CHAPTER 6

Design

6.1. Distillation design:

6.1.1. Introduction:

Distillation is most common class of separation processes and properly of the better-understand unit operation that uses the difference in relative volatilities, or differences in boiling of the component to be separated, it is the most widely used method of separation in the process industries

-Types of distillation column:

1- Single flash vaporization.
2- Packed towers.
3- Plates towers.
a) Bubble cap towers.
b) Sieve pates.
c) Valve plates towers.
-Sieve trays: Sieve trays offer several advantage over bubble-cap trays, and their simpler and cheaper construction has led to their increasing use . the general form of the flow on a sieve tray is typical of a cross flow system with perforation in the tray taking the place of the more complex bubble caps . the key differences in operation between these two types of tray should be noted. with the sieve tray the vapor passes vertically through the holes into the liquid on the tray, where as with the bubble cap the vapor issues in an approximately horizontal direction from the slots . with the sieve plate the vapor velocity through the perforation must be greater than a certain minimum value in order to prevent the weeping of the liquid stream down through the holes . at the other extreme, a very high vapor velocity leads to excessive entrainment and loss off tray efficiency .

6.1.2. Collect the data of fluid to be distillated and distillated fluids:

-Feed stream:

At $403^{0} \mathrm{~K}, 2000 \mathrm{KPa}$.
Table (6.1) feed stream composition.

Component	Mole (kmol/h)	Mole\%	Mass flow $(\mathbf{k g} / \mathbf{h})$		Wt\%
methanol	2516.10	0.217006616	80615.844	0.125340067	
isobutylene	428.05	0.036918138	24017.8855	0.037342577	
1-butene	1817.511622	0.156755275	101977.3431	0.158552542	
2-butene	5172.917692	0.44614963	290236.8929	0.451255111	
MTBE	1660.00	0.14317034	146329	0.227509702	
water	0	0	0	0	
Total	11594.58	1	643176.9655	1	

-Top product stream :

At $400^{\circ} \mathrm{K}, 1900 \mathrm{KPa}$.
Table (6.2) top stream composition

Component	Mole flow $(\mathbf{k m o l} / \mathbf{h})$	Mole\%	Mass flow $(\mathbf{k g} / \mathbf{h})$	Wt\%
methanol	2428.7308	0.246641613	77816.57994	0.157508615
isobutylene	428.0505	0.0434689	24017.914	0.0486161
1-butene	1817.512	0.1845792	101975.46	0.2064048
2-butene	5172.912	0.5253107	290236.83	0.5874676
MTBEs	0	0	0	0
water	0	0	0	0
Total	9847.236	1	494046.06	

-Bottom product stream:
At $440^{\circ} \mathrm{K}, 1925.175 \mathrm{KPa}$
Table (6.3) bottom stream composition

Component	Mole flow $(\mathbf{k m o l} / \mathbf{h})$	Mole\%	Mass flow $(\mathbf{k g} / \mathbf{h})$	Wt\%
methanol	87.36842105	0.05	2799.284211	0.018770981
isobutylene	0	0	0	0
1-butene	0	0	0	0
2-butene	0	0	0	0
MTBE	1660	0.95	146329	0.981229019
water	0	0	0	0
Total	1747.368421	1	149128.2842	1

-Relative volatility:

Table (6.4) average relative volatility of composition.

Component	afeed	atop	abottom	Aav
methanol	1.186110097	1.162297499	1.448866438	1.265758
isobutylene	4.214615978	4.270349142	3.743897719	4.076288
1-butene	4.281515808	4.345063797	3.73236071	4.119647
2-butene	3.479708054	3.515657126	3.194453855	3.396606
MTBE	1	1	1	1
water	0.381770611	0.369823631	0.51937441	0.423656

6.1.3. Heavy and light key:

Heavy key: mtbe
Light key: methanol.

6.1.4. Type of tray:

Sieve tray.

6.1.5. Determination of minimum reflux ratio:

$$
\begin{equation*}
\sum \frac{\alpha \mathrm{x}}{\alpha-\emptyset}=\mathrm{Rm}+1 \tag{1}
\end{equation*}
$$

$\alpha=$ average Relative volatility of any component.
$\mathrm{X}=$ mole faction of component in Distillate.
$\varnothing=$ Constant.
$\mathrm{Rm}=$ Minimum reflux ratio.
$\sum \frac{\alpha z f}{\alpha-\emptyset}=1-q$
Where:
$\mathrm{Zf}=$ mole faction of component in feed stream.
$\mathrm{q}=$ feed quality

$$
\mathrm{q}=\frac{\mathrm{HG}-\mathrm{HF}}{\mathrm{HG}-\mathrm{HL}}
$$

Where:
$\mathrm{HG}=$ Enthalpy of gas at the feed dew point ($\mathrm{KJ} / \mathrm{Kmol}$)
$\mathrm{HL}=$ Enthalpy of liquid at the feed bubble point $(\mathrm{KJ} / \mathrm{Kmol})$
$\mathrm{HF}=$ Enthalpy of feed at $403^{\circ} \mathrm{K}$.
$\mathrm{q}=\frac{1.91827-1.4672}{1.91827-1.67614}=1.86$
Subustitute in equation (2) to find(Ø)

$$
\begin{aligned}
& \quad \sum \frac{\alpha \mathrm{zf}}{\alpha-\emptyset}=1-1.86 \\
& \sum \frac{\alpha \mathrm{zf}}{\alpha-\emptyset}=-.86 \\
& \frac{1.265758 \times 0.217007}{1.265758-\emptyset}+\frac{4.076288 \times 0.036918}{4.076288-\emptyset}+\frac{4.119647 \times 0.156755}{4.119647-\emptyset}+\frac{3.396606 \times 0.44615}{3.396606-\varnothing}+ \\
& \frac{1 \times 0.14317}{1-\emptyset}+\frac{.423656 \times 0}{.423656-\varnothing}=0
\end{aligned}
$$

Solving \emptyset By try \&error:

$$
\emptyset=1.047365
$$

Substitute in equation (1)to find Rm:

$$
\begin{aligned}
& \frac{1.265758 \times .246641613}{1.265758-\emptyset}+\frac{4.076288 \times .043469189}{4.076288-\emptyset}+\frac{4.119647 \times .184571192}{4.119647-\emptyset}+ \\
& \frac{3.396606 \times .525318007}{3.396606-\emptyset}+\frac{1 \times 0}{1-\emptyset}+\frac{.423656 \times 0}{.423656-\emptyset}=\mathrm{Rm}+1 \\
& \mathrm{Rm}=1.494995
\end{aligned}
$$

6.1.6. Calculation of the actual ratio(R)

The rule of thumb is:

$$
\mathrm{R}=\left(1.2 \text {------- 1.5) } \mathrm{R}_{\mathrm{min}}\right.
$$

$$
\begin{aligned}
\mathrm{R} & =1.2 \mathrm{Rm} \\
& =1.2 \times 1.5=1.8
\end{aligned}
$$

6.1.7. Calculation of the minimum number of theoretical stages:

$N_{\text {min }}=\frac{\operatorname{Ln}\left(\frac{X_{l k}}{X_{h k}}\right)_{D} \times\left(\frac{X_{h k}}{X_{l k}}\right)_{B}}{\operatorname{Ln} \alpha_{l k}}$
Where:
$X_{l k}=$ mole fraction of light key.
$X_{h k}=$ mole fraction of heavy key.
$\alpha_{l k}=$ average relative volatility of light key.
Nmin $=26$ stagess

6.1.8. Calculation of the number of theoretical stages:

$N-N_{\min } / N+1=0.75\left[1-\left(R-R_{\min } / R+1\right)^{0.566}\right]$
$\frac{\mathrm{R}-\mathrm{Rmin}}{R+1}=\frac{1.8-1.5}{1.8+1}=0.1$
From Gilland relation.
$\frac{\mathrm{N}-\mathrm{Nmin}}{N+1}=0.54$
$\mathrm{N}=57.695$ stages

6.1.9. Calculation of the column efficiency (E_{o}):

$$
\begin{aligned}
& \mathrm{E}_{0}=0.5278-0.27511 \log (\alpha \mathrm{lk} * \mu \mathrm{~F})+0.04493\left(\log \left(\alpha \mathrm{lk}^{*} \mu \mathrm{~F}\right)\right) 2 \\
& \mu \mathrm{~F}=0.2161 \\
& \mathrm{E}_{0}=69.29 \%
\end{aligned}
$$

6.1.10. Calculation of the number of actual stages (Na):

$$
\begin{aligned}
\mathrm{Na} & =\frac{\mathrm{N}}{E_{\mathrm{o}}} \\
& =\frac{57.695}{0.6929}=83.265 \text { stages }
\end{aligned}
$$

6.1.11. Calculation of the height of the column (Ht):

$\mathrm{Ht}=\mathrm{N} \times \mathrm{C}+\frac{(\mathrm{N}-1) \times \mathrm{c}}{10}+0.2 \times \mathrm{Ht}$
C: tray spacing $=0.609$ (so as to ensue accessibility for cleaning)
$0.8 \mathrm{Ht}=84 \times 0.3+\frac{(84-1) \times 0.3}{10}=27.69$
$\mathrm{Ht}=34.6 \mathrm{~m}$.

6.1.12. Determination of the feed plate location (m):

$$
\begin{aligned}
\frac{\mathrm{n}}{m}= & {\left[\left(\frac{\mathrm{zhk}}{z l k}\right) f \times\left(\frac{\mathrm{xlk}}{x h k}\right)_{D}^{2} \times \frac{\mathrm{B}}{D}\right] 0.206 } \\
& \mathrm{D}=9847.2118 \mathrm{Kmol} / \mathrm{h} \quad \mathrm{~B}=1747.368 \mathrm{Kmol} / \mathrm{h} \\
\frac{\mathrm{n}}{m}= & {\left[\left(\frac{0.14317034}{0.217006616}\right)_{f} \times\left(\frac{0.2396416}{0.007}\right)_{D}^{2} \times \frac{1747.368}{9847.2118}\right]^{0.206}=2.7561 } \\
& \mathrm{~m}=\frac{\mathrm{N}}{1+\frac{\mathrm{n}}{\mathrm{~m}}}=\frac{84}{1+2.7561}=22.36 \text { stages } \approx 22 \\
& \mathrm{~m}=22 \text { stage }
\end{aligned}
$$

the feed enter the column at tray no 22 from the Bottom.

6.1.13. Calculation of the tower diameter(D):

The following areas terms are used in the plate design procedure:
At=Total column cross- sectional area,
$\mathrm{Ad}=$ cross-sectional area of down comer,
$\mathrm{An}=\mathrm{Net}$ area available for vapor-liquid disengement, normally equal to Ac-Ad for asingle pass plate,
$\mathrm{A}=$ Active or bubbing, area, equal to Ac-2Ad for single- pass plates,
$\mathrm{A}=$ =Hole area, the total area of all the active holes,
$\mathrm{Ap}=$ perforated area (including blanked areas),
Aap= The clearance area under the down comer apron.

-Top diameter calculation:

$U_{F}=\mathrm{K} \sqrt{\frac{\rho_{L}-\rho_{V}}{\rho_{V}}}$
Where:
$U_{F}=$ floading vapor velocity (m / s) based on the net column cross sectional area A_{n}.
$\mathrm{K}=$ constant obtained from figure(1)appendix (A)
$F_{L V}=\overline{\bar{L}} \sqrt{\bar{V}} \sqrt{\frac{\rho V}{\rho L}}$
Where:
$F_{L V}=$ The vapor liguid flow factor in figer (1) appendix
$\bar{L}=$ Liguid mass flow rate kg / s
$\bar{V}=$ Vapor mass flow rate kg / s
Top Diameter calculations:

$$
\frac{\bar{L}}{\bar{V}}=\frac{R}{R+1}=\frac{1.8}{1.8+1}=0.64
$$

From ideal gas law:
$\mathrm{PV}=\mathrm{nRT}$
$\boldsymbol{\rho} \mathrm{v}=\frac{T_{o} P M_{w t}}{T P_{o} V_{o}}=\frac{273.5 \times 19 \times 50.17}{400 \times 1 \times 22.4}=29.09 \mathrm{Kg} / \mathrm{m}^{3}$
$F_{L V}=0.64 \sqrt{\frac{29.09}{467.37}}=0.160$
From figuer (1) appendix (A)
$\mathrm{K}=0.05$
$U_{F}=0.05 \times \sqrt{\frac{467.37-29.09}{29.09}}=0.753$
Design velocity $(\mathrm{U})=80 \%$ of $\left(U_{F}\right)$
$\mathrm{U}=0.8^{*} 0.753=0.602 \mathrm{~m} / \mathrm{s}$
$A_{n}=\frac{V 1}{\rho v \times U \times 3600}=\frac{(1+R) D}{\rho v \times U \times 3600}=\frac{(1+1.8) \times 9847.2118}{29.09 \times 0.602 \times 3600}=0.437 \mathrm{~m}^{2}$
$A_{d}=0.12 A_{t}$
$A_{n}=A_{t}-0.12 A_{t}=0.88 A_{t}$
$A_{t}=\frac{A_{n}}{0.88}=\frac{0.437}{0.88}=0.496 \mathrm{~m}^{2}$
$\mathrm{D}=\left(\frac{4 A_{t}}{\pi}\right)^{0.5}=0.79 \mathrm{~m}$

-Bottom diameter calculations:

$\bar{L}=(\mathrm{q} \times \mathrm{F})+\mathrm{L}$
From Ideal gas law:
$\mathrm{PV}=\mathrm{nRT}$
$\boldsymbol{\rho} \mathrm{v}=\frac{T_{o} P M_{w t}}{T P_{o} V_{o}}=\frac{273.15 \times 19.252 \times 85.34}{440 \times 1 \times 22.4}=45.53$
$F_{L V}=1.046 \sqrt{\frac{45.53}{728.228}}=0.261$
From figure (1) appendix (A) at $\mathrm{FLV}=\mathrm{O} .261$ and spacing 60 mm
$\mathrm{K}=0.046$
$U_{F}=0.046 \times \sqrt{\frac{728.228-45.53}{45.53}}=0.178 \mathrm{~m} / \mathrm{s}$
Design velocity (U) $=80 \%$ of flooding velocity $\left(U_{F}\right)$
$0.8 \times 0.178=0.1424 \mathrm{~m} / \mathrm{s}$
$A_{n}=\frac{V}{\rho V \times U \times 3600}=\frac{27572.19}{45.53 \times 0.1424 \times 3600}=1.198 \mathrm{~m}^{2}$
Down comer area $=12 \%$ from total area $=0.88 A_{t}$
$A_{t}=\frac{A_{n}}{0.88}=\frac{1.198}{.88}=1.36 \mathrm{~m}^{2}$
$\mathrm{D}=\left(\frac{4 A t}{\pi}\right)^{0.5}=\left(\frac{4 \times 1.36}{3.14}\right)^{0.5}=1.3172 \mathrm{~m}$.
Taking the bottom diameter for the entire tower since it is the greatest diameter.
$A_{t}=1.36 \mathrm{~m}^{2}$
$A_{d}=0.12 A_{t}$
$=0.12 \times 1.36=0.1632 \mathrm{~m}^{2}$

$$
\begin{aligned}
A_{a} & =A_{t}-2 A_{d} \\
& =1.36-2(0.1632)=1.0336 \mathrm{~m}^{2} . \\
A_{\mathrm{o}} & =0.1 \times A_{a}=0.10336 \mathrm{~m}^{2} . \\
A_{c} & =0.07 \times A_{t}=0.07 \times 1.36=0.0952 \mathrm{~m}^{2} .
\end{aligned}
$$

$-A_{p}=$ Preformatted area:

When down comer area $=0.12 \times A_{t}$
$\frac{L W}{D}=0.75$ (From figure (4) appendix (A) $\& \Theta_{C}=98^{\circ}$ (from figure(5)appendix (A))
Wherer L_{W} : Weir length.

$$
L_{W}=0.75 \times \mathrm{D}=0.75 \times 1.3172=0.9879 \mathrm{M}
$$

Angle subtended at plate edge by imperforated strip $=180-98=82^{\circ}$
Calming zones width $=50 \mathrm{~mm}$
Mean Length, imperforated edage strips
$=\left(1.3172-50 \times 10^{-3}\right) \pi \times\left(\frac{82}{180}\right)=1.813 \mathrm{~m}$.
Area of imperforated edge strips $=50 * 10^{-3} \times 1.813=0.0906 \mathrm{~m}^{2}$.
Mean length of calming zone $=\left(1.3172-50 * 10^{-3}\right) \sin \left(\frac{98}{2}\right)=0.9563 \mathrm{~m}$
Area of calming zone $=2\left(0.9563 * 50 * 10^{-3}\right)=0.09563 \mathrm{~m}^{2}$
Total area for perforatins, $A_{p}=1.336-0.0906-0.09563=0.8473 \mathrm{~m}^{2}$
$\frac{A_{0}}{A_{p}}=0.1\left(\frac{A_{a}}{A_{p}}\right)=0.1\left(\frac{1.0336}{0.8473}\right)=0.12198$.
$\frac{A_{0}}{A_{p}}=0.9\left(\frac{d_{0}}{L_{p}}\right)^{2}$
Where L_{p} :hole pitch.
$0.12198=0.9\left(\frac{d_{0}}{L_{p}}\right)^{2}$
$\left(\frac{d_{0}}{L_{p}}\right)^{2}=0.1355$
$\left(\frac{L_{p}}{d_{0}}\right)=2.716$.
2.716 are satisfactory, within 2.5 to 4.0.

6.1.14. Determination of fractional entrainment (ϕ):

From figure (2) appendix (A)
At $F_{L D}=0.261$ and 80% flooding $\phi=0.09$ (well below 0.1).
$\mathrm{e}=\frac{\phi \times \mathrm{L}}{1-\phi}=\frac{0.009 \times 17724.98}{1-0.009}=160.973 \mathrm{~kg} / \mathrm{h}$.

6.1.15. Weeping point:

Weeping will occur when $U_{O}(\mathrm{~min})<U_{o}(\mathrm{~min})$ calculated.
$U_{o}=\frac{V}{\rho V \times A_{o}}=\frac{37543.53194}{45.53 \times 0.10336 \times 3600}=2.3175 \mathrm{~m} / \mathrm{s}$
Taking 70% turn down.
$U_{o}(\min)=0.7 \times U_{o}=0.7 \times 2.3175=1.624 \mathrm{~m} / \mathrm{s}$.
$U_{O}(\mathrm{~min})$ calculated $=\frac{k_{2}-0.9\left(25.4-d_{o}\right)}{\rho_{v}^{0.5}}$
$d_{o}=5 \mathrm{~mm}$
k_{2} is a function of $\left(h_{w}+h_{o w}(\min)\right)$
$h_{w}:$ weir hight $=23 \mathrm{~mm}$
$h_{o w}(\min):$ minimum weir crest $=750 \times\left(\frac{L_{\text {min }}}{\rho_{l} L_{W}}\right)^{2 / 3}$
$L_{\text {min }}=0.7 \times 17724.98=12407.486 \mathrm{~kg} / \mathrm{h}$.
$h_{o w}(\min)=750 \times\left(\frac{12407.486}{728.228 \times 0.9879 \times 3600}\right)^{2 / 3}=21.31$
$h_{w}+h_{o w}(\mathrm{~min})=23+21.31=44.31 \mathrm{~mm}$.
From figure (3) appendix (A)
$k_{2}=30$
$U_{O}(\mathrm{~min})$ calculated $=\frac{30-0.9(25.4-5)}{(45.53)^{0.5}}=1.5 \mathrm{~m} / \mathrm{s}$.
\therefore Weeping will not occur.

6.1.16. Pressure drop calculation:

$$
\Delta \mathrm{P}=9.81 \times h_{t} \times 10^{-3} \times \rho_{l}
$$

$h_{t}=h_{d}+\left(h_{w}+h_{o w}\right)+h_{r}$
$h_{d}=51\left(\frac{U_{o}}{C_{o}}\right)^{2} \frac{\rho_{V}}{\rho_{l}}$
From figure (6)appendix (A)
At $\frac{A_{O}}{A_{P}}=12.198 \% \& \frac{\text { plate thicness }}{\text { hole thicness }}=1$
$C_{O}=0.859$

$$
h_{d}=51\left(\frac{2.3175}{0.859}\right)^{2} \frac{45.53}{728.228}=23.208 \mathrm{~mm} .
$$

$h_{\text {ow }}(\mathrm{min})=750 \times\left(\frac{27503.63}{728.228 \times 0.9879 \times 3600}\right)^{2 / 3}=36.23 \mathrm{~mm}$.
$h_{w}=23 \mathrm{~mm}$
$h_{r}=\frac{12.5 \times 10^{3}}{\rho_{l}}=\frac{12.5 \times 10^{3}}{728.228}=17.16$
$h_{t}=21.31+36.23+23+17.16=97.7 \mathrm{~mm}$
$\Delta \mathrm{P}=9.81 \times 97.7 \times 10^{-3} \times 728.228=0.007$ bar/tray .

6.1.17. Down comer liquid back up:

For safe design and to avoid flooding
$h_{b}<\frac{1}{2}\left(\mathrm{C}+h_{w}\right)$
$h_{b}=h_{t}+h_{d}+h_{w}+h_{o w}+h_{r}+h_{d c}$
$h_{d c}=166\left(\frac{L}{\rho_{l} A_{a p}}\right)^{2}$
$A_{a p}=h_{a p} \times L_{W}$
$h_{a p}=h_{W}-10 \mathrm{~mm}$
$23-10=13 \mathrm{~mm}$
$A_{\text {ap }}=0.9879 \times 10^{-3} \times 13=0.013 \mathrm{~mm}$
$h_{d c}=166\left(\frac{17724.98}{728.228 \times 0.013 \times 3600}\right)^{2}=4.64 \mathrm{~mm}$
$h_{b}=97.7+36.23+23+4.67=201.83 \mathrm{~mm}$
$\frac{1}{2}\left(\mathrm{C}+h_{w}\right)=\frac{1}{2}\left(0.3+23 \times 10^{-3}\right)=0.323 \mathrm{~m}$.
$h_{b}<\frac{1}{2}\left(\mathrm{C}+h_{w}\right)$ no floading will occure.

6.1.18. Down comer residence time:

$t_{r}=\frac{A_{d} h_{b} \rho_{l}}{L}$
$=\frac{0.1632 \times 0.2018 \times 728.228}{(17724.98 / 3600)}=4.8 \mathrm{sec}$.
$4.8>3$ so it is acceptaple.

6.1.19, Thickness calculation:

- columan thickness:

Highest operating temperature is $166.85^{\circ} \mathrm{C}$.
Design stress at $166.85^{\circ} \mathrm{C}=111 \mathrm{~N} / \mathrm{mm}^{2}$.
Joint efficiency $=0.85$.
$\mathrm{e}=\frac{P_{i} D_{i}}{2 J f-P_{i}}$
$=\frac{1925175 \times 1.3172}{2 \times 111 \times 10^{6} \times .85-1925175}=0.01357 \mathrm{~mm}$.
Corrosion allowance 2 mm .
\therefore column thickness $=2.01357 \mathrm{~mm}$.

-Head thickness:

- Ellipsoidal heads:

$$
\begin{aligned}
& \mathrm{e}=\frac{P_{i} D_{i}}{2 J f-0.2 P_{i}} \\
& =\frac{1925175 \times 1.3172}{2 \times 111 \times 10^{6} \times .85-1925175}=0.011 \mathrm{~m} .
\end{aligned}
$$

-Tori spherical head

$$
\mathrm{e}=\frac{P_{i} C_{s} R_{c}}{2 J f-\left(C_{s}-0.2\right)}
$$

$C_{s} \equiv$ stress cocentration factor for torispherical head.
$C_{s}=\frac{1}{4}\left(3+\sqrt{R_{c} / R_{k}}\right)$
$R_{c} \equiv$ crown radius .
$\frac{R_{C}}{R_{k}}=$ no less than 0.6 .
$R_{k} \equiv$ knukle radius.
$R_{c} \equiv D_{i}$

$$
\begin{aligned}
& R_{k} \equiv 0.6 D_{i} \\
& C_{s}=\frac{1}{4}(3+\sqrt{1 / 0.6})=1.072
\end{aligned}
$$

$\mathrm{J}=1$ (No joint in head).
$\mathrm{E}=\frac{1925175 \times 1.072 \times 1.3172}{2 \times 111 \times 10^{6}+(1.072-0.2)}=0.01224 \mathrm{~mm}$.
Ellipsoidal heads IS recommended since it has the smallest thickness \therefore head thickness $=0.011 \mathrm{~mm}$.

Table (6.5) summary of design calculation.

Parameter	Value
Tower diameter	1.3172 M
Tray spacing	0.30
Tower Height	34.6 M
Total area(cross sectional area)	$1.36 \mathrm{~m}^{2}$
Down comer area	$0.1632 \mathrm{~m}^{2}$
Net area	$1.19 \mathrm{~m}^{2}$
Active area	$1.0336 \mathrm{~m}^{2}$
Hole area	$0.10336 \mathrm{~m}^{2}$
Number of theoretical stages	57.695 stages
Tower efficiency	69.29%
Plate thickness	0.005 M
Weir height	0.005 M
Weir length	0.987 M
Hole diameter	0.005 M
Fractional entrainment	0.09
Weeping velocity	$1.5 \mathrm{M} / \mathrm{S}$
Total presser drop head	0.007 bar
thickness Of column	2.01357 MM
thickness Of head	0.011 MM

6.2. Reactor design:

-Type of reactor proposed:
A packed bed reactor, which is essentially a plug flow reactor packed of solid catalyst particles to speed up the reaction.

-Justification of selection:

- Adiabatic packed bed reactor, is the cheapest type of reactors and simple to design and construction.
- It give the highest conversion per weight of catalyst of any catalyst reactor.
- Running the reactor adiabatically allows to recover heat from the high temperature product and reduce cost of energy.
"The process uses an acidic ion-exchange-resin catalyst."

6.2.1. Design calculation:

$(\mathrm{CH} 3) 2 \mathrm{C}=\mathrm{CH} 2+\mathrm{CH} 3 \mathrm{OH} \rightarrow(\mathrm{CH} 3) 3 \mathrm{C}-\mathrm{O}-\mathrm{CH} 3$

Conversion: 80% of isobutylene.

-Input and output stream:

Table (6.6) Summary of material balance around reactor.

Component	Input(Kmol/h)	Output(Kmol/h)
Methanol	4176.10	2516.10
Isobutylene	2088.05	428.05
1-butene	1817.511622	1817.511622
2-butene	5172.917692	5172.917692
Mtbe	0.00	1660.00
water	0.00	0.00
Total	13254.58	11594.58

-Rate law:

$$
-r_{A}=\mathbf{k}_{f} \frac{\mathbf{C}_{\text {isobutylene }}}{\mathbf{C}_{\text {methanol }}}-\mathbf{k}_{\mathrm{r}} \frac{\mathbf{c}_{\text {mtbe }}}{\mathrm{C}_{\text {methanol }}^{2}}
$$

Where:
$\mathrm{k}_{\mathrm{r}}=1.464 \times 10^{22} \exp \left(-\frac{129,600}{\mathrm{RT}}\right)$
$\mathrm{k}_{\mathrm{f}}=6.05 \times 10^{16} \exp \left(-\frac{85,400}{\mathrm{RT}}\right)$
$\mathrm{C}_{\text {isobutylene }}=\mathrm{C}_{\mathrm{A}_{0}}\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\mathrm{C}_{\text {methanol }}=\mathrm{C}_{\mathrm{A}_{0}}\left(\theta_{\text {meth }}-\mathrm{X}_{\mathrm{A}}\right)$
$\mathrm{C}_{\text {mtbe }}=\mathrm{C}_{\mathrm{A}_{0}}\left(\theta_{\text {mtbe }}+\mathrm{X}_{\mathrm{A}}\right)$
"The units of reaction rate, ri, are $\mathrm{mol} / \mathrm{m} 3 \mathrm{~h}$, and the activation energy is in $\mathrm{J} / \mathrm{mol}$." Design equation:

$$
\frac{\mathrm{dF}_{\mathrm{A}}}{\mathrm{dV}}=\mathrm{F}_{\mathrm{A}_{\mathrm{O}}}\left(\frac{\mathrm{dX}_{\mathrm{A}}}{\mathrm{dV}}\right)=-\mathrm{r}_{\mathrm{A}}=\mathbf{k}_{\mathrm{f}} \frac{\mathrm{C}_{\text {isobutylene }}}{\mathrm{C}_{\text {methanol }}}-\mathbf{k}_{\mathrm{r}} \frac{\mathbf{C}_{\text {mtbe }}}{\mathbf{C}^{2}{ }_{\text {methanol }}}
$$

$$
\begin{equation*}
\mathrm{dV}=\frac{\mathrm{F}_{\mathrm{A}_{\mathrm{O}}}}{\mathbf{k}_{\mathbf{f}} \frac{\mathrm{C}_{\text {isobutylene }}}{\mathbf{C}_{\text {methanol }}}-\mathbf{k}_{\mathbf{r}} \frac{\mathbf{C}_{\text {mtbe }}}{\mathbf{c}_{\text {methanol }}^{2}}} \mathrm{dX} \mathrm{~A}_{\mathrm{A}} \tag{1}
\end{equation*}
$$

- Integration of right side of equation (2)

Since the reactor is adiabatic, temperature (T) and conversion (X) are related by the following equation:

$$
\mathrm{X}_{\mathrm{A}}=\frac{\sum \theta_{\mathrm{i}} \mathrm{C}_{\mathrm{pi}}\left(\mathrm{~T}-\mathrm{T}_{0}\right)}{-\Delta \mathrm{H}_{\mathrm{RX}}}
$$

Calculations were made by using Excel, and data need is constructed with the aid of equation (2), and tabulated in table (6.7):

Table (6.7) relation between conversion \& temperature

T	\boldsymbol{l}	
$\mathbf{3 5 8 . 0 0 0 1}$	$\boldsymbol{F}(\mathbf{x})$	
$\mathbf{3 6 2 . 5 3 4 1}$	0.091711	0.095535
$\mathbf{3 6 7 . 0 6 8 1}$	0.180646	0.05221
$\mathbf{3 7 1 . 6 0 2 1}$	0.26688	0.039508
$\mathbf{3 7 6 . 1 3 6 1}$	0.350477	0.030415
$\mathbf{3 8 0 . 6 7 0 1}$	$4.31 \mathrm{E}-01$	0.023869
$\mathbf{3 8 5 . 2 0 4}$	$5.10 \mathrm{E}-01$	0.019149
$\mathbf{3 8 9 . 7 3 8}$	0.586016	0.015773
$\mathbf{3 9 4 . 2 7 2}$	0.659605	0.013431
$\mathbf{3 9 8 . 8 0 6}$	0.730798	0.011961
$\mathbf{4 0 3 . 3 4}$	0.79963	0.011381

These data are plotted in figure (6.1) below:

Figure (6.1) integration plot.
The area under the curve $\mathrm{A}=0.031534679$
$\therefore \frac{V}{F_{A_{O}}}=\mathrm{A}$
$\rightarrow \quad V=F_{A_{0}} \times A$
$V=2088.05 \times 0.031534679=65 \mathrm{~m}^{3}$

$$
\mathrm{V}=\frac{\pi D^{2} L}{4}
$$

$$
\text { Put } \mathrm{L}=13.8 \mathrm{D}
$$

$$
\mathrm{V}=\frac{\pi D^{2} \times 13.8 D}{4}
$$

$$
\rightarrow \quad D=\sqrt[3]{\frac{V}{10.8}}=\sqrt[3]{\frac{65}{10.8}}=1.8 \mathrm{~m}
$$

$$
\mathrm{L}=13.8 \times 1.8=24.8 \mathrm{~m} .
$$

-Reactor thickness:

Highest operating temperature is $403^{\circ} \mathrm{K}$
Design stress at $403^{\circ} \mathrm{K}=70 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{e}=\frac{P_{i} D_{i}}{2 J f-P_{i}}$

$$
\frac{1925175 \times 1.8}{2 \times 70 \times 10^{6} \times 0.85-1925175}=29.59
$$

Corrosion allowance 2 mm .
\therefore Reactor thickness $=31.59 \mathrm{~mm}$.

