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Chapter1  

 Shift Operators 
 

In this chapter are assumed to be Hilbert .We write  B X  for the set of 

bounded linear operators on X  and  ,B X X  for the set of bounded linear 

operators on X  toX . Triangular brackets .,.  denote an inner Product 
Sec (1.1): Partial isometeries and Wold Decomposition with inner 
operators Hilbert spaces: 
  
Definition (1.1.1): 
 An operator S  in  B X  is a shift operator if S  is an isometric and 

0nS    strongly, that is, 0nS f   for all f inX . 
It is convenient to present the general theory of shift operators as a chapter 
in pure theory. The central structure theorem is the World decomposition, 
which shows, in particular, that a shift operator is determined up to unitary 
equivalence by its multiplicity operators that commute with a shift operators 
play a special role in both theory and applications. A universal model for 
linear operators-on a Hilbert space the Beurling-Lax theorem which 
characterizes the invariant subspace of a shift operator the lifting theorem a 
concrete realization for an arbitrary shift operator. 
At the same time, the study of shift operators should not be separated from 
the study of examples. The operator multiplication by z   on  2H D , 

defined by    :S f z zf z  for all  f z  in  2H D  a shift operator 
with adjoint  

     :S f z z f z f o Iz      

For any Hilbert space   the operators    0 1 2 0,: , , 1 , ..s c c c o c   on 
2I      is a shift operator. I s  Ad joint is

   0 1 2 1 2 3: , , , , , ,c c c c c c    . These examples are sufficient for 
illustrating the results in the chapter. 
Additional examples of shift operators are given in the Examples. 
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An operator W  in  B X  is a Partial isometric ifW  is isometric on the 

orthogonal complement of its kernel. In this case we call  M kew   the 
initial space andN wM   the final space of w  operator version of the 
Would Decomposition.  
 
Theorem (1.1.2): 
Let  V ∈ B  be an isometric then: 

(i) 1oP VV    is the projection of  on V   ; 

(ii) as , n nn V V  converges strongly to a projection operatorP ; 

(iii) 0

o
P V 


 ; 

(iv) j
oo

VjPV   converges strongly to :1Q P ; 

(v)  ;lim n
AQ g V g o  
 ∈ ; 

(vi) Q and P  reduce V ; 

(vii) V P  is unitary; 

(viii) V Q is a shift operator; 

(ix) 
0

1 j
oP VjPV    

                                                   0
0

jP V P  


    

Either version can be proved directly or deduced from the other. We prove 
the operator version only. 
Proof: 
 The projection of   on V so  1oP VV    is the projection of   on 

V    on nV  . This proves  s i . 

For any ,1,2, , n nn V V   is the projection of   on nV   hand 

 1 1n n n n n nV V V VV V V V       . 

Therefore  ii  and  iii  follow. The identity. 
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                                       1
n n jj j

o
o o
VjPV V VV

     

                                                                    
1 11 n nV V     

Implies  
For any  ii  

Hence (v) holds. For any 10,1,2, , n n nn VV V V V   .Letting
n  , we get ,VP PV so (VI) holds similarly, VPV P  and (vii) 
follows. 
Let : Then n nV Q V Q o        strongly by (v). Thus   is a 
shift operator and (viii) holds. 
The first relation in (ix) follows from (IV). Arguing as in the proof of (me), 
we see that 

1 1j j j j j
oV PV V V Vj V       

Is the projection of   on 1j j j
oV V V P    ? Thus 

2, , ,o o oP P VP V P    are orthogonal subspaces of   with associated 

projections 2 2, , , ,o o oP P VPV V PV    Hence the second relation in (ix) 
follows, and this completes the proof. 
 
Corollary (1.1.3):  

An isometry  V ∈ B  is a shift operator if and only if  0o
VI

 . 
Specializing the Wold decomposition the case of a shift operator we obtain.  
 
Corollary (1.1.4):  

If  B X  is a shift operator and ker X = , then ,

0

jkf 


 X  

Where , , 0jk j ∈X . In this case 
22

j
o

f k


  and  

0 , 0j
jK P S f j  ; 

Where  1oP SS    the projection ofX  onX . 
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When S  is multiplication by Z  on  2 , kerH D sX  is the set of 

constant function in  2H D . If we identityX with C  in the obvious way, 

then the expansion of any function in  2H D  takes the form 

 
0

j
jf Z a Z



  and coincides with the Taylor series representation. 

 
Corollary (1.1.5): 
 Let  S ∈ B X  be a shift operator. A subspace M  of X  reduces S  if and 
only if. 

0
0

jM S M


  ; 

Where oM  is a subspace of? ker S X =  
Proof: 
 If 0 0 ,A A K K  reducesS , then /Sm S M  is a shift operator on M

and mS S M  . Let kero mM S  . Then keroM S   X . 

Let X  be a Hilbert space. A subspace ε of X  is called cyclic for an 
operator  A ∈ B X  if j

oV A E X . 
 
Theorem (1.1.6): 
 If  S ∈ B X  is a shift operator, then ker S X  is cyclic forS , and dim  

X  dim E  for every cyclic subspaceE  forS . 
Proof:  
 Corollary (1.1.4) implies that X is cyclic forS . Let E  be any cyclic 

subspace   for S. If 
0P  is the Projection of X  on X  then oT P E  is in 

 ,EB X  claimT E X . To see this, consider any kX ΘTE  for all
e E∈ , 
                                0 0, , , 0e k e k e kP P    
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Because ok T P E E . Since X =X ΘSX  we also have

, 1,2,3,jeS k j   . Thus jk  E   for all 0,1,2,j    and since E  

is cyclic k o  ThereforeT E X . 
Now  ,T  E∈ B X  and Ker *T  X ΘE  Hence T   is one-to one, and by 
lemma (1.1.7), dim X  dimE . 
We define the multiplicity of a shift operator  S ∈ B X  to be the 
minimum dimension of a cyclic subspace forS  .By Theorem (1.1.6). The 
multiplicity of S  is dimX , where ker S X . For any Hilbert space   

the multiplicity of    0 1 2 0 1: , , , 0, , ,S c c c c c   on 2I   is to the 
dimension of . 
 
Lemma (1.1.7): 
Let 1X  and 2X  be two Hilbert spaces. If there exists a one-to one operator 

 1 2,A ∈ B X X  then dim 1 X  dim 2X  
Proof:  
 Let A WB be the Polar decomposition of ,A so that Bis a nonnegative 
operator in  1B X and w  is a Partial isometry on 1X  to 2X  with initial 

space 1BX  and Final space 1AX . 

Since  ker ker 0B A  , we have    ker ker 0B B B   X
and 1 1B X X .Thus w is an isometry on 1X to 2X . If  je j J∈  is an 

orthogonal basis for 1X , then j j JWe 
 is an orthonormal set in 2X . Hence 

dim 1 X  dim 2X . 
Shift operators have the following remarkable property:  
Up to unitary equivalence and multiplication constants, the classes of 
operators T M   , where S is a shift bounded and M  is invariant 

subspace for    include every bounded Linear on a Hilbert space. 
 
Theorem (1.1.8): 
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 Let T  be a bounded linear on a Hilbert space X such that 1T  and 
nT f o for each f ∈ X .LetS   be a shift operator on a Hilbert space 

 of multiplicity≥   *dim 1 TT


 X . Then there exists an invariant 

subspace M of 푆∗ such that T  is unitarily equivalent to 푆∗|M. 
If  T ∈ B X  andT   does not satisfy the hypotheses of the theorem, then

cT   will satisfy the hypotheses for any scalar 0c   such that 1cT  . In  
This case, it is necessary to choose a shift operatorS  whose multiplicity is
X . 
Proof: 
 Let ker S X . Our assumptions imply that. 

                               1/ 2 1/ 2
dim 1 dim 1T T T T

 
   X X Into  

X  Define :W X by 

                                                          1/ 2

0

1 ,j jWf S J T T T f f


  X∈  

By corollary (1.1.5) for any f ∈ X  

                                               
21/ 22

0

1 jWf J T T T f 


   

                                             
21/ 2

0

1 jT T T f


   

                                            
0 0

lim 1 ,j j

n
T T T T f f


 


=  

                             21/ 2 21lim n

n
f T f


  X X X  

Hence W  is an isometry on X  to . LetM W X . 
ThenW  is a Hilbert space isomorphism ofX  ontoM . For each      

   1/ 2
1j j

o
f S Wf S J T T T Tf WTf


   X∈  

It follows that M is invariant underS , andT   is unitarily equivalent to 
푆∗|M. 
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Let  S ∈ B X  be a shift operator. An operator  A ∈ B X  
(i) is S  analytic if AS SA , 

(ii) S  inner if A  is analytic and partially isometric, and 
(iii) S   Outer if A  is analytic and AX  reducesS . 

An analytic operator  A XB∈  is said to be Constant if is 퐴∗ also 
analytic. The terminology analytic, inner, and outer is also used when there 
is no possibility of confusion. To justify the terminology, consider the 
example where S  is multiplication by z on  퐻 (D). 
Let  S ∈B X be a shift operator, and let X  
 
Theorem (1.1.9): 
 The initial space of any inner operator  B ∈ B X reduces S  
Proof: 
 The initial space of B  is given by  :M f Bf f ∈X .If 

f ∈ X and 

                    Bf f , then  BSf SBf f Sf    

Hence M  is invariant under S . Since kerM B   and ,BS SB M  is 
also invariant under S  Thus M  reduces S . 
We next describe all of the S  constant inner operators onX .  To construct 
an example, choose a partial isometry  B ∈B X . By corollary (1.1.5), 

each f ∈ X  has the form
0

j
jf S k



 , where 
0jK

 X . Define an 

operator  B ∈ B X  by setting  

B ƒ= 0
0

j
jS B K



  
In this situation. It is easy to see that B  is inner Moreover, 
퐵∗ƒ= *

0
0

j jS B K


  

If 
0

j
jf k



S   as above. Hence B  is also inner, and B  is Constant. This 

example is general. 
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Theorem (1.1.10): 
Every Constant inner operator  B ∈ B X  has the form just described for  

Some partial isometry  oB ∈B X .  
 
 
 
Proof: 
 First note thatX reducesB . For since ,B S S B B  X X , and since 
 BS=SB, X =SX is also invariant underB . Therefore the projection oP of 

X  on X  commutes withB , and hence oP  also commutes withB . 
 
Theorem (1.1.11): 
The final space of an inner operator  B X∈ B  reduces S  if and only if 
B  is Constant. 
Proof: 
If B is Constant, then B  is also inner. The final space for B   is the initial 
space forB . Hence the sufficiency part follows from Theorem (1.1.9). 
 Conversely, suppose that the final space N of B  reducesS . By BB  
Is the projection of X  onN ? SinceN  reduces    , BB BB S S S

.Therefore   0B SB B S   and   kerSB B S B  X . 

Claim :( S퐵∗ − 퐵∗푆) X 
 
Ker B.For if keru B∈  , then kerS u B    by  

Theorem (1.1.9).Hence for any 

  , , ,f SB B S f u f BS u Sf Bu     X  0 . 

The Claim follows. Then  

     ker ker 0SB B S B B    X
,
 

So SB B S  .Thus B analytic and so B is S–constant. 
 
 Theorem (1.1.12): 
Let  S  XB be a shift operator, and let ker S X . If  T X∈ B  then 
the following are equivalent: 
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(i) T=A퐴∗ for some S-analytic operator  A ∈ B X ; 

(ii) T STS J J     for some operator  ,J ∈ B X X ; 

(iii)  0T STS    And the rank of  T STS   does not exceed the 
multiplicity ofS . 
The rank of an operator is the dimension of closure of its range. 
 
Proof: 
   i ii  If T AA  where A is S-analytic, then 

  0T STS A I SS A AP A J J          , 

Where 0P I SS    is the projection of X  onX  and 

 ,J P A
 ∈ B X X  conversely, where  ,J ∈ B X X ? Repeated 

application of the equation  
T STS J J     Yields.  

    
1 * 1 * *

0

n n j jT S TS S J JS


                                  

0,1,2,n    .viewing J  an operator on X to X  ,we obtain  

              
1 * 1 * *

0
, , ,

n
n n j jTf g S TS f g JS f JS g                          

                      * *

0 0

,
n n

j j j jS JS f S JS g     

For all f, g X and 0,1,2,n    Define  A B X∈   

So that * *

0

j jA S JS


  .It is easy to see that the series for A  converges 

strongly and A is S -analytic. Letting n   in the preceding identity, we 
obtain  

, ,Tf g A f A g   For all ,f g ∈ X ,soT AA . 

   ii iii LetT T J J  S S , where  ,J ∈ B X X . 

Clearly 0T T  S S .Let 퐽 = 푊퐵 be the polar decomposition of 퐽.Thus 
퐵 = (퐽 ∗ 퐽) ⁄  and 푊is a Partial isometry onX  ToX  With initial space



10 
 

BX  .The range of T T  S S  is contained inBX   since
2T T J J B   S S . Since W  mapsBX   isometrically intoX , the 

rank of T T  S S  does not exceed dimX , which is the multiplicity of푆. 
Hence (푖푖) 푖푚푝푙푖푒푠 (푖푖푖) .  

Conversely, Let (푖푖푖) hold, and set  1/ 2
B T T   S S . Since the range of 

B  and the range of 2B T T   S S  have the same closure 
dim dimB X X .Therefore there is an isometry 푊 in 퐵 퐵X , X . 

Then 퐽 = 푊퐵 ∈ 퐵 X , X  and T T J J  S S ; that is , (푖푖) holds .  
 
Theorem (1.1.13): 
Let  S ∈ B X  be a shift operator, let ker X = S , and let 푃 = 1 −
푆푆∗be the projection of X  onX  . 
By the support of an S-analytic operator  A ∈ B X we mean the smallest 

reducing subspace  M A  for S  containing  kerA A  X . 

Equivalently,  M A   is the smallest reducing subspaceN   for S  such that 
퐴|푁 = 0  
Thus  M A  reduces S , show that  

                                                       
0

jM A M A



  S ; 

Where  M A P A 
 X . Indeed,  M A  contains  

 I A P A
   SS X = X , and 

                                                  0
0

jM A M A


  S . 

The direct sum on the right reduces S  and contains AX . For if f X∈   
and 퐴∗푓 = ∑ 푆 푘   
                                   푘 = 푃 푆∗ 퐴∗푓 = 푃 퐴∗푆∗ 푓 ∈ 푀 (퐴). 
 
Lemma (1.1.14): 



11 
 

For any projection 푃 on a separable Hilbert X  and any orthonormal basis 
푒

∈
  forX ,  

                                           
2

dim j
j J

P Pe
∈

X =  

Proof: 
Let  k k Kf ∈ be an orthonormal basis forPX . Then  

                                         
22

,j j k
j J j J

Pe Pe f 
∈ ∈ K∈k

 

                                          
2

,j k
K k j J

e f
∈ ∈

 

                                         
2

k
k k

f
∈

,  

                             dimP X .   
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Sec (1-2): Beurling-Lax and lifting Theorems with concrete Realization 
of a shift operator: 
  
Theorem (1.2.1): 
Let S  be a shift operator on a Hilbert space X .A subspace M  of X  is 
invariant under S   if and only if M A X  for some S -inner operator A  
onX . 
This representation of an invariant subspace is essentially unique. Suppose 
that an invariant subspace M  of S  is represented as M A X  and 
M C X  for two S -inner operators A  and C .Then AA CC  , so 
                                                            C AB      And    A CB  
Where B  is an S -constant inner operator whose initial space the support is 
of C  and whose final space is the support of A . Conversely. 
A CX X  
Whenever A  and C  are S -inner operators related in this way. 
Proof:  
IfM A X , where A  is S -inner, then 푆푀 = 푆퐴픛 = 퐴푆픛 ⊆ 퐴픛 = 푀. 
Conversely, assume that M is invariant under S . Let 푃 be the projection of 
X  onM . Then P S S  is the projection of X  on MS   and 
Q P P   S S  is the projection of X  on 푀 ⊖ 푆푀. 
We show that the dimension ofQX   does not exceed the multiplicity of S , 

that is, dim Q X  dimX , where ker X S . If X  is infinite 
dimensional of any cardinality, then dimQ X   dim X  dim X   let X  
be finite dimensional with orthonormal basis {푒 } ∈ .Then 푆 푒 : 푘 ∈
퐾, 푗 = 0, 1, 2, … } is an orthonormal basis forX  . In this case X  is 
separable,  

dim 풬픛 = 〈풬푆 푒 , 푆 푒 〉
∈

 

= lim
→

〈 푃 − 푆푃푆∗ 푆푗푒푘, 푆푗푒푘〉
푛

푗=0푘∈퐾
 

                                                  
= lim

→
〈푃푆푛푒푘, 푆푛푒푘〉

∈

 

                                                             

2 dim
k K

ek


  X  

As required 
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It follows from what we have shown that P   satisfies condition (iii) 

푃 = 퐴퐴∗ for some S -analytic operator A . Since 푃 is a projection, A  is 
partially isometric and hence S -inner. By construction, M P A X X  , 
and this completes the proof. 
The commutant of an operator  T B X  is the set  C T ) of all 

 X B X such that XT TX . More generally, if  1 1T B X any

 2 2T B X , let  1 2,C T T  be the set of all  1 2,X B X X  such that

1 2XT T X . The lifting characterizes  1 2,C T T  when 1T  and 2T  is 
represented as in the universal model. 
 
Theorem (1.2.2): 
Let M  be an invariant sub space for S , and let P  be can the projection of 
X  onM . Let M   be an invariant sub space forR . Let  ,X  X XB  
satisfy         

(i)  XM M   and    0XM   , 

(ii)   P X XRS , 

(iii) X X T   
 Then there exists an operator 푌 ∈ ℬ(픛, 픛)  such that 

 i  X PY , 

           ii     Y YR  , 

               iii     Y Y T  . 
Proof: 
LetQ I P  . Then Q QS X X , and QXS  is an isometry. Let 0P  
be the projection of X  on퐾푒푟((푆|풬픛)∗) = 풬픛 ⊖ 푆풬픛. Thus

0P Q Q   S S , and for 푗, 푘 = 0, 1, 2, …,  

                                   푃 푆∗ 푆 푃 =
0              푖푓  푗 ≠ 푘,
푃             푖푓  푗 = 푘,

�                                

And 
                                                  0 0jP X S       And    0 0 0jX P P S                        

We inductively construct sequences {퐵 }   and    1
,nY




 B X X such 

that 
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                                                                     1Y X  , 

푌 = 푋 + 푆 퐵 ,        푛 = 0, 1, 2, … , 

We require for 푛 = −1, 0, 1, 2, …,  that  
훼(푛):   퐵 ∈ ℬ(픛, 푃 픛),                   
훽(푛):   푌∗푌 − 푅∗푌∗푌 푅 = 퐵∗퐵 , 
훾(푛):   푌∗푌 ≤ 푇 ≤ 푅∗푇푅,             

And for 푛 = 0, 1, 2, …  that 
                                                             1: n nn B B R   . 
Let 퐵 = 풬푆푋 . Since 풬푆∗풬푆푋 = 풬푆∗(1 − 푃)푆푋 = 풬푋 − 풬푆∗푋푅 = 0 −
0 = 0, 

푃 퐵 = (풬 − 푆풬푆∗)풬푆푋 = 풬푆푋 = 퐵  
Thus  1  holds. Also,  

푋∗푋 − 푅∗푋∗푋푅 = 푋∗푋 − 푋∗푆∗푃푆푋 = 푋∗푆∗풬푆푋 = 퐵∗ 퐵 , 
So 훽(−1) holds. The two inequalities in 훾(−1)  hold by assumption. 
Suppose that 퐵 , 퐵 , … , 퐵  , have been constructed for some 1n   . Then 

 n n n n n n n nB B Y Y R Y Y R R T Y Y R         . 

By the lemma there exists an operator  1` 0,nC P B X X  such that 

1 1nC    and  

                                                              1/ 2

1n n n nB C T Y Y R
  . 

Let 

                                                         
1
2

1 1n n n nB C T Y Y    

Cleary  1n   and  1n   hold. Hence. 

                                                           1 0 1n nB P B  , 

                                        
1 1

1 1 0
0

0
n

n n j
n n nB Y B P X B       
 

 
   

 
  

Therefore 
                                                      1 1 1 1n n n nY Y R Y Y R  

     
                      

= (푌∗ + 퐵∗ 푆∗ )(푌 + 푆 퐵 ) − 푅∗(푌∗ + 퐵∗ 푆∗ )(푌 +
푆 퐵 )푅 
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= 푌∗푌 + 퐵∗ 퐵
− 푅∗(푌∗푌 + 퐵∗ 퐵 )푅                                                             

= (푌∗푌 − 푅∗푌∗푌 푅)
+ (퐵∗ 퐵 − 푅∗퐵∗ 퐵 푅)                                                 

= 퐵∗퐵 + (퐵∗ 퐵
− 퐵∗퐵 )                                                                                           

= 퐵∗ 퐵 ,                                                                                                  
So  1nB   holds. Similarly, 

                                    
1 1
2 2

1 1 1 1n n n n n n n n n nY Y Y Y T Y Y C C T Y Y    
        

                                                        n n n nY Y T Y Y     

                                                       T , 
And  1Y n   follows. This completes the inductive construction. 

It follows that  0nY


 converges strongly to an operator 푌 ∈ ℬ(픛, 픛).  Thus  

푌 = 푋 + 푆 퐵  

Where the series converges strongly. The assertions  i  (and  iii  are 
immediate. For each 1,2, ,  
                                            

푌 푅 = 푋푅 + 푆 퐵 푅 

                                             

= 푋푅 + 퐵 + 푆 퐵  

                                              

= 푃푆푋 + 풬푆푋 + 푆 퐵  

푆푋 + 푆 퐵 = 푆푌  

Thus  ii  holds and the results follow. 
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Lemma (1.2.3): 
 Let 퐴 ∈ ℬ(픛 , 픛 ), C∈ ℬ(픛 , 픛 ), 푎푛푑훽 > 0 be given. The following are 
equivalent: 

(i) A BC  for some B ∈ ℬ(픛 , 픛 ) such that ∥ 퐵 ∥≤ 훽; 
(ii) 2A A C C  . 

 Proof:  
Assume  ii .For each 1f X , 

 
 

Hence we may define 퐵 : 퐶픛 →픛  by 퐵 (퐶푓)= AF, f ∈ 픛 .we have ‖퐵 ‖ ≤
훽  . Extend 0B  to on operator  퐵 ∈ ℬ(픛 , 픛 ) such that B  is zero on 
픛 ⊖ 퐶픛  . Then A BC  and ∥ 퐵 ∥≤ 훽; that is, (푖) follows. 

 Let   be a Hilbert space with inner product .,.

  and norm .


. The 

norm on ℬ(ℓ)is denoted| . |ℬ(ℓ). 
 

Definition (1.2.4): 
 By  2H D  we mean the space of all  -valued holomorphic function on
D   for which the quantity  

  
2 22

2

00

1
2

i j
jf re d a r


 








 

Remains bounded for 0 1r  . 
For the rudiments of the theory of vector and operator valued holomorphic 
functions .It is easy to see that  2H D  is a Hilbert space with inner 
product  

          2,f g 
1

lim
r

    
2

00

1 , ,
2

i i
j jf re g re d a b


  





 


 

F or any   0
j

jf z a z
  and   0

j
jg z b z

   in the space. Thus

 2H D   is isomorphic with 2L   the correspondence between a function 
and its Taylor coefficients. As a consequence of this isomorphism, we 
obtain: 
 
Theorem (1.2.5): 

2 2* 2 * 2
3 21 *

, ,Af A Af f C Cf f Cf   
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  The operator multiplication by Z  on  2H D , defined by

   : f z zf z  : for all  f z  in  2H D , is a shift operator of 
multiplicitydim . The ad joint of S is 푆∗ = 푓(푧) → [푓(푧) − 푓(0)] 푧⁄ . 
 
Corollary (1.2.6): 
Every shift operator on a Hilbert space is unitarily equivalent to 
multiplication by z  on  2H D   for some choice of . 

By  H 
B  we mean the Banach algebra of bounded  B -valued 

holomorphic function A  on D  in the norm  B( )
sup ( )A A z





 . Each 

   A H D
B induces an, operator  T A  on  2H D  called 

multiplication by A defined by 
                                                2: ,T A f Af f H D   . 
 
Theorem (1.2.7): 
Let S be multiplication by z  on  2H D  , A bounded linear operator T  on

 2H D  is S-analytic if and only if  T T A  for some    A H D
B

.In this case, T A


 , and T  is S-constant if and only if A const . 
Proof: 
If  T T A

,
 where    A H D

B , then it is clear thatT   is S-analytic 

and T A


 . 
Conversely, assume that T is S-analytic. We may view any c   a constant 
function in  2H D .If : cT c f , Then for any  w D  the mapping 

   : cA w c f w on   to   belongs to  B  as a function of z, 퐴(푧)is 

holomorphic onD . By construction,  :T c A z c  for allc  . Since 
푇푆 = 푆푇, 
                                                    : j jT cz z A z c  
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For all c   and 푗 = 0,1,2, … every  f z   in  2H D  has a 

representation   0
j

jf z a z
  that converges both point wise on D  

and in the metric of  2H D . Since T  is continuous 

                                                  0
0

j j
j jTf z T a z z A z a




    

                                       A z f z B . 

                                        : 1 1T c wz A w c wz     
For each c   andw D . Hence 

                              
22

2
1 1A w c w A w c wz   


 

                                                  2 2

2
1T C wz   

                                                  2 2 21T C w 


. 

Thus    A H D
B  And A T


 . By  T T A .  

Hence T A


 , and so T A


 . 

Suppose  T T A is S-constant. Then 푇∗ = 푇(퐶) for some 

   C H D
B  by what we just proved.퐶(푧) = 퐴(푤)∗ For all ,z w D

.Hence  A z  const.  OrD , conversely, it is clear that if  A z   const, 

onD , then  T T A  is S-constant. 
 
Lemma (1.2.8): 
For all  f z  in  2 , ,H D c   and 푤 ∈ 퐷, 

                                                    
2

, 1 ,f z c wz f w c 


.  

Proof: 
Compute the left and right sides of the identity in terms of the Taylor 
explosions of  f z and  1c wz .  

1. The only reducing sub spaces of a shift operator 푆 ∈ ℬ(픛) of multiplicity 1 
are  0  andX . 
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2. Operators  A XB  and 퐵 ∈ ℬ(픛) are called similar if 1A X BX  
some invertible operator 푋 ∈ ℬ(픛, 픛).Tow isometries that are similar are 
unitarily equivalent  
3. (I) If M  is an invariant sub space of a shift operators S, then 

 
푆|푀 is a 

shift operator of multiplicity not greater than the multiplicity of s . 
         (ii) Let 푆 ∈ ℬ(픛)  be a shift operator. If N is a subspace of X  such 
that 푆 푁 ⊥ 푆 푁  whenever  , 0,1,2,j k jk    then the dimension of 
N  does not exceed the multiplicity of S. 

4. Let 
a b

A
c d
 

  
 

 viewed as an operator on 2c . Then 

                                                      
1

1 2
221 1 4

2 2
A N N D    

Where 
2 2 2 2N a b c d     and퐷 = 푎푑 − 푏푐. 

In particular, 1A    if and only if
21N D  .  

5.  Inequality of Neumann and the invariant form of scharaos lemma. 
(I) prove Non Neumann’s inequality: if  T B X  any 1T  , then 

‖푝(푇)‖ ≤ 1 for every polynomial  p z  such that   1p z   for 1z  . 

(ii) Let
0
a b

T
c

 
  
 

 on픛 = 퐶 , where ,a c D  and 

  2 2 21 1b a c   . 

Then 1T   and for any polynomial  p z , 

                      푝(푇) = 푝(푎)        [ ( ) ( )]

0                         푝(푐)
 

Hence if   1P z   for 1z  , then   1p T   and so 

                       
       2 22

2 2

1 1
, ,

1 1

p z p wp z p w
z w D

z w z w

 
 

  
. 
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  (iii) Let  f z  be holomorphic and satisfy   1f z   onD . Use (ii) and 
an approximation argument to show that

       2 22

2 2

1 1

1 1

f z f wf z f w
z w z w

 


  
, ,z w D  

Then use the identity |1 − 푢푣̅| 퐿 = (1 − |푢| )(1 − |푣| )
2u v  to 

deduce 

                                 
   
   

, ,
1 1
f z f w z w z w D
f w f z wz
 

 
 

 

Similar results are given by Williams  
A connection between von Neumann’s inequality and the Pick-Nevanlinna 
theorem is shown in Rovnyak  
Has shown that von Neumann’s inequality is false in general for every 
Banach space   
That is not a Hilbert space. For the classical view of Schwarz; s lemma. 

6. Laguerre shift. The laguerre polynomials of order 0  can be defined by either 
of the relations  

푒 퐿 (푡) =
1
푛!

푑
푑푡

(푡 푒 ),     푛 = 0,1,2, …, 

                              1 / 1
0

1 , 1tz z n
nz e L t z z     

. 
For each 

퐿 (푡) 푑푡 = 퐿 (푥) − 퐿 (푥), 

                              
1
2

1

0

1 1 1/ ,Re
2 2 2

n n
tst

ne e L t dt s 
           

     

The function   1
2

0

t
ne L t



 form an orthonormal basis for  2 0,L  . 

 
Theorem (1.2.9): 
 i  Let be the shift operator on  2 0,L   such that  

                                                 
1 1
2 2

1: , 0t
n nS e L t e L t n                                       
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Then for each  2 0,f L  , 

푆: 푓(푥) → 푓(푥) − 푒 ( )푓(푡) 푑푡. 

 ii   Let T  be the symmetric operator id dx  on  2 0,L  ,where the 
domain of T  is taken as the set of (locally) absolutely functions f
continuous functions f  on  0,  such that  2, 0,f f L   and 

  0f x  as 0x  . 

Then.     푆 = (푇 − 푖퐼)(푇 − 푖퐼)  

We call 푆 the leaguered shift on  2 0,L  . 
Proof: 

  i By holds if    
1
2

nf b e L t for some 0n  . The general case of 
follows by line arty and approximation. 
 ii By the elementary theory of symmetric operators,   are the clayey 
Trans for of the symmetric operators to with graph. 

풢(푇 ) = 푓 − 푆푓,
1
2

푖(푓 + 푆푓) : 푓 ∈ 퐿 (0, ∞) . 

Thus    0,P q TKG  if and only if 

   
1 1
2 2

0

x
x tp x e e f t dt   

  푞(푥) = 푖푓(푥) −
1
2

푖푒 푒 푓(푡) 푑푡                                                                     

For some  2 0,f L  .A straight forward argument then shows that 

 0TG  coincides with the graph ofT , and  ii  follows. 
7. Shift operators and the Chebychev polynomials. The Chebychev 

polynomials   0nT x


 and   0
Un x


 can be defined by formal 

expansions 

 

   2 2
0 0

1 1, .
1 2 1 2

n n
n n

xt T x t U x t
xt t xt t
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For each n≥ 0, 푇 (cos 휃) = cos 푛휃,    푈 (cos 휃) = sin (푛 + 1)휃 / sin휃.   
 
Theorem (1.2.10): 
 Let 푆 ∈ ℬ(픛) be a shift operator. Write  푆 = 푋 + 푖푌, where 
 푋 = 푅푒 푆, 푌 = 퐼푚 푆, and let 0P   be the projection on픛 = ker 푆∗. Then 
푆 푃 = 푈 (푋)푃 ,   IY푆 푃 (푋)                                                                 
For all 0n  , and 

   00
1 n nU X PU X
                                                                                                    

With convergence in the strong operator to apology. 
Proof:  
 By induction   using the identities

     2 12 , 0n n nU x xU x U x n    , and

     1 1 1
1 , 1
2n n nT x U x U x n       . Then 

Follows by the world decomposition. 
 
Theorem (1.2.11): 
There is unique shift operator 푆  on 2L  (-1, 1) such that  
푆 : (1 − 푥 ) / 푈 (푥) → (1 − 푥 ) / 푈 (푥),      N≥ 0. 
For each  2 1,1f L  ,  

          
1 1

2 21 4 4

0
1

1 11: ( ) .
x t

S f x xf x PV f t dt
t x 

 
 

  

The real part of 푆 ,푋 = 푅푒 푆 , is multiplication by x on 퐿 (−1,1), that is
   0 :X f x xf x .  

Proof: 
The existence of 푆  follows from the fact that the functions                                        

      1/ 41/ 2 2

0
2 / 1 nx U x



 form an orthonormal basis for 퐿 (−1,1). 

First cheek on basis elements using the identity 

                         
   

1 221

1
1

1 ( )1 ,n
n

t U t
PV dt T x

t x 





        |푥| < 1  
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Theorem (1.2.12): 
The general form of a shift operator S on  2 1,1L  whose real Part 
푋 = 푅푒 푆 coincides with the real part 푋 = 푅푒 푆    of the operator is  

                

1 1
2 21 4 4

0
1

1 11: ,
x t

S f x xf x PV C x C t f t dt
t x 

 
 

  

Where  C x  is a measurable function such that

   1 . 1,1C x a e on  . 

8. The functional equation      2g x g x f x  . 
We follow Rochberg Let 픛  be the Hilbert space of measurable complex 
valued functions  f x  on  ,   such that    1 .f x f x a e  . 

                      

1 1
2 2

0 0

( ) , ( ) 0.f f x dx and f x dx     

(i) The operator    0 : 2S f x f x  on 0X  is a shift operator with ad joint 

 *
0

1 1 1 1 1: .
2 2 2 2 2

S f x f x f x        
   

If픛 = 푘푒푟푆∗, then for each 푛 =

0,1,2, …, 
푆 픛 = 푉{푒푥푝(2휋푖(2푗 + 1)2 푥): 푗 = 0, ±1, ±2, … }. 

(ii)  Let 푆 ∈ ℬ(픛) be any shift operator, and let f  be a vector in 픛 for 
which the coefficients in the expansion

 
푓 = ∑ 푆 푘  of satisfy  

푘 ≤ 푀푟 ,     푗 ≥ 0, 
For some constant  0,1r and 푀 ∈ (0, ∞).then the equation푔 − 푆푔 = 푓 
has a solution gX  if and only if  

                                 

2

0

1lim 0.
n

j

n
S f

n
   

(iii)  Call a function  f x  in 픛  smooth if the coefficient is in the 
expansion  
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2

0

( ) ijx
j

j
j

f X a e 





  Satisfy 
2

(2 1)2
, 0,n

n
jj

a Mr n


   for 

some constants  0,1r  and  0,M   . For  f x   to be smooth, it is 

sufficient that satisfy a Holder condition of order 
1
2

   

 
Theorem (1.2.13): 
If  f x  is a smooth function in 0X , then a necessary and sufficient 

condition for the existence of a  g x  in 0X  such that 

                              2 . . ,g x g x f x a e on     

                             
21

00

1lim 2 0
n

j

n
f x dx

n
  

When a solution  g x  , it is unique and also smooth.  

9. A shift operator 푆 ∈ ℬ(픛) of multiplicity 1 has no square root in  B X  
10.  If 퐶  is defined on 퐿 (0,1) by  
                                 (퐶 푓)(푥) = 푥 ∫ 푓(푡)푑푡,       0 < 푥 < 1, 

Then 11 C   is a shift operator of multiplicity 1. 
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Chapter 2 
Pick-Nevanlinna and Loewner types with Interpolation 

 
For D   or II  , let  B   be the set of all function  W Z   that are 
holographic and bounded by 1 on   we are concerned with interpolation 
theorems for  B   that is characterizations of functions in  B   in 
terms of data on subset of   or   when the data are prescribed in   two 
classical theorems serve as prototypes: the pick-Nevanlinna theorem. And 
the Caratheodory-Fejer theorem the prototypes for the situation in which 
data are prescribed on   is Loewner’s theorem we use an operator method 
based on the lifting. We also ketch the theory of monotone operator 
functions.  
 
Sec (2-1): Generalization of the pick- Nevanlinna and Caretheodory-
Fejer Theorems Restrictions Boundary Functions Pick class: 
For any complex vector spacer , let 푟  be the space fall linear functional on
r , and let  r  is the space of all linear operators on r  tor . The value of 

functional x r   on a vector x r  is written 1,x x . Each 퐴 ∈

 r induces an operator  A r    such that. 
                                    (퐴푥, 푥 ) = (푥, 퐴 푥 ) 
For all x r  and x r   .We use no topology on r, so questions 
concerning continuity do not arise. 
 
Theorem (2.1.1): 
Let  A r  and ,b C r  be given let D r   be linear sub space such 

that A D D   and  

                            2

0

,jA c x


    

For every xD . The following are equivalent: 
(i) There exist 푤(푧) = ∑ 푤 푧  in B(D) such that 

                           (푏, 푥 ) = ∑ 푤 퐴 푐, 푥 ,           푥 ∈ 풟 
(ii) For al  푥 ∈ 풟 
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      2 2

0 0

, ,j jA b x A c x
 

   . 

Proof: 

Think of  2H D  as the space of power series 
0

j
ja Z



 with square 

summable coefficient. Let 푆 be the shift operator. 
푆: 푓(푧) → 푧푓(푧) 

On  2H D . 

Assume  ii . We apply the lifting theorem with  2
j H D  and                  

푆 = 푆, 푗 = 1,2. for each  
0

,j jx A c x Z


  D, , is in  2H D , and  

푆∗ (퐴 푐, 푥 )푧 = (퐴 푐, 푥 )푧 = (퐴 푐, 퐴 푥 )푧 . 

Let 1X  be the closure in  2H D  of all series  1

0

,j jA c x Z


 , where

1x D . Since A D D , it follows that 1X  is invariant under

 2
2 H D X . Let 푇 = 푆∗ 픛 �, 푗 = 1,2,. by  ii  there is a unique 

operator  1 2,X B X X   such that 1X   and for reach xD , 

푋 (퐴 푐, 푥 )푧 = (퐴 푏, 푥 )푧 . 

For each xD , 

푋푆∗ (퐴 푐, 푥 )푧 = (퐴 푏, 푥 )푧  

                                          푆∗푋 = (퐴 푐, 푥 )푧 . 

Thus 1 2XT T X , and the hypotheses of the lifting are satisfied. By the 

lifting theorem, 1X Y X   for some operatory on  2H D  such that 

푌푆∗ = 푆∗푌 and 1Y X  .we obtain 
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푌∗푓 = 푤푓,                      푓 ∈ 퐻 (퐷), 

For some function  
0

j
jw z w Z



  in  B D . For any xD  

(푏, 푥 ) = (퐴 푐, 푥 )푧 , 1  

= 푋 (퐴 푐, 푥 )푧 , 1
2

 

= (퐴 푐, 푥 )푧 , 푌∗{1}
2

 

= (퐴 푐, 푥 )푧 , 푤 푧
2

 

                                                              
0

,j
jA c x w



 . 

Thus  
0

j
jw Z w Z



  is in  B D  and  i  holds. 

Conversely, assume  i . Let Y  be the operator on  2H D  such that Y   is 

multiplication by  
0

j
jw Z w Z



  .Then 1Y  .For each xD  and 

푘 = 0,1,2, …, 

       
0 0

, , , ,k k j k j k
j jA b x b A x A c A x w A c x w

 
          

Hence if
   

 
0 0

,j j k
kY A c x Z g Z

    
 
  , Then  

푔 = 푌 (퐴 푐, 푥 )푧 , 푆 {1}  

            = (퐴 푐, 푥 )푧 , 푌∗푆 {1}  
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 A r             = (퐴 푐, 푥 )푧 , 푤 푧  

                                                                     1
1

0

,kA x w


    

                                                                          ,kA b x  

We have shown that for all xD  

                               
0 0

, ,j j j jY A c x Z A b x Z
    

 
   

Since‖푌‖ ≤ 1. 
 
Theorem (2.1.2): 
 Let 푟 = 퐶  be the space of all indexed sets 푥 = 푥

∈
 in C  with 

coordinate wise addition and scalar multiplication. Define and 푏, 푐 ∈ 푟 by 
퐴: 푥

∈
→ 푧 푥

∈
, 

푏 = 푤
∈

,And 푐 = 푐
∈

 where 1,jC j J   .Let D  be the set all 

linear functional x  one r  of the form  
                                  
푤ℎ푒푟푒  푎

∈
⊆ 퐶 푎푛푑   푗: 푎 ≠ 0   Is finite.  

 
Theorem (2.1.3): 

푇(푎 , … , 푎 ) =

⎣
⎢
⎢
⎢
⎡

푎    0  
푎    푎

0   … 0
  0    … 0  

푎 푎
  

푎 푎

푎  … 0
…   

푎 … 푎 ⎦
⎥
⎥
⎥
⎤

( )×( )

 

The norm M  of a    1 1n n     matrix M  is its norm as an 

operator on 1nC   in the usual inner product. 
 
Theorem (2.1.4): 
Given 0 , , nb b C , there exists  w B D  such that. 
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  0 1
n

nw Z b b Z b Z    +higher powers if and only if

 0 , , 1nT b b  . 
With no extra effort we obtain a more general result. 
 
Theorem (2.1.5): 

Given 0 0, , , , ,n nb b c c C  ,there exists   
0

j
jw Z w z



  in  B D

such that 

                                

0 0 0

1 0 1

0 1 1 0n n n n

b c w
b c w

b c w c w c w


 


    





 

If and only if 

                  0 0 0 0, , , , , , , ,n n n nT b b T b b T c c T c c      
Proof: 

 In let r      1
0 0, 0,1,0, ,0 , , , , , ,t tn

n nc A T b b b c c c      , and 

퐷 = 푟  since 0jA   for j n , condition i .asserts existence of 

 
0

j
jw z w Z



  in  B D  such that for all 푥 ∈ 푟 , 

            (푏, 푥 ) = 푤 (푐, 푥 ) + 푤 (퐴푐, 푥 ) + ⋯ + 푤 (퐴 푐, 푥 ), 
That is holds. Any 푥 ∈ 푟  can be represented as an inner product 
 , ,x x x a a x    for some 푎 = [푎 , … , 푎 ] ∈ 퐶 then  
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  2 2 2 2

0
,j nA b x a b a Ab a A b


       

2

0 0 0 1n nb a b a b a   

 
22 2

1 0 0 , ,n n n nb a b a T b b a        

Similarly with 푏 replaced by 푐 thus condition (ii) of 2.3 asserts that for all          
푎 ∈ 퐶  

‖푇(푏 , … . 푏 )∗푎‖ ≤ ‖푇(푐 , … . 푐 )∗푎‖ , 
 
Theorem (2.1.6): 
For , D   , set 

1
1 − (훼 + 푠)(훽̅ + 푡̅)

= 퐾 (훼, 훽)푠 ̅

,

 

For|푆|, |푡| sufficiently small. Differentiation of the identity  
1

1 − 훼훽̅
=

푑휎
(1 − 훼푒 )(1 − 훽̅푒 )

 

 

Yields 

퐾 (훼, 훽) =
1

푝! 푞!
휕

휕훼
휕

휕훽̅
1

1 − 훼훽̅
                 

=
푒 ( )

(1 − 훼푒 ) (1 − 훽̅푒 )

 

푑휎 

For all , 0,1,2,P q   
For simplicity, consider first the Pick and caratheodory- Fejer themes. 
Define  0 , , nT a a for 0 , , na a C  As 
 
Theorem (2.1.7): 

 Let   1n
J j

Z Z D    .For each 1, , ,j n   Let 0 ,, ,j j rb b   i be 

given complex numbers. There exists  w B D  such that for each 

         
0 1 ,1, , ,

r j

j j j jj jj n w Z b b Z Z b Z Z


         higher 

if and only if  
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                           T b P Z T b P Z   

Where    
, 1

n

jk j k
T b T b


     and     n

jkP Z P Z     are black matrices 

defined as follows: for each  , 1, , , jkj k n T b   and   jkP Z  have order

     1 1r j r k   , and 

                     0 ,, , ifjk j j r jT b T b b j k  ; 

                    0jkT b if j k   

                    , 0, ,jk pq j kP Z k Z Z P r j     ,  0, ,q r k   
 
Theorem (2.1.8): 

 Let j j J
Z Z D


    , and for each j J let  0 ,, ,j j rb b j  and

 0 ,, ,j j rc c j , be given complex numbers. There exists  w B D  such 

that for each j J  the coefficients in the expansion 

     2

0 1 2j j j jw Z w w Z Zj w Z Z      
Satisfy 

⎩
⎪
⎨

⎪
⎧

푏 = 푐 푤                                                                                                
푏 = 푐 푤 + 푐 푤                                                                         .                                                                           

.                                                                           

.                                                                           
푏 , ( ) = 푐 푤 , ( ) + 푐 푤 , ( ) + ⋯ + 푐 , ( )푤

� 

If and only if  

                         T b P Z T b T C P Z T C   

Similar to that used in Theorem. Define     
,jk j k J

T b T b


  and 

    
,jk j k

P Z P Z J   as cxceP that the index set j   is used in place 

of , ,T n . Define  T c   similarly by replacing all the ,b s  by ,c s  the 
meaning of is that  
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, ,

j jj jk jk j jj jk kk k
j k J j k J

a T b P Z T b ak a T c P Z T c a  

 

   

Where ever    1, , : 0r j
j ja C j J and j a    is finite. 

Proof: 

Let r  be the set of all indexed sets  j j J
X X


 , where 

  1,r jX j c j J   , with linear operations coordinate wise. Let 

                   : j jj J j
A X A j J

 
   

Where 

퐴 =

⎣
⎢
⎢
⎢
⎡
푧     
1 푧  0  
 
 
0

1
 
 

   
⋱⋱   
 1 푧 ⎦

⎥
⎥
⎥
⎤

( ( ) )×( ( ) )

, 푗 ∈ 퐽 

Let    ,j jj J j J
b b c c

 
  , where for all j J   

                      0 , 0 ,, , and, , ,
t

j j j r j j j rb b b j c c c j         . 

Let D  be the set of all linear functional x  oner   of the form  
                       , j j

j J
x x a x



   

Where 푎 ∈ 퐶 ( ) , 푗 ∈ 퐽 and     : 0jj a    is finite. 

It is convenient to introduce a functional calculus for A . For any 
holomorphic function  f Z  onD , define  A  on r  by  

                        : j j jj J j J
f A x f A x

 
  

Where for each 푗, 푓(퐴 ) is defined by the standard matrix calculus. The main 
fact concerning the matrix calculus that we need this: for any square matrix 
M  with eigenvalues in D  if  
푓(푧) = 푓 + 푓 푧 + 푓 푧 + ⋯,Then 푓(푀) = 푓 퐼 + 푓 푀 + 푓 푀 + ⋯, 
 Condition of assets the existence of  w B D  such that  b w A c is ـــــ

 j i jb w A c   for all j J that is coefficients satisfy for all ـــــ j J . 
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We interpret condition. Let iu e   and let xD  be given by Then  

|(퐴 푏, 푥 )| = (퐴 푏, 푥 )푢  
 

푑휎(푢) 

|((퐼 − 퐴푢) 푏, 푥 )|
 

푑휎(푢) 

푎∗ 퐼 − 퐴 푢 푏
 

 

∈

 

푑휎(푢), 

Where I  is the identity operator on r   and 퐼  is the identity matrix on
  1,r iC j J  .  For any j J   and 푢 ∈ Γ, set  

ℎ (푢) = 1 (1 − 푧 푢)⁄ , 푢 (1 − 푧 푢)⁄ , … , 푢 ( ) (1 − 푧 푢) ( )  

Then                          j j jj j jI A u T b h u b    
And so  

                                   1

j j j jj jI A u b T b h u


   
Hence  

|(퐴 푏, 푥 )| = 푎∗푇 (푏)ℎ (푢) 
 

∈

 

푑휎(푢), 

                                                        

= 푎∗푇 (푏)ℎ (푢)ℎ (푢)∗푇 (푏)∗푎  
 

, ∈

 

푑휎(푢) 

                           = 푎∗푇 (푏)푝 (푧)푇 (푏)∗푎  
 

, ∈

 

                       For the last equality we used the identity  

푃 (푧) = ℎ (푢)ℎ (푢)∗

 

푑휎(푢),        푗, 푘 ∈ 퐽 

Similarly 

|(퐴 푐, 푥 )| = 푎∗푇 (푐)푝 (푧)푇 (푐)∗푎  
 

, ∈

 

The result follows  
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We characterize the restrictions of boundary functions of function in 
 ,B D     or II , to an arbitrary Borel sub set   of.  

To shorten formulas in the disk case, we write 푢 = 푒 , 푣 = 푒  ,for typical 
points onL D  , measure theoretic notions are relative to normalized 
Lebesque measure bonL . 
Theorem. Let ,b c  be measurable complex valued functions on a Borel set

I . There exists  w B D  such that  
푏(푢) = 푤(푢)푐(푢)          휎 − 푎. 푒  표푛 ∆ 

If and only if  

lim
↑

푐(푢)푐̅(푣) − 푏(푢)푏(푣)
1 − 푟 푢푣̅

 

∆

 

∆

휙(푢)휙(푣)푑휎(푢)푑휎(푣) ≥ 0 

For every measurable complex valued function   on  such that

 2,b c L     
Proof: Let r  be the space of complex valued functions on   of the form
f Pb qc    where ,P q  oare Poly nominal’s .Thus ,b c r  Define 

                               :A f u uf u  
On r let D  be the set of linear functional x  on r  the form  

(푓, 푥 ) = 푓∅푑휎
 

∆

,     푓 ∈ 푟 

Where 휙 is a measurable function such that b 휙, c휙 ∈ 퐿 (∆). 푇ℎ푒푛 
 퐴 풟 ⊆ 풟.For every functional.∑ 퐴 푐, 푥 < ∞ Because the Fourier 
coefficient of a square summable function are square summable .Thus the 
hypotheses of satisfied .Condition holds if and onle if there exists 푤(푧) =
∑ 푤 푧  in B (D) such that 
               ∫ 푏(푢) 

∆ 휙(푢)푑휎(푢) = ∑ 푤 ∫ 푢 푐(푢) 
∆ 휙(푢)푑휎(푢)  

                = lim ↑  ∑ 푟 푤 ∫ 푢 푐(푢) 
∆ 휙(푢)푑휎(푢)  

                = lim
↑

∫ 푤(푟푢)푐(푢) 
∆ 휙(푢)푑휎(푢) 

               ∫ 푤(푢)푐(푢) 
∆ 휙(푢)푑휎(푢)  

For all   such that b 휙, c휙 ∈ 퐿 (∆), that is holds. 

        ∑ ∫ 푢 푏 
∆ 휙푑휎 ≤ ∑ ∫ 푢 푐 

∆ 휙푑휎 .         
Now  
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2

10 0
limj j

r
L

u b db u b db t 
 


 

     

                   
22

1 1 0

lim limj j j

r r
L L

u b db u b db r t db t 


 
 


  


     

                    
       

2

1
lim

1r
L

b u u
db u db t

rut






   

                 
 

              
1

lim
1 1r

L

db t
b u b u u u db u db V

rut rut
 


 


    

                  
           21

lim
1r

b u b V
u u db u db U

uv
 


 


  

We define the Pick classD   as the set of holomorphic functions f on II  

such that   0,f Z Z II    

There is a one –to-one correspondence between D  and    \ 1B II  is the 

function identically 1
anc

  on    :II if w B II I :if we    then 

                             1 / 1f i w w     
Is in D  in the Pick class D  that is not identically zero is an over function in 
particular each fin D  has on tangential boundary function defined a.e.on
 ,  . 
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Section (2.2): Generalized Loewner Thermos and Hilbert Transform 
with Imaginary functions: 
 
Theorem (2.2.1): 
 Let  0f x  be a measurable complex valued function on a Borel subset 
of  ,  .There exists f D  such that  

                                                            0 . .f x f x a e on    
If and only if  

                                                      
       0 0

8 0
lim 0

f s f t
s t dsdt

s t i
 


 




    

Whenever  2
0,f L   , 

Proof: 
Apply with 푏 = 푓 − 푖 , 푐 = 푓 + 푖  and use the correspondence. BetweenD
and   / 1B II . 

The 2L  theory of Hilbert transforms is sufficient for our purposes. Although 
this is well known, we include statements of the principal results for the 
convenience of the reader and later reference. 
If    2 ,x L    , it's Hilbert transform is defined by  

(퐻휙)(푥) = 푃푉
1
휋

휙(푡)
푡 − 푥

푑푡, 

Where PV a Cauchy principal indicates value integral: 

                                                        
0

1 1lim
t x

PV


 




  

  . 

 
Theorem (2.2.2):  
If    2 ,x L    , then the limit in exists .ae . And in the metric of

 2 ,L   . If  

                                                       1 ,
2

t
z dt z z

i t z








  
 , 

Then  
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                                                        0 0x i x i x     , 

                                                               0 0x i x i i H x       

.ae . On ,   , where    00 lim yx i x iy      , whenever the 
limit exists.  
Let  be a fixed Borel subset of  ,  .If  2L   , set 

                                1 . . .
t

H x PV dt ae on
t x







 
  

This defines a bounded linear operator on  2L   with ad jointH H
     

 
Theorem (2.2.3): 
 Let  0f x be a measurable complex valued function on  .There exists 
f such that 

푓(푥) = 푓 (푥)             푎. 푒.  표푛 ∆ 
If and only if   
                                                          0 2

Re , 0H iI f      

Whenever  2
0, f L   . 

Proof: 
We show that for any  2, L    , 

                             
     

20
lim ,

s t
dsdt H iI

s t i

 
  

 
 

 
  


 

To this end, set 

                                            1 , 0
2

t
z dt y

i t z


 

  
  

                            
0

1lim
2

x i x i H x


  
        

 

.ae . On   in the metric of  2L  . Therefore, 

                      
       

0 0
lim lim

s t s ds
dsdt t dt

s t i s t i 
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= 〈휋푖(−휙 − 푖퐻∆휙, ψ〉  
If  2

0,f L   ,then  

= lim
↓

푓 (푠) − 푓 (푡)
푠 − 푡 + 푖휀

휙(푥)휙(푡)푑푠 푑푡,
  

 

    0 02 2
, ,H iI f H iI f           

                                          0 2
2 Re ,H iI f    . 

 
Theorem (2.2.4): 
  Let  0f x  be a real valued measurable function on a Borel subset   of

 ,   . There exists f D such that 

                                                       0 .f x f x a e on   
If and only if  

lim
↓

푓 (푠) − 푓 (푡)
푠 − 푡

휙(푥)휙(푡)푑푠 푑푡,
 

( )

 

 

Whenever  2
0,f L    where 

    , : , andE s t s t s t      For each 0  . 
Proof: 
By Theorem (2.2.2) if  2

0,f L   , then 

lim
↓

푓 (푠) − 푓 (푡)
푠 − 푡

휙(푥)휙(푡)푑푠 푑푡,
 

( )

 

 

  = lim휀↓0 ∫ ∫ 푋퐸(휀)(푠,푡) 푓0(푠)휙(푠)

푠−푡
 
Δ

 
Δ 휙(푡)푑푡 

              − lim ↓ ∫ ∫ 푋 ( )(푠, 푡) ( ) 푑푠 푓 (푡) 휙(푡)푑푡 

                0 02 2, ,H f H f         

                0 22 Re ,H f    

                   0 2
2 Re ,H iI f    . 

Here 푋 ( ) the characteristic function of E (휀) the last equality holds because

0f   is real valued. Thus the result follows from the. 
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A holomorphic function f on   is said to have an analytic continuation 
across an open subset  of  ,   if f g  , where g  is holomorphic 
on an set G  containing   
Suppose that  f D   and f   has an analytic continuation across an open 
subset   of  ,  .Suppose further that continuation is real valued on 
.Then we may extend f  to a holomorphic function on ∏ ∪ ∏ ∪ ∆ such  

푓̅(푧̅) = 푓(푧)          , 푧 ∈  ∏ ∪ ∏ ∪ ∆. 
Where ∏ = {푧: 퐼푚  푧 < 0}. The next result characterizes this class of 
functions. 
 
Theorem (2.2.5): 
 Let 0g  be a nonnegative measurable function on a Borel subset   of

 ,  . The following are equivalent:  
(i) There exists f D such that  

         푓(푥) = 푖푔 (푥)   푎. 푒. On    
(ii) Whenever ∅, 푔 (∅) ∈ 퐿 (∆)  

   |퐻∆∅|ퟐ푔 (푥)푑푥 ≤  
 

∆
|∅|ퟐ푔 (푥)푑푥                         

 

∆
 

Proof: 
 We first prove theorem under the hypothesis that    1

0g L L   . 
We show that in this case (I) and (ii) are equivalent to. 

(iii) There exists ℎ ∈ 풟 such that  
ℎ(푥) = −(퐻∆푔 )(푥)     푎. 푒.   On     .  
   ii iii Assume ii , and set 푓 = −퐻∆푔  for any    2L     

we have  2
0,g L   , so  

푅푒〈(퐻∆ − 푖퐼)푓 ∅, ∅〉 =
1
2

〈퐻∆(푓 ∅), ∅〉 +
1
2

〈∅, 퐻∆(푓 ∅)〉  

=
1
2

(∅ 퐻∆∅ + (퐻∆∅)∅)퐻∆푔 푑푥
 

∆

 

                                                              0
1
2

H H H g dx     


    

                                                          2 2
0

1 0
2

H g dx 
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   i iii  Assume  iii  , and choose ℎ ∈ 풟 such that holds then. 

         01 ,
g t

f z dt h z z II
t z 

  
                               

 Defines a function inD . 

                                         0 0
1 2
2

f x i g x i H g x h x     

                                                  0 .ig x a e on   
So (I) hold. 
Conversely .Let  i  holds and close f  D such that

 0( ) .f x ig x a e on    
Defineh on that II  so that holds since 0g  is essentially bounded on   his 

bounded below on Im  and    exp IIih eh  .But  

       
 

0
2 2

Im Im , 0
g tYh Z f Z dt Y

t x Y 

  
                   

Where  

              
 

 
 

 
00

2 20

.
lim

0 . ,Y

g x ae ong tY dt
a e ont x Y

 

 
   

  

And thus    0 . ,h x ae on   . Therefore the boundary function of 

 exp ih is bounded by 1 .a e  on  ,   and so  exp ih   on II . 
Hence 
h D . Since. 

                               0 0
1 2
2

h x f x i g x i H g x     

                          0 , 0. , follows.H g x e on iii      
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Lemma (2.2.6): 
 Let f  be a locally bound Borel function on  ,a b   let 0   be a C   

function with compact support in  1,1  such that 
1

1
1dt


 .For each 

 , 0 / 2 ,b a     set     
1

1
f x t x t d t  


    

On  ,a b      . Then  f C 
    and    f x f x   at 

every point x    where  f  is continuous. 
Proof: 
Extend ,f  to ,  . By setting both equal to zero off their domains. 
Then 

      1 / ,f x s x f s ds x   






    

With this representation the proof become a pleasant exercise in real 
analysis. 
 
Theorem (2.2.7): 
Let f  be a monotone matrix function on   as a first case suppose that f  is 
continuously differentiable on  then. 

                           
     
 

/ , ,
,

, ,

f x f y x y x y
k x y

f x x y

      


 

Is continuous on   . We show that  

                                               
, 1

, 0
m

j k j k
j k

k C C 


  

Whenever  1, , n     and 1, , nc c C .Without less of 
generality we can assume that 1, , n   are distinct. 
Let X  be a Hilbert space with dim nX  and let 1, , ne e  be on 

orthonormal basis forX . Let 
n

j jj
A P   where ,i j iisP e e   the 

projection of X  on the span of , 1, ,je j n  .Then A  a self-ad joint 

operator with  sP A    setB A Q  , where  

                         1, , nQ v v v e e      And o   
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 For all sufficiently  ,SP B   . SinceA B . 

   f A f B  

                              

1

0
n

j j j j j jP that and P P as         . 

                                
, 1

0 ,
m

i k j k
j k

f B f A k P QP   


                 

Dividing by , and then letting   T , we obtain  

                                                    
, ,

, 0
m

j k j k
j k
k P QP    

푃푣 + 푢 = 푐̅ 푒 . 

Then the inequality         

                                                       
, 1

, , 0
m

j k j k
j k

k P QP u u 


 .  
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Chapter 3 

 eplitz OperatorsFactorization of To 
 

Sec (3-1): Factorization of Non negative Invertible Toeplitz  operators 
             Assume that S a shift operator on a Hilbert space. We write 0 1P SS   

for the projection of 픛 on kerk S  . Analytic. Inner, over, and S -
Constance operators are defined relative. 
 
Definition (3.1.1): 
  An operator 푇 ∈ ℬ(픛) Toeplitz or more precisely- Toeplitz if   
푆∗푇푆 = 푇. 
 
Example (3.1.2): 
Let     1 0 1 2 0 1: , , , 0, , ,S C C C C C   On 2L , and let T  is a bounded 

linear operator on 2L  with matrix
,

0jk j k
w


    . Thus 

   0 1 2 0 1 2: , , , ,T a a a b b b  If and only if 

                             
0

, 0,1,2j jk k
k

b w a j




   

The matrix of S TS  is 1, 1 ,
0j k j k

w


     . Hence T  is an 1S -Toilets operator 

if and only if its matrix has the form 
,

0j j k
C k


     for some sequence 

 uC


  
Such a matrix is called a Toeplitz matrix. 
 
Example (3.1.3): 
In general Examples of Toeplitz operators are easily constructed from 
analytic operators. If  퐴, 퐶 ∈ ℬ(픵) are analytic, then the operators 퐴, 퐶∗, 퐶∗퐴 
are Toeplitz. 
For ifT C A , thenS TS S C AS C S SA C A T         . 
To each푇 ∈ ℬ(픛) we associative a matrix of operators in  
ℬ(픛): 푇~[퐴 ] , = 0, 
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Where 
                                 퐴 = 푃 푆∗ 푇푆 푃  픛   푗, 푘 ≥ 0. 
 
Theorem (3.1.4): 

Let 푇 ∈ ℬ(픛)  and  
, 0jk j k

T A



. 

For any, 푓 ∈ 픛  if∑ 푆 푎 , then, where  

00 01 02

10 11 12

20 21 22

A A A
A A A
A A A

 
 
 
 
 
 







   

0 0

1 1

2 2

a b
a b
a b

   
   
   
   
   
    

 

Proof: 

If 
0

j
jTf S b

  where  

                   푏 = 푃 푆∗ 푇푓 = 푃 푆∗ 푇 ∑ 푆 푎 = ∑ 퐴 푎 ,      푗 ≥ 0.   
The some are strongly convergent, and the sequence of relation is equivalent 
to the correspondence 푇~[퐴 ] ,  is clearly linear and well behaved with 
respect to a djoints: if, 푐  then, 푇∗~[퐴 ] ,  where  퐵 = 퐴∗  for all

, 0j k   
 
Theorem (3.1.5): 
 If  푇 ~[퐴 ] ,  and푇 ~[퐵 ] , , then, 푇 푇 ~[퐶 ] ,  where  

퐶 = 퐴 퐵 ,      푗, 푘 ≥ 0. 

With convergence of the series in the strong operator topology. 
Proof: 
 By the word decomposition  
                             퐼 = ∑ 푆 푃 푆∗ .  
With convergence in the strong operator topology. Hence for any , 0j k  , 

퐶 = 푃 푆∗ 푇 푇 푆  픛 

= 푃 푆∗ 푇 푆 푃 푆∗ 푇 푆 푃  픛 

퐴 퐵  

 An operator 푇 ∈ ℬ(픛) is if and only if its matrix has the form 
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[퐴 ] , =
퐴 퐴 퐴 …
퐴 퐴 퐴 …
퐴 퐴 퐴

              (∗) 

In this case 퐴 =
푃 푆∗ 푇푃  픛,   푖푓 푗 ≥ 0                    
푃 푇푆| |푃  픛,   푖푓  푗 ≥ 0                   

      (∗∗)� 

A matrix of the from X  is called Toepltiz matrix
,

0jk j k
A


    .Then 

kS TS T   for all 0k  . Hence 

퐴 =
푃 푆∗ 푇푃  픛,   푖푓 푗 ≥ 푘                    
푃 푇푆 푃  픛,   푖푓  푗 ≥ 푘                   

� 

Thus that the matrix (*) where the entries are defined by (**). 
Conversely, let the matrix of T  have the form (*) then by the operators T  
and S TS  have the same matrix. Hence T S TS  and T  is Toeplitz. 
 
Corollary (3.1.6): 
 An operator 퐴 ∈ ℬ(픛) is analytic if and only if its matrix has the form. 

                         

0

1 0

2 1 0

0 0
0

A
A A
A A A

 
 
 
  







 

In this case  
                                      퐴 = 푃 푆∗ 퐴푃  픛,            푗 ≥ 0.  
Moreover, A  is S -constant if and only if 0jA  for all 1j  , that is, the 
matrix of A  has the   

푑푖푎푔{퐴 , 퐴 , 퐴 , … } 
Let 푇 ∈ ℬ(픛) be anon negative Toeplitz operator. Since 0T  . There exists 
a unique non negative. Square root 1/ 2T . Since T  is Toeplitz, S TS T   
and so for any 푓 ∈ (픛) . 

                     
2 21/2 1/ 2, ,T Sf S TSf f Tf f T f    

It follows that there exists a unique isometry on 푇 / 픛 to푇 / 픛  that maps 
1/ 2T f  to 1/2T Sf  for each 푓 ∈ (픛). The extension by continuity of this 

isometry to 푇 / 픛 plays a central role in what follows. 
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Definition (3.1.7): 
Let 푇 ∈ ℬ(픛)  be anon negative Toeplitz operator. We set 

픛 =  푇 / 픛 
And view 픛  as a Hilbert space in the inner product of 픛. 
 
Theorem (3.1.8): 
Let 푇 ∈ (픛)  be anon negative Toeplitz operator. The following assertions 
are equivalent: 

(i) 푇 = 퐴∗퐴  for same analytic operator 퐴 ∈ ℬ(픛) 
(ii) Lowdenslager’s isometry TS  is a shift, operator; 

(iii) For all vectors C  in some dense subset D  of 픛. 
lim
→

(sup {|〈푇 , 푆 푓〉|: 푓 ∈ 픛, 〈푇푓, 푓〉 = 1}) = 0 
Proof: 
  Let , where 퐴 ∈ ℬ(픛) let analytic. If. 푐 ∈ 픛 , 푓 ∈ 픛, 
and〈푇푓, 푓〉 = 1 , then 

                        

                     ≤ ‖푆∗ 퐴푐‖ ‖퐴푓‖ = ‖푆∗ 퐴푐‖ 〈푇푓, 푓〉 = ‖푆∗ 퐴푐‖   

For each  since  is a shift operator,  so  

holds with 퐷 = 픛 . 
Assume . Claim: for each 푐 ∈ 풟 and . 

              푆∗ 푇 / 푐 = sup {|〈푇푐, 푆 푓〉|:  푓 ∈ (픛)〈푇푓, 푓〉 = 1}. 
To see this, note that for any 푓 ∈ 픛 . 

                     

                                       

The claim then follows from the fact that the set of vectors , where 
푓 ∈ 픛  and 〈푇푓, 푓〉 = 1 , is dense in the unit sphere of 픛  
Since we assume ‖푆∗ 푔‖ → 0 for all 푔 ∈ 픛  of the form 푔 = 푇 / 푐, 푐 ∈ 풟 . 
Suppose next that 푔 = 푇 / 푆 푐 for some 푐 ∈ 풟  and .Then for

, 
                  

   i ii T A A

2 2 2
, , ,n n nTc S f A Ac S f S Ac Af  

0,1,2n   S 0nS Ac   iii

   iii ii  iii 0n 

1/ 2 1/2 1/ 2 1/ 2, , ,n n n
TTc S f T C T S f T C S T 

1/ 2 1/ 2,n
TS T C T f

1/2T f

0K 
n K

1/ 2 1/ 2 1/ 2n n k n k n k
T T T T TS g S T S c S S T c S T c      
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And a gain . A routine an approximation argument shows that 

 for every 푔 ∈ 픛  ,so  follows. 

 Let 푆  be a shift operator. By the definitions of , for all. 
푓 ∈ 픛 ,    푔 ∈ 픛  

              
Hence 
                                   푇 푆∗ = 푆∗푇 ,       푔 ∈ 픛      

And 푇 (푘푒푟푆∗) ⊆ 푆∗ . Set 픛 = 푘푒푟푆∗    .Then  퐽 = 푇  픛 ∈ ℬ(픛 , 픛) . By 
the polar decomposition of an operator, 퐽∗ = 푉∗푅 where  (퐽퐽∗) ∈ ℬ(픛)  and 
푉 ∈ ℬ(픛 , 픛)  is a partial isometry with initial space 퐽 ∗ 픛   .A actually  is 
and isometry. For, 
                       푘푒푟푉 = 픛 ⊖ 퐽 ∗ 픛 = 푘푒푟퐽 ⊆ 푘푒푟푇 , 
And at the same time 
 푘푒푟푉 ⊆ 픛 =  픛 ⊖ 푘푒푟푇 ,                         
So  

Since  is a shift operator, each 푔 ∈ 픛   has a unique representation 

                                 Where     {푘 } ⊆ 픛  

Set 

                            

This defines an isometry  that maps  픛  into 픛 and satisfies . 
Define   퐴 ∈ ℬ(픛) by 
                        퐴푓 = 퐾 푇 / 푓                  , 푓 ∈ 픛   
For any 푓 ∈ 픛   
               퐴푆푓 = 퐾 푇 / 푆푓 = 퐾 푆 푇 / 푓 = 푆퐾푇 / 푓 = 푆퐴푓, 
And 
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Thus 퐴푆 = 푆퐴 and 푇 = 퐴∗퐴 ; that is,  holds. 
 We complete the proof by showing that the operator A constructed above is 
outer and 퐴 = 푃 퐴푃  픛  is nonnegative. Setting  푀 = 푉픛      , we obtain 
                            퐴픛 = 퐾푇 / 픛 = 퐾픛 = ∑ ⨁푆 푀 , 
And so 퐴픛 reduces . Thus  is outer. The operator  constructed above 
is non negative. We show that . If 푐 ∈ 픛 , then. 

퐴 푐 = 푃 퐴푃 푐 = 푃 퐾푇 / 푐 
Let 푇 푐 = ∑ 푆 푘   as in so 퐾푇 푐 = ∑ 푆 푉푘  .Hence  

퐴 푐 = 푃 퐾푇 / 푐 = 푃 푆 푉푘 = 푉푘  

If  is the projection of 픛  onto픛 , then 푘 = 푃 푇 / 푐 = 퐽∗푐, and so 
퐴 푐 = 푉푘 = 푉퐽∗푐 = 푅푐 

Therefore , and the proof is complete. 
 
Theorem (3.1.9): 
Let 퐴 ∈ ℬ(픛)  be analytic, and let 퐶 ∈ ℬ(픛)  be outer. Then  if 
and only if                      , 
Where 퐵 ∈ ℬ(픛)  is inner and has initial space 퐶픛 . 
Proof: 
 Assume that  Then for any푓 ∈ 픛, 

                              

Hence there is a unique partial isometry 퐵 ∈ ℬ(픛) with initial space  퐶픛  
such that . For any푓 ∈ 픛, 
                                 
Thus  and coincide on. Since  is outer, 퐶픛   reduces . Therefore  
푔 ⊥ 퐶픛 implies  푆푔 ⊥ 퐶픛 .  
Since  is zero on (퐶픛) , 푆퐵푔 = 0 = 퐵푆푔  for all 푔 ∈ (퐶픛)   hence

, so  is inner. 
Conversely, let , where 퐵 ∈ ℬ(픛)  is inner with initial space 퐶픛  . 
Then  is the projection of 픛  on 퐶픛   . Hence . 
 
Corollary (3.1.10): 
 Let 퐴, 퐶 ∈ ℬ(픛)   , be two outer operators. Then  if and only if  

 i

S A R
0A R

TP

0 0A R 

A A C C 
A BC

A A C C 
2 2, ,A A Af f C Cf f Cf   

A BC
  0SB BS Cf SAf ASf   
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B
SB BS B
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BB A A C B BC C C    
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Where 퐵 ∈ ℬ(픛)    is on -constant inner operator with initial space 퐶픛   
and final space 퐴픛?  
 
Theorem (3.1.11): 
 Let 퐴, 퐶 ∈ ℬ(픛) be outer operators, and let  be the diagonal entries 

in their matrices. If , and , then퐴 = 퐶.  
Proof:  
If , then by the corollary to theorem (3.1.6), where  is an  

-constant inner operator with initial space   퐶픛    and finial space  퐴픛  the 
diagonal entries  of  satisfy 

   Hence 

                         

Inter changing the roles of  and , we obtain also , and hence

.Since  and  are non negative, . Since  
coincides with the identity operator on 퐶 픛 . Since 퐶 픛 =푃 퐶픛 . 
                                    퐶픛 = ∑ ⨁푆 (퐶 픛).  

Thus each 푓 ∈ 퐶픛  has the form , where 푘 ∈ 퐶 픛 . Then 

                               

It follows that  coincides with the identity operator on 퐶 픛. Since 
 , we therefore have . 

 
Lemma (3.1.12): 
If  퐴 ∈ ℬ(픛)    is outer, then 
                   퐴픛 = ∑ ⨁푆 푀 (퐴∗),  
Where 푀 (퐴∗) = 푃 퐴픛  . 
Proof:  
Since  is outer, 퐴픛  reduces . 
                             퐴픛 = ∑ ⨁푆 푀  
Where M= 푃 (퐴픛). Since푃 (퐴픛)    is closed and푃 퐴픛 ⊆ 푃 (퐴픛)   we 
have 푃 퐴픛 ⊆ 푃 (퐴픛)   = M. 
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Conversely, if , then g⊆ 퐴픛 so 푔 = lim → 퐴푓      for some 

sequence  in. Then 푔 = 푃 푔 = lim → 푃 퐴푓 ∈ 푃 퐴픛   . Thus 푀 =
푃 퐴픛  , and the results follows.  
 
Theorem (3.1.13): 
If  퐴 ∈ ℬ(픛)  is analytic, then 
                                          
Where 퐶 ∈ ℬ(픛)    is outer and  퐵 ∈ ℬ(픛)   is inner with initials space 퐶 픛 . 
For any such factorization,  
Moreover, we may choose the factorization so that the diagonal entry 퐶  in 
the matrix for  Satisfies , and then the factors  and  are unique 
Proof: 
Applying to the operator , we obtain an outer operator  퐶 ∈ ℬ(픛) 
such that  and 퐶 = 푃 퐶푃  픛 ≥ 0 , there is an inner operator  
퐵 ∈ ℬ(픛)  with initial space 퐶픛   such that  
 
Theorem (3.1.14): 
Let  be any factorization where 퐶 ∈ ℬ(픛)is outer and 퐵 ∈ ℬ(픛)  is 
inner with initial space 퐶픛.  Is the projection of 픛 on퐶픛... There Fore?  
                              
Uniqueness of the outer factor, when . 

It remains to show that the inner factor  also unique. If  are two 

inner operators with initial space퐶픛.  Such that , then  and 

coincide on 퐶픛. Since  and are both zero on the orthogonal 
complement of 퐶픛 , 
 퐵 = 퐵 . The result follows. 
We give sufficient conditions on a nonnegative Toeplitz operator  푇 ∈ ℬ(픛) 
for the existence of an analytic operator 퐴 ∈ ℬ(픛) such that . 
 
Theorem (3.1.15): 
Let 푇 ∈ ℬ(픛) be nonnegative Toeplit operator .If 푇 ≥ 훿퐼  for some 
number 훿 > 0 , then  for some analytic operator 퐴 ∈ ℬ(픛). 
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Proof:  
The hypotheses imply that  is invertible 픛 = 픛  , and  푆 = 푇 / 푆푇 /  . 
It follows that  strongly. So  is a shift operators, and the results 
follows. 
 
Theorem (3.1.16): 
Let 푇 , 푇 ∈ ℬ(픛)  be two nonnegative Toeplitz operators with . 
Assume that  

(i) 푇 = 퐴∗퐴  for some analytic operator 퐴 ∈ ℬ(픛)  

(ii) for every sequence  in 픛 such that  

lim , → 〈푇 (푓 − 푓 ), 푓 − 푓 〉 = 0  and  
                    

(i) Then  for some analytic operator 퐴 ∈ ℬ(픛)   
Proof:  
The Lowdenslager is isometrey 푆 is a shift operator on 픛  . We show that 

 is a shift operator on 픛  . 

Since , for each 푓 ∈ 픛 

푇 / 푓 = 〈푇 푓, 푓〉 ≤ 〈푇 푓, 푓〉 = 푇 / 푓                            
Hence there is a unique  퐶 ∈ ℬ(픛 , 픛 )   such that  
                         퐶푇 / 푓 = 푇 / 푓     , 푓 ∈ 픛. 
The assumption implies that   푘푒푟퐶 = {0}, and hence the range of  is 
dense in 픛 . For each 푓 ∈ 픛 and , 
               퐶푆 푇 / 푓 = 퐶푇 / 푆 푓 = 푇 / 푆 푓 = 푆 푇 / 푓 =
푆 퐶푇 / 푓 .     . 

Thus  and for all  

Since  is a shift operator, strongly on 픛 .Hence  

for each 푔 ∈ 퐶∗픛  . Since the range of  is dense in 픛 , 푆∗ → 0  on픛 . 
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Sec (3.2):  Scalar Analytic operators and Extremely Properties of outer 
operators 
We call 푉 ∈ ℬ(픛) Scalar analytic if  퐴푉 = 푉퐴 for every analytic A inℬ(픛). 
 
Theorem (3.2.1): 
 An operator  푉 ∈ ℬ(픛)  is scalar analytic if and only if its matrix. Where 
each entry is a scalar multiple of the identity operator on 픛 . 
Proof: 
 If  is scalar analytic, then  is analytic, so its matrix must further 
commute with diag{퐵 , 퐵 , 퐵 , … } for every 퐵 ∈ ℬ(픛)   and hence the 
commute with all operators inℬ(픛).   Therefore the entries of scalar 
multiples of the indent operator on  픛. 
For the other direction it is enough to check that two matrices of commute if 
all entries of one commute with all entries of the other. The calculation is 
routine. 
We state our result here but. We understand that whenever  퐴, 퐶 ∈ ℬ(픛) are 
analytic, their matrices are  

                      

Respectively, so for all 푗 = 0,1,2, …, 
퐴 = 푃 푆∗ 퐴푃 |픛 

 
Theorem (3.2.2): 
Let 퐶 ∈ ℬ(픛)  be outer, and let 푉 ∈ ℬ(픛)   be scalar analytic. Then 
                                        

For every analytic operator 퐴 ∈ ℬ(픛)   such that  and every  
푓 ∈ 픛.  
Proof: 
If 퐴 ∈ ℬ(픛)   is analytic with  A=BC for some inner operator 
퐵 ∈ ℬ(픛)  with initial space 퐶푋. Applying lemma (3.2.6) with g=Cf, we 
obtain 
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Corollary (3.2.3): 
If  퐶 ∈ ℬ(픛)   is outer, then 

                

For every analytic operator 퐴 ∈ ℬ(픛)    such that .  
Proof: 
By theorem (3.2.2). If  퐴 ∈ ℬ(픛) be analytic with . In theorem 
choose  for a fixed  Set  for an arbitrary ℎ ∈ 픛. 
Then yields  
                           ‖푆∗ 퐶푃 ℎ‖ ≤ ‖푆∗ 퐴푃 ℎ‖. 
By the arbitrariness of h, 

 

Since , we get 

푃 퐶∗ 1 −  푆 푃 푆∗  퐶푃 ≤ 푃 퐴∗ 1 − 푆 푃 푆∗ 퐴푃 . 

Since , this is the same as  
 ∑ 푃 퐶∗푆 푃 푆∗ 퐶푃 ≥ ∑ 푃 퐴∗푆 푃 푆∗ 퐴푃 ,                                
 
Theorem (3.2.4): 
Let 퐶 ∈ ℬ(픛)    be analytic. Let 푉

∈
⊆ ℬ(푐) be scalar analytic operators, 

and let {푓 } ∈ ⊆ 픛 be vectors such that  
 
                              

For every analytic operator 퐴 ∈ ℬ(픛)  such that  
. Assume that: 

(i) The closure in the weak operator topology of the linear span of 푉
∈

 

contains . 
(ii) The closed linear span of is픛. 

(iii) Then  is outer 
 Proof: 
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By there is factorization , where  is outer,  is inner with initial 
space  퐴픛  and  claim: is -constant we apply Lemma 
(3.2.7) with 푔 = 퐴푓 . For all 푗 ∈ 퐽,   푘 ∈ 퐾, 
                          . 

Since the reverse inequality is automatic by Lemma (3.2.6) holds. The only 
hypothesis in Lemma(3.2.7) that is not  Cleary met is that the closed linear 
span of the vectors , is , where 푀 =  퐴픛 the initial space 

of is .To see this, note that , and hence

. Since by hypothesis the vectors 

span a dense subset , we have  
                      {푃 푔 } = 푃 퐴픛∈

⋁ = 푃 퐴픛 = 푃 푀  
The hypotheses of Lemma (3.2.7) are thus satisfied. By Lemma (3.2.7) B is 

-constant. 
Since B is -constant and  is outer,  is also outer. 
 
Theorem (3.2.5): 
Let 퐶 ∈ ℬ(픛)    be analytic. The following are equivalent: 

(i) is outer  
(ii)  for every analytic operator  such that ; 

(iii) for each 푘 ∈ 픛,     
〈퐶 퐶 푘, 푘∗ 〉 = 〈퐶∗퐶(푘 − 푆푓), 푘 − 푆푓〉∈픛 . 

Moreover, if C is outer, then  
〈∑ 퐶∗퐶 푘, 푘〉 =   〈퐶∗퐶(푘 − 푆 푓), 푘 − 푆 푓〉∈픛               
For all 푘 ∈ 픛    and   
Proof:  
(푖) ⇒ (푖푖푖) Let  be outer, so 퐶픛 reduces .Fix 퐾 ∈ 픛 and , the 
infimum of  overall 푔휖퐶픛 is attainable with . 

Hence 
〈퐶∗퐶(푘 − 푆 푓), 푘 − 푆 푓〉픛  

               = ‖퐶푘 − 푆 퐶푓‖픛  
                = ‖퐶푘 − 푆 푔‖픛 = ‖퐶푘 − 푆 푆∗ 퐶푘‖ 

  

               = ∑ 푆 (1 − 푆푆∗)푆∗ 퐶푘 = ∑ 푃 푆∗ 퐶푘  

C BA A B
A A C C  B S

j k j k j k j kV Bg V Cf V Af V g     
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,kP g k K 0PM
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               = ∑ 퐶 푘 = 〈∑ 퐶∗퐶 푘, 푘〉. 
Thus holds and  follows. 

Assume , and let  be analytic with . Then 
for any푘휖픛, 
  〈퐶∗퐶 푘, 푘〉 = 〈퐴∗퐴(푘 − 푆푓), 푘 − 푆푓〉픛   

= ‖퐴푘 − 푆퐴푓‖픛  
≥ ‖퐴푘 − 푆푔‖픛  

. 

Hence (ii) holds. 

, Assume (ii) where  is outer and  is inner with 

initial space 퐴픛  and . By , . Since C=BA,  

 퐶 = 퐵 퐴 , Where 퐵 = 푃 퐵푃 |픛 satisfies 0 1B   Hence퐶∗퐶 ≤ 퐴∗퐴   so

0 0 0 0C C A A   and 0B  is isometric on 퐴픛 . for any 푘휖픛,  
‖퐴 푘‖ = ‖퐵 퐴 푘‖ = ‖푃 퐵퐴 푘‖ ≤ ‖퐵퐴 푘‖ ≤ ‖퐴 푘‖ 

Therefore equality holds throughout, and so  
          푃 퐴 푘 = 푃 퐵퐴 푘 = 퐵퐴 푘. 
Thus B  and 0B  coincide on 퐴 픛  Then jBS  and 0

jS B  coincide on 퐴 픛  
for any 0j  . Hence for any 0j  , 
             퐵푆 퐴 픛 = 푆 퐵 퐴 픛 = 푆 퐶 픛 .  

퐶픛 = 퐵퐴픛 = ⊕ 푆 퐴 픛 = ⊕ 푆 퐶 픛 . 

It follows that 퐶픛  reduces S; that is (i) holds. This completes the proof.  
 
Lemma (3.2.6): 
Let 퐵 ∈ ℬ(픛) be a partial isometry with initial space . If 푉 ∈ ℬ(픛), 푉퐵 =
퐵푉, and ,then 

                                   

With equality if and only if 퐵푉∗푔 = 푉∗퐵푔. 
 
 
 

 iii
   iii ii  iii A A A C C 
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Proof: 
Is the projection of  픛 on ? Hence  and  

‖푉∗푔‖ = ‖푉∗퐵∗퐵푔‖ = ‖퐵∗푉∗퐵푔‖ ≤ ‖푉∗퐵푔‖. 
If equality holds, then  in the initial space of , hence 

for some .Then  and so 

 .Thus . Conversely, if , 
then  
                    

And so equality holds. 
 
Lemma (3.2.7): 
Let 퐵 ∈ ℬ(픛)  be inner with initial space .let 푉

∈
⊆ ℬ(픛)  with 

 and let  be vectors such that 

                푉∗푔푘 = 푉∗퐵푔푘 ,         푗 ∈ 퐽,      푘 ∈ 퐾  
Assume that: 

(i) The closure in the weak operator topology of the linear span of 푉
∈

 

contains . 
(ii) The closed linear span of {푃 푔푘} ∈  is . 

Then  is -constant. 
Proof:  
 By Lemma (3.2.6)  

퐵푉∗푔 = 푉∗퐵푔 ,       푗 ∈ 퐽,        푘 ∈ 퐾. 
Hence by (I), 
                          퐵푆∗푔 = 푆∗퐵푔 ,        푘 ∈ 퐾 
Act on both sides with  and use  to get  
                         퐵푃 푔 = 푃 퐵푔 ,        푘 ∈ 퐾 
Hence by  , 퐵픛 ⊆ 픛, and so  has a diagonal matrix. Therefore is 
 -constant 
These operators are unitarily equivalent by meant of the isomorphism  
푈 ∈ ℬ(픛 , 픛 ) Such that  

푈 : 휙( ) → 휙( ),     푛 = 0,1,2, … 

B B M B Bg g 

V Bg B V Bg Bh 
h M ,B V Bg B Bh V BBg B Bh     
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The isomorphism 푈   is the. Paley- wiener representation of  2H R . That 

is  1 2
34 \ 0,U F L   where  

퐹: 푓(푥) →  →
1

√2휋
푒 푓(푡)푑푡 

Is the Fourier-Plancherel operator on  퐿 (−∞, ∞)  [퐿 (0, ∞) is viewed as a 
subspace of  2 ,L   ]. 
 
Theorem (3.2.8): 
Let 푤 ∈ L (σ) and 푤 ∈ L (−∞, ∞) be related by 

    푊(푥) = 푤 ,                  푥 푟푒푎푙, 

Define operators푇 , 푇 , 푇 , 푇  as above. Then for each 1,2,3,4j   
푐 = 〈푇 휙( ), 휙( )〉픛 ,       푚, 푛 = 0,1,2, ….  

Therefore the operators 1 2 3 4, , ,T T T T  are unitarily equivalent by means of the  
Isomorphism 푈 , 푗, 푘 = 1,2,3,4.  
Proof: 
 By the definition of 1T , for any , 0,1,2,m n    

              〈푇 휙( ), 휙( )〉픛 = 푐  

푤 푒 푒 ( )푑휎 푒 = 〈푇 휙( ), 휙( )〉픛 .
 

 

Changing variables with the substitution 
1 1
2 2

ite x i x i        
   

we 

obtain also 

푐 = 푤 푒 푒 ( )푑휎 푒 .
 

 

 

 
2

1
1 2

1 12
4 2

n m

x iw x
dx

x x i
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= 〈푇 휙( ), 휙( )〉픛  
= 〈푄푊퐹 휙( ), 퐹 휙( )〉픛  

= 〈퐹푄퐹  퐹푊퐹 휙( ), 휙( )〉픛  
= 〈푃  퐹푊퐹 휙( ), 휙( )〉픛  

= 〈푇 휙( ), 휙( )〉픛 . 
For  the next  to last equality we used the relation  Q=퐹 푃퐹, which is a 
consequence  of  the  Paley-Wiener  representation  of  퐻 (푅). The result 
follows.   
If  ,tK L   , then the operator  

     
0

:T f x k x t f t dt


   

Is everywhere defined and bounded on  2 0,L  .where 

푤(푥) = 푒 푘(푡)푑푡 . 

 
Examples (3.2.9): 

(i)    it 1For w e
2

it itCost e e   ,we have 

1/ 2 1
:

0
if n

Cn
other wise

 



 

And 

푊(푥) = 푤
푥 − 1

2 푖

푥 + 1
2 푖

=
푥 − 1

4
푥 + 1

4
= 1 −

1
2

푒 푒 | |푑푡. 

Thus  
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1

10 0 0
2

1 10 0
2 2

1 10 0
2 2

T

 
 
 
 
 
 
 
 
  









      On 픛 = 푙   

 2 cosT f P t f ,        푓 ∈ 픛 = 퐻 (Γ) 

푇 : 푓(푥) ⟶ 푓(푥) − ∫ 푒 | |푓(푡)푑푡,  푓 ∈ 픛 = 퐿 (0, ∞), 

 
2

2
4 4

2

1
4 ,1
4

x
T P f f H H R

x


   


 

(ii) For any complex part meter P, 1P  ,set 

 
2

2

1
1 2 cos

it Pw e
P t P



 

 

Then 퐶 = 푃| |, 푛 = 0, ±1, ±2, … , Setting    1 / 1P P    , we find 
that Re 0   and  

 
2

2 2

1 1
2 4
1 1
2 4

x i x
w x w

x i x




   
   

  
    

 

           휇 − (휇 − 1) ∫ 푒 푒 | |푑푡. 
Thus  

2 3

2

1 2

1
1

1

P P P
P P PT
P P P

 
 
 
 
 
 









     On   픛 = 퐼  
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푇 푓 = 푃
1 − 푃

1 − 2푃 cos 푡 + 푃
푓, 푓 ∈ 픛 = 퐻 (Γ),      

푇 : 푓(푥) ⟶ 휇푓(푥) −
1
4

(휇

− 1) 푒 | |푓(푡)푑푡,            푓 ∈ 픛 = 퐿 (0, ∞)  

푇 푓 = 푃 + 휇
푥 − 1

4
푥 + 1

4 휇
푓,                        푓 ∈ 픛 = 퐻 (R).        

Any number of similar examples can in principle be constructed. However, 
it is typically the case that an operator is simple and ‘natural 'in new scheme 
and complicated or unrecogyni zable in another. We invite the reader to try 
the example  
푇: 푓(푥) ⟶ ∫ 퐾(푥 − 푡)푓(푡)푑푡, 푓 ∈ 퐿 (0, ∞)     Where 
               퐾(푥) = ∫ 푦 푒| | 푑푦. 
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Chapter 4 
Concrete Spectral Theory 

 
In this chapter we sketch the explicit diagonalization of a self-ad joint  
Toeplitz operator when the underlying shift has multiplicity 1. 

1. Notion and Preliminaries. Let S  be multiplication by 푒  on  2H  , and 

Let P  be the Projection 퐿 (휎) of on  2H  . For any 푤 ∈ 퐿 (휎) define 

 T w  on  2H   by  

                    2,T w f Pwf f H    

  T w Is S -Toeplitz and  T w w


 . Every S -Toeplitz operator has 
this for. Moreover: 

(i)  T w is self-ad joint if and only if w  is essentially real valued; 

(ii)   0T w  if and only if 푤 ≥ 0 휎 − 푎. 푒  ; 

(iii) If  a H   , then 푇(푤) = 푇(푎)∗푇(푎) if and only if푤 = |푎| 휎 − 푎. 푒.  

2. Let w  be a real valued function in 퐿 (휎) .Then  T w  is self- ad joint with 
spectrum  

    ,SP T w c d , where infc ess w  inf 푤 and supd ess w . 

If w  is not equal 휎 − 푎. 푒  to a constant. Then  T w  has no point 
spectrum. 
 
Theorem (4.1): 
Let w  be a real valued function in 퐿 (휎) , and set infc ess w . For any 

훼, 훽 ∈ 퐷 and  \ ,Z C c   

〈(푇(푤) − 푧퐼) 1 − 훼푒 , 1 − 훽̅푒 〉  
푎(훼, 푧̅)푎(훽, 푧) (1 − 훼훽)⁄  

Proof: 
Where for D  and  \ ,z c c   
By no analyticity it is enough to Prove for ,z x x c  . 
By the Lemma (4.2) for such x , 
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         1
., .,T w xI T a x T a x

 
 

푎(훼, 푧) = exp − ∫ log 푤 푒 − 푧 푑휎  
With the principal branch of the logarithm,  
 
Lemma (4.2): 
If ≥ 훿    휎 − 푎. 푒 . For some > 0 , then  T w  is invertible and  

푇(푤) = 푇(푎)푇(푎)∗ where  a H    is any function such that 
21/ . .w a a e   . 

 Proof: 
By no. 1(iii) 푇(푤) = 푇(1 푎⁄ )∗푇(1 푎⁄ ). 
 
Theorem (4.3): 
 Let w  a real valued function in  L  .If w  is not equal . .a e  . To a 

constant, then  T w  is absolutely continuous.  
Proof: 
Let .For set 퐾 푒 = 1 − 훼푒  , the 

function  is continuous on and constant on 

(−∞, 푐]  , [푑, ∞)    (푐 = ess   inf 푤 , 푑 = ess  sup 푤) 
푧 ∈ 퐶 ∖ [푐, ∞)  

푦
휋

푑〈퐸(푡)푘 , 푘 〉
(푡 − 푥) + 푦

 

                                 

                                

= 휋 (1 − |훼| )   Im exp − 푃 훼, 푒 log 푤 푒 − 푧 푑휎
 

 

   T w ftdE t D 

  ,K z
t E t K


  , 

  1

2

1 Im ,T w zI K K 


   

     
121 1 Im , ,a z a z   
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= 휋 (1 − |훼| ) exp − 푃 훼, 푒 log 푤 푒
 

− 푧 푑휎 . sin − 푃 훼, 푒 arg 푤 푒 − 푧 푑휎
 

 

≤ 휋−1 1 − |훼|2 −1 exp − 푃 훼, 푒푖휃 log 푤 푒푖휃 − 푥 푑휎
 

Γ
 

By Lemma (4.5) and the Stieltjes inversion formulas the function 
 is absolutely continuous on . Hence  

belongs to the absolutely continuous sub space 픛  for .Since  
is arbitrary, 픛 = 퐻 (Γ) and the result follows 
  
Lemma (4.4): 
For almost all x , 
              ∫ log 푤 푒 − 푥 푑휎 < ∞ .  
Proof: 
For t w


  and푒 ∈ 훤 , 

log 푤 푒 − 푥 푑푥 = log 푦  푑푦 + log 푦  푑푦 

                                
 푡 − 푤 푒 log 푡 − 푤 푒 + 푡 + 푤 푒 log 푡 + 푤 푒 − 2푡 ≥ 퐾  , 
Where 퐾  , is a constant, 퐾 > −∞ ? Hence 

log 푤 푒 − 푥 푑푥푑휎 > −∞
 

 

And the result follows. 
 
Lemma (4.5): 
퐼푓 푒푠푠 inf 푤 < 푠 < 푡 < 푒푠푠 sup 푤 And , 

exp − 푃 훼, 푒
 

log 푤 푒 − 푥 푑휎 푑푥 < ∞ 

Proof: 
The function 푉 (푧) = Im 훼(훼, 푧̅)훼(훼, 푧)  is positive and harmonic on , so 

 
2

,t E t K K   ,c d K

 T w D 

D
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           ∫ 푉 (푥)(1 + 푥 ) 푑푥 < ∞  
For any fixed 푒 ∈ 훤 . 

lim
↓

log 푤 푒 − 푥 − 푖푦 = log 푤 푒 − 푥 − 푖휋휒 ( ) 푒 , 

   Where 푦(푥) = 푒 : 푤 푒 < 푥  .Thus 

푉 (푧) = lim
↓

 Im exp −
1
2

푒 + 훼
푒 − 훼

log 푤 푒 − 푥 − 푖푦 푑휎
 

−
1
2

푒 + 훼
푒 − 훼

log 푤 푒 − 푥 − 푖푦 푑휎
 

 

= Im exp − 푃 훼, 푒 log 푤 푒 − 푥 − 푖휋휒 ( ) 푒 푑휎
 

 

= exp − 푃 훼, 푒푖휃 log 푤 푒푖휃 − 푥 푑휎
 

Γ
sin 휋 푃 훼, 푒푖휃 푑휎

 

푦(푥)

 

 
Theorem (4.6): 
There is a direct integral Hilbert space  
                                                         픛 = ∫ ⊕  픛(푥)푑휇 

  

Where , such that  is unitarily equivalent to multiplication 
by  on 픛 . 
We shall not prove this theorem, but we include the definition of the space. 

Is a compact sub set , and  is a finite non negative Borel 
measure on . 
For 휇-푎. 푒. 푥 ∈ 푋, 픛(푥) . Is a separable Hilbert space. 
A class  of ‘measureable ‘function is assumed given such that: 

He elements of  are function for  such that 푓(푥) ∈ 픛(푥)휇-푎. 푒 

For any  the scalar valued function 푥 → 〈푓(푥), 푔(푥)〉픛( )  
휇 is- measurable  
 If  is a function on  such that 푔(푥) ∈ 픛(푥)휇-푎. 푒. And 푥 →

〈푓(푥), 푔(푥)〉픛( ) is -measurable for all ∈ ℳ , then 푔 ∈ ℳ . 
(M4) There is a sequence 푝 ⊆ ℳ such that 픛(푥) = ⋁ 푝 (푥): 푗 =

1, 2, … }   휇-푎. 푒 
There is a sequence  such that . 

 X SP T T
x

X  ,  
X

M
 1M M X
 2M ,f g M

 3M g X

1B 1B
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Function that are equal 휇-푎. 푒 . Are identified. The Hilbert space it defined as 
the 

Space of all 푓 ∈ ℳ such that ∫ ‖푓(푥)‖픛( )푑휇 < ∞   in the inner product 
                                 〈푓, 푔〉 = ∫ 〈푓(푥), 푔(푥)〉픛(푥)

 
푥 푑휇 

In order to define the space it is thus necessary to specify a class of functions 
Satisfying(푀 ) − (푀 ). 
In applications, the following result is helpful for this purpose 
 
Lemma (4.7): 
Let  be a finite nonnegative Borel measure on a compact set X⊆ (−∞, ∞). 

For 휇-푎. 푒.x∈ 푋, let 픛(푥) be a separable Hilbert space. Assume given a 

sequence  of function on  such푞 ( )∈픛( ). For each , 

and 
(I)  for each 푗, 푘 ≥ 1, 푥 → 〈푞 (푥), 푞 (푥)〉픛  is - measurable, and 

(ii)     ⋁ 푞 (푥): 푗 = 1, 2, … = 픛(푥)휇-푎. 푒 . 
. Define  to be class of all function  on  such the 
. And 푓(푥) ∈ 픛(푥)휇-푎. 푒 and 푥 → 〈푓(푥), 푞 (푥) 〉픛( ) is  measurable for 
Each . Then  satisfies (푀1) − (푀4) , and  is he only such 

containing  
In the situation of theorem , we define 푚(푥) = dim 픛(푥) 휇-푎. 푒  on

we call a multiplicity function for .The quantities 
(sp(푇), 푚, 휇) are called the unitary invariants for . The terminology 
is justified by the following result. 

 
Theorem (4.8): 
Let  be a bounded self-ad joint operator on a separable Hilbert space 

write associated triple sp 푇 , 푚 , 휇  as above . Then and 

 are unitarily equivalent if and only if   , 

(ii) 휇  and  are mutually absolutely continuous, that is, they have the 
same class of null sets, and (iii) . 푚 = 푚  휇 -푎. 푒.     (푗 = 1,2).  

Proof: 
  Is absolutely contagious and푠푝(푇) = [푐, 푑]. Hence if   has spectral 

representation  



 
1jq


X 1j 



M f X


1j   M
 1iq



A
 SP T T

T

jT jH
1,2j  1T

2T      1 2i SP T SP T

2

T T
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, then for any , 

                                        < 푇푓, 푔 > = ∫ 푥 < 퐸(푥)푓, 푔 > 푑푥. 
The strategy of the proof is to use the generation's formula for resolvents to 

compute this for,푓 = 푘 , 푔 = 푘 , 훼, 훽 ∈ 퐷 where for any  
            푘 푒 = (1 − 훼푒 )  On . 

                        

                     lim ↓ ( < (푇 − 푧퐼) 푘 , 푘 > −< (푇 − 푧̅퐼) 푘 , 푘 > ) 

                 =lim
↓

( , ̅) ( , ) ( , ) ( , ̅)
  

                   
( , ) ( , ) ( , ) ( , )

 

                       

Hence, for any D   휉 (푥) = 푎(훼, 푥 + 푖0) and   휙 (훼) = − ( , )
( , )

. 

The limits 푎(훼, 푥 ± 푖0) = lim
↓

푎(훼, 푥 ± 푖푦) exist for all x  satisfying 

                             푎(훼, 푥 ± 푖0) = exp − ∫ 푙표푔 푤 푒 − 푥 푑휎 . 

        .exp(± ∫ 
/ 푑휎),                     

Where   :it itEx e w e x   as in  ii Thus 

                                      휙 (훼) = − exp −휋푖 ∫ 푑휎 , 

                                        = exp 휋푖 ∫ 푑휎 . 

By the lemma (4.9), 

  
( ) ( ) = ∫ ( )

=< 푘 , 푘 > ( ),
 

  

Where
 xV  is nonnegative singular Boral measure on  such that 

Index of  
Hence  

 T xdE x   2,f g H 

D 


 
 

 
2

2 20

,
, lim

Y

d E t K Kd yE x K K
dx t x y

 
  







 

       
1

x xx x 

   
 







  2dim xL V 

xE
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   < 퐸(푥)푘 , 푘 > = 휉 (푥)휉 (푥) < 푘 , 푘 > ( ), 

And 
< 푇 < 푘 , 푘 > = ∫ 푥휉 (푥) 휉 (푥) < 푘 , 푘 > ( ) 푑푥. 

 
Lemma (4.9): 

Let . Be a Boral set, and let 

  

The Re∅(푧) > 0 none , and Re∅ 푒 = 0 휎-푎. 푒  on . There is a 
nonnegative singular Borel measure  on such that  

∅(훽) + ∅(훼)
1 − 훽훼

=
푑푣

(1 − 훼푒 )(1 − 훽푒 )

 

  , 훼, 훽 ∈ 퐷 

We have  
Proof: 
For any  

Re∅(푧) = (2휋)−1 exp Re 휋푖
푒 + 푧

푒 − 푧
푑휎

 

퐸

sin 휋 푃(푧, 푒푖푡)푑휎

 

퐸

 

Hence  on . By Fatou’s theorem. The sine factor tends none 

tangentially to sin 휋휒 푒 = 0 휎-푎. 푒 . , and hence  
Re∅ 푒 = 0휎-푎. 푒. By the Riesz Herglotz theorem, there nonnegative Borel 

measure  on such that holds. Since, 푅푒휙 푒 = 0휎-푎. 푒 is singular by 
Fatou’s theorem. 

Suppose that the index of  is a positive integer .Then modulo  null set, 
퐸 = 퐸 ∪ … . .∪ 퐸  where, 퐸 = 푒 : 푎 ≤ 휃 ≤ 푏 , 푗 = 1, … . , 푛 and the arcs 
proper and disjoint. By direct calculation, 

 ∅(푧) = 푒 ( )Π .  
Hence  is rational with  simple poles, which all lie on .Therefore consists 

of  point masses, and so. 
Conversely, let  be positive integer . Then  consists of  
point masses, is a rational function with  simple poles, all on . 
For푧휖퐷, 

E  

  1 exp ,
2

it

it
E

e zz i d z D
i e z

  


 
   


D 

V 

 2L v index of E

z D

 Re 0z  D

V 

E n a

 n  n
n

 2dim L v n V n
 n 



68 
 

                                           푎푟푔푖∅(푍) = 휋 ∫ 푝(푧, 푒 )푑휎 

Where the argument is chosen in . Passing to the boundary, we obtain  
                                           푎푟푔푖∅ 푒 = 휋휒 푒      휎-푎. 푒 
Since are 푖∅ 푒    is contains except at the zero and Poles of  is anion of 

intervals modulo 휎-null set. Hence by the argument of the Preceding 
paragraph,  of . 

 

Theorem (4.10): 
There is a unique isometry  mapping onto  퐿 (푝) such that for all

 
                       푉푘훼 (푥) = [휓(훼, 푥) 1 − 훼푒 ( ) ( 1 − 훼푒 ( ) ] −1, 
Where is as Further more: 
(i) 푉푇푉  is multiplication by on 퐿 (푝), and  

(ii) if then for all , 
 
(푉 푓)(훼) = ∫ 푓(푥)(푉푘 )(푥) 푑푝(푥)   

Proof: 
 This can be deduced from the constructions for all훼, 훽휖퐷, 
휙 (훼) = 푒 ( )   
And so 
                        

( ) ( ) = 푝 (푥)(1 − 훼푒 ) (1 − 훽푒 )  
Then we obtain 

< 퐸(푥)푘 , 푘 > = 푝 (푥)[휓(훼, 푥) 1 − 훼푒 1 − 훽푒 ]   

[휓(훽, 푥) 1 − 훼푒 1 − 훽푒 ]   
 

Example (4.11): 
Let  then , and we can choose 

 for 1 
Thus  

푝 (푥) = 휋 (1 − 푥 )  , -1<x<1. 

Since 

 0,

,E

 2L V n index  E

V  2H 
D 

  DK 

x
 2f L P D 

  cositw e t    , 1,1c d  

    arc cosb x a x x   1 x  
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We see by in section that 

|cos 푡 − 푥| =
1
2

1 − 2푥푒 + 푒 , 

휓(훼, 푥) = 2 (1 − 2푥훼 + 훼 )  

It follows that 

 

                       

For all , where {푈 (푥)}  are Chebychev polynomials. If 푓 ∈ 퐿 (푝) then 

(푉 )(훼) =
2
휋

푓(푥)(1 − 2푥훼 + 훼 ) (1 − 푥 ) 푑푥, 

.    Operator diagonalizes  . 
 
Example (4.12): 
For fixed  consider the Wiener-Hopf operator 

(푇 푓)(푥) = 푒 | | 푓(푡)푑푡,             푓 ∈ 퐿 (0, ∞).  

Then  is diagonalized by the isometric operator mapping 
onto퐿 (푣 )  such that 

푑푣 (휔) =
2
휋

푑휔
휔 + 푘

           표푛(0, ∞), 
With 

(푈 푓)(휔) = (휔 cos 휔푡 + 퐾 sin 휔푡)푓(푡)푑푡 

For each 푓 ∈ 퐿 (0, ∞) ∩ 퐿 (0, ∞), and 

(푈 푔)(푡) =   (휔 cos 휔푡 + 퐾 sin 휔푡)푔(휔)푑푣 (휔) 

For each 푔 ∈ 퐿 (푣 ) ∩ 퐿 (푣 ),  we find that 

21cos 1 2
2

it itt x xe e   

    
1 1222 1 2VK x x  


  

 
1
2

0

2 n
n

n
x 






 
D 

D  V  T w

0K 

KT kU  2 0,L 
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(푈 푇 푈 푔)(휔) =
2푘

휔 + 푘
푔(휔) 

For each 푔 ∈ 퐿 (푣 ). 
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