 الآية الكريمة

قوله تعالى:

{فتعالى الله الملك الحق ولا تعجل بالقرآن من قبْل أن يُقضِى إلَيْك وَحْيُه وَقُل رَب زِدْنِي عِلْمًا} [طه٣٤:١١]
Acknowledgements

Praise be to GOD, who gave me the success in this endeavor.

I would like to thank my research advisor, and mentor, Dr. Eimad Eldin Elhadi Musa for his support, guidance, enthusiasm and time devoted to this project. I don’t know how to express my feelings. I think I’m very lucky to have the opportunity to work with him.

I would like to thank also engineer: mohammed mhadi in Sudan Aviation Research Center Helping me in CFD the program.

I would like to thank also all the staff and workers of the college engineering Library Sudan University.

Also I would like to thank everybody how directly and indirectly helped me in successfully finishing this project.

Also I would like to thank my colleagues and friends.

Last but not least; I would like to thank my Mother and all my family, their love, support and patience made this work possible.
Dedication

To......

My Mother

To......

Soul My Father

To......

My Brothers

and

My Sister

To......

Anyone Who Helped Me And

Encouraged me to Achieve This Research

Researcher MORAHED
Abstract

The present research aims to study the effects of tip leakage flow phenomena on the performance of the axial flow rotor. To understand the effect of this phenomena, three different tip clearance sizes, 0, 4, and 6mm at different rotation speeds studies. The understand includes investigation of detailed tip clearance flow structures and representation of different flow parameters at different regions inside the rotor. The steady, viscous, compressible flow three dimensional governing equations representing the flow field coupled with standard $K-\varepsilon$ turbulence model are solved using computational fluid dynamic code. The analysis of the results shows, the rotor blade with zero gap has higher efficiency and higher total pressure. Increasing tip clearance, leads to decrease of both efficiency and total pressure. Also the result show the increase of tip clearance from 4mm, to 6mm strong vortex formed for tip 6mm than that for tip4mm. Also the rotation speed has great influence on the tip leakage flow and vortex. A comparison between the predicted results and available literature results indicates that the different phenomena inside the tip region and their effects are properly predicted.
يفتح هذا البحث تأثير تدفق ترسب الخلوص في الجزء الدوار محوريا السرين على اداء الجزء الدوار. لتحقيق الفهم العام لأثر التدفق على الاداء. ثلاث ابعاد من الخلوص وسرعات دوران مختلفة اخذت. باستخدام ديناميكيا المكاف آئحة الحسابية لحل معادلات السرائين المضطرب.تحليل النتائج تبين اثر زيادة الخلوص على كفاءة والضغط الكلي للجزء الدوار حيث اعلي كفاء وضغط في حالة النموزج بدون خلوص وتنخفض كفاءة زيادة الخلوص واترزيادة الخلوص من 4 الى 6 ملم في كمية ترسب الوسطي العامل. وكذلك توضح النتائج ان هنال دوامات كبيرة تتشكل في جزء الضغط المنخفض من ريشة الجزء الدوار وتزداد هذه الدوامة بزيادة الخلوص من 4 الى 6 وكذلك تتأثر بزيادة السرعة الدورانية. المقارنة بين النتائج المتوقعة والنتائج الدراسات السابقة المتاحة تشير إلى أن الظواهر المختلفة داخل المنطقة ظرف وأثارها وتقع بشكل صحيح.
Table of Contents

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>❘</td>
<td>❘</td>
</tr>
</tbody>
</table>

Chapter 1. INTRODUCTION

1.1 General .. 1

1.2 Research objective 5

1.3 scope of research ... 5

Chapter 2 LITERATURE REVIEW ... 6

2.1 Introduction .. 6

2.2 Losses in Turbo machines 6

2.2.1 Profile Losses ... 7

2.2.2 End wall Losses ... 7

2.2.3 Tip Clearance Flow Losses 7

2.3 Tip leakage flow studies 8

2.3.1 Formation of tip leakage flow 8

2.2.1 Computational fluid dynamics studies 11

Chapter 3. NUMERICAL SIMULATION TECHNIQUES 14

3.1 Introduction .. 14

3.2 solution strategy in fluent software solve 14

3.2.1 Pre-processing in gambit software 15

3.2.2 Post-processing in fluent software 15

3.3 Governing equations 16

3.3.2 k-ε model .. 17

3.4 Model Description .. 18

3.5 Grid generation ... 20

3.6 Boundary conditions 20

3.7 Computational method 22
3.8 Solution control ...22
3.8.1 Convergence criterion ..22
3.8.1 Solver residual ...23
3.8.1.3 Mass flow rate ...24

Chapter 4. RESULTS AND DISCUSSION25
4.1 Introduction ..25
4.2 Effects of tip clearance size on rotor performance25
4.3 Flow separation ...27
4.4 Flow feature inside tip clearance29
4.4.1 Velocity vector ...29
4.4.2 Flow particles traces inside the tip clearance region.........31
4.5 Determination of tip leakage vortex core locations at different
speeds ...34
4.6 Determination of tip clearance effects on vortex and wake f....37

Chapter 5. CONCLUSIONS AND RECOMMENDATIONS40
5.1 Conclusions ..40
5.2 Recommendations ...41

References ..42
Appendix –A ..45
List of Tables

Table 3.1 Present axial flow rotor design conditions………………………..19
Table 4.1 Effects of Tip Clearance on rotor Performance……………………26
List of Figures

Figure 1.1 Schematic of a typical turbine tip leakage vortex ………..3
Figure 1.2 Near-tip Coherent Vortical Structures……………………...4
Figure 1.3 Behavior of secondary flows…………………………………..7
Figure 1.4 Tip-gap flows from a numerical model………………….…….7
Figure 1.5 representation of pressure-driven flow from blade PS to blade SS ………………………………………………………………8
Figure 1.6 Rotor blade row ………………………………………………….19
Figure 1.7 Computational domain, the view blade wall and hub………20
Figure 1.8 Sample of view for the computational grid …………………..20
Figure 1.9 Computational domain boundary condition…………………21
Figure 1.10 a typical convergence residuals23
Figure 1.11 show Mass Flow rate of convergence history of mass flow rate on outlet ………………………………………………………24
Figure 1.12 Effect of Tip Clearance Size on Rotor Performance…….26
(a) Efficiency (%) Versus Rotation Speed………………………….26
(b) Total Pressure (Pa) Versus Rotation Speed26
Figure 1.13 Velocity Vector on tip of Blade at rotation speed for tip clearance (a) 4mm (b)6mm……………………………………….28
Figure 1.14 Velocity Vector at plane near the tip of blade for tip clearance (a) 4mm,and tip6mm………………………………………..30
Figure 1.15 Fluid Path Lines Through Different Tip Clearance Levels……………………………………………………………..32
Figure 1.16 Particle Traces Through Gap Released From Different radius Span Wise on The Pressure side33
Figure 1.17 contour of static Pressure distribution on surface inside tip clearance region at 1000rpm35
Figure 1.18 contour of static pressure at tow size at 3500rpm……..36
Figure 4.8(a) Axial Velocity tip 4mm at different location in passage. 38
Figure 8.4(b) Axial Velocity tip 6mm at different location in passage...38
Figure 4.8 (c) Axial Velocity at Different Tip Clearance size near tip case ..38
Figure 4.8(d) Velocity component near tip at tip 6mm......................38
Figure 4.9 Vorticity Magnitude at different distance near case, mid, and near hub..39
NOMENCLATURE

English symbols

\(u, v, w \) \textit{velocity components}

\(P_0 \) \textit{total pressure}

\(X \) axial coordinate (m)

\(Y \) Tangential coordinate (m)

Greek symbol

\(\mu \) dynamic viscosity \(\left(\frac{\text{kg}}{\text{m.s}} \right) \)

\(\rho \) density \(\left(\frac{\text{kg}}{\text{m}^3} \right) \)

\(\mu_t \) Turbulence dynamic viscosity \(\left(\frac{\text{kg}}{\text{m.s}} \right) \)

\(\varepsilon \) Turbulence dissipation Rate \(= \rho C_3 \frac{k^2}{\mu_t} \left(\frac{m^2}{s^3} \right) \)

\(K \) Turbulence kinetic energy

\(\eta \) Efficiency

Abbreviations

CFD \textit{computational fluid dynamics}

L.E \textit{leading edge}

PS \textit{pressure side}

SS \textit{suction side}

T.C \textit{tip clearance}

T.E \textit{trailing edge}

TP \textit{total pressure}

Definitions

\(\nabla = \frac{\partial}{\partial x} i + \frac{\partial}{\partial y} j + \frac{\partial}{\partial z} k \)