الأبية

قال تعالى :

(لَقَدْ أَرْسَلْنَا رُسُلْنَا بِالْبَيِّنَاتِ وَأَنزَلْنَا مَعَهُمُ الْكِتَابَ وَالْمِيزَانَ لِيَقُومَ الْنَاسُ بِالْقِسْطِ وَأَنزَلْنَا الْحَدِيدَ فِيهِ بَأْسٌ شَدِيدٌ وَمَنَافِعُ لِلنَّاسِ وَلِيَعْلَمَ النَّهُ مَن يَنْصُرُهُ وَرُسُلَهُ بِالْغَيْبِ إِنَّ الله قوي عَزيزٌ))

صدق الله العظيم سورة الحديد الآية"27"

لإفساء

في مدن الكلمة تسافر بنا الحروف الى عواصم الضياء تنشد الانتشار لأن في طرقات الروح شعوبا تهفو للعطاء وفي انحاء القلب تورق الكلمات

نكسب مداد هذا اليراع المدرار بين طوايا هذه الصفحات لنهدي هذا العمل

الي ذلك الانسان العظيم الذي يقف في وجه اعاصير الحياة بعزيمة وقوة ليعطينا الزاد لننطلق نحو الغد والمستقبل بروح ملؤها الامل والعزيمة والإصرار والذي طال إنتظاره للحظة الحصاد

أبي

هي شمعة ولهى تذوب لكي أرى خطوي وفي رقصاتها أتقدم الى ذلك الينبوع الذي يتدفق حنانا ويفيض رحمة

أمي

إلى مشاعل النور والضياء في كل زمان ومكان الكنز المعرفة العظيم الي من حمل رسالة العلم التي رمع الله بها قدر العلماء

معلمي

هناك أرواح من البشر لها في قلبي نبضة ان اقبلت دقه قلبي لها فرحاً وان ادبرت دق قلبي لها شوقاً

أصدقائى وصديقاتى

الشكسر والعسرفان

الشكر لمن اضاءت الشمس بقدرته وسجدت المخلوقات لعظمته ووهبنا الحمد والشكر على نعمته عندما يكون العطاء عظيما تعجز أن تفي الكلمات وتنطفيء مصابيح الشكر والثناء ، فاليومنستعير كل مجازات اللغة ونغوص في بحورها ونمتطي جياد الحروف لنجد فيها ما يعبر عن شكرنا وتقديرنا لما قدمتم لنا من الجهد والوقت والصبر والإهتمام الدكتور / معتصم مكنون راعي المشروع ليتنا نستطيع أن نعتصر من رحيق الكلام ألوانا تردد عبارات الشكر والعرفان

شكراً لعطاءك الاثر ورعايتك لنا حتى خرج هذا العمل الى النور

ABSTRACT

In this study we used a very sensitive, highly selective spectrophotometric method for determination of iron by using a derivative of 1,10-phenanthroline.

Factors such as the low cost of the instrument ,easy ,handling lack of requirement for consumable and almost no maintenance have caused spectrophotometry to remain a populer technique ,particularly in laboratories in developing counties.

5-nitro 1,10-phenanthroline forms octa hedral complex with intense red color with iron(II) that may exploited to determination iron concentration in the rang of part per million .

The experiment do in room temperature and pH 2.4, in ethanol, the suitable wave length to the complex was found 580 nm.

The strongly advocate that be for the analysis process we must separate any element which may be formed any interference with iron complex such as zinc.

Table of Content

Title	Page
الآية	I
الآهداء	II
الشكر والعرفان	III
Abstract	IV
Content	V
Lest of figures	X
List of tables	XI
Chapter one	
1. Introduction	1
Chapter two	
2.1 Introduction	2
2.2 Physical properties	3
2.3 Occurrence	3
2.4 Properties of reaction	4
2.5 The +2 oxidation state	4

2.6 The +3 oxidation state	5
2.7 Isotopes	5
2.8 Nucle synthesis	6
2.9 Chemistry and compounds	6
2.9.1 Binary compounds	7
2.9.2 Metal complexes	7
2.9.3 Structure of coordination compounds	9
2.9.3.1 Geometry	9
2.9.3.2 Isomerism	10
2.9.3.2.1 Stereo isomerism	11
2.9.3.2.2 Geometric isomerism	11
2.9.3.2.3 Optical isomerism	12
2.9.3.2.4 Structural isomerism	13
2.9.3.3 Older classification of isomerism	13
2.10 Electronic structure of coordination compounds	14
2.10.1 Color	14
2.10.2 Magnetism	15
2.10.3 Reactivity	15

2.11 Iron complexes organic chemistry	16
2.12 Role of iron in the body	17
2.13 Iron and water	18
2.14 Solubility of iron and iron compounds	19
2.15 Risk assessment	19
2.16 Iron toxicity	20
2.17 Iron and disease	20
2.18 Removing iron from water	21
2.19 Iron removal with water softeners	21
2.20 Spectroscopy	22
2.20.1 Ultraviolet – Visible (uv-vis) spectroscopy principle	24
2.20.1.1 Introduction	24
2.20.1.2 Principle of ultraviolet- visible absorption	24
2.20.1.3 Devices and mechanism	27
2.21 Analysis of iron	31
2.21.1 Colorimetric iron analysis	31
2.21.2 The determenation of iron(ii) by redox titration	32
2.21.3 Determination of iron by atomic and molecular	33

spectroscopy	
2.21.4 Determination of iron as iron(iii) oxide by initial	35
formation of basic iron (iii)	
2.21.5 Volumetric method to determination iron	36
2.21.6 Determination of iron(iii) with EDTA	36
2.21.7 Determination of iron (iii) in the presence of aluminium	37
Chapter three	
3. Material and methods	38
3.1 Sample	38
3.2 Chemical	38
3.3 Preparation of solution	39
3.3.1 Preparation of 5-nitro 1,10-phenanthroline	39
3.3.2 Preparation of stock solution of iron	39
3.3.3 Preparation of stander solution of iron	39
3.3.4 The linearity of concentration	39
3.3.5 The effect of the pH on complex formation	40
3.3.6 Determination of λ max	40
3.3.7 The effect of concentration	40

3.3.8 The interferences effect	40
Chapter four	
4.1 Results	41
4.1.1 Preparation of 5-nitro 1,10-phenanthroline	48
4.2 Results discussions	49
4.2.1 Effect of the pH	49
4.2.2 effect of concentration	49
4.2.3 Interference study	49
Chapter five	
5.1 Conclusion	50
5.2 Recommendation	50
5.3 References	51

List of Figure

Figure	Page No
1. Basic structure of spectrophotometer	27
2. Absorbance of two different compound	28
3. An example of isopiestic point	29
4. Transmittance	30
5. Major compounds of AAS	34
6. Shows the relation between concentration and	41
absorbance	
7. Shows the relation between concentration and	42
absorbance	
8. Shows the relation between concentration and	43
absorbance	
9. Shows the relation between concentration and	44
absorbance	
10. Shows the relation between wave length and	46
absorbance	
11. Shows the relation between concentration and	47
absorbance	

List of Tables

Table	Page
4.1 The linearity of concentration in the rang between 0.1 and 0.6	41
ppm	
4.2 The linearity of concentration in the rang between 0.1 and 1 ppm	42
4.3 The linearity of concentration in the rang between 1 and 10 ppm	43
4.4 The linearity of concentration in the rang between 10 and 50	44
ppm	
4.5 The pH effect on complex formation	45
4.6 Determination of λ max	45
4.7 The effect of concentration on complex formation between	47
Fe(II) and 5 NPT	
4.8 The interference effect at pH 2.4	48
4.9 The interference effect at pH 4	48
4.10 The interference effect at pH 10	48