Sudan University of Science & Technology
College of Graduate Studies

Plant Redesign for Production of
Soil-Cement Blocks

BY
Eldooma Babikkir Adam Ali

A thesis submitted to the college of graduate studies
Sudan University of science and technology
In partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering (production)

August 2005
بسم الله الرحمن الرحيم

صدق الله العظيم
سورة الحديد (الأية 25)

Dedicated To

The soul of my father

My father
My brothers
My sister
My wife
My children
My friends

With my love & respect

Acknowledgements

I would like to thank the following for their help and co-operation, the ministry of science and technology for providing the fund to implement the search. Institute of technical research of national centre for research, for their assistant and consultancy
during the planning and implementation of the project

My thankfulness goes to the people at institute of building research of university of Khartoum for their help

My greatest appreciations goes to my supervisor Dr Madloul Awad Saaeed who support me throughout reviews and suggestions which helped development of my thinking to create this research

Eldooma Babikkir Adam
M.S.c Student
Mechanical engineering
August 2005

Abstract

Sudan as one of the underdeveloped countries is in need of development and rehabilitation in the field of buildings. Nowadays building materials are one of the problems of buildings in Sudan for its scarce and high price. Also using of burning wood in fired –brick manufacturing process affect the environment and future energy. This research is designed to study the technical and economical benefits to

produce alternative for the existing material (fired-bricks), and also to redesign and manufacture a complete production line consists of a vibrator mixer and hydraulic press to produce soil-cement blocks which contain soil and percentage of cement and water in high quality and productivity level. An available machines were redesigned, and soil samples were taken from Omdurman and Khartoum North. The produced blocks were tested in the laboratories of the institute of technical research for water absorption and in the laboratory of highway researches-university of Khartoum for compressive strength, An evaluation for the operation of the redesigned machines and economical study showed that the produced soil-cement blocks are of higher quality and lower cost than the available fired-bricks.
المحلية (تراب ونسبة قليلة من الأسمنت والماء) تكون ذات جودة عالية وتكلفة منخفضة. تم إعادة تصميم وتنفيذ خط الإنتاج باستخدام الأساليب العلمية الهندسية. بعد الاطلاع على واقع الدراسات والتجارب العالمية والاستفادة من الآلات المحلية حيث تم تصميم وتنفيذ خط إنتاج مكون من هزاز وخلاط وماكينة ضغط هيدروليك من المواد المحلية كما تم إنتاج طوب من أنواع مختلفة من التربة أخذت من منطقة أمدرمان ومنطقة الخرطوم بحري وأجريت عليها عمليات اختبارات ضبط الجودة بمعامل معهد أبحاث التقانة (امتصاصية الماء) ومعهد أبحاث البناء والطرق بجامعة الخرطوم (قوة الضغط) وقد تم التوصل إلى أن الطوب المنتج أكثر جودة كما تم اجراء حسابات الكلفة وتطبيق مبادئ دراسة العمل ودراسة الوقت وبمقارنة كلفة الإنتاج تم التوصل إلى أن الطوب المقترح أقل تكلفة مقارنة بالطوب الأحمر مما يشكل بديلاً ناجحاً لمواد البناء الحالية.

Contents

<table>
<thead>
<tr>
<th>Dedicated</th>
<th>Acknowledgement</th>
<th>Abstract (English)</th>
<th>Abstract (Arabic)</th>
<th>Contents</th>
<th>Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>page No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>

Chapter one: introduction

1-1 Introduction 1
1.2 Problem identification 1
1.3 Aims of the project 2
1.4 Activities and results 2

Chapter two: literature review

2-1 Soil for building purposes 3
2-1.1 Soil composition 3
2-1.2 Soil properties 4
2-1.2.1 Chemical properties 4
2-1.2.2 Physical properties 4
2-2 Cement 8
6.7 Raw material cost
6.8 Staff cost
6.9 Administration cost
6.10 Operation cost
6.11 Depreciation cost
6.12 Expected incomes during ten years
6.13 Total investment cost
6.14 Total investment recovery duration
6.15 Comparison cost study for fired bricks, fired mud blocks and soil-cement blocks for building 4x4 room.

Chapter seven: Conclusions and recommendations
7.1 Conclusions
7.1.1 The redesigned machines manufacturing
7.1.2 The redesigned blocks production
7.1.3 The soil-cement blocks
7.2 Recommendations

References

Appendices
Appendix (A) photographs for the avail machines
Appendix (B) photographs for the redesigned machines
Appendix (C) diagrams for the principle of operations
Appendix (D) sketches for the redesigned machines
Appendix (E) plant management sheets
Appendix (F) plant layout

Tables

Table (4.1) Data of the production of the vibrating screen.	28
Table (4.2) Data for the production of the mixer	28
Table (4.3) Data for the production of the press	29
Table (4.2) Data for the production of the redesigned plant	29
Table (6.1) Vibrator parts cost	39
Table (6.2) Mixer parts	40
Table (6.3) Press parts	40
Table (6.4) Machine cost	41
Table (6.5) Building cost	42
Table (6.6) Fixed assets cost	43
Table (6.7) Raw material cost	43
Table (6.8) Staff cost	44
Table (6.9) Administration cost	44
CHAPTER ONE

Introduction
CHAPTER TWO

Literature review
CHAPTER THREE
CHAPTER FOUR
Redesigned machines, plant and product evaluation
CHAPTER FIVE
Results and discussions
CHAPTER SIX
Economical study
CHAPTER SEVEN
Conclusions and recommendations
REFERENCES