بسم الله الرحمن الرحيم

إن الذين آمنوا وعملوا الصالحات إننا لنضيع أجر من أحسن عملًا

صدق الله العظيم

سورة الكهف آية 30
DEDICATION

Once Again, To Wonderful Parents, Teachers & All,
With Love.

ACKNOWLEDGMENTS
I want to express my appreciation to Dr. Bala Aljak, who guide me, reviewed the manuscript & provided many valuable suggestions. A special note of appreciation goes to prof. Babu P.G. who offered constructive suggestions.

تجـريـد

يعتبر هذا البحث مدخل لتقنية معالجة الإشارات الحيوية المرسلة من مسافة بعيدة عن طريق إشارة الراديو. حيث تربط هذه التقنية الكائن الحي (المريض - الحيوان-.....)
This project introduces a technique that is processed by radiotelemetry using biopotential and other signals. A technique which provides a wireless link between the biological subjects (patient-animals.... etc.) and the majority of the signal-processing components. A miniature
radio transmitter attached to the patient is used broadcast the information over a limited range. Clinicians or doctors can monitor a patient or conduct a research on animal while they have full mobility. This technique also provides the best method of isolating the patient from the recording equipment and power lines.

Many types of radiotelemetry systems are used in biomedical instrumentation. In this project we use the Electrocardiograph (ECG).
CHAPTER THREE
THEORY
3.1 BIOPOSSENTIAL ELECTRODES 16
3.2 AMPLIFIER 17
 3.2.1 The Inverting Operational Amplifier 19
 3.2.2 The Summing Amplifier 20
 3.2.3 The Non-Inverting Amplifier 21.
 3.2.4 Differential Amplifiers 22
3.3 ANGLE MODULATION 24
 3.3.1 Spectra and Bandwidth of FM Signals 25
 3.3.2 FM Modulation Methods 26
 Direct Method 26
 Indirect Method 27
 3.3.3 FM Detection Techniques 28
 Slope Detector 29
 Zero - Crossing Detector 30
 PLL for FM Detection 30
 Quadrature Detection 32
 3.3.4 A Tradeoff Between SNR Bandwidth in FM Signal 34
3.4 ANALOG TO DIGITAL CONVERTER 35
 3.4.1 Parallel Comparator A/D Converter 35
 3.4.2 Dual-Slope A/D Converters 36
 3.4.3 Successive-Approximation A/D Converters 38
3.5 INTERFACING 40
 3.5.1 Parallel Port Interface Card 40

CHAPTER FOUR
HARDWARE DESIGN
4.1 AMPLIFIER AND SIGNAL CONDITIONING UNIT 41
 Fm Transmitter 42
 Fm Receiver 44
4.4 ADC 44
4.5 PARALLEL PORT INTERFACE CARD (LPT1 INTERFACE WITH 8255 PPI) 46
 4.5.1 Specifications Of Interface Card 47
 4.5.2 Parallel Port Basics 49
 4.5.3 Working Of Interface Card 52

CHAPTER FIVE
SOFTWARE DESIGN
5-1 FLOWCHART
5.2 DEVICE DRIVER
5.3 PROGRAM FOR DISPLAY OF ECG

RESULTS & CONCLUSION
RECOMMENDATION

APPENDIXES
DATA SHEETS

REFERENCES

LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO. OF FIGURE</th>
<th>TITLE OF FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Heart</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Einthoven’s triangle and placement of leads</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>The Basic Operational Amplifier</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Op Amp Equivalent Circuit</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Inverting Operational Amplifier</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Summing Amplifier</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>Non-Inverting Amplifier</td>
<td>21</td>
</tr>
<tr>
<td>3.6</td>
<td>Direct Method</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Indirect Method</td>
<td>28</td>
</tr>
<tr>
<td>3.8</td>
<td>Slope Detector</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Zero - Crossing Detector</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>PLL Circuit</td>
<td>31</td>
</tr>
<tr>
<td>3.11</td>
<td>Quadrature Detection</td>
<td>33</td>
</tr>
<tr>
<td>3.12</td>
<td>Parallel Comparator A/D Converter</td>
<td>36</td>
</tr>
<tr>
<td>3.13</td>
<td>Dual-Slope A/D Converters</td>
<td>37</td>
</tr>
<tr>
<td>3.14</td>
<td>Successive-Approximation A/D Converter</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Pin-out Diagram of TBA810</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Application Circuit of TBA810 Amplifier</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>FM Transmitter</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>The ADC</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Parallel Port Interface Card</td>
<td>46</td>
</tr>
<tr>
<td>NO.OF TABLE</td>
<td>TITLE OF TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Wave Of Normal ECG</td>
<td>13</td>
</tr>
</tbody>
</table>
LIST OF ABRIAVIATION

\(A_v \) Gain
\(A_{COM} \) Common -Mode Gain
\(ADC \) Analog To Digital Converter
\(AV \) Atrio-Ventriclar Node
\(Ca^{++} \) Calcium
\(CRO \) Cathode Ray Oscilloscope
\(CMRR \) Common - Mode Rejection Ratio
\(DAQ \) Data Acquisition
\(ECG \) Electrocardiograph.
\(EOC \) End Of Conversion
\(FM \) Frequency Modulation
\(FRC \) Flexible Ribbon Cable
\(IF \) Intermediate Frequency
\(K^+ \) Potassium
\(LED \) Light Emitted Diode
\(Na^+ \) Sodium
\(Op Amp \) Operational Amplifier
\(PLL \) Phase Locked Loop
\(PM \) Phase Modulation
\(PPI \) Parallel Port Interface
\(RF \) Radiofrequency
\(SA \) Sino-Atrial Node
\(SC \) Start-Conversion
\(VCO \) Voltage- Controlled Oscillators