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Abstract 
One of the technologically most important interactions of neutrons with 

matter is their loss of energy (“slowing down”) by a series of elastic 

collisions. These can be treated by the methods of classical mechanics, 

assuming the interacting particles as perfectly elastic spheres. The energy 

loss is an important subject, and is discussed in several books where 

numerical tables and graphs are presented. Formulas are found semi 

empirically with several correction coefficients. Despite all efforts, no 

direct, exact formula has so far been obtained analytically. The purpose 

of this research is theoretical verification of thermal neutrons  scattering  

by using a recently introduced method of the quantization of 

neoconservative  systems and detailed comparisons with a significant 

number of measurements of differential and integral neutron cross 

sections and other relevant data are reported (for the validation of the 

generated Scattering Law data files S(α, β, Τ)), as ENDF data library are 

reproduced reasonably well, necessary in generating and processing the 

thermal neutron scattering data. 
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 مستخلص
واحدة من أھم تفاعلات النیوترون مع المادة في الإطار التكنولوجي ھي مسألة ضیاع 

الطاقة أو إبطائھا من خلال سلسلة من التصادمات المرنة التي یمكن معالجتھا 

ق المتفاعلة على إنھا الدقائوذلك بافتراض , بواسطة طرق المیكانیكا الكلاسیكیة

 ً .كرات مرنة تماما  

ي ھذه الحالة ھو موضوع ھام نوقش في العدید من الكتب حیث تم وفقدان الطاقة ف 

استخدام الجداول والرسوم البیانیة وكذلك قد تم الحصول على العدید من الصیغ  شبھ 

التجریبیة من معاملات التصحیح، وعلى الرغم من كل الجھود المبذولة  إلا إنھ لا 

.التحلیلیةتوجد علاقة تم الحصول علیھا مباشرة بواسطة الطرق   

 یة تحلیلیاَ والغرض من ھذا البحث ھو التحقق النظري لتشتت النیوترونات الحرار

ً مع القیاسات الأساسیة بالنسبة  عن طریق النظم الغیر متزنة ومقارنتھا تفصیلیا

للجوانب التفاضلیة والتكاملیة للمقاطع العرضیة وغیرھا من البیانات المناسبة التي 

)) τ  ,β  ,α(s(من ملف البیانات  ـالذي تم تولیدھلصلاحیة قانون التشتت ( وردت

بشكل معقول وھي ضروریة في تولید ومعالجة  (ENDE) كما وردت مكتبة البیانات

  .  البیانات عند تشتت النیوترونات الحراریة
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Chapter one 
Introduction 
1.1 General 

A neutron is a tiny subatomic particle that can be found in practically all 

form of conventional matter. The only stable exception is the hydrogen 

atoms, where it is bound closely with protons through the strong nuclear 

force, the strongest force in nature. Neutrons are responsible for about 

half the weight of conventional matter by volume. It can be seen as a 

proton and an electron smashed together. Because both of these particles 

have opposite charge of the same magnitude [1,3], their fusion result in 

charge less particle. This lack of charge can make neutron difficult to 

detect. Neutrons can sometimes behave charged in a limited way because 

their constituents, quarks, have small charges. The neutron is a baryon 

and is considered to be composed of two down quarks and one up quarks.  

A free neutron will decay with a half-life of about 10.3 minutes but it is 

stable if combined into a nucleus. The decay of the neutron involves the 

weak interaction. The neutron is about 0.2 percent more massive than 

proton, which translates to an energy difference of 1:29Mev.The decay of 

the neutron is associated with a quark transfer motion in which a down 

quarks is converted to an up by the weak interaction. It is possible for 

proton to be transformed in to a neutron, but you have to a supply 

1:29Mev of energy to reach the threshold for that transformation. 

The existence of neutron was first suggested by Rutherford in 1920[1,3]. 

He thought that an electron could exist in a nucleus and could combine 

with a proton to form a neutron. Being electrically neutral, the neutron 

was very difficult to discover by methods of particle detection which 

depends on the deflection of the particles in a magnetic or electric field or 

on their ionization of matter. 
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The field of neutron systems has become an integral part of investigations 

into an array of important issues that span _fields as diverse as nuclear 

engineering and particle physics, fundamental symmetries, astrophysics 

and cosmology, fundamental constants, gravitation, and the interpretation 

of quantum mechanics. The experiments employ a diversity of 

measurement strategies and techniques, including condensed matter and 

low temperature physics, optics, and atomic physics, as well as nuclear 

and particle physics, and they address a wide range of issues. 

Nevertheless, the field possesses a coherence that derives from the unique 

properties of the neutron as an electrically neutral, strongly interacting, 

long-lived unstable particle that can be used either as the probe or as an 

object of study. By fundamental neutron concept, we mean that class of 

experiments using slow neutrons which primarily address issues 

associated with the Standard Model (SM) of the strong, weak, 

electromagnetic, and gravitational interactions and their connection with 

issues in astrophysics and cosmology Neutrons experience all known 

forces in strengths that make them accessible to experimentation. 

It is an amusing fact that the magnitude of the average neutron interaction 

energy in matter, in laboratory magnetic fields, and near the surface of the 

Earth is the same order of magnitude for all forces except the weak 

interaction. The experiments include measurement of neutron-decay 

parameters, the use of parity violation to isolate the weak interaction 

between nucleons, and searches for a source of time reversal violation 

beyond the SM. These experiments provide information that is 

complementary to that available from existing accelerator-based nuclear 

physics facilities and high-energy free neutrons are unstable with a 15 

minute lifetime but are prevented from decaying while bound in nuclei 

through the combined effects of energy conservation and Fermi statistics. 

They must be liberated from nuclei using nuclear reactions with MeV -
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scale energies in order to be used and studied. We define slow neutrons to 

be neutrons whose energy has been lowered well below this scale. The 

available dynamic range of neutron energies for use in laboratory 

research is quite remarkable. Thermodynamic language is used to 

describe different regions; a neutron in thermal equilibrium at 300 K has 

a kinetic energy of only 0.025 eV. Because its de Broglie wavelength 

(0.18 nm) is comparable to inter-atomic distances, this energy also 

represents the boundary below which coherent interactions of neutrons 

with matter become important. The most intense sources of neutrons for 

experiments at thermal energies are nuclear reactors, although 

accelerators can also produce higher energy neutrons. 

As the uncharged member of the nucleon pair, the neutron plays a 

fundamental role in the study of nuclear forces. Unaffected by the 

Coulomb barrier, neutrons of even very low energy (eV or less) can 

penetrate the nucleus and initiate nuclear reactions. In contrast to part of 

our lack of understanding of processes in the interior of stars results from 

the difficulty of studying proton -induced reactions at energies as low as 

keV. On the other hand the lack of coulomb interaction presents some 

experimental problems when using neutrons as a nuclear probe : energy 

selection and focusing of an incident neutron beam are difficult and 

neutrons do not produce primary ionization events in detectors(neutrons 

passing through matter have negligible interactions with the atomic 

electrons ).Basic researches with neutrons goes back almost to the earliest 

days of nuclear physics, and it continues to be a vital and exciting 

research field today. For example, interference effects with neutron 

beams have permitted some basic aspects of quantum mechanics to be 

demonstrated for the first time. The electric dipole moment of the neutron 

should vanish if the neutron were an elementary particle or even a 
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composite particle in which the binding forces were symmetric with 

respect to the parity and time-reversal operations. 

Many careful and detailed experiments have been done and all indicate a 

vanishing electric dipole moment, but the limit has been pushed so low 

(10�25e.cm) that it is almost possible to distinguish among certain 

competing theories for the interactions among the elementary particles. 

The so-called Grand Unified Theories that attempt to unify the strong 

(nuclear), electromagnetic and weak(ᵦdecay) interactions predict that the 

conservation of nucleon number (actually baryon number) can break 

down and that a neutron could convert in to its anti-particle, the anti-

neutron and then back again to a neutr [3]. No evidence has yet been seen 

for this effect either, but current research is trying to improve the limits in 

our knowledge of the neutron-anti-neutron conversion frequency 

1.2 Problem Statement 

The problems so far have to do merely with the realization of the chain 

reaction. If such a reaction is going to be of use, we must be able to 

control it. The problem of control is different depending on whether we 

are interested in steady production of thermal neutrons for an explosion. 

In general, the steady production of thermal neutrons requires a slow-

neutron-induced fission chain reaction occurring in a mixture or lattice of 

uranium and moderator[3]. 

1.3 Research Objectives 

The purpose of neutron reach facilities is to provide unprecedented 

experimental capabilities in the areas of neutron scattering materials, so 

extrapolated quantities include fuel cycle parameters fuel element power 

distribution neutron fluxes in the reflectors and targets regions so that the 

development of the response function generator in hexagonal geometry 

that leads to advance the state-of-the-art for reactor analysis. 

1.3 Methodology 
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The method used to produce approximate solutions to the integral form of 

the Boltzmann transport equation for thermal neutron fluxes near a 

moderator temperature discontinuity. Both spherical and plane geometries 

are considered. The validity of the technique is established by using a 

synthetic scattering kernel and making comparisons with exact transport 

theory solutions for two-temperature problems. The relative accuracy and 

importance of the choice of different weighting functions and of the 

number of trial modes in the flux expansion is investigated [3]. Generally, 

it is found that using slowing down distribution in a finite block 

distributions for the energy trial modes of the flux produces a significant 

increase in the accuracy compared with a diffusion theory approximation, 

so that the Boltzmann transport equation describes the transport of neutral 

particles from one collision with an atom to another [1.3]. It is a ‘balance’ 

statement that accounts for additions to and subtractions from the 

radiation in a given increment of space, energy, direction and time [3]. 
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Chapter Two 
Literature Review and governing formulas  
2.1   Introduction 
The neutrons emitted in nuclear fission reactions have high energies, 
typically in the range of 1 MeV. But the cross section for neutron capture 
leading to fission is greatest for neutrons of energy around 1 eV, a million 
times less. Neutrons with energies less than one electron volt are 
commonly referred to as "thermal neutrons" since they have energies 
similar to what particles have as a result of ordinary room-temperature 
thermal energy [4]. It is necessary to slow down the neutrons for efficient 
operation of a nuclear reactor, a process called moderation. While 
neutrons are efficiently slowed by inelastic scattering from U-238 , the 
non-fissionable isotope of uranium, when their energies are higher than 1 
MeV, the remainder of the process of slowing them down must be done 
by elastic scattering from other nuclei. When a neutron collides 
elastically with another nucleus at rest in the medium, it transfers some of 
its energy to it. The maximum transfer of energy occurs when the target 
nucleus is comparable in mass to the projectile[4,5]. Water and carbon 
(graphite) are commonly used moderators. Water is a good moderator, 
but the hydrogen in the water molecule have a fairly high cross section 
for neutron capture, removing neutrons from the fission process 
 
  2.2   Concept of moderation 
In materials containing atoms of low atomic mass, neutrons of all 
energies can lose a significant fraction of their energy in a single elastic 
collision and such materials are referred to as moderators [4,5]. In heavy 
nuclei appreciable energy loss in a collision is only possible at high 
energies where inelastic scattering can occur. The neutron dose rate from 
a point source of fast neutrons falls off with distance r approximately as 
exp(−Σremr)/4πr2, where Σrem depends on the medium where Σ has been 
defined earlier. This macroscopic cross-section is called the removal 
cross-section and since all interactions tend to remove energy from the 
beam its value is not too different from the total macroscopic cross-
section (NσnT) of the material, but is slightly lower. This exponential fall 
off is only approximate and holds less well for media in which hydrogen 
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is the principal fast neutron attenuator. In the table overleaf the removal 
cross-section refers to a fission neutron source. 

In the slowing-down region the average number of collisions, , to slow a 
neutron from energy E1 to energy E2 is equal to ln(E1/E2)/ξ, where ξ is the 
average change per collision in the logarithm of the energy. At energies 
below that at which scattering becomes entirely elastic, ξ is independent 

of energy and is approximately equal to 2/(A + ). The spatial 
distribution of neutrons of energy E2 which have slowed down from a 
point source of energy E1 is of the form exp(−r2/4τ)2 where τ is referred to 
as the Fermi Age and is the mean square distance a neutron migrates in 
slowing down from E1 to E2. It is given by: 

                                


1

2

E

E nn
E

DdE


                            1.1 

Where D is the diffusion coefficient and equal to (3ΣnT − 3bΣnn)− 1 and b 
is the average value of cos Ψ where Ψ is the angle of scatter of a neutron 
in a collision. The table refers to the age of neutrons from a fission source 
slowing down to an energy of 1.46 eV. This value, which is just above 
the thermal region, is appropriate to the age determined from the 
measured spatial distribution of the resonance neutrons detected by 
indium foils. 
The root mean square distance a neutron travels from the position where 
it is etherealized to the point where it is absorbed is the thermal diffusion 
length, L, and is equal to 

(4/π)1/4(Dth/ΣnA)1/2           ( 1.2) 
where Dth is the value of the diffusion coefficient averaged over the 
thermal neutron spectrum and ΣnA is assumed to have a l/υ dependence 
and is evaluated at an energy kTn where Tn is the temperature of the 
medium [4,6]. 
 
2.3  Neutron Moderators 
As a beam of neutron travels through a bulk matter, the intensity will 

decreases as neutrons are removed from the beam by nuclear reactions. 

For fast neutrons, many reactions such as (n,p)(n,n) or (n,2n) are possible, 

but for slow or thermal neutrons the primary cause of their disappearance 
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is capture, in the form of the (n,)reaction. Often the cross sections for 

these capture reactions are dominated by one or more resonances, where 

the cross section becomes very large. 

Beams of neutron can be produced from a variety of nuclear reactions. 

We cannot accelerate neutrons as charged particles, but we can start with 

high-energy neutron and reduce their energy through collisions with 

atoms of various materials. This slowing of neutron is called 

"Moderating" the neutrons[4,5]. 

In crossing a thickness dx of a material, the neutrons will encounter ndx 

atoms per unit surface area of the beam of the material. Where n is the 

number of atoms per unit volume of the material. If _t is the total cross 

section (including scattering processes, which will tend to divert neutrons 

from the beam), then the loss in intensity I is       dI = -Iσtndx 

And the intensity decreases with absorber thickness according to an 

exponential relationship 

I = I0e-σttnx
                              1.3 

The expression refers only to mono energetic neutrons-the original 

intensity of neutrons of a certain energy decreases according to the above 

equation. 

In thermal reactors moderator materials are required to reduce the neutron 

energies from the fission to the thermal range with as few collisions as 

possible, thus circumventing resonance capture of neutrons in uranium-

238. To be an effective moderator a material must have a low atomic 

weight. To be an effective moderator a material must have a low atomic 

weight. Only then is ζ —the slowing down decrement defined by ζ═ 

ln(E/É)p(E→É)dÉ ,that most widely employed measure of a nuclide’s 

ability to slow neutrons down by elastic scattering is the slowing down 

decrement. It is defined as the mean value of the logarithm of the energy 
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loss ratio or ln(E/É) is large enough to slow neutrons down to thermal 

energies with relatively few collisions[4,5,6].A good moderator, however, 

must possess additional properties. Its macroscopic scattering cross 

section must be sufficiently large. Otherwise, even though a neutron 

colliding with it would lose substantial energy, in the competition with 

other materials, too few moderator collisions would take place to have a 

significant impact on the neutron spectrum. Thus a second important 

parameter in determining a material’s value as a moderator is the slowing 

down power, defined as ζ∑s, in other word the average logarithmic energy 

decrement is the average decrease per collision in the logarithm of the 

neutron energy. 

ζ= lnE-lnÉ= ln(E/É)                                   1.4 

 where  

ζ= average logarithmic energy decrement 

E= average initial neutron energy 

É= average final neutron energy 

The symbol ζ is commonly called the average logarithmic energy decrement 

because of the fact that a neutron loses, on the average, a fixed fraction of its 

energy per scattering collision.  

Since the fraction of energy retained by a neutron in a single elastic 

collision is a constant for a given material, is also a constant.  

Because it is a constant for each type of material and does not depend 

upon the initial neutron energy, is a convenient quantity for assessing the 

moderating ability of a material. The number of collisions (N) to travel 

from any energy, Ehigh, to any lower energy, Elow, can be calculated as 

shown as               
'ln_ln EEN    

So the collisions are required to slow a neutron from an energy of 2 MeV 

to a thermal energy of 0.025 eV, using water as the moderator? Water has 
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a value of 0.948 for ζ using the above equation is 19.2 collisions, and the 

average number of elastic scattering collisions needed for 2 MeV neutron 

to slow down to thermal energies; 

H
1

2
=18 collisions 

H
2

4
= 25 collisions 

He = 40 collisions 
U> 2000 collisions 
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Chapter Three 
Theory of slowing down neutron 

3.1  Energy Distribution of Neutrons 

If the production of neutrons throughout all space is uniform, then the 

neutron density cannot depend on x[4,7].The general Boltzmann equation 

reduces to 

 
 The total neutron flux per logarithmic energy interval, Fo(u),  and the 

total number of  neutrons produced  per C.C.  per second, So, are 

 
Thus upon integrating Eq. 3.1over u and u' there results  

 
In  the  isotropic  scattering case, f  = 1/2,  this reduces to 

              (3.3) 

It  is to be understood,  as before, that Fo(u) = 0 if u< uo.  

The distribution Fo(u)  for large values of  u ( i.e. at energies far  from the 

source energy) is easy to calculate provided there is no absorption (Nσ=  

Nσs). 

In this case the distribution equation( 3.2) 

         '',''
2

1 '
0

ln
2

00

2

0
duuuhufeuFN

M
MuFN uuu

u sS 


 




                  (3.4 ) 

Now, since f(Eʹ,E,Ωʹ,Ω) is probability that collision by a neutron of 

energy Eʹ and direction Ωʹ results in an energy E and a direction Ω,  
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  1,,'
2 '

,

'  
dEdDEf

E

E

                                               (3.5)                                                            

hence, on  transforming to  the variable u, and  integrating  -  over angle, 

we find  

     1''
2

1 2ln '
2




 
  duuufe

M
M u

u

uu                            (3.6) 

Consequently 

Nσso Fo(u) = C  a constants 

However, Eq(3.3) satisfies since this solution does not satisfy  the initial 

condition  (which is derived from Eq (3.2), namely 

   000
0

uuuFN sLim
uu




  

it cannot be correct close to the source energy uo.  Thus Nσso,Fo(u)  = C 

is only the asymptotic solution of  Eq( 3.2) correct at energies u which 

differ from uo by several logarithmic slowing down intervals lnα2.  

We compute the value of the constant C in the case of isotropic 

scattering, i.e., f = 1/2. This is of most practical interest since the 

asymptotic solution applies only to neutrons which have lost considerable 

energy, and therefore the scattering by  the moderator will usually have 

become isotropic by the time the asymptotic solution becomes valid [4,7].  

To compute C we equate the number of neutrons which cross a given 

energy E per second per C.C.  in the course of  slowing down, to  the 

number of  neutrons produced per  second per c.c.     To  calculate the 

number of neutrons which cross E per second per C.C. we observe that all 

neutrons from logarithmic interval du'  which  enter a logarithmic energy 

interval duʹʹ a  lying below u(E) will have crossed E.  The number of 

collisions per logarithmic energy interval du' per second is  
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The probability that these collisions will result in neutrons being thrown 

into energy interval dE" is 

 
or, in the logarithmic energy variable,, 

 
Hence the total number of neutrons thrown across E per second per  

c.c.is 

     
       '''''';''

2
1 '''ln

'ln 00

2 2

2
duduuuhufeuFN

M
M uuu

u

u

u S 
 

 



                (3.7) 

Since the scattering is assumed to be isotropic f= 1/2 Hence the number of 

neutrons crossing energy E per second per  c.c.,  i.e.,  the slowing down 

density q(E), which is to be equated  to So, is 

                                                                                                              (3.8) 

Thus 

 
and the energy distribution  is  

                                    (3.9) 

In terms of E, rather than u, the distribution is 

                                 (3.10) 

Or 

                                                          (3.11) 
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In the case of isotropic scattering in a mixture, the slowing down density 

in an infinite medium in which neutrons are produced uniformly satisfies 

the equation 

                                         (3.12)                                      

Where                                     

Now  the solution of  Eq  3.12  is 

.                                      (3.13) 

and the neutron energy distribution  implied  by Eq( 3.13) is the  same as 

that of  Eq.3.10 on the other hand the differential  equation which  led to 

Eq(3.13) is an approximation which was valid, because it involved a 

Taylor  series expansion,  only if c  (in the case of  mixtures) varied  

slowly over one  slowing down  interval.  Actually the energy distribution  

(Eq.  3.13)  is a rigorous asymptotic solution of the space-independent 

Boltzmann equation only for isotropic scattering in a single substance.  

For mixtures or anisotropic scattering, Eq.  3.13 is only approximately 

correct[7,8.  

The assumption of a single substance was not necessary to obtain Eq.  

(3.13) 

3.2 Spatial Distribution of Slowed Neutrons; the Slowing 

Down Kernels 
The slowing down density satisfies 

 
with the initial condition 
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Suppose a point source emits one fast neutron per second at   r = 0 in an 

infinite medium.  The slowing down density at some lower energy 

corresponding to age τ will be the solution of 

                (3.14) 

This equation is identical in form with the time dependent diffusion 

equation  

  The solution, as was found there,  is 

                                          (3.15) 

i.e.,  the slowing down density of  neutrons from a point monoenergetic 

source  is  

Distributed  around the point according to a Gaussian function.  The 

range( ro) of the Gaussian (i.e., the distance at which the density falls  to 

i/e of  its value at the source) is 

                                 (3.16) 

For many purposes it is important to know the second spatial moment of 

the slowing down density.  If  the slowing down density is Gaussian, then 

the second moment of  neutrons slowed to age  which we denote by r͡͡2(τ)  

is 

 
For a Gaussian distribution, the following relation holds between the age, 

the second moment, and the range: 

 
The relation between τ and the second moment of the slowing down 

distribution is the same as the relation between the square of the diffusion 
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length, L, and the second moment of  the distribution of  thermal neutrons 

around a point source.  For this reason √τ is often called the slowing 

down length. The age τ is related to the logarithmic energy as  

            ( 3.17) 

and  is therefore a monotone increasing function of  u.  Thus the spatial 

distribution of slowed neutrons keeps a Gaussian shape as the neutrons 

lose energy, but the neutron distribution gradually spreads out since the 

range ro  increases with u.  The distribution of neutrons slowing down 

from an energetic source is in this approximation exactly the same as the 

distribution of heat from an instantaneous heat source. The energy 

distribution of the neutrons slowed from a point source is 
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…….(3.18)  

At a given point the flux as the function of u waxes and then wanes; the 

maximum 

occurs at the logarithmic energy umax given by  
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The slowing down density(Eq.  3.15)  from a point mono -energetic 

neutron source may be designated the “point slowing down kernel.”  

Following the procedure used in the discussion of the time dependent 

diffusion equation, we can write down the corresponding kernels in other 

geometries.  

From the slowing down density arising from a monochromatic energy 

source it is a trivial matter to compute the slowing down density from a 

fission neutron source which is poly-energetic.  If the number of neutrons 

emitted per sec between energy Eʹ and Eʹ + dEʹ from a point source at the 

origin is f (Eʹ)dEʹ   

Then the slowing down density from such a source is evidently                                                              

q൫ݎ, ൯(ܧ)࣮ = ∫ ϕୣ
_ మ
ర[ζ(ు)షτ(ు)]

{ସπ[τ(୉)ିτ(୉̓)]}
f(E ҆)dE ҆∞

଴         (3,19) 

Where q r τ(E) is the number of neutrons crossing energy E per second 

per c.c at r.  Since in a chain reaction  the neutrons originate from a 

fission spectrum, then slowing down distribution as given by Eq.  3.19 is 

the one appropriate to a chain reactor in which the moderator is non-

hydrogenous. 
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3.3    Elementary Improvements on Age Theory 
The age approximation, and the Gaussian slowing down distribution 

which it yields, resulted from a spherical harmonic expansion of the 

angular distribution, and a Taylor's series expansion of the energy 

distribution.  As has already been pointed out, the Taylor's series 

expansion is valid only if the mean free path varies slowly over one  

slowing down interval, while  the spherical harmonic expansion could be 

expected  to be good only fairly near the source.  Thus the age 

approximation is poor in hydrogenous media (where the mean free path 

changes rapidly), or at large distances from the soke  hi any medium.  

That the Gaussian cannot be correct at large distances is evident from the 

following physical argument: Consider neutrons which have made no 

collisions  

at all.[7,8]  These will be distributed like So (e-Nσr/4ar2) where Nσ is the 

macroscopic scattering cross section and So is the source strength.  Now 

at small distances the Gaussian slowing down distribution will exceed 

this exponential; at large distances, however, the ratio 

 
approaches  α,  since the Gaussian fall off faster than exponential  Thus at 

large distances,  the distribution  is more exponential than Gaussian. This 

“first collision paradox” can be expected if the “aging” process, which 

leads to the Gaussian, is assumed to begin only after the neutrons have 

made their first collision. The points at which first collisions occur act as 

“sources” for the slowing down process .  
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An improvement on the age theory distribution which at least is free from 

the first collisions are distributed as 

 
the 0  referring to u = 0, the source energy. 

According to this picture the slowing down distribution should therefore 

be 
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A further improvement can be made by taking into account the fact that 

after a neutron has suffered  a collision which  throws  it across energy E,  

it experiences a “free ride,”  without  changing its energy, until  it suffers 

its next  collision.  To take this free ride after the last collision into 

account, it is plausible to include another exponential with mean free path 

appropriate to the lower energy.  Thus the slowing down distribution, 

including both first and last collisions is 
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                (3.20) 

where σ(0)  and σ(u)  are cross sections at the initial and  final log 

energies respectively.  Formulas like (3.20)  are of course not  rigorous; 

they are rather more plausible than  the simple Gaussian  and have been 

used to represent  the slowing down distribution from a point 

monoenergetic  source.  

In order to compute the second moment of the distribution (3.20) we first 

state the well known result that the second moment of the distribution 

from a plane source is just 1/3 the second moment from a point. This 
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follows from the relation between a point kernel and the corresponding 

plane kernel, 

 
Hence 

 

Upon integrating by-parts, and using  the fact that  r3Ppl(r)  →  0  as r → 

α for any kerels of interest, we obtain 

 
2z  being the second moment of the plane distribution.  

With this preliminary we compute 2r  for the distribution (3.20) by 

computing the corresponding plane  second moment,  and multiplying by 

3.The plane distribution corresponding to  (3.20) we write as 

…………..(3.21) 

where Kl(z)  and K2(z)  are-plane transport kernels and PPI  is the plane 

Gaussian kernel. The quantity q(z,τ)  is the  convolution of  the  three 

kernels K1,  PPl, and K2.  

Now if K͞lB2) is the Fourier transform of K1 (z), i.e., if 

 

then z͞2
k1  the  second moment of  the distribution defined by K1(z) is 

                                                     (3.22) 

Furthermore, the Fourier transform of q(z,τ)  is 

                                 (3.23) 
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As follow from equation(3.20) and the definition of Fourier  transform . 

Hence 

 
That is  

                                (3.24) 

And  

 
In other words, the second moment of a distribution which is the 

convolution of several kernels is the sum of the second moments of each 

kernel.  

We now apply this result to the distribution (Eq. 3.21). The second 

moment of the transport kernel 

             is 

 
and the second moment of  the Gaussian  is 6τ.  Hence the second 

moment of the slowing down distribution corrected for first and last 

collisions is 

                              (3.25) 

or, upon using the  formula for τ 

                      (3.26)                              

The distribution (Eq. 3.21) is unwieldy analytically, and it has therefore 

been customary to replace it by a  single Gaussian 
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where τ',  the corrected age,  is chosen  so as to give  the  same second 

moment as (Eq.  3.18). Thus the corrected age is 

                    (3,27)     

and  it  is this age, together with  the -simple Gaussian, which  is usually 

used  to represent  the  slowing down density in a heavy moderator [7,8].  
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3.4  The Group Picture  
. The Gaussian slowing down distribution with the corrected age(Eq.  

3.27)  is a fairly satisfactory representation of the slowing down process 

in heavy moderator. 

However, for certain problems, e.g those involving slowing down process 

in composite media, even the elegant  Gaussian age theory becomes very 

unwieldy. 

The analytical difficulties arise because the age theory equation is a 

partial differential equation.  To avoid these complications a simplified 

formulation of  the slowing down problem which describes  the process 

by  a  sequence  of  ordinary differential  equations  has been used very 

widely  in pile  theory.  

The general idea of this method, called the method of groups, is to divide 

the total logarithmic energy interval through which the neutrons pass into 

a finite number of energy subintervals.  Neutrons in a given energy group 

are supposed  to diffuse ‘without energy loss until  they have  

experienced  a number of collisions  equal to the average number of  

collisions actually  required to pass through the energy interval;  at this 

time they pass  into the next  lower energy  interval.  Thus removal from 

an energy interval is treated as an “adsorption” process, the “absorption” 

cross-section,( σ٭a), being determined from the relation   σs/σ٭a =number 

of collisions before removal from energy range. 

The cross-section for removal of neutrons from one group is also the 

cross- section for creation of neutrons in the next lower group.  The 

slowing down density, i.e., the number of neutrons passing from the  vth  

energy group  to the v +1st group,  is therefore 

                                                                                 (3.28)                                   
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where  σav  is the average  scattering cross-section  in the uν energy 

interval.  

If  D,  is the average diffusion coefficient  in  the vth energy group,  then  

the neutron flux ɸν,(r)  in the νth group  satisfies the diffusion  equation 

                         (3.29)                               

Sν(r) being the number of neutrons produced by an external source per 

unit volume at r in the vth energy interval. In a one group picture,  v = 1,  

in which the external source  is a 8-function at the origin, the group 

equation  is  

                                  (3.30)                                                                    

this has the  solution 

              (3.31) 

Where 

                                                      (3.32)                                                                                                   

The second moment of this distribution is 6L*2, and the slowing down 

length is given by 

                                                          (3.33)                                                            

If we substitute for Nσ٭a1 and Dl their expressions in terms of cross-

sections, we obtain 

                                                             (3.34)                                                                  

This is identical with the age theory expression for the second moment 

provided the product Nσtr1Nσsl is chosen as 
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                                        (3.35) 

With  this choice of  average  cross sections, the one-group  picture  is 

seen to give a spatial distribution which  is exponential  instead of  

Gaussian which has the same second moment  as the age theory, but 

neutrons  is readily found by  solving Eq.  3.29. For simplicity we deal 

with the problem plane symmetry; the solution from a point source is then 

found by differentiating. The differential equations to be solved are In the 

n-group picture the distribution from a localized source of high energy 

                               (3.36)                                 

To solve these equations we make a Fourier transformation, 

                           (3.37)                   

The transforms satisfy 
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Since   k is the product of the Fourier transforms of preceding   v

the distribution  Xk  in a given group be the convolution of the 

distribution of the previous groups. Physically this means that each group 

acts as the source for succeeding group. 

To actually compute ϕv(x ),  it is necessary  to evaluate the  integrals  in 

Eq.  3.38.The integrands have poles  in the upper  half  plane  at 

                         (3.39) 

and we  assume for simplicity  that all roots are simple.  Hence, according 

to the residue theorem, 
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          (3.40)         

where  the  term  (I  -Lj2٭/Lj2٭)  is omitted  from the  sum.  If k = I (one 

group picture), Eq.  3.40 reduces to 

                                                                  (3.41) 

which is the plane  equivalent  of  Eq.  3.31. Since  ϕk(x) is the  

convolution of all the previous ϕv(x ), the  total  slowing down length  for 

the neutrons  slowed out of  the kth group must be  the  sum of  the 

squares of the  slowing down  lengths  in each group individually: 

                        (3.42) 

If  the number of  groups becomes  infinite, but  each Lv, is reduced  so  

that 

(3.43) 
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where τ remains finite,  then the group picture  should go  over into the 

continuous  

age theory.  The slowing down density in the w-group case can be 

computed most  readily by  first passing  to the  limit  in the  integrand of  

(3.38)  and  then evaluating the  integral. From Eq. 3.38 

                            
Now 

                                          
                                                                                                       (3.44) 

As this verified by taking logarithm of both sides .Hence 

 

         (3.45)                                

that is, the group picture and  the  age picture merge when the number of  

groups becomes  infinite.  

The great merit of the group method is that it involves ordinary instead of 

partial differential equations. By taking enough groups it is possible to 

approximate the age theory slowing down function to any degree of  

accuracy, and  still deal  only with ordinary equations.  The approximate 

slowing down functions which are construct&-out of group picture 

exponentials are called "synthetic" kernels.  In pile problems involving 

H20 as  !moderator,  it is customary to use one- or two  fast neutron 
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groups  in addition, to  the  thermal neutron group;  in piles moderated  by 

heavier materials  as many as  five or six groups have been used.[7,8,9]  

In assessing the relative accuracy of the group method and the age theory, 

it must be remembered that the slowing down function from a point 

fission source, even in, say, graphite, is not a Gaussian because of the 

energy spread of the source neutrons.  Thus in graphite the three group 

model is only slightly less accurate than the  single Gaussian while  in 

H2O, because of  the very long mean free path  at high energies,  the  

slowing down is more nearly represented by a single group picture  than 

by  a Gaussian. 
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3.5  Average Transport Cross Section in Group Method 
In order to obtain a one group distribution which has the same second 

moment as the Gaussian, it is necessary  to average the product of  the 

transport and  scattering cross sections according to Eq.  3.35.  In 

problems  involving only one medium  it is only this product which 

determines  the neutron distribution.  

However, in problems involving composite media, since one of the 

boundary conditions across an interface is continuity of the net current, 

and the current is proportional to the transport mean free path, it is 

necessary to find an appropriate average for the transport mean free path 

separately.  

To calculate an average transport mean free path which will ensure 

continuity of the net neutron current in a group,  it is necessary  to make 

some assumption with  regard  to the actual energy distribution of  the 

neutrons  in a given group.  Evidently the energy distribution will depend 

on the particular arrangement and properties of  the  slowing down media 

on each side of  the boundary.[7,8,9]  

However, as a simple approximation, it is useful to assume that the 

energy distribution of the neutrons is the  asymptotic distribution 

                                           (3,46)                                                  

where a. is the  scattering cross section.  

The total flux of neutrons in a group from energy El to E2 is 

                              (3.47)                                               

and the net current is 

     (3.48)                                                         
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where-)λ͞tr is the correct average  transport mean free path .Thus 

combining Eqs. 3.47 and 3.48, we obtain 

                                  (3.49) 

if  ζ  is constant,  i.e.,  the average  transport mean free path which will 

give  continuity  of  flow and density  in a group in which  the asymptotic 

energy distribution holds is an average over 1/NσsE . 

3.6  The Energy Transfer Distribution of Slowed Neutrons 
It is a matter of  some practical  importance to calculate the manner  in 

which the energy  transferred to a moderator by  elastic collisions of  fast 

neutrons  is distributed  in space as the neutrons  slow down from a plane  

source.  If the flux of neutrons of log energy u = lnEo/E is F(x,u)  (plane 

symmetry), then the number 

of elastic collisions per c.c.  per second at energy E = eu  is 

 
Since the logarithm of the ratio of the average energies E' and E after two 

successive collisions is 

 
the average energy loss per collision, AE,  is 

                          (3.50) 

i.e., if the moderator is heavy, 

.                                                  (3.51) 

This energy increment appears as kinetic energy of the moderator atom.  

Hence E(x), the energy released per c.c. per second to the moderator by 

elastic collisions,  is for heavy moderators, 
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    (3.52)                                                                                                                                         

To evaluate this integral an assumption must be made with  respect to the 

neutron distribution F(x,u). This we take to be Gaussian: 

                                                                                                      
.                                                                                                   (3.53) 

where So is the number of  neutrons emitted per sq. cm. per  second by  

the source. 
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                       (3.54)                                                                        

This integral can in general be evaluated only by numerical methods.  

However, if all cross sections are constant, then, in simplest 

approximation, 

                                      (3.55) 
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                                        (3.56)            

                                                                                        .                                                                                                        

Evaluating the integral according to Watson's Bessel Functions we obtain 
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Where  
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The  total energy emitted from one  side of  the  source plane  cm2  per 

second  is S0E0/2;  thus, according to Eq.  3.57, the fractional energy 
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release in each cubic centimeter falls off exponentially with length 

constant α. 

3.7   Slowing Down Distribution in a Finite Block 
In order to measure the slowing down distribution from a source it is 

customary to place the source on the axis of a long parallelepiped and 

measure the activity of Cd covered In foils placed along the long axis of 

the parallelepiped. Since In has a deep resonance at 1.44   eV, the activity 

of such a foil will in good part be proportional to the flux of 1.44 eV 

neutrons.  Actually, because of higher resonances, the reading of the In 

foil is not quite proportional to the 1.44 eV flux; according to Hill and 

Roberts, at points close to a source of 30 kv neutrons in graphite, almost 

40% of the activation of In is due to absorption above 1.44 eV.  Farther 

from the  source the perturbation  due to higher  resonances becomes  less 

so  that the mean square distance to 1.44  eV as measured by  In foils is 

in error by much  less than 40%. The theory of this experiment is a good 

illustration of  the usefulness of  the age approximation,  and we  give  the 

details in the following paragraphs.  

Suppose a monoenergetic unit source is placed at the point x = 0, y = 0, z 

= 0 in an infinitely long moderating prism of sides 2a . The slowing down 

density satisfies 

                                                                                       
.                                                                                                      .(3.59) 

                                                                                         
.                                                                                                  (3.60) 

where we  have  assumed  the  long direction is along z. The boundary 

conditions may be taken with sufficient accuracy (provided the width of 

the block is much larger than the mean free path).  

q = 0 on the extrapolated boundary.  
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the extrapolated' boundary being  the geometric boundary  a' augmented 

by the extrapolation distance 0.71λtr .  We {denote a' + .71 λtr, by a.  It is 

convenient to assume λtr independent of energy; again this is an 

unimportant assumption provided the block dimension is large compared 

to a mean free path.  

The solution of  Eq.  3.19 which satisfies the boundary conditions is 

                                   
.                                                                                                        (3.61) 

Where  

             (3.62)                                                                                                            

The sine solution is not used because of the symmetry of the source 

distribution. 

The shape of the distribution along the z-direction is the same as from an 

infinite plane.  As the neutrons age   (τ increases) the intensity of the 

distribution falls because of the exponential factor.  This factor accounts 

for leakage out of the block.  Its dependence of τ arises from the 

circumstance that neutrons with large τ must have diffused for a relatively 

long time and therefore must have had a good chance to leak out of the 

sides. The magnitude of the leakage is determined by the ratio τ/a2. 

The distribution (Eq. 3.61) is represented as a sum of characteristic 

function 

The slowing down density can, of course, also be computed by observing 

that the neutron distribution from a point source in a finite block can be 

viewed as the superposition of distributions from point sources and sinks 

appropriately distributed in an infinite medium. The mathematical 

relation between the source wise and characteristic function 
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representations	of	the	distributions	is	established	by	means	of	the	Poisson

  summation formula  
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Upon applying this transformation to the series (3.61) with  
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Each term in Eq( 3.64) represents a source or sink of unit strength 

situated at the point ( λa, μa, 0).  The source wise representation of the 

slowing down distribution converges better than the characteristic 

function representation at points close to the source; at points far from the  

source the characteristic function form is the better converging. 

3.8  Measurement of Slowing Down Length 

The second moment of the distribution (3.61) is 
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That is, the  second moment  in a finite block  is the  same as in an 

infinite block.  

Hence foil measurements in a block of finite width yield the same second 

moment as measurements in an infinite medium.  This result is 

independent of the relative importance of the various harmonics  

contained in Eq (  3.61) and holds provided  only that the distribution  is 

strictly Gaussian.  
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Most neutron  sources  are not  monoenergetic, nor is the slowing down 

intrinsically Gaussian. For both these reasons the mean square distance 

measured in a finite block is not strictly the same as the mean square 

distance  in an  infinite  system.  For example, if the energy distribution 

of the source is f(τ')dτ', then 

 
The second moment of this distribution along the z axis (x = y = 0) is 

                                                    
…………(3.65) 

In general this second moment will differ from the second moment z͞2 

measured in an infinite medium: 

                         (3.66)                                            

Corrections must therefore be made to the observed infinite system z͞2 in 

order to obtain the true infinite system z͞2α. It is possible to compute these 

corrections for a completely general kernel and  this will be done  in the  

remainder  of  this section, The corrections will be made by observing 

that  the neutron distribution  in a finite block can be considered as the  

sum total of  effects from a  suitable distribution of positive and negative  

sources in an infinite medium, provided  as we shall assume, the 

extrapolation distance can be neglected compared to the block size, or is 

independent of neutron energy. Now a point source at the center of the z 

= 0 plane in a long block of sides 2a  is equivalent to a sequence of 
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positive and negative sources spaced at intervals of  2a in the z = 0 plane. 

Such a sequence can be represented as  

                                          
……………….(3.67) 

where x  and y are allowed  to have  any value  from -α to +α. We 

consider  the function 

 

.                                        

where P͞(Bm
2+ Bn

2, z)  is the  two dimensional Fourier transform of  the 

point slowing down kernel, P (r):  - 

         (3.69)                        

The function q(x, y, z) can be viewed as the slowing down density in an 

infinite medium in which the infinite array of !positive and negative  

sources defined by Eq.  3.67 is situated. Since according to Eq. 3.68 q(x, 

y, z) vanishes on the boundary of the block,  it can also be viewed as the  

slowing down density in the finite system due to a  single point  source at 

x = y = z = 0, provided  the extrapolation distance  is energy independent.  

A range measurement results in the observed 2kth moment z͞2k 
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We now show how the moment in an infinite system can be expressed in 

terms of  the observed moments  in the finite system.  Since P(x, y, z)  is 

an even function of  x, y, z, we  can replace 

CosBmxʹ cosBnyʹ by cos(Bmx+Bny) in equation 3.70 now 
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                             (3.71) 

Where 2νC2 is binomial  coeffient 

upon substituting equation 3.71into 3.70 we find 
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The integrals which appear in Eq.  (3.72) are of  the form 
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                                            (3.73)                                                                   

and can be evaluated by  shifting to polap  coordinates.  Thus 
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upon substituting 

equation (3.73) into( 

3.72) we obtain 

                             (3.74) 

which  is an infinite system of  linear equations relating the observed 

moments z͞2k to the  infinite system moments z͞2kα  The  system can be  

solved for each z͞2kα in terms of  the  z͞2k by  successive approximations,  

in which,  at each stage of  the approximation  only a finite number of  

equations and unknowns are used[12,13].  Such a process will converge 

well if the block dimension is large compared to the slowing down range. 

If  the  source instead of  being  concentrated  in a point  is distributed 
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over the  z = 0 plane  like cosB0xcosB0y,  only  the term m = n = 0 

appears in Eq. 3.74.  

The  infinite  second moment can then be expressed explicitly in  terms of  

the measured  finite system moments:

                                            (3.75) 

and this expression gives  the correction for converting z͞2  into z͞2α. 

Equation 3.75 is of  practical  importance  since measurement of  fission 

neutron  ranges are sometimes performed by using the  thermal neutrons 

from a thermal column which are distributed  like cos Box cosBoy  to 

produce  fissions in a flat plate of fissionable material.  The fission 

neutrons  in  such an arrangement will be distributed  also as 

cosBoxcosBoy [7,8,9]. 
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Chapter Four 
Result and discussion 
The neutrons produced in the fission reactions emerge with the average 

energy being around 2 MeV; therefore neutron moderation is required to 

achieve well thermalized  neutron flux. Their usage is spread over various 

theoretical concepts of the neutron physics field as it carried out in 

chapter three, and with applications exploiting several physical processes 

like neutron capture, elastic and inelastic scattering, up scattering, etc. So 

the use evaluated nuclear data format [ENDF] library neutron transport 

code is used to evaluate the sample being bombarded with neutrons, 

causing one of the most common neutron matter nuclear reactions or 

neutron capture, where a neutron interacts with the target nucleus via 

non-elastic and elastic interaction and compound nucleus is formed in an 

excited state. The excitation energy of the compound nucleus is due to the 

binding energy of the neutron with the nucleus[2,10,11]. 

Frequently can this new configuration also include radioactive nucleus 

which also de-excites and emits characteristic delayed gamma rays, but 

with much longer half lives that can range from part of a second to 

several years. However ENDF-format libraries are computer readable file 

of nuclear data that describes nuclear reaction cross-sections, the 

distribution in energy and angle reaction products, which are intended to 

be used for a wide variety of application that require calculations of 

transport of neutrons and charged –particles through materials, so that 

nuclear data evaluation that utilizes developments in nuclear theory 

(chapter three), modeling, simulation, and experiment. The ENDF/B-

VII.1 library is the latest recommended evaluated nuclear data file for use 

in nuclear science and technology applications, and incorporates 

advances made in the five years since the release of ENDF/B-VII.0. 
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These advances focus on neutron cross sections, covariance’s, fission 

product yields and decay data, and represent work by the US Cross 

Section Evaluation in nuclear data evaluation that utilizes developments 

in nuclear theory, modeling, simulation, and experiment[2,9,16]. 

 

 
Differential data with respect to angle and energy d²σ/dΩ/dE(E-out) 
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Typical Neutron Absorption Cross Section vs. Neutron Energy
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Figure 2: Energy dependence of the absorption cross section 
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The various cross sections varies with the energy/speed of the neutrons as shown in 

the graph below. 

 

The fission reactions of thermal neutron 
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U-235(N,TOT) U-235 PU-239     The Targets  

N,TOT     Total continuum reaction. The reaction 

  SIG        Cross sections the quantity 

The unusually high absorption cross sections of these two materials make 

them use fid as thermal-neutron poisons. 

At higher energies the cross section may have large peaks superimposed 

on the I/v trend These peaks are called resonances and occur at neutron 

energies where reactions with nuclei are enhanced. For example, a 

resonance will occur if the target nucleus and the captured neutron form a 

“compound” nucleus, and the energy contributed by the neutron is close 

to that of an excited state of the compound nucleus. 

In heavy nuclei, large and narrow resonances appear for neutron energies 

in the eV range. For energies in the keV region the resonances can be too 

close together to resolve. In the MeV region the resonances are more 

sparse and very broad, and the cross sections become smooth and rolling. 

For light nuclei, penances appear only in the MeV region and are broad 

and relatively small. For nuclei with intermediate weights (such as 
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Cross Section 

The reaction of thermal neutron with Uranium 235M   

U-235M is         the Target  

N,TOT is   the Total continuum reaction.  

  SIG  is      Cross sections quantity 

  cross sections with reconstructed resonances and applied Doppler 

broadening at the temperature 293°K =20°C  

 cross section from file MF3 as is (sometimes presents only 

"background" data without resonances in low energy region)  

  
 
dσ/dΩ  - angular distributions,  

 
dσ/dE  - energy distributions,  

 
d²σ/dE/dΩ - double differential cross sections,  

 
σ ± Δσ - cross sections with uncertainties (if given) 
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Conclusion & Remarks 
  -Analytical transport equations exist that describe the exact 

behavior of neutrons in matter. However, only approximate 

numerical solutions to these equations can be obtained for 

complicated systems. Procedures for obtaining these numeral 

solutions are classified as discrete ordinates techniques 

  -A standard basis for comparing moderating abilities of different 

materials is the moderating power. If one material has a larger 

moderating power than another, less of that material is needed to 

achieve the same degree of moderation. Two factors * important  

 The probability of a scattering interaction and the average change ‘in 

kinetic energy of the neutron after such an interaction.  

 -To be an effective moderator, both the probability of an 

interaction and the average energy loss in one scatter should be 

high. 

 -A material with a large moderating power might nevertheless 

be useless as a practical moderator if it has a large absorption 

cross section. Such a moderator would effectively reduce the 

speeds of those neutrons that are not absorbed. 

 Once the neutrons are produced and moderated to appropriate 

temperatures, they have to be transported with the right 

characteristics to the sample. 
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