Sudan University of Science and Technology

College of Engineering

Simulation of Real-time Pitch Shifting Algorithm

A Research submitted in partial fulfillment for the requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Marwa Awad Alnour Karrar
- 2. RayanEisa Musa Ibrahim
- 3. Salma Saeed Mohammed
- 4. Zeinab Ali Hassab Allah

Supervisor:

Dr. Rashid A. Saeed

Sep. 2014

قاز

{آتوني زبر الحديد حتى إذا ساوى بين الصدفين قال انفخوا حتى إذا جعله نارا قال آتوني أفرغ عليه قطرا (96)فما اسطاعوا أن يظهروه وما استطاعوا له نقبا (97)قال هذا رحمة من ربي فإذا جاء وعد ربي جعله دكاء وكان وعد ربي حقا (98)}

صدق الله العظيم سورة الكهف الآية {98-96}

DEDICATION

This dissertation work dedicated to our family and many friends, a special feeling of gratitude to our loving parents.

Acknowledgements

Wish to thank our god and our parents.

Also wish to thank various people for their contribution to this project.

Special thank should be given to Dr. Rashed our research project supervisor for his professional guidance and valuable support.

Abstract

Pitch, known as the fundamental frequency, is one of the main characteristics of sound.

The purpose of this study is to change the pitch of a signal without changing its length.

The solution of this problem is PSOLA algorithm, which is the best method to shift pitch in musical industry application .

pitch-shifting algorithms can be divided into two categories; firstly timedomain which algorithm divided into three sections: pitch time detector(determine a fundamental frequency),a compressor/expander(used to change the duration of the signal), and a pitch shifter(achieve a high quality output), secondly frequency-domain techniques like the time-domain technique is based on shifting small overlapping window blocks of data in time and resampling.

There are various methods of detecting and shifting pitch, but in the interests of simplicity, accuracy, and speed, a three step process is used.

المستخلص

الهدف من هذا البحث تغيير درجه الصوت دون تغيير في الطول وفي خصائص الصوت الأخري,ودرجه الصوت هي عباره عن التردد الأساسي وهو الخاصيه الرئيسيه في خصائص الصوت.

هذا التغيير الزي يحدث عباره عن ازاحه وهي نوعان اعتمادا على السرعه والدقه والبساطه:

ازاحه في مجال الزمن.

ازاحه في مجال التردد.

في هذا البحث سوف نتطرق الي الازاحه في مجال التردد, وسنتناول الازاحه في مجال الزمن نظر البساطته وكفاءه خوارزمياته وسنتحدث عن احدي خوارزمياته بشكل اوسع.

LIST OF CONTENTS

Chapter	Tittle	Page
	DECLARATION	-
	DEDICATION	I
	ACKNOWLEDGEMENT	II
	ABSTRACT	III
	ABSTRACT IN ARABIC	IV
	LIST OF CONTENTS	V
	LIST OF FIGURES	VII
	LIST OF TABLES	IX
	ABBREVIATION	X
	TABLE OF SYMBOLS	XI
1.	INTRODUCTION	
	1.1 Introduction	1
	1.2Problem Statement	2
	1.3Proposed Solution	2
	1.4 Research Aims and Objectives	2
	1.5 Methodology	3
	1.6 Thesis outline	4
2.	LITRATURE REVIEW	
	2.1 Introduction	5
	2.2 Related work	8
	2.3 Pitch Shifting	10
	2.3.1 Frequency shifting	13
	2.3.2 Frequency-Domain Pitch Shifting	17
	2.3.3 Time domain shifting	17
	2.3.3.1 Psola algorithm	17

	2.3.3.2 an overlap-add technique based on waveform	18
	similarity (wsola))	
	2.33.3 Normalized filter correlation-time-scale	18
	modification method	
	2.4 Pitch shifting application	20
	2.5A Brief History of Pitch Shifting	20
3.	PITCH SYNCHRONOUS OVERLAP AND ADD	
	3.1 Introduction	21
	3.2 Pitch Synchronous Overlap and Add (PSOLA)	21
	3.2.1.1 Pitch Detection – Auto Correlation Function	21
	(AC)	
	3.2.2.1 Synthesis Pitch Marks	24
	3.2.2.2 Overlap and Add	31
	3.3 Psola pros and cons	32
	3.4 Chapter summary	35
4.	RESULT AND DISCUSSIONS	
	4.1 Overview	36
	4.2 Time domain shifting	37
	4.2.1 Up shifter	37
	4.2.2 Down shifter	39
	4.3 Frequency domain shifting	40
	4.4 Chapter summary	42
5.	CONCLUSION AND RECOMMENDATION	
	5.1 Conclusion	44
	5.2Future works Reference Appendex	45

LIST OF FIGURES

Figure No.	Title	page
2.1	Pitch shifting classification	9
2.2	Block diagram of SSB	11
2.3	frequency shifter Signal spectrum before	12
	and after SSB modulation	
2.4	Time shifting of	14
	overlapping blocks; (a)	
	depicts an input signal	
	split into 3 overlapping	
	blocks; (b) blocks are shifted forward in time to	
	increase signal duration; (c) blocks are shifted	
	back in time to decrease signal duration.	
2.5	Input and shifted frequency spectrum using	15
	phase vocoder.	
2.6	Fairbanks' multiple revolving heads device	16
2.7	The front of the Eventide H910, the first	22
	commercial harmonizer	
3.1	Slight time lag between the original (blue) and	23
	lagged (red) signal. The correlation value is	
	0.3317, which is fairly low.	
3.2	Medium time lag between the original (blue)	23
	and lagged (red) signal. The correlation value is	
	-0.8184, which is extremely low.	
3.3	Large time lag between the original (blue) and	25

	lagged (red) signal. The lag amount is almost	
	exactly one pitch period, resulting in a peak	
	correlation value of 0.7744.	
3.4	The global maximum of a	26
	signal circled in red	
3.5	The search region is marked by the green lines,	26
	and the local maximum is marked by the small	
	red circle.	
3.6	The two circled peaks are the local maxima in	27
	their respective search regions, leading to an	
	incorrect pitch mark.	
3.7	Each candidate is dynamically assigned an	29
	accumulated probability, and the path with the	
	highest total accumulated probability is chosen	
	at the end.	
3.8	Using 3 candidate marks per search region	29
	significantly reduced the error rate and gave	
	smoother results.	
3.9	Using 3 candidate marks per search region	30
	required a significant increase in computation,	
	but there was more than enough leeway to	
	disregard this time constraint.	

LIST OF TABLES

Table No.	Title	Page
3.1	Comparison of artifacts between frequency	32
	domain(FD) and the time-domain techniques	
	(TD)	
3.2	comparsion between time-domain algorithm	33
3.3	Pros and Cons of Pitch Shifting in the Time	35
	and Frequency Domains	

APPREVIATIONS

PSOLA Pitch Synchronous Overlap Add

single-sideband modulation

STFT ShortTime Fourier Transform

WSOLA waveform similarity overlap and add

DFT DiscreteFourier Transform

AMDF Average Magnitude Difference Function

NFC-TSM normlized filter correlation- time-scale modification

OLA Overlap and Add

AC Auto Correlation Function

GLS-TSM Global and local search time scale modification

LIST OF SYMBOLS

$g^{(t)}$ $Xp[n]$ ωc $X[n]$ TS N	anysignal the analytic signal the amount of frequency shift in radians per second the input signal the sampling period
	the total number of samples in a window.
K	k is the lag index
F	f is the detected fundamental frequency.
fs	the sampling rate
d	the distance (in sample points) between candidates j1
D	and j2
В	fine tuning parameter.
j	ranges from 1 to n (the number of pitch mark
	candidates).
h(j)	the height of candidate j in region i.
hmax and hmin	max and min of the signal.

Chapter One

Introduction

1.1 Introduction:

Pitch shifting is away to change the pitch of a signal without changing its length. In practical application, this is usually achieved by changing the length of the sound, using one of the methods and then performing a sample rate conversion to change the pitch. in general, pitch-shifting algorithms can be divided into two categories; firstly time-domain which algorithm divided into three sections: a pitch detector(determine a fundamental frequency) ,a time compressor/expander(used to change the duration of the signal) ,and a pitch shifter(achieve a high quality output), secondly frequency-domain techniques like the time-domain technique is based on shifting small overlapping window blocks of data in time and resampling[1].

High-quality techniques for pitch-shifting of audio and musical signals have received a lot of attention recently In multi-track audio recording and mixing, pitch-shifting is used to match the pitches of two recorded digital audio clips. Real-time pitch shifting algorithms can be used for performing deejays In music industry, pitch-shifting is used in sampling synthesizers, sound effects for Karaoke systems [2].

1.2 Problem Statement:

In many applications there is a need to create a change in the voice pitch without creating a change in the characteristics of the voice. Stretching the voice signal can result in distortion of the voice.

1.3 Proposed Solution:

Use computationally many efficient algorithms for altering the pitch and the length of digitally sampled sounds while maintaining the important characteristics of the original.

1.4 Research Aims and Objectives:

The aim of this design project is to simulate the best real-time speech pitch shifting algorithms in matlab and compare between ability to change the pitch without change the basic and important voice characteristic.

The project has several objectives:

- To explore and simulate several pitch shifting techniques.
- •To implement and test of a suitable pitch shifting algorithm for high fidelity performance.

1.5Methodology:

Phase one:

Research for information knowledge.

Phase two:

Conduct a literature review to understand the work achieved in the area of pitch shifting.

Phase three:

Select algorithms to suit the intended application\ real time applications.

Phase four:

Understand information of algorithm parameter and calculation.

Phase five:

Recording the voice to used in test.

Calculation voice parameter such as pitch.

Determining the intended pitch shift.

Phase six:

Apply the algorithm with stated parameter.

Play the sound track to test pitch shift.

Analayize parameter.

1.6 Thesis Outlines:

In chapter one the statement of the problem, the proposal solution and methodology were discussed.

In chapter two discussion about audio and musical processing including the pitch shifting in frequency, time domain is presented; and other many algorithms in both time and frequency domain were discussed and a comparison table between many real time pitch shifting algorithms is also drawn.

In chapter three the best of this algorithm (psola)were discuss.

In chapter four we explain and simulate this algorithm.

In Chapter five include the conclusion of this project.