Proposal of Standard Operation Procedure and Policies (SOPs) for Medical Imaging Instruments in Sudan

مقترح إجراءات التشغيل القياسية لاجهزة التصوير الطبي في السودان (SOPs)

A project submitted in partial fulfillment to the requirements for the degree of B.Sc. in Biomedical Engineering

Prepared by:
Najwa Farouq Saleh
Rawaa Emad Bdawi

Supervised by:
Dr. Mawia Ahmed Hassan
TABLE OF CONTENT

CHAPTER 1 INTRODUCTION ...Error! Bookmark not defined.

1.1 Project introduction ...Error! Bookmark not defined.
1.2 Project problem statement ...Error! Bookmark not defined.
1.3 Thesis objectives ..Error! Bookmark not defined.
1.4 Thesis organization ..Error! Bookmark not defined.

CHAPTER 2 ...Error! Bookmark not defined.

2.1 X-RADIATION ..Error! Bookmark not defined.
2.2 X-RAY MACHINE ..Error! Bookmark not defined.

2.2.1 Mechanism ..Error! Bookmark not defined.
2.2.2 Overview ..Error! Bookmark not defined.
2.2.3 X-ray sources ...Error! Bookmark not defined.
2.2.4 Detection ...Error! Bookmark not defined.
2.2.5 Applications ...Error! Bookmark not defined.
2.2.6 Medicine ...Error! Bookmark not defined.
2.2.7 Security ...Error! Bookmark not defined.
2.2.8 Advances in X-ray technology ...Error! Bookmark not defined.

2.3 CT MACHINE ...Error! Bookmark not defined.

2.3.1 Diagnostic use ...Error! Bookmark not defined.
2.3.2 Advantages ..Error! Bookmark not defined.
2.3.3 Adverse effects ..Error! Bookmark not defined.
2.3.4 Dose vs. image quality ...Error! Bookmark not defined.
2.3.5 Industrial use ...Error! Bookmark not defined.
2.3.6 Types of machines ...Error! Bookmark not defined.

2.4 Magnetic resonance imaging ..Error! Bookmark not defined.

2.4.1 Introduction ..Error! Bookmark not defined.
2.4.2 Neuroimaging ...Error! Bookmark not defined.
2.4.3 Cardiovascular ...Error! Bookmark not defined.
2.4.4 Musculoskeletal ...Error! Bookmark not defined.
4.7.4 Connection.. Error! Bookmark not defined.

4.8 Electrical Safety Tests.. Error! Bookmark not defined.

4.8.1 Radiation Safety... Error! Bookmark not defined.

4.8.2 Magnetic Resonance Imaging Safety Error! Bookmark not defined.

4.8.3 X-ray Device Safety: .. Error! Bookmark not defined.

4.8.4 The safety of the CT: ... Error! Bookmark not defined.

4.8.5 Ultrasound SAFTY .. Error! Bookmark not defined.

4.9 Environmental requirements Error! Bookmark not defined.

4.9.1 Monitoring the environment................................. Error! Bookmark not defined.

4.10 Contamination .. Error! Bookmark not defined.

CHAPTER 5 ... Error! Bookmark not defined.

5.1 Technical specification format: Error! Bookmark not defined.

5.2 SAFETY FORMAT: .. Error! Bookmark not defined.

5.3 ENVIROMENTAL FORMAT : Error! Bookmark not defined.

5.4 Labling format: .. Error! Bookmark not defined.

5.5 Experimental test: ... Error! Bookmark not defined.

5.5.1 CT-Scanner ... Error! Bookmark not defined.

5.5.2 THE Ultrasound ... Error! Bookmark not defined.

5.5.3 X-RAY ... Error! Bookmark not defined.

5.5.4 MRI .. Error! Bookmark not defined.

5.6 SAFETY : .. Error! Bookmark not defined.

CHAPTER 6 ... Error! Bookmark not defined.

6.1 CONCLUSION ... Error! Bookmark not defined.

6.2 Future Work: ... Error! Bookmark not defined.
TABLE OF FIGURES

Figure 2.1: GemX-160 - Portable Wireless Controlled Battery Powered X-ray

Figure 2.2: Surgical mobiles can produce images continuously.

Figure 2.3: Hand-luggage inspection machine at Berlin Schönefeld Airport.

Figure 2.4: Dental digital X-ray system under testing in 2011.

Figure 2.5: Sketch of a CT scanner.

Figure 2.6: Picture of a CT scout (aka scanogram or topogram) as used for planning every scan slice.

Figure 2.7: Computed tomography of human brain, from base of the skull to top. Taken with intravenous contrast medium.

Figure 2.8: Example of a CTPA, demonstrating a saddle embolus (dark horizontal line) occluding the pulmonary arteries (bright white triangle).

Figure 2.9: MRI image of white matter tracts.

Figure 2.10: MR angiogram in congenital heart disease.

Figure 2.11: Medical MRI scanner.

Figure 2.12: DTI image.

Figure 2.13: Magnetic resonance angiography.

Figure 2.14: A fMRI scan showing regions of activation in orange, including the primary visual cortex (V1, BA17).

Figure 2.15: The medical ultrasound machine.

Figure 2.16: The main components of the ultrasound machine.

Figure 2.17: Changing the shape of the surface of the probe and its size gives different images used for different applications.

Figure 4.4.1: Current Test (Line Leakage Test).

Figure 4.2: Leakage Current Measurement Conditions.

Figure 4.3: Earth Leakage.

Figure 4.4: Enclosure Leakage.

Figure 4.5: Patient Leakage.

Figure 4.6: Patient auxiliary leakage current.

Figure 4.7: Mains voltage.

Figure 4.8: RADIATION.

Figure 4.9: Recommended "Snapshot" Monitoring Devices.

Figure 5.1: X-ray tube dual focus with capacity at least 3.5 MHU.

Figure 5.2: Have cooling rate not less than 700 KHU.

Figure 5.3: Detectores solid state/ceramic.

Figure 5.4: Detectores solid state/ceramic.

Figure 5.5: Have at least 650 per row of the effective elements/ channels.

Figure 5.6: The gantry has a minimum tilt of 30 degrees.

Figure 5.7: The metal free scan at least 130 cms.

Figure 5.8: The metal free scan at least 130 cms.
Figure 5.9 The minimum load bearing capacity of the patient table should be at least 200 kg.

Figure 5.10 The range of spiral facilities in axial direction more than 100 cms.

Figure 5.11 The screen is LCD and swiveling type.

Figure 5.12 Frequency of phase probe at the range.

Figure 5.13 Frequency of convex probe at the range.

Figure 5.14 Frequency linear array probe at the range.

Figure 5.15 Have A/B/M Modes.

Figure 5.16 Have a certificate CE, FDA.

Figure 5.17 Generatores high frequency.

Figure 5.18 Type of tube: rotating anode.

Figure 5.19 Focal spot at least 1 mm.

Figure 5.20 Bucky grid type.

Figure 5.21 Have a certificate CE, FDA.

Figure 5.22 MRI Close Type.

Figure 5.23 Magnet field strength.

Figure 5.24 pass current onto the ground pin of a product.

Figure 5.25 Measure the voltage drop across the safety ground circuit to calculate the impedance of that circuit.

Figure 5.26 Ensure probe is on a protectively earthed point.

Figure 5.27 apply high voltage to the mains current carrying conductors (line and neutral) and the return path.

Figure 5.28 Measure the resulting leakage current.

Figure 5.29 Insulation test.

Figure 5.30 voltage test.

Figure 5.31 insulation resistance.

Figure 5.32 Move probe to find worst case.

Figure 5.33 line leakage test.

Figure 5.34 Run the device at rated voltage.

Figure 5.35 Measure the leakage current through resistive impedance.

LIST OF TABLES

Table 4.1 Technical specification for imaging devices.

Table 4.2: Leakage current limits summary.

Table 4.3: electrical safety.

Table 4.4: electrical safety test.

Table 4.5: The suitable standards for temperature and relative humidity for our devices are.

Table 5.1: TECH SPECE FOR ULTRASOUND.
Table 5.2: TECH SPECE FOR CT-SCAN .. Error! Bookmark not defined.
Table 5.3: TECH SPEC FOR X-RAY .. Error! Bookmark not defined.
Table 5.4: TECH SPECE FOR MRI .. Error! Bookmark not defined.
Table 5.5: SAFETY FORMAT ... Error! Bookmark not defined.
Table 5.6: TYPE OF LEACKAGE ... Error! Bookmark not defined.
Table 5.7: X-ray Device Safety during operation Error! Bookmark not defined.
Table 5.8: CT device safety during operation Error! Bookmark not defined.
Table 5.9: Magnetic Resonance Imaging Safety Error! Bookmark not defined.
Table 5.10: Ultrasound safety ... Error! Bookmark not defined.
Table 5.11: ENVIRONMENT FORMAT .. Error! Bookmark not defined.
Table 5.12: Labling format ... Error! Bookmark not defined.
ABSTRACT

Imaging devices are playing a big and important role in the diagnosis of the diseases. Unfortunately there are conflicting in the rules and regulations which were made by different organizations such as [national medicines and poisons board(NMPB), Sudanese standards and metrology organization(SSMO), Sudan Atomic Energy commission(SAEC) and medical supplies(MS)] to control the import and operation of these devices.

The multiplicity of organizations in this matter are causing many problems that’s make the standardized procedures lack in Sudan.

The aim of this work is to make an attempt unification of technical and operational measures for medical imaging devices in the Department of Radiology, improve the quality of service diagnostic of the disease and make written procedures followed by the staff to perform the job properly, ensure quality, prevent risks and mistakes, improve errors and reduce the costs.

In the first step in this work to reach that aims we followed operating procedures as it described in the operating manual of the devices. Secondly we determined the technical specifications of the device corresponding on the international specification such as The Food and Drug Administration FDA, Common Era CE, and International Organization for Standardization ISO.

In the third step we wrote the procedures of the Safety (Electrical and radiation). Fourthly we determined the environmental conditions of the devices which were required. at the last step we tagged that there were a simple contamination (bacterial) in these devices and we provided how to avoid it.

After these steps we have been making a format to verify the experimental results which were obtained to know if the international standards are applying in the hospitals of Sudan.

The results showed that recently began attention occurring for the Imaging devices after returning to the manufacturer to make sure that they get on the after-sales service, spare parts and basic safeguards, in accordance with the principles and controls which were put by the different organizations in Sudan including making an impact on the provision of service desired.
It also found that the safety measures (electric and radiation) for these devices are followed accurately and knowledge of how to make safety tests which are not available to the staff.

This work is a beginning step to improve the use of imaging devices to ensure that we get the desired results better.
المستخلص

تلعب الأجهزة التصويرية دور كبير ومهم في تشخيص الأمراض ولكن هناك تضارب كبير في الامس والضوابط التي تحكم استيراد وتشغيل هذه الأجهزة وذلك لتحديد الجهات المعنية بهذا الأمر (إدارة الصيدلة والهيئة السودانية للمواصفات والمعايير، وهيئة الطاقة الذرية والامدادات الطبية) مما تسبب في مشاكل كثيرة وسبب عدم وجود إجراءات موحدة مطبقة في السودان.

الهدف من البحث محاولة توحيد الإجراءات التقنية والتشغيلية لجهاز التصوير الطبي في قسم الشؤون الصحية وتحسين نوعية الخدمة التشخيصية للمرض وعمل إجراءات مكنونة تبعها الموظفون لإدارة الوظيفة بالصورة الصحيحة وضمان الجودة ومنع المخاطر والخطأ وتحسين الخطر وخفض التكاليف.

في هذا المقترح اتبعنا خطوات معينة ليصل إلى هذه الهدف وقد كانت الخطوة الأولى إتباع إجراءات التشغيل العملية كما موضحة في كتاب التشغيل لجهاز ثم تحديد المواصفات التقنية للجهاز ثم ثانياً السلامة (الكهربائية والإشعاعية) رابعاً تحديد الظروف البيئية المطلوبة، واخيراً القول (البوصلة) البيطر في هذه الأجهزة وكيفية تقديمها. بعد اجراء هذه الخطوات تم عمل فورمات للتحقق من النتائج التجريبية المتحكمة عليها ومعرفة مدى استخدامها في عدد من المستشفيات.

بينت النتائج أنه بدأ مؤخرًا الاهتمام باستدلال الجهاز التصويرية بعد الرجوع إلى الشركة المصنعة لتتأكد من الحصول على خدمات ما بعد البيع ووضع الغيار والضمانات الأساسية وذلك وفقًا لأسس وضوابط موجودة من عدة جماليات إرجاع الخدمة المنشودة. كما وجد أيضاً ان إجراءات السلامة (الكهربائية والإشعاعية) لهذه الأجهزة غير متبعة بصورة دقيقة وأن الأسلام بكفاءة إجراءات اختبارات السلامة غير متوفر لدى طاقم الموظفين.

هذا العمل هو خطوة البداية لتحسين استخدام الأجهزة التصويرية لضمان الحصول على النتائج المطلوبة بصورة أفضل.
Chapter One

Introduction

1.1 Project Introduction

Physiological systems are very complex and hierarchical in structure and the complexity is present in every level including the organs, the cells and biochemical molecules. The great complexity of physiological systems makes it difficult to describe, interpret or explain their behavior without the assistance of some form of model. Simulations and modeling in respiratory medicine offer a number of opportunities. First, models and simulations can give us better understanding of the pathophysiology of disease processes. For example, constructing a multi-unit lung model with different regional ventilation and perfusion properties can help us understand gas exchange disturbances. Second, simulations and models are powerful educational tools. Observing a simulator or model’s response to various manipulations can help educate health care professionals in diagnosis and treatment decisions. Indeed, a wrong decision on an education simulator leads only to clinician learning, not to a real patient disaster. Education simulators can also be used for clinician testing and licensing. Third, a simulator or model can help predict a patient’s response to planned therapies. For example, a mechanical lung model may be able to predict how a patient’s respiratory system will respond to a change in a ventilator setting. Fourth, a computerized anatomic model of the respiratory system can be used to diagnose anatomic lesions and guide bronchoscopy and other invasive techniques. Fifth, simulators and models help assess and improve existing and new ventilation devices, technique and modes.
Approaches to modeling or simulating the respiratory system have taken many forms over the years, as recognized through the works, for example, Douglas and Haldane (1908) and Horgan and Lange (1963). The basic principle of hybrid modeling is that an existing numerical model is modified inserting in some of its parts, according to the specific needs, a physical model.

1.2 Problem Statement

Calibration of equipment need standard methods and specific tools to ensure the accuracy of the readings and the results obtained. These tools must be met for each device in order to be calibrated. In Sudan, most likely do not have these tools, which affects the process of diagnosis and treatment of these devices such as ventilator, which are the calibration process has improper, accordingly, these tools must be available in order to be properly calibration process.

1.3 Objectives

1.3.1 General Objective

The aim of this work is to introduce hybrid model of respiratory system and understanding how it work, which enables connecting the real clinical devices with the computerized virtual lungs.

1.3.2 Specific Objectives

The main purpose of this work are:
1- to create tool for the calibration of the artificial ventilation equipment such as ventilator to find out the performance.
2- to educate and train of medical staff.
3- to develop the methods of modeling respiratory system and also assist ventilation.

1.4 Project organization

This project is divided into six chapters and is organized as follows:
In chapter one, discuss the introduction of simulation and modeling of respiratory system, problem statement, then general and specific objectives, and project organization, after that in chapter two describes the anatomy and physiology of respiratory system, and modeling of respiratory system, then in chapter three reviews models of respiratory system, then in chapter four discuss the method of designing of hybrid model (software and hardware model), then in chapter five show results and discussion, then in chapter six suggest recommendation to implement in the future and conclusion.