

Sudan university of science and technology College of architecture and urban planning Faculty of architecture 5th year bachelors A report submitted in partial fulfillment of the requirements for the degree of bachelors in architecture at Sudan university of science and technology

Report titled: Eden ecological park

By: Huda zein elabdeen taha elsherif Supervised by: T najwa almufti June 2014

Abstract

Project name: EDEN ecological park

Project Definition: a complex designed to initiate ecological conservation at all levels.

Project goals:

- 1. Raise awareness about the environmental challenges such as global warming, pollution, biodiversity loss.
- 2. Promoting eco-friendly behavior
- 3. Researching and initiating local plant and animal conservation efforts.

Acknowledgments

I would like to express my very great appreciation to my project supervisor -T Najwa Almufti- for her valuable and constructive suggestions during the conception and development of this project. Her willingness to give her time so generously has been very much appreciated.

I would also like to thank all the teachers and staff of the architecture department of Sudan university of science and technology such as D Awd Saad, D Adil Abdallah and T Niazy Tawfeeg , T Damir Yanich, T Maha Almuhana, T Waleed Almansour, T Abid Aljalad just to name a few, for their dedication and devotion to their students.

Finally, special thanks to my parents who supported me in every way possible throughout my education

Table of contents

Chapter 1- Introduction

Title	Page no.
Introduction	1
Storyline	2
Design challenges	3

Chapter 2- Data collection

Title	Page no.
Example study	
Ecorium	б
Gardens by the bay	8
Zoo design	
Circulation	11
Barrier design	
Physical barrier	14
Barrier recommendation	
Terrestrial species-jumping and climbing	15
Terrestrial species-jumping	15
Arboreal species-jumping and climbing	16
Terrestrial species- non jumping	18
Aquatic and semi aquatic species- non jumping	20
Chapter 3- Data analysis	

Title	Page no.
Project components	
Activity components	22
Human components	23
Space components	24
Space study	25
Exhibition	
Desert	25

Chapter 3- Data Analysis

Title	Page no.
Semi desert	25
Grassland savannah	25
Woodland savannah	26
Flood region	26
Montane forest	27
Conservational	28
Services	
Animal services	29
Building services	30
Public services	31
Space program	32
Relationship	
Diagram	33
Bubbles	34
Circulation	35
Site study	
Site Comparison	36
Site Analysis	37
Sudan's biome	
Soil	39
Ecological zones	40
Climate study	41
Comparative weather analysis	42
Zoning	43
Design indicators	44
Chapter 4 – design	
Title	Page no.

 ∇

46

47

Concept

Site

Chapter 4 – design	
Title	Page no.
Site highlights	48
Ground floor plan	49
Bio dome views	50
Second floor	52
First floor	52
Basement	53
Sections	54
Elevations	55
Chapter 5 – Technical solutions	
Title	Page no.
Buildings structure	57
Model of main structure	58
Woodland part plan	59
Woodland part section	60
Montane part plan	61
Montane part section	62
The enhanced ecosystem	
Plan	63
Section	64
Details	
Biomass boiler	65
Filter ponds	65
Super trees	65
Energy center	66
Chapter 5 – appendix	
Title	Page no.
Plants in Sudan	71
Special requirements	74
References	75

List of Tables

Table 2-1	
	Ecorium area study
Table 2-2	Gardens by the bay area study
Table 2-3	Gardens advantage & disadvantage
Table 2-4	Zone circulation types
Table 2-5	Sub zone circulation types
Table 2-6	Physical barrier types
Table 2-7	Barrier conclusions
Table 3-1	Exhibits space study
Table 3-2	Conservational space study
Table 3-3	Research center space study
Table 3-4	Hay consumption per month
Table 3-5	Vegetable consumption per month
Table 3-6	Meat consumption per month
Table 3-7	Vet clinic space study
Table 3-8	Building service
Table 3-9	Administration space study
Table 3-10	Tourist statistics in Sudan
Table 3-11	Employee facilities space study
Table 3-12	Space program
Table 3-13	Site comparison
Table 3-14	Site's relationship with neighbors
Table 3-15	Site advantages and disadvantages
Table 3-16	Ecological zones details
Table 3-17	Khatoum climate data
Table 3-18	Sudan climate zones
Table 3-19	Climate comparison
Table 3-20	Optimum orientation
Table 1	Plant species in sudan
Table 2	Animal species in sud

List of illustrations

Title	Name	Title	Name	
Figure 2-1	Ecorium site plan	Figure 3-1	Vegetation zones in sudan	
Figure 2-2	Ecorium view	Figure 3-2	Soba site	
Figure 2-3	Ecorium ground floor plan	Figure 3-3	Mogran site	
Figure 2-4	Ecorium first floor plan	Figure 3-4	Jabal awleya	
Figure 2-5	Ecorium elevation	Figure 3-5	Sudan map	
Figure 2-6	Ecorium section	Figure 3-6	Khartoum map	
Figure 2-7	Gardens by the bay view	Figure 3-7	Site map	
Figure 2-8	Gardens by the bay site plan	Figure 3-8	Sudan's soil types	
Figure 2-9	Gardens by the bay concept	Figure 3-9	Sudan's ecological zones	
Figure 2-10	Indoor waterfall	Figure 3-10	Sudan's soil distribution	
Figure 2-11	Flower meadows	Figure 3-11	Sudan's ecological zones	
Figure 2-12	Gardens by the bay Section A	Figure 3-12	Sudan's climate	
Figure 2-13	Gardens by the bay Section B	Figure 3-13	Khartoum radiation levels	
Figure 2-14	Deployable shades	Figure 3-14	Optimum orientation	
Figure 2-15	Controlled viewing	Figure 3-15	Khartoum wind rose	
Figure 2-16	Respecting the animal	Figure 3-16	Zoning	
Figure 2-17	Jumping species barrier	Figure 4-1	Concept	
Figure 2-18	Antelope dry moat	Figure 4-2	First sketch	
Figure 2-19	Antelope wet moat	Figure 4-3	Improved design	
Figure 2-20	Monkey island	Figure 4-4	Final site	
Figure 2-21	Using a wall as a barrier	Figure 4-5	View 1	
Figure 2-22	Leopard barrier	Figure 4-6	View 2	
Figure 2-23	Hot wire	Figure 4-7	Ground floor plan	
Figure 2-24	Moats for jumping and climbing	Figure 4-8	Desert biome plan	
Figure 2-25	Horizontal fence for boar	Figure 4-9	Desert biome view	
Figure 2-26	Reinforced pipe barrier	Figure 4-10	Grassland biome plan	
Figure 2-27	Barriers for non jumping	Figure 4-11	Woodland biome plan	
Figure 2-28	Cattle grid for antelopes	Figure 4-12	Woodland biome view	
Figure 2-29	Elephant waterhole	Figure 4-13	Flood region biome plan	
Figure 2-30	Crocodile moat	Figure 4-14	Flood region biome view	
Figure 2-31	Aquatic species moat	Figure 4-15	Montane biome plan	

List of illustrations

Title	Name	Title	Name
Figure 4-16	Montane biome view	Diagram 1-1	Project storyline
Figure 4-17	Second floor plan	Diagram 1-2	Design challenges
Figure 4-18	First floor plan	Diagram 2-1	Ecorium circulation
Figure 4-19	Basement floor plan	Diagram 2-2	Deployable shades effect
Figure 4-20	Sections	Diagram 2-3	Gardens by the bay
Figure 4-21	Elevations	2 100 1000 2 0	ecosystem
Figure 5-1	Building structures	Diagram 2-4	Zoo components
Figure 5-2	Structure cutaway model	Diagram 2-5	Barrier levels
Figure 5-3	Connection detail 1	Diagram 3-1	Activity components
Figure 5-4	Connection detail 2	Diagram 3-2	Human components
Figure 5-5	Woodland part plan	Diagram 3-3	Main staff details
Figure 5-6	Woodland part section	Diagram 3-4	Animal department staff
Figure 5-7	Montane part plan	Diagram 3-5	Research center staff
Figure 5-8	Montane part section		details
Figure 5-9	Water, drainage, sewage and electricity	Diagram 3-6	Spatial components
		Diagram 3-7	Vet clinic spaces
Figure 5-10	Site's ecosystem section	Diagram 3-8	Commisionary spaces
Figure 5-11	Biomass boiler	Diagram 3-9	Research center spaces
Figure 5-12	Filter ponds	Diagram 3-10	Relationship matrix
Figure 5-13	Supertree plan		
Figure 5-14	Skin layers covering supertrees	Diagram 3-11	Vet clinic relationship matrix
Figure 5-15	Supertree elevation	Diagram 3-12	Relationship bubbles
Figure 5-16	Supertree section	Diagram 5 12	Relationship bubbles
Figure 5-17	Deployable shades	Diagram 3-13	Vet clinic Relationship
Figure 5-18	Smart glass		bubbles
Figure 5-19	Evaporative pad mechanism	Diagram 3-14	Circulation
Figure 5-20	Evaporative pad components		
Figure 5-21	Fog system sprinkler		
Figure 5-22	Hydronic system view		
Figure 5-23	Hydronic system pipes		
Figure 5-24	Concrete core system		
Figure 5-25	Energy consumption		

Chapter 1 introduction

Project name: EDEN ecological park **Project definition:** An eco-complex designed to simulate the past, present & future of the environment in Sudan – with all its wildlife, vegetation, geography & climate, while also highlighting the local and global challenges it faces and the solutions available to overcome them.

Why is this project needed?

Sudan's environment is rapidly deteriorating because of desertification, diversity loss (extinction of plants & animals inside Sudan), global warming, pollution and droughts. Lack of awareness in Sudanese people increases the problem and prevents them from participating in international efforts to solve them.

Therefore the project goals are:

- 1. To educate people about ecology & the environment, thus raising awareness and interest in this field that is generally neglected in Sudan.
- 2. To show people –in an interactive & exciting way- how much has changed in the Sudanese environment over the past years & the effect of urbanization.
- 3. To provide a unique entertainment experience to boost ecotourism in Sudan
- 4. To breed plants & animals that have become locally extinct & re-introduce them to the wild, both directly or indirectly by attracting global attention to the area.
- 5. To motivate people to be eco-friendly & save the environment.

These goals form a **storyline**:

what did Sudan look like when it was at its best? (before 1800) what is the current situation? what does the future look like?

What can i do to help?

Diagram 1-1: Project story line

How can the storyline be presented in an interesting way?

1. Visitors need an introduction to prepare them for their Tour while also providing a background to understand it faster as the go through it, a 3d video simulating a journey throughout Sudan would be suitable.

2. Each visitor must be able to touch, smell, see, and feel each environment (animals, plants & weather).

A **CLOSED** bio-dome can simulate that while also provide control.

3. Small models of different areas in Sudan now and in 100 years will help visually compare between the two and show how bad the situation is and make them feel they need to help prevent this from happening.

4. Each group of visitors will be given interactive classes where they are given stuff to work with during the lesson.. including:

- Planting: each visitor will take a seedling, plant it and take it home
- Electricity: products that reduce the electricity consumption are shown and how to use them, some are given free while others sold.
- ✤ Water: plumbing lessons to fix water taps, selling water saving products
- **Reusing**: how to turn plastic bottles into vases, old clothes to bags...etc.
- * **Recycling**: how to sort waste, while also selling color coded trash bins
- **Reducing:** how to reduce consumption of non-renewable resources
- **Energy & pollution**: promoting using bicycles and reducing coal use.
- Animal preservation: collecting donations for endangered animals and raising awareness about how to help organizations specialized in their preservation.
- General behavior: stimulating behaviors that make the community eco-friendly, whether by organizing neighborhood cleaning campaigns, rejecting animal cruelty, encouraging sustainable buildings.. Etc.

Diagram 1-2: design challenges