Dedication

If I Can Give You Anything I Will Give You The World. But All I’ve Is My Love And Respect.

To The One Who Worked Hard, To Push Me Forward. Who Mixed His Sweat With Tears And Blood To Give Me The Opportunity To Become The Man I Am Today. My Father.

To The Smile That Lighten The World, To The Sea Of Love, Forgiveness And Compassion. My Mother.

To The Inspiration, Love Of My Life And The One I Choose To Accompany Me In My Life Journey. My Love.

To Those Who Taught Us That We Can Do Whatever We Want, That There’s No Life without Hope and That the World Is Ours If We Wants To. My Teachers.

To The Kind Heart Who Encouraged Me And Helped Me To Stand After I Fail. Friends And Family.

For All Those And More, I Present This Research As Gift Packed With Love And Gratitude. For All That You Are Doing And Did For Me.
Acknowledgement

Our ship finally landed at one of the knowledge learning shores. To announce the end of a fabulous stage of our life that forever will be with us.

Here we are standing in front of you with teary eyes and hopeful smiles to thank you from the bottom of our heart for your effort, time and knowledge.

Words fail to describe our gratitude and thanks for those who contributed in our learning process from the start till now.

For those who stood, encourage and guided us into achieving this result.

Dr. Abdel Fatah Bilal. The most gratitude thanks and respect for his helpful advices and guidelines, for being the best leader for us through this research, for being the father who taught us how to be humble and creative.

Finally many thanks to those who supported me from distant and worked behind the scene family, friends and co-workers.

For all my respect and gratitude.
CONTENTS

<table>
<thead>
<tr>
<th>Dedication</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>II</td>
</tr>
<tr>
<td>Contents</td>
<td>III</td>
</tr>
<tr>
<td>Abstract</td>
<td>V</td>
</tr>
<tr>
<td>List of tables</td>
<td>VII</td>
</tr>
<tr>
<td>List of figures</td>
<td>VII</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1-1 preface
1-2 Problem Statement
1-3 Objectives
1-4 Research methodology

Chapter 2: Theoretical Background

2-1 History of Pressure Vessel
2-2 ASME Code Contents
2-3 Role of Finite Element in Pressure Vessel Design
2-4 Safety Aspect
2-5 General Description of Pressure Vessel design
2-5-1 UG-1 Scope
2-5-2 UG-4 General Materials
2-5-3 UG-27 (C) Cylindrical Shells
2-5-4 UG-99 (b) Hydrostatic Test
2-5-5 UG-32 (F) Ellipsoidal Heads
2-5-6 UG-32 (F) Hemispherical Heads
2-5-7 UG 40 Limits Of Reinforcement
2-5-8 UG-45 Nozzle Neck Thickness
2-5-9 UG-16 (b) General Design
2-5-10 UG-22 Loadings
2-6 Finite Element Method (FEM)
2-7 ANSYS

Chapter three: Application study

3-1 Introduction
3-2 Material Selection
3-3 Determining the dimension of the vessel
3-4 Design input data
3-5 Shell thickness calculation
3-6 Dished head thickness
3-7 Saddle for support of horizontal vessels
Chapter Four: ANSYS Analysis of the Pressure Vessel

4-1 Introduction 30
4-2 Geometry 31
4-3 Build the model 31
 4-3-1 Preferences 32
 4-3-2 Element types 33
 4-3-3 Material properties 34
 4-3-4 Create model 36
4-4 Selection of mesh size 38
4-5 Define boundary conditions and loads and run the analysis 40
4-6 Deformed Shape 44
4-7 Create Contour Plots of the von Mises 45
4-8 Full model 47
4-9 Verification of the results 47

Chapter Five: Conclusion & Recommendation

5-1 Conclusion 49
 5-1-1 Factor of safety for strength 49
 5-1-2 Factor of safety for pressure: 50
5-2 Recommendations 50

References 51
Abstract

A pressure vessel is defined as a container with a pressure differential between inside and outside. The inside pressure is usually higher than the outside pressure. High pressure rise is developed in the pressure vessel and pressure vessel has to withstand severe forces. So the selection of pressure vessel is most critical.

In Sudan pressure vessel industry is limited to domestic LPG containers. This is due to the fact that higher capacity pressure vessel should be fabricated from alloy steel which are not available in the local market. In this research an attempt was made to design 1.75 MPa, 3.75 cubic meter LPG vessel made of Mild steel. The design was carried as per ASME BOILER & PRESSURE VESSEL CODE Sec VIII and was verified using ANSYS package. The dimension obtained was 2000 mm length and 1400mm diameter using 15 mm thickness St 37-2 Miled steel Sheets. The factor of safety came to be equal to 1.2.

The study concluded that LPG pressure vessels could be made of Mild steel for sizes up to 1400 mm diameters with different volumes using different lengths.
التجربة

تعرف خزانات الضغط بأنها خزانات تختلف فيها الضغط الداخلي والخارجي للخزان، عادة ما يكون الضغط الداخلي ذو قيمة أكبر من قيمة الضغط الخارجي. تتشاء زيادة كبيرة في الضغط في الخزان يجب أن يتحمل الخزان قوي شديدة وبالتالي يكون اختيار خزان الضغط الأكثر حرجة.

في السودان نجد أن صناعة خزانات الضغط المرتفع محصورة فقط في صناعة احجام الاستخدام المنزلي، ويرجع ذلك لحقيقة أن الاحجام الكبيرة يجب أن تصنع من الفولاذ السبائك الذي هو غير متوفر في السوق المحلي. في هذا البحث تم المحاولة لتصميم خزان بضغط بقيمة 1.75 MPa وحجم يبلغ 3.75 متر مكعب هذا الخزان مصنع من الحديد الطرفي.

ASME BOILER & PRESSURE VESSEL CODE Sec VII المرجع الرئيسي لهذا التصميم

وتم تحليل النتائج باستخدام ANSYS package

الإبعاد المتحصل عليها من الدراسة هي: طول الخزان بقيمة 2000 مليمتر، قطر يبلغ 1400 مليمتر باستخدام الواحة من St 37 بسمك يبلغ 15 مليمتر، ووجه أن معامل الأمان قيمته 1.2.

توصلت هذه الدراسة إلى أن خزانات الضغط المستخدمة للغاز الطبيعي يمكن تصنيعها من الحديد الطرفي بقطر حتى 1400 مليمتر بحجوم مختلفة مع اطوال مختلفة.
LIST OF TABLES

Table 2-1 Design & Construction Codes for Pressure Vessels 11
Table 3-1 The specification of the saddle 28

LIST OF FIGURES

FIG 3-1 A plot of Dish end thickness, Shell thickness versus radius of the pressure vessel 24
FIG 3-2 The specification of the saddle 27
FIG 4-1 The Pressure Vessel Dimensions 31
FIG 4-2 The mesh size selection plot 39