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                                           ABSTRACT 
 
This thesis presents a comparative study of various controllers for the position 

control of DC servomotor. The most commonly used controller for the position 

control of DC servomotor is conventional Proportional- Integral- Derivative (PID) 

controller. However, the PID controller has some disadvantages such as: the high 

starting overshoot, sensitivity to controller gains and sluggish response due to 

sudden disturbance. So, the relatively design PID controller with computational 

optimization approach method is proposed to overcome the disadvantages of the 

conventional PID controller. Further, two fuzzy logic based controllers namely; 

fuzzy control and neuro-fuzzy control are proposed in this study and the 

performance of these controllers are compared with PID controller performance. 

Simulation results are presented and analyzed for all controllers. It is observed that 

neuro-fuzzy controller gives a better response than other controllers for the 

position control of DC servomotor drives. 
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  مستخلص                                                 
أغلب . بین متحكمات مختلفة للتجكم فى وضع محرك خدمة التیار المستمریقدم ھذا البحث مقارنة دراسیة 

المتحكمات المستخدمة للتحكم فى الوضع ھى المتحكمات التقلیدیة المعروفة بالمتحكم التناسبى التكاملى 

ولكن رغم ذلك نجد أن المتحكم التناسبى التكاملى التفاضلى لدیھ بعض العیوب مثل البدء بتجاوز .التفاضلى

وعلیھ فإن مقترح تصمیم .عالي للھدف ،حساسیھ لكسب المتحكمھ والاستجابة البطیئة للتغیرات الفجائیة 

المتحكم التناسبى التكاملى  التفاضلى  بالطریقة الحسابیة المثلى ھو یتغلب على بعض عیوب المتحكم التناسبى 

دان على المنطق الغامض وھما المتحكم وغضافة لذلك فإن إثنین متحكمان یعتم.التكاملى التفاضلى التقلیدى 

الغامض والمتحكم العصبى  الغامض تم إقتراحھما فى ھذه الدراسة وتمت مقارنة أداء ھذة المتحكمات مع 

لوحظ أن المتحكم .تم عرض نتائج المحاكاة وتحلیلھا لكافة المتحكمات .المتحكم التناسبى التكاملى التفاضلى 

لأفضل من بین المتحكمات الأخرى للتحكم فى وضع محرك الخدمة ذو التیار العصبى الغامض لھ الاستجابة ا

  .المستمر
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CHAPTER ONE 

INTRODCTION 

1.1 General Overview  
Servomotor system consists of different mechanical and electrical components. 

The different components are integrated together to perform the function of the 

servomotor. DC servomotors have good torque and speed characteristics; also, 

they have the ability to be controlled by changing the voltage signal connected to 

the input. These Characteristics made them powerful actuators used everywhere. 

The main concern about DC servomotors is how to eliminate the non-linear 

characteristics that affect both the output speed and position. Another important 

non-linear behavior in servomotors is the saturation effect, in which the output of 

the motor cannot reach the desired value. The goal here is to find a smart controller 

that is capable of eliminating as much as possible from these non-linearties, so that 

to obtain a better controllability of servomotor drivers. 

1.2  Problem Statement 
The control position of DC servomotor problems with a conventional control 

algorithm is due to the effects of non-linearity of a DC servomotor. The non-linear 

characteristics that affect both the output speed and position of a DC servomotor 

such as saturation and friction could degrade the performance of conventional 

controllers. Conventional control strategies are of a fixed structure, fixed 

parameters design, so the tuning and optimization of these controllers is a 

challenging and difficult task, particular under varying load conditions, parameters 

change and abnormal models of operation. 

1.3 Objectives 

The main objectives of this study are to:  

  Design position control of DC servomotor system using PID controller. 

  Design position control of DC servomotor system using fuzzy logic. 

 Design position control of DC servomotor system using neuro-fuzzy 

controller.  
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Comparison of the results of all proposed controllers is one of important objectives 

of the study. 

1.4 Methodology 

Study of all previous works. 

 Descriptive analysis of DC servomotor. 

 Mathematical analysis and computer modeling of DC servo motor. 

 Design of PID, fuzzy neuro-fuzzy controllers using MATLAB toolbox. 

1.5 Layout 

This  thesis  consists  of  five  chapters:   Chapter  one presents  an  introduction  to  

the principles  of  the study,  the  reasons  and  motivation and  also  discusses  the  

objectives and outline methodologies of the study. Chapter two  discuses a 

theoretical background of DC servomotor, PID controller, fuzzy system, neural 

network and neuro-fuzzy controller. Chapter three presents the system control 

design of positon control of DC servomotor system. Chapter   four presents the 

simulation results.  Finally, Chapter five provides the conclusion and 

recommendations. 
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CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE 
REVIEW 

2.1 Introduction  
Automatic systems are common place in people daily life, they can be found in 

almost any electronic devices and appliances we use daily, starting from air 

conditioning systems, automatic doors, and automotive cruise control systems 

to more advanced technologies such  as  robotic  arms,  production  lines  and  

thousands  of  industrial  and  scientific applications. DC servomotors are one 

of the main components of automatic systems; any automatic system should 

have an actuator module that makes the system to actually perform its 

function. The most common actuator used to perform this task is the DC 

servomotor. Historically,  DC  servomotors  also  played  a  vital  role  in  the  

development  of  the computer’s disk drive system; which make them one of 

the most important components in people life that we cannot live without it. 

Due to their importance, the design of controllers for these systems has been 

an interesting area for researchers from all over the world. However, even with 

all of their useful applications and usage, servomotor systems still suffer  from  

several  non-linear  behaviors  and  parameters  affecting  their  performance, 

which may lead for the motor to require more complex controlling schemes, or 

having higher energy consumption and faulty functions in some cases [2]  .  

2.2 DC Servomotor Systems  

DC servomotors are DC motors that incorporate encoders and are used with 

controllers for providing feedback and closed-loop control. Specifically, 

servomotors provide precise motion and position control, accommodating 

complex motion patterns and profiles more readily than other types of 

motors. Often servomotors have better bearings or higher tolerance designs 

than traditional DC motors. Some designs also use higher voltages in order to 

achieve greater torque The basic parts of any DC servomotor are shown in 

Figure (2.1). [1]. 
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                                         Figure 2.1 DC servomotor 

 

                    Figure 2.2 Servomotor   circuit.  

It's clear that  the  servomotor  has  two  main  components are shown in Figure 

(2.2). the  first  is  the  electrical component;  which  consists  of  resistance R,  

inductance  L,  input  voltage  Vin(t) and  the back  electromotive  force  Vb.  The   
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second component of the servomotor is the mechanical part, from which we get 

the useful mechanical rotational movement is obtained at the shaft. The 

mechanical parts are the motor’s shaft, inertia of the motor, and load inertia J and 

damping b.  θ Refers to the angular position of the output shaft which can be used 

later to find the angular speed of the shaft  DC Servomotors have good torque 

and speed characteristics; also they have  ability to  be  controlled  by  changing  

the  voltage  signal  connected  to  the  input.  These characteristics made them 

powerful actuators used everywhere. The main  concern about DC servomotors is 

how to eliminate the non-linear characteristics that affect both the output speed 

and position. Another important non-linear behavior in servomotors is the 

saturation effect, in which the output of the motor cannot reach the desired value. 

The saturation effect is very common in almost all servomotor systems. Other 

non-linear effect is the dead zone; in which the motor will not start to rotate until 

the input voltage reaches a specific minimum  value,  which  makes  the  response  

of  the  system  slower  and  requires  more controllability. A mathematical type of 

non-linear  effect found in the servomotors is the backlash in the motor gears. 

Some of the servomotors use internal gears connections in order  to  improve  

their  torque  and  speed  characteristics,  but  this  improvement  comes over the 

effect in the output speed and position characteristics. The  goal  here  is  to  find  

a  smart  controller  that  is capable  of  eliminating  as  much  as possible  from  

these  non-linearties,  so  that  we  will have  a  better  controllability  of 

servomotor drives[3]   

 2.2.1 Construction of DC servo motor 

To fully understand how the servo works, it need to take a look under the hood. 

Inside there is a pretty simple set-up: a small DC motor, potentiometer, and a 

control circuit. The motor is attached by gears to the control wheel. As the motor 

rotates,  the potentiometer's resistance changes, so the control circuit can precisely 

regulate how much movement there is and in which direction. When the shaft of 

the motor is at the desired position, power supplied to the motor is stopped. If not, 

the motor is turned in the appropriate direction. The desired position is sent via 

electrical pulses through the  wire signal as shown in Figure 2.3. The motor's speed 
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is proportional to the difference between its actual position and desired position. 

So if the motor is near the desired position, it will turn slowly, otherwise it will 

turn fast. This is called proportional control. This means that the motor will only 

run as hard as necessary to accomplish the task at hand [3].  

                                               

   Heavy Duty Servo                  a servo motor (L) and an assembled servo (R) 

                                                          Figure 2.3 

 

 

     2.2.2 DC servomotor model  

Recalling the DC servomotor diagram from Figure 1.1, the transfer function of 

the DC servomotor  can  be  derived  using  Kirchhoff’s  voltage law  and  

laplace  transforms [1]. as the following:  

 

    푽풐 = 푽풎 = 푹풎	풊풎 + 푳풎
풅풊
풅풕
+ 푽풃                             (2.1)     

The Back-Electromotive Force (EMF) can be found by using the equation: 

푽풃 = 푲풎
풅휭
풅풕
= 푲풎				                                                 (2.2) 
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Where Vb is the induced voltage, Km is the motor torque constant, and ωm is 

the angular rotating speed. It can be seen that ωm can be calculated by the 

Equation (2.3) 

흎풎 = 휭·																																																																																						(ퟐ.ퟑ)	                                                      

And Using Laplace transform 

					흎(풔) = 퐬휭(풔)																																																																														(ퟐ. ퟒ)  

the concern in this stage is to control the angular rotating speed   ωm  by 

controlling the input voltage Vm.  

Where:  

J = moment of inertia of the rotor  

b = dampening ratio of the mechanical system  

T = motor torque  

I = Current  

Vm = back emf  

θ = shaft position  

K = electromotive force constant  

ωm = Measured angular Speed  

R = Motor Armature Resistance  

L = Inductance  

V = Source Voltage  
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The  transfer  function  of  the  output  angular  speed  is  derived  using  

Laplace  transform using the second order system equation:  

				푮(푺) =
흎풏

푺ퟐ + ퟐ훏흎풔 + 흎ퟐ 																																																				(ퟐ. ퟓ) 

                                                     

The resulting transfer function: 

 

			푮(푺)= 퐊
퐉퐒+퐛 . 푳풔+퐑 +푲ퟐ

																																																												(ퟐ.ퟔ)	 

From Equation 2.4, the relationship between the angular position and the speed 

can be found by multiplying the angular position byퟏ/풔. Our major concern on 

this research is the proper control of the angular speed of the motor; since the 

angular speed is the part that suffers the most from the non-linearties. The 

angular non-linear effect on the angular position  tends  to  be  less  due  to  the  

term  used  to  derive it ퟏ/풔,  which  adds  an  integral effect or filter effect to 

this part. Figure 2.4 shows the block diagram of servomotor system using 

MATLAB SIMULINK.  

Figure 2.4 Servomotor SIMULINK block diagram. 
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2.2.3 Servo Motor Control 

Servos are controlled by sending an electrical pulse of variable width, or pulse 

width modulation (PWM), through the control wire. There is a minimum pulse, a 

maximum pulse and a repetition rate. A servo  motor can usually only turn 90 

degrees in either direction for a total of 180 degree movement. The motor's neutral 

position is defined as the position where the servo has the same amount of 

potential rotation in the both the clockwise or counter-clockwise direction. The 

PWM sent to the motor determines position of the shaft, and based on the duration 

of the pulse sent via the control wire; the rotor will turn to the desired position. The 

servo motor expects to see a pulse every 20 milliseconds (ms) and the length of the 

pulse will determine how far the motor turns. For example, a 1.5ms pulse will 

make the motor turn to the 90-degree position. Shorter than 1.5 ms moves it to 0 

degrees, and any longer than 1.5 ms will turn the servo to 180 degrees, as shown in 

Figure 2.5 

 
                         Figure (2.5)Variable Pulse width control servo position 

 

When these servos are commanded to move, they will move to the position and 

hold that position. If an external force pushes against the servo while the servo is 

holding a position, the servo will resist from moving out of that position. The 

maximum amount of force the servo can exert is called the torque rating of the 

servo. Servos will not hold their position forever though; the position pulse must 

be repeated to instruct the servo to stay in position [4]. 

 



10 
 

2.3 PID Controller Overview 

PID is an acronym for the mathematical terms Proportional, Integral, and 

Derivative. Proportional means a constant multiple. A number is said to be a 

proportion to another if there exists a constant n such that y = nx. This n can be 

positive or negative, greater or less than one. To make the formula more accurate 

by PID controller standards, proportion is given by KP and the x term is the 

control loop error e: y = KP(e).  The term Integral means the summation of a 

function over a given interval. In the case of controller PID that is the sum of error 

over time: y = ∫f (e)dt. Finally, Derivative is the rate of change during a given 

interval. Interpreted by  a PID controller: All three of these PID controller 

components create output based on measured error of the process being regulated 

as in Figure (2.6). If a control loop functions properly, any changes in error caused 

by set point changes or process disturbances are quickly eliminated by the 

combination of the three factors P, I, and D.  

 

 

 

 

                                            

                                                 

                                                   Figure  (2.6). PID controller 

In the field of process control systems, it is well known that the basic and 

modified PID control schemes have proved their usefulness in providing 

satisfactory control, although in many given situations they may not provide 

optimal control.first the design of a PID controlled system is presented using 

Ziegler - Nichols tuning rules.The PID controller calculation (algorithm) 

involves three separate constant parameters, and is accordingly sometimes 

called three-term control: the proportional, the integral and derivative values.  
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Heuristically, these values can be interpreted in terms of time: P depends on 

the present error, I on the accumulation of past errors, and D is a prediction of 

future errors, based on current rate of change. The weighted sum of these three 

actions is used to adjust the process via a control element such as the position 

of a control valve, or the power supplied to a heating element. If both the 

transient and steady-state response of the system must be improved, then neither 

a PI nor a PD controller may meet the desired specifications. Adding a zero PD 

May improve the transient response but does not increase the type number of 

the system. Adding a pole at the origin increases the type number but may 

yield an unsatisfactory time response even if one zero is also added. With PID 

controller, two zeros and a pole at the origin are added. This both increases the 

type number and allows satisfactory reshaping of the root locus.The transfer 

function of a PID controller is given by equation (2.7) and (2.8): 

퐶(푆) = 퐾
퐾
푠 + 퐾

푺ퟐ + ퟐ훏휔푠 + 휔ퟐ

s 																														(2.7) 

ퟐ훏휔
퐾
퐾 , 휔 ퟐ =

퐾
퐾 																																																																						(2.8) 

Where KP, Ki, and Kd are the proportional, integral, and derivative gain,   

respectively [11]. Most PID controllers are adjusted on-site, many different types 

of tuning rules have been proposed in the literature. Using these tuning rules, 

delicate and fine tuning of PID controllers can be made on-site. Also, automatic 

tuning methods have been developed and some of the PID controllers may possess 

on-line automatic tuning capabilities. The usefulness of PID controls lies in their 

general applicability to most control systems [5]. 

2.3.1 Ziegler Nichols method for tuning PID controller 
In particular, when the mathematical model of the plant is not known and 

therefore analytical design methods cannot be used, PID controls prove to be most 

useful. In the field of process control systems, it is well known that the basic and 

modified PID control  schemes have proved their  usefulness in providing 

satisfactory control, although in many given situations they may not. This section 
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presents the design of a PID controlled system using Ziegler and Nichols tuning 

rules [6]. 

If a mathematical model of the plant can be derived, then it is possible to apply 

various design techniques for determining parameters of the controller that will 

meet the transient and steady-state specifications of the closed-loop system Figure 

2.7. However, if the plant is so complicated that its mathematical model cannot be 

easily obtained, then an analytical or computational approach to the design of a 

PID controller is not possible. Then I must resort to experimental approaches to 

the tuning of PID controllers. The process of selecting the controller parameters to 

meet given performance specifications is known as controller tuning. Ziegler and 

Nichols suggested rules for tuning PID controllers (meaning to set values Kp, Ti, 

and Td) based on experimental step responses or based on the value of Kp that 

results in marginal stability when only proportional control action issued. Ziegler–

Nichols rules, which are briefly presented in the following, are useful when 

mathematical models of plants are not known. (These rules can, of course, be 

applied to the design of systems with known mathematical models.)Such rules 

suggest a set of values of Kp, Ti, and Td that will give a stable operation of the 

system. However, the resulting system may exhibit a large maximum overshoot in 

the step response, which is unacceptable. In such a case we need series of fine 

tuning sunlit an acceptable result is obtained.  In fact, the Ziegler–Nichols tuning 

rules give an educated guess for the parameter values and provide a starting point 

for fine tuning, rather than giving the final settings for Kp, Ti, and Td in a single 

shot.  

Figure(2.7):PID control of a plant 

Ziegler and Nichols proposed rules for determining values of the proportional 

gain Kp integral time Ti and derivative time Kd based on the transient response 

characteristics of a given plant. Such determination of the parameters of PID 
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controllers or tuning of PID controllers can be made by engineers on-site by 

experiments on the plant. (Numerous tuning rules for PID controllers have been 

proposed since the Ziegler– Nichols proposal. They are available in the literature 

and from the manufacturers of such controllers.)There are two methods called 

Ziegler–Nichols tuning  rules: the first method and the second method. We shall 

give a brief presentation of these two methods. First method, the response is 

obtained experimentally of the plant to a unit-step input, as shown in figure (2.8). 

If the plant involves neither integrator (s) nor dominant complex-conjugate poles, 

then such a unit-step response curve may look S-shaped, as shown in figure (2.9). 

This method applies if the response to a step input exhibits an S-shaped curve. 

Such step response curves may began rated experimentally or from a dynamic 

simulation of the plant. The S-shaped curve may be characterized by two 

constants, delay time Land time constant T.The delay time and time constant are 

determined by drawing a tangent line at the inflection point of the S-shaped curve 

and determining the intersections of the tangent line with the time axis  and line 

c(t)=K, as shown in Figure (2.8). The transfer Function C(s)/U(s) may then be 

approximated by a first-order system with a transport Lag as  equation  

푪(푺)
푼(푺)

= 푲풆 푳푺
																																																																																								(2.9)                                                                                           

                                                        

 

 

Figure(2.8):Unit-step response of a plant  
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Figure(2.9):S-shaped response curve 

 Ziegler  and  Nichols  suggested  setting  the  values  of Kp,  Ti and  T formula 

shown in Table (2-1).  

Table (2–1): Ziegler–Nichols Tuning Rule Based 
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Notice that the PID controller tuned by the first method of Ziegler–Nichols rules 

gives (2.3) 

퐺 (S) = 퐾 1 +
ퟏ
푇

푇 																																																																									 

1.2
푻
L
ퟏ +

ퟏ
ퟐ퐿

+. ퟓ퐿 																																																															(2.10) 

	0.6푇
(푆 + ퟏ)ퟐ

푆
 

 

Thus, the PID controller has a pole at the origin and double zeros at s= –1/L. Second 

method, first set Ti = ∞ and Td= 0. Using the proportional control action only (see  

figure(2.10), increase  Kp from  0  to  a  critical  value  Kcr at  which  the  output  

first exhibits sustained oscillations. If the output doesnot exhibit sustained 

oscillations for whatever value Kp may take, then this method does not apply. Thus, 

the critical gain Kcr and the corresponding period Pcr are experimentally 

determined as shown in  Figure 2.11 

                   
      Figure(2.10) closed-loop system with a proportional controller        
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Figure (2.11) Sustained oscillation with period pcr (pcr is measured in sec.)  

Ziegler  and  Nichols  suggested  that  set  the  values  of  the  parameters  Kp,  

Ti,  and  Td according to the formula shown in Table (2.2). 

•  Notice that the PID controller tuned by the second  method of Ziegler Nichols 

rules gives(2.4) 

                                                     

  

                                                           

(2.11)                                         

 

Table  (2.2):  Ziegler–Nichols tuning  rule  based on  critical  gain Kcr and  critical  

period  Pcr (Second method) 
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Thus, 

the PID controller has a pole at the origin and double zeros at           s=(-4)/푷풄풓,  

Note  that  if  the  system  has  a  known  mathematical  model  (such  as  the  

transfer function), then we can use the root frequency of the sustained 

oscillations w found from the crossing points of the rootif the root-locus 

branches do not cross the Nichols  tuning  rules  (and  other  tuning  rules  

presented  in  the  literature)  have  been widely  used  to  tune  PID  controllers  

in  process  control  systems  where  the  plant dynamics  are  not precisely  

known.  Over  many  years,  such  tuning rules  proved  to  bvery  useful.  

Ziegler–Nichols  tuning  rules  can,  of  course,  be  applied  to  plants  whose 

dynamics are known. (If the plant dynamics are known, many analytical and 

graphical approaches  to  the  design  of  PID  controllers  are  available,  in  

addition  to  Ziegler - Nichols tuning rules [6]. 

2.4 Fuzzy Logic 

One of the more popular new technologies is “intelligent control,”which is 

defined as a combination of control theory, operations research, and Artificial 

Intelligence (AI). Judging by the billions  of  dollars worth of  sales and 

thousands of patents issued worldwide, led by Japan since the an noun cement of 

the first fuzzy chips in 1987,fuzzy logics still perhaps the most popular area in 

AI. 
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To understand fuzzy logic, it is important to discuss fuzzy sets. In1965 ,Zadeh 

wrote a seminal paper in which he introduced fuzzy sets, that is, sets with un 

sharp boundaries. These sets are generally in better agreement with the human 

mind and reasoning that works with shades of gray, rather than with just black or 

white. Fuzzy sets are typically able to represent linguistic terms, for example, 

warm, hot, high, low, close, far, etc. Nearly 10 years later (in 1974), Mamdani 

succeeded in applying fuzzy logic for control in practice. Today, in Japan, United 

States, Europe, Asia, and many other parts of the world, fuzzy control is widely 

accepted and applied. 

Anew logic system based on the premises of fuzzy sets is known as fuzzy logic. 

The need and use of multi level logic can be traced from the ancient works of 

Aristotle ,who is quoted as saying“ There will be a sea battle tomorrow.”Such a 

statement is not yet true or false, but is potentially either. Much later, around AD 

1285 – 1340 William of Occam supported two-valued logic but speculated on 

what the truth value of “if p then q ”might be if one of the two components ,p or 

q ,as neither true nor false .During the period of 1878–1956, Luck as irenics 

proposed three–level logic as a “true” (1), a “false”  (0), and a 

“neuter”(1/2),which represented half-true or half-false.In subsequent times, 

logician sin China and other part soft he world continued on the notion of multi 

level logic. Zadeh ,in his seminal 1965 paper ,finished the task by following 

through with the speculation of previous logicians and showing that what he 

called “fuzzy sets ”was the foundation of any logic, regardless of the number of 

truth levels assumed .He chose the in no cent word “fuzz” for the continuum of 

logical values between 0 (completely false) and 1 (completely true).The theory of 

fuzzy logic deals with two problems: 

 The fuzzy set theory, which deals with the vagueness found in semantics, and  

 The fuzzy measure theory ,which deals with the ambiguous  nature of 

judgments and evaluations. 
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The primary motivation and “banner” of fuzzy logics the possibility of exploiting 

to lerance for some inexactness and imprecision. Precision is often very costly, so 

if a problem does not warrant great precision,  one should not have  to pay for it. 

The traditional example of parking a car is a note worthy illustration. If the driver 

is not required to park the car with in an exact distance from the curb, why spend 

any more time than necessary on the task as long as it is a legal parking 

operation? Fuzzy logic and classical logic differ in the sense that the former can 

handle both symbolic and numerical manipulation, where as the latter can handle 

symbolic manipulation only. 

In a broad sense, fuzzy logic is a union of fuzzy (fuzzified) crisp logics. To quote 

Zadah, “Fuzzy logic’s primary aim is to provide a formal, computationally-

oriented system of concepts and techniques for dealing with modes of reasoning 

which are approximate rather than exact.”Thus, in fuzzy logic, exact(crisp) 

reasoning is considered to be the limiting case of approximate reasoning. In 

fuzzy logic, one can see that everything is a matter of degrees [7]. 

2.4.1 Fuzzy sets and conventional sets  

First proposed at 1965 and based on the concept of fuzzy Sets, fuzzy set theory 

Provides means for representing uncertainty. Probability theory is the primary 

tool for analyzing uncertainty and assumes that the uncertainty is a random 

process. However Uncertainty is not always random though and fuzzy set theory 

is used to model the kind Of   uncertainty associated with imprecision, and lack 

of information. Conventional set theory distinguishes between those elements 

that are members of a set and those are not, there being very, clear or crisp 

boundaries. Figure (2.12) shows the crisp set“medium temperature”. 

Temperatures   between 20 and 30 Clie with in crisp set, and have a member ship 

value of one. 
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                                                          Figure (2.12) crisp set        

The  central  concept  of  fuzzy  set  theory  is  that  the membership  function 

probability theory, can have value of between 0 and1. In function µ has linear 

relationship with the x This  produces  a  triangular  shaped  fuzzy  set.triangles 

are commonly used because they give good results and computation is simple. 

Other arrangement includes non -symmetrical triangles, trapezoids, and 

Gaussian.Let the fuzzy set (see Figure(2.13)) “medium temperature” be called 

fuzzy set M. If an element u of the universe of discourse U lies within fuzzy set 

M, it will have a value of between 0 and1 

1. This is expressed as 

 µ M ε [0, 1]                                                                      (2.12) 

When the universe of discourse is discrete and finite, fuzzy set M may be 

expressed as equation 2.12 

푀 = 	μ	M(ui)푢푖                                                             (2.13) 
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                                                        Figure (2.13): Fuzzy set. 

2.4.2 Operations on fuzzy sets 

Let  A  and  B  be  two  fuzzy  sets  within  a  universe  of  discourse function µ A ε 

[0,1] and µB ε [0,1] respectively. The following fuzzy set operations can be defined  

 2.4.2.1 Equality  

Two fuzzy sets A and B are equal if they have the same membership function    

within a universe of discourse Uµ  A(u) =µB u (u),∀ u ε U                            (2.14) 

 2.4.2.2Unio 

The union of two fuzzy sets A and B corresponds to Boolean OR function and is 

given  

by: 

µ  A∪B(u) = max[µ A(u), µ B(u)],∀ ulU                                                   (2.15) 

2.4.2.3 Intersection 

The intersection of two fuzzy sets A and B corresponds to the Boolean AND 

function and is given by:  
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  xA ∩B(u) =min[xA(u),xB(u)],∀ ulU                                                           (2.16)  

2.4.2.4 Complement 

The complement of fuzzy set A corresponds to the Boolean NOT function and is 

given by[13]:  

x -A(u) =1-xA(u),∀ ulU                                                                                  (2.17)  

2.4.3 Fuzzy relations  

Many application problem  descriptions  include  fuzzy relations.  For  example,  to 

describe  a  plant  or  a  control  system  one  determines,  how  an  output(s)  

depends  on inputs, or the relationship between outputs and inputs. If one constructs 

a database and an information system, one determines the relations between different 

at tributes. To model a fuzzy system one uses rules like if speed is slow then pressure 

should be high If the speed is denoted as variable A and pressure as variable B then 

one will have in a general case the rule: if A then B [8].   

2.4.4 Linguistic variables  

To specify rules for the rule-base, the expert will use a “linguistic description”; 

hence, linguistic expressions are needed for the inputs and outputs and the 

characteristics of  the inputs and outputs. “linguistic variables” is used (constant 

symbolic descriptions of what  are  in  general  time-varying  quantities)  to  describe  

fuzzy  system  inputs  and outputs. For our fuzzy system, linguistic variables denoted 

by ˜ui are used to describe the inputs ui. Similarly, linguistic variables denoted by ˜yi 

are used to describe outputs  yi. For instance, an input to the fuzzy system may be 

described  as  ˜u1 =“position  error”  or  ˜u2=“velocity  error,”  and  an  output  from  

the fuzzy system may be ˜y1=“voltage in”  [9].  
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2.4.5 Fuzzy control system design  

Fuzzy control provides a  formal methodology for representing,  manipulating,  and 

implementing a human’s heuristic knowledge about how to control a system. In this 

section we seek to provide a philosophy of  how to approach the design of fuzzy 

controllers.  

The Fuzzy controller block diagram is given in Figure (2.14), where a fuzzy 

controller embedded in a closed-loop control system. The plant outputs are denoted 

by y(t),  its  inputs  are  denoted  by  u(t),  and  the  reference  input  to  the  fuzzy  

controller  is denoted by r(t).  

                               Figure (2.14): Fuzzy controller architecture 

The fuzzy controller has four main components:  

 The “rule-base” holds the knowledge, in the form of a set of rules, of how best to 

control the system.  

 The inference mechanism evaluates which control rules are relevant at the current 

time and then decides what the input to the plant should be.  

   The  fuzzification  interface  simply  modifies  the inputs  so  that  they  can  be 

interpreted and compared to the rules in the rule-base.  
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 The defuzzification  interface  converts  the  conclusions  reached  by  the  

inference mechanism into the inputs to the plant.  

Basically,  the  fuzzy  controller is viewed  as  an  artificial  decision  maker  that 

operates  in  a  closed-loop  system  in  real  time.  It gathers plant output  data  y  (t), 

compares it to the reference input r (t), and then decides what the plant input u(t) 

should be to ensure that the performance objectives will be met.  

To design  the fuzzy  controller, the control  engineer  must gather  information  on  

how the  artificial  decision  maker  should  act  in  the  closed-loop  system.  

Sometimes  this information  can  come  from  a  human  decision  maker  who  

performs  the  control  task, while at other times the control engineer can come  to 

understand the plant dynamics and write  down  a  set  of  rules  about  how  to  

control  the  system  without  outside  help. These “rules” basically say, “If the plant 

output and reference input are behaving in a certain manner, then the plant input 

should be some value”. A  whole  set  of  such  “If-Then”  rules  is  loaded  into  the  

rule-base,  and  an  inference strategy  is  chosen,  then  the  system  is  ready  to  be  

tested  to  see  if  the  closed-loop specifications are met [8].  

2.5 Neural Network  

It is well known that biological systems can perform complex tasks without recourse 

to explicit quantitative operations.  In  particular,  biological  organisms  are  capable  

of learning gradually over time. This learning capability reflects the ability of 

biological neurons to learn through exposure to external stimuli and to generalize. 

Such properties of nervous systems make them attractive as computation models that 

can be designed to process complex data. For example, the learning  capability of 

biological organisms from examples suggests possibilities for machine learning [9].  
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2.5.1 Neuron model  

The multilayer perception neural network is built up of simple components. The 

single input neuron beginner, then it extends to multiple inputs. Next stack these  

neurons  together  to  produce  layers.  Finally, The layers has been cascaded together 

to form the network.  

2.5.2 Single-input neuron  
A single-input neuron is shown in Figure (2.15) the scalar input P is multiplied by 

the scalar weight w to form wp, one of the terms that is sent to the summer. The  

other bias  input,  1,  is  multiplied  by  a  bias  b  and  then  passed  to  the  summer.  

The summer  output  n,  often  referred  to  as  the  net  input,  goes  into  a  transfer  

function  f, which  produces  the  scalar  neuron  output  a.  (Some authors   use  the  

term  “activation function” rather than transfer function and “offset” rather than 

bias.) The neuron output is calculated as:  

                                 a = f (wp + b)                                                             (2.18)                    

Note that w and b are both  adjustable  scalar parameters of the neuron. Typically the 

transfer  function  is  chosen  by  the  designer  and then  the  parameters  w  and  b  

will  be adjusted by some learning rule so that the neuron input/output relationship 

meets some specific goal.  

 

                           Figure (2.15) Single - input neuron  
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The  transfer  function  may  be  a  linear  or  a  nonlinear  function.  A  particular  

transfer function  is  chosen  to  satisfy  some specification  of the  problem  that  the  

neuron  is attempting to solve [10].  

2.5.3 Neural control  

Neural control refers both to a methodology in which the controller itself is a neural 

network,  and  to  a  methodology  in  which  controllers  are  designed  based  on  a  

neural network model of the plant. These two basically different approaches for 

implementing neural networks in control are referred to as direct and indirect design 

methods.  

Fuzzy control is a control method relying on perception- based information 

expressed in fuzzy logic. This is the case where the available data is in the form of a 

collection of linguistic .If. . . then. . . . rules. In other words, fuzzy control is 

amathematical method for implementing  control  strategies  expressed  in  a  natural  

language.  This  situation arises  mostly  in  the  control  of  complex  systems,  a  

situation  that  human  operators handle  well  and  for  which  natural  language  is  

an  appropriate  means  for  describing control strategies. As its name indicates, 

neural control refers to another control method when available data  are  in  the  form  

of  measurements  (observed  numerical  data)  of  the  plant’s behavior. This is the 

case where information is only in the form of system behavior, either  of  the  real  

plant  or  of  its  simulated  model, expressed  as  input-output measurements. In view 

of the generality of  neural networks as function approximation devices, it is natural  

to  use  neural  networks  in  control  situations  such  as  this.  Specifically,  when 

mathematical  models  of  the  plant  dynamics  are  not  available,  neural  networks  

can provide  a  useful  method  for  designing  controllers,  provided  we  have  

numerical information about the system behavior in the form of input-output data. In 

other words, a  neural  network  can  be  used  as  a  “black  box”  model for  a  plant.  

Also,  controllers based on neural networks will benefit from neural networks’ 

learning capability that is suitable for adaptive control where controllers need to 
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adapt to changing environment, such as for time-variant systems. In practice, neural 

network controllers have proved to be most useful for time-invariant systems. 

Basically, to build a neural network-based controller that can force a plant to behave 

in some desirable way, it needs to adjust parameters from the observed errors that are 

the difference  between  the  plant’s  outputs  and  the  desired  outputs.  Adjustment 

of  the controller’s parameters will be done by propagating back these errors across 

the neural network structure. This is possible if the mathematical model of the plant 

is known. When the mathematical model of the plant is not known, it needs to know 

at least an approximate  model  of  the  plant  in  order  to  do  the  above.  An 

approximate (known) model of the plant is called an identified model. When we use 

input-output data from the plant to train a neural network to provide an approximate 

model to the plant, the neural network identified model of the plant obtaina. Neural 

network identified models are used  in  indirect  neural  control  designs.  After  a  

general  discussion  of  inverse dynamics, we will first discuss direct neural control 

designs and then indirect control.  

2.5.4 Neural networks in direct neural control  

Direct design  means that a neural network directly  implements the controller that is, 

the controller is a neural network as in Figure 2.16. The network must be trained as 

the controller  according  to  some  criteria,  using  either numerical  input-output  

data  or  a mathematical  model of the system.  

 

                                     Figure 2.16: Direct design  
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A natural question that arises in this type of neural control is the selection of the type 

of  neural network needed for the controller. We have seen from the previous chapter 

on neural networks that there are several types of neural network architectures. 

Multi-Layered  Perceptron (MLP) neural networks are  composed of configurations 

of simple  perceptrons  in  a  hierarchical  structure  forming  a  feed  forward  

network.  They have one or more hidden layers of perceptrons between the input and 

output layers. It is permissible to have any prior layer nodes connected to subsequent 

layer nodes via a corresponding set of weights. Different learning algorithms can be 

used for MLPs, but the most common ones have been the delta rule and error-back 

propagation algorithms. These algorithms do work fairly  well  but  they  tend  to  be  

slow.  Faster  and more  efficient  algorithms  have  been developed  [8,  20,  32,  

37],  and  ongoing  research  is  continually  discovering  further improvements.  

 2.5.6 Neural networks in indirect neural control  
 Indirect neural control design is based on a neural network model of the system                  

to be controlled.  In  this  case,  the  controller  itself  may not  be  a  neural       

network,  but  it  is derived from a plant that is modeled by a neural network. This is 

similar to standard control in that a mathematical model is needed, but here the 

mathematical model is a neural network. Indirect  neural  control  designs  involve  

two  phases. The  first  phase  consists  of identifying the plant dynamics by a neural 

network  from training data that is,  system identification. In the second phase, the 

control design can be rather conventional even though the controller is derived, not 

from a standard mathematical model of a plant, but from its neural network identified 

model. Since the identified neural network model of the plant is nonlinear, one way 

to design the  controller  is  to  linearize  its  identified  neural  network  model  and  

apply  standard linear controller designs. Another way is through .instantaneous 

linearization [9].  
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2.6 Neuro-Fuzzy Systems  
Both neural networks   and fuzzy  system are  motivated by imitating human 

reasoning process.  It  utilizes  human  expertise.  In  fuzzy  systems, relationships  

are  represented explicitly  in  the  form  of  the  if-then  rules.  In  neural  networks,  

the  relations  are  not explicitly  given,  but  are  encoded  in  the  networks  and  

parameters  designed.  Neurofuzzy  systems  combine  semantic  transparency  of  

rule-based  fuzzy  systems  with  a learning capability of neural networks [11]. 

2.6.1 Adaptive network fuzzy inference systems  
To illustrate the  use of neural networks for  fuzzy  inference, present some  

successful Adaptive  Neural  Network  Fuzzy  Inference  Systems  (ANFIS),  along  

with  training algorithms  known  as  ANFIS.  These  structures,  also  known  as  

adaptive  neuro-fuzzy inference  systems  or  adaptive  network  fuzzy  inference  

systems,  were  proposed  by Jang.  It  should  be noted  that  similar structures  were  

also  proposed  independently  by Lin  and  Lee  and  Wang  and  Mendel.  These 

structures are useful for  control  and  for many other applications [9].  

2.6.2 Neuro – fuzzy controller  

The  neural  predictive  controller  can  be  extended  with  Neuro-fuzzy  controller, 

connected  in parallel as shown in Figure  2.17.  Neuro-fuzzy  systems,  which  

combine  neural networks  and  fuzzy  logic,  have  recently  gained  a  lot  of  

interest  in  research  and application. A specific approach in neuro-fuzzy 

development is the Adaptive  Neural  Network  Fuzzy  Inference  Systems  (ANFIS).  

ANFIS  uses  a  feed  forward  network  to  search  for  fuzzy  decision  rules  that  

perform well  on  a  given  task.  Using  a  given  input  output  data  set,  ANFIS  

creates  an  Fuzzy inference  system  for  which  membership  function  parameters  

are  adjusted  using  a combination of a back propagation and least square method 

[12].  
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                                    figure  2.17 Neuro – fuzzy control scheme 

2.6.3 ANFIS as an estimator  
ANFIS  can  be  used  for  the  estimation  of  some  dependent  variables  in  

chemical process.  The  designed  ANFIS  estimator  is  used  to  infer  the  

compositions  from measurable tray temperatures distillation column. In 

estimator design process, different ANFIS structure are constructed and trained to 

find the architecture that gives the best performance as an estimator. As a first 

step to design an estimator, training data sets should  be  generated  to  train  the  

estimator  networks.  These  data  sets  consist  of estimator inputs and desired 

output values. They are produced from the process input - output data. Since, 

ANFIS is a data processing method, it is important that the input - output data 

must be within the sufficient operational range including the maximum and 

minimum  values  for  both  input  and  output  variables  of  the  system.  If this 

is  not provided, estimator performance cannot be guaranteed and thus the 

designed estimator will not be accurate. Having generated the training data, 

estimators that have different architectures are trained with the obtained data sets. 

Performances of the trained estimators are evaluated with model simulations and 

best estimator architecture  is obtained.  These simulations are  made  to  verify  
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and  to generalize the ANFIS structures. Verification is done to show how good 

the estimator structure learned the given training data. This is  carried out by 

simulating the column models  with  specific  initial  process  inputs  used  in 

obtaining  training  data  sets. Generalization capabilities of the estimators are 

found with other simulations in which input process variables are in operational 

range but not used in training data formation. ANFIS estimator design consists  of  

two  parts:  constructing  and  training.  In constructing part, structure parameters 

are determined. These are type and number of input Membership Functions 

(MFs), and type of output MF. Any of several MFs such as Triangular, 

Trapezoidal and Gaussian can be used as an input MF. Frequently used MFs in 

literature are the Triangular and Gaussian.  For this reason, they are chosen as 

input MF type in this study. Number of MFs on each input can be chosen as 3, 5, 

and 7 to  define  the  linguistic  labels  significantly.  Effective  partition  of  the  

input  space  is important  and  it  can  decrease  the  rule  number  and  thus  

increase  the  speed  in  both learning and application phase. Output MFs can be 

either a constant or in linear form. Both of these two forms are used for the output 

MF in this study. Having described the number and type of input MFs, the 

estimator rule base is constituted. Since, there is no standard method to utilize the 

expert knowledge; automatic rule generation method is usually preferred. 

According to this method, for instance, an ANFIS model with two inputs and five 

MFs on each input would result in 52= 25 Takagi-Sugeno fuzzy if-then rules 

automatically. Although this method can require much computational knowledge 

especially in systems that have to be defined with  many inputs, it is used in this 

study due  to  advantage  of  MATLAB  software.  Therefore,  rule  bases  of  the  

estimators  are formed automatically with the number of inputs and  number of 

MFs. After the ANFIS structure  is  constructed,  learning  algorithm  and  

training  parameters  are  chosen.  As mentioned in the earlier in this chapter, 

back propagation or hybrid learning can be used as a learning algorithm. The 

hybrid learning algorithm is used in this study. Parameters in the algorithm are  

epoch size (presentation of  the entire data set),  error tolerance,  initial  step  size,  
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step  size  decrease  rate,  and  step  size  increase  rate.  Since there is no exact 

method in literature to find the  optimum of these parameters a trial and error 

procedure is used. MATLAB fuzzy logic toolbox is used to design ANFIS 

estimators’ structures.  Using  the  given  training  data  set,  the  toolbox  

constructs  an ANFIS  structure  using  either  a  back propagation  algorithm  

alone,  or  in  combination with least squares type of method (hybrid algorithm). 

ANFIS model can be generated either from the command line, or through the 

ANFIS  editor GUI. In this study, ANFIS Editor GUI is used to generate the 

ANFIS models with the chosen design parameters in construction phase. Written 

MATLAB code is used to  train the ANFIS structure in the training step. The 

steps in ANFIS estimator design in this study utilizing the MATLAB fuzzy logic 

toolbox are as follows:  

 Generated training data is loaded to the editor GUI.  

 Design  parameters,  number  of  input  MF,  type  of  input  and  output  MF,  

are chosen. Thus, initial ANFIS structure is formed.  

 The code for the training is run with the initial structure.  

 ANFIS structure constituted after training is saved to use as an estimator [11]. 
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CHAPTER THREE 

CONTROL SYSTEM DESIGN OF DC SERVOMOTOR 

3.1 Introduction 
Many textbooks have been written on control engineering, describing new techniques 

for controlling systems, or new and better ways of mathematically formulating 

existing methods to solve the ever-increasing complex problems faced bypracticing 

engineers. However, few of these books fully address the applicationsaspects of 

control engineering. It is the intention of this new series to redress this 

Situation.Theposition of DC servomotor can be adjusted to a great extent as to 

provide controllabilityeasy and high performance. The controllers of the position that 

are conceived for goal tocontrol the position of DC servomotor to execute one variety 

of tasks, is of several conventionaland numeric controller types, the controllers can 

be: PID controller, fuzzy logiccontroller; or the combination between them: Fuzzy-

neural networks, fuzzy-geneticalgorithm, fuzzy-ants colony, fuzzy-swarm [12]. 

3.2 Motor’s Parameters 

The motor used in this study is DC separately excited and the motor’s parameters are 

as follows [2]:  

Armature resistance (Ra) = 0.6 Ω  

Armature inductance (La) = 8 mH 

Back e.m.f constant (Kb) = torque constant (Ki) = 0.55 V/rad/s  

Mechanical inertia (J) = 0.0465 kg.m2 

Friction coefficient (B) = 0.004 N.m/rad/s  
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퐺(푆) =
θ(s)
v(s)

=
K

풔((JS + b). (퐿푠 + R) + 퐾 )
rad
v

 

 

By substituting above parameters in equation (3.1), then   

Gc(s) = ( )
( )
= .

. . .
3.1 

3.3 PID Controller Design 
By substituting the parametersof equation 3.1in MATLAB Simulinktechniques 

toobtainthree-term control:the integral - proportional, and derivative values, of 

PIDcontroller that will meet the transient and steady-state specifications of the 

closed-loop system. 

3.4 Fuzzy Controller Design 
Fuzzy control system design essentially amounts to: (i) Choosing the fuzzy 

controllerinputs and outputs, (ii) Choosing the preprocessing  that is needed for the 

controllerinputs and possibly post processing that is needed  for the outputs, and 

(iii)Designingeach of the four components of the fuzzy controller as shown in Figure 

(2.14). Thereare standard choices for the fuzzification and defuzzification interfaces. 

Moreover,most often the designer settles on an inference mechanism and may use 

this for manydifferent processes. Hence, the main part of the fuzzy controller that we 

focus on fordesign is the rule-base.The rule-base is constructed so that it represents a 

human expert “in-the-loop.”Hence, the information that we load into the rules in the 

rule-base may come from anactual human expert who has spent a long time learning 

how best to control theprocess. In other situations there is no such human expert, and 

the control engineer willsimply study the plant dynamics (perhaps using modeling 

and simulation) and writedown a set of control rules that makes sense. As an 

example, in the cruise control problem discussed above it is clear that anyonewho 

has experience driving a car can practice regulating the speed about a desired set-
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point and load this information into a rule-base. For instance, one rule that a 

humandriver may use is “If the speed is lower than the set-point, then press down 

further on the acceleratorpedal.” A rule that would represent even more detailed 

information about how to regulate the speed would be “If the speed is lower than the 

set-point AND the speed isapproaching the set-point very fast, then release the 

accelerator pedal by a smallamount.” This second rule characterizes our knowledge 

about how to make sure thatwe do not overshoot our desired goal (the set-point 

speed). Generally speaking, if weload very detailed expertise into the rule-base, we 

enhance our chances of obtainingbetter performance [13]. 

By editing "fuzzy" in workspace a window of FIS editor appears as in Figure (3.1). 

3.4.1 Fuzzy basic FIS editor 
The FIS editor displays high-level information about a fuzzy inference system shown 

as inFigure (3.1). At the top is a diagram of the system with each input and output 

clearlylabeled. Themembership function editorcan be brought By double-clicking on 

the input or output boxes, alsothe rule editor will be brought by Double-clicking on 

the fuzzy rule box in the center of thediagram. Just below the diagram is a text field 

that displaysthe name of the current FIS. The various functions used in the fuzzy 

implication process wasallowed by series of popup menus in the lower left of the 

window. Inthe lower right are fields that provide information about the current 

variable.Thecurrent variable is determined by clicking once on one of the input or 

output boxes. 
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Figure (3.1): FIS editor 

By adding INPUT variable from edit menu then FIS give two inputs variable 

whichone is error (e) and another is change of error (ce) etch one consist of five 

membershipfunctions to give 25 rules. 

3.4.2 Membership function editor 
all the membership functions for the FIS stored in the file a.FISweremodified byThe 

mfedit('a')that generates a membership function editor shown in Figure (3.2). mf 

edit(a) operates on a MATLAB workspace variable  for a FIS  structure a. 

mfeditalone opens the membership function editor with no FIS loaded.The 

Membership Function (MF) Editor is used to create, remove, and modify the MFsfor 

a given fuzzy systemthe currentvariable was selected by clicking once on one of the 

displayedboxesOn the left side of the diagram "variable palette". Information about 

the current variable is displayed in the text region below thepalette area. To the right 
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is a plot of all the MFs for the current variable. It could select any of theseby clicking 

once on the line or name of the MF. Once selected, It could modify theproperties of 

the MF using the controls in the lower right. 

MFs are added and removed using the edit menu. 

 

Figure (3.2): Membership function 

3.4.3 Rule editor 

The rule editor shown in Figure (3.3), when invoked using ruled it ('a'), is used 

tomodifythe rules of a FIS structure stored in a file, a.fis. It can also be used to 

inspectthe rules being used by a fuzzy inference system.To use this editor to create 

rules, must befirst have all of the input and outputvariables will be wanted to use 

defined with the FIS editor. listbox and check box choices for input and output 



38 
 

variables, connections, and weightscan be used to create the rules. When to operate 

on a workspace variable for a FIS structure called a. On the rule editor The syntax 

ruleedit(a) is used .there is a menu bar that was allowed to openrelated GUI tools 

open and save systems, and so on. The file menu for the rule editoris the same as the 

one found on the FIS editor. Refer to the reference entry fuzzy formore 

information.By using the edit menu items: 

Undo: to undo the most recent change. 

By using the View menu items: 

Edit FIS properties... to invoke the FIS editor. 

Edit membership functions... to invoke the membership function editor. 

View rules... to invoke the rule viewer. 

View surface... to invoke the surface viewer. 

By using the options menu items: 

Language to select the language: English, Deutsch, and Francais 

Format: to select the format: verbose uses the words *if* and *then* and so on to 

Create actual sentences. 
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Figure (3.3): Rule editor 

  Table (3.1): Rule base for FIVE membership functions 

    E  

DE        

NL NS Z PL PS 

NL NL NL NL NS ZE 

NS NL NS NS ZE PS 

Z NL NS ZE PS PL 

PL NS ZE PS PS PL 

PS ZE PS PL PL PL 
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3.4.4 Rule viewer 

The rule viewer displays shown in figure (3.4), in one screen, all parts of the 

fuzzyinference process from inputs to outputs. Each row of plots corresponds to one 

rule,and each column of plots corresponds to either an input variable (yellow, on the 

left) oran output variable (blue, on the right). It could change the system input either 

by typinga specific value into the Input window or by moving the long yellow index 

lines that godown each input variable's column of plots. 

 

Figure (3.4): Rule viewer 
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3.4.5 Output surface viewer 
the output surface of a FIS, a.fis, for any one or two inputs wasexamined by The 

surface viewer shown in Figure (3.5) invoked using surfview('a') is a GUI tool. Since 

itdoes not alter the fuzzy system or its associated FIS matrix in any way, it is a read-

onlyeditor. the two input variables you want assigned to the two input axes (X and 

Y), as well the output variable you want assigned to the output   (or Z) axis was 

seledby Using the pop-up menus,. Select the Evaluate button to perform the 

calculation and plot theoutput surface.Actually the surface was manipulatedBy 

clicking on the plot axes and dragging the mouse, so that can be viewed it from 

different angles. If there are more than two inputsto the system, they must be 

supplied, in the reference input section, the constant valuesassociated with any 

unspecified inputs. 

 

Figure (3.5): Surface viewer 
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3.5Neuro-Fuzzy Controller Design 
ANFIS uses a hybrid learning algorithm to identify the membership 

functionparameters of single-output, Sugeno type fuzzy inference systems . A 

combination ofleast-squares and back propagation gradient descent methods are used 

for training FISmembership function parameters to model a given set of input/output 

data. 

[FIS, ERROR] = ANFIS (TRNDATA) tunes the FIS parameters using the 

input/outputtraining data stored in TRNDATA. For an FIS with Ninputs, TRNDATA 

is a matrix with N+1columns where the first N columns contain data for each FIS 

input and thelast column contains the output data. ERROR is the array of root mean 

square trainingerrors (difference between the FIS output and the training data output) 

at each epoch.ANFIS uses GENFIS1 to   create a default FIS that is used as the 

starting point forANFIS training.Note: in this research training data was taken from 

PID controllers with computationaloptimization approach method. 

3.5.1 ANFIS editor 
The ANFIS editor shown in Figure (3.6) GUI from which the data set and train anfis 

were loaded was brought by Using anfisedit TheANFIS Editor GUI invoked 

usinganfisedit('a'), a FIS structure was used toopens the ANFIS editor GUI from 

which implement ANFISusing stored as a file a.FISanfisedit(a) operates the same 

way for a FISstructure a, stored as a variable in the MATLAB workspace, Figure 

(3.7) showingANFIS model structure . the related GUI tools On the ANFIS editor 

GUI, were being opened bythe menu bar, open and save systems, and so on. The file 

menu is the sameas the one found on the FIS editor 

• By using the following edit menu item: 

Undo to undo the most recent change. 

FIS properties to invoke the FIS editor. 
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Membership functions to invoke the membership function editor. 

Rules to invoke the rule editor. 

•  By using the following view menu items: 

Rulesto invoke the rule viewer. 

Surface to invoke the surface viewer.  

 

Figure (3.6): ANFIS editor 
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Figure (3.7): ANFIS model structure 
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CHAPTER FOUR 

SIMULATION RESULTS AND DISCUSSION 

4.1 Simulation Results of PID CONTROLLER 
 This section demonstrates the simulation results of a position control of DC 

servomotor by using design of controllers with MATLAB, by substituting  the value 

of parameters: KP = 2.475, KI = 0.0805and KD = 0.7909 and by using  the unit step 

response with MATLAB simulation as shown in figure (4.1) below:  

Figure (4.1): PID controller for position control of DC servomotor 

Figure (4.2) illustrates the unit step response of PID controller for position control of 

DC servomotor 
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Figure (4.2): Unit step response of PID controller for position control of DC 
servomotor 

 

 

Figure (4.3)  Control signal of PID controller 

4.2 Simulation Results of Fuzzy 

The system with a unit step input is simulated with MATLAB as shown in figure 

(4.3).By using trial and error method of tuning to calculate the FLC parameters. The 

values of FLC parameters are Kp = 2.8036and KI= .5, KD= .6351 figure (4.4) 

illustrate the response of system. 
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Figure (4.4): PID - like fuzzy for position control of DC Servomotor 

 

Figure (4.5): Unit step response of FLC for position control of DC servomotor 
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Figure (4.6): Control signal of fuzzy controller 

4.3 Simulation Results of Neuro-Fuzzy Controller 

By using train data from PID controllers using MATLAB SIMULINK approach to 
design Neuro-Fuzzy controller, Figure (4.7) illustrates block diagram of PID 
controller which train data come from it. 

 Figure (4.7): Block diagram of PID controller 
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The  system  with  a  unit  step  input  is  simulated  with MATLAB  to  illustrate  
block diagram of Neuro-Fuzzy controller as shown in figure (4.8). 

Figure (4.8): Block diagram of neuro-fuzzy controller 

Figure  (4.9)  illustrate  control  signal  of  Neuro-Fuzzy  controller  and  figure  (4.10)  

illustrate the step response for position control of DC Servomotor. 

 

Figure (4.9): Control signal of neuro-fuzzy controller 
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Figure (4.10): Unit step response of neuro-fuzzy controller for system 

The unit step system response for all controllers PID, FLC and neuro-fuzzy are shown 
in figure (4.11).  

 

    

Figure (4.11): Unit step system response for all controllers 
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4.4 Comparison and Discussion  

In order to validate the control strategies as described above, digital simulation were 

carried  out  on  a  converter  DC  motor  drive  system  whose  parameters  are  given  

in previous  chapter.  The  MATLAB/SIMULINK  models  of  system  under  study  

with  all three controllers are shown in Figures (4.1), Figures (4.4) and (4.8). First a 

comparison has been made between the maximums overshoot, rise times and settling 

time illustrated in table (4.1):  

Table (4.1): comparison between: maximums overshoot, rise times and settling time 

Controller Ts (Sec) Tr (Sec) Overshoot MP 
PID   1.240 0.323 8.68 
Fuzzy   2.321 1.025 5.8 
Neuro-Fuzzy 2.640 1.37 2.37 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, the DC servomotor has been reviewed from control theory perspective. 

PID controller and intelligent techniques such as Fuzzy logic Controllers and their 

hybrid (ANFIS) are used for DC servomotor position control. This study  was  based  

on  the  MATLAB/Simulink  software  platform  and  mathematical models of the DC 

servomotor. Design with PID controller in MATLAB/Simulink, yield good response. 

Design with fuzzy controller had given perfect results, but also a trial-and-error 

method was needed to find the required parameters. Design with neuro-fuzzy   

controller results a very good response and very fast. The advantages  of  the  neuro-

fuzzy  controller  were  that  it was determined the  number  of  rules automatically, 

reduces computational time, learns faster and produces lower errors than other  

method  and  no  needed for  tuning  parameters. By proper design  a  neuro-fuzzy 

controllers can replace PID and Fuzzy controllers for the position control of DC 

servomotor drives. From simulation results, it was concluded that the used of ANFIS 

reduced design efforts  

5.2 Recommendations  

 Implementation of study,  this could probably be achieved through use of DSP 

card or microcontroller.  

 position  control of DC servomotor with load and disturbance of DC servomotor.   

 position  control  of  DC  servomotor  using  other AI techniques like  neural  

network and compare results with PID, FLC and neuro-fuzzy controller.  
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