

I DEDICATE THIS WORK TO:

- My parents IBRAHIM & FATIMA who introduced me to the joy of reading from birth, enabling such study to take place today.
- To all those who directed me to the way studying and put me on the right study tract.
- To those who told me about their experiences & experiments.

First, praise is to ALLAH, the first cherisher and substainer of the worlds. Acknowledgements here are more than a decorative ritual, the teachers, Sudan University of Science & Technology, Alzaeim Alazhari University; I'm indebted to all of them because of their support and device. They were all patient and generous in helping.

Special acknowledgement to Dr. Abd Alrasol Jabar Alzubaidy who made the completion of this work possible in the first place by this advice and by the generous aid that he has offered to me. He has also been kind enough to follow me preparing the manuscript and to make constructive.

ABSTRACT

Major concepts of the computer buses were explained in this research. Features and characteristics for each type of these computer buses besides their development along with different computer generations were discussed. A comparison between the different buses was done.

An elaborated study of PCI local bus was implemented, where the main characteristics and features of PCI Bus were identified in details of pins layout also configuring and addressing methods of PCI Bus.

There is a scientific circuit which simulate the card inserting inside the Bus. A program using the C language read the EPROM (Card ROM) which includes the card information.

هذا البحث يقدم شرح مؤجز لمعظم أنواع النواقل المستخدمة في الحاسب موضحاً خصائص ومميزات كل نوع وتطورها مع أجيال الحاسب مع عقد مقارنة بين أهمها. وتناول الناقل المحلي ال PCI بشي من التفصيل حيث يتم التعرف من خلاله على مميزات وخصائص الناقل مع تفصيل لكل المداخل والمخارج مع التطرق لكيفية العنونة والتهيئة والإعداد . وصممت دائرة عملية هي تحاكي وضع كارت من النوع PCI يتم التعرف عليه من خلال برنامج كتب بلغة ال C وذلك عبر قراءة ذاكرة ال EPROM الموجودة داخل الكارت في عملية قراءة ذاكرة الما يحدث في عملية ولايه RI

Table of contents

Topics	Page No.
Dedication	Ī
Acknowledgment	II
Abstract	III
تجريده	IV
Table of contents	V
List of Tables	VI
List of Figures	IX
Abbreviation	Х
Chapter One -Introduction	
1.1 Introduction	1
1.2 The Computer Bus	1
1.3 Bus Taxonomy	3
1.4 ISA Drawback	4
1.5 The VESA Local Bus	5
1.6 Introducing PCI	6
1.7 The PCI Special Interest Group	8
1.8 Research Outline	9
Chapter Two -Computer busses	
2.1 Overview	10
2.2 The S-100	12
2.3 ISA	14
2.4 MCA	17
2.5 EISA	19
2.6 MCA vs. EISA	21
2.7 Local Bus	22
2.8 VL-Bus	23
2.9 PCI	26
2.10 VL vs. PCI bus	28
2.11 Peripheral buses	28
2.12 SCSI	29
2.13 IDE	30
2.14 SCSI Vs EIDE	31
Chapter Three - PCI Local Bus	
3.1 PCI Overview	32
3.2 PCI Bus Protocol	33
3.3 PCI Signal Descriptions	36
3.3.1 System Pins	36
3.3.2 Address and Data Pins	37
3.3.3 Interface Control Pins	39
3.3.4 Arbitration Pins (Initiator Only)	41
3.3.5 Error Reporting Pins	42
3.3.6 Interrupt Pins	43
3.3.7 Cache Support Pins (Optional)	43

3.3.8 Additional Pins	44
3.3.9 64-Bit Bus Extension Pins (Optional)	45
3.3.10 JTAG/Boundary Scan Pins (Optional)	46
3.4 Plug and Play Configuration	46
3.4.1Background	46
3.4.2Configuration Address Space	47
3.4.3Configuration Transactions	47
3.4.4 Driving IDSEL	49
3.4.5 Configuration Header — Type 0	49
3.4.6 Bridge Types	54
3.4.7 Configuration Address Types	56

Chapter Four - Hardware Design

4.1 Introduction	61
4.2 Components used	61
4.3 Parallel port	61
4.4 Programming the register	63
4.4 Design steps	64
4.5 Memory chip	67
4.5.1 Types of ROM	67
4.5.2 EPROM Speed	69
4.5.3 EPROM Size rating	69
4.5.4 Atypical EPROM pinout	70
4.5.5 Programming an EPROM	71
Chapter Five - Software	
5.1 Introduction:	73
5.2 FLOW CHART.	73
5.3 MAIN PROGRAM	74
5.4 HOW TO OPERATE	78
Chapter Six Conclusion and RECOMMENDATIO	Ν
6.1 Conclusion	80
6.3 Recommendation	80
References	81
WEBs	81

Appendix

Appendix (A) Complete System

Appendix (B) SN74LS245, OCTAL BUS TRANSCEIVERS, WITH 3-TATE OUTPUTS
Appendix (C) (27C16)16,384-Bit (2048 x 8) UV Erasable CMOS PROM

LIST OF TABLES

Table	Description	.Page No
1-1	Bus parameters 4	4
2-1	S-100 board feature	11
2-2	MCA vs. EISA	21
2-3	SCSI types	30
3-1	Bus command codes	38
3-2	Encoding PRSNT[1:2] signals	44
4-1	Pinout of parallel port	62
4-2	Data Register	63
4-3	Status Register	64
4-4	Control Register	64
4-5	(From DB-25 to IC No.1 (SN74245	64
4-6	From DB-25 to IC No.2 (SN74245)	66
4-7	(From IC No.1 (SN74245) to IC No.3 (EPROM 2716	66
4-8	From IC No.2 (SN74245) to IC No.3 (EPROM 2716)	67

Figure	Description	Page No.
1.1	Functional diagram of a computer bus	2
1.2	Functional diagram of the VL Bus	5
3-1	PCI signal	36
3-2	x86 configuration address.	48
3-3	Asserting IDSEL.	49
3-4	Type 0 configuration header.	50
3-5	Configuration Command Register.	51
3-6	Configuration Status Register.	52
3-7	Built-in self-test (BIST) register.	53
3-8	PCI bridge hierarchy.	54
3-9	PCI bridge structure.	56
3-10	Configuration address types.	57
3-11	Configuration space header, Type 1.	57
3-12	Address filtering with base and limit registers.	59
3-13	Memory base and limit registers.	59
3-14	I/O base and limit registers.	60
3-15	Prefetchable base and limit registers.	60
4-1	Parallel port	62
4-2	system design	65
4-3	Work space	71
4-4	Device and write the program	72
5-1	Flow chart	73
5-2	First screen of the program	78
5-3	Second screen of the program	79

List of Figures

Abbreviation

ANSI	American National Standards Institute
ASIC	Application-specific integrated circuit
AT	Advanced Technology
BIOS	Basic Input Output System
BMIC	Bus Master Interface Chip
CD-ROM	Compact Disk - Read Only Memory
CPU	Central Processing Unit
DAC	Dual Address Cycles
DB-25	D-suBminiature-25
DIP	Dual in-line Package
DMA	Direct Memory Access
DRAM	Dynamic Random Access Memory
DWORD	Double WORD
EEPROM	Electrically Erasable Programmable Read Only Memory
EIDE	Enhanced Integrated Drive Electronics
EISA	Extended Industry Standard Architecture
EPROM	Erasable Programmable Read Only Memory
FIFO	First In First Out
GPIB	General Purpose Interface Bus
I/O	Input
IC	Integrated Circuit
ID	Identification
IDE	Integrated Drive Electronics
IEEE	Institute of Electrical and Electronics Engineers
IRQ	interrupt ReQuest
ISA	Industry Standard Architecture
LAN	Local Årea Network
LPT	Line Print Terminal
LSB	Least Significant Byte
MCA	Micro Channel Architecture
MTTR	Mean Time To Repair
OEM	Original Equipment Manufacturer
OTPROM	One Time Programmable Read Only Memory
РС	Personal Computer
PCI	Peripheral Component Interconnect
PCI SIG	PCI Special Interest Group
PCI-X	Peripheral Component Interconnect-eXtended
PROM	Programmable Read Only Memory
RAID	Redundant Array of Inexpensive Disks
RISC	Reduced Instruction Set Computer
ROM	Read Only Memory
SCSI	Small Computer Systems Interface
SPP	Standard Parallel Port
SVGA	Super Video Graphics Array
TTL	Transistor–transistor logic
	-

USB	Universal Serial Bus
UV	Ultra Violet
VESA	Video Electronics Standards Association
VGA	Video Graphics Array
VL	VESA Local bus
XT	eXtended Technology