Sudan University of Science and Technology

College of Engineering

Design of:

Smart Elevator

Control System

A Research submitted in partial fulfillment for the requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Asia Osman Mohammed Sharif
- 2. Khalid Esam Nureldin Osman
- 3. Mohammed Abd Alhameed Mohammed
- 4. Suha Salah Eldeen Awad

Supervisor:

Dr. Alaa Eldeen Awouda

July 2014

{آتوني زبر الحديد حتى إذا ساوى بين الصدفين قال انفخوا حتى إذا جعله نارا قال آتوني أفرغ عليه قطرا (96) فما اسطاعوا أن يظهروه وما استطاعوا له نقبا (97)قال هذا رحمة من ربي فإذا جاء وعد ربي جعله دكاء وكان وعد ربي حقا (98)}

صدق الله العظيم سورة الكهف الآية {98-96}

Dedication

To my family, Words cannot express how grateful I am to my father and my mother for all the sacrifices that you've made on my behalf. Your prayer for me was what kept me going this far, it was the incentive I needed to strive towards my goal. last but not least, I would like to express my appreciation to my friends and colleagues who never stopped supporting me.

Acknowledgments

It is a great pleasure, a privilege, an honor, a source of much personal satisfaction, to be taught by all of you great teachers. First of all, I must insist I have not done this work alone. Many people have helped me through my way to keep our research project alive and if you will bear with me, for just a few moments, I believe that the present context is an appropriate one in which to express how my heartfelt much gratitude.

Before I say anything more, I want to thank our Supervisor

Dr. Ala Eldeen Awouda

Who has always been there to listen and give advices. We are deeply grateful to him for the long discussions that helped us sort out the technical details of our work. We are also thankful to him for encouraging the use of correct grammar and consistent natation our writings and for carefully reading and commenting on countless revisions of this manuscript.

And Special Thanks for School of Electronic Engineering, Sudan University of Science and Technology

And to All our School Professors and to our colleagues.

Our teacher Ahmed Humaida

Abstract

With the major advance in the building and the vertical development in the multi-level buildings, the need for the transporting between those buildings' floors easily and fast became very important, and therefore the use of the elevators increased to do this job efficiently to save time and costs.

The purpose of this research is to construct a circuit that is able to control a three levels elevator model so it can perform the elevator function to shift between the floors according to the orders and the priority of them and being able to determine the exact position of the elevator at any time so it can know when exactly to stop.

This circuit was achieved using the proper microcontroller. And by programming the microcontroller so it can control the elevator using servo motor and knowing the position using the right kind of sensors.

المستخلص

مع التطور العمراني الهائل والتقدم الكبير في المباني ذات الطوابق المتعدده تكون الحاجة شديدة للتنقل بين هذه الطوابق بسهولة وسرعة. ولهذه ازداد الطلب على المصاعد لأداء هذه الوظيفة فاعلية لتوفير الوقت والجهد.

الهدف من هذا البحث هو بناء دائرة قادرة على التحكم في نموذج لمصعد كهربائي يتحرك في ثلاثة طوابق بجيث يقدر على القيام بمهام المصعد والتنقل بين الطوابق بناء على الاولوية والطلب والمقدرة على معرفة موقع الغرفة في أي لحظة لتحديد وقت الوقوف المناسب.

تم تحقيق هذه الدائرة عمليا باستعمال متحكم دقيق, وعن طريق برمجة المتحكم الدقيق يتم التحكم في الحرك ومعرفة

موقع الغرفة باستخدام محساسات مناسبة.

Table of Content

Chapter	Title	Page
	الآية	I
	Dedication	II
	Acknowledgments	III
	Abstract	IV
	Abstract in Arabic	V
	List of Content	VI
	List of tables	VIII
	List of Figures	IX
	Abbreviation	XI
1	Introduction	
	Over View	2
	History of Elevator	3
	Types of elevators	4
	Uses of Elevators	5
	On elevator Industry	6
	Problem Statement	7
	Proposed Solution	7
	Aim	7
	Objectives	7
	Chapter Organization	8
2	Literature Review	
	Literature Review and Related Works Covered	10
	System Component	14

	Reed Sensor	14
	Positions Sensor	15
	Force Sensing Sensor	16
	Light Sensor	17
	ATMEGA 16	18
	Drive circuit L293D	20
	Motors	21
3	System design	
	Overview	25
	Controling system	25
	elevator positioning control system	26
	opening and closing of elevator door system	27
	circuit diagrams and analysis	29
	elevator control system flow charts and state	41
	diagram	
4	Simulation and result	
	Testing sensors	44
	Position Sensor	44
	Reed Sensor	45
	Light Sensor	45
	Over Load Sensor (FSR)	46
	The Baseline Elevator Call Strategy	48
	Result	52
5	Conclusions and Recommendations	
	Conclusions	57
	Recommendations	58
	References	59
	Appendence A	60

Appendence B	74
Appendence C	78

List of tables

No	Title	Page
2-1	ATMEG16 pins layout	19
3-1	system pins connection of ATMEG16	39
4-1	FSR output voltages	47

List of Figures

No	Title	Page
2-1	Simple Elevator Control System Inputs and	11
	Outputs	
2-2	reed sensor in the real life	14
2-3	The equipment circuit of the position sensor	16
2-4	light sensor in real life	17
2-5	Pin outs ATmega16	18
2-6	drive circuit(1293D)	20
2-7	elevator motor	21
2-8	Servo Motor	23
3-1	Elevator system model structure	27
3-2	shows Opening and closing of elevator door	28
	system	
3-3	shows the driver interfacing module for D.C	29
	motor	
3-4	main elevator control system block diagram	29
3-5	motor driver (L293D)	31
3-6	circuit of the reed sensor and reed sensor in	33
	real	
3-7	position sensor in real and its circuits	35
3-8	circuit of light sensor	36
3-9	force sensitive resistor in real and the circuit	37
	of the senor	
3-10	servo interface and internal construction	41
3-11	general elevator flow chart	42

4-1	(a): position sensor in simulation	44
	(b) : output of the sensor	
4-2	simulation of reed sensor	45
4-3	Equivalent circuit of light sensor	46
4-4	Equivalent circuit of FSR	47
4-5	Simulation of scenario (1)	49
4-6	Reading of output in senario (1)	49
4-7	Simulation of scenario (2)	50
4-8	Reading of output in senario (2)	50
4-9	Output when press number 3	51
4-10	Output when user inter password	51
4-11	Light Sensor in Hardware	52
4-12	Hardware of position sensor	53
4.13	Reed Sensor in Real	53
4.14	Result of FSR in real	54
4.15	LCD Output	55

List of Abbreviations:

AC Alternative current

ADC Analog to digital convertor

AVR Automation voltage regulator

DC Direct Current

FSR Force sensitive resistor

ID Identification

LCD Liquid Crystal Display

LCU Logic control unit

LDR Light dependent resistor

LED Light Emitting Diode

MCU Micro control unit

PWM Pulse width modulation

RC Resistor capacitor

RFID Radio frequency identification

RISC Reduce instruction set computer