (r + %) a, (respectively, h = ian). If integers r,n,i satisfy 0 <r <n,i €

[r(a, + b,),na, + rb,] then



If integers r,n, i satisfy 0 <r < n,i € (nan +rb,, (r+ 1)(a, + bn)), then

where h = (r + %) b,.

Lemma (6.1.11)[163]: pd, the sequence (e;)2, satisfying ((5) - (9)) does indeed exist, is
unique, and is a vector space basis of F. There is a unique linear map T : F = F such

that Te; = e;,q foreach i.

Proof. Each definition is of form f; = Y.I_, A;e;, with A; # 0. The values taken by the
index i in formulae (5)-(7) include zero, [0,v,_,]+ra,(0<r <n); (ra,+
Vp_p, (r + 1a,) (0 < r < n); and (v,,_;, a,) (1 < n). Pd, this means each valuei = 0
ori € (v,,_1,na,] (n = 1) is mentioned once and only once.

The remaining values of i are taken care of by (8),(9). These cases cover intervals
[r(a, + b,,),na, +rb,] (0 <r <n)and (nan +rb,, (r+ 1)(a, + bn)) (0<r<n),
whose union is (na,,n(a, + b,)] = (na,,v,]. As the index n varies, we catch the rest
of Z*.

Pd, then, each f;(i = 0) is defined once and only once, and has the general form
Z%:o Ayer.

Because 4;; # 0 the linear relationship between the e; and the f; is invertible
(we have a lower triangular matrix with nonzero entries in the diagonal) so the e; do

exist, are unique, and span F. Note by the way that if i = I (j, k) then

since f}; (f;) = 1, and obviously f} (e,,) = 0 form <.

It is then also true that for each n,

say where S,, = x{0,1,2...n},|S,| = n + 1. As we remarked at the beginning, we will
abbreviate Fs_to F,. (e;)g is an alternative vector space basis for F, so of course there

is a unique map T such that Te; = e;,, forall i - as yet we say nothing about continuity!

li1



From now on, we will always assume that the given sequence dincreases
sufficiently rapidly that Lemma (6.1.11) holds.

Obviously we must now prove that (pd), T is continuous and strictly singular.

The method of achieving this result is to approximate T by an appropriate
“weighted shift” operator W, and then estimate the norm of the “error term” T — W by
ad hoc methods. This also gives us a natural direction to take when proving that T is

strictly singular.

Definition (6.1.12)[163]: Let W, : [, — |, be a weighted shift operator with W, f,; =
a;fo,j+1;, we define the weights a; as follows. Writing i = Y ~1(j), we know that either i
is zero, or it lies in one of the intervals (v,_y,a,), (ray + vy, (r + 1ay), (na, +
rb,, (r + 1)(a, + bn)) or [r(a, + b,),na, + rb,] that feature in parts (7), (8) and (9)

of Definition (6.1.2). With an eye on that definition, we define:

It is easily checked from Definition (6.1.10) that in cases when a; # 0, W, fo; =
Tfo;- For example, if j = y(i) withi € ((nan +rb,),(r+1)(a, + b,) — 1), then both
iand i+ 1 lie in the interval ((nan +rb,),(r + 1)(a, + bn)), hence for suitable h, we

have

and

Hence,

( 21/

[
L

_
=+

=
+

\ 0,



. . . . 1 .
W, is a weighted shift operator on [,, obviously of norm 7’ 211 (if we assume the
interval (a;, a; + b; — 1) is nonempty, a rather mild condition of “rapid increase” on

the sequence d). Note it is also compact, for the weights tend to zero.

Definition (6.1.13)[163]: Let W] : (69?;1 ]Pi)z - (69?;1 ]Pi)z be the map such that the
2 2

sequence (X4,X5,X3,...) WithX; € ], , is sent to the sequence (0, B1X1, B,X3, B3X3,...)

where the coefficients f; are as follows:

Once again, in cases when ; # 0, the action of T on ]pj and of W, are identical. For if
j € [ws,ws +v5)and k >0, let us writen =k + 1+ s and i = j — w,. Then Definition
(6.1.8) gives us )(((n —s)a, + i) =Wws+i,n—s—1)=(,k) ; and likewise
)(((n —s)a, +i+ 1) = (j+1,k). Therefore, Definition (6.1.4) gives us fj, =

f(n—s)an+i =
and f}'+1,k = f(n—s)an+i+1 =

Hence

forall k = 0; this of course agrees with W, f; ;.
Since the embedding ]pi ‘—>]pi+1 is strictly singular [137, 154, 155, 156, 157], we
conclude that ||W,|| = 1/2. Writing W for the unique continuous linear map X —» X
which agrees with W, on [, and W; on @7 J,,, we have [W]| = ; . 21b1_ The “error

term” T — W acts as follows. By (5), (6)

(S+1)i‘|

(s+ 1. g



By (7),ifi = (r+1)a, —1andj = y(i) (0 < r < n)then

By (6), if j=w,+v, and k>0 then writng r=k+1,n=m+k+1 and

i=ra,+j—wy,=ra, +v,_,, we have

By (8),if j = y(i),i = na, + rb,, 0 <r < n,then

Lastly by (9), if j = y(i),i = (r + 1)(a, + b,) — 1,0 < r < n, then

In all other cases, (T —W)f;; = 0.

Lemma (6.1.14)[163]: For everyn > 0 the following is true. Pd, T — W is a nuclear

operator of nuclear norm at most 1.

Proof. It is necessary to estimate the sum of the norms of all the vectors in (13)-(16),
add up the estimates and check that (pd) the sum is less than 7. These sort of details will

be very familiar (see [165]-[172]).

1
Obviously (13) contributes 2_1+(1_5a1)/*/a_1 to our sum (which is less thann/5

pd, let us say). Now (6) gives us (for 0 <r < n)

(T -

(T - W)f]k =

n—-r+

(T -

=(1+n

(T —W)f,

1+n)



Now the J,, spaces have the special property - closely related to their nonreflexivity- that

forall 7, j we have || X723 fis|| = 1. Hence,

and

Hence, (14) contributes to our sum at most

pd. In view of (7), if 0 <r < n then

Ifr =n>0,(9)gives

Ifr =0 <n,(7)gives

Hence the contribution made by (15) to our sum is at most

n—-r+

NgE
NgE

S
1l
=
<
1l
=
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=
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pd (the first two terms in the middle of (25) are summing appropriate multiples of the

norms of vectors e;,,4 4y, _, On the left hand side; the last two terms do the same for

vectors €1+(r-1)ap_1+vp_r ).

Then again, (9) gives us

when 0 < r <n; ifr = n we are looking at ||€1+vn|| which is given by (24). Hence the

contribution to our sum made by (16) is at most

pd (here the first two terms in the equation sum the norms of vectors e4pnq, +rb,
appearing in (16), with appropriate weights; and the last term does the same for vectors

€1+nan+(r-1) bn)-

Lastly, (8) gives us (foreach 0 < r < s < n)

hencefor0 <r<n

(by (20))

Therefore the contribution to our sum from (17) is at most

pd. Adding up our estimates ((25),(21),(27),(29) and our remark about T f,,) we find that

pd,

||(1 + n)

Ica-



which gives the result.

Corollary (6.1.15)[163]: Pd, ||T|| < 1.

Corollary (6.1.16)[163]: Pd, T is strictly singular.

Proof. Strict singularity is not affected if an operator is perturbed by an operator in the
norm closure of the finite rank operators. Since T — W is nuclear pd, it is enough to

show that W is strictly singular. Now with slight abuse of notation, we have

where W, is a compact operator onl,. So it is enough to show that W is strictly
singular. Now W, is the map (@?iljpi)l - (@f‘;ljpi)l which sends the sequence
2 2

(X1,X3,X3,...) to (0, 81Xy, B2X,,...). Furthermore f; —» 0 asj — 1 (see (12)). All we

need then for our Corollary is the easy lemma:

I

Lemma (6.1.17)[163]: If W, : (@?iljpi) - (69?;1 ]pi)zz is the map sending

(xi € ]pi)' then W, is strictly singular provided 3; —» 0 as i — oo.

Proof. If not, write X; = (@f‘;ljm) and let E c X; be an infinite-dimensional subspace,

and € > 0, such thatforallx € E,

Let Py denote the natural projection onto 6911V]pi sending (X4,X,,...) to
(x%4,%5,...,%4,0,0,0,...) Let P,=0. Now |[W;Py—W,|| >0 as N — co because

pi — 0. Therefore there is an N such that for all x €E,

So, W; is norm increasing on an infinite dimensional subspace of PyX; (namely, PyE).
letS c Z* X Z* = {(M,N) : M < N, and there is an infinite dimensional subspace of

(Py — Py)X; on which W; is norm increasing }. We have shown (0,N) € S for large N.



Let (M, N) € S be such that N — M is minimal, and let E be a subspace of (Py — Py)X;
on which W is norm increasing, spanned by vectors x® = (O,...,O,xﬁll,xﬁlz,...x,(\f),o,...,o)
(i=1,...,0).If N — M = 1 we find the inclusion map J,,, = J,, ., is norm increasing on

E, contradicting Lemma (6.1.1). If not, then taking a subspace of E and perturbing

slightly as necessary, we can assume that for each j the X]@ are a block basis in J,,. (here

we allow a “block basis” to perhaps include some zero vectors). Now the subspace of

spanned by the X(i) , must be infinite dimensional, or we can remove the X(i)
pm+1 SP Y M+1 M+1

(and reduce N — M) by passing to a subspace. So taking a subsequence as necessary we
may assume the X,(V;')Jrl independent, and likewise we may assume the XI(\,i) are

independent. Consider the two norms

and

on the finitely nonzero sequences 1 € cy. If on any infinite dimensional subspace of ¢y,
they are equivalent, we have a subspace of ], .. isomorphic to one of ], ; this leads to

l a contradiction as in Lemma (6.1.1). If not, there is a normalized block basis

DPM+1 C]pN'
y® of the xU) such that writing y® = (O,...,O,ygll,...yl(vi),o,...,O) we either have

”y,(l,;)Jrl” — 0Qor ”y,(\,i) ” — 0. Perturbing a subsequence of this block basis very slightly,

we can obtain an increasing sequence (n;), and vectors z® close to y(”i), spanning a

@

I(Vi) =0 (or z;;,, = 0). Hence, either

norm increasing subspace of X;, for which z
(M,N—-1)€eSor(M+ 1,N) € S; so N — M was not minimal. This contradiction shows

that W is strictly singular.

||T @+ || this of course is essentially a repeat of arguments given in [165]-[172].



Lemma (6.1.18)[163]: Recall that E, = lin(e,, ..., e,). On E,, one may consider the two

norms

and

We claim that for suitable functions N; : N> - N and N, : N> - N, we have

forallx € F,, ; and

for all x € Fvn, provided d increases sufficiently rapidly that Definition (6.1.10) is

meaningful.

Proof. For Fpq,, is Fs,, = lin{fij 1 (i,)) € Snan} where S, is the set mentioned in (3).
Furthermore, the matrix of the map on F,, sendinge; to f; (wherei = I(j, k), is
determined by the values a4, by, ...a, as used in Definition (6.1.10). If we take the
releveant f; as our basis for F,, then of course the norm is between the ¢, norm and
the [, norm. If we make the change of basis toe; (i = 1,...,na,) then for a suitable
function M;(n, a,, by,...a,) the inequality (31) must hold. Because dis an increasing
sequence, we can write M;(n,ay, by,...a,) < N;(n,a,) for a suitable function N;.

Similarly, a suitable function N, exists such that (32) holds.

Definition (6.1.19)[163]: Recall that we write f; for the vector f; ,, where i = I(j, k).

Let QY : F » Epq,, be the projection such that



We shall establish the following lemma (in [167]).

Lemma (6.1.20)[163]: Pd, for all n we have

Later on, we will establish that, for an arbitrary norm-1 vector x € [;, and for any

€ > 0, there is a polynomial g and an integer n such that

and

This will show that e, € lim{T7x : r = 0} and hence that x is cyclic, since e, obviously is.

So T is strictly singular, and has no invariant subspaces.
Proof. As with proving T continuous, we split the operator involved (in this case,
T%*bn o (] — Q9)) into a part that looks like a weighted shift operator, and a nuclear
operator. In certain cases, we now find that T**Pn o (I — Q) f; is of form &; * fiyq +p, -

These cases are as follows:

Case (Al). If i € [0,na,] then Q2f; = f; so of course

Case (A2). If i€ [r(a,+b,),(n—1)a, +rb,] with 0 <r<n, then by two

applications of (2.2.3) we find that

Case (A3). Ifi € (na, + rb,, (r + D(a, + b,)) with 0 < r < n — 1 then two applications

of (2.2.4) likewise give us

Case (A4).Ifi € [0,v,,_, — a, — b,] + ra,, with 0 < r < m — n then (2.2.1) gives

om(f;) =

Te

Tan+b’



Case (A5). Ifi€ (ray + vy, r+ Da,, —a, — b,) with 0 <r<m,m>n, or if

i € (Wp-1,aym — a, — b,), m > n then by (6),

Case (A6). Ifi € e[r(a,, + b,,), ma,, + rb,, — a, — b, | with0 <r < m,m > n, then (2.2.3)

gives

Case (A7). Finally if i € (ma,, + rby, (r + 1)(a;, + by) —a, — by)) with0 <r <m,m >

n then (2.2.4) gives

Lemma (6.1.21)[163]: Pd the following is true. The operator W = W™ : F - F such

that W f; is as in ((33)-(39)) if the integer i is mentioned in these cases, and Wf; = 0

otherwise, has norm (1 4+ n)~%=bn . 2an/\bn < % (1 + n) %n=bn,

Proof. As earlier, we split up W into an operator W, acting on l,, and W, acting on

D7 Jp,- The operator W, covers all cases except Case (A4), and it acts as

with &; < (1 + n) %nbn. 20n/\/bn pd, and equality achieved for certain values i such
that y~1(i) is covered by Case (A3). The operator W, deals with Case (A4). It sends (for
i €0,y —ay—byl+71an,0<r<m-—n)fito(m—r+1)"%bnf ., ; that

is, writing j =i — ra,, € [0, v,_ — ay, — by],
Writing m — r = k = n we find that W sends fj,,,, s to

foralls > 0andj € [0,v, —a, — b,].

Tan+

Tan+bn °



(n)

i ’

Otherwise, W, f;; = 0. So W; acts on each J, space as a multiple B; X ¢

(m)

. . . - _b
where f3; X & is the inclusion J,. = J, 4q. +p,, and B; does not exceed (n + 1)~ ~n,

So, W]l = (n + 1)~%~bn_ Hence,

Lemma (6.1.22)[163]: For eachn > 0, the following is true. Pd, for everyn > 0 the

operator T%*Pn o (] — Q%) — W™ js nuclear, of nuclear norm at most

Proof. We must consider the error terms T%*bn o (I — Q9)f; — WF,, sum all their
norms, and obtain at most 77 - (n + 1)~ ~Pn_This is not in fact difficult to do, there are
roughly six cases, corresponding to values i which were “missed out” of Cases (A2)- (A7)

above.

Case (A8). Ifi € ((n — 1)a, + by, na, + rbn] with 0 < r < n; (these are some of the

“missing values” from Case (A2) above).

Then, (8) gives us

and hence, writingj =i + a, + b, — na, — (r + 1)b, — 1 = 0, we have

Now (26) and (24) together give us, forall0 <r < n,

(for pd, (24) is less than (27) for the same value of n). Applying this twice, we find that

(40) is at most

pd.

T

1+



Case (A9). If i = v, (the final value “missed out” of Case (A2) above). Then (8) and (24),

together with the ever-useful fact that ||T|| < 1, give us

for all n, pd.

Case (A10)./fi € (nan + (n—1)b,,n(a, + bn)) (not covered by Case (A3) above).

Then by (9), fiis a multiple A;e; with A; (crudely) at most (1 +n)”»"1. Therefore,

Tan*buf, is T*(A;eq4y, ) for some k > 0. Since |IT]| < 1,

by (24);

pd.

Case (Al1l). Ifi € (Vy—y — a,, — by, V] + 1A, with 0 < r < m — n (not covered by
Case (A4) above), orifi € [0,V,,,_, ] + ra,, with0 <r<m>nm-—r <n.

Then we see by (6) that

and in either case, i +a, + b, > ra,, + vy,_,. (In the second case, i + a, + b, =

ra, +a, + b, >ra, + v,_, pd, since m —r < n). Writing

we have

<1+
< ((1+

<((1+

T+ fi]|

fiz((1+:

ITan+bn]4



Now (22),(23) tell us that pd, for all 0 < r < n we have

So, (49) is at most

(the worst case in this estimate is whenr = 1). Now if we havem >n+ 1, then

(I —Q2)f; isjust f; (6.1.22), and (53) above is the upper bound we need; thus,

If on the other handm =n+1,(I — Q2)f; is in fact not f; but just (1 + m)"%m(m —

r + 1)i"T%me; (see Definition (6.1.19)). Our argument then gives the better estimate

pd.

Case (A12). Ifi € [(r+ Da,, —a, —b,, (r + Da,,), with0 <r < m,m >n, (these

are the “missing values” from Case (A5) above).

Then (7) gives us

(1+n) e, || =1+ az?,; so since

IT]| < 1 thisis at most

for some j > 0. As we have remarked (20), |

IA

|| T antbn

Tan+bn ° (



(sincei = (r + 1a,, —a, — by,)

forall0 <r <m>npd.

Case (A13). Ifi € (ma,, + rb,, — a,, — b,, ma,, + rb,,] with 0 < r < m > n; then we
have one of the “missing values” from Case (A6) above.

(8) gives us

and hence, writing j =i + a, + b,, — ma,, —rb,, —1 = 0, we have

Now (26) and (24) together give us, forall0 <r < n,

(for pd, (24) is less than (27) for the same value of n). Applying this twice, we find that

(58) is at most

pd.

Case (A14). Finally ifi € [(r + 1)(a,, + b)) —a, — b, r + 1)(a,, + bm)) 0<sr<
m > n) then we are among the “missing values” from Case (A7).

Then, (9) gives us

and hence, forj =i+ a, + b, — (r + 1)(ay, + by) =0,

As in (28),

Tan+bnfi

1+

Tan+bnfi —



SO

in all cases, pd. We now add up all our estimates (42), (44), (46), (54), (56), (19), (60),
and (63), counting according to the multiplicity of values i that are involved. We obtain

this estimate of the nuclear norm.

We will observe that as a function of n and d, pd this sum is at most 7 -

(n+ 1) 9n bn,

Definition (6.1.23)[163]: Let Q,,(m = 1) be the projection F — F,, , such that

Note that in terms of what happens to the e;, this amounts to much the same as

of [172], though it does not look the same.

Lemma (6.1.24)[163]: ||Q,,,|| = 1 for all m.

”Tan+b



Proof. For we claim that for each i, the vectors f;;(k =0,1,2,...) appear as a
subsequence (fjk)lio of the f; in their proper order (j, <j; <j, <...). This is true
because is an increasing function and fy; = f,(;); and because fori >0, sayi€
[Win, W, + U], we have fix = fiest)ay,,psg+i-wm (2-3). Hence, for eachithere is a k

such that

The norm of the projection that thus “truncates” a sequence is 1 on [, (of course), and

alsoon any J,,.. Hence, [|Qp, |l = 1.

Definition (6.1.25)[163]: Let B, ,,(m >n > 1) be the operator Ty, © Qp : Fpg =

m

Eng,,, Wwhere

Lemma (6.1.26)[163]: || Q31| < a,, for all m, pd.

Proof. We know ||Q;,|l = 1; and Definition (6.1.12) tells us that (Q,, — Qn,)f; is zero

unless j € [0, Vypy1—r] + T0me1, 1 <7 < m+ 1. Inthis case, it is

Hence, crudely,

ej_ram

”Qm -



(by (20))

for all m, pd.
Lemma (6.1.27)[163]: || P, || < ay4q foralln < m pd.
Proof. ||Q,,,|l = 150 ||Bynll = lITmll. Examining Definitions (6.1.25) and (6.1.10) we

find

Tnmfi =
Now the projection T’ such that
has norm 1, for the same reasons as in Definition (6.1.10). Therefore
\
1+
Y
i€[0,vm,
m-—n
m
<1+ Z
r=m-—-mn
since ||T]| < 1. Recall from (20) that ||(1 + n)mnemn” = /1 + a;2,. Substituting into
(70) we have
ITnmll <
<

for all n, pd. Thus Lemma (6.1.27) is proved.



Definition (6.1.28)[163]: For each1 <n <m, let K, ,, © Fy, be the set of vectors
such that [Ix]| < a,, and ||ty mx|| = 1/am.
Let Ty, : Fnq, = Fna, be the “truncated” version of T,T,,(e;) = eyq (i <

ma,,) or zero (i = ma,,).

Lemma (6.1.29)[163]: There is a function N5 : N?> - N with the following property: Pd,

foralll <n <mandx € K, ,,, there is a polynomial p such that |p| < N3(m, a,,), p(t)

is of form Z:’;‘Z‘n At and

Proof. Forany y € K, ,, we can write y = 2* | A;e; where 4, # 0. Then,

Since Tp,y # 0 we know a < (m —n)ay,, so certainly euy_ni1)q,, € lin{Te; : a,, <

r < may,}. Since K,,,, is compact, there are a finite number of polynomials p;,..., p) of

form p;(t) = Z:Zi’; Ajit', such that for all x € K,,, there is a j such that

Writingszaxj|pj| , note that N depends only on elements of the underlying
sequence d up to and including am; so N < N;(m,a,,) for a suitable function

N3 : N2 - N. Since in view of (19) we have

this concludes the proof.

We now extend the previous lemma as follows.
Lemma (6.1.30)[163]: With is notation of Definition (6.1.12), the polynomial q(t) =
tbm(m + 1)Pm/b,, - p(t) satisfies

tm*tbm|q(t), degq < by, + ma,, |q| < N3(m, a,,)(m + 1)’m/b,, and

lin{T



Proof. GivenXx € K,,,, let p be the polynomial as in Definition (6.1.12), and write
q(t) = t’»(m + 1)’ /b,,p(t). Let us consider the vector q(T)x. For alli € [a,, +
by, mam + by,] we have f; = (m+1)'e; — b,(m+ 1)"Pme;_p, ; so if we write

p(Tp)x = Z:ZZ’; A;e; then

(m + 1)bm
bm
(since X € K,;;,, so |Ix|| < a,;,)
pd. Furthermore,
T
Since ||IT|| < 1 pd, we deduce that
(m+ 1)
bm
as above;
by
< (m+1)
bm

by (27);



for all m, pd. Adding up (83) and (77) we have

Using Definition (6.1.12) we have our result.

We now have the following very convenient lemma (see [165]):

Lemma (6.1.31)[163]: Forall j € [0,v,_,],1 <r <k —nands > r, we have

Proof. The vector f7,, < 1 = fjtsay,,_, Definition (6.1.7) is in the image of the
projection Tp, g+s—r © QYs_,-k and is fixed by it. The vector fivwi_rs = fit(s4+Dagss_rss 1S

mapped (by Definitions (6.1.12),(6.1.13)) to

which by (10), (6), satisfies f}:-wk_r,s—l(u) = —1. It is easily seen that for all other
vectors fr, , T k+s—r © QY. ._,(fin) is either f,,, or zero, or another vector similar to
u above, being therefore of form fj’,s’ + h with the pair (j',s") not equal to (] +

R * 0 —
Wi_rs), and withh €F, . In all such cases fj+wk_r’5(Tn’kJrs_erH_rfm) =0,

hence the result.
Theorem (6.1.32)[163]: Pd, T has no invariant subspace.

Proof. Let x € X, ||x|| = 1 and n > 0. Since e, is cyclic for T, it is enough to show that
for all such x and n there is a polynomial g such that ||q(T)x — ey|| < 2/a,_;. We claim

there is an m > n such that

Now ||P,|l < a4, for all k, and certainly for all x € F we have P, x = x for all but
finitely many k. Therefore, P,;,x = xas k — oo for any vector x € X.
Choose, then, a k so large that ||Pyx|| = ||tpx © Qx| > 1/2. If ”Tnk o Q,?x” >

1/4 our assertion is proved; if not then



Forall j > 0 we either have

ifj € [0, V4] + rax11,1 <7 < m; or else, (Qr — QR)f; = 0. Hence, Ty © (Qx — QR f;

is either

if j € [0, V4] + Tag41,1 <7 < k —n; or else it is zero. Thus, T,y © (Qx — Q) = Tnx ©

(Qx — @) o s where S is the finite set

say. Crudely, then, we may say that there is an i € S, such that

Now if i=j+ (r+1ag.,j€0,ve,],1<r<k-—n we know by (6) that

fi = fj+w,_,r- Because anyx E]pj"'wk—r is necessarily in c,, we know that ass — oo,

fjiwk_r’s(x)| — 0. Therefore there is an s > r such that

If (93) holds then we may deduce from (.1.14)[163] that

(for Tpy © (Qk - Ql(c)) = Tpk © Qi ° (Qk - Ql(c)) = Ppy o (Qk - Ql(c)); and |5nk| = Wy_1).

pd. This proves our assertion that there is indeed an m > n such that (87) holds. Pick

such anm, and writey = Q3,x. We know that [ly]l < ||Q%]l < a,, pd. But ||ty =

(Qx

||Tn,k+:



1/a,, soy € K. Therefore by (6.3) there is a polynomial g such that [|q(T)y — el <
1/ap_q + 3/ay,, t9m*Pm|q(t), deg q < b,, + ma,,, and |q| < (m + 1)?n/b,,. Using

our estimate on ||[T%m*Pm o (] — Q9)|| and the fact that ||T|| < 1, we find that

Therefore

pd. This inequality (which can be repeated with different values of n by choosing

suitable alternative q) shows that in fact x is cyclic; and so we conclude the proof.

Corollary (6.1.33)[284]: pd, the Cauchy sequence (e;) {2, satisfying ((5) - (9)) does indeed
exist, is unique, and is a vector space basis of F. There is a unique linearmap T : F - F

such that Te; = e;,1 for each i.

Proof. Each definition is of form f; = Y.I_, A;e;, with A; # 0. The values taken by the
index i in formulae (5)-(7) include zero, [O, vﬁ] + (n—pBa, (B = 0); ((n - Ba, +
vg,(n—f + 1)an) (B > 0); and (v,,_1,a,) (1 < n). Pd, this means each value i =0
ori € (v,,_1,na,] (n = 1) is mentioned once and only once.

The remaining values of i are taken care of by (8),(9). These cases cover intervals
[2a, + 1) (n = B),nay + (n = B)(ay +71,)] and (na, + (n—B)(a, + 1), 2ay +
m)n—B+ 1)) (B = 0), whose union is (na,, (2a, + r,)] = (na,, v,] which implies
(2a, + 1) = v,. As the index n varies, we catch the rest of Z*.

Pd, then, each f;(i = 0) is defined once and only once, and has the general form
Z%:o Ayey.

Because 4;; # 0 the linear relationship between the e¢; and the f; is invertible
(see [163]) so the e; do exist, are unique, and span F. Note by the way thatif i = I (j, k)

then



since f}; (f;) = 1, and obviously f} (e,,) = 0 form <.

It is then also true that for each n,

say where S,, = x{0,1,2...n},|S,,| = n + 1. As we remarked before, we will abbreviate
Fs to F,. (e;)q is an alternative sequence if vector space basis for F, so of course there
is a unique map T such that Te; = e; 4 forall i - as yet we say nothing about continuity!
We will always assume that the given Cauchy sequence d increases sufficiently
rapidly that Lemma (6.1.33) holds (See [163]).

[163] proves that (pd), T is continuous and strictly singular.
Corollary (6.1.34)[284]: For everyn > 0 the following is true. Pd, T — W is a nuclear

operator of nuclear norm at most 1.

Proof. It is necessary to estimate the sum of the norms of all the vectors in (13)-(17),

add up the estimates and check that (pd) the sum is less than 7 (see [7]-[14]).

1
Obviously (13) contributes 2_1+(1_5a1)/*/a_1 to our sum (which is less thann/5

pd, let us say). Now (6) gives us (for § > 0)

Now the J,, spaces have the special property - closely related to their nonreflexivity- that

foralln — B, j we have ||ZZ;§‘1f,-,n_a ” = Zﬁ;ﬁ_lllfj,n—aﬂ < 1. Hence,

and

li1

(1 +n)Paneg



Hence, (14) contributes to our sum at most

pd. In view of (17), if § > 0 then

” €1+(n-p)

Ifr,, =n>0,(9)gives

|| el+(n—B)an+vﬁ

Ifn—pf =0 <n,(7)gives

” €1+(n—f

Hence the contribution made by (15) to our sum is at most

$' 5
n=1pf=1

pd (the first two terms in the middle of (108) are summing appropriate multiples of the

norms of sequence of vectors e _ on the left hand side; the last two terms do
1+(n-Plantvg

the same for sequence of vectors el+(n—B—1)an_1+vﬁ)'



Then again, (9) gives us

||31+nan+(n—ﬁ)(an-
when f > 0; if = 0 we are looking at ||€1+vn|| which is given by (107). Hence the

contribution to our sum made by (16) is at most

i(l +n)12

pd (here the first two terms in the equation sum the norms of sequence of vectors

€1+na,+(n-p)a, apPpearing in (16), with appropriate weights; and the last term does the
same for sequence of vectors e, 2n-g-1)a,)-

Lastly, (8) gives us (foreach f = a,a = 0)

||(1 + n) (@ ant(

<1
hence forf > 0
[lex
(by (103))
Therefore the contribution to our sum from (17) is at most
B=0

pd. Adding up our estimates ((108),(104),(110),(112) and our remark about Tf,,) we
find that pd,



L]
which gives the result.
Corollary (6.1.35)[284]: Pd, for all n we have

Later on, we will establish that, for an arbitrary norm-1 vector x € [;, and for any

€ > 0, there is a polynomial g and an integer n such that
and
This will show that e, € lim{T7x : r = 0} and hence that x is cyclic, since e, obviously is.
So T is strictly singular, and has no invariant subspaces.
Proof. As with proving T continuous, we split the operator involved (in this case,
T2t o (] — Q2)) into a part that looks like a weighted shift operator, and a nuclear
operator. In certain cases, we now find that T2%*™ o (] — QQ)f; is of form ¢; -
fi+(2an+r,)- These cases are as follows:
Case Al. Ifi € [0,na,] then Q2f; = f; so of course
Case A2. Ifie [(n—B)(2a, +1,),(n — a, + (n— B)(a, +n,)] with B > 0, then by
two applications of [7] we find that

T(Zan+r,1

Case A3. Ifi€ (na,+(n—pB)a,+1,),(n—p+1)(2a, +1,)) with f > 0 then two

applications of [7] likewise give us

T(Zan‘H'n) ° (1 —

Case Ad.Ifi € [0,v, — (2a, + 1,)] + (n — B)azn_p) withn > 0 then [7] gives

T(Zan+rn) °



Case A5. Ifi € ((n — B)agn-p) + Vn, (n-p)+ 1)a(2n_ﬁ) - (2a, + rn)) withn > 0,
orifi € (v(m_ﬁ)_l, Aan-p) — (2a, + rn)),n > [ then by (6),

T(Zan+rn) ° (1 _ Q‘

Case A6. If i€e[(n—P)agn—yp +a@npy+e) Cn—PBagn—p + 0 —Bagn_py+e—
(2a, + ry)]| with n > 0, then [7] gives

T(Zan+‘rn) ° (1

Case A7. Finally if i€ ((Zn — Bagn-p + = Bagn—p+e (n—B) + 1)(agn—p) +

agn—p)+e) — (2a, + rn)) withn > 0 then [7] gives

T@an*m) o (] —
Corollary (6.1.36)[284]: ||Q(2n_ﬁ)|| = 1forall 2n — B).
Proof. For we claim that for each i, the sequence of vectors f;,(k = 0,1,2,...) appear
as a subsequence (fjk)::O of the f; in their proper order (j, < j; <j, <...). This is
true because is an increasing function and fy; = f,(;); and because fori > 0, say

i € [W(Zn_ﬁ),W(Zn_B) + v(ZH_B)], we have fj, = f(k+1)a(2n—ﬁ)+k+1+i_W(2n—ﬁ) (Definition

(6.1.8)). Hence, for each i there is a k such that

The norm of the projection that thus “truncates” a Cauchy sequence is 1 on [,, and also

onany J,, . Hence, | Q(Zn—ﬁ)“ = 1.
Corollary (6.1.37)[284]: ||QC,,_p || < agen—p) forall 2n— ), pd

Proof. We know ||Q(2n_ﬁ)|| = 1; and (Definition (6.1.19)) tells us that (Q(Zn_ﬁ) —

Qton—p))fj is zero unless j € [0,v,,1] + (n = B),n > 0. In this case, it is

e]'—(n—ﬁ)a(zn—ﬁ)ﬂ"'(



Hence, crudely,

”Q(Zn—ﬁ) — Qln.

2n-p)+
<
n=2+p
max { |
(2n-p)+
<
n=2+p
2n-p)+
<
n=2+p
(by (103))
forall (2n — B), pd.
Corollary (6.1.38)[284]: ||Ppian-p)|l < ans1 foralin — B > 0 pd.
Proof. ||Q(2n_ﬁ)|| =1so ||Pn(2n_3)|| = ||Tn(2n_ﬁ)||. Examining (Definition (6.1.25)) and
(Definition (6.1.10)) we find
Tn(Zn—B)fi =

fi0<i<n-p

i €10,v,] +

(
|
4 _ei—(n—b’)a(zn—p)+
|
k 0, otherwise.

Now the projection T’ such that

has norm 1, for the same reasons as in (Definition (6.1.24)). Therefore

Zn@n-pll < 1+

1



since [|[T|l<1.

Recall from (103) that ||(1+n)®Pane, 4, || = /1+a‘2 .

Substituting into (124) we have

||T7
for all n, pd. Thus (Lemma (6.1.27)) is proved.
Corollary (6.1.39)[284]: Show that

2||

@A) Nag|| < v

el <

1
1) lleoll = —
ag

€
(i) lla(Mll <3
Proof: (i) Equation (102) implies that

Substituting (103) in (126) we get

and



Hence

(ii) Since |legll?> — az—ﬁlleoll — 1 = 0 we can get

(iii) From Lemma (6.1.20)

because since ||T|| < 1 then ||IT"|| < 1and ||x]|| = 1.
If Q0f; = f; then

hence
Corollary (6.1.40)[284]: There is a function N3 : N2 — N with the following property:

Pd, for alln > 0 and x € K, (;,_p), there is a polynomial p such that |p| < N; ((Zn —

@2n-pa;n-
B), an- B)) p(t) is of form ¥, Z( a(z P ptt and

Proof. For any y € K, (;n_p) We can write y = %, 4;e; where 4, # 0. Then,

lin {T

Since Tyn-py 0 we know a < (n— f)apy—p) so certainly €((n-p)+1)agan-p) €

lin {T((Z';__[’;,))ei fagn-py S (m—p) < (2n— ,B)a(Zn_ﬁ)}. Since Ky(2n-p) is compact, there

_ Z(Zn Bacn- ﬁ)l L

are a finite number of polynomials py, ..., p of form p;(t) = i=aGn-p) such
n-—

that for all x € Ky, (2, p) there is a j such that



Writing N = maxj|pj| , hote that N depends only on elements of the underlying Cauchy

sequence d up to and including a;n_py; SO N < N ((Zn - B), a(ZH_B)) for a suitable

function N5 : N2 - N. Since in view of (102) we have

this concludes the proof.

We now extend the previous lemma as follows.

Corollary (6.1.41)[284]: For all j € [0,v,], we have

Proof. The vector f/,, n_pie,—1 = fj+n_ﬁ+e3ak+63 (Definition (6.1.8)) is in the image of
the projection T,y _pie, © Q%k and is fixed by it. The vector fj,w n-g+e, =

fi+m-pres+Danin_pres 1S mapped (by (Definition (6.1.19)), (Definition (6.1.25))) to

which by (100), (6), satisfies f'},, n-pre,—1(W) = —1. It is easily seen that for all other
vectors fion-p) » Tn2n—p+e; © an_BJrEs (f(Zn_B)) is either fizn—p), or zero, or another
vector similar to u above, being therefore of form f;/ o+ + h with the pair (j',s") not

equal to (] + Wn’n_ﬁ+e3), and with h € F, In all such cases /'y an-p+re,

2n—pB+ez—1"
(Tnzn-pre, an_megf(zﬂ_ﬁ)) = 0, hence the result.

Corollary (6.1.42)[284]: Show that
whenn = f8

whenn = -1

Pj(Tan-p))X -

Jon

*
f;’+wn,n—ﬁ+e3—1

U= —€jin—p

©  [10Gn-pll =

(ii) ”Pn(Zn—B)

<



Proof. (i) From Lemma (6.1.26) and Corollary (6.1.39) when butting n = f give the
result.
(ii) Similarly we can find the result by setting n = § — 1 we can deduce that (i) and (ii)

are equal.

between James Spaces: Section (6.2): Strictly Singular Operators
Recall that an operator T : X — Y between Banach spaces is said to be strictly
singular if for every € > 0 and every infinite-dimensional subspace E € X there is a
vector x in the unit sphere of E such that ||T x|| < . Furthermore, T is said to be
finitely strictly singular if for every € > 0 there exists n € N such that for every subspace
E € X with dimE > n there exists a vector x in the unit sphere of E such that
|IT x|| < €. Finitely strictly singular operators are also known in literature as superstrictly

singular. Note that

and that each of these three properties defines a closed subspace in L(X,Y). Actually,
each property defines an operator ideal. We refer to [119, 120, 121, 122, 123, 124] for
more information about strictly and finitely strictly singular operators.
We say that a subspace E € X is invariant under an operatorT : X — X if
{0} # E # Xand T(E) < E. Every compact operator has invariant subspaces by [125].
On the other hand, Read constructed in [126] an example of a strictly singular operator
[138, 143, 158, 159, 160]. Without nontrivial closed invariant subspaces (this answered
a question of Petczy'nski). Read’s operator acts on an infinite direct sum which involves
James spaces. Recall that James’ p-space ], is a sequence space consisting of all

[0¢]

sequences X = (X, )m=q in cq satisfying ||x||]p < oo where

is the norm in Jp- For more information on James’ spaces we refer to [127, 128, 120,

129, 130].

con

Ixl,



It was an open question whether every finitely strictly singular operator has
invariant subspaces. Some partial results in this direction were obtained in [119, 123].
We answer this question in the negative by showing that the operator in [126] is, in fact,
finitely strictly singular. As an intermediate result, we prove that the formal inclusion
operator from J, to J, with 1 <p < q <o is finitely strictly singular. The latter
statement in a certain sense refines the result of Milman [121] that the formal inclusion
operator from €, to £, with 1 < p < q < = is finitely strictly singular.
Milman’s proof is based on the fact that every k-dimensional subspace E of R"
contains a vector “with a flat,” namely, a vector x with sup-norm one with (at least) k

coordinates equal in modulus to 1. For such a vector, one has ||x||gq < ”X'”gp. The

proofs of the results are based on the following refinement of this observation. We will
show that x can be chosen so that these k coordinates have alternating signs. For such a

“highly oscillating” vector x one has ||x||; < ||x||,.. More precisely, a finite or infinite
Jq Jp

sequence of real numbers in [-1, 1] will be called a zigzag of order k if it has a
subsequence of the form (-1, 1,-1, 1, . . .) of length k. Our results will be based on the

following theorem.

Corollary (6.2.1)[118]: Let k € N; then every k-dimensional subspace of c, contains a

zigzag of order k.

Proof. Let F be a subspace of ¢y with dimF = k. For everyn € N, define B, : ¢, = R"
via P, : (x;)i2; — (x;)]2;. Letn, be such that dimP, (F) = k. There exists n, such
that every vector in F attains its norm on the first n, coordinates. Indeed, define
g : F\{0} = N via g(x) = max{i: |x;| = ||x|lo}. Then g is upper semi-continuous,
hence bounded on the unit sphere of F, so that we put n, = max{g(x): x € F, ||x|| = 1}.
Put n = max{n,,n,}. Since P,(F) is a k-dimensional subspace of R", by
Theorem (6.2.1) there exists x € F such that P,x is a zigzag of order k. It follows from

our definition of n that x is a zigzag of order k in F.



Suppose that 1 < p < q. Since ||x||]p is defined as the supremum of £,,-norms of
certain sequences, ”‘”gq < ”‘”gp implies ||-||]q < ||o||]p. It follows that J, € J, and the

formal inclusion operator iy, : J, = J; has norm 1. We show next that it is finitely
strictly singular. The main difference, though, is that we use Corollary (6.2.1) instead of

the simpler lemma from [121,124].

Theorem (6.2.2)[118]:. If 1 < p < q < o then the formal inclusion operator iy, : |, >
Jq is finitely strictly singular.

Proof. Given any x € J,, then |xi — xj|q < (2||x||oo)q‘p|xi — xj|p for every i,j €N, so

D

_p =
! ||x||}1p. Fix an arbitrary € > 0. Let k € N be such that

that [lxll;, < 2llxlle)" 4

1 1
(k—1)r a> i Suppose that E is a subspace of J, with dim E = k. By Corollary (6.2.1),

there is a zigzag z € E of order k. By the definition of norm in J,, we have ||Z||]p >

20k — 1)7.

z

1
Puty = . Then y € E with [lyll;, = 1. Obviously, [lylle, < %(k —1)77, so

Izl 1,

that

Hence, iy, 4 is finitely strictly singular.

We will now use Theorem (6.2.2) to show that the strictly singular operator T
constructed by Read in [126] is finitely strictly singular. Let us briefly outline those
properties of T that will be relevant for our investigation. The underlying space X for

this operator is defined as the £,-direct sum of £, andY , X = (£, @Y),,, where Y

itself is the £,-direct sum of an infinite sequence of J,-spaces Y = (69?;1 ]pi)g , with
2

(p;) a certain strictly increasing sequence in (2,+). The operator T is a compact

perturbation of 0 @ W;, where W, : Y = Y acts as a weighted right shift, that is,



with B; — 0. Note that one should rather write B;iy,. ,, +1%; instead of B;x;. Clearly, it
suffices to show that W is finitely strictly singular.

Forn € N, definel}, : Y = Y via

It follows from B; — 0 that ||V}, — W;|| — 0. Since finitely strictly singular operators from
YtoY form a closed subspace of L(Y), it suffices to show that V is finitely strictly

singular for every n. Givenn € N, one can write

where P; : Y — [, is the canonical projection and j; : J,, — Y is the canonical inclusion.
Thus, V,, is finitely strictly singular because finitely strictly singular operators form an

operator ideal. This yields the following result.

Corollary (6.2.3)[284]): If 1< p+ € =q < o then the formal inclusion operator
ipp+e  Jp = Jp+e IS strictly singular.

e P

Proof. For x € J,, then | — xj| < QlIxlle), i,j €N, and lixll,,, < 2llxlle)?+ ||x||}”p+5.

Given € > 0 fixed. Let (k — 1)p®+e > el, k € N. Suppose E € ], with dimE = k < oo.
1

1
By Corollary (6.2.1), we have a zigzag z € E of order k, then ||Z||]p > 2(k — 1)». Set

1
y = —”Zi and [lyll, = 1 where y € E. Moreover, |lylle < %(k — 1) 7 and have
Jp

Hence, i is finitely strictly singular.

ppte

Theorem (6.2.4)[118]: Read’s operator T is finitely strictly singular.

In the remaining two sections, we present two different proofs of Theorem
(6.2.1), one based on combinatorial properties of polytopes and the other based on the

geometry of the set of all zigzags and algebraic topology.



By a polytope in R¥ we mean a convex set which is the convex hull of a finite set.
A set is a polytope iff it is bounded and can be constructed as the intersection of finitely
many closed half-spaces. A facet of P is a face of (affine) dimension k — 1. We refer to
[131,132] for more details on properties of polytopes.

A polytope P is centrally symmetric iff it can be represented as the absolutely
convex hull of its vertices, that is, P = conv{+1,,..., +1,} where +ii,,..., +1, are the
vertices of P. Clearly, P is centrally symmetric iff it can be represented as the
intersection of finitely many centrally symmetric “bands.” More precisely, there are
vectors dy, ..., a,, € R¥ suchthat@ € Piff —1 < (©,a;) < 1foralli = 1,...,m, and the
facets of P are described by {u € P: (u,a;) =1} or {u€P: (u,—a;) =1} as
i=1,...,m.

A simplex in R¥ is the convex hull of k + 1 points with non-empty interior. A
polytope P in R is simplicial if all its faces are simplexes (equivalently, if all the facets of
P are simplexes). Every polytope can be perturbed into a simplicial polytope by an
iterated “pulling” procedure, in [5] for details. We will outline a slight modification of
the procedure such that it preserves the property of being centrally symmetric. Suppose
that P is a centrally symmetric polytope with vertices, say +u,,..., +u, (see Fig. 1). Pull
Uy “away from” the origin, but not too far, so that it does not reach any affine
hyperplane spanned by the facets of P not containing u,; denote the resulting point u;.
Let Q = conv{ii,, —1,, +U,,..., +U,}. By [131, 125] this procedure does not affect the
facets of P not containing i;, while all the facets of Q containing i#i; become pyramids
having apex at %1;. Note that no facet of P contains both %, and —;. Hence, if we put
R = conv{+u}, +u,,...,+1,}, then, by symmetry, all the facets of R containing —1i;
become pyramids with apex at —1i;, while the rest of the facets (in particular, the facets
containing ;) are not affected.

Now iterate this procedure with every other pair of opposite vertices. Let P’ be
the resulting polytope, P’ = conv{+uj,..., +u,}. Clearly, P’ is centrally symmetric and
simplicial as in [131]. It also follows from the construction that if F is a facet of P’ then

all the vertices of P corresponding to the vertices of F belong to the same facet of P.



-1
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Fig. (2). Examples of marked polytopes in R? and R3.
We will call a polytope P marked if the following assumptions are satisfied:
(i) P issimplicial, centrally symmetric, and has a non-empty interior.
(ii) Every vertex is assigned a natural number, called its index, such that two vertices
have the same index iff they are opposite to each other.
(iii) All the vertices of P are painted in two colors, say, black and white, so that

opposite vertices have opposite colors.

See Fig. (2) for examples of marked polytopes. A face of a marked polytope is said to

be happy if, when one lists its vertices in the order of increasing indices, the colors of

the vertices alternate. For example, the front top facet of the marked polytope in the
right-hand side of Fig. (2) is happy. See Fig. (3) for more examples of happy faces.

We will reduce Theorem 1 to the claim that every marked polytope has a happy

facet, which we will prove afterwards. Suppose that k < nand E is a subspace of R"



with dimE = k. Let {151, . ..,Ek} be a basis of E. We need to find a linear combination of
these vectors X := a,;b; +- - - +a, b, such that X is a zigzag. Let B be the n X k matrix

with columns by, ..., by, and

1 7

Fig. (3). Examples of happy simplexes in R2 and R3.
let %y,...,1, be the rows of B. Ifa = (aq,...,a;), thenx; =(u;,a)asi=1,...,n.
Thus, it suffices to find @ € R¥ such that the vector ({(i1;, @)™, is a zigzag of order k.
Let P be the centrally symmetric convex polytope spanned by u,,...,U,, i.e.,
P = conv{ti,,..., t1,}. Then some of the +u;’s will be the vertices of P, while the

others might end up inside P. Suppose that +u, ,..., U, are the vertices of P, so
that P = conv{iﬁml, ...,iﬁmr}. Following the “pulling” procedure that was described
before, construct a simplicial centrally symmetric polytope P’ = conv{iﬁ;nl, cen iﬁ;nr}.
Every vertex of P’ is either Uiy, or —ii,, for some i. Paint the vertex white in the former
case and black in the latter case; assign index i to this vertex. This way we make P’ into
a marked polytope.
We claim that happy facets of P’ correspond to zigzags. Indeed, suppose that P’
has a happy facet. Then this facet (or the facet opposite to it) is spanned by some

! et 5! et

—ﬁmil,umiz,—umig,umi4 , etc., for some 1<i;<---<ip,<r. It follows that

U, Uy, —umis,ﬁmi4, etc., are all contained in the same facet of P. Hence, they are

contained in an affine hyperplane, say L, such that P “sits” between L and —L. Let a be
the vector defining L, that is, L = {ti: (&,a) = 1}. Since P is between L and —L, we

have —1<(u,a)<1 for every & in P. In particular, =1 < x; = (u;,a) <1 for

miy» ~Um, ) Umy,--- € L that

i=1,...,n. On the other hand, it follows from —ﬁmil, s

:

Xy, = —1,xmi2 = 1,xmi3 = —1,xmi4 = 1, etc. Hence, X is a zigzag of order k.



Thus, to complete the proof, it suffices to show that every marked polytope has a
happy facet. Throughout the rest of this section, P will be a marked polytope in
R¥; F; stands for the set of all j -dimensional faces of P for j=0,...,k—1. In
particular, Fj_; is the set of all facets of P, while Fj is the set of all vertices of P.

By [131], every (k — 2)-dimensional face E of P is contained in exactly two
facets, say F and G; in this case E = F N G. Suppose that R € Fj,_;. For E € Fj_,, we
say that E is a boundary face of Rif E = F N G for some facets F and G suchthat F € R
and G € R. The set of all boundary faces of R will be referred to as the face boundary of
R and denoted OR. Clearly, R C F_,. If F is a single facet, we put OF = d{F}. Clearly,
OF is the set of all the facets of F.

For a face F of P we define its color code to be the list of the colors of its vertices
in the order of increasing indices. For example, the color codes of the simplexes in Fig.
(3) are (wbw) and (bwbw). Here b and w correspond to “black” and “white”
respectively. A face in P will be said to be a b-face if its color code starts with b and a w-

face otherwise.

Lemma (6.2.5)[118]: Suppose that F is a facet of P. The following are equivalent:
(i) Fis happy;
(i) OF contains exactly one happy b-face;

(iii) OF has an odd number of happy b-faces.

Proof. Note that since F is a simplex, every face of F can be obtained by dropping one
vertex of F and taking the convex hull of the remaining vertices. Hence, the color code
of the face is obtained by dropping one symbol from the color code of F.

(i)=(ii). Suppose that F is happy, then its color code is either (bwbw...) or
(wbwb ...). In the former case, the only happy b-face of F is obtained by dropping the
last vertex, while in the latter case the only happy b-face of F is obtained by dropping
the first vertex.

(ii)=(iii). Trivial.



(iii) = (i). Suppose that OF has an odd number of happy b-faces. Let E be a

happy b-face in OF. Then the color code of E is the sequence (bwbw...) of length k — 1.
The color code of F is obtained by inserting one extra symbol into this sequence. Note
that inserting the extra symbol should not result in two consecutive b’s or w’s, as in this
case F would have exactly two happy b-faces (corresponding to removing each of the
two consecutive symbols), which would contradict the assumption. Hence, the color

code of F should be an alternating sequence, so that F is happy.

Lemma (6.2.6)[118]: For every R € F\_,, the number of happy facets in R and the

number of happy b-faces in R have the same parity.

Proof. For R € Fj._;, define the parity of R to be the parity of the number of happy b-

faces in OR. Observe that if R and S are two disjoints subsets of Fr_1, then the parity of

R U S is the sum of the parities of R and S (mod 2). It follows that the parity of R is the

sum of the parities of all of the facets that make up R (mod 2). But this is exactly the
parity of the number of happy facets in R by Lemma (6.2.5).

For every face F of P we write —F for the opposite face. If R is a set of facets, we

write —R = {—F: F € R}. Also, we write R for the set theoretic union of all the facets in

R.

Theorem (6.2.7)[118]: Every marked polytope has a happy facet.

Proof. We will prove a stronger statement: every marked polytope in R* has an odd
number of happy b-facets. The proof is by induction on k. For k = 1, the statement is
trivial. Let k > 1 and let P be a marked polytope in R¥.
For every facet F, let ny be the normal vector of F, directed outwards of P. Fix a
vector ¥ of length one such that ¥ is not parallel to any of the facets of P (equivalently,
not orthogonal to 7ip for any facet F); it is easy to see that such a vector exists. By
rotating P we may assume without loss of generality that 7 = (0,...,0,1). Let T be the
projection from R¥ to R¥~1 such that T : (xy,...,xk_1, xx) = (X1,...,Xk_1). We can

think of T as the orthogonal projection onto the “horizontal” hyperplane {¥ € R*: x;, =



0}in R*. Let Q = T(P). Since T is linear and surjective, Q is again a centrally symmetric
convex polytope in R¥~1 with a non-empty interior (see Fig. 4).
It follows from our choice of ¥ that the kth coordinate of fiz is non-zero for

every facet F. Let R be the set of all the facets of P that “face upward,” that is,

Clearly, a facet F is in —R iff the kth coordinate of #i is negative. Hence, —=RNR =@
and —R UR = F,_,. Observe that dR = 0(—R); hence OR is centrally symmetric.
Clearly, every vertical line (i.e., a line parallel to 7) that intersects the interior of P meets

the boundary of P at
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Fig. (4). The images T (P) of the polytopes in Fig. 2.

exactly two points and meets the interior of Q at exactly one point. It follows that the
restriction of T to U R is a bijection between U R and Q. The same is also true for —R.
Therefore, the restriction of T to U dR is a face-preserving bijection between U dR and
the boundary of Q. Under this bijection, the faces in oR correspond to the facets of Q.
Hence, this bijection induces a structure of a marked polytope on the boundary of Q,
making Q into a marked polytope. It follows, by the induction hypothesis, that the
boundary of Q has an odd number of happy b-facets. Hence, dR has an odd number of
happy b-faces. It follows from Lemma (6.2.6) that R has an odd number of happy facets.
Let m and £ be the numbers of all happy b-facets and w-facets in R, respectively.

Thenm + £ is odd. Observe that Fis a happy b-facet iff —F is a happy w-facet. It
follows that —R contains € happy b-facets and m happy w-facets. Thus, the total

number of happy b-facets of P is m + £, which we proved to be odd.



Fix a natural number n and let BY and S%~! be, respectively, the unit ball and
the unit sphere of %%, i.e., B = {x € R™ max|x;| < 1} and S% ! = {x € R™ max|x;| = 1}.

For k > 1 we define

Fk:{x
A ={x
Ay = —/

Note that A, is exactly the set of all zigzags of order k in R". Put also A§ = Ag = I =

BL.Fork > 1,Fk,Af c S~ 1 and we have

Note that the first relation above is true also for k = 0.

We start with a simple lemma.

Lemma (6.2.8)[118]: Suppose p is a real polynomial of degree m, and there are m + 2
real numbers t; < t, <---< tp4a, such thatp(t;) =0 for i odd and p(t;) <O fori

even. Thenp = 0.

Lemma (6.2.9)[118]: There exists a sequence of subspaces m;, C R", m; D Tyyq,
dimm, =n —k, such that, if P, is the orthogonal projection onto 1), then Pi|A} is

injective.

Proof. For 1 <j < nwe define the vectors {/ € R" by the formula{/ = i/~1. One
checks easily that the {/’s are linearly independent. Define m, = R", and, for k > 1,
m, = (span{(’,...,{* P+

Suppose that x,y € Aj, and P,x = P,y. There exist scalars a, ..., @, such that
x—y=%F,a¢. We have indices1 <7y <---<7ry<nand1<s; <---<s, <,
such that x,, = y;, = (=1)'"". It follows that x,, — y,, = 0 for [ odd and < 0 for [ even,
while x5, — y;, < 0 for [ odd and = 0 for [ even.

Let the polynomial p of degree k — 1 be given by p(t) = X5_, a;t/~. If r; = 5

for all [, we obtain



foralll =1,..., k. Thus p has k distinct zeros; it must be identically 0, whence x = y.
Suppose now that we have r; # s; for at least one index [. We claim then that
among the union of the indices 1; and s; we can find ; <, <- -+ < 4q, such that
x,, — ¥, have alternating signs. This can be achieved by induction with respect to k. For
k =1 we must haver, # s;, so we may take (; = min{ry,s;},t, = max{r;,s;}. For
k > 1, there are two cases. If r; = s;, we take (; = r; = s; and apply the induction
hypothesis to obtain the rest. If r; # s;, we take (; as the lesser of the two and ¢, as the
other one, and then we continue “accordingly” to t, (that is, taking as s the rest of ’s if

l, = 17 and the rest of s’s if i, = 57).

Now, the way (; have been chosen implies that p(t) defined above satisfies the
hypotheses of Lemma (6.2.8): it has degree k — 1 and the values it takes in t,..., (41
have alternating signs. It must then be identically 0, which implies x = y.

Since Ay = —Aj, it follows that P, |Aj is also injective.

Lemma (6.2.10)[118]: If m),, P, are obtained in Lemma (6.2.9), then

is a balanced, convex subset of m;, with O as an interior point (in ;). Moreover,
Ak = P (A) = P,(A}) and 04, = P (I}.4+1) (the boundary in the relative topology of

T[k)'

Proof. We will use induction with respect to k. The statement is immediately checked
for k = 0 (note that Py = Ign and 04, = S~ = I).
Assume the statement true for k; we will prove its validity for k + 1. By the

induction hypothesis, we have

and is therefore a balanced, convex subset of ;. ¢, with 0 as an interior point.
Take then y € 4},,,. Suppose P;L (y) N @4, contains a single point. Then
Pl (y) n 4y also contains a single point, and therefore P, .}, () N 7 is a support line

for the convex set 4;. This line is contained in a support hyperplane (in m;); but then the



whole of 4 projects onto m, 4 on one side of this hyperplane, and thus y belongs to
the boundary of this projection. Therefore y cannot be in 45, ;.
The contradiction obtained shows that P}, (y) N 04 contains at least two

points. But
whence

Since Py, restricted to each of the two terms in the right-hand side is injective by
Lemma (6.2.10), there exists a unique z, € A}, such thaty = P, ,,z, and a unique
Z_ € Ay, suchthaty = Py qz_.

Take x € Pl (y) N 04, . Then either x € P,(Af,,) or x € P(Ar,y) . If
x € P (Af,,) then x = P,z for some z € Af,,, so that y = Py,1x = Pi41Z, which
yields z = z,; hence x = P,z,. Similarly, if x € P,,(A},,) then x = P,z_. It follows that
P L) nody, € {Pz,, Pcz_}. Since Pl (y) N 04, contains at least two points, we
conclude that P.L(y) n o4, = {Pz,,Pyz_} and Pyz, # Pyz_ . It follows from
Y = Pyy1Z4 that Ayq © Pk+1(Af+1). But, 4,,, being a closed convex set with a
nonempty interior, it is the closure of its interior 4}, ,; since the two sets on the right
are closed, we have actually 4,,; = P, (AL,,).

We want to show now that 04;,; = Pyy1 (T 4+2). Suppose first that y €
Pri1(Ts2) = Py (Af 1 N Aryq); that is, y = Pryqz with z € Af,; N Ay,,. Clearly,
y € Ayyq. Ify € A,,,, then, defining z, and z_ as before, the injectivity of Py, on
A%H implies z = z_ = z,. This contradicts Pz, = P,z_; consequently, y € 04, .

Conversely, take y € 84,1 = 8(Pry1(4y)). Again, take z, € A}, 1, z_ € Ag,q,
such that Py, z, = Pyy1Z- =y. We have then Pz, € 04, (if Pz, € 4, , then
Pyi1Zy = Pyi1Pez, must be in the interior of Py 4y, which is 4},,). Similarly,
Pyz_ € 04;.

If Pz, = Pyz_, then P, applied to the whole segment [P, z,, P,z_] is equal to
y. Therefore the segment belongs to d4,. Since 04, = Py(Af,, U Ax,,), there exist

two values x;,x, either both in Af,; or both in Ay,,;, such that Pyx,, Pyx, €



[Pyz,, Prz_], and thus P,,.,x; = Pi,.1x, = y. This contradicts the injectivity of P,,, on
+
Ajrq-
Therefore P,z, = Pz_. But z, and z_ both belong to A%, on which Py is
injective. It follows that z, = z_ € Af,; N Axy1 = Ix4+2, and Py, 12z, = y. This ends the

proof.

The main consequence of Lemma (6.2.10), in combination with Lemma (6.2.9), is
the fact that the linear map P,_; maps homeomorphically I}, into d4,_;, which is the

boundary of a convex, balanced set, containing 0 in its interior.

Theorem (6.2.11)[118]: For every k < n, every k-dimensional subspace of R™ contains a
zigzag of order k.
Proof. As noted above, P;,_; maps homeomorphically I}, onto the boundary of a convex,

balanced set, containing 0 in its interior. Composing it with the map x = ﬁ, we obtain

a homeomorphic map ¢ from I}, to S™7%, which satisfies the relation ¢p(—x) = —¢(x).
Suppose that E is a k-dimensional subspace of R™ with no zigzags. Then

ENT, =@, so that the projection of I}, onto E+ does not contain 0. Composing this
X

T we obtain a continuous map from ¢ : [}, — Sn—k=1,

projection with the map x —

that satisfies ¥(—x) = —(x). Then the map @ :=pop1: Sk - gn-k-1 jg
continuous and satisfies ®(—x) = —®(x). This is however impossible: it is known that

such a map does not exist (see, for instance, [133]).

Remark (6.2.12)[284]: For every k = n — €, every (n — €)-dimensional subspace of R"
contains a zigzag of order (n — €).

Proof. We have P, _._1y maps homeomorphically I;,_.) onto the boundary of a convex,

balanced set, containing zero. We obtain, upon composing x - =T homeomorphic map

@: [n—e) = S¢, satisfying that (—x) = —¢@(x). If E € R" of (n — €)-dimensional with
no zigzag, then E N [(;,_¢) = ¢, so that P(I“(n_e)) onto the orthogorolity of E, such that

0 ¢ P(I“(n_e)). By composing with the map x — ﬁ



We get that @: I(,_) = S€71. Which satisfy p(—x) = —p(x). Then @ =)o
@~1:5¢ > 5 1is bounded and hence ¢(—x) = —@(x) does not exist (see Theorem

(6.2.11)).
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