ABSTRACT

The detailed engineering geometric design for roads depends mainly on the location of the road alignment and elevation, in other words depends on three dimensional coordinates E,N,h where (E,N) are the horizontal coordinates. The third ordinate (h) is the reduced level from mean sea level to determine the natural ground level to be used to draw the profile of the existing ground surface and the cross-sections to determine cut and fill areas and to calculate the volumes of quantities as a very important stage in road design.

In this research another method of determining the levels of natural ground level, before the design in the study stage, and existing levels of pavement layers after design in the stage of construction (value of h) using global positioning system (GPS), the advantage of this method that the positions of points in the centerline can be relocated at any time using GPS which has the capability to stake out the points in three dimensional coordinates(E,N,h) in no time, compared to the ordinary leveling which determine only the height (h) value and needs another device to fix pegs in the horizontal (E,N) position during the construction of roads.

In this study a section of 10 kms is selected from existing Khartoum – Medani road started from Soba toll station. The levels of points had been observed by GPS (real time method) in three different distances and precise levels have calculated each time by ordinary level, all levels had been adjusted to the accuracy 10√k, Bench marks had been established every 5 km taking the levels values as reference.

In the first trial the distance between the control points on which the base GPS is located is 5km and in the second trial the distance is 2.5 km and in the third trial the distance is 1 km. The results of the three GPS
measurements had been obtained by 1 km trial, had been found the best values of precision \((10\sqrt{k})\) which is appropriate to roads geometric design. During roads construction the fixed pegs will be removed in any time and relocation is needed again using the conventional methods, by using GPS the E,N,h coordinates are saved in the memory of the device and can be retrieved at any time to relocate points, According to the fact that when the distance between control points on which the GPS base (reference station) is changed every one kilometer is reduced more precise levels will be obtained. Using real time GPS to measure the levels in highway and roads projects will reduce time and cost of survey works and detailed engineering design of roads, and the locations of points can be determined easily and accurately every time by GPS.

We can conclude that the height precision depends on the base distance (the least distance is the best precision), precision is a reference frame dependent.

النتائج

تصميم الطريق الهندسي يعتمد إعتمادا كليا على المواقع لنقطة محور الطريق والارتفاع من مستوى سطح البحر أو عبارة أخرى يعتمد على الإحداثيات الشمالية والشرقية والمنسوب حيث نجد أن قيم الإحداثيات الشمالية والشرقية تمثل المستوى الأفقي والمنسوب هو البعد الثالث يمثل مستوى إرتفاع سطح الأرض من مستوى متوسط سطح البحر ويستخدم لتمثيل الأرض الطبيعية على محور الطريق ولحساب القطاعات العرضية لحساب كميات القطع والردم للطريق.

وهو البعد هو أهم مهم في عملية التصميم.

في هذا البحث تناولت طريقة أخرى لتحديد مناسب نقاط محور الطريق في مرحلة الدراسات الأولية، هذه القيم تكون دقيقة ويمكن تحديدها أثناء وبعد مرحلة التشبيك عن طريق جهاز توقع العالمي.

من أهم مزايا هذه الطريقة إمكانية استرجاع نقاط محور الطريق بأبعادها الثلاثة الشمالية والشرقي والمنسوب في أي زمن بجهزة نظام التوقع العالمي القابلية لإستدعاء النقاط في أي زمن وبأسرع زمن ممكن مقارنة بالطريقة التقليدية بواسطة جهاز الميزانية حيث تعطينا فقط المنسوب ويحتاج إلى جهاز آخر لتبني علامات الإحداثيات الأفقية للنقاط أثناء عملية التشبيك لأنها تتعرض بالإزالة في كل مرحلة من مراحل تشبيك الطريق.
في هذا البحث أجريت تجربة عملية وقامت بإختيار طول 10 كيلومتر من دراسة توسعة طريق الخرطوم / مدني بداية من محطة تجهيز سوية.
تمت قراءة كل النقاط بجهز نظام التوقع العالمي بثلاث محاولات مختلفة وعلى مسافات مختلفة وتمت قراءة نفس النقاط بجهز الميزانية مع استخدام المعادلة 10√k لحفرة الدقة، وتمت المقارنة بين الطريقتين للحصول على دقة عالية للمنسوب بواسطة جهاز نظام التوقع العالمي، وتم تشفير نقاط الضبط الرئيسية كل 5 كيلومتر وتم قرايتها بجهز الميزانية المعايير.

خواص
في المحاكمة الأولى تم وضع الجهاز الأساسي (الوحدة الأساسية) على مسافة كل 5 كيلومتر وتمت قراءة المحور بالوحدة المتحركة، وفي المحاكمة الثانية تم تغيير وضع الوحدة الأساسية كل 2.5 كيلومتر، وفي المحاكمة الثالثة تم وضع جهاز الوحدة الأساسية كل 1 كيلومتر وفي كل المحاولات تم مقارنة النتائج بالقيم المتحصل عليها بواسطة جهاز الميزانية المعايير.

وحول أن أكثر قيم دقة هي الناتجة من المحاكمة الثالثة أي ضبط نقاط الضبط على مسافة كل 1 كيلومتر.

عموما نجد أن في عملية تشويش الطريق يتم إزالة النقاط المثبتة على محور الطريق من استيكات وأوتوت ويعيلاً بواسطة معدات وأدوات التشويش فيتم إرجاعها بواسطة طرق أخرى وأجهزة أخرى وهذه الطرق كلفت زمن وعمال، أما عن طريق جهاز تحديد المواقع العالمي يتم تخزين الإحداثيات في ذاكرة ويكون إرجاع النقاط في زمن سريع جدا.

* النتيجة المتحصل عليها هي أن وضع جهاز الوحدة الأساسية على مسافة كل 1 كيلومتر وضبط نقاط الضبط كل 1 كيلومتر تؤدي إلى نتائج جيدة ودقيقة، ويمكن قراءة كل محور الطريق بالوحدة المتحركة بطريقة الزمن الحقيقية.

* أيضًا استخدام جهاز تحديد المواقع العالمي يقلل الزمن والتكلفة المالية لأعمال المساحة.

* خلاصة البحث أن النتائج الجيدة بواسطة جهاز تحديد المواقع العالمي تعتمد على المسافة بين نقاط الضبط حيث يتم ضبط القيم.
ACKNOWLEDGEMENTS

I would like to express my deep gratitude and thanks to my Supervisor Dr. Abd elrahim Alhaj A.alaziz for his kind help, close supervision, valuable suggestions, and discussions. Special thanks to Surveying Engineering Department staff, College of Engineering, Sudan University of Science and Technology.

Furthermore I would like to thank my colleagues at National Highway Authority for their considerable help during all stages of my study. Also I like to thank every one in the National Highway Authority who helps me during my study, Special thanks to training department.
CONTENTS

DEDICATION

ABSTRACT ... i

ACKNOWLEDGEMENTS ... iv

CONTENTS .. v

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

LIST OF DATA COLLECTION ... x

APPENDICES .. xi

CHAPTER ONE: INTRODUCTION .. 1

CHAPTER TWO: GENERAL CONCEPTS OF GPS

2-1 The general concept of GPS .. 4

2-2 Global Positioning System (GPS) Survey Specification 4

2-3 Post Processed GPS Survey Specifications 5

2-3-1 Methods ... 5

2-3-1-1 Static GPS Surveys ... 5

2-3-1-2 Fast-static GPS Surveys .. 5

2-3-1-3 Kinematic GPS Surveys .. 6

2-4 Equipment ... 6

2-4-1 Receiver Requirements .. 6

2-4-2 Antennas .. 6

2-4-3 Miscellaneous Equipment Requirements 7

2-5 Second-order (Horizontal) GPS Surveys 7

2-5-1 Applications .. 7

2-5-2 Specifications .. 7

CHAPTER THREE: VERTICAL GPS SURVEYS

3-1 General .. 9
4-3-4 Laboratory Site Investigation ..26
4-3-5 Soils and Materials Survey ...26
4-4 Design Stage ..27
4-4-1 Quantities Calculation ...27
4-4-2 Out Put Of Design Stage ..27
4-5 Construction Stage(survey works).................................28
4-6 Instruments ..28

CHAPTER FIVE: Results Of Data And Analysis

5-1 Field study ...29
5-2 The Data ...31
5-3 Root Mean Square(RMS) ..31
5-4 Formula ..32
5-5 Leveling Derived Dataset ...34
5-6 Results and Discussion ...36

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS

6-1 Conclusion ..39
6-2 Recommendations ..40
APPENDECIS ...41
REFERENCES AND BIBLIOGRAPHY49
LIST OF FIGURES

Figure 1-1 Study location 3
Figure 1-3-1-1 Earth Surface And Ellipsoid And Goid Shape 9
Figure 1-5-5 Differential leveling method 35
LIST OF TABLES

First:- List Of Standards And Specifications Accuracy

<table>
<thead>
<tr>
<th>TABLES NO</th>
<th>Specifications for general-order accuracy</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3-15-1</td>
<td>using RTK procedures</td>
<td>23</td>
</tr>
<tr>
<td>2-3-15-1-3</td>
<td>using RTK procedures</td>
<td>24</td>
</tr>
</tbody>
</table>
Second :- List Of Data Collecting

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5-4</td>
<td>GPS – leveling Observation every 5 kilometer</td>
<td>33</td>
</tr>
<tr>
<td>2-5-4</td>
<td>GPS – Leveling Observation every 2.5 kilometer</td>
<td>33</td>
</tr>
<tr>
<td>3-5-4</td>
<td>GPS – Leveling Observation every 1 kilometer</td>
<td>34</td>
</tr>
<tr>
<td>1-5-6</td>
<td>The data set of the GPS/Leveling observations</td>
<td>36</td>
</tr>
<tr>
<td>2-4-6</td>
<td>leveling for center lines of road</td>
<td>37</td>
</tr>
</tbody>
</table>
Appendices

A-1 GPS Reading at center line every 5 kilometer 41
A-2 Leveling data by level Instrument for control points every 2.5 44 kilometer
A-3 Leveling data by level Instrument for centerline (Base every 2.5 45 kilometer
A-4 Different reading between gps / level instrument every 1 47 kilometer
A-5 Leveling data by level Instrument for centerline (Base every 47 1 kilometer).