SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

College Of Graduate Study

Importance of Applying Quality Control in Elgadida X-Ray Department of K.T.H

Prepared By:
Huda Abdella Hamid

A Thesis Submitted For Partial Fulfillment Of M.Sc Degree in Diagnostic Radiologic Technology

Under Supervision of:
Dr. Ibrahim A. Rahim Shaddad
Ph.D in Nuclear Physics

October 2004

قال تعالى:
صدق الله العظيم
To

My Parents …

My Sisters and Brothers …

My Teachers from whom I had benefited greatly …

My Friends and Colleagues …

Huda

CONTENTS

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>ii</td>
</tr>
</tbody>
</table>
Chapter One

Introduction

1.1. Quality assurance
1.2. Research objectives
1.3. The reasons of choosing this topic for research
1.4. Methodology
1.5. Hypothesis
1.6. Type of study

Chapter Two

Literature Review

2.1. Quality assurance (QA)
2.1.1. Quality assurances in diagnostic radiology
2.1.2. Quality control (QC)
2.1.3. Radiographic quality control
2.1.3.1 Image quality control
2.1.4. Quality assurance programme (QAP)
2.1.5. Quality Administrative procedures (QADP)
2.1.6. Benefits of quality assurance program
2.1.7. Implementing a quality assurance program
2.1.8. The departmental QA Committee
2.1.9. The framework of a quality assurance program
2-2 Quality control program for radiographic units
2-2-1 Visual inspection
2-2-2 Environmental inspection
2-2-3 Performance testing
2-2-4 Reject Analyses
2-2-5 Radiation safety policies and procedures
 2-2-5-1 Policy for holding patient
 2-2-5-2 Policy for presence of individuals in the room during radiation exposure
 2-2-5-3 Policy for pregnant patients
 2-2-5-4 Policy for pregnant Employees
2-2-6 Set of QC protocols are used for the x-ray diagnostic machines. Those protocols are including the following
 2-2-6-1 Total radiographic system check for image quality
 2-2-6-2 Consistency of radiation output using a digital KV meter
 2-2-6-3 Consistency of radiation at different MA setting using a digital meter
 2-2-6-4 Assessment of kilovotage applied to the x-ray tube using digital meter
 2-2-6-5 Accuracy of exposure timer using a spinning top
 2-2-6-6 Accuracy of exposure timer using digital timer meter
 2-2-6-7 Assessment of focal spot size using focal spot test tool
 2-2-6-8 Accuracy of collimation of the light beam diaphragm and x-ray beam alignment using the test tool
 2-2-6-9 Accuracy of collimation when using non adjustable cones and diaphragm
 2-2-6-10 Assessment half value layer (HVL) using test tool filtration
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2-6-11</td>
<td>Assessment of grid alignment using test tool purpose</td>
<td>40</td>
</tr>
<tr>
<td>2-2-6-12</td>
<td>Assessment of the uniformity of a grid using grid movement test two</td>
<td>42</td>
</tr>
<tr>
<td>2-2-7</td>
<td>TESTS OF DARK ROOM</td>
<td>44</td>
</tr>
<tr>
<td>2-2-7-1</td>
<td>Cassette and screen identification</td>
<td>44</td>
</tr>
<tr>
<td>2-2-7-2</td>
<td>Assessment of screen film contact using wire mesh</td>
<td>45</td>
</tr>
<tr>
<td>2-2-7-3</td>
<td>Assessment of cassette lightness</td>
<td>46</td>
</tr>
<tr>
<td>2-2-7-4</td>
<td>Assessment of relative speed of intensifying screens for replacement</td>
<td>47</td>
</tr>
<tr>
<td>2-2-7-5</td>
<td>Processor quality control</td>
<td>49</td>
</tr>
<tr>
<td>2-2-7-6</td>
<td>Dark room fog check</td>
<td>56</td>
</tr>
<tr>
<td>2-2-7-7</td>
<td>Leakage testing and processing area condition</td>
<td>58</td>
</tr>
<tr>
<td>2-2-7-8</td>
<td>Film and chemical storage</td>
<td>59</td>
</tr>
<tr>
<td>2-2-7-9</td>
<td>View box Quality Control</td>
<td>59</td>
</tr>
</tbody>
</table>

Chapter Three

Methods & Experiments

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>The equipment and procedure</td>
<td>62</td>
</tr>
<tr>
<td>3.2.</td>
<td>Data collection</td>
<td>63</td>
</tr>
</tbody>
</table>

Chapter Four

Results & Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1.</td>
<td>Results</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Result of research questionnaires and direct interviewing</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1.1.</td>
<td>First questionnaire (for technologist)</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1.2.</td>
<td>Questionnaire No. (2) for Administrators and Engineers</td>
<td>68</td>
</tr>
<tr>
<td>4.1.1.3.</td>
<td>Questionnaire No 3 for the Radiologist.</td>
<td>69</td>
</tr>
<tr>
<td>4.1.1.4.</td>
<td>From all of three questionnaires</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1.5.</td>
<td>Implementing of quality control in Elgadida x-ray</td>
<td>70</td>
</tr>
</tbody>
</table>
department

4.1.1.6. Availability of test tools

4.1.1.7. Acceptance test of the machine in the department:

4.1.1.8. Training courses for the technologist in the department.

4.1.1.9. The present of radiation protection officer

4.1.1.10. Result of applying reject analysis in the department

4.1.2. Result of reject analysis

4.1.3. Testing of x-ray tube

4.1.3.1. KVP and time accuracy

4.1.3.2. Relative MA & MAS linearity (using the KVP meter)

4.1.3.3. MAS Consistency

4.1.3.4. KVP, time Reproducibility and linearity tests

4.1.3.5. Measurements of HVL of the x-ray unit

4.1.3.6. Check of Radiation field Accuracy of collimator and LBD

4.1.3.7. Focal spot size test

4.1.4. Testing of darkroom, cassette, intensifying screen and films

4.1.4.1. Test of light tightness of the darkroom

4.1.4.2. Safe light test

4.1.4.3. Testing of intensifying screen

4.1.4.4. Testing of cassettes

4.1.4.5. Test of films sensitometry

4.1.4.6. Test of manual processor

4.1.4.7. Test of grid alignment & movement grid

4.2 Discussion

4.2.1. Effect of implementing of some QA program to the
performance in Elgadida X-ray department

4.2.1.1. Meeting
96

4.2.1.2. Courses
97

4.2.1.3. Reject Analysis
97

Chapter Five

Conclusion & Recommendations
104

5.1. Conclusion
104

5.2. Recommendations
105

References
106

Appendices

Appendix (1) Figures

Appendix (2) Questionnaire

Appendix (3) Data file