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Chapter Three 

Analysis of Bridge Decks 

3.1 General 

          Skewed bridges are often encountered in highway design when the geometry 

cannot accommodate straight bridges. Highway bridges are characterized by the 

angle formed with the axis of the crossed highway. The skew angle can be defined 

as the angle between the normal to the centerline of the bridge and the centerline of 

the abutment or pier cap, due to high traffic speeds road or railway schemes can 

seldom be modified in order to eliminate the skew of their bridges. Therefore, a 

considerable number of skew bridge decks are constructed. 

  For decks with skew less than 25° a simple unit strip method of analysis is 

generally satisfactory. For skews greater than 25° then a grillage or finite element 

method of analysis will be required. Skew decks develop twisting moments in the 

slab which become more significant with higher skew angles. Computer analysis 

will produce values for Mx, My and M xy where M xy represents the twisting 

moment in the slab. Due to the influence of this twisting moment, the most 

economical way of reinforcing the slab would be to place the reinforcing steel in 

the direction of the principal moments. However these directions vary over the slab 

and two directions have to be chosen in which the reinforcing bars should lie. 

             Extensive tests on various steel arrangements have shown the best 

positions as illustrated in Fig (3.1) below 



Chapter Three                                                                                                           Analysis of bridge decks 

 

 14

 

Fig. (3.1): Skew angle vs. Aspect ratio 

3.2 Structural analysis method 

In practice, structural analysis can be understand more theoretically as          

a method of engineering design process to prove the serviceability and safety of     

a design without a dependence on directly testing it.  To obtain an accurate 

analysis, an engineer must determine all data needed such as structural loads, 

geometry, support conditions, and material properties of the structures. 

As a result, from the analysis include support reactions, stresses, 

displacements, bending moment and torsion.  This term of information is very 

important to be compared to the criteria that indicate the conditions of failure.  All 

structures have long been designed with the objective to avoid failure under static 

or moving loads and in time provide a safe and economical construction.     

  This aspect of safety is appropriately designed with specifications such to 

the British standard. 
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In civil engineering fields, a lot of method being used to analyze structures.  

In most cases, a number of approximate analysis techniques can be used to 

determine the response of bridge structure due to loadings.  Advanced structural 

analysis may study dynamic response, stability and non-linear behavior. 

   From a theoretical viewpoint, the main goal of structural analysis is to 

compute the deformation, internal forces, and stresses that obtained in structure 

due to loads applied to it.   Example of methods being used to analyze the 

structure, are analytical method, Classical method, elasticity method and finite 

elements method. 

 3 .2.1  Finite elements method in structural analysis 

   In conducting this study, the method used to analyze the bridge deck is to 

use the finite element method.  Finite element method is a very useful method to 

explain for the numerical solution for lots of engineering problems.  With the 

support of computer technology, complex problems can be modeled to ease the 

analyst. 

To work with a finite element analysis via software technology, ones must 

have a good understanding on the basic theory, techniques of modeling and the 

computational aspects of the finite element method. 

Structure will be divided into elements and every element will be discredited 

into a simpler geometric shape called finite elements.  Another parameter such as 

material properties and geometry are also considered and expressed in terms of 

unknown value at element corner [9]. 

This type of method has been used extensively to analyze bridge decks.  

This type of method is very familiar to most of bridge designers, and finite element 
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method is the only- method that capable of dealing with certain bridge forms.  The 

methods primarily used by bridge engineers for plate bending problems and lead to 

in-plane analysis of two dimensional elastic structures [9]. 

Finite element method then extended to the bending of slabs by Zienkiewicz 

and Cheung (1964) who was also demonstrated the ability of the method to deal 

with various boundary conditions, variable slab thicknesses and orthography of 

slab.  Recent years, software  has  become  more  practical  which  allows  the  use  

of  finite  element  models  for everyday analysis in the office [4] . 

3.2.2 General finite element method 

           Finite element method is similar to matrix stiffness method to analyze 

structures.    By using equilibrium equation, we can determine the reaction, 

displacement and the stiffness of the element. 

                                                   F=KD            -------------------------- (3.1) 

Where;  

                                K= Stiffness matrix of system. 

                                D= Nodal deflection (vertical, horizontal, rotation). 

                                 F= Nodal forces. 

In finite element method, the element can be line, surface or volume.  Truss 

beam and frame often modeled using lines element.  2D problems such as plane 

stress, plain strain, plate and shell are modeled as surface element.  For 3D 

analysis, volume element is used [4]. 
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Structures such as beam, truss and frame can be analyzed using stiffness 

method by utilizing exact mathematical models.  However, there are other cases, 

which involve complex structures, those methods are not suitable to be used.  Such 

complex structure can be solved by using finite element method. 

By applying the FEM analysis using software it is more economical in term 

of cost and time comparing to laboratory test, which are expensive and can be time 

consuming even though it is the most suitable method to study the static behavior 

of structure [4]. 

  In this study, SAFE finite element software is used.  The model geometry 

in terms of features is discredited into finite elements in order to perform the 

analysis.  Using the increasing of the discrimination numbers of the features will 

result in the increment of the accuracy of the solution. 

   Complete finite element analysis will involve three stages. Figure (3.2) 

shows steps involved in finite element analysis [4]. 

 

Fig. (3.2): Steps of finite element analysis. 

Pre Processing 

Finite element solver 

Result-Processing 
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3.2.2.1 Pre-processing 

The first step in using FEA, pre-processing, is constructing a finite element 

model of the structure to be analyzed.   This can be in either 1D, 2D, or 3D form, 

modeled by line, shape, or surface representation. 

The primary objective of the model is to realistically replicate the important 

parameters and features of the real model.  The simplest mechanism to achieve 

modeling similarity in structural analysis is to utilize pre-existing digital blueprints, 

design files, CAD models, or data by importing that into an FEA.     

Once the finite element geometric model has been created, a meshing 

procedure is used to define and break up the model into smaller element. 

In general, a finite element model is defined by a mesh network, which is 

made up of the geometric arrangement of elements and nodes. Nodes represent 

points at which features such as displacements are calculated. FEA packages use 

node numbers to serve as an identification tool in viewing solutions in structures 

such as deflections. 

Elements are bounded by sets of nodes, and define localized mass and 

stiffness properties of the model.  Elements are also defined by mesh numbers, 

which allow  references  to  be  made  to  corresponding  deflections  or  stresses  at  

specific model locations [4] . 

3.2.2.2 Finite element solver 

  The next stage of the FEA process is analysis.  The FEM conducts a series 

of computational  procedures  involving  applied  forces,  and  the  properties  of  

the elements which produce a model solution.  Such a structural analysis allows the 
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determination of effects such as deformations, strains, and stresses which are 

caused by applied structural loads such as force, pressure and gravity [4]. 

3.2.2.3 Result processing 

           These results can then be studied using visualization tools in FEA to view 

and to fully identify the implications of the analysis.  Numerical and graphical 

tools allow the precise location of data such as stresses and deflections to be 

identified [4]. 

3.3 Bridge deck analysis model using finite element method (FEM) 

            There are several finite element models that can be used.  All models can 

be used to analyze bridge decks. Using general purpose finite element software.  In 

finite element  modeling,  different  elements  are  used  to  cater  for  different  

types  of structures.  Types of models that can be used in analyzing a bridge decks 

are: [4] 

           i.      Grillage analysis, 

           ii.     Orthotropic plate model, 

           iii.      Beam and shell model, and 

           iv.      3d solid model. 

3.3.1 Grillage model 

   Application of grillage model for analysis bridge deck has been widely 

practice in the 1960s with the availability of computer technology.  This type of 

analysis is inexpensive and easy to use.  The application of grillage analysis is well 

established and has been discussed by many of researchers [10]. 
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Grillage analysis results have been compared to models of bridges and The 

method has been prove to be reasonably accurate for many shapes of structures, 

loading condition and support arrangements  [10] . 

Plane grillage method often involves the modeling of bridge slab as a skeletal 

structure made up of a mesh of beams lying in one plane.  Each grillage member 

represents a portion of the slab, with the longitudinal beams representing the 

longitudinal stiffness while the transverse grillage members representing the 

transverse stiffness.  Nevertheless, it is more practical nowadays to replace it with 

finite element method [10]. 

3.3.2 Orthotropic plate model 

Material that has a behavior, direction is independent of the others is known 

as anisotropic.  Orthotropic material is a material that its behavior varies in 

mutually perpendicular direction (X and Y) only. This type of model is best suite 

for bridge decks. 

   For isotropic material, the behavior in all directions is the same.  This type 

of material not frequently use in bridge construction, but isotropic plate theory can 

be used with logical accuracy and often use for the analysis of many bridge decks. 

There are two types of orthotropic plate identified as: 

        (a)    Materially (naturally) orthotropic   

   Composed of a homogeneous material which has different elastic properties in 

two orthogonal directions, but the same geometric properties. 

Plate has a uniform thickness, with same second moment of area in both   

directions, but different in modulus of elasticity, such as timber.  This type of   
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plate  is  not  usual to  found  in  bridge  deck  but  is  frequently used  as   

approximation of actual condition  [10] . 

    (b) Geometrically (technically) orthotropic 

   Posse's different second moments of area in two directions, such as reinforced 

concrete or voided slab [10].  

 Orthotropic bridge deck is often modeled using materially orthotropic finite 

elements. In such cases, Ix= Iy, but only one depth can be specified. This problem 

can be overcome by determining an equivalent plate depth and altering the 

modulus of elasticity of the element to allow the differences in second moment of 

inertia [4]. 

3.3.3 Beam and shell model 

   Beam and shell are used widely for modern bridges. Beam and shell bridges 

are commonly suitable for the same span length. Slab bridges are frequently 

chosen because of their availability in inaccessible areas such as deep valleys or 

railways. 

A lot of method in constructing beam and slab bridges, the most known is an 

in-situ  concrete  slab  on  steel  or  pre-cast  concrete  beams,  or  steel  beams  

with  a composite steel or concrete slab, a pre-cast concrete slab or even an entire 

of in-situ beam and slab. 

In construction, the beam usually works alone and must capable of carrying 

the available load including self weight or any other load that present above.  The 

deck is considered to be two dimensional upon completion [10]. 



Chapter Three                                                                                                           Analysis of bridge decks 

 

 22

Beam  and  shell  models  are  implemented  in  two   different   element 

formulations,  a  shell  element       (Guttmann  et  al.1995)  and  a  beam  element 

[4] . 

3.3.3.1 Beam element 

Beam element is used to model plane and space frame structures.  A variety 

of thin and thick beams in 2 and 3 dimensions are available.  Beam element may be 

straight or curved and may model axial force, bending and torsional behavior. 

Material use such as metal, steel, aluminum, polymer, composite, fiber 

reinforced composite, timber, concrete, reinforced concrete, pre-stressed concrete, 

etc 

 Equations for beams 

        A beam possesses geometrically similar dimensional characteristics as a truss 

member, as shown in Figure 3.3. The difference is that the forces applied on beams 

are transversal; meaning the direction of the force is perpendicular to the axis of 

the beam. Therefore, abeam experiences bending, this is the deflection in the y 

direction as a function of x. 

 
Fig. (3.3): Simply supported beam. 
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 Stress and Strain 

    The stresses on the cross-section of a beam are the normal stress, σxz, and shear 

stress, σxz. There are several theories for analyzing beam deflections. These 

theories can be basically divided into two major categories: a theory for thin beams 

and a theory for thick beams. This book focuses on the thin beam theory, which is 

often referred to as the Euler–Bernoulli beam theory. The Euler–Bernoulli beam 

theory assumes that the plane cross-sections, which are normal to the un deformed, 

centroidal axis, remain plane after bending and remain normal to the deformed 

axis, as shown in Figure 3.4. With this assumption, one can first have 

                           ……………… (3.2) 

Which simply means that the shear stress is assumed to be negligible? Secondly, 

the axial displacement, u, at a distance z from the centroidal axis can be expressed 

by   

                                   

 

Fig. (3.4): Euler–Bernoulli assumption for thin beams. 

` 

…………(3.3) 
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Where θ is the rotation in the x–z plane. The rotation can be obtained from the 

deflection of the centroidal axis of the beam, w, in the z direction: 

 

 

The relationship between the normal strain and the deflection 

can be given by 

                

Where L is the differential operator given by 

                              ….. ………. (3.6) 

 Constitutive Equations 

Similar to the equation for truss members, the original Hooke’s law is applicable 

for beams: 

                                                         ….. ………. (3.7)      

 Moments and Shear Forces 

Because the loading on the beam is in the transverse direction, there will be 

moments and corresponding shear forces imposed on the cross-sectional plane of 

the beam. On the other hand, bending of the beam can also be achieved if pure 

 

……..……(3.4) 

 

 

.…………….(3.5)  
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moments are applied instead of transverse loading. Figure 3.5 shows a small 

representative cell of length dx of the beam. The beam cell is subjected to external 

force, fz, moment, M, shear force, Q, and inertial force, ρA¨w, where ρ is the 

density of the material and A is the area of the cross-section 

 

Fig. 3.5: Isolated beam cell of length dx 

 

Fig. 3.6: Normal stresses those results in moment. 
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The moment on the cross-section at x results from the distributed normal stress 

σxx, as shown in Figure 3.6. The normal stress can be calculated by substituting 

Eq. (3.5) into Eq. (3.7): 

                           ……………… (3.8) 

It can be seen from the above equation that the normal stress σxx varies linearly in 

the vertical direction on the cross-section of the beam. The moments resulting from 

the normal stress on the cross-section can be calculated by the following 

integration over the area of the cross-section: 

..(3.9) 

Where I is the second moment of area (or moment of inertia) of the cross-section 

with respect to the y-axis, which can be calculated for a given shape of the cross-

section using the following equation 

                                                                 ………… (3.10) 

We now consider the force equilibrium of the small beam cell in the z 

direction 

 

We would also need to consider the moment equilibrium of the small beam cell 

with respect to any point at the right surface of the cell, 

 

… (3.11) 

….(3.12) 
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            ………… (3.13) 

Neglecting the second order small term containing (dx) 2 leads to 

                        …………………. (3.14) 

And finally, substituting Eq. (3.9) into Eq. (3.14) gives 

                         ………. (3.15) 

Equations (3.14) and (3.15) give the relationship between the moments and shear 

forces in a beam with the deflection of the Euler–Bernoulli beam. 

 Dynamic Equilibrium Equations 

The dynamic equilibrium equation for beams can be obtained simply by 

substituting Eq. (3.15) into Eq. (3.12): 

           …………….. (3.16) 

The static equilibrium equation for beams can be obtained similarly by dropping 

the dynamic term in Eq. (3.16): 

                      …………. (3.17) 
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 Shape Function Construction 

Consider a beam element of length l = 2a with nodes 1 and 2 at each end of the 

element, as shown in Figure 3.8. The local x-axis is taken in the axial direction of 

the element with its origin at the middle section of the beam. Similar to all other 

structures, to develop the FEM equations, shape functions for the interpolation of 

the variables from the nodal variables, 

 

Fig. (3.7): Beam element and its local coordinate systems. 

 

would first have to be developed. As there are four DOFs for a beam element, there 

should be four shape functions. It is often more convenient if the shape functions 

are derived from a special set of local coordinates, which is commonly known as 

the natural coordinate system. This natural coordinate system has its origin at the 

centre of the element, and the element is defined from −1 to +1, as shown in Figure 

3.8. The relationship between the natural coordinate system and the local 

coordinate system can be simply given as 

                                                                        ……….. (3.18) 
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To derive the four shape functions in the natural coordinates, the displacement in 

an element is first assumed in the form of a third order polynomial of ξ that 

contains four unknown constants: 

                ……………. (3.19) 

Where α0 to α3 are the four unknown constants. The third order polynomial is 

chosen because there are four unknowns in the polynomial, which can be related to 

the four nodal DOFs in the beam element. The above equation can have the 

following matrix form: 

 

 

Where p is the vector of basic functions and α is the vector of coefficients, as 

discussed in Chapters 3 and 4. The rotation θ can be obtained from the differential 

of Eq. (3.19) with these of Eq. (3.18): 

                 …… (3.22) 

The four unknown constants α0 to α3 can be determined by utilizing the following 

four conditions: 

At x = −a or ξ = −1: 

 

 

… (3.20) 

 

 

…. (3.21) 
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The application of the above four conditions gives 

 

 

Solving the above equation for α gives 

 

 

Hence, substituting Eq. (3.27) into Eq. (3.21) will give 

….. (3.23) 

 

….. (3.24) 

 

 

…. (3.25) 

…. (3.26) 

…. (3.27) 

 

 

…. (3.28) 
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                             …………  (3.29) 

Where N is a matrix of shape functions given by 

       ………. (3.30) 

In which the shape functions are found to be 

 

 Strain Matrix 

Having now obtained the shape functions, the next step would be to obtain the 

element strain matrix. Substituting Eq. (3.29) into Eq. (3.5), which gives the 

relationship between the strain and the deflection, we have 

                                                          …………. (3.32) 

Where the strain matrix B is given by 

 

 

 

 

….. (3.31) 

 

….. (3.33) 
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In deriving g the above equation, Eqs. (3.6) and (3.18) have been used. From Eq. 

(3.31), we have 

 

 Element Matrices 

Having obtained the strain matrix, we are now ready to obtain the element stiffness 

and mass matrices. By substituting Eq. (3.33), the stiffness matrix can be obtained 

as 

… (3.36) 

Where Iz =_A y2 dA is the second moment of area (or moment of inertia) of the 

cross section of the beam with respect to the z axis. Substituting Eq. (3.34) into 

(3.36), we 

 

…… (3.34) 

 

 

 

……. (3.35) 
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To obtain the mass matrix, we substitute Eq. (3.34) into Eq: 

   ...... (3.39) 

Where A is the area of the cross-section of the beam. Evaluating the integral in the 

above equation leads to 

                  ………. (3.40) 

The other element matrix would be the force vector. The nodal force vector for 

beam elements can be obtained. Suppose the element is loaded by an external 

distributed force fy along the x-axis, two concentrated forces fs1 and fs2, and 

` 

 

…. (3.37) 

 

 

…. (3.38) 
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concentrated moments ms1 and ms2, respectively, at nodes 1 and 2; the total nodal 

force vector becomes[14]. 

 

……… (3.41) 

3.3.3.2 Shell element 

   Shell element is also developed assuming that the thickness of the 

component is small relative to the other two dimensions and is also modeled by 

their middle surface.  They differ from plate elements in that they are considered to 

have six degrees of freedom at each node, three translations and three rotations. 

Typically the rotation about the axis perpendicular to the surface at a node is 

eliminated leaving only five degree of freedoms per node.  Shell element may be 

used to model two dimensional (plate) components or three-dimensional (shell) 

components.  Commercially available computer programs typically allow three-

node and four-node elements [4]. 

The typical output includes the moments (usually given as moment per unit 

width of the face of the elements) and the shear and axial loads in the element.  

This form of output is convenient because the moments may be directly used to 

design the deck.  
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  Due to the inclusion of the translations in the plane of the elements, shell 

elements may be used as part of a three-dimensional model to analyze both the 

deck and the girders [4]. 

When the supporting components are modeled using beam elements, only 

the stiffness of the non-composite beams is introduced when defining the stiffness 

of the beams.  The effect of the composite action between the deck and the 

supporting components is automatically included due to the presence of the in-

plane stiffness of the shell elements representing the deck [4]. 

Shell is a family of shell elements for the analysis of arbitrarily thick and 

thin curved shell geometries.  The quadratic elements can accommodate generally 

curved geometry while all elements account for varying thickness. 

Anisotropic and composite material properties can be defined.    Shell 

elements are also capable of modeling bend structure.  The element formulation 

takes account of membrane, shear and flexural deformations.  The quadrilateral 

elements use an assumed strain field to define transverse shear which ensures that 

the element does not lock when it is thin. 

Shell elements are used to model 3-dimensional structures whose behavior is 

dependent upon both flexural and membrane effects.    Both thin and thick shell 

elements are available to be used.  Materials use such as metals, steel, concrete, 

reinforced concrete, composites, laminated composites, fiber-reinforced 

composites, rubber, isotropic, orthotropic, and anisotropic, Fig (3.9) shows 3D 

thick shell element [4]. 
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 Elements in Local Coordinate Systems 

Shell structures are usually curved. We assume that the shell structure is divided 

into shell elements that are flat. The curvature of the shell is then followed by 

changing the orientation of the shell elements in space. Therefore, if the curvature 

of the shell is very large, a fine mesh of elements has to be used. This assumption 

sounds rough, but it is very practical and widely used in engineering practice. 

There are alternatives of more accurately formulated shell elements, but they are 

used only in academic research and have never been implemented in any 

commercially available software packages. Therefore, this book formulates only 

flat shell elements. Similar to the frame structure, there are six DOFs at a node for 

a shell element: three translational displacements in the x, y and z directions, and 

three rotational deformations with respect to the x, y and z axes. Figure 3.10 shows 

the middle plane of a rectangular shell element and the DOFs at the nodes. The 

generalized displacement vector for the element can be written as: 

Fig: (3.8): Thick shell element 
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                                          ………… (3.42) 

Where dei (i = 1, 2, 3, 4) are the displacement vector at node i: 

                       ………….. (3.43) 

 

Fig. (3.9): The middle plane of a rectangular shell element. 

The stiffness matrix for a 2D solid, rectangular element is used for dealing with the 

membrane effects of the element, which corresponds to DOFs of u and v. The 

membrane stiffness matrix can thus be expressed in the following form using sub-

matrices according to the nodes: 
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              ……. (3.44) 

 

Where the superscript m stands for the membrane matrix. Each sub-matrix will 

have a dimension of 2×2, since it corresponds to the two DOFs u and v at each 

node. Note again that the matrix above is actually the same as the stiffness matrix 

of the 2D rectangular, solid element, except it is written in terms of sub-matrices 

according to the nodes. 

The stiffness matrix for a rectangular plate element is used for the bending effects, 

corresponding to DOFs of w, and θx, θy . The bending stiffness matrix can thus be 

expressed in the following form using sub-matrices according to the nodes: 

 

          …….. (3.45) 

Where the superscript b stands for the bending matrix. Each bending sub-matrix 

has a dimension of 3 × 3. The stiffness matrix for the shell element in the local 

coordinate system is then formulated by combining Eqs. (3.44) and (3.45): 
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(3.46) 

The stiffness matrix for a rectangular shell matrix has a dimension of 24 × 24. Note 

that in Eq. (3.10), the components related to the DOF θz, are zeros. This is because 

there is no θz in the local coordinate system. If these zero terms are removed, the 

stiffness matrix would have a reduced dimension of 20×20. However, using the 

extended 24×24 stiffness matrix will make it more convenient for transforming the 

matrix from the local coordinate system into the global coordinate system. 

Similarly, the mass matrix for a rectangular element can be obtained in the same 

way as the stiffness matrix. The mass matrix for the 2D solid element is used for 

the membrane effects, corresponding to DOFs of u and v. The membrane mass 

matrix can be expressed in the following form using sub-matrices according to the 

nodes: 

               ……. (3.47) 
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Where the superscript m stands for the membrane matrix. Each membrane sub-

matrix has a dimension of 2 × 2. The mass matrix for a rectangular plate element is 

used for the bending effects, corresponding o DOFs of w, and θx, θy. The bending 

mass matrix can also be expressed in the following form using sub-matrices 

according to the nodes: 

          …… (3.48) 

Where the superscript b stands for the bending matrix. Each bending sub-matrix 

has a dimension of 3 × 3. The mass matrix for the shell element in the local 

coordinate system is then formulated by combining Eqs. (3.47) and (3.48): 

(3.49) 

Similarly, it is noted that the terms corresponding to the DOF θz are zero for the 

same reasons as explained for the stiffness matrix. 
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 Elements in Global Coordinate System 

The matrices for shell elements in the global coordinate system can be obtained by 

performing the transformations 

                                    

Where T is the transformation matrix, given by 

                 …….. (3.53) 

In which 

                                                       …………… (3.54) 

Where lk, mk and nk (k = x, y, z) are direction cosines, which can be obtained in 

exactly the same way of space frame. The difference is that there is no need to 

define the additional point 3, as there are already four nodes for the shell element. 

The local coordinates x, y, z can be conveniently defined under the global 

coordinate system using the four nodes of the shell element. 

…….. (3.50) 

…….. (3.51) 

…….. (3.52) 
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The global matrices obtained will not have zero columns and rows if the elements 

joined at a node are not in the same plane. If all the elements joined at a node are in 

the same plane, then the global matrices will be singular. This kind of case is 

encountered when using shell elements to model a flat plate. In such situations, 

special techniques, such as a ‘stabilizing matrix’, have to be used to solve the 

global system equations [13]. 

 

3.3.4 3D solid model 

          The use of two dimensional analysis methods with effective flange widths is 

approximate at best and does not address the issue of up stands, which are often 

provided at the edges of bridge cantilevers.  When the effects of shear lag are 

significant,  some  form  of  three  dimensional  models  is  necessary  to  achieve  

an accurate representation of the behavior of structure  [10] . 

             The technique of three dimensional finite element analysis using solid 

‘brick’ type elements is best used.  The benefit of this type of model is that it can 

be used to illustrate the geometry of very complex bridge decks with high 

accuracy.  The use of such models is only narrow to research and specialized 

applications due to too much of run times and computer storage requirements 

because of large quantities of output data generated [10]. 

Solid elements may be used to model both thin and thick components. The 

thickness  of the  component  may  be  divided  into  several  layers  or,  for  thin 

components such as decks, may be modeled using one layer.  The solid elements 

are developed assuming three translations at each node and the rotations are not 

considered in the development. 
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The typical output includes the forces in the direction of the three degrees of 

freedom at the nodes.   Most computer programs have the ability to determine the 

surface stresses of the solid elements.  This form of output is not convenient 

because these forces or stresses need to be converted to moments that may be used 

to design the deck.   Notice  that,  theoretically,  there  should  be  no  force  

perpendicular  to  the free  surface  of  an  element.   However, due to rounding off 

errors, a small force is typically calculated. 

Similar to shell elements, due to the inclusion of all translations in the 

development  of  the  elements,  solid  elements  may  be  used  as  part  of   three- 

dimensional model to analyze both the deck and the girders.  When the supporting 

components are modeled using beam elements, only the stiffness of the non 

composite beams is introduced when defining the stiffness of the beams [4]. 

3.3.4.1 3D Solid element 

   3D continuum elements are used to model fully 3-dimensional structures. 

Tetrahedral, heptahedral and hexahedral solid elements are available to model full 

3- dimensional stress fields.  Materials use such as metals, isotropic, orthotropic, 

and anisotropic. 

3D solid is a family of 3D isoperimetric solid continuum elements with 

advanced order models capable of modeling curved boundaries.  The number of 

nodes of the elements is numerically integrated 4 or 10 (tetrahedral). 6, 12 or 15 

(heptahedral). 8, 16 or 20 (hexahedral).  The elements are numbered according to  

a right-hand screw rule in the local z-direction, Fig (3.11) shows a 3D solid 

element [4]. 
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 TETRAHEDRON ELEMENT 

 Strain Matrix 

Consider the same 3D solid structure, whose domain is divided in a proper 

manner into a number of tetrahedron elements (Figure 3.12) with four nodes and 

four surfaces, as shown in (Figure 3.13). A tetrahedron element has four nodes, 

each having three DOFs 

 

Fig. 3.11: Solid block divided into four-node tetrahedron elements. 

Fig. (3.10): 3D solid element. 
efeeee3eeeggwveelement 
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Fig. 3.12: A tetrahedron element. 

(u, v and w), making the total DOFs in a tetrahedron element twelve, as 

shown in Figure 3.13. The nodes are numbered 1, 2, 3 and 4 by the right-hand rule. 

The local Cartesian coordinate system for a tetrahedron element can usually be the 

same as the global coordinate system, as there are no advantages in having a 

separate local Cartesian coordinate system. In an element, the displacement vector 

U is a function of the coordinate x, y and z, and is interpolated by shape functions 

in the following form, which should by now be shown to be part and parcel of the 

finite element method: 

                                     …………. (3.55) 

Where the nodal displacement vector, de, is given as 
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         ……….. (3.56) 

And the matrix of shape functions has the form 

   … (3.57) 

To develop the shape functions, we make use of what is known as the 

volume coordinates, which is a natural extension from the area coordinates for 2D 

solids. The use of the volume coordinates makes it more convenient for shape 

function construction and element matrix integration. The volume coordinates for 

node 1 is defined as 

                                                  ……………….. (3.58) 
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Where VP234 and V1234 denote, respectively, the volumes of the 

tetrahedrons P234 and 1234, as shown in Figure 3.14. The volume coordinate for 

node 2-4 can also be defined in the same 

 

Fig. 3.13: Volume coordinates for tetrahedron elements. 

. (3.59) 

The volume coordinate can also be viewed as the ratio between the distance 

of the point P and point 1 to the plane 234: 

… (3.60) 

It can easily be confirmed that 
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It can also easily be confirmed that 

                          …………. (3.63) 

Using Eq. (3.63), the relationship between the volumes coordinates and 

Cartesian coordinates can be easily derived: 

                         …………. (3.64) 

Equations (3.61) and (3.64) can then be expressed as a single matrix 

equation as follows: 

                                 …….. (3.65) 

The inversion of Eq. (3.65) will give 

…..(3.61) 

 

…..(3.62) 
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                  ……… (3.66) 

Where 

 

In which the subscript i varies from 1 to 4, and j, k and l are determined by a 

cyclic permutation in the order of i, j , k, l. For example, if i = 1, then j = 2, k = 3, l 

= 4. 

When i = 2, then j = 3, k = 4, l = 1. The volume of the tetrahedron element V 

can be obtained by 

                               …………… (3.69) 

The properties of Li, as depicted in Eqs. (3.60) to (3.63), show that Li can be 

used as the shape function of a four-nodal tetrahedron element: 

 

……(3.67) 

 

…… (3.68) 
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                      ……….. (3.70) 

It can be seen from above that the shape function is a linear function of x, y 

and z, hence, the four-nodal tetrahedron element is a linear element. Note that from 

Eq. (3.68), the moment matrix of the linear basis functions will never be singular, 

unless the volume of the element is zero (or the four nodes of the element are in a 

plane). Based on Lemmas 2 and 3, we can be sure that the shape functions given 

by Eq. (3.69) satisfy the sufficient requirement of FEM shape functions. 

It was mentioned that there are six stresses in a 3D element in total. The 

stress components are {σxx σyy σzz σyz σxz σxy}. To get the corresponding 

strains, {εxx εyy εzz εyz εxz εxy}, we can substitute Eq. (3.55) :     

                                      …………. (3.71) 

Where the strain matrix B is given by 

               ………… (3.72) 

Using Eq. (3.57), the strain matrix, B, can be obtained as 
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…. (3.73) 

It can be seen that the strain matrix for a linear tetrahedron element is a 

constant matrix. This implies that the strain within a linear tetrahedron element is 

constant, and thus so is the stress. Therefore, the linear tetrahedron elements are 

also often referred to as a constant strain element or constant stress element, 

similar to the case of 2D linear triangular elements Element Matrices. 

Once the strain matrix has been obtained, the stiffness matrix ke for 3D solid 

elements can be obtained by substituting Eq. (3.72) . Since the strain is constant, 

the element strain matrix is obtained as 

                        ……….. (3.74) 

The mass matrix can similarly be obtained using: 

….. (3.75) 

Where 
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                                  ………. (3.76) 

Using the following formula [Eisenberg and Malvern, 1973], 

     …….. (3.77) 

We can conveniently evaluate the integral in Eq. (3.74) to give 

…. (3.78) 

An alternative way to calculate the mass matrix for 3D solid elements is to 

use a special natural coordinate system, which is defined as shown in Figures 3.15–

3.17. In Figure 3.15, the plane of ξ = constant is defined in such a way that the 

edge P–Q stays parallel to the edge 2–3 of the element, and point 4 coincides with 

point 4 of the element. When P moves to point 1, ξ = 0, and when P moves to point 

2, ξ = 1. In Figure 3.16, the plane of η = constant is defined in such a way that the 
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edge 1–4 on the triangle coincides with the edge 1–4 of the element, and point P 

stays on the edge 2–3 of the element. When P moves to point 2, η = 0, and when P 

moves to point 3, η = 1. The plane of ζ = constant is defined in Figure 3.17, in such 

a way that the plane P–Q–R stays parallel to the plane 1–2–3 of the element, and 

when P moves to point 4, ζ = 0, and when P moves to point 2, ζ = 1. In addition, 

 

 

Fig. (3.14): Natural coordinate, where ξ = constant 
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Fig. (3.15): Natural coordinate, where η = constant. 

 

Fig. (3.16): Natural coordinate, where ζ = constant. 

The plane 1–2–3 on the element sits on the x–y plane. Therefore, the relationship 

between xyz and ξηζ can be obtained in the following steps: 

In Figure 3.18, the coordinates at point P are first interpolated using the x, y 

and z coordinates at points 2 and 3: 
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                                            ………… (3.79) 

The coordinates at point B are then interpolated using the x, y and z 

coordinates at point’s 1and P: 

…… (3.80) 

 

Fig. (3.17): Cartesian coordinates xyz of point O in term of ξηζ. 
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The coordinates at point O are finally interpolated using the x, y and z 

coordinates at points 4 and B: 

..(3.81) 

With this special natural coordinate system, the shape functions in the matrix 

of Eq. (3.57) can be written by inspection as 

                                                    …………. (3.82) 

The Jacobian matrix between xyz and ξηζ is required, and is given as 

                                        ………. (3.83) 

Using Eqs. (3.80) and (3.81), the determinate of the Jacobian can be found to 

be 

 

 .. (3.84) 
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The mass matrix can now be obtained as 

….. (3.85) 

Which gives 

.. (3.86) 

Where Nij is given by Eq. (3.75), but in which the shape functions should be 

defined by Eq. (3.81). Evaluating the integrals in Eq. (3.85) would give the same 

mass matrix as in Eq. (3.77). 

The nodal force vector for 3D solid elements can be obtained by Suppose the 

element is loaded by a distributed force fs on the edge 2–3 of the element as shown 

in Figure 3.13; the nodal force vector becomes 

                                     ……….. (3.87) 

If the load is uniformly distributed, fsx, fsx and fsz are constants, and the 

above equation Becomes 
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                                   …………… (3.88) 

Where l3–4 is the length of the edge 3–4. Equation (3.87) implies that the 

distributed forces are equally divided and applied at the two nodes. This conclusion 

also applies to evenly distribute surface forces applied on any face of the element, 

and to evenly distributed body force applied on the entire body of the element. 

Finally, the stiffness matrix, ke, the mass matrix, me, and the nodal force vector, 

fe, can be used directly to assemble the global FE equation [14]. 

3.4 Bridge standard  

It is a common practice for every engineer to design a structure with 

accordance to the standard that is needed to ensure the structural is built using the 

high quality of workmanship for safety, durability and long time benefits.  For 

Sudan, it is a familiarity to engineer to refer to the British Standard.  Such British 

Standard that currently practices in Sudan is: [4]  

i. BS 5400: Steel, Concrete and Composite Bridges. 

     Part 4: Code of Practice for Design of Concrete Bridges. 
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ii. BS 8110 : Structural Use Of concrete 

   Part 1: Code of Practice for Design and Construction 

   Part 2: Code of Practice for Special Circumstances. 

iii. BD 37/01 :  Design Manual for Road and Bridges 

Load for Highway Bridges. 

3.5 Bridge Loading 

          The primary function of a bridge is to carry traffic loads: heavy trucks, cars, 

and trains. Engineers must estimate the traffic loading. On short spans, it is 

possible that the maximum conceivable load will be achieved—that is to say, on 

spans of less than 30 meters (100 feet), four heavy trucks may cross at the same 

time, two in each direction. On longer spans of a thousand meters or more, the 

maximum conceivable load is such a remote possibility (imagine the Golden Gate 

Bridge with only heavy trucks crossing bumper-to-bumper in each direction at the 

same time) that the cost of designing for it is unreasonable. Therefore, engineers 

use probable loads as a basis for design. 

 In order to carry traffic, the structure must have some weight, and on short 

spans this dead load weight is usually less than the live loads. On longer spans, 

however, the dead load is greater than live loads, and, as spans get longer, it 

becomes more important to design forms that minimize dead load. In general, 

shorter spans are built with beams, hollow boxes, trusses, arches, and continuous 

versions of the same, while longer spans use cantilever, cable-stay, and suspension 

forms. As spans get longer, questions of shape, materials, and form become 

increasingly important. New forms have evolved to provide longer spans with 

more strength from less material.  [7] 
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Loads are classified as external forces applied to the structure and imposed 

deformations for example deformations occurred caused by restraint of movement 

due to changes in temperature.  Loads are classified either permanent or temporary. 

Permanent loads including dead loads, superimposed dead loads, loads due 

to filling material, differential settlement and loads derived from the nature of 

structural material such as creep and shrinkage. 

Temporary loads including live loads, wind loads, temperature loads, erection 

loads, primary and secondary highway loadings, footway and cycle track loadings. 

Primary loadings are vertical live loads.  Secondary loadings are due to 

changes in speed or direction (e.g. centrifugal, braking, skidding & collision 

loads). [4] 

3.5.1   Dead load 

Dead load is the mass of the materials and parts of the structure that are 

structural elements and not including superimposed materials such as premix, rail 

track ballast, parapets, main, ducts, miscellaneous furniture and etc.  Those 

material that  are  not  structural  form  but  it  contribute  loads  to  the  bridge  is  

called superimposed dead load. 

   Dead load can be calculated using the formula (3.2) [4]: 

Structure weight, W = Structure volume V * Concrete density p …………. (3.89)  

3.5.2   Live load 

Standard highway live loading consists of HA and HB loading [8]: 

3.5.2.1   HA Loading 



Chapter Three                                                                                                           Analysis of bridge decks 

 

 61

Normal traffic, or C&U (Construction and Use) regulation vehicles are 

represented by an ‘HA’ load. HA loading consists of: 

- A uniform distributed load (UDL), plus a knife edge load (KEL) 

Or 

- A single wheel load. 

HA loading (UDL) is calculated for the ‘loaded length’ of the span members. 

- For loaded length up to and including 50m. 

W=336 (1/L) 0.67…………………………….. (3.90) 

- For loaded length in excess of 50m but less than 1600m 

W=36(1/L) 0.1…………………………………. (3.91) 

Where: 

W= load per meter of notional lane (kN/m) 

 

L= loaded length in meters. 

 

- The HA loading (KEL) is always taken as 120 KN per notional lane. 

- The UDL and KEL are taken to occupy one notional lane uniformly distributed 

over the full width of the lane. 

- A value of 100 KN is always taken for the single wheel load. 

 

 

3.5.2.2   HB Loading 

HB loading represents the loads that result from abnormally heavy road 

vehicles. These are exceptional industrial loads such as: 

- Electrical transforms. 

- Generators.  
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- Pressure vessels. 

- Machine presses. 

The HB vehicle, which is always applied parallel to the carriage-way, can 

have different lengths since the distance between the two central axles is variable. 

This variable spacing allows the worst effects at all design points to be 

calculated. For simple supported spans, the smallest (6m) is the most critical. 

Nominal HB loading is specified by ‘units of loading’, where 1 unit is taken 

as 10 kN per axle. Different types of road are designed for different numbers of 

units of HB. Normally 45 units are used for trunk roads and motorways, 37.5 units 

for principle road and 30 units for all other public roads [8]. 

 

3.5.3   Other Loading:- 

There are other loadings that are stated in the BD 37/01, the loadings are 

used to design and analyze bridge to get for results that close to the real condition. 

The loadings are [4]: 

              i.    Wind Load, 

              ii.   Standard footway and cycle track loading, 

              iii.   Accidental wheel loading, 

              iv.   Loads due to vehicle collision with parapets, 

              v.    Vehicle loads in highway bridge supports and superstructures, 

              vi.    Centrifugal loads, 

              vii.    Accidental Loads due to skidding, 
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              viii.   Loadings for fatigue, and 

              ix.     Foot/ cycle track bridge loading. 

3.5.4. Application of HA and HB Loads: 

The structure and its elements must be designed to resist the more severe 

effects of either: 

- Design HA loading alone or 

- Design HA loading combined with design HB loading. 

3.5.5. Types HA and HB loading combined: 

Types HA and HB loading shall be combined and applied as follows: 

- Case (1):- Where the HB vehicle lies wholly within the notional lane. 

        The HB vehicle replaces one lane of HA for a distance extending from 25 m  

in front of the vehicle to 25m behind. If there is any lane length left to be loaded 

with  

HA, the KEL is not applied. The remaining lanes are loaded with HA including the  

KEL in the normal way. 

- Case (2a):- The HB vehicle straddling two notional lanes. 

Where the HB vehicle lies partially within a notional lane and the remaining width 

of that lane (measured from the side of HB vehicle to the edge of that lane) is less 

than 2.5m, the HB vehicle replaces the HA loadings in the straddled lanes for         

a distance extending from 25m in front of the vehicle to 25m behind. If there is any 

lane length left to be loaded with HA, the KEL is not applied. The remaining lanes 

are loaded with HA including the KEL in the normal way 

- Case (2b):- The HB vehicle straddling two notional lanes. 

Where the HB vehicle lies partially within a notional lane and the remaining width 

of that lane (measured from the side of HB vehicle to the edge of that lane) is 
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greater than or equal 2.5m, the HA loadings in the that lane remains, but is 

multiplied by an appropriate lane factor for a notional lane of width 2.5 meters – 

irrespective of the actual lane width. The HA KEL for that lane is omitted. The 

remaining lanes are loaded with HA including the KEL in the normal way [8]. 
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Fig :( 3.18): Types HA and HB loading combined. 
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3.5.6   Highway carriageway and lanes 

          Carriageway Width - This includes all traffic lanes, hard shoulders, hard 

strips and marker strips. The carriageway width between raised Krebs or the 

distance between safety fences minus the ‘set-back’ for the fences.  The fences 

must not less than 0.6 m or more than 1.0 m from the traffic that facing each fence. 

Traffic Lanes - Lanes marked on the running surface of the bridge.  They 

have a maximum width of 3.65 meters. 

Notional  Lanes  -  Parts  of  the  carriageway  road  for  deriving  the  

intensity  of the live loads.  Width of notional shall be measured in a direction at 

right angles to the line of the raised Krebs, lane markers, or edge marking.  

Notional lanes should be taken  not  less  than  2.5  m,  and  not  more  than  3.65  

m  wide  when  the  numbers of notional lanes exceed two lanes.  For carriageway 

> 5.00 m and above, numbers of notional lanes are as shown in table 1.3 [4]: 

Table (3.1): Number of notional lanes. 

Carriageway width ,m lanes Number f notional 

 

 5 m up to and including 7.5      2 

above 7.5 up to and including 10.95  3 

above 10.95 up to and including 14.6 4 

above 14.6 up to and including 18.25 5 

above 18.25 up to and including 21.90 6 

. National lanes shall be taken to be not less than 2.50 m wide. 


